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Key points 11 

1) Discontinuities in multi-sensor ocean color chlorophyll records are detected in ~70 % of 12 

regions using a Bayesian space-time model 13 

2) Discontinuities affect trend estimates in ~60 % of regions and can even bias the trends’ sign 14 

(opposite sign in ~13% of regions) 15 

3) The uncertainty of trend estimates increases by an average of 0.20 %yr
-1 

for a single 16 

discontinuity and 0.59 %yr
-1

 for two discontinuities 17 

Abstract 18 

Ocean color sensors are crucial for understanding global phytoplankton dynamics. However, the 19 

limited lifespans of sensors make multi-sensor datasets necessary for estimating long-term 20 

trends. Discontinuities may be introduced when merging data between sensors, potentially 21 
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affecting trend estimates and their uncertainties. We use a Bayesian spatio-temporal model to 22 

investigate the presence of discontinuities and their impacts on estimated chlorophyll trends. The 23 

discontinuities considered are the introduction of MERIS, MODIS-Aqua, and VIIRS, and the 24 

termination of SeaWiFS. Discontinuities are detected in ~70 % of regions, affecting trend 25 

estimates (~60 % of regions have statistically different trends), and potentially even biasing trend 26 

estimates (opposite sign in ~13 % of regions). Considering a single discontinuity increases trend 27 

uncertainty by an average of 0.20% yr
-1

 (0.59% yr
-1

 for two discontinuities). This difference in 28 

trend magnitude and uncertainty highlights the importance of minimizing discontinuities in 29 

multi-sensor records and taking into account discontinuities when analyzing trends. 30 

Index terms: 1635 1640 1986 1990 4855   31 

Keywords: Chlorophyll, Bayesian Statistics, Spatio-Temporal Modeling, Discontinuities, Trend 32 

Estimation. 33 

1 Introduction  34 

Ocean color satellite records can be used to assess how global phytoplankton biomass may be 35 

affected by climate change. These records are especially suited to this task because of their high 36 

spatial coverage and temporal resolution (e.g. McClain, 2009). However, there are major 37 

challenges inherent to trend detection in chlorophyll-a (chl) derived from ocean color sensors. 38 

These include the low signal-to-noise ratio, the large degree of natural variability, and the 39 

shortness of the record (e.g. Beaulieu et al., 2013; Henson et al., 2010; Mélin et al., 2016; 40 

Saulquin et al., 2013). A comparison of observational, i.e. in situ and satellite, chl observations 41 

found that shorter datasets have conflicting, and larger magnitude, trend estimates when 42 

compared to longer records (Boyce & Worm, 2015). The large magnitude of natural variability 43 

can obscure a smaller magnitude long-term trend, thus challenging trend estimation.  44 
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To compensate for the shortness of any single ocean color record, multi-sensor datasets can be 45 

used. These combine the available ocean color sensors using various approaches (e.g. Lavender 46 

et al., 2015; Maritorena & Siegel, 2005). The four main ocean color sensors providing the 47 

longest overlapping period of coverage to date are: Medium Resolution Imaging Spectrometer 48 

(MERIS) (April 2002 to April 2012), Moderate Resolution Imaging Spectroradiometer aboard 49 

the Aqua satellite (MODIS-Aqua) (July 2002 to present), Sea-Viewing Wide Field-of-View 50 

Sensor (SeaWiFS) (September 1997 to December 2010), and Visible Infrared Imaging 51 

Radiometer Suite (VIIRS) (Jan 2012 to present). The approach used to combine satellite records 52 

must fully compensate for the differences between the individual datasets, which can vary 53 

temporally and spatially (Djavidnia et al., 2010). If the differences between datasets are not 54 

accounted for discontinuities may be introduced, trends estimated from the combined record may 55 

thus be biased and/or have increased uncertainty (Gregg & Casey, 2010). Such discontinuities 56 

may include a permanent mean-shift in the observed value, i.e. a mean-shift discontinuity 57 

(Weatherhead, 1998), which are considered here. Even with the use of multi-sensor records, the 58 

maximum available length of chl record is still only approximately 20 years, from the launch of 59 

SeaWiFS to present, shorter than the suggested ~30 years required to distinguish a climate 60 

change driven chl trend from natural variability (Henson et al., 2016; 2010). 61 

To assess the effects of potential discontinuities on trend estimation, we model the 62 

discontinuities alongside the long-term trend as suggested in Weatherhead (1998). More 63 

specifically, we use a Bayesian spatio-temporal model, which has been shown to provide an 64 

accurate fit and complete assessment of uncertainty when estimating chl trends (Hammond et al., 65 

