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ABSTRACT
We are interested in scalable data integration and data exchange un-
der constraints/dependencies. In data exchange the problem is how
to materialize a target database instance, satisfying the source-to-
target and target dependencies, that provides the certain answers. In
data integration, the problem is how to rewrite a query over the tar-
get schema into a query over the source schemas that provides the
certain answers. In both these problems we make use of the chase
algorithm, the main tool to reason with dependencies. Our first con-
tribution is to introduce the frugal chase, which produces smaller
universal solutions than the standard chase, still remaining polyno-
mial in data complexity. Our second contribution is to use the frugal
chase to scale up query answering using views under LAV weakly
acyclic target constraints, a useful language capturing RDF/S. The
latter problem can be reduced to query rewriting using views with-
out constraints by chasing the source-to-target mappings with the
target constraints. We construct a compact graph-based represen-
tation of the mappings and the constraints and develop an efficient
algorithm to run the frugal chase on this representation. We show
experimentally that our approach scales to large problems, speed-
ing up the compilation of the dependencies into the mappings by
close to 2 and 3 orders of magnitude, compared to the standard and
the core chase, respectively. Compared to the standard chase, we
improve online query rewriting time by a factor of 3, while produc-
ing equivalent, but smaller, rewritings of the original query.

1. INTRODUCTION
We witness an explosion of available data in all areas of human

activity, from large scientific experiments, to medical data, to dis-
tributed sensors, to social media. Integrating data from disparate
sources can lead to novel insights across scientific, industrial, and
governmental domains. This integration is achieved by either creat-
ing a data warehouse, that is, by copying/transforming the data to a
centralized site under a single schema for subsequent analysis (data
exchange [14] ), or by leaving the data at their original sources and
querying the data at analysis time ((virtual) data integration [20]).

Formally, a data integration/exchange setting,< S,T ,Σst,Σt >,
is a tuple where S is a set of heterogeneous schemas from mul-

.

tiple sources, T is the target schema (aka the domain, global, or
mediated schema), which must satisfy a set of target constraints/-
dependencies Σt, and Σst is a set of schema mappings that trans-
form the data in schemas S into schema T . The main problem
in this setting, and the focus of this paper, is conjunctive query
answering (aka answering queries using views under dependen-
cies [19], or computing certain answers under constraints [14, 1,
11]): the user poses a query over target schema T and the system
needs to provide the certain answers to the query using the data
from the sources S such that all constraints Σst and Σt are satis-
fied. Data exchange and virtual integration are the two main ap-
proaches for getting the certain answers. Data exchange achieves
this by materializing a target database, by obtaining data from the
sources using (satisfying) the schema mappings Σst, and satisfying
the target constraints Σt. Then, the certain answers to a user query
can be computed by directly evaluating the query over the materi-
alized target database. In virtual integration, a mediator uses the
schema mappings and target constraints to rewrite the target user
query into a query that only uses terms from the source schemas
but produces all the certain answers.

Mappings in Σst, and target constraints in Σt, are usually given
in the form of logical implications of conjunctive formulas, called
tuple-generating dependencies (TGDs) [6] or Global-Local-as-View
(GLAV) rules [15]. TGDs are very expressive, but query answering
(and rewriting) under general target TGDs is undecidable [6]. How-
ever, some syntactic restrictions, such as weakly-acyclic TGDs [14],
are decidable (even data-complexity tractable) in query answering.

In data exchange, the main technique to reason with constraints
is the chase [6], a form of forward chaining that “fetches” data
from the sources through the mappings to a target database, and
also “completes” this database w.r.t. the target constraints. One
can then disregard the constraints and do query answering over the
completed database. In this paper, we present an optimization of
the chase algorithm usable in data exchange with GLAV mappings
and standard-chase terminating (e.g., weakly-acyclic) target TGDs.

In virtual integration (which is achieved through query rewrit-
ing), the initial focus has been on settings without target constraints,
i.e., Σt = ∅, and mappings with only one source predicate in the
rule antecedent, called Local-as-view (LAV) mappings [27, 12].
LAV mappings expose the core challenges in query rewriting, since
they contain joins of existential variables. Query rewriting with
LAV mappings and no constraints, aka answering queries using
views, has been extensively studied in query optimization, data in-
tegration and other areas [20, 26]. In previous work, we devel-
oped a scalable query rewriting algorithm for LAV mappings and
no target constraints, named GQR [24], that is about two orders of
magnitude faster than the previous state-of-the-art (Minicon [31],
MCDSAT [5]), and rewrites a conjunctive query in the presence of



10,000 LAV mappings in under 1 second. For virtual integration
with target constraints, Afrati and Kiourtis [1] used the chase algo-
rithm in a novel way by “compiling” the target constraints (specifi-
cally, LAV weakly-acyclic TGDs) into the LAV mappings to reduce
the problem to view-based query rewriting without constraints. In
this paper, we present an algorithm for query rewriting under LAV
weakly-acyclic target TGDs, building on [1, 24], and our optimized
chase. This type of constraints is first-order rewritable, includes
practically interesting languages like RDF/S, and has good compu-
tational properties in data integration, data exchange [16, 1], and in
inconsistent and incomplete databases [2].

