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Abstract—This paper presents results of using a simple bit-serial architecture as a method of designing an extremely low-power
and low-cost neural network processor for epilepsy seizure prediction. The proposed concept is based on a novel bit-serial data
processing unit (DPU) which implements the functionality of a complete neuron and uses bit-serial arithmetic. Arrays of DPUs are
controlled by simple finite state machines. We show that epilepsy detection through such dedicated neural hardware is feasible and
may facilitate development of wearable, low-cost and low-energy personalized seizure prediction equipment. The proposed processor
extracts epileptic seizure characteristics from electroencephalogram (EEG) waveforms. In order to facilitate the classification of
EEG waveforms we develop a dedicated feature extraction hardware that provides inputs to the neural network. This approach has
been tested using various network configurations and has been compared with related work. A complete system which can predict
epileptic seizures with high accuracy has been implemented on an ALTERA Cyclone V FPGA using 3931 ALMs which constitutes

about 7% of the Cyclone V A7 capacity. The design has a prediction accuracy of 90%.
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I. INTRODUCTION

The World Health Organization (WHO) estimated 50 mil-
lion of the world’s population today are afflicted with epilepsy
[1]. It was approximated that 80% of these reported epileptic
cases are located in developing countries where the availability
of treatment facilities and medications that are needed are
questionable. There exists the posibility that many epileptic
cases are not reported in many parts of the world where the
people still suffer from stigma and discrimination. Epilepsy
treatment to date still involves the use of various anti-epileptic
drugs (AEDs) across the globe. Therefore, accurate seizure
prediction is significant in order to prevent the recurrence of
seizures through timely administration of the AEDs. Accu-
rate seizure prediction is based on the research of complex
electroencephalogram (EEG) signals. State-of-the art seizure
prediction mainly involves complex software methods and
these methods can be categorized as: time-domain analysis,
frequency-domain analysis, and non-linear dynamics [2]. Un-
fortunately, as of today there is still no reliable, home-based
seizure prediction system to help an epileptic patient with
timely administration of AEDs. A novel approach is proposed
in this paper to implement a low-cost hardware neural network
which is primarily intended for use in portable equipment to
predict epilepsy seizures.

This paper is organized as follows. Firstly, the paper
presents a brief review on state-of-the-art seizure detection
techniques. Secondly, a bit-serial data processing unit (DPU) is
introduced. The DPU is extremely small and has the capability
of implementing a biological neuron. It is then demonstrated
how a multi layer neural network can be built using DPUs.
Thirdly, a simple feature extraction hardware has also been
proposed and implemented to work with the network. The
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feature extraction hardware is implemented as a dedicated
simple processor. A preliminary version of this work has been
reported [3].

II. BACKGROUND RESEARCH

In general, an EEG signal is defined as a non-stationary
biomedical signal where epileptic seizures are characterized
by recurrent spike patterns. An EEG signal has a few use-
ful characteristics which can be beneficial when detecting a
seizure event. Specifically, the delta (0-4Hz) and theta (4-8Hz)
sub waves in an EEG signal exhibit low frequency and high
magnitude during a seizure event [4]. The traditional procedure
of analysing an EEG scan requires expensive manpower where
a specialist is needed to review the whole EEG recording. As
part of the ongoing research into epilepsy detection, automatic
seizure identification methods have been considered, such as
Wavelet Transform [5] and Autoregressive (AR) modelling
[6]. These methods present a better resolution for short data
segments, and they can be used when real-time data pro-
cessing is required. The EEG research relies on state-of-the-
art waveform analysis methods which include Short Time
Fourier Transforms, Wavelet Transforms, Lyapunov Exponent,
Autoregressive Modelling etc [7]. As described above, the fre-
quency components can be extracted using Short Time Fourier
Transform (STFT) as the basic Fast Fourier Transform (FFT)
method suffers from large noise sensitivity [8]. The average
electric potential that is emitted by a group of neurons is
recorded by specific placement of the electrodes on the human
scalp [9]. With the Rosenstein algorithm, Lyapunov Exponent
for the EEG signals can be used with the combination of
a fuzzy-logic based system which allow the detection of an
epilepsy seizure event [10]. AR modelling can reduce the
spectral loss and increase the resolution of the EEG spectrum.
The optimum order of an AR model is determined by the
Bayesian Information Criterion (BIC) and the AR parameters
of an EEG signals [6].
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Recent work [5] proposed a new algorithm, tunable-Q
wavelet transform in conjunction with fractal dimensions
to detect epilepsy seizures. This tool decomposes the EEG
signal into the various sub-bands previously mentioned. The
fractal dimensions of the sub-bands are used as discriminating
features for epilepsy detection. A 10-fold cross-validation
was used to reduce the possibility of over-fitting. The work
achieved an average classification sensitivity of 100% and
has many advantages, including an ability to analyse seizures
within a short time with no errors. However, this approach
requires high computational power and complexity, and would
not be suitable as a wearable seizure detection. Another work
[11], employs a multivariate approach to detecting epilepsy by
using an empirical wavelet transform, and has a patient specific
model for EEG seizure detection. The data sets used for testing
were obtained from the scalp EEG database of the Children’s
Hospital, Boston Massachusetts Institute of Technology (CHB-
MIT). The tests evaluated 177 hours of EEG recording, using
six classifiers. Evaluations achieved the following averages:
accuracy 99%; specificity 100%; sensitivity 98%. The work
used oversampling in an attempt to address the imbalance
issue of the dataset. This approach was adopted in the training
process of our work.