2017). We consider three major discontinuities in the satellite record: the launch of both the 66 

MERIS and MODIS-Aqua sensors in the spring/summer of 2002, the termination of the 67 
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SeaWiFS sensor at the end of 2010, and the launch of the VIIRS satellite, providing data from 68 

the start of 2012.  69 

2 Methods 70 

2.1 Data 71 

The chl data come from version 3.1 of ESA’s OC-CCI project (Lavender et al., 2015; available 72 

at: http://www.esa-oceancolour-cci.org/). This product combines data from the SeaWiFS, 73 

MERIS, MODIS-Aqua (NASA R2014.0.1 reprocessing), and VIIRS sensors to create a 74 

continuous, bias-corrected monthly mean time-series running from September 1997 to December 75 

2016 inclusive. Band-shifting and bias-correction techniques are used to combine the data from 76 

individual sensors. The band-shifting is performed using a bio-optical model inversion (Mélin & 77 

Sclep, 2012; 2015). The bias-correction is performed by adjusting pixel-level radiances to reduce 78 

the difference between SeaWiFS and the other sensors; a time window with increased central 79 

weight is used to correct seasonal biases (Chuprin et al., 2017; Djavidnia et al., 2010; Grant et 80 

al., 2017). We process this dataset by downscaling to a 1° grid (by averaging within 1° boxes) 81 

and by log-transforming chl values, after Campbell (1995).  82 

As a comparison, we also perform the analysis on 1° gridded monthly mean data from the 83 

GlobColour dataset (available at: http://globcolour.info) in which SeaWiFS, MERIS, MODIS-84 

Aqua (R2014.0.1), and VIIRS sensors are merged using the Garver, Siegel, Maritorena Model 85 

(GSM) process (Maritorena & Siegel, 2005; Maritorena et al., 2010). The GSM process 86 

combines sensor observations of water-leaving radiance to form a multi-source spectrum for 87 

each pixel. The multi-source spectrum is then inverted with a semi-analytical ocean color model, 88 

which describes the relationship between water-leaving radiance and the inherent optical 89 

properties of seawater, including backscattering and absorption coefficients (Maritorena et al., 90 

http://globcolour.info/
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2002; 2010). We use the Case 1 (open ocean) data only, as we do not consider coastal regions 91 

(see above). A log-transformation is also used on the GlobColour chl data. To help explain 92 

natural variability in the chl data, SST is used as a covariate. SST data are sourced from the 93 

NOAA optimum interpolation v2 monthly mean data product (Reynolds et al., 2002; available 94 

at: http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html).  95 

Trends are analyzed in 23 regions, based on those defined by Longhurst (1995, 1998). Coastal 96 

and polar waters are excluded due to issues with the availability and quality of data. Longhurst 97 

provinces are defined by biogeochemical and physical factors, and thus should have consistent 98 

trend amplitude and direction (Hammond et al., 2017). 99 

2.2 Model Formulation 100 

A hierarchical Bayesian spatio-temporal model is fitted separately in each of the 23 Longhurst 101 

regions retained for analysis (i.e. we use an un-pooled model with region-based independent 102 

fitting). This model uses all the data points inside each province and uses their spatial and 103 

temporal relationship to produce a province-wide set of parameter estimates (e.g. of trend and 104 

discontinuity). This approach provides a more accurate fit to observations and a more realistic 105 

assessment of uncertainty, when compared to averaging gridded trend estimates across the region 106 

(Hammond et al., 2017). The latter approach may also increase the risk of false positives (e.g. 107 

Wilks, 2016). 108 

The key equations are presented below. First, the relationship between observed chl 𝑍𝑛,𝑡 and its 109 

true underlying value 𝑂𝑛,𝑡 at location 𝑛 and at month 𝑡 is represented as: 110 

                                                                    𝑍𝑛,𝑡 = 𝑂𝑛,𝑡 +  𝜀𝑛,𝑡                                                             (1) 
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where 𝜀𝑛,𝑡 is an independently normally distributed white noise process with zero mean and an 111 

unknown pure error variance, which primarily represents random measurement error (as well as 112 

environmental variability on scales finer than the grid spacing). A regression model is used to 113 

represent the true chl value (at grid point 𝑛 and time 𝑡): 114 

                                                                 𝑂𝑛,𝑡 = 𝒙𝑛,𝑡
′ 𝜷 +  𝒂𝑛

′ 𝒘𝑚,𝑡                                                        (2) 

