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Abstract

This paper studies a multiple-input single-output non-orthogonal multiple access cognitive radio

network relying on simultaneous wireless information and power transfer. A realistic non-linear energy

harvesting model is applied and a power splitting architecture is adopted at each secondary user (SU).

Since it is difficult to obtain perfect channel state information (CSI) in practice, instead either a bounded

or gaussian CSI error model is considered. Our robust beamforming and power splitting ratio are jointly

designed for two problems with different objectives, namely minimizing the transmission power of the

cognitive base station and maximizing the total harvested energy of the SUs. The optimization problems

are difficult to solve mainly because of the non-linear structure of the energy harvesting and CSI errors

models. We converted them into convex forms by using semi-definite relaxation. For the minimum

transmission power problem, we obtain the rank-2 solution under the bounded CSI error model, while

for the maximum energy harvesting problem, a two-loop procedure using a one-dimensional search is

proposed. Our simulation results show that the proposed scheme significantly outperforms its traditional

orthogonal multiple access counterpart. Furthermore, the performance using the gaussian CSI error

model is generally better than that using the bounded CSI error model.
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I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been recognized as one of the most promising

techniques for next-generation wireless communication systems due to its capability of supporting

a high spectral efficiency (SE) and massive connectivity [1]. Since its design philosophy may

be combined with diverse transceivers, it has drawn tremendous attention in multiple-antenna

systems [2]-[4], in cooperative networks [5], [6], in device-to-device (D2D) networks [7], as

well as in downlink and uplink multi-cell networks [8]. In contrast to classic orthogonal multiple

access (OMA), NOMA provides simultaneous access to multiple users at the same time and on

the same frequency band, for example by using power-domain multiplexing. In order to decrease

the mutual interference among different users of power-domain NOMA, successive interference

cancellation (SIC) may be applied by the receivers [1]. It has been shown that NOMA is capable

of achieving a higher SE and energy efficiency (EE) than OMA [2]-[8].

As another promising technique of improving the SE, cognitive radio (CR) techniques have

also been investigated for decades, where the secondary users (SUs) may access the spectrum

bands of the primary users (PUs), as long as the interference caused by SUs is tolerable [9].

According to [10], in order to implement CR in practice, three operational models have been

proposed, namely, opportunistic spectrum access, spectrum sharing, and sensing-based enhanced

spectrum sharing. It is envisioned that the combination of NOMA with CR is capable of further

improving the SE. As a benefit of its low implementational complexity, spectrum sharing has

been widely applied. In [11]-[13], the authors analyzed the performance of a spectrum sharing

CR combined with NOMA. It was shown that the SE can be significantly improved by using

NOMA in CR compared to that achieved by using OMA in CR.

On the other hand, the increasing greenhouse gas emissions have become a major concern also

in the design of wireless communication networks. According to [14], cellular networks world-

wide consume approximately 60 billion kWh energy per year. Moreover, this energy consumption

is explosively increasing due to the unprecedented expansion of wireless networks to support

ubiquitous coverage and connectivity. Furthermore, because of the rapid proliferation of Internet

of Things (IoT) applications, most battery driven power limited IoT devices become useless if

their battery power is depleted. Thus it is critical to use energy in an efficient way or to harness

renewable energy sources. As remedy, energy harvesting (EH) exploits the pervasive frequency



3

radio signals for replenishing the batteries [15]. There have been two research thrusts on EH

using RF technology. One focuses on wirelessly powered networks, where a so-called harvest-

then-transmit protocol is applied [16]. The other one uses simultaneous wireless information

and power transfer (SWIPT) [18]-[20], which is the focus of this paper. In literature, SWIPT

in CR has been extensively studied. Specifically, the work in [21] considered the optimal

beamforming design in a MISO CR downlink network where a similar power splitting structure

is applied in the user receiver. Hu et. al [22], on the other hand, investigated the objective of EH

energy maximization, and the resource allocation problem is formulated to address that goal.

Additionally, [23] considered the underlay scheme in CR network and proposed the optimal

beamforming design. To address both the SE and EE, a multiple-input single-output (MISO)

NOMA CR using SWIPT is considered based on a practical non-linear EH model. Robust

beamforming design problems are studied under a pair of channel state information (CSI) error

models. The related contributions and the motivation of our work are summarized as follows.

A. Related Work and Motivation

The prior contributions related to this paper can be divided into two categories based on the

EH model adopted, i.e. the linear [20]-[36] and the non-linear EH model [16], [37]-[41]. In the

linear EH model, the power harvested increases linearly with the input power, while the EH

under the non-linear model exhibits more realistic non-linear characteristics especially at the

power-tail.

Linear EH model: In [24], Liu et al. analyzed the performance of a cooperative NOMA

system relying on SWIPT, which outperformed OMA. Do et al. [25] extended [24] and studied

the beneficial effect of the user selection scheme on the performance of a cooperative NOMA

system using SWIPT. In [26], Yang et al. presented a theoretical analysis of two power allocation

schemes conceived for a cooperative NOMA system with SWIPT. It was shown that the outage

probability achieved under NOMA is lower than that obtained under OMA. Diamantoulakis et

al. [27] studied the optimal resource allocation design of wireless-powered NOMA systems. The

optimal power and time allocation were designed for maximizing the max-min fairness among

users. In their following work [28], a joint downlink and uplink scheme was considered in

the wirelessly powered network. Comparisons are performed between NOMA and TDMA. The

results show that NOMA is more energy-efficient in the downlink SWIPT network. In order to
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improve the EE, multiple antennas were applied in a NOMA system associated with SWIPT, and

the transmit beamforming and the power splitting factor were jointly optimized for maximizing

the transmit rate of users [29].

The contributions in [24]-[29] investigated conventional wireless NOMA systems, which did

not consider the interference between the secondary network and the primary network. Recently,

authors of [20], [30]-[34] studied optimal resource allocation problems in CR associated with

SWIPT. In [20], an optimal transmit beamforming scheme was proposed in a multi-objective

optimization framework. It was shown that there are several tradeoffs in CR-aided SWIPT. Based

on the work in [20], the authors proposed a jointly optimal beamforming and power splitting

scheme to minimize the transmit power of the base station in multiple-user CR-aided SWIPT

[30]. Considering the practical imperfect CSI, Zhou et al. [31] studied robust beamforming

design problems in MISO CR-aided SWIPT, where the bounded and the gaussian CSI error

models were applied. It was shown that the performance achieved under the gaussian CSI error

model is better than that obtained under the bounded CSI error model. The work in [31] was then

extended to multiple-input multiple-output (MIMO) CR-aided SWIPT in [32] and [33], where

the bounded CSI error model was applied in [32] and the gaussian CSI error model was used in

[33] and [35]. In contrast to [20], [30]-[33], Zhou et al. [34] studied robust resource allocation

problems in CR-aided SWIPT under opportunistic spectrum access.