The main conventional classification techniques for machine
learning which can be applied to epilepsy diagnosis include:
the Naive Bayes (NB) Classifier [12], Decision Tree Classifier
(DTC) [13], k-Nearest-Neighbours (k-NNs) Classifier [14],
support vector machines (SVM) [8], empirical mode decom-
position [15] and classifiers based on artificial neural networks
[16].

The NB classifier is a simple probabilistic classifier which
utilises the Bayes Theorem. It can also be considered as a
conditional probability model. This classifier is often used
in data mining applications as well as automated medical
diagnosis. Thus, it is suitable for epilepsy detection. The Naive
Bayes classifier uses the independence assumption that focuses
on each feature independently of each other while ignoring
any possible correlation between the features [12]. One of the
main advantages of utilising the Naive Bayes classifier is the
limited use of training data for classification.

Decision trees are also used in epilepsy detection because
they are efficient at classifying different sets of data. As a sam-
ple is only tested against a subset of the classes, this method
does not require complex computations. It has been suggested
in a recent paper [13] to utilise neural networks in the design
of a DTC. However, there are a few disadvantages when
using a decision tree. They are not as accurate as the other
classifiers. Furthermore, DTC performance heavily depends on
the effectiveness of the particular DTC implementation [13].
They tend to be less robust than other methods as a very small
change in the training datasets might result in a huge change
in the output prediction.

The k-NN classifier is a non-parametric, non-linear yet
relatively simple classifier. This classifier is effective when
dealing with large data sets. It relies on class assignment based
on a nearby data set where similarities between the samples
used are measured with a distance function. A recent work
[14] points out that k-NN is applicable to medical classifica-

tion problems. The basic algorithm for a k-NN classifier is
relatively similar to that of a neural network classifier with
training stage and a prediction stage. The training stage of the
k-NN classifier involves all the different samples which are
stored in some form of memory.

SVMs have also been used to analyse EEG signals. A smart
sensor IC was proposed [8] with a CMOS chip for scalp EEG
acquisition. This chip with an area of 0.35um is integrated
with the local processing of the sensor node. Feature vectors
of the signal are extracted and classified through machine
learning. A number of sensors would have to be worn to
achieve spatial correlation in order to produce a functional
system for epilepsy detection. Each individual output of the
classifier could then be combined to detect the onset of an
epileptic seizure. SVM have also been used in lung cancer
diagnosis along with image processing techniques [17]. The
advantage of high generalisation and an assurance of global
optimisation makes SVMs useful for such applications. They
have been successfully as classifiers in many other fields [17].
In a more recent work [15], the proposed method involves the
use of empirical mode decomposition (EMD) to distinguish
seizure and non-seizure EEG waveforms. The datasets used in
this work are the same as used in our research. They combine
the use of least square support vector machines(LS-SVM)
and the EMD algorithm. The work has managed to achieve
an accuracy higher than 90%. However it uses a software
approach that requires complex computations. A very relevant
study was conducted by Zhong [18]. In that work, it was
proposed to use Gaussian Progression (GP) classification to
binary discrimination of motor imagery of EEG data. Zhong’s
approach is also computationally intensive but outperforms
SVM and k-nearest neighbour (k-NNs) in terms of O to 1
loss class prediction error.

