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We experimentally investigate second harmonic generation from strongly coupled localized and
propagative phonon polariton modes in arrays of silicon carbide nanopillars. Our results clearly
demonstrate the hybrid nature of the system’s eigenmodes and distinct manifestation of strong
coupling in the linear and nonlinear response. While in linear reflectivity the intensity of the two
strongly-coupled branches is essentially symmetric and well explained by their respective localized
or propagative components, the second harmonic signal presents a strong asymmetry. Analyzing it
in detail, we reveal the importance of interference effects between the nonlinear polarization terms
originating in the bulk and in the phonon polariton modes, respectively.

Controlled confinement of light in sub-diffraction vol-
umes has always been a key goal in photonics. In this
regard, plasmonic systems provide rich opportunities for
manipulation of light on the nanoscale! 3. Recently, an
alternative approach utilizing polar dielectrics operating
in the mid-infrared (mid-IR) spectral range has attracted
considerable attention* . The photonic modes of these
systems, termed surface phonon-polaritons, exhibit low
optical losses due to their relatively large phonon life-
times, allowing for higher degrees of energy concentra-
tion and smaller Purcell factors than their plasmonic
counterparts'®. Conventional methods of probing the
field enhancement include multi-photon effects such as
surface enhanced Raman scattering, optical rectification,
and second harmonic generation (SHG).

Bearing strong conceptual similarities to nonlinear
plasmonics in metals'®, efficient SHG mediated by local-
ized and propagating phonon-polariton modes in polar
dielectrics has been reported!”2°. In contrast to noble
metals supporting surface plasmon-polaritons, the lack
of inversion symmetry enables bulk SHG in these sys-
tems, opening intriguing questions about the nonlinear-
optical response of phonon-polaritons. In 2016 Gubbin
and coworkers observed strong coupling between phonon-
polariton modes localised in SiC nanopillars and prop-
agative modes sustained on the substrate surface, giv-
ing rise to the two hybrid localised-propagative polariton
branches®. While the mechanisms of SHG enhancement
in plasmonic and phononic structures are reasonably well
understood, the nonlinearity of coupled systems where
multiple interacting resonances hybridize remains widely
unexplored. Previous works on coupled localized and
propagating plasmon modes?! 27 focused on the linear
optical response and its tunability prospects, meaning
that little is known about the nonlinear-optical proper-
ties of the coupled polaritonic modes.

In this Article, we study the nonlinear-optical response
of coupled surface phonon-polaritons in arrays of SiC
nanopillars. Employing a free-electron laser (FEL) as
a powerful, tunable source of mid-IR radiation we per-
form SHG spectroscopy on a series of samples with varied
array pitch, thus tuning the surface phonon-polariton res-
onance. Our results demonstrate pronounced differences
between the spectral reflectivity and SHG response at the
avoided crossing in the polariton dispersion. We further
outline relevant mechanisms for the observed SHG spec-
tral behaviour and discuss the key role of the substrate
for the disparate optical response of the coupled modes
in the linear and nonlinear domains.

We perform spectroscopic measurements in the IR
range, recording both linear reflectivity and SHG from
square arrays of SiC nanopillars (0.8 pm high, 1 um
in diameter) etched on a 3C-SiC substrate. The fabri-
cation procedure has previously been described in the
literature®. The FEL radiation (10 Hz macropulse rep-
etition rate, 3 ps micropulse duration, 5 cm~! band-
width, see Ref.2®) was tuned through a frequency range
of 750 — 1050 cm ™~ (wavelength 9 — 13 ym). The funda-
mental p-polarised beam of about 102 W average power
during the macropulse (~ 10 pJ micropulse energy) was
focused onto the sample into a spot of about 200 pym in
diameter by means of Au spherical mirrors with a focal
distance of about f = 15 cm. The angle of incidence
was 6 = 62° from the surface normal. The outgoing
SHG radiation was collected by another 2-inch spherical
Au mirror at the 2f distance and directed onto a lig-
uid nitrogen-cooled mercury cadmium telluride detector
(Infrared Associates). The long-pass 7 pm filter (LOT)
in the incident beam ensured the suppression of intrinsic
FEL-produced harmonics, whereas the fundamental fre-
quency was filtered out from the SHG output by means of
a MgF'y plate. The reflected fundamental radiation was



registered by a home-built pyroelectric photodetector.