In particular, our paper presents two main contributions:
1. The frugal chase. We develop a novel, optimized version of
the standard chase, usable in data integration, data exchange, or in-
complete database settings, with GLAV mappings and GLAV target
constraints. Instead of adding the entire consequent to a solution
when a chase rule is applicable, as in the standard chase, the frugal
chase avoids adding provably redundant atoms (Sect. 3). We prove
that the frugal chase results in equivalent, yet smaller in size (num-
ber of tuples), universal solutions with the same data complexity
as the standard chase. We also present a procedural version of the
frugal chase (Sect. 4), and a compact version of the latter adapted
to our GQR rewriting algorithm (Sect.5).
2. A scalable conjunctive query rewriting algorithm for LAV
mappings under weakly-acyclic LAV target constraints. This
algorithm uses the compact frugal chase to efficiently compile the
constraints into the mappings (à la [1]), and then efficiently do
query rewriting (using [24]). Our compact frugal chase identifies
common patterns across the mappings and “factorizes” them us-
ing a graph representation. This allows us to trigger a constraint
for multiple views at the same time, and to add consequent predi-
cates across multiple views at once. Identifying and indexing com-
mon patterns and chasing the mappings can be performed offline
in a precompilation phase, independently of user queries, thereby
speeding up system’s online query performance. Our compact graph
representation of the mappings is particularly tailored for GQR,
optimizing our solution even more. Our algorithm experimentally
performs about 2 orders of magnitude faster than running the stan-
dard chase on each view individually and then applying query rewrit-
ing using views. Our approach scales to larger numbers of con-
straints and views and produces smaller, but equivalent, UCQ rewrit-
ings (containing less and shorter conjunctive queries), that compute
the certain answers. For our experimental setting the size of the
frugal chased mappings is very close to the core [13, 10] (i.e., the
globally minimized chased mappings). Nevertheless, our compact
algorithm achieves this output almost 3 orders of magnitude faster
than the core chase [10], since we do not rely on minimization.

2. BACKGROUND
Queries. We use rule notation for conjunctive queries. The follow-
ing query asks for doctors responsible for discharging patients:
q(d)← Doctor(d), DischargesPatientFromClinic(d,p,c)

The antecedent of the query is called the body of the query while
q(d), the consequent, is the head. Variables in the head are called
distinguished (e.g., d); the rest are existential variables (e.g., p, c).
A union of conjunctive queries (UCQ) is a set of same-head rules.
We denote vars(S) (or cons(S)) the set of variables (or constants)
of a query or a set of predicates S.
Query Containment. Query Q1 is contained in query Q2, Q1 ⊆
Q2, iff for all databasesD the result of evaluatingQ1 on D,Q1(D),
is contained in the result of evaluatingQ2, that is,Q1(D) ⊆ Q2(D).
Homomorphism. Given two sets of atoms S1, S2, a homomor-
phism from S1 to S2 is a function h:vars(S1) ∪ cons(S1) →

vars(S2)∪ cons(S2), such that: (1) h is the identity on constants,
and (2) for all atoms A ∈ S1, h(A) ∈ S2 (a homomorphism h is
extended over atoms, sets of atoms, and queries in the obvious man-
ner). Given two conjunctive queries Q1, Q2, a containment map-
ping fromQ2 toQ1 is a homomorphism h:body(Q2)→ body(Q1)
s.t. h(head(Q2)) = head(Q1). It holds that Q1 ⊆Q2 iff there is a
containment mapping from Q2 to Q1 [9].
Dependencies are used to define schema mappings and target schema
constraints. Tuple-generating dependencies (or GLAV rules), are
formulas of the form: ∀~x, ~y φA(~x, ~y) → ∃~z ψB(~x, ~z), with φA
and ψB conjunctive formulas over sets of predicates A and B, and
~x, ~y, ~z tuples of constants or variables. A TGD with a single pred-
icate in the consequent is called a Global-as-View (GAV) rule. A
TGD with a single predicate in the antecedent is called a Local-as-
View (LAV) rule [20]. WhenA andB are the sets of source and tar-
get predicates, respectively, the formulas are called source-to-target
tuple-generating dependencies (st-TGDs) [14]. When A = B is
the set of target predicates, the formulas are called target TGDs.
A second important class of constraints (not considered in this pa-
per) involves equality-generating dependencies (EGDs), which are
generalizations of functional dependencies.
Containment under Dependencies. Query Q1 is contained in
query Q2 under a set of constraints Σ, denoted Q1 ⊆Σ Q2, iff
for all databases D that are consistent with Σ, Q1(D) ⊆ Q2(D)
Weakly Acyclic TGDs (wa-TGDs) [14]. Let Σ be a set of TGDs
over schema < = {R1, ..., Rn}. Construct a directed graph, called
the dependency graph, as follows: (1) there is a node for every pair
(Ri, A) with A an attribute of Ri, call such pair (Ri, A) a posi-
tion; (2) add edges as follows: for every TGD ∀~x, ~y φ(~x, ~y) →
∃~z ψ(~x, ~z) in Σ, for every x in ~x that occurs in ψ and for every oc-
currence of x in φ in position (Ri, Ai): (2.1) for every occurrence
of x in ψ in position (Rj , Bk), add an edge (Ri, Ai)→ (Rj , Bk)
(if it does not already exist), and (2.2) for every existentially quan-
tified variable z ∈ ~z and for every occurrence of z in ψ in position
(Rt, Cm), add a special edge (Ri, Ai) (Rt, Cm) (if it does not
already exist). Then Σ is weakly acyclic (wa) if the dependency
graph has no cycle with a special edge. LAV Weakly Acyclic
TGDs are wa-TGDs that have a single predicate in the antecedent.
The Chase is useful to reason with dependencies. Given a conjunc-
tion of atoms B (we will run the chase on both database instances
and on consequents of mappings) and a TGD σ = ∀~x, ~y φ(~x, ~y)→
∃~zψ(~x, ~z), then σ is applicable to B with antecedent homomor-
phism h iff h is a homomorphism from φ to B (intuitively, the
antecedent holds in B), such that h cannot be extended to cover ψ
(i.e., the consequent is not already satisfied). We apply the TGD
σ by adding its consequent to B. Formally, a chase step adds
ψ(h(~x), f(~z)) toB, where h is the antecedent homomorphism and
f creates “fresh” variables, known as skolems or labeled nulls, for
all the existential variables (~z). The standard chase is an exhaustive
series of chase steps, and may be finite or infinite depending on the
constraints. We denote chaseΣ(B) the result of chasingB with all
constraints in Σ. Variations of the chase are the parallel and core
chase [10]. Every parallel chase step decides all applicable con-
straints on B first, and then adds to B their consequents. Each core
chase step is a parallel step followed by minimization of the result.
Data Exchange. Given a finite source database instance I , a set
of st-TGDs Σst, and a set of target dependencies Σt, the data
exchange problem [14] is to find a finite target database instance
J , called a solution, such that I, J satisfy Σst and J satisfies Σt.
The certain answers of a query q on the target schema obtained
using the source instance I , denoted by certain(q, I), is the set
of all tuples t of constants from I such that for every solution J ,
t ∈ q(J) [14]. For certain classes of TGDs we can reach a rep-