Artificial Neural Networks (ANNSs) can solve very complex
problems and have been used in biological modelling where
they are an efficient tool that can ease the burden on experts
in medical diagnosis [16]. It is possible to use ANNs to
complete an automatic epilepsy detection system through
the prediction of the onset of a seizure occurrence can be
achieved with the assumption that the EEG generated is a
very complex but linear system. However, the brain is non-
linear. By analysing the power spectrum, it is also possible
to continue the analysis through a linear approach. Back
propagation neural networks include two stages, a forward
propagation stage and a back propagation stage. The normal
neural operation uses the forward propagation to pass along the
EEG sample provided along the input layer to the hidden layer
where calculations are being made which in turn is passed to
the output layer to produce the output sample of the neural
network which can determine if a seizure occurrence will
appear with the input EEG sample. The back propagation stage
includes a learning process which reduces the error between
the calculated output sample and the target output, i.e. the
possibility of seizure occurrence. This process is performed
by adjusting the weights of the neural network in real time
[19]. Spiking Neural Networks (SNNs) are a third generation
ANNSs that have been researched in recent years [20]. SNNs
are a distinct form of ANNSs as each individual spiking neuron
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propagates information by the timing of the neuron while other
forms of ANNs uses the rate of the spikes. SNNs are useful
in detecting epilepsy through the process of modelling the
brain of an epileptic patient [21]. Hardware implementations
of SNNs were performed using NVIDIA CUDA [20] and
the SpiNNaker [22]. The latter has the capability to simulate
and implement the SNN which is used in brain modelling
mentioned above.

In summary, a hardware neural network solution may prove
to be better suited for a dedicated hardware implementation
as compared to the other software implemented classifiers
described in this section. This hardware neural network would
need to meet the research specifications of being small and
power-efficient classifier. Neural networks can be implemented
in hardware such that high performance is achieved when
processing huge amounts of data. In the next section, a
novel bit-serial implementation of a neural network (BSNN)
is proposed.

III. IMPLEMENTATION OF BIT-SERIAL HARDWARE
NEURAL NETWORKS (BSNN)

Bit-serial architectures which process data bit by bit during
each clock cycle are largely historic. Most modern processors
use bit-parallel data processing for performance. However,
when high performance is not a priority but instead the empha-
sis is on very low-power and low-cost bit-serial computing has
its advantages. In modern applications bit-serial processing is
still used in digital filters where input samples are processed
in a bit-serial manner [23].

Here we consider the classical model of a perceptron that
receives a vector input pattern z; where ¢ = 1,...,I and
I the size of the vector. These inputs are weighted by the
weight vector of a given perceptron (wi,ws,...,wy) which
is obtained in the off-line learning process. The neuron is a
summation unit that performs the sum of products to calculate
its output u. The output w is then processed by the activation
function used in the output neuron. In our case the activation
function is a simple threshold operation converting u into a
logic signal y which has the value of ‘0’ or ‘1’.

(1a)

I
i=1

y=®(u) (1b)

The conventional bit-serial architecture can model this be-
haviour with ease and complex feed forward neural networks
(FNN5s) based on such neurons can be created using simple,
regular hardware structures controlled by simple state ma-
chines. The learning process of such designs can be accom-
plished off-line by using simulation software.

The proposed Data Processing Unit (DPU) is illustrated
in Figure 1. It is designed to calculate equation la. The
Wmem is a RAM memory that stores the weight values. The
ALU consists of a custom multiplier which utilises bit-serial
processing. This custom multiplier is a modified version of
a simple multiplier. When the DPUs are used in a vector

arrangement, they can be controlled by a single state machine
(Figure 2(b)) as they perform the same operations. In this way,
an entire neural network layer can be implemented as a vector
processor. The computational complexity of the design is kept
to a minimum as to decrease the cost of the hardware design.

A three layer neural network with layer control FSMs and
a central controller is shown in Figure 2(a). In Figure 2, the
range of x0 to x3 indicate the inputs, w indicates the weights
with u0 and ul as separate outputs. u outputs will later be
passed through an activation function to obtain a single output
y (eq.1b).