This regression model is composed of the covariates (including intercept) 𝒙𝑛,𝑡, the regression 115 

coefficients (constant for each region) 𝜷 = (𝛽0, 𝛽𝑇𝑟𝑒𝑛𝑑 , 𝛽𝑆𝑆𝑇 , 𝛽𝐷𝑖𝑠𝑐 , 𝛽𝑀1, … , 𝛽𝑀12), and the term 116 

𝒂𝑛
′ 𝒘𝑚,𝑡 representing spatial and temporal correlation.  117 

The spatial correlation is represented by an exponential decay away from site 𝑛, and the temporal 118 

correlation by a first order autoregressive process (i.e. a function of the preceding month). The 119 

term 𝒂𝑛
′  refers to the kriging coefficients at the grid (𝑛1, 𝑛2, … , 𝑛𝑁) and the knot 120 

(𝑚1, 𝑚2, … , 𝑚𝑀) locations. The knot locations are a reduced set of the grid locations, used to 121 

decrease the size of the spatial covariance matrix, allowing the large volumes of data used to be 122 

more efficiently computed. The term 𝒘𝑚,𝑡 represents the reduced spatio-temporal random effects 123 

at the knot locations.  124 

The covariates include the date of the observation, the month (represented as factor levels where 125 

each month has an additional term, constant for all years), and SST. Time is used to estimate the 126 

temporal trend, the monthly factor is used to represent the seasonal cycle, and SST is used to 127 

isolate environmental variability. Including the SST term was shown to improve model fit as 128 

well as prevent issues with convergence (supporting information). As SST may capture a portion 129 

of the long-term chl trend, the trend estimated here represents the remaining long-term change 130 

not explained by SST variability. The regression coefficients correspond to the covariates as 131 
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follows: 𝛽0 to the intercept, 𝛽𝑇𝑟𝑒𝑛𝑑 to the trend, 𝛽𝑆𝑆𝑇 to SST, 𝛽𝐷𝑖𝑠𝑐 to the mean-shift 132 

discontinuity, and 𝛽𝑀1, … , 𝛽𝑀12 to the monthly factor levels. Note that the monthly factor is not 133 

included in the Pacific Subarctic Gyres Province (East) (Region 18), because of the difficulty in 134 

identifying a stable phenology (supporting information Text S2). 135 

The discontinuity covariate 𝒙𝐷𝑖𝑠𝑐 indicates the presence of a mean-shift (we do not consider 136 

gradual drift between sensors) and is represented as a factor that is different either side of the 137 

known time of discontinuity 𝑡𝐷𝑖𝑠𝑐 (Weatherhead, 1998):  138 

                                                                   𝒙𝑡
𝐷𝑖𝑠𝑐 = {

0,
1,

         
𝑡 < 𝑡𝐷𝑖𝑠𝑐

𝑡 ≥ 𝑡𝐷𝑖𝑠𝑐
                                                        (3) 

We consider five scenarios based on major satellite inclusions and failures. The first is a scenario 139 

with no discontinuities (N-scenario). The second scenario has one discontinuity between the 140 

launches of the MERIS and MODIS-Aqua sensors in June 2002 (M-scenario). June 2002 is the 141 

time equidistant between their operational dates of April and July 2002, respectively. The third 142 

scenario has one discontinuity at the failure of the SeaWiFS satellite in December 2010 (S-143 

scenario). The fourth scenario is when we consider both these discontinuities in the same model 144 

(MS-scenario). The final scenario is when all discontinuities mentioned above are considered, 145 

plus the launch of the VIIRS sensor in January 2012 (MSV-scenario). An additional scenario 146 

combining both the MERIS/MODIS discontinuity and the VIIRS discontinuity is considered in 147 

the supporting information (Text S3). For the multi-discontinuity scenarios (MS and MSV), the 148 

regression coefficient 𝛽𝐷𝑖𝑠𝑐 includes additional 𝑡𝐷𝑖𝑠𝑐 and 𝒙𝐷𝑖𝑠𝑐 terms to estimate all 149 

discontinuities (i.e. two 𝑡𝐷𝑖𝑠𝑐 and 𝒙𝐷𝑖𝑠𝑐 terms for the MS-scenario and three for the MSV-150 

scenario). 151 
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The modeling approach fits a full posterior distribution for each parameter. This study focuses on 152 

the trend and discontinuity parameters with their posterior mode representing the best estimate. 153 