Localized phonon polaritons are supported in the
individual nanopillars®'929  while propagative sur-
face phonon polaritons are supported by the SiC
substrate2?:30:31 The periodicity of the nanopillars en-
ables phase-matched coupling of far field, p-polarised ra-
diation into the propagative modes3?33 which can hy-
bridize with the localized modes of the pillars®34. These
modes are observed as narrow dips on the high Rest-
strahlen reflectivity background of the substrate, as well
as pronounced peaks in the SHG spectra due to strong
light localization and enhancement of the electromag-
netic field. Typical spectra shown in Fig. la were ob-
tained on a sample with the array pitch d = 5.5 pum. As
a few localized polariton modes observed inside the Rest-
strahlen band have been analysed in a number of previous
publications* 81929 here we directly employ these results
to identify the observed spectral features. The monopole
mode appears at about 865 cm™! while the frequency
of the propagative phonon-polariton (here ~ 890 cm~1)
shifts with the array pitch. The positions of the fea-
tures associated with the excitation of surface phonon
resonances are indicated with the dashed vertical lines.
Note that at this particular array pitch, the coupling be-
tween the localized and propagative polariton modes is
weak, allowing the observation of the two fundamental
modes in an almost unperturbed regime. In what fol-
lows, we shall focus on those features and do not discuss
the dipole localized SPhP modes, as well as the SHG
peaks at the frequencies of the transverse (=~ 790 cm~!)
and longitudinal (~ 980 cm~!) optical phonons in SiC,
which are the fingerprints of the SiC crystalline symme-
try. These features have been analyzed previously3°36
and are insensitive to the pitch d of the nanopillar array.

Strong coupling of the polaritonic modes can be ob-
served if the array pitch enables the excitation of prop-
agating surface phonon polaritons at a frequency near
to that of a localized mode®. In particular, this results
in significant hybridization of the propagating phonon-
polariton with a so-called monopolar mode*29:3¢ accom-
panied with the avoided crossing behaviour. To study
the strong coupling regime in detail and map out the
dispersion of the coupled modes in the vicinity of the
avoided crossing, we performed spectroscopic measure-
ments on a series of arrays with varied pitch d in the
range of 5.3 — 6.6 um. The reflectivity data (Fig. 1b)
are in a good agreement with the previously published
results®34, demonstrating the avoided crossing of the dis-
persion curves of the two phonon-polariton modes. As
in this work we are mostly interested in the nonlinear-
optical response of the coupled polaritonic modes, we
compare the SHG spatio-spectral map with that in the
linear domain. The direct comparison (Fig. 2) reveals
similar behaviour of the dispersion of the coupled modes.
Further, the coupling of the propagating surface mode to
the monopolar localized phonon-polariton results in no-
ticeable spectral shifts of the linear extinction and SHG
output peaks, demonstrating that the nonlinear emission
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Figure 1. Strong coupling of a localized surface phonon reso-
nance (LSPhR) and a propagating surface phonon-polariton
(SPhP) mode. (a) Typical linear reflectivity (red) and SHG
intensity (blue) spectra measured on a nanopillar array with
pitch d = 5.5 pum. The vertical dashed lines indicate the posi-
tions of the surface phonon resonances. The gray box shows
the SiC Reststrahlen band. Inset: sketch of the experimental
geometry and the excited propagating and monopole local-
ized polariton modes. (b) Linear reflectivity plots measured
on a series of arrays showing the shift of the resonances with
varied pitch due to the localised-propagative mode coupling.
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Figure 2. False color experimental spatio-spectral maps of
linear reflectivity (a) and SHG intensity (b) measured on a
set of arrays of nanopillars with varied pitches d. The white
dashed lines illustrate the calculated dispersion of the strongly
coupled polariton modes.

originates in the hybrid localized-propagative modes.