Non-linear EH model: In [16], robust resource allocation schemes were proposed for maxi-

mizing the sum transmission rate or the max-min transmission rate of MIMO-assisted wireless

powered communication networks, where a practical non-linear EH model is considered. It was

shown that a performance gain can be obtained under a practical non-linear EH model over

that attained under the linear EH model. In order to maximize the power-efficient and sum-

energy harvested by SWIPT systems, Boshkovska et al. designed optimal beamforming schemes

in [37] and [38]. Recently, under the idealized perfect CSI assumption, the rate-energy region

was quantified in MIMO systems relying on SWIPT and the practical non-linear EH model

in [39]. In order to improve the security of a SWIPT system, a robust beamforming design

problem was studied under a bounded CSI error model in [40]. The investigations in [16],

[37]-[40] were performed in the context of conventional SWIPT systems. Recently, Wang et

al. [41] extended a range of classic resource allocation problems into a wireless powered CR

counterpart. The optimal channel and power allocation scheme were proposed for maximizing
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the sum transmission rate.

The resource allocation schemes proposed in [24]-[29] investigated a conventional NOMA

system with SWIPT. The mutual interference should be considered and the quality of service

(QoS) of the PUs should be protected in NOMA CR. Moreover, the resource allocation schemes

proposed in [20], [30]-[34] are based on the classic OMA scheme. Thus, these schemes are

not applicable to NOMA CR with SWIPT due to the difference between OMA and NOMA.

Furthermore, an idealized linear EH model was applied in [20]-[34], which is impractical since

the practical power conversion circuit results in a non-linear end-to-end wireless power transfer.

Therefore, it is of great importance to design optimal resource allocation schemes for NOMA

CR-aided SWIPT based on the practical non-linear EH model.

Although the practical non-linear EH model was applied in [16], [37]-[41], the authors of

[16], [37]-[40] considered conventional OMA systems using SWIPT. Moreover, the resource

allocation scheme proposed in [34] is based on OMA and cannot be directly introduced in

NOMA CR-aided SWIPT. However, at the time of writing, there is a scarcity of investigations

on robust resource allocation design for NOMA CR-aided SWIPT under the practical non-linear

EH model. Several challenges have to be addressed to design robust resource allocation schemes

for NOMA CR-aided SWIPT. For example, the impact of the CSI error and of the residual

interference due to the imperfect SIC should be considered, which makes the robust resource

allocation problem quite challenging. Thus, we study robust resource allocation problems in

NOMA CR-aided SWIPT.

B. Contributions of the Paper

Our contribution expands [16] in three major contexts. Firstly, in this paper, a NOMA MISO

CR-aided SWIPT is considered, while a OMA MIMO wireless powered network was used in

[16]. Secondly, the work in [16] relies on the bounded CSI error model, while both the bounded

and the gaussian CSI error model are applied in our work. Thirdly, part of our work considers

the minimum transmit power as the optimization objective, which is not considered in [16].

Notice that this paper is also an extension from our conference one [17] which only considered

minimizing transmission power under bounded imperfect CSI model. The contributions of our

work are hence summarized as follows.

1) A minimum transmission power problem is formulated under both the bounded and the
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gaussian CSI error models in a NOMA MISO CR network. The robust beamforming

weights and the power splitting ratio are jointly designed. The original problem is difficult

to solve owing to its non-convex nature from the non-linear EH model as well as to the

imperfect CSI. Hence we transform this problem to a convex one. Finally, we prove that

the robust beamforming weights can be found and the rank is lower than two under the

bounded CSI error model.

2) We also consider another optimization problem, where the objective function is based on

maximizing the harvested energy. Similarly, this problem is formulated under the above

pair of imperfect CSI error models. The non-linear EH model makes the original problem

even harder to solve. Nevertheless, we managed to transform it to an equivalent form and

applied a two-loop procedure for solving it. The inner loop solves a convex problem, while

the outer loop iteratively adjusts the parameters. Furthermore, to decouple the coupled

variables, a one-dimensional search algorithm is proposed as well.

3) Simulation results show the superiority of the proposed scheme over the traditional OMA

scheme; the performance gain of NOMA becomes higher when the required data rate at

each SU is higher. Moreover, the results also demonstrate that under gaussian CSI error

model, the performance is generally better than that under the bounded CSI error model.

The remainder of this paper is organized as follows. The system model is presented in Section

II. Section III details our robust beamforming design in the context of our power minimization

problems under a pair of imperfect CSI error models. Robust beamforming design in EH

maximization problems under both imperfect CSI error models are presented in Section IV.

Our simulation results are discussed in Section V. Finally, Section VI concludes the paper.

Notations: Boldface capital letters and boldface lower case letters denote matrices and vectors,

respectively. The identity matrix is denoted by I; vec(A) represents the vectorization of matrix

A and it is attained by stacking its column vectors. The Hermitian (conjugate) transpose, trace,

and rank of a matrix A are represented respectively by AH, Tr(A) and Rank(A). x† denotes

the conjugate transpose of a vector x. CM×N denotes a M -by-N dimensional complex matrix

set. A � 0 (A � 0) represents that A is a Hermitian positive semi-definite (definite) matrix.

‖·‖ represents the Euclidean norm of a vector. |·| denotes the absolute value of a complex

scalar. x ∼ CN (u,Σ) represents that x is a random vector, which follows a complex Gaussian

distribution with mean u and covariance matrix Σ. E[·] represents the expectation operator.
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Re (a) extracts the real part of vector a. R+ represents the set of all non-negative real numbers.

II. SYSTEM AND ENERGY HARVESTING MODELS

A. System Model

We consider a downlink CR system with one cognitive base station (CBS), one primary base

station (PBS), N PUs and K SUs. The CBS is equipped with M antennas, while each user

and PBS have a single antenna. It is assumed that the SUs are energy-constrained and energy

harvest circuits are used. Specifically, the receiver architecture relies on a power splitting design.

Once the signal is detected by the receiver, it will be divided into two parts. One part is used

for information detection, while the other part for energy harvesting. Similar structures can be

found in [24], [29]. To better utilize the radio resources, all UEs are allowed to access the same

resource simultaneously. To be specific, the PBS sends messages to all PUs, while the CBS

communicates with all SUs simultaneously by applying NOMA principles by controlling the

interference from the CBS to PUs below a certain level [11]. Let us denote the set of SUs and
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Fig. 1: (a) an illustration of the system model. (b) the power splitting architecture of SUs.

PUs as K = {1, 2, . . . , K} and N = {1, 2, . . . , N}, respectively. The signal received by the kth

SU can be expressed as

ySk = h†kx + nSk , k ∈ K, (1)
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where hk ∈ CM×1 is the channel gain between the CBS and the kth SU, while nSk is the

joint effect of additive white Gaussian noise (AWGN) and interference from the PBS. nSk ∼

CN (0, σ2
k,S), where σ2

k,S is the power. This interference model represents a worst-case scenario

[20]. Furthermore, x is the message transmitted to SUs after precoding. According to the NOMA

principle, we have:

x =
K∑
k=1

wksk + v, (2)

where wk ∈ CM×1 is the precoding vector for the k-th UE and sk is the corresponding intended

message. Furthermore, v ∈ CM×1 is the energy vector allowing us to improve the energy

harvesting efficiency at the SUs. We assume that sk is unitary, i.e. E[|sk|2] = 1, and v obeys the

complex Gaussian distribution, i.e. v ∼ CN (0,V), where V is the covariance matrix of v.