The uncertainty of the trend and discontinuity estimates are represented by the 95 % credible 154 

interval of the posterior, defined as the 95 % highest density interval (Kruschke, 2015). We 155 

consider that a discontinuity is present if its magnitude is different from zero (i.e. its 95 % 156 

credible interval excludes zero). When comparing the trends in each region, we consider them 157 

likely to be statistically different from the baseline N-scenario if their 95 % credible intervals do 158 

not overlap with those of the N-scenario. 159 

The spTimer package in R is used to estimate the model fit (Bakar & Sahu, 2015). See the 160 

supporting information and Hammond et al. (2017) for additional details on the model setup. 161 

3 Results 162 

3.1 Discontinuity magnitudes and their effect on trend estimates 163 

The main text focuses on the ESA OC-CCI dataset; the scenarios using GlobColour data are 164 

analyzed in the supporting information (Text S4). In the majority of the regions in this study, we 165 

find that discontinuities are likely present and their magnitudes are large enough to affect trend 166 

estimates. The degree and direction of the effect is dependent on both the discontinuity scenario 167 

and region. We detect the presence of discontinuities in the majority of regions in all the 168 

discontinuity scenarios considered, although fewer are detected in the multi-discontinuity 169 

scenarios (Figure 1a). The majority of these regions also show that discontinuities affect trend 170 

estimates (Figure 1b).  171 

The difference in trend estimates between the single discontinuity scenarios and the N-scenario 172 

is found to be inversely proportional to the discontinuity magnitude. The global average 173 
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differences compared to the N-scenario, computed using weighting for the area and mean chl in 174 

each province,  are as follows. We find that a discontinuity magnitude of 0.1 log(mg m
-3

) leads to 175 

a trend that is -0.65% yr
-1 

different, based on global averages (Figures 1a and 1b). The 176 

discontinuity for the M-scenario is positive in most regions, leading to an overall negative trend 177 

difference (average of -0.54% yr
-1

) (Figure 2). The opposite is found for the S-scenario (average 178 

of 0.59% yr
-1

). For the MS-scenario, the sign of the difference is evenly distributed between 179 

positive and negative (average difference -0.028% yr
-1

). In about half (12) of regions the trend 180 

difference for the MS-scenario lies between the trend differences for the two single discontinuity 181 

scenarios, suggesting they are partially cancelling out (Figure 1b). The MSV-scenario shows 182 

similar results to the MS-scenario with an average difference of 0.047% yr
-1

 (Figures 1b & 3a).
 
 183 

The average magnitude of trend differences (i.e. when the direction/sign of trend difference is 184 

omitted) is larger in the multi-discontinuity scenarios (1.1% yr
-1

 for the MSV-scenario and 185 

0.85% yr
-1

 for the MS-scenario) than the single-discontinuity scenarios (0.65% yr
-1

 for the M-186 

scenario and 0.81% yr
-1

 for the S-scenario). This can lead to a change of trend sign, i.e. from 187 

increasing to decreasing or vice versa, for example this occurs in 5 regions in the MSV-scenario. 188 

Despite differences between individual regions, there is no clear global pattern in either the trend 189 

difference or the discontinuity magnitude. The full results are presented in the supporting 190 

information, including an analysis using the GlobColour dataset that is found to show similar 191 

results, albeit with a slightly higher average trend difference in most scenarios (Table S2 & S3). 192 