Notably, in Fig. 2b it is clearly seen that in the
SHG output the low-frequency polariton branch is more
strongly pronounced than the high-frequency one, while
in the reflectivity map the two branches are almost sym-
metric. The latter means here that along both branches,
the reflectivity depth is the largest at the monopolar lo-
calized mode and gradually decreases upon moving away
from it. The difference in the slopes of the two branches
seen here and in Fig. 3a originates in the SiC dispersion
and will not be discussed further. To better understand
the difference in the linear reflectivity and SHG output
spectra we analysed the magnitudes of the SHG peaks
and the reflectivity dips along the dispersion curves mod-
ified by the strong coupling. In order to do this, for each
pitch d we extracted the reflectivity and SHG data at the
freiquencies given by the dispersion of the coupled modes
w*:

+ w2 42
w:l::wl+w2 \/(‘21 w2)+g7 (1)

where w; » are the frequencies of the localized and prop-
agative modes, and g is the coupling strength (Rabi fre-
quency). The results of this procedure are shown in
Fig. 3, where the open and full symbols refer to the upper
(w™) and lower (w™) polariton branches, respectively.

In Fig. 3a we plot the depth of the corresponding dip
in the reflectivity, that is, the difference between the high
reflectance within the Reststrahlen band observed on a
flat SiC surface and the respective data point obtained
on the array of nanopillars. This difference is taken at
the frequencies w® given by the calculated dispersion of
the coupled modes (with g ~ 16 cm~!), shown in Fig. 2
with white dashed lines. Each pair of points (consisting
of an open and a closed symbol) in Fig. 3 corresponds to a
particular array pitch d. The pronounced increase of the
depth upon approaching the frequency of the monopolar
mode w; ~ 865 cm™! is related to the hybrid char-
acter of the two coupled modes. While the monopolar
localized mode couples strongly to the far-field radia-
tion, suboptimal grating conditions mean that the ex-
citation of the surface phonon-polariton with free-space
photons is inefficient. This inequality results in deeper
reflectivity dips when a hybrid mode is predominantly
monopolar in character, as it can be seen in Fig. 1. The
reflectivity dip depth of the monopolar mode (around
865 cm~!) is significantly larger than the depth at the
propagative mode far away from it. When the detuning
of the bare, uncoupled polaritons approaches zero, their
hybridization results in the coupled modes comprised of
approximately equal proportions of monopolar localized
and propagative modes, leading to the equilibration of
the depths of the resonances. The slight asymmetry vis-
ible in the reflectivity data (Fig. 3a) can be attributed
to the upper polariton (at frequency w™) engaging in
a quasi-resonance with the localized transverse dipolar
mode at around 912 cm~!. The resulting avoided cou-
pling slightly red-shifts the upper polariton branch, lead-
ing to the small difference in the slopes for the two po-
laritonic modes.

However, the hybridization between the two disparate
polariton modes upon their strong coupling alone can-
not account for the striking asymmetry in the SHG in-
tensity from the coupled modes. It is seen in Fig. 3b
that the SHG output along the lower polariton branch
increases upon approaching the monopolar mode from
the low frequency end, whereas the upper branch shows
the opposite trend. The larger SHG output of the prop-
agative mode on the high-frequency end of the spec-
trum (=~ 900 cm~!) compared to that on the opposite
side (= 820 cm~1!) originates in the interplay of the dis-
persion of the SiC nonlinear susceptibility x(?) and the
effective Fresnel factors for the electric field including
its polariton-driven enhancement'?3%. The former fac-
tor peaks at the transverse optical phonon resonance at
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Figure 3. Analysis of the coupled polariton modes. Magni-
tudes of the reflectivity dip (a) and peak SHG intensity (b)
along the dispersion branches of the strongly coupled polari-
ton modes. The dashed lines are guides to the eye.

about 780 cm™!, whereas the latter is responsible for
the SHG peak at the longitudinal optical phonon fre-
quency (= 980 cm~!). The characteristic SHG spectrum
shown in Fig. la, consistent with previous results of SiC
SHG spectroscopy®®36, indicates the higher importance
of the electric field enhancement factor, giving rise to the
steadily increasing SHG background at larger frequencies
in the spectral range of 830 — 950 cm™~!.