Likewise, the extra interference arriving from the CBS to the n-th PU is

yPn = g†nx, n ∈ N , (3)

where g†n ∈ CM×1 is the channel gain between the CBS and the n-th PU [31].

B. Non-linear EH Model

Most of the existing literature considered an idealized linear energy harvesting model, where

the energy collected by the k-th SU is expressed as ELinear
k = η EIn

k , EIn
k = ρ

(
h†k(
∑K

j=1 wjw
†
j +

V)hk + σ2
k,S

)
is the input power, where ρ is the power splitting factor that controls the amount

of received energy allocated to energy harvesting, 0 < ρ < 1, while η is the energy conversion

efficiency factor, 0 < η ≤ 1. However, measurements relying on real-world testbeds show that a

typical energy harvesting model exhibits a non-linear end-to-end characteristic. To be specific,

the harvested energy first grows almost linearly with the increase of the input power, and then

saturates when the input power reaches a certain level. Several models have been proposed in

the literature and one of the most popular ones is [16], which is formulated as follows:

EPractical
k =

ΨPractical
k −MkΩk

1− Ωk

, Ωk =
1

1 + exp(akbk)
, (4a)

ΨPractical
k =

Mk

1 + exp
(
− ak(EIn

k − bk)
) , (4b)

where EPractical
k is the actual energy harvested from the circuit. Furthermore, ΨPractical

k represents

a function of the input power EIn
k . Additionally, Mk is the maximum power that a receiver can
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harvest, while ak together with bk characterizes the physical hardware in terms of its circuit

sensitivity, limitations, and leakage currents [16].

On the other hand, the signal received in the k-th SU information decoding circuit is

yDk =
√

1− ρ(h†kx + nSk ) + nDk , (5)

where nDk is the AWGN imposed by the information decoding receiver.

III. POWER MINIMIZATION BASED PROBLEM FORMULATION

Since x is a composite signal consisting of all SUs’ messages, SIC is applied at the receiver

side to detect the received signal. The detection is carried out in the same order of the channel

gains, i.e. the SUs with lower channel gain will be decoded first. A pair of imperfect CSI error

models are considered, namely a bounded and a gaussian model. We adopt both of these in this

paper and assume that all SUs have a perfect knowledge of their own CSI.

A. Bounded CSI Error Model

In this model, we consider a bounded error imposed on the estimated CSI, which can be

treated as the worst-case scenario. Specifically, the channels can be modeled as follows.

hk = ĥk + ∆hk, Γk ,
{

∆hk ∈ CM×1 : ||∆hk||2 ≤ ϕ2
k

}
, ∀k ∈ K, (6a)

gn = ĝn + ∆gn, Θn ,
{

∆gn ∈ CM×1 : ||∆gn||2 ≤ ψ2
n

}
, ∀n ∈ N , (6b)

where ĥk and ĝn are the estimated channel vectors for hk and gn, respectively, while Γk and

Θn define the set of channel variations due to estimation errors. The model defines all the

uncertainty regions that are confined by power constraints. Furthermore, we use block Rayleigh

fading channels, which remain constant within each block, but change from block to block

independently.

1) NOMA Transmission: Without loss of generality, we sort the estimated channels of SUs

in the ascending order, i.e., ||ĥ1||2 ≤ ||ĥ2||2 ≤ . . . ||ĥK ||2. According to the SIC principle, SU

i can detect and remove SU k’s signal, for 1 ≤ k < i ≤ K. Thus, when SU i decodes signal

sk, the signals for the previously decoded (k − 1) SUs have been subtracted from the received

composite signal. Due to channel estimation errors, however, these (k − 1) signals may not be
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completely removed, leaving some residual signals as interference. Therefore, the signal at UE

i when decoding sk becomes

ySi,k =
√

1− ρ
(
h†iwksk +

k−1∑
j=1

∆h†iwjsj +
K∑

j=k+1

h†iwjsj + h†iv + nSk

)
+ nDk . (7)

Here, the first term is the desired received signal, the second term is the interference due

to imperfect channel estimation, and the third term represents the NOMA interference. The

corresponding signal-to-interference-plus-noise ratio (SINR) for the i-th SU after SIC is applied

at the receiver is given as

SINRk
i =

h†iwkw
†
khi∑k−1

j=1 ∆h†iwjw
†
j∆hi +

∑K
j=k+1 h†iwjw

†
jhi + h†iVhi + σ2

k,S +
σ2
D

(1−ρ)

. (8)

Since signal sk can be detected at every SU i, as long as k < i, there are a set of SINRs for

signal sk. For CBS, the maximum data rate for SU k should be Rk = log2(1+mink≤i≤K SINRk
i ).

Furthermore, the channel estimation error should be considered. The worst-case rate of SU k is

Rk = log2

(
1 + min

∆hi∈Γi

{ min
k≤i≤K

SINRk
i }
)
. (9)

2) Problem Formulation: In this sub-section, we seek to find the precoding vectors wk, k ∈ K,

the energy vector v, and the power split ratio ρ, which altogether achieve a satisfactory quality

of service (QoS) for all users, and at the same time, they can harvest part of the energy for their

future usage. Thus, the problem can be formulated as follows:

P1 : min
wk∈CM×1,V∈CM×M ,ρ

Tr(
K∑
k=1

w†kwk) + Tr(V) (10a)

s.t. C1 : Rk ≥ Rk,min, ∀k ∈ K, (10b)

C2 : EPractical
k ≥ Pk,s, ∀∆hk ∈ Γk, ∀k ∈ K, (10c)

C3 : g†n

( K∑
j=1

wjw
†
j + V

)
gn ≤ Pn,p, ∀∆gn ∈ Θn, ∀n ∈ N , (10d)

C4 :
K∑
j=1

w†jwj + Tr(V) ≤ PB, (10e)

C5 : 0 < ρ < 1, (10f)

C6 : V � 0. (10g)
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Our goal is to minimize the total transmitted power. The constraint C1 ensures that SU k does

attain the predefined minimum data rate; C2 allows each SU to harvest the amount of energy

that at least compensates the static power dissipation Pk,s; C3 is the interference limit for the

n-th PU; C4 represents the maximum transmit power constraint of the BS; in C5, the power

split factor should be in the range of (0, 1). The optimization problem P1 is hard to solve due to

its non-convexity constraints C1 and C2. Moreover, the realistic imperfect CSI imposes another

challenge on the original problem. In the following, we transform the variables.

Let us introduce Wk = wkw
†
k and γk,min , (2Rk,min − 1). Then C1 in (10b) becomes

min
∆hi∈Γi

h†iWkhi∑k−1
j=1 ∆h†iWj∆hi +

∑K
j=k+1 h†iWjhi + h†iVhi + σ2

k,S +
σ2
D

(1−ρ)

≥ γk,min, (11)

i = {k, k + 1, . . . , K},∀k ∈ K.