3.2 Effect of discontinuities on trend estimate uncertainties 193 

Taking into account discontinuities increases uncertainty in all scenarios and regions. A single 194 

discontinuity increases trend uncertainty by an average of 0.21% yr
-1

 (Figure 1c). For the MS-195 

scenario and MSV-scenario the increase in uncertainty is 0.64% yr
-1

 (Figure 1c & 3b). Individual 196 
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regions show a disparity in the degree of uncertainty increase. The regions with the highest 197 

proportional increase in uncertainty, for the MSV-scenario relative to the N-scenario, are in the 198 

tropical to subtropical North Atlantic (average of 210 %). The regions with the smallest 199 

proportional uncertainty increase are typically found in the mid-latitude Pacific Ocean (average 200 

of 140 %). See supporting information for full results, including analysis using the GlobColour 201 

dataset, which is found to show similar results, albeit with a
 
greater uncertainty difference in all 202 

scenarios. 203 

4 Discussion 204 

4.1 Ability to distinguish discontinuities and trends 205 

Our results depend on our ability to distinguish trends and discontinuities accurately. We conduct 206 

a series of simulation studies to assess the model skill in accurately estimating trends and 207 

discontinuities (supporting information Text S5). We generate 100 synthetic datasets, of the 208 

same length as the present study, based on realistic values of chl, and its variability (with 209 

independent randomly generated noise in each dataset), and then superpose a range of realistic 210 

trends and discontinuities. We find that for these simulation studies the trend term is accurately 211 

estimated to within <1 %, and the discontinuity term is accurately estimated to within 212 

approximately 5 %. This suggests that our approach is highly capable of identifying trends and 213 

discontinuities, without confusing them with each other or with other components of chl 214 

variability.  215 

4.2 How do discontinuities affect trend estimates? 216 

The trend difference between the MSV-scenario and the N-scenario has an average magnitude of 217 

1.1% yr
-1

,
 
and varies in the range ± 2.8% yr

-1
, resulting in statistically different trends in 14 of 218 

the 23 regions. In a study that analyzed the effect of inter-sensor bias on trend detection, Mélin 219 
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(2016) showed that a 5 - 6 % bias between two sensors can lead to significantly different trends. 220 

This result was obtained by introducing artificial biases in the range 1 - 50 % when merging the 221 

SeaWiFS and MODIS-Aqua sensors. This illustrates the strong effect that discontinuities in the 222 

record can have, in agreement with the present study. However, Mélin (2016) also found that 223 

trends estimated for oligotrophic subtropical gyres are particularly sensitive to discontinuities in 224 

the record, which was attributed to the gyres’ low natural variability. In our analysis, 225 

oligotrophic gyres do not seem to show such a pattern, except for the Pacific oligotrophic gyres, 226 

which show a larger than average trend difference (2.1% yr
-1

) in the MSV-scenario relative to the 227 

N-scenario. The differences compared to Mélin (2016) are likely due to the substantial 228 

differences in the datasets and methodologies. Here we take into account discontinuities in a 229 

bias-corrected multi-sensor dataset using a spatio-temporal model with environmental variability 230 

isolated using SST whereas Mélin (2016) analyzed synthetic records with discontinuities induced 231 

prior to merging.  232 

The discontinuity model in the present study represents a mean-shift, but biases between sensors 233 

can also increase over time and change over seasonal cycles (Djavidnia et al., 2010). A gradual 234 

drift in sensors’ detected values  may, like mean-shift discontinuities, directly affect trend 235 

estimates. Mélin (2016) determined that any drift greater than 2 % per decade can alter the 236 

conclusions of a trend analysis, which suggests this effect may be similarly important to mean-237 

shift discontinuities. We do not consider drift here, as over the short-term period of drift (several 238 

years) it is likely to be confused with the trend estimate and lead to further increases in 239 

uncertainty and changes to the trend estimates. 240 

The MODIS-Aqua sensor is known to be affected by sensor ageing, particularly towards the end 241 

of the study period, thus caution is advised for temporal analysis including the post-2012 period 242 
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(Mélin et al., 2017). To assess whether a drift in the MODIS-Aqua sensor may affect our results, 243 

we compare the trends detected over the period 1997-2016 in the present study to the trends 244 

detected over 1997-2013 in Hammond et al. (2017), which uses the ESA OC-CCI v2.0 dataset 245 

with the R2013.0.1 reprocessing MODIS-Aqua data. In Hammond et al. (2017), trends were 246 

detected in 17 of the 23 regions, as opposed to 19 such regions in the present study. The large-247 

scale latitudinal pattern (whereby higher latitudes tend to have more positive trends) is also 248 

similar in both studies, 16 of the 23 regions in Hammond et al. (2017) have the same trend 249 

directions as the N-scenario. Although there are differences between the two studies which may 250 

be partly attributable to MODIS ageing effects, these are nevertheless minor and do not affect 251 

our conclusions.  252 

4.3 How do discontinuities affect uncertainty in trend estimates? 253 

Our results show that discontinuities in a record will increase the uncertainty of long-term trends, 254 