Table I shows that an 8-bit DPU requires only 24 Logic
Elements (LEs) on an inexpensive Altera Cyclone V FPGA,
out of over 300,000 LEs available on a Cyclone V chip.
The control path for a network with three layers requires
103 LEs (Central Control FSM: 3 LEs, 2 layer FSMs: 18
LEs each and 2 counters with 32 LEs each). This compares
favourably with the size of the datapaths of typical bit-serial
processors mentioned in the Table. Bearing in mind that the
control logic of the proposed approach requires only simple
state machines, rather than fully-fledged program control paths
used in general-purpose processors, expected overall benefits
of an ASIC implementation will include faster operation and
lower power consumption.

The performance of the proposed hardware is tested on
FPGAs. The power performance of FPGAs can not be directly
compared to that of an equivalent ASIC. However, the pro-
posed hardware in this work is much smaller than other equiv-
alent processors as discussed above in Section III. Therefore,
it can be expected that an equivalent ASIC implementation of
the proposed system will be more power efficient than existing
solutions. As a form of estimation, we addressed the issue
of power consumption through a simple comparison between
our design the Cyclone V NIOS general processor design. It
was found that the dedicated hardware neural network design
requires less than 10% of the resources needed to implement a
NIOS processor executing the same algorithm. With this fact
in mind, we can infer that an equivalent ASIC will consume
an order of magnitude less energy than a dedicated processor.

Hardware Development LE
Chip Count
Bit Array [24] ASIC 56 Altera
Processor Equivalent LEs
Cellular Processor [25] Virtex 5 26 Altera
(Data Path) equivalent LEs
Proposed Neural Processor Cyclone V 24 LEs

TABLE I: Cost comparison between three different processors.

IV. EEG WAVEFORM CLASSIFICATION

The input data used in the evaluation of the proposed FNN
was obtained from an on-line open source [26] provided by the
Epilepsy Center of the University of Bonn, Germany [27]. The
source provides sets of EEG waveforms for both seizure free
instances and EEG waveforms during seizures taken from the
brain (epileptogenic zone) of the same patient. Figure 3 shows
samples of an epileptic and a normal EEG. Our results were
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Fig. 2: (a) Hardware topology of the proposed implementation of a multi-layer perceptron, (b) Central control FSM chart.[3]

obtained from a number of implementations of the proposed
FNN and were evaluated using standard metrics [28] in seizure
detection, namely: the sensitivity (TPR), specificity (TNR),
positive predictive value (PPV) and negative predictive value
(NPV). The hardware implementations were trained offline
in MATLAB and then tested with two sets of 100 EEG
waveforms. As part of the validation process, the same input
data used for training was used to test the n-1-1 network, i.e. n
neurons in the input layer, one neuron in the hidden layer and
one output neuron as shown in Table II. Then, additional data

was used to test the same network and the results obtained are
shown in Table III. The n-1-1 network configuration has a very
bad recognition rate when additional data was used for testing.
From the results it can be concluded that a multi-input single
neuron in the hidden layer is not sufficient to detect epilepsy
accurately.

Therefore, other configurations have been tested, for ex-
ample a 40-n-1 network with n hidden neurons. The DPUs
used in these tests had a 12-bit precision to increase the
accuracy. Table IV presents the response of the 40-n-1 network
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Fig. 3: Sample EEG input data.