For the notational simplicity, we denote the above constraint as Ξi,k. Thus, P1 becomes

P2 : min
Wk∈CM×M ,V∈CM×M ,ρ

Tr(
K∑
k=1

Wk + V) (12a)

s.t. C1 : Ξi,k (12b)

C2 : EPractical
k ≥ Pk,s, ∀∆hk ∈ Γk, ∀k ∈ K, (12c)

C3 : g†n

( K∑
j=1

Wj + V
)
gn ≤ Pn,p, ∀∆gn ∈ Θn, ∀n ∈ N , (12d)

C4 : Tr(
K∑
k=1

Wk + V) ≤ PB, (12e)

C5 : 0 < ρ < 1, (12f)

C6 : V � 0,Wk � 0, (12g)

C7 : Rank(Wk) = 1, ∀k ∈ K. (12h)

Here, C6 comes from the fact that both V and Wk are positive semi-definite matrices. The

extra constraint that the rank of Wk should be 1 is also non-convex. In what follows, we first

reformulate C1 in (12b) according to the S-Procedure of [42].

Lemma 3.1: C1 in (12b) can be reformulated as αi,kI + Ck − γk,min
∑k−1

j=1 Wj Ckĥi

ĥi
†
Ck −αi,kϕ2

k + Φk

 � 0, ∀k ∈ K, i = {k, k + 1, . . . , K}, (13)
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where Ck = Wk − γk,min(
∑K

j=k+1 Wj + V) and Φk = ĥi
†
Ckĥi− γk,min

(
σ2
k,S +

σ2
D

(1−ρ)

)
, and αi,k

is a slack variable conditioned on αi,k ≥ 0.

Proof: Given hi = ĥi + ∆hi and (11), we have

∆h†i

(
γk,min(

∑
j 6=k

Wj + V)−Wk

)
∆hi + 2 Re

{
ĥi
†(
γk,min(

K∑
j=k+1

Wj + V)−Wk

)
∆hi

}
(14)

+ĥi
†(
γk,min(

K∑
j=k+1

Wj + V)−Wk

)
ĥi + γk,min

(
σ2
k,S +

σ2
D

(1− ρ)

)
≤ 0.

From the fact that ∆h†i∆hi − ϕ2
k ≤ 0 and according to the S-Procedure, the lemma is proved.

Similarly, C3 in (12d) can be transformed into βnI−Σ −Σĝn

−ĝ†nΣ −βnψ2
n − ĝ†nΣĝn + Pn,p

 � 0, ∀n ∈ N , (15)

where Σ =
∑K

j=1 Wj + V, and βn ≥ 0 is also a slack variable.

Next, we apply similar manipulations to (12c), which becomes

min
∆hk∈Γk

ρ
(
h†kΣhk + σ2

k,S

)
≥ Dk, (16)

where Dk = − ln
(

1
Pk,s(1−Ωk)/Mk+Ωk

− 1
)
/ak + bk is a constant. This condition holds, provided

that ak > 0, which is always true in real systems.

Then, applying the S-Procedure to (16), we have the following θkI + Σ Σĥk

ĥ†kΣ −θkϕ2
k + ĥ†kΣĥk + σ2

k,S −
Dk

ρ

 � 0, ∀k ∈ K, (17)

where θk ≥ 0.

Therefore, P2 becomes

P3 : min
Wk,V,ρ,{αi,k},{βn},{θk}

Tr(
K∑
k=1

Wk + V) (18a)

s.t. (13), (15), (17), (12e), (12f), (12g), (18b)

αi,k, βn, θk ≥ 0, ∀k ∈ K, i = {k, k + 1, . . . , K}, ∀n ∈ K. (18c)
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Observe that we drop (12h), since it is not a convex term. This relaxation is commonly referred

to as the semi-definite relaxation (SDR) technique. For the specific problem in P2, the following

theorem proves that the optimal Wk has a limited rank.

Theorem 3.2: If P2 is feasible, the rank of Wk, k ∈ K is always less than or equal to 2.

Proof: See Appendix.

The transformed problem P3 is not convex because of the coupling variables ρ in (17) and

(1− ρ) in the denominator of (13). To be able to take advantage of the CVX software package,

we introduce a pair of auxiliary variables. Specifically, let p = 1
1−ρ and q = 1

ρ
. In this way, (13),

(15), and (17) become convex terms. Then, we have additional constraints for p and q:

p ≥ 1

1− ρ
and q ≥ 1

ρ
. (19)

It may be readily verified that this transformation does not change the optimal solution of P3.

B. Complexity Analysis

P3 has K(K+1)
2

linear matrix inequality (LMI) constraints of size (M + 1) in (13), due to the

higher decoding complexity. There are N LMI of size (M+1) in (15), K LMI of size (M+1) in

(17). Besides, in (12g), there are (K+1) LMI with size M , and a total of K(K+1)
2

+2N +K+2

linear constraints. Thus, according to [31] and reference therein, the total complexity is

ln(τ−1)n
√

Ψcomplexity

(
K(K + 1)

2
+N + 2K + 1)[(M + 1)3 + n(M + 1)2] (20)

+(K + 1)(M3 + nM2) +
K(K + 1)

2
+ 2N +K + 2 + n2

,
where n = (K + 1)M2 +N +K + K(K+1)

2
is the number of of decision variables. Ψcomplexity =

K(K+1)
2

+N + 2K + 1)M +K2 + 4N + 3K + 4, and τ is the accuracy of iteration.

C. Matrix Decomposition

Now we proceed to find the solution of the problem P2, after which there is one more step

to get the original solution for wk. If Wk yields rank 1, we can simply write W?
k = w?

kw
?†
k .

Otherwise, if Rank(W?
k) = 2, we have several optional approaches to extract w?

k. To name a

few, we list two methodologies here.
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1) Eigen-decomposition. Let us denote two eigenvalues of W?
k by λ1 and λ2, where λ1 >

λ2 ≥ 0. Clearly, W?
k = λ1w1kw

†
1k + λ2w2kw

†
2k, wik, i = {1, 2} are the corresponding

eigenvectors. To get the rank 1 approximation from a rank 2 matrix, we can let the solution

of the original problem be ŵk =
√
λ1w1kw

†
1k, provided it is feasible.

2) Randomization technique. Similar to eigen-decomposition, we first decompose W?
k ac-

cording to W?
k = UkTkU

†
k. Then, we let ŵk = UkT

1/2
k ek, where the m-th element of ek

is [ek]m = ejθk,m and θk,m obeys an independent and uniform distribution within [0, 2π).

The above two methods are essentially the same. If we want to get a more precise result,

another scaling factor can be added. Specifically, let us define ck as the scaling factor yet to

be determined. Certainly, the problem can be transformed in terms of Wk and ck, once we get

the optimal value, we can apply either one of the above methods to get a better result. Another

point worth noting here is that when the rank of Wk is 2, there only exists the approximation

result of w?
k, and this approximation always provides an upper bound.