resentative solution for the entire space of solutions, called a uni-
versal solution, which has homomorphisms to all other solutions,
and certain(q, I) can be computed by issuing q on it [14]. The
chase, chaseΣ(I), is a sound algorithm for finding universal so-
lutions. The chase with general target TGDs might not terminate,
so relevant research has focused in identifying chase-terminating
classes of TGDs, such as wa-TGDs, for which the chase is both a
sound and a complete algorithm for computing universal solutions.
(Virtual) Data Integration (VDI) is the problem of computing the
certain answers of a target query by rewriting it as a query over the
source schemas and querying the sources directly. Given a query
Q, a set of GLAV schema mappingsM = {M1, ...,Mn}, and no
target constraints, Q′ is a maximally-contained rewriting [27] of
Q usingM if: (1)Q′ only contains source predicates, (2)Q′ ⊆ Q,
and (3) there is no query Q′′ only containing source predicates,
such that Q′ ⊆ Q′′ ⊆ Q and Q′′ � Q′. When considering target
constraints, this definition involves containment under dependen-
cies (⊆Σ). In this paper we reduce the query rewriting with con-
straints problem to query rewriting without target constraints. Our
maximally-contained rewritings will compute the certain answers.
Data Integration with weakly acyclic LAV TGDs. We are in-
terested in first-order rewritings (i.e., expressible in SQL) since
we want to develop a practical solution that leverages scalable re-
lational technology. When considering target constraints in data
integration, maximally-contained first-order rewritings do not al-
ways exist. We focus on weakly-acyclic LAV constraints, which
are first-order rewritable [16, 1]. We discuss other cases of first-
order rewritable constraints in section 7. LAV wa-TGDs is a super-
set of the useful class of weakly-acyclic inclusion dependencies, as
well as the class of LAV TGDs with no existential variables (LAV
full TGDs), which can express important web ontology languages
such as RDF/S. A maximally-contained UCQ rewriting under LAV
wa-TGDs, which computes the certain answers, can be obtained by
first chasing the views with the target constraints, and then applying
a query answering using views algorithm (without constraints) [1].

THEOREM 1. Chasing the Views [1] Given a query Q on a
schema R, a set of LAV schema mappings V = {V1, ..., Vn} on
R, a source instance I under V and a set of weakly-acyclic LAV
TGD constraints Σ on R, the set of certain answers certain(Q, I)
is computed by the UCQ maximally-contained rewriting of Q us-
ing {V1

′, ..., Vn
′}, where each Vi′ ∈ {V1

′, ..., Vn
′} is produced by

running the standard chase on the consequent of Vi using Σ.
Motivating Example. Consider the following LAV rules describ-
ing sources S1-S4 of medical data. S1 contains physicians that
treat patients with a chronic disease. S2 records the physician re-
sponsible for discharging a patient from a clinic. S3 is the same to
S1 but physicians are typed as Doctors. S4 provides Surgeons.
S1(d, s)→ TreatsPatient(d, p), HasChronicDisease(p,s)
S2(d, p, c)→ DischargesPatientFromClinic(d, p, c)
S3(d,s)→ TreatsPatient(d,p), HasChronicDisease(p,s), Doctor(d)
S4(d)→ Surgeon(d)

The maximally contained (with no constraints) rewriting of q (pre-
sented in the beginning of this section) is: q′(d)←S3(d,s),S2(d,z,c).

Now, consider the following (RDF/S) constraints that capture
“domain” and “range” properties, and “subclass” relations. Con-
straint c1 states that the domain of TreatsPatient is Doctor and the
range is Patient. Constraint c2 states that Surgeons are Doctors (as
for queries our notation for constraints and views omits quantifiers).
c1: TreatsPatient(x,y)→ Doctor(x), Patient(y)
c2: Surgeon(x)→ Doctor(x)

Theorem 1 guarantees that we can answer query q, using sources
S1-S4, by first chasing the consequents of the views and then look-
ing for maximally-contained rewritings of the query using the chased
views. Running the chase on S1-S4 using c1 and c2 yields:

S′
1(d,s)→ TreatsPatient(d,p),HasChronicDisease(p,s), Doctor(d), Patient(p)
S′

2(d,p,c)→ DischargesPatientFromClinic(d,p,c)
S′

3(d,s)→ TreatsPatient(d,p),HasChronicDisease(p,s), Doctor(d), Patient(p)
S4

′(d)→ Surgeon(d), Doctor(d)
The maximally-contained rewriting of q using S1

′-S4
′ is the UCQ:

q′(d)← (S1(d,x),S2(d,y,z))∨ (S3(d,u),S2(d,v,w))∨ (S4(d),S2(d,s,t)). This
approach was employed in [1] by running the standard chase on the
views and using the Minicon algorithm [31] for query rewriting. In
this paper, we chase the views using our optimized frugal chase
(Sect. 3). Moreover, we develop a graph-based compact version of
the frugal chase (Sect. 5) optimized for running on multiple views
simultaneously, tailored to be input directly into GQR [24] for fast
query rewriting. Running the frugal chase, rather than the standard
one produces shorter (but equivalent) mappings (in number of pred-
icates/joins), which in turn produce less and shorter (but equivalent)
conjunctive queries in the final UCQ rewriting.