12 bits 12 bits
Correct Correct
Inputs Recog. TPR TNR PPV NPV hidden Recognition TPR | TNR PPV NPV | LEs
neurons | MATLAB/HW
10 90% 954% | 85.7% 84% 96%
20 94% 95.9% | 94.1% 94% 96% 10 86% | 62% 64% 61% 56% 68% 399
30 96% 95.8% | 92.3% 92% 96% 20 88% 1 52% 52% 52% 60% 44% 627
40 100% 100% 100% 100% 100% 30 90% / 58% 56% 57% 60% 52% 875
50 100% 95.8% | 92.3% 92% 96% 40 86% 1 52% 50% 50% 48% 52% 1511
6 bits 8 bits
Correct Correct
Inputs | Recogn. TPR TNR PPV NPV hidden Recognition TPR | TNR PPV NPV | LEs
10 38% 33.3% | 42.8% 20% 50% neurons | MATLAB/HW
20 400% 33'2% 57'%% 41'5;% 56;% 10 86% |/ 56% 53% 82% 58% 45% 288
30 66% 60% 64% 62.5% 62%
20 88% | 48% 53% 33% 71.4% 18% 431
40 58% 53.3% 59% 62.5% 50% e o o o
50 68% 66.7% | 73.9% 75% 65.4% 30 90% / 50% 42% 58% 47.6% 51% 585
40 86% | 66% 61% 74% 79.1% 54% 737
TABLE II: Recognition accuracy for different number of 6 bits Correct
inputs in a n-1-1 network against training data. hidden Recognition | TPR | TNR | PPV | NPV | LEs
neurons | MATLAB/HW
12 bits 10 86% | 44% 44% 44% 26.9% 63% 273
Correct 20 88% | 58% 58% 58% 56% 60% 392
Inputs Recog.(Sw/Hw) | TPR | TNR | PPV | NPV 30 90% / 48% 56% 57% 60% 52% 491
40 86% I 52% 47% 49% 48% 64% 678
10 68% / 58% 67% 55% 32% 84%
20 60% / 62% 65% 58% 71% 50% . . .
20 60% / 58% 750 | 55% | 24% | 92% TA]'BI.JE Iv: Evaluatlon. of a 40-n-1 network on data sets with
40 74% | 58% 63% | 57% | 22% | 89% additional data (not training datasets
8 bits
Correct
Inputs Recognition TPR | TNR | PPV | NPV . . .
10 3% T A3% 7% T 50% T 39% T 65% using MATLAB results as a.form of comparison. The logic
20 60% / 62% 67% | 10% | 45% | 22% element counts needed for different numbers of neurons are
30 60% / 44% 47% | 37% | 61% | 25% also included. In summary, the network configuration of 40-
64{&5 74% | 44% 46% | 38% | 68% | 20% 30-1 provides promising results in terms of detecting epileptic
Correct waveforms.
Inputs Recognition TPR | TNR | PPV | NPV
10 68% /| 44% 36% 55% 50% 40%
20 0% 1 54% 7% | 0% | so% | 8% V. FEATURE EXTRACTION HARDWARE AND IMPROVED
30 60% / 56% 54% | 58% | 58% | 54% SYSTEM
40 74% | 44% 50% 38% 43% 46% A. Slope calculator
TABLE III: Recognition accuracy for different number of In order to complete the wearable seizure detection system,
inputs in a n-1-1 network for additional testing (not training it is imperative to include a simple feature extraction hardware
data). to provide the inputs to the BSNN. The proposed hardware

will use picoMips as the basis of the design.
The data path of the feature extractor as illustrated in
Figure 4 which consists of a synchronous RAM, a simple
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subtractor implemented as an ALU and registers. The data
path is controlled by a simple FSM module. The hardware
cost for the ALU requires only 13 ALMs when synthesised on
a Altera Cyclone V chip. This hardware will serve as a mean
of extracting the slope, S of the EEG waveform from two
adjacent points (z; and zy) on the EEG sample. It is calculated
using this simple equation, S' = x1 - xg. Each S value is stored
in the registers and used as inputs for the BSNN.

GO, Mreset, clk

FSM control module

i w

address2 ————|

address — |

Sync_RAM [—=
(Storing slope

AL
EEG data (Subtractor)
points)

Registers
(Storing
Slope data
from ALU)

data  ———

clk
Fig. 4: Feature Extraction Hardware

This section presents results of experiments that have have
been conducted to obtain better accuracy by using the slope of
the EEG waveform. The tested network configurations are 11-
10-10-1, 11-20-20-1, 11-30-30-1 and 11-40-40-1. The results
are evaluated using the same statistic metrics used in the
above section. The metrics are presented in Table VI and
Table VII. With 11 inputs, the best correct recognition rate
that was obtained was the 11-40-40-1 configuration with 70%
and precision rate of 100% when tested using training data.
When tested with additional data, the network configuration
have an recognition rate of 61% and a precision rate of 80%.