D. Gaussian CSI Error Model

In Section III-A, we introduced a bounded channel model, which defines a confined region

for the channel variations, which provides a worst-case estimation. Another commonly used

more realistic estimation model assumes that the channel estimation error obeys the Gaussian

distribution [31][36][41], which is formulated as follows:

hk = ĥk + ∆hk, ∆hk ∼ CN (0,Hk), ∀k ∈ K, (21a)

gn = ĝn + ∆gn, ∆gn ∼ CN (0,Gn), ∀n ∈ N , (21b)

where ∆hk and ∆gn are the channel estimation error vectors, while ĥk and ĝn are the channel

vectors estimated at the BS side. Furthermore, Hk and Gn are the covariance matrices of the

estimation error vectors.

Even though we apply different channel models, the residual interference due to imperfect

CSI estimation affects the message detection similarly to the bounded error model. Thus the

achievable data rate expression of SU k remains the same except that ∆hk is in a new set. In

contrast to the existing NOMA contributions on imperfect CSI [4], in this paper we use the



15

above-mentioned gaussian estimation error model to form an optimization problem as follows:

P4 : min
Wk∈CM×M ,V∈CM×M ,ρ

Tr(
K∑
k=1

Wk + V) (22a)

s.t. C1 : Pr{Rk ≥ Rk,min} ≥ 1− ξk, ∀k ∈ K, (22b)

C2 : Pr{EPractical
k ≥ Pk,s} ≥ 1− ξk,s, ∀∆hk ∼ CN (0,Hk), ∀k ∈ K, (22c)

C3 : Pr
{

g†nΣgn ≤ Pn,p

}
≥ 1− ξn,p,∀∆gn ∼ CN (0,Gn),∀n ∈ N , (22d)

C4 : (12e)− (12h). (22e)

Here, we assume that the probability of having a rate of Rk is higher than Rk,min, which is

a predefined value, and we use the threshold ξk to control the probability. Likewise, ξk,s and

ξn,p, where k ∈ K and n ∈ N , are used for controlling the outage probability of harvested

energy of the kth SU and the interference experienced by the n-th PU, respectively. P4 is hard

to solve owing to its non-convexity, together with constraints C1−C3, which involve probability

and uncertainty. Inspired by [31], we solve the resulted optimization problem with the aid of

approximations by applying Bernstein-type inequalities [43].

1) Bernstein-type Inequality I [43]: Let f(z) = z†Az + 2Re{z†b} + c, where A ∈ HN ,

b ∈ CN×1, c ∈ R, and z ∼ CN (0, I). For any ξ ∈ (0, 1], an approximate and convex form of

Pr{f(z) ≥ 0} ≥ 1− ξ (23)

can be written as

Tr(A)−
√
−2 ln(ξ)υ1 + ln(ξ)υ2 + c ≥ 0, (24a)∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 vec(A)

√
2b


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ υ1, (24b)

υ2I + A � 0, υ2 ≥ 0. (24c)

Here, υ1 and υ2 are slack variables.

In order to use the above Lemma, we have to transform ∆hi to a standard complex Gaus-

sian vector. Let ∆hi = H
1/2
i h̃i, where h̃i ∼ CN (0, I). Substituting it into (11), the convex
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approximation becomes

Tr
(
H

1/2
i (Ck − γk,min

k−1∑
j=1

Wj)H
1/2
i

)
−
√
−2 ln(ξk)υ1i,k + ln(ξk)υ2i,k + ci,k ≥ 0, (25a)

ci,k = ĥ†iCkĥi − rk,min

(
σ2
k,S +

σ2
D

1− ρ

)
, (25b)∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 vec

(
H

1/2
i (Ck − γk,min

∑k−1
j=1 Wj)H

1/2
i

)
√

2H
1/2
i Ckĥi


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ υ1i,k, (25c)

υ2i,kI +
(
H

1/2
i (Ck − γk,min

k−1∑
j=1

Wj)H
1/2
i

)
� 0, υ2i,k ≥ 0, ∀k ∈ K, i = {k, . . . , K}, (25d)

where υ1i,k and υ2i,k are slack variables.

For (22c), we use a simple transformation similar as that in (16), which leads to:

Pr
{
ρ(h†kΣhk + σ2

k,S) ≥ Dk

}
≥ 1− ξk,s. (26)

Furthermore, by applying the inequalities in (24), (26) can be expressed as

Tr
(
H

1/2
k ΣH

1/2
k

)
−
√
−2 ln(ξk,s)υ1k,s + ln(ξk,s)υ2k,s + ck,s ≥ 0, (27a)

ck,s = ĥ†kΣĥk + σ2
k,S −

Dk

ρ
, (27b)∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 vec

(
H

1/2
k ΣH

1/2
k

)
√

2H
1/2
k Σĥk


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ υ1k,s, (27c)

υ2k,sI +
(
H

1/2
k ΣH

1/2
k

)
� 0, υ2k,s ≥ 0, ∀k ∈ K, (27d)

where υ1k,s and υ2k,s, k ∈ K, are slack variables.

2) Bernstein-type Inequality II [44]: Let f(z) = z†Az + 2Re{z†b} + c, where A ∈ HN ,

b ∈ CN×1, c ∈ R, and z ∼ CN (0, I). For any ξ ∈ (0, 1], an approximate and convex form for

Pr{f(z) ≤ 0} ≥ 1− ξ (28)

can be written as

Tr(A) +
√
−2 ln(ξ)υ1 − ln(ξ)υ2 + c ≥ 0, (29a)∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 vec(A)

√
2b


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ υ1, (29b)

υ2I−A � 0, υ2 ≥ 0, (29c)
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where υ1 and υ2 are slack variables.

We apply Bernstein-type Inequality II to (22d), and let ∆gn = G
1/2
n g̃n, where g̃n ∼ CN (0, I)

is a standard Gaussian vector. We can have the following convex-form approximation.

Tr(G1/2
n ΣG1/2

n ) +
√
−2 ln(ξn,p)υ1,n − ln(ξn,p)υ2,n + cn ≥ 0, (30a)

cn = ĝ†nΣĝn − Pn,p, (30b)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 vec(G

1/2
n ΣG

1/2
n )

√
2G

1/2
n Σĝn


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ υ1,n, (30c)

υ2,nI−G1/2
n ΣG1/2

n � 0, υ2,n ≥ 0,∀n ∈ N , (30d)

where υ1,n and υ2,n are slack variables.

Lastly, we relax P4 by dropping the constraint that Wk should have rank 1 for now, since it

is not a convex one. The relaxed version of the problem is

P5 : min
Wk,V,ρ,{υ1i,k},{υ2i,k},{υ1k,s},{υ2k,s},{υ1,n},{υ2,n}

Tr(
K∑
k=1

Wk + V) (31a)

s.t. (25), (27), (30), (12e), (12f), (12g). (31b)

Likewise, the coupling variables in (25b) and (27b) make P5 a non-convex problem. Thus we can

still use the transformation in (19), which converts P5 into an equivalent optimization problem

that can be efficiently solved by CVX.

IV. MAXIMUM HARVESTED ENERGY PROBLEM FORMULATION

In contrast to Sections III, where the minimum transmission power problem is considered, in

the following we consider the optimization problem of maximizing the total harvested energy.