Summarizing these observations, we note that the SHG
spectrum of the coupled polaritons demonstrates strik-
ingly disparate behaviour to the relatively simple and
intuitive picture obtained in the linear reflectivity mea-
surements. To understand this difference, we employ a
simple model of two coupled oscillators giving rise to the
SHG signal on top of the background contribution. For
clarity, we neglect the weak interaction of the propaga-
tive polariton with the aforementioned transverse dipolar
localized mode. Within this model, the resonances can

be described by the two Lorentzians:

Li(w) = —2k___gion, (2)
W — Wk + 1Yk

where k = 1,2, wg, 7% and ¢ are the resonant frequen-
cies, damping rates, and phases of the two modes. Ay
are the effective oscillator strengths of the two modes
related to the their excitation efficiency. In our model,
wi is set constant to 865 cm~! (to match the monopole
mode frequency) while ws can be tuned by an external
parameter, i.e., the array pitch d, representing the dis-
persion of the propagative mode and its grating-mediated
excitation. To simulate the propagative-monopole mode
coupling, we continuously change the control parameter
d so that wy sweeps across wi, and the resonant frequen-
cies of the coupled modes are given by Eq. 1 (see Fig. 4a).
There, the extinction of the electric field E(w) is given
by the imaginary part of the linear-optical response at
the frequencies w=:

r(w®) oc Im [Ly (wF) + La(w™®)] (3)

where the permutation of w* does not change the result.
In turn, the depth in the experimental reflectivity data is
proportional to |r(w®)|? (Fig. 4b). Here we neglect the
absorption in the SiC substrate due to its high reflectivity
within the Reststrahlen band.

On the contrary, the SHG response needs to include
the background contribution of the substrate. We can
write down the nonlinear polarization at the double fre-
quency P?“ created by the excitation at the fundamental
frequency w in the following way:

P2 (w*) oo X LH(w™F) + xS L3 (w*) + Apge™®s. (4)
Here X;(f) are the effective nonlinear-optical susceptibil-
ities of the two modes, and we have introduced a back-
ground nonlinearity with its amplitude Ay, and phase
¢bg. The resonant increase of the SHG efficiency is at-
tributed to the the polariton-induced enhancement of
the electric field E oc Li. For instance, the SHG en-
hancement at the localized monopolar mode originates
in the subdiffractional localization of the electric field
and the prominent increase of its out-of-plane component
E,'0:19  The surface-mode-induced SHG is additionally
quenched by the low efficiency of the grating consisting
of the nanopillars, as discussed above. Within our model,
the experimentally observed SHG intensities at the fre-
quencies of the coupled modes are given by | P2 (w™)|2.

The results of our modeling are summarized in Fig. 4,
nicely resembling our experimental observations. The
slight asymmetry between the two branches in the reflec-
tivity (Fig. 4b) is introduced by the phase shift between
the localized and propagative resonances, Ap = w9 — 1.
We found that the degree of asymmetry commensurate
with the experimental observations can be obtained for
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Figure 4. Two coupled oscillators model. (a) Dispersion of
the uncoupled (dashed black lines) and the strongly coupled
modes (solid green lines). (b,c) Calculated reflectivity dip (b,
solid red lines) and SHG peak intensity (c, solid blue lines)
along the branches of the coupled modes. The shaded area
in (c) illustrates the lineshape of a localized oscillator. (d)
The calculated phase of the nonlinear polarization P?* in
the vicinity of the two resonances. The solid lines in (c-d)
were calculated with a phase of the complex background con-
tribution Aps ¢be = 70° with respect to that of the reso-
nant Lorentzians (Eq. 2), resembling the experimental obser-
vations. Such agreement cannot be met when Apg is set to
have the same phase as Ly, or Ay, = 0, as is illustrated by
the dashed and dot-dashed lines, respectively.

|Ap| < 5°. Taking into account the simplicity of our
model and possible quasi-resonance with the transverse
dipolar polariton, we can conclude on the zero phase shift
between the two considered polariton modes. At the
same time, the phase shift between the resonant and the
background SHG contributions appears crucial for the
asymmetry in the SHG dependence. The antisymmetric
shape seen in Fig. 4c can only be obtained when the phase
shift of the complex background contribution Ay, with
respect to the resonant Lorentzians |Appg| = |@bg — ¢1,2]
is set to about 90°. In particular, the results of our calcu-
lations shown with the solid lines in Fig. 4c were obtained
for Appg = 70°.