Further testing using single feature inputs, i.e. EEG signal
slope values are tested across 4 different EEG segments and
the results of the experiments is shown here in Table XII.

| EEG Segment | Correct Recognition | TPR | TNR | PPV |

1 90% 83% 100% | 100%
2 90% 83% 100% | 100%
3 85% 82% 78% 82%
4 90% 100% 83% 100%

TABLE V: Results Obtained when tested with different EEG
Segments

| Network Configuration | TPR | TNR | PPV |

11-10-10-1 57% | 100% 80%
11-20-20-1 52% 44% 42%
11-30-30-1 66% 64% 58%
11-40-40-1 63% | 100% | 100%

TABLE VI: Statistic for Network Configuration Evaluation
(Against Training Data)

Table VIII presents the rates of correct recognition when
different numbers of inputs were used within a double layer

| Network Configuration | TPR | TNR | PPV |

11-10-10-1 75% | 33% | 43%
11-20-20-1 50% | 50% | 40%
11-30-30-1 25% | 44% 10%
11-40-40-1 53% | 33% | 80%

TABLE VII: Statistic for Network Configuration Evaluation
(Against Additional Data)

network configuration. 40 hidden neurons were used for each
hidden layer as it has the best recognition and precision rate
when tested with 11 inputs.

Network Correct Recognition Correct Recognition

Configuration | (Against Training Data) | (Against Other Data)
11-40-40-1 70% 61%
50-40-40-1 75% 75%
100-40-40-1 90% 90%

TABLE VIII: Network Configuration with different number of
inputs

B. Experiments with Mean Energy

The energy of a designated EEG signal window was also
extracted from the EEG input signals; this is in addition to the
slope calculator featured above. Mean energy is calculated by
the following equation [29]:

I

1 2

MeanE ==Y ali
eanEnergy w*i:1a(z)

2

The amplitudes of the EEG signal spikes are represented by
a(i); w represents the number of a values used. A new system
using the extraction hardware component was used on FPGAs
and achieved a 62% accuracy in 100 EEG samples.

C. Improved System

The improved system uses the mean energy and slope
values from the EEG signals which are to be used in the
proposed network. The 100-40-40-1 network configuration,
with a recognition rate of 88%, has been tested and formed
a comparison. The recognition rate has improved by 2%
in the improved system. Using experiment statistics, it is
demonstrated that a 16-bit system has the highest correct
recognition rate. A high possibility of correctly identifying
a seizure would be maintained, even if the system was made
smaller and an associated degree of accuracy lost. A detailed
comparison is shown in Table IX below.

| Bit Architecture | Recognition rate | TPR | TNR | PPV |
16 90% 100% 83% 80%
12 80% 71% 100% | 100%
8 60% 57% 67% 80%

TABLE IX: Improved system statistics using 100-40-40-1
network configuration
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D. Conclusive Remark

In conclusion, we maintain that with only a 2% increase
improvement of the improved system; the 12-bit network
using only EEG slope features can still provide a reliable
performance when predicting seizure events. A comparison
of the three systems is shown in Table X.

| System | Recognition rate | TPR | TNR | PPV |
EEG slope system 88% 87% 90% | 95%
Improved system 90% 100% | 83% 80%
Mean energy system 62% 59% 67% | 76%
TABLE X: Comparison between three different proposed

systems.

VI. HARDWARE NETWORK TESTING AND COMPARISON
WITH RELATED WORK

In this section, the network proposed is tested thoroughly
and comparisons is made against related research. A brief
work flow is explained here. Firstly, the range of EEG data
waveform is obtained from the open source database published
by Andrzejak RG et. al, members of the Department of Epilep-
tology at University of Bonn in Germany [27]. Secondly, the
datasets are segmented using the OAT method proposed by
recent work [30]. The training of our neural network are
completed off-line using simulation software. The hardware of
our design encompasses the feature extraction and the BSNN.
The work flow of the dedicated hardware can be referred to
in Figure 1 and Figure 2. As mentioned above in Section III,
there is no complex algorithm in play in this proposed method
as to minimise the hardware cost and optimise its efficiency.
The results of the hardware design are shown here in Table
XII.

The EEG samples obtained from the University of Bonn
[27] are 100-sample single channel EEG datasets. The ex-
periments in our work use both free seizure and seizure
EEG datasets of a single epileptic human patient. Half of the
datasets consist of free seizure samples and the other half are
seizure samples. Each sample consists of up to 800 data points
obtained from the dataset mentioned above.