This problem has important real-world applications, since most of the consumer electronics

products are battery-driven and thus their energy efficiency is critical. In this section, we first

formulate the problem, then we transform it in a convex way so that an existing software package

can solve it efficiently. A one-dimensional search algorithm will be used. Furthermore, we also

consider our previous pair of channel models.
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A. Bounded CSI Error Model

Upon considering the imperfect CSI model used in (6), the maximum total harvested energy

of all SUs can be formulated as follows:

P6 : max
Wk∈CM×M ,V∈CM×M ,ρ,{αi,k},{βn},{θk}

K∑
k=1

EPractical
k (32a)

s.t. (13), (15), (12e), (12f), (12g), (12h), (32b)

αi,k, βn, θk ≥ 0, ∀k ∈ K, i = {k, k + 1, . . . , K}, ∀n ∈ K. (32c)

The rank operation is not convex, thus we drop the constraint (12h) first, as previously in P3.

Additionally, the objective function relies on a realistic non-linear energy harvesting model, and

it is not convex either. Essentially, it is a sum-of-ratio problem, and its global optimization is

possible by applying the following transformations:

max
Wk∈CM×M ,V∈CM×M ,ρ,{αi,k},{βn},{θk},{τk}

K∑
k=1

Mk

1 + exp
(
− ak(τk − bk)

) , (33a)

EIn
k ≥ τk, ∀∆hk. ∀k ∈ K. (33b)

After applying the S-Procedure of [42] to (33b), it becomes θkI + Σ Σĥk

ĥ†kΣ −θkϕ2
k + ĥ†kΣĥk + σ2

k,S −
τk
ρ

 � 0, ∀k ∈ K. (34)

Furthermore, according to [37], [45], if P6 has the optimal solutions W?
k and V?, there exist

two sets of vectors µ = {µ1, µ2, . . . , µK} and ε = {ε1, ε2, . . . , εK} such that the solutions are

also optimal for the following equivalent parametric optimization problem:

P7 : max
Wk∈CM×M ,V∈CM×M ,ρ,{αi,k},{βn},{θk},{τk}

K∑
k=1

µk

{
Mk − εk

(
1 + exp(−ak(τk − bk))

)}
. (35)

The optimal solutions and the vectors should satisfy

εk

(
1 + exp(−ak(τ ?k − bk))

)
−Mk = 0, (36a)

µk

(
1 + exp(−ak(τ ?k − bk))

)
− 1 = 0,∀k ∈ K, (36b)

where EIn,?
k = ρ?

(
h†k(
∑K

j=1 W?
j + V?)hk + σ2

k,S

)
≥ τ ?k .

Now, the objective function has the log-concave form and it can be solved given the sets µ and

ε. The iterative update of the vector sets can be carried out in the following way. Let us define
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the function F(µ, ε) =
[
εk

(
1+exp(−ak(τ ?k −bk))

)
−Mk, . . . , µk

(
1+exp(−ak(τ ?k −bk))

)
−1
]
,

∀k ∈ K. The next set of values of µ and ε can be updated by solving F(µ, ε) = 0. Specifically,

in the q-th iteration, we update them as:

µq+1 = µq +$qpq, εq+1 = εq +$qpq, (37)

where pq = [F ′(µ, ε)]F(µ, ε), F ′(µ, ε) is the Jacobian matrix of F(µ, ε), $q is the largest $l

that satisfies ||F(µq +$lpq, εq +$lpq)|| ≤ (1− t$l)||F(µ, ε)||, l = 1, 2, . . ., 0 < $l < 1, and

0 < t < 1 [37] [45].

A two-loop algorithm is proposed for solving the problem. The outer loop gives µ and ε

as the inputs of the inner loop, while the inner loop finds W?
k and V?. Observe that in (34),

there is a coupling variable τk
ρ

, which is convex with a given ρ. Therefore, in the inner loop, we

have to perform a one-dimensional search for ρ as well. The detailed algorithm is formulated

in Algorithm 1.

B. Gaussian CSI Error Model

In this section, we formulate the maximum harvested energy under the gaussian CSI error

model formulated is as follows:

P8 : max
Wk∈CM×M ,V∈CM×M ,ρ

K∑
k=1

EPractical
k (38a)

s.t. (22b), (22d), (12e), (12f), (12g), (12h). (38b)

We first simplify the objective function and then a new approximation will be formulated based

on the Bernstein-type Inequality [43][44]. By involving a simple transformation, we arrive at:

P9 : max
Wk,V,ρ

K∑
k=1

µk

{
Mk − εk

(
1 + exp(−ak(τk − bk))

)}
, (39a)

s.t. Pr(EIn
k ≥ τk) ≥ 1−$, ∀∆hk ∼ CN (0,Hk), ∀k ∈ K, (39b)

(22b), (22d), (12e), (12f), (12g), (12h). (39c)

Observe however that the transformation from (38a) to (39a) and (39b) is not exactly equivalent.

The equivalent form should let EIn
k ≥ τk in (39b). However, by setting $ to be a very small

value, the transformation can be valid and it is also consistent with our gaussian CSI error model.
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Algorithm 1 Robust Precoding Design for EH Maximization Problem

1: Input: Minimum required data rate Rk of SU k, noise power σ2
k,S and σ2

D, channel uncertainty

ϕ2
k and ψ2

n, maximum allowed interference power Pn,p for PU n, maximum BS transmitted

power PB, and randomly generated estimated channel ĥk and ĝn.

2: Initialisation: Iteration number q = 0, p = 1, initial value of ρ as ρstart, step s, end value

ρend, µ0, and ε0, loop stop criteria mth.

3: One-dimensional Search:

4: for ρ = ρstart :s: ρend do

5: repeat: {Outer Loop}

6: Solve for the optimization problem P7: {Inner Loop}

7: if (P7 is feasible) then

8: Obtain Wq
k and Vq.

9: else

10: Break from the outer loop.

11: end if

12: Update µq+1 and εq+1 according to (37), then let q = q + 1.

13: until
∣∣∣µq+1
k

{
Mk − εq+1

k

(
1 + exp(−ak(τk − bk))

)}∣∣∣ < mth

14: Calculate Ei
sum =

∑
k E

Practical
k , then let i = i+ 1, q = 0.

15: end for

16: Find the maximum value among all Ei
sum, and the precoding and energy matrix.

17: Output: Use either of the methods to get the precoding vector wopt
k and Vopt.

By applying the Bernstein-type Inequality I [43], (39b) becomes,

Tr
(
H

1/2
k ΣH

1/2
k

)
−
√
−2 ln($)υ1k,s + ln($)υ2k,s + ck,s ≥ 0, (40a)

ck,s = ĥ†kΣĥk + σ2
k,S −

τk
ρ
, (40b)∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 vec

(
H

1/2
k ΣH

1/2
k

)
√

2H
1/2
k Σĥk


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ υ1k,s, (40c)

υ2k,sI +
(
H

1/2
k ΣH

1/2
k

)
� 0, υ2k,s ≥ 0, ∀k ∈ K, (40d)
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where υ1k,s and υ2k,s, k ∈ K are slack variables.