such that two discontinuities can double the uncertainty in trend estimates. Detection of trends in 255 

the current multi-sensor record may be particularly sensitive to the timing of discontinuities 256 

relative to decadal variability. The 1997/1998 El Niño event (Wolter & Timlin, 1998) lies before 257 

the MERIS/MODIS discontinuity, and the 2015/2016 El Niño event (Levine & McPhaden, 2016) 258 

follows the SeaWiFS and VIIRS discontinuities.  259 

Trend detection may also be affected by the relative timing of discontinuities in the record. A 260 

discontinuity in the middle of a time-series is expected to have the greatest effect, which will 261 

decrease towards the beginning or end of the record (Beaulieu et al., 2013). The SeaWiFS 262 

discontinuity is further from either end of the record than the MERIS/MODIS discontinuity 263 

which may explain the larger uncertainty and trend differences seen in the S-scenario. 264 

Conversely, the VIIRS and SeaWiFS discontinuities are only separated by 1 year, potentially 265 
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explaining the comparable results in the MSV-scenario and the MS-scenario. The increase in 266 

trend uncertainty when taking into account discontinuities is likely to make trend detection more 267 

challenging when using multi-sensor records, and will only increase as more sensors are 268 

introduced in to the record. However, the timing of these discontinuities is important; the effect 269 

on uncertainty of two temporally close discontinuities may be similar to one discontinuity. 270 

The increase in trend estimate uncertainty when taking into account discontinuities occurs 271 

because the statistical model is estimating the magnitude of specific discontinuities. This leads to 272 

a greater degree of freedom as the model has extra terms to fit, which will increase with the 273 

number of discontinuity terms. These discontinuities still exist even if not specified in the model 274 

so studies neglecting to consider these terms will have a perceived, but inaccurate, smaller 275 

uncertainty.  276 

4.4 Implications for multi-sensor ocean color records 277 

Work by Brewin et al. (2014) suggests that trends in monthly log-transformed chl, estimated 278 

using least squares linear regression, show a similar regional pattern in the MERIS, MODIS-279 

Aqua, and SeaWiFS sensors. Additionally, Mélin et al. (2017) found that these individual 280 

records, and VIIRS, show similar trends to the ESA OC-CCI dataset. However, the differences 281 

we find here imply that using a space-time model that specifically includes discontinuities and 282 

environmental variability (through the SST term) reveals additional information that would 283 

otherwise be missed. 284 

We find similar results using both the ESA OC-CCI dataset and GlobColour dataset (full details 285 

in supporting information Text S4), i.e. that discontinuities are present in most regions and 286 

impact trend estimates. More specifically, the discontinuity magnitudes, trend differences, and 287 
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trend uncertainty differences show a near 1:1 relationship between the two datasets. However, 288 

discontinuity magnitudes are on average slightly larger in the GlobColour dataset, and although 289 

this has a subtle effect on trend differences, the uncertainty differences in the GlobColour dataset 290 

are also larger on average. This result may suggest a slightly larger bias in the GlobColour 291 

dataset due to the different approaches used for merging satellite records. The ESA OC-CCI 292 

dataset has been corrected for bias (Lavender et al., 2015), whilst the GlobColour data are not 293 

explicitly bias-corrected but are instead merged by inversion with a bio-optical model 294 

(Maritorena et al., 2010). The larger discontinuities in GlobColour could also be attributed to the 295 

higher variance in this dataset (supporting information Table S4), which may impact quantities 296 

estimated within the model. Nevertheless, our results are consistent with both datasets used 297 

indicating the effect unaccounted discontinuities can have on trend detection. 298 

5 Conclusion 299 

We assess the presence of discontinuities in multi-sensor satellite records and their effect on 300 

estimation of chl trends using a Bayesian spatio-temporal method. We estimate discontinuities in 301 

our statistical model using a discrete factor, at the times dictated by three major discontinuities in 302 

the ocean color record corresponding to the introduction of the MERIS and MODIS-Aqua 303 

sensors in 2002, the loss of the SeaWiFS sensor at the end of 2010, and the introduction of the 304 