To demonstrate the importance of the phase-shifted
background contribution to the total SHG output in the
vicinity of the strong coupling, in Fig. 4c we further plot
the shapes of the resonant SHG yields if the phase shift
Ay vanishes (dashed lines) and if the background con-
tribution is not taken into account at all (dash-dotted
lines). It is seen that the experimentally observed degree
of asymmetry in the resonant SHG response can only
be obtained in calculations if the background contribu-
tion Ape with its own distinct phase is considered. If
either ¢ppg or the entire Ayg is set to zero, it is further
seen that when |Ag| ~ 0 (as enforced by the linear re-
flectivity data), the asymmetry of the two branches of
the coupled resonances is eventually lost, thus ruling out
the reproduction of the experimentally achieved SHG be-
haviour. Fig. 4d provides additional insight into the non-
linear optics of the strongly coupled resonances, showing
the calculated phases of the nonlinear polarization P2*
in these three cases. The curves in Fig. 4 were calculated
for a coupling strength of g = 15 em™!, which is in a
good agreement with the values found from the analy-
sis of the experimental data8. There, linear reflectivity
was recorded in similar nanopillar arrays, and then the
dispersion of the coupled polariton modes was retrieved
from the fits of the reflectivity spectra, indicating strong
coupling of the localized and propagative polaritons in
comparable experimental conditions.

As such, this disparate behaviour of the resonant lin-
ear and nonlinear properties is an interesting optical
phenomenon originating in the utter complexity of the
nonlinear-optical response®™3%. We emphasize that the
goal of our modelling was not to accurately reproduce
the experimental data (which would require inclusion of
too many fitting parameters in the model) but rather to
demonstrate how the main features of the SHG intensity
variations in the vicinity of the coupled resonances, which
exhibit drastically different behaviour to that of the lin-
ear reflectivity data, can be relatively simply understood.
With the help of our modelling we found that the inter-
ference of the resonantly enhanced SHG waves with the
phase-shifted background contribution produced by the
substrate is a key for the asymmetry between the two
branches of the coupled polaritonic modes. Importantly,
this phase shift is inherent to the polaritonic nature of
the modes: on top of the well-known enhancement of the



electric field amplitude, the surface polaritons (both lo-
calized and propagating) are characterized by the phases
of various electric field components. In other words, the
phase shift of the electric fields associated with the par-
ticular surface polariton mode is then imprinted into the
phase of the corresponding nonlinear polarization term
P2%_ Because our model does not explicitly consider the
polariton-driven electric field enhancement, this effect is
instead taken into account by introducing the effective
phases ¢ and susceptibilities Xf)- As such, not only the
amplitude but also the phase of the resulting total P2
can vary between the resonant and non-resonant cases,
giving rise to the interesting interference conditions at
the strong coupling resonance.

To summarize, we have analyzed the SHG response
of strongly coupled surface phonon-polariton modes. In
particular, we observe SHG from the normal modes of
an array of SiC nanoresonators, consisting of hybridized
localized and propagating surface phonon-polaritons in
the SiC Reststrahlen band. The far-field excitation of the
polaritons is enabled by the periodicity of SiC nanopillar
arrays with a systematically varied pitch. In contrast to
the linear reflectivity measurements, we found a clear an-
tisymmetric behaviour of the resonant SHG output along
the two dispersion branches of the coupled polaritons.
Employing a simple coupled oscillator model, we demon-
strate that the disparate symmetry of the linear and
SHG response can be explained by the interference of the
polariton-induced SHG with the background contribu-
tion. We further argue that the polaritonic enhancement
of the electric fields and their phase shifts are responsi-
ble for the particular interference conditions leading to
the experimentally observed asymmetry. Our results ad-
vance the understanding of the nonlinear nanophononics
in the mid-infrared spectral range, while retaining a high
degree of generality and thus remaining valid for e.g. sur-
face plasmon-polaritons in metals.

ACKNOWLEDGMENTS

The authors thank W. Schoéllkopf and S. Gewinner for
their assistance with operating the free electron laser.
S.D.L. is a Royal Society Research Fellow. S.D.L and
C.R.G. acknowledge support from EPSRC Grant No.
EP/M003183/1. S.A.M. acknowledges the Lee-Lucas
Chair in Physics and the Leverhulme Trust.