As an example of our approach, consider the mapping S3 and
constraint c3 below, which states that an individual with a chronic
disease must be a patient treated by a doctor:
c3: HasChronicDisease(pat,dis) → TreatsPatient(doc,pat), Doctor(doc),

Patient(pat)
Since there is no homomorphism that maps the consequent of the
rule to the consequent of the view, the standard chase produces:
S3

′′(d,s)→ TreatsPatient(d,p), HasChronicDisease(p,s), Doctor(d),
TreatsPatient(d2,p), Doctor(d2), Patient(p)

Our algorithm produces a shorter, yet equivalent, mapping:
S3

′′′(d,s)→TreatsPatient(d,p),HasChronicDisease(p,s),Doctor(d),Patient(p)

Consider query q2(s)← TreatsPatient(d,p), HasChronicDisease(p,s).
Using S3

′′ this query will give the UCQ rewriting: q′2(s)← S3(d,s)
∨ S3(d2,s). One of the two elements of q′2 is redundant. Minimizing
the output of a query rewriting algorithm is an orthogonal NP-hard
problem [27]. Query rewriting using the frugal chased mapping
S3

′′′ avoids this redundancy, without running minimization, lead-
ing to the smaller (and faster to evaluate) rewriting: q′′2 (s)← S3(d,s).

3. OPTIMIZING THE CHASE
Often, in the presence of existential variables/labeled nulls, some

of the consequences of a chase rule are already implied in the database.
That is, although the rule is not satisfied (i.e., there is no homo-
morphism from the consequent to the database instance that is an
extension of the antecedent homomorphism), the consequent might
be partially satisfiable; adding a subset of the consequent’s atoms
can construct such a homomorphism from the entire consequent.
In this section we introduce the frugal chase, which is equivalent to
the standard chase, but results in smaller universal solutions.

Consider the simple data exchange scenario of Fig.1 with a source
described by S3 and a target constraint c3 (cf. Sect. 2). Existential
variables in the constraint introduce additional labeled null tuples
which are redundant (nulls do not participate in the certain answers
of a query). The bottom 3 rows of TreatsPatient and Doctor can be
removed. Our frugal chase avoids adding such redundant facts.

Before we define the frugal chase, let us introduce some use-
ful notions. Let B a database instance (or any other conjunction
of atoms such as the consequent of a TGD). The Gaifman graph
of nulls [13] is an undirected graph with nodes being the existential
variables (labeled nulls) of B; edges between nodes exist if the vari-
ables co-exist in an atom in B. Dually, the Gaifman graph of facts
of B, denoted grf(B), is the graph whose nodes are the atoms
of B and two nodes are connected if they share existential vari-
ables/labeled nulls. Note that parts of B that are connected only
through constants (as well as distinguished variables for TGDs),
constitute different connected components of the Gaifman graph of
facts. For Gi a connected component of grf(B), V (Gi) is the



!"#$%&'$ ()*+,-$

!"#$.&,$ ()*+,-$

!"#$/+&$ !0-'1*1)$

23$

!"#$%&'$ 45$

!"#$.&,$ 46$

!"#$/+&$ 43$

."1-*)7-814*$

45$ ()*+,-$

46$ ()*+,-$

43$ !0-'1*1)$

9-):+"&40;!0)1-)1$

!"#$%&'$

!"#$.&,$

!"#$/+&$

!&;*&"$

23<=>)?$!$."1-*)7-814*<=>$@?>$9-):+"&40;!0)1-)1<@>)?>$!&;*&"<=?$$$

!"#$%&'$ 45$

!"#$.&,$ 46$

!"#$/+&$ 43$

4A$ 45$

4B$ 46$

4C$ 43$

."1-*)7-814*$

45$ ()*+,-$

46$ ()*+,-$

43$ !0-'1*1)$

9-):+"&40;!0)1-)1$

$$$$$$$;3D9-):+"&40;!0)1-)1<@>)?$!."1-*)7-814*<=>@?>!&;*&"<=?$>7-814*<@?$$

45$

46$

43$

7-814*$

!"#$%&'$

!"#$.&,$

!"#$/+&$

4A$

4B$

4C$

!&;*&"$

Figure 1: Standard vs Frugal Chase.

set of all the facts (i.e., the nodes) in Gi. For any conjunction of
atoms B we denote the decomposition of B to (the facts of) its
connected components {Gi, ..., Gn} as the set of sets (of facts)
dec(B) = {V (Gi), ..., V (Gn)}. Fig. 2 shows in dotted circles the
different connected components of TGD c and instance B.

A constraint can be decomposable to an equivalent set of “sim-
pler” constraints, each with a different element of its decomposi-
tion as consequent. For example, c3 in Fig. 1 can be broken down
to two constraints with consequents {TreatsPatient(d,p),Doctor(d)}
and {Patient(p)} respectively. For Fig. 1, applying the standard
chase using the new set of constraints would also avoid the redun-
dancies presented. Nevertheless, our frugal chase produces smaller
chase results, even with non-decomposable constraints.