VIIRS sensor in 2012.  305 

When modeling all three discontinuities,
 
we find their effect in 16 of 23 regions. These 306 

discontinuities lead to a corresponding difference in trend estimates in 14 regions with a 307 

maximum difference of 2.9% yr
-1

, which can even change the direction of trend. The effect on 308 

trend estimate uncertainty is dependent on the number of discontinuities taken in to account. If 309 

we model just one of the above discontinuities, there is a ~0.20%yr-1 increase in uncertainty. If 310 
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we model two discontinuities, i.e. MERIS/MODIS & SeaWiFS or MERIS/MODIS & VIIRS, the 311 

uncertainty rises by at least 0.064% yr-1 and by up to 1.5% yr-1, dependent on the region. 312 

Modeling all three discontinuities produces similar results to modeling the two discontinuities as 313 

listed above.  314 

The bias in trend estimates and increase in their uncertainty when taking into account 315 

discontinuities challenges the detection of long-term trends in multi-sensor records and stresses 316 

the importance of using the best techniques to remove inter-sensor biases when creating these 317 

records. Such techniques may include advanced statistical methods, potentially including the use 318 

of spatio-temporal models, as well as launching missions with sufficient overlap in order to most 319 

effectively cross-calibrate and merge records. 320 
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 424 

Figures 425 

Figure 1. (a) Discontinuity magnitude for each region (averaged for the multiple discontinuity 426 

scenarios) as well as the differences in the (b) trend modal posterior density and (c) trend 427 

uncertainty (normalized to each region’s trend uncertainty) between the models considering a 428 

discontinuity and the model with no discontinuity. For (a), * indicates that at least one 429 

discontinuity is different from zero, i.e. their 95 % credible intervals do not contain zero. For (b), 430 

* indicates regions where trends are different from the model with no discontinuity, i.e. their 95 431 

% credible intervals do not overlap. The uncertainty is defined as the width of the 95 % credible 432 

intervals. The scenarios are abbreviated in the main text as follows: N-scenario, (no discontinuity 433 

scenario), M-scenario (MERIS/MODIS scenario), S-scenario (SeaWiFS scenario), MS-scenario 434 
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(SeaWiFS & MERIS/MODIS scenario), and MSV-scenario (SeaWiFS & MERIS/MODIS & 435 

VIIRS scenario). Region names are as follows: (1) Eastern Tropical Atlantic Province, (2) Indian 436 

Monsoon Gyres Province, (3) Indian South Subtropical Gyre Province, (4) North Atlantic 437 

Tropical Gyral Province, (5) North Pacific Equatorial Countercurrent Province, (6) North Pacific 438 

Tropical Gyre Province, (7) Pacific Equatorial Divergence Province, (8) South Atlantic Gyral 439 

Province, (9) West Pacific Warm Pool Province, (10) Western Tropical Atlantic Province, (11) 440 

Gulf Stream Province, (12) Kuroshio Current Province, (13) North Atlantic Drift Province, (14) 441 

North Atlantic Subtropical Gyral Province (East), (15) North Atlantic Subtropical Gyral 442 

Province (West), (16) North Pacific Polar Front Province, (17) North Pacific Subtropical Gyre 443 

Province (West), (18) Pacific Subarctic Gyres Province (East), (19) Pacific Subarctic Gyres 444 

Province (West), (20) South Pacific Subtropical Gyre Province, (21) South Subtropical 445 

Convergence Province, (22) Subantarctic Province, and (23) Tasman Sea Province. See Figure 3 446 

for a map of the regions. 447 

  448 
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 449 

Figure 2. Posterior probability density of (a) the trend in the MERIS/MODIS discontinuity 450 

scenario and the no discontinuity scenario, and (b) the discontinuity magnitude in the 451 

MERIS/MODIS discontinuity scenario, for each region. We consider the trends, estimated for 452 

the two scenarios to be statistically different if their 95 % credible intervals do not overlap. Note 453 

the increase in uncertainty when considering discontinuities and the inverse relationship between 454 

the discontinuity magnitude and the trend difference. Corresponding figures for the other 455 

scenarios can be found in the supporting information (Figures S6 – S9). Regions are plotted in 456 

Figure 3 and their names are listed in the caption for Figure 1. 457 
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 458 

Figure 3. Regional differences in (a) estimated trend and (b) associated uncertainty (normalized 459 

to each region’s uncertainty), comparing the scenario with all discontinuities and the scenario 460 

with no discontinuities. Region names are listed in the caption for Figure 1. See Figure S5 for the 461 

trend estimates from the scenario with no discontinuity. 462 
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