The feature vector that was used by a recent research [30]
consists of statistic metrics which are: mean (X j/¢qy, ), median
(thedian)a mode (XMode), standard deviation (XSthe'u)7
first quartile (X 1), third quartile (X3), inter-quartile range
(X19R), skewness (X iew), kurtosis (Xpyriosis), minimum
(Xnrin), and maximum (X 74,)[31] have also been included
as part of the experiments. Using this feature vector, the
11-7-1 hardware neural network with a 12 bit architecture
obtained a sensitivity, specificity and sensitivity of 60%. It
could recognise 30 out of 50 waveform used to training
datasets.

Ten other network configuration have also been designed
and tested. Table XI presents the configurations and their
recognition rates. The table shows that that a single hidden
layer with 100 neurons have a similar performance to that of
a double layer network (10 neuron in each layer). It would be

Network Correct Recognition Correct Recognition

Configuration | against training data | against additional tests
11-25-1 52% 60%
11-40-1 56% 50%
11-65-1 60% 30%
11-100-1 66% 55%
11-10-10-1 62% 60%
11-20-20-1 56% 80%
11-30-30-1 58% 60&
11-40-40-1 64% 45%
11-10-10-10-1 54% 50%
11-5-5-5-1 56% 30%

TABLE XI: Correct Recognition of different hardware ANN
configuration using the feature vector used by a recent work
[30]

more cost-effective to use the double layer configuration as it
requires less number of hidden neurons.

By analysing these results, it can be seen that this simple
feature vector may prove lacking in providing a very accurate
classification for our dedicated hardware neural network when
compared with an input vector consisting of multiple slope
values obtained from different EEG samples.

Both optimized hardware neural network system is tested
and compared against several software implementations for
epilepsy detection [31], [30]. When compared with the results
from another paper [30], it is possible to argue that the design
proposed in this paper is more practical than designs using the
SVM approach. As it is a simple wearable hardware design,
many more input neurons are used as compared with the
design proposed previously [30]. In a software implementation
of a epilepsy detection system [30] LMT, MLR and SVM
classifiers were used. Table below presents a close comparison
between our design and the software implementation [30]. It
should be noted that the network used for comparison is of a
12-bit architecture.

| Classifier | Overall Accuracy | TPR | TNR | PPV |
LMT 95.33% 95.3% 97.7% 95.3%
MLR 82.67% 82.7% 91.3% 82.9%
SVM 36% 36% 68% 78.1%
BSNN (S) 88.8% 87% 90.25% | 95.5%
BSNN (S & E) 90% 100% 83% 80%

TABLE XII: Results Obtained when tested with different
Classifiers (S = Slope Feature, E = Mean Energy Feature)

The dedicated hardware design was implemented and syn-
thesised on an Altera Cyclone V FPGA. Different type of
configurations are used as a form of comparison to fully
explore the capabilities of the proposed network. Therefore,
examples of 2 and 3 hidden layers were used. The hardware
costs for different network configuration are included here, i.e.
100-20-20-1 and a 100-40-40-1 configuration. They cost 2303
and 3931 Adaptive Logic Modules (ALMs) accordingly. The
configurations with 3 hidden layers are 100-10-10-10-1 and
100-5-5-5-1. The costs are 2259 and 1748 ALMs.
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VII. CONCLUSION

In conclusion, experiments with bit-serial neurons confirm
that an extremely small logic system can successfully imple-
ment effective epileptic seizure detection. The key benefit of
a dedicated neural processor compared to known, equivalent
general-purpose processors, is that very small control logic and
a low bit-precision are sufficient to obtain correct operation.
Multiple tests have been conducted with various network
configuration to test the feasibility of detecting epilepsy when
using the proposed approach. The clinical significance of our
work is that it provides a technique to develop a wearable
and reliable hardware for epileptic patients in their daily
activities. However, a system conceived as a compromise
between performance and cost has limitations. The 90%
seizure pediction accuracy is high but mispredictions are
still possible. Furthermore, the testing conducted during this
research were performed using EEG benchmark waveforms.
Future work will involve personalised EEG waveform tests
suited to individual patients and further investigation into
suitable sizes and accuracies of bit-serial FNNs which will be
followed by a development of a low-power ASIC. The aspect
of power consumption can then be fully addressed using an
ASIC implementation.
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