Informally, a set of predicates is partially satisfiable, and not
added during the frugal chase application, in two cases: if it is a
connected component of the constraint and is mapped to the in-
stance as a whole, or if its image on the database instance is a
complete connected component of the instance. Any union of such
partially satisfiable sets is a partially satisfiable set, as long as the
individual satisfying mappings agree on their common arguments.

DEF. 1. Partially Satisfiable Set. Let σ be a TGD constraint
∀~x,~y, φ(~x, ~y)→ ∃ ~z ψ(~x, ~z) and B an instance s.t. there is an an-
tecedent homomorphism h that maps φ(~x, ~y) to B. A set of atoms
S ⊆ ψ, is partially satisfiable for h if there exists an extension of
h, h′, called a satisfying homomorphism for S, s.t. h′(S) ⊆ B and
for each Si ∈ dec(S), either:

1. (a) for all existential variables ~zi in Si, h′(zi) is an existen-
tial variable (or labeled null) in B, and
(b) h′(Si) ∈ dec(B), i.e., the image of Si is an entire con-
nected component of B; or

2. Si ∈ dec(ψ), i.e., the mapped set Si is actually an entire
connected component of the constraint consequent.

We illustrate Def. 1 with the example in Fig. 2, which shows how
the frugal chase applies constraint c on instance B (Φ is a conjunc-
tion of atoms, c and d are constants, xi and zi are variables, ni are
labeled nulls, and Pi are relations). Consider whether the set of
predicates S = {P1(x1, z1), P2(z1, z2), P4(x1, z3), P5(z3, z4)}, a
subset of the consequent of constraint c, is partially satisfiable. The
decomposition dec(S) has two elements (connected components):
S1 = {P1(x1, z1), P2(z1, z2)} and S2 = {P4(x1, z3), P5(z3, z4)}.
Per Def. 1, for our S there exists a homomorphism h′ which ex-
tends the one from the antecedent (h), such that h′(S) ⊆ B. More-
over, S1 is an entire connected component of the constraint (falling
in case 2 of Def. 1), while for S2 all its existential variables are
mapped through h′ (and in particular g2) to existential variables
(case Def. 1.1(a)), and h′(S2) is a connected component ofB (case
Def. 1.1(b)). So S is partially satisfiable. Note that P6(x2, z4)
in the constraint could be partially satisfiable by mapping it to
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Figure 2: Frugal Chase: Partially Satisfiable Set.

P6(d, n5) in B; however not at the same time as {P4(x1, z3),
P5(z3, z4)}, which maps z4 to a different variable, n5 (according
to Def. 1 there needs to be a single satisfying homomorphism h′

which maps all elements of a partially satisfiable set). Hence, the
set of partially satisfiable predicates of a constraint might not be
unique; in Fig. 2 there are two equivalent alternative frugal chases,
given by h′ and h′′. Function f in h′′ maps variables that are not in
the domain of the satisfying homomorphism to fresh names. This
non-uniqueness does not cause a problem for the end chase result;
as we prove later, all frugal chase results are universal solutions.
Currently our algorithms choose one arbitrary partially satisfiable
set (our implementation chooses the first it discovers). Neverthe-
less, one could develop heuristics to materialize the preferred alter-
native, e.g., the shorter chase or one depending on the application.

The frugal chase is applicable whenever not all atoms of the con-
sequent are in a partially satisfiable set; by Lemma 1 this is equiva-
lent to the standard chase applicability (proof omitted due to space).

LEMMA 1. Let σ a TGD constraint ∀~x, ~y, φ(~x, ~y)→ ∃~z ψ(~x, ~z)
andB an instance. σ is applicable toB, per the standard chase, iff
there exists an antecedent homomorphism h from φ(~x, ~y) to B and
there exists one consequent predicate Pσ( ~xP , ~zP ) ∈ ψ(~x, ~z) (with
~xP ⊆ ~x, ~zP ⊆ ~z) which is not partially satisfiable for h.

The application step of the frugal chase rule adds all such non
partially-satisfiable atoms of the consequent to our database in-
stance. Formally, for S a partially satisfied set of predicates of
the consequent ψ with satisfying homomorphism h′, ψ(~x, ~z) =
(ψ(~x, ~z)\S) is the set of all non partially satisfiable atoms w.r.t. S.
The frugal chase step addsH(ψ′(~x, ~z)) to our database, where the
applicable homomorphism,H, is an extension of h′, mapping vari-
ables not appearing in h′ to new “fresh” labeled nulls. In the exam-
ple of Fig. 2, if we choose to satisfy {P4(x1, z3),P5(z3, z4)}, then
H = h′ and only the two non partially satisfiable atoms P3(n3, n4)
and P6(d, n5) are added to our database (compared to the entire
consequent of c that the standard chase would add). The result-
ing instance after the frugal chase step is equivalent (but smaller in
size) to the one produced by the standard chase.

THEOREM 2. For all instancesB, and sets of TGDs Σ, the fru-
gal chase step is applicable to B with antecedent homomorphism
h iff the standard chase step is applicable with h. Moreover ifB′ is
the instance after the application of the standard chase step for h
and σ ∈ Σ and B′′ is the instance after the application of the fru-
gal chase step for h and σ, then B′ and B′′ are homomorphically
equivalent, and they both satisfy σ (for h). [Proof in appendix].

As in the standard chase, the frugal chase is an exhaustive series
of frugal chase application steps. Since the output of each frugal
chase step might be smaller, this might also lead to fewer number
of chase steps overall (since redundant predicates triggering the ap-
plication of subsequent constraints might not appear at all during
the frugal chase). This optimizes our proposed solution even more.

THEOREM 3. For all instancesB, and sets of TGDs Σ, the fru-
gal chase terminates for all instances and constraints for which the
standard chase terminates, producing a universal solution.