We also relax the problem by dropping the constraint that the rank of Wk must be 1, and the

optimization problem becomes

P10 : max
Wk,V,ρ,{υ1i,k},

{υ2i,k},{υ1k,s},{υ2k,s},{υ1,n},{υ2,n}

K∑
k=1

µk

{
Mk − εk

(
1 + exp(−ak(τk − bk))

)}
, (41a)

s.t. (40), (25), (30), (41b)

(12e), (12f), (12g). (41c)

Still, the coupling variable in (40) can be tackled by fixing ρ. A similar one-dimensional search

for ρ, together with a two-loop algorithm can solve P10, the detailed step will be omitted here

for space considerations.

V. SIMULATION RESULTS

In this section, we present our simulation results for characterizing the performance of the

proposed robust beamforming conceived with NOMA under both the bounded and the gaussian

CSI estimation error models. Unless otherwise stated, the parameters are chosen as in Table.I.

Parameters Values

Number of SUs and PUs K = 3, N = 2

Noise powers σ2
k,S = 0.1, σ2

D = 0.01

Minimum required EH power Pk,s = 0.01 Watt

Maximum tolerable interference of PUs Pn,p = −18 dBm

Estimated channel gains ĥk ∼ CN (0, 0.8I) , ĝn ∼ CN (0, 0.1I)

Outage probability threshold ξk = ξk,s = ξn,p = 0.05

Gaussian CSI estimation $2
k = 0.001, $2

n = 0.0001. [31]

Non-linear EH model Mk = 24 mW, ak = 150, and bk = 0.014 [46]

TABLE I: Simulation Parameters

To achieve a fair comparison between the two channel estimation error models. If the covari-

ance matrices of the channel estimation error vector ∆hk and ∆gn under the gaussian model

are $2
kI and $2

nI, respectively, then the bounded CSI radius under the worst-case scenario of

ϕk and ψn should be [41]

ϕk =

√
$2
kF
−1
2M(1− ξk)

2
, ψn =

√
$2
nF
−1
2M(1− ξn,p)

2
, (42a)
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where F−1
2M(·) represents the complimentary cumulative distribution function (CCDF) of the

Chi-square distribution with 2M degrees of freedom.

A. Power Minimization Problem
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Fig. 2: The empirical CDF of the minimum transmit power of the CBS under different channel

conditions. CBS antenna number M = 10, PB = 2 Watts, Rmin = 1 bit/s/Hz.

Fig. 2 shows the empirical CDFs of the minimum transmit power of the CBS for both the

imperfect CSI estimation error models. The maximum power PB is set to 2 Watts. For comparison

purposes, we also include the case of OMA, as it represents the traditional access technology.

Notice that in order to reduce the inter-user interference, each OMA user exclusively uses one

time slot. Thus, a total of K time slots are required instead of just one in our scheme. To obtain a

fair comparison, each SU’s achievable data rate should be averaged over all K time slots, which

becomes ROMA
k = 1

K
log2(1 + SINROMA

k ). The reduced interference can be achieved at the cost

of lower spectral and energy efficiency. We also observe that under both channel error models,

the performance of NOMA is better than that with OMA. The reason is that, with OMA, the

lower spectral efficiency makes the constraint of SU data rate harder to be satisfied, and hence

the CBS has to apply a higher transmission power to compensate for that, which leads to a

much higher energy consumption. Fig. 2 is generated from 1,000 independent realizations of
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Fig. 3: The minimum transmit power of the CBS vs. the required SNR of SUs for M = 10,

PB = 8 Watts.

different channel conditions. As expected, the performance under perfect CSI is the best, since

no additional power is used to compensate for the channel uncertainties. Furthermore, in both

the OMA and NOMA schemes, the performance under the gaussian CSI channel estimation

is better than that under the bounded CSI channel estimations, as bounded CSI represents the

worst-case scenario. Observe that the minimum power in the OMA bounded CSI is over 2 Watts

since we only limit the power of each time slot to 2 Watts and it is very likely that the total

power over K slots will beyond that limit.

Fig. 3 shows the minimum transmit power of the CBS as a function of the minimum required

SNR of SUs, γk,min. As the SNR increases, the power increases under all CSI cases. Also,

perfect CSI requires the least power, followed by NOMA relying on the gaussian CSI error

model, NOMA in the bounded CSI model, OMA gaussian CSI model, and OMA bounded

CSI model. Besides, compared to OMA, the CBS power in NOMA grows more slowly. In the

parameter setting, γk,min plays a more important role in the constraints. For γk,min = 2 in the

NOMA case, the equivalent SNR for OMA will be 26. Thus, the gap between OMA and NOMA

further increases with the required SNR.

The impact of the CBS antenna number is illustrated in Fig. 4(a), where the performance
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Fig. 4: (a) Impact of the number of CBS antennas on the minimum transmitted power required

in two imperfect CSI scenarios. (b) Impact of channel uncertainties ψn and ϕk on the overall

minimum transmit power of the CBS, M = 15, Rmin = 1 bit/s/Hz, PB = 8 Watts.

with different CBS antenna numbers and channel uncertainties are plotted. Specifically, Fig.

4(a) illustrates how the number of antennas affects the overall performance. The power required

increases, when the SNR of SUs grows, regardless of how many antennas are mounted at the

CBS. It is also observed that the minimum power required decreases when the number of antennas

increases, since a larger number of antennas results in a higher degree of freedom (DoF). Besides,

we also notice that the performance under the gaussian error model is better than that under the

bounded channel error case. In Fig. 4(b), the impact of channel uncertainties is illustrated. We set

ψ2
n = ϕ2

k = [0.01 : 0.05], the corresponding covariance matrices in gaussian CSI estimation error

scenario also change according to (42). Clearly, channel estimation error affects the bounded CSI

scenario the most, since under worst-case CSI, the channel estimation error channel becomes

worse, thus it needs more power to meet the data rate constraints. Nevertheless, the channel

estimation error does not have much impact on the gaussian channel estimation error scenario.
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Fig. 5: Average maximum EH power under different interferences tolerated by the PUs, M = 10.

B. Energy Harvesting Maximization Problem

In this subsection, we present results for the maximum EH as our objective function. The CBS

power is PB = 2 Watts. Fig. 5 characterizes the average maximum EH power vs. the interference

tolerated by the to PUs. One can observe that the energy harvested monotonically increases, when

the maximum interference tolerated by the PUs grows, where a higher Pn,p allows for a larger

transmission power, leading to the increase of the harvested energy. Additionally, we can see

that under the gaussian channel estimation error, the performance is better than that under the

bounded channel estimation error case. When the channel conditions are better, less power is

required for satisfying the data rate requirements. Hence more power can be reserved for EH.

This also explains that when the required SNR is low, a high EH power can be achieved.

The impact of minimum SNRs required by the SUs is illustrated in Fig. 6. The number of

CBS antennas is M = 10 and the interference threshold Pn,p is set to -24 dBm. We also list the

results for the OMA cases. As expected, the average maximum EH power decreases, when the

required SNR increases. Similar observations show that under perfect CSI, the performance is

the best, while the OMA bounded CSI estimation scenario is the worst. Moreover, we can see

that the maximum EH power decreases significantly when the SNR grows. This is because more

power has to be used for information detection, which leaves less power for energy harvesting.
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Fig. 6: Average maximum EH power vs. the minimum SNR required by the SUs, M = 10.
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Fig. 7: Average total EH power vs. the number of SUs for Pn,p = −24 dBm, rmin = 1 bit/s/Hz.