APPENDIX: MATHEMATICAL FORMALISM

We begin with a model of two coupled oscillators with
eigenfrequencies wj 2 and a coupling strength g. There
are multiple ways to obtain the frequencies of the coupled
modes w*. Here we use a relatively straightforward Hop-
field approach, where in the rotating wave approximation
the Hamiltonian #H takes the following form8-3%-40:

H = hwiata + hwgb'b + ig(alh + abl), (5)

where the af(a) and bf(b) are the bosonic creation (an-
nihilation) operators for the two uncoupled oscillators.
The coupling strength ¢ is introduced as an effective
phenomenological parameter. The eigenfrequencies of
the coupled modes can be obtained by diagonalizing the
Hopfield-Bogoliubov matrix®:

H— <W1 g) (6)
g we
The eigenvalues of this matrix yields the frequencies w®
from Eq. (1).

Next, we approximate the spectral lineshapes of the
two resonances with Lorentzians (2) with their ampli-
tudes Ay, frequencies wy and damping rates 7. Then,
the optical losses due to absorption are intertwined with
the mode excitation efficiency and given by the imagi-
nary part of the Lorentzians, Im L(w). Assuming the
weak nonlinear-optical conversion, the optical absorption
at the fundamental frequency is linear and thus can be
represented as a sum of absorption coefficients provided
by the two modes independently. In the case of the cou-
pled modes, optical losses (or extinction) at the eigenfre-
quencies w¥ is thus given by Eq. (3).

In SHG, the nonlinear (second-order) polarization is
given by:

P =x® BB, (7)

where y(?) is the nonlinear susceptibility tensor. The
excitation of a polariton mode results in a prominent en-
hancement of the fundamental electric field E¥, which
can be taken into account in Eq. (7) by introducing the
so-called local field factors L“. The latter relate the elec-
tric fields in the nonlinear medium E*“ from Eq. (7) to
the incident optical fields Ei%:

E¥ = LYEY. (8)

Peaking at the resonance frequencies, the lineshapes of
these local factors L“ can be modeled with the same
Lorentzians L(w) as the optical extinction. Additionally,
the possible phase shift of the electric fields due to the
polaritonic mode nature is accounted for by multiplying
Li(w) with a phase term e??*. Note that this is the ef-
fective phase originating in the tensorial character of the
nonlinear susceptibility x(?). To illustrate it, we con-
sider a simple example of a propagative polariton at an
isotropic interface. There, three independent non-zero
x® components exist (XS_QL_, X(f\)l\l’ and XI(IQL)II)' The to-
tal nonlinear polarization is given by the interference of

(QiEjEk, and the phases

the three respective terms of x; y



of the electric fields F;  are imprinted into the phase of
the respective P?“ term. Because it is not practical to
introduce the phases and amplitudes of each XE?,)C compo-
nent and each field projection Ej, we instead consider
effective phases and amplitudes only.

Employing these effective parameters, we can write:
P2 =@ L(w)L(w)e™??, 9)

which in the case of the two coupled polaritons and the
background contribution can be expanded into Eq. (4).
Further, because we are not interested in the absolute
values of the SHG intensity, we can write the propor-
tionality:

I o | P22, (10)

Since the total phase of the nonlinear polarization is not
registered in the experiment, the common phase of the
three terms in Eq. (4) can be eliminated, and the num-
ber of phase parameters is effectively reduced to two,
namely, the phase difference between the two resonances,
Ay = pg — 1, and the relative phase of the background

contribution Apps = e — 1. Since the analysis of our
experimental results requires Ay =~ 0, in the definition
of the background phase ¢, can be substituted with @9
without the loss of generality.

To obtain the data shown in Fig. 4, we first calculate
the resonant frequencies w® for each value of the array
pitch d (Fig. 4a). Then, using these values, we calculate
the linear optical losses shown in Fig. 4b using Eq. (3)
and plot them against the previously obtained resonant
frequencies w®. Similarly, we plot the SHG intensity cal-
culated with the help of Egs. (4),(10) in Fig. 4c. The
importance of the interference of the resonant SHG field
with the background contribution can be seen in Fig. 4d,
where the phase of the nonlinear polarization P?¥ from
Eq. (4) is shown. In the absence of the background con-
tribution (Apg = 0, dash-dotted lines), the phase of P
is the opposite at the both sides of the localized polari-
ton resonance. As such, interference with a phase-shifted
background term with a frequency-independent ampli-
tude results in the enhancement or suppression of the
total SHG yield, in agreement with the experiment.
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