PROOF. Let c1, c2, ... be an ordering of constraints (possibly re-
peating with different antecedent homomorphisms) in the frugal
chase application. Let fchaseci(B) and chaseci(B) the results of
the frugal and the standard chase resp. onB with ci. fchasec1(B)
and chasec1(B) are homomorphically equivalent, by Th. 2. Let
g1 the homomorphism from chasec1(B) to fchasec1(B). Let a
constraint cj satisfied, per the standard chase, on chasec1(B), with
satisfying homomorphism g2. Composing g2 with g1, proves that
the constraint is also satisfied on fchasec1(B). Hence, fchasec1(B)
triggers at most as many constraints as chasec1(B) does. Also, as-
suming c2 is applicable to fchasec1(B), it is also to chasec1(B),
with the same antecedent homomorphism. Moreover, after the ap-
plication of c2, fchasec2(fchasec1(B)) is homomorphically equiv-
alent to chasec2(chasec1(B)) (proof is omitted due to space, but
is very similar to our appendix proof). Hence, inductively, if the
standard chase terminates on B with Σ so does the frugal chase
with fchaseΣ(B) satisfying all constraints and being a solution.
In order to show that it is universal, i.e. has homomorphisms to all
other solutions, we note that it has a homomorphism to chaseΣ(B)
which in turn has homomorphisms to all other solutions.

The intuition behind our frugal chase is taking care that when
adding a non-partially-satisfiable predicate, we will not introduce a
join among this predicate and some relation, or some constant, in B
which is not in the constraint (such a join would not be introduced
by the standard chase). This case is avoided when satisfying an
entire connected component of the constraint since there is nothing
else (existentially) joining with that component in the consequent
to be added (e.g., predicates P1 and P2 of c in Fig. 2). If our set
of satisfied predicates (e.g., P4 and P5 of c in Fig. 2) is not an
entire connected component of the consequent, its image has to
be; otherwise whatever these predicates join with in the constraint
(which we will add to our instance), will “accidentally” join with
whatever joins with their image. For example, consider:
c4: P (x), R(x, z)→ P1(x, y, z), P2(y, w), P4(y)
B = {P (d), R(d, c)P1(d, y1, c), P2(y1, w1), P3(y1)}

Running the standard chase with c4 on B produces:
B′ = {P (d), R(d, c)P1(d, y1, c), P2(y1, w1), P3(y1),

P1(d, y, z), P2(y, w), P4(y)}
Had we assumed partial satisfiability for both P1, P2 we would get:
B′′= {P (d), R(d, c), P1(d, y1, c), P2(y1, w1), P3(y1), P4(y1)}.

B′′ andB′ are not equivalent since there is no homomorphism from
B′′ to B′, since the join of P3-P4 in B′′ cannot be preserved. If
P3 was missing from B (we would fall in case 1: all joins of y1 in
B would be with images of partially satisfiable predicates) or if P4

was missing from c4 (we would fall in case 2: the entire connected
component in the constraint is partially satisfiable), then we would
end up in B′ and B′′ either both missing P3 or both missing P4 in
which case they would be homomorphically equivalent.
Complexity. The problem of deciding whether the standard chase
is applicable on an instance is polynomial in data complexity [14].
The difference to our case is essentially case 1(b) of Def. 1, which
introduces a polynomial traversal of the corresponding connected
component of the database, for all Si. So, the frugal chase remains
polynomial in data complexity. Notice that our definitions care for
only one (arbitrarily chosen) partially satisfiable set. Potentially,
we could exhaustively examine all subsets of a constraint’s conse-
quent; still polynomial in data complexity. Moreover, as our exper-
iments attest for LAV constraints, checking partial satisfiability and
running the frugal chase is faster than the standard in practice.

4. PROCEDURAL FRUGAL CHASE
In preparation to use the frugal chase in query rewriting using

GQR, we present an alternative definition that examines each atom
separately and decides whether it is partially satisfiable.

DEF. 2. Let σ be a TGD constraint ∀~x, ~y, φ(~x, ~y)→ ∃~z ψ(~x, ~z),
and B an instance s.t. there exists a homomorphism h: φ(~x, ~y)→
B. For all atoms P ( ~xP , ~zP ) ∈ ψ(~x, ~z), P ( ~xP , ~zP ) is partially
satisfiable for h if there exists an extension of h, h′, called a satis-
fying homomorphism for P , s.t. h′(P ) ⊆ B and for all z ∈ ~zP :

1. if h′(z) is an existential variable (labeled null for instances)
then for every atom RB in B that contains h′(z), there is
an atom RC in the constraint that contain z, in the same
argument positions, s.t.: (a) RC is partially satisfiable for h′

(its satisfying homomorphism is an extension of h′), (b) RB
is the image ofRC through the satisfying homomorphism for
RC , and (c) for all R(~x, ~z) ∈ ψ(~x, ~z) that contains z, if R
is partially satisfiable for h, it is also partially satisfiable for
h′ (which, recursively, means it uses an extension of h′);

2. if h′(z) is (a) a constant (for instances or mappings), or (b)
a distinguished variable (for mappings), or (c) an existential
variable (labeled null for instances) which does not fall into
case (1) above (i.e., it joins with at least one atom which is
not the image of a partially satisfiable atom that joins with P
on z in the same argument positions), then all atoms in the
connected component of grf(ψ) that P is in, are partially
satisfiable for h′ (which means they use extensions of h′).

THEOREM 4. A set S of atoms is partially satisfiable per Def. 1,
iff every atom in S is partially satisfiable per Def. 2.