Fig. 7 shows the average total EH power vs. the number of SUs. It can be observed that the

total EH power grows, when the number of SUs increases, since more nodes participate in the

harvesting process. Additionally, we can see that when the number of antennas is higher, more



27

EH power can be achieved. This is because more antennas give a higher system DoF, therefore

less power is sufficient for information detection.

VI. CONCLUSIONS

In this paper, we considered MISO-NOMA CR-aided SWIPT under both the bounded and

the Gaussian CSI estimation error model. To make the energy harvesting investigations more

realistic, a non-linear EH model was applied. Robust beamforming and power splitting control

were jointly designed for achieving the minimum transmission power and maximum EH. We

transformed the non-convex minimum transmission power optimization problems into a convex

form while applying a one-dimensional search algorithm to solve the maximum EH problem.

Our simulation results showed that the performance achieved by using NOMA is better than

that obtained by using the traditional OMA. Furthermore, a performance gain can be obtained

under the gaussian CSI estimation error model over the bounded CSI error model. For the future

research direction, the system model can be generalized to account for more use cases, for

example, the physical layer security and the interference from multi-cell. Additionally, for the

Gaussian CSI error model, the rank of the solution is not fully characterized in this work yet,

which leaves room for improvement in the future.

APPENDIX A

PROOF OF THEOREM 3.2

Proof: To prove the Lemma, we first consider the Karush-Kuhn-Tucker (KKT) conditions

of P3. Specifically, after some simple algebraic manipulations, (13) can be rewritten as αi,kI 0

0 ti,k

+

 I

ĥ†i

Ck

[
I ĥi

]
+

 −γk,min
∑k−1

j=1 Wj 0

0 0

 � 0, (43)

∀k ∈ K, i = {k, k + 1, . . . , K},

where we have ti,k = −αi,kϕ2
k − γk,min

(
σ2
k,S +

σ2
D

(1−ρ)

)
.

Similarly, (15) and 17 can be rewritten as βnI 0

0 −βnψ2
n + Pn,p

−
 I

ĝ†n

Σ

[
I ĝn

]
� 0, ∀n ∈ N , (44)
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and

 θkI 0

0 mk

+

 I

ĥ†k

Σ

[
I ĥk

]
� 0, ∀k ∈ K, (45)

respectively, where mk = −θkϕ2
k + σ2

k,S −
τk
ρ

.

For notational simplicity, we let Xi =

[
I ĥi

]
and Yn =

[
I ĝn

]
. Furthermore, we denote

Ai,k ∈ C(M+1)×(M+1)
+ , Bk ∈ C(M+1)×(M+1)

+ , Dn ∈ C(M+1)×(M+1)
+ , z ∈ R+, and Ek ∈ C(M)×(M)

+

as the KKT multiplier. Then the Lagrange dual function L can be expressed as

L(Wk,V,Ai,k,Bk,Dn, z, κ) = Tr(Σ)−
∑
i,k

Tr(Ai,kX
†
iCkXi)−

∑
i,k

Tr(Ai,kMk) (46)

+
∑
n

Tr(DnY
†
nΣYn)−

∑
k

Tr
(
BkX

†
kΣXk

)
+ z
(

Tr(Σ)− PB
)
−
∑
k

Tr(EkWk) + κ,

where Mk =

 −γk,min
∑k−1

j=1 Wj 0

0 0

 and κ are the terms independent of Wk. Taking the

partial derivative of the dual function with respect to Wk, we have

∂L
∂Wk

= I−
∑
i

XiAi,kX
†
i + γk,min

∑
i

k−1∑
j=1

XiAi,jX
†
i +
∑
i

γk,min

K∑
j=k+1

Ai,j (47)

+
∑
n

YnDnY
†
n −

∑
k

XkBkX
†
k + zI− Ek = 0.

Additionally, the dual problem has to satisfy the completeness slackness

( αi,kI 0

0 ti,k

+ X†iCkXi + Mk

)
Ai,k = 0, (48a)

EkWk = 0,∀k ∈ K, i = {k + 1, . . . , K}, ∀n ∈ N . (48b)

Right-multiplying Wk with (47), and substituting (48b), we arrive at:

(
∑
i

XiAi,kX
†
i +
∑
k

XkBkX
†
k)Wk =

[
(1 + z)I + γk,min

∑
i

k−1∑
j=1

XiAi,jX
†
i (49)

+γk,min

∑
i

K∑
j=k+1

Ai,j +
∑
n

YnDnY
†
n

]
Wk.
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Since all the KKT multipliers are positive numbers or positive semi-definite matrices, we can

readily verify
{

(1+z)I+γk,min
∑

i

∑k−1
j=1 XiAi,jX

†
i +γk,min

∑
i

∑K
j=k+1 Ai,j +

∑
n YnDnY

†
n

}
�

0. Thus it is non-singular. Left-multiplying a non-singular matrix with Wk does not change the

rank of Wk . Therefore, we have

Rank(Wk) = Rank
(

(
∑
i

XiAi,kX
†
i +
∑
k

XkBkX
†
k)Wk

)
(50)

≤ min
{

Rank
(∑

i

XiAi,kX
†
i +
∑
k

XkBkX
†
k

)
,Rank(Wk)

}
.

Next, we show that the rank of (
∑

i XiAi,kX
†
i ) is 1. By summing (48a) in terms of the index

i, then left-multiplying
[

IM 0

]
and right-multiplying X†i , we have∑

i

αi,kXiAi,kX
†
i −
∑
i

αi,k

[
0M hi

]
Ai,kX

†
i +
∑
i

CkXiAi,kX
†
i (51)

+
∑
i

(−γk,min

k−1∑
j=1

Wj)XiAi,kX
†
i −
∑
i

(−γk,min

k−1∑
j=1

Wj)
[

0M hi

]
Ai,kX

†
i = 0.

After a simple transformation, we have∑
i

(
αi,kI + Ck − γk,min

k−1∑
j=1

Wj

)
XiAi,kX

†
i =

∑
i

(αi,kI− γk,min

k−1∑
j=1

Wj)
[

0M hi

]
Ai,kX

†
i .(52)

From the fact that (13) is a positive semidefinite matrix,
(
αi,kI + Ck − γk,min

∑k−1
j=1 Wj

)
would

be a non-singular matrix, thus the rank of the left term of the above equation is the same as∑
i XiAi,kX

†
i . Also, it is easy to verify that the right term has a rank 1.

Similarly, we can prove that Rank(
∑

n YnDnY
†
n ) = 1. Then, the following equation holds:

Rank
(∑

i

XiAi,kX
†
i +
∑
k

XkBkX
†
k

)
≤ Rank(

∑
i

XiAi,kX
†
i ) + Rank(

∑
n

YnDnY
†
n )

≤ 2, (53)

which proves the theorem.
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