PROOF. It is not hard to see that cases 1(a), 1(b) and 2 of Def. 2
correspond to the same cases of Def. 1. However Def. 2 considers
“atomic” satisfying homomorphisms over single atoms. We need
to make sure that these homomorphisms can be unified to construct
one from the entire set of partially satisfiable atoms (i.e., h′ of
Def. 1). Since every atomic satisfying homomorphism in Def. 2
extends h (that maps the antecedent variables toB,) we really need
to examine only existential variables. Notice that all partial sat-
isfiable atoms (per Def. 2) that share existential variables need to
fall into the same case of Def. 2. For partially satisfiable atoms in
the constraint, that share existential variables and fall in case 2 of
Def 2, their satisfying homomorphisms agree and are essentially
the same, since the predicates belong in the same connected com-
ponent of grf(ψ). For partially satisfiable atoms, that share exis-
tential variables, and fall in case 1 of Def 2, case 1(c) takes care
that their homomorphisms agree on their common values.

With respect to Def. 2, we define an applicable homomorphism,
the frugal chase step and the frugal chase similarly to Def. 1.

To illustrate Def. 2, we run the frugal chase on a view (instead
of an instance). For views, distinguished variables are interpreted
as constants in our homomorphisms, for both the standard and the
frugal chase. Consider the following non-decomposable constraint:
c5: P (x, v), R(v, t)→ P1(x, y, z), P2(y, w) and view
S5: S5(x1)→ P (x1, v1), R(v1, t1), P1(x1, y1, z1), P2(x1, w1).

The standard chase algorithm run with c5 on S5 will produce:
S5

′(x1)→ P (x1, v1), R(v1, t1), P1(x1, y1, z1), P2(x1, w1),
P1(x1, y, z), P2(y, w)

Nevertheless a shorter, equivalent mapping per our chase is:
S5

′′(x1)→P (x1, v1), R(v1, t1), P1(x1, y1, z1), P2(x1, w1), P2(y1, w)

When considering whether P1(x, y, z) in c5 is partially satisfi-
able, we notice that y and z can only map to don’t care variables
in S5, namely y1 and z1 respectively (hence case 1(b) of Def 2
trivially applies). Case 1(c) of Def 2 dictates that we can partially
satisfy P1(x, y, z) as long as y and z are not being mapped to dif-
ferent variables than y1 and z1, in some other atom’s satisfying ho-
momorphism. This means that P2(y, w) in c5 cannot be partially
satisfiable when P1(x, y, z) is, since in order to partially satisfy



P2(y, w) we would need to map y to a different variable, namely
x1. In fact if we examine P2(y, w) for partial satisfaction before
we examineP1(x, y, z), we find another reason for whichP2(y, w)
cannot be partially satisfiable: variable y can only map to the dis-
tinguished variable x1 in S5 and, per case 2, we check whether
this mapping can be extended to cover the atoms of c5 joining (di-
rectly or indirectly) with the existential variables of P2(y, w), in
effect P1(x, y, z). Such an extension cannot happen as for P1 in
c5, y has to map to y1 in S5, rather than x1. Hence, P2(y, w) in c5
cannot be partially satisfiable for S5; only P1(x, y, z) can and P2

needs to be added explicitly, when applying the rule.
The frugal chase is applicable to all cases of TGD languages in

which the standard chase applies. It yields smaller universal so-
lutions in data exchange, smaller chased mappings in data inte-
gration (which lead to smaller rewritings using these mappings),
smaller database instances in incomplete databases, and smaller
chased queries for query containment (ucq containment under con-
straints can sometimes be done by chasing one ucq and relying on
classic containment [22, 25]). However, our chase does not produce
a minimal solution, i.e., the core [13]. Using the frugal chase, one
could explore all combinations of partially satisfiable atoms and
keep the maximum set, but even then, pre-existing redundancies in
the instance or the constraints are not accounted for.

5. USING A COMPACT CHASE FOR QUERY
REWRITING UNDER CONSTRAINTS

In this section, we present our approach to compute the maximally-
contained UCQ rewriting of a target query under target LAV weakly-
acyclic dependencies and LAV views (i.e., the perfect rewriting [4]),
using the frugal chase. First, we show (Th. 5) that our algorithm
computes the certain answers (this is the equivalent of Th. 1 [1] for
the frugal chase). Second, we describe a graph representation for
queries, mappings (views), and now constraints, that we introduced
in GQR [24]. This representation allows us to compactly repre-
sent common subexpressions in the views and constraints, and effi-
ciently reason with them. Third, we briefly describe the GQR query
rewriting approach. Finally, we describe a compact graph-based
version of the frugal chase that radically improves the compilation
of the constraints into the (graph representation of) the views.

THEOREM 5. Given a query Q on schema T , a set of LAV
schema mappings V = {V1, ..., Vn}, a source instance I under V ,
and a set of LAV weakly-acyclic TGD constraints Σ, the set of cer-
tain answers certain(Q, I) is computed by the UCQ maximally-
contained rewriting of Q using {V1

′, ..., Vn
′}, where each Vi′ is

produced by running the frugal chase on Vi using Σ.

PROOF. Consider the set of views V ′′ = {V ′′
1 , ..., V

′′
n }, which

are taken by running the standard chase on the consequent of Vi
using Σ. We know by Th. 1 that a maximally-contained rewriting of
Q using V ′′ (denotedMCR(Q,V ′′)) produces the certain answers
of the query. The view sets V ′′ and V ′ are equivalent since for every
view in one set there is an equivalent one in the other, by Th. 3. Two
equivalent sets of views produce equivalent maximally contained
rewritings, hence in our case MCR(Q,V ′′) ≡ MCR(Q,V ′).
This means that for each conjunctive query r′′ ∈ MCR(Q,V ′′)
there is a r′ ∈ MCR(Q,V ′), s.t. r′′ ⊆ r′. Let a tuple t ∈
certain(Q, I) and so t ∈ MCR(Q,V ′′)(I) and in particular t ∈
r′′(I). Then t ∈ r′(I) and hence t ∈ MCR(Q,V ′). So every
certain answer is computed by MCR(Q,V ′). Symmetrically, for
any tuple t we obtain fromMCR(Q,V ′), with the same reasoning
it holds that t ∈MCR(Q,V ′′) and hence is a certain answer.

5.1 Graph Modeling
We represent queries, mappings, and constraints as graphs (ex-

tending [24]). Predicates and their arguments map to graph nodes.
Predicate nodes are labeled with the name of the predicate, and are
connected through edges to their arguments. Shared variables be-
tween atoms result in shared variable nodes, directly connected to
predicate nodes. Edges have integer labels that represent the ar-
gument positions. We discard variables’ names, since to decide
on a partial satisfiability and rewriting we only need the type (dis-
tinguished or existential) of the variables involved. For example,
Figs. 3(a), (b) and (e) show the graph representation of a query q
(q(d,c)←D(d), DPFC(d,z,c)), LAV views S1, S2 and S3, and con-
straint c1 (cf. Sect. 2), respectively. Distinguished variable nodes
are depicted with a circle, and existential ones with the symbol ⊗.

Our algorithms consist of mapping subgraphs of the query/cons-
traints to subgraphs of the views. The smallest subgraphs we con-
sider consist of one central predicate node and its (existential or
distinguished) variable nodes. We call these primitive graphs pred-
icate join patterns (PJs). Fig. 3(d) shows all PJs for sources S1, S2

and S3. Because the join conditions for a particular PJ within each
view are different, some ”bookkeeping” is needed to capture these
joins. For each variable node, we record the joins it participates in
across the views in a ”joinbox”. Figure 3(c) shows the joinbox for
the second variable of the TP (TreatsPatient) PJ, which records that
this variable joins with the first argument of HCD in S1 and in S3.

A critical feature of this representation is that the graph patterns
of predicates repeat in multiple views, so we compactly represent
all the occurrences of a pattern across different views with one PJ.
This has a tremendous advantage; mappings from a query/constraint
PJ to a view one are computed just once instead of every time this
predicate is met in a view. For example, the 6 predicates in the
sources of Fig. 3(b) correspond to only 4 PJs, in Fig. 3(d). PJs can
be constructed straightforwardly in polynomial time by scanning
each LAV view and its joins, and hashing the different patterns en-
countered. We also index the patterns to retrieve them efficiently.

5.2 Graph-based Query Rewriting (GQR)
In its original version [24], GQR has a pre-processing/off-line

phase, where it extracts the PJs from the views and indexes them.
At query time, GQR (cf. [24] for a detailed description) pro-

cesses the user query one subgoal at-a-time. It retrieves the view
PJs that match each query subgoal and incrementally combines the
retrieved view PJs to form larger subgraphs that cover larger por-
tions of the query, building the maximally-contained rewriting in-
crementally. For example, given the query in Fig. 3(a), and the PJs
in Fig. 3(h), Fig. 4(a) shows GQR retrieving the PJs corresponding
to query predicates D and DPFC, and combining them into a single
graph (Fig. 4(c)). Since the combined graph covers the query, the
process terminates and outputs the logical rewritings (Fig. 4(c)).

In this paper, GQR takes as input not the original PJs from the
sources, but the PJs chased with the target constraints using the
compact frugal chase described next. As discussed, we chase the
LAV wa-TGDs into the mappings and reduce the problem to query
rewriting (without constraints) using the chased views. Fig. 3(h)
shows the view PJs (resulting from the frugal chase) of views S′

1,
S′

2 and S′
3 with constraint c1 (from Section 2). The overall result is

an efficient algorithm for query rewriting under constraints.

5.3 Compact frugal chase
This section presents our compact frugal chase implementation

for chasing a set of LAV mappings using a set of LAV weakly
acyclic dependencies. Instead of considering every view subgoal,
our compact frugal chase considers the distinct patterns (PJs) that
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Figure 4: Graph-based Query Rewriting.

all views contain. We start by finding mappings of the antecedent
to atomic PJs, that repeat themselves across views and hence com-
pactly represent pieces of multiple views (which imply the same
constraint antecedent). Finding a homomorphism to such a pat-
tern means triggering the constraint for all the views represented by
this pattern. Then we recursively map all partially satisfiable sub-
goals of a rule’s consequent, to the compact graph representation
of these atoms in the mappings. When we apply the chase step we
add compact consequent patterns (constraint PJs) that represent the
addition of a predicate to multiple views simultaneously. We end
up in a compact PJ representation of the chased mappings, shorter
than the standard chased ones, which leads to smaller yet equiva-
lent rewritings of the input queries using these mappings. As noted,
the output of our compact chase algorithm is using the same PJ rep-
resentation as its input, and is particularly tailored for GQR [24],
improving our solution even more. Our initial implementation does
not include constants in the queries, the views or the constraints.

Alg. 1 executes all constraints repeatedly, until it converges and
stops adding new predicates. It takes as inputs the view PJs, con-
structed and indexed, representing our original set of views, and the
set of constraints. The output of the algorithm is the set of chased
PJs. The algorithm first maps the antecedent predicate to a view PJ
in order to trigger the constraint for all views in this view PJ. Then,
it examines each consequent’s predicate, for all applicable views
triggering the constraint; some existing view PJ (that matches a
consequent PJ’s pattern) might contain some of the relevant views
and might prove the corresponding consequent predicate already
partially satisfiable. For the applicable views that are left not sat-
isfying a consequent predicate, we will have to add a copy of the
consequent PJ as a new view PJs to our index (our set of view PJs
will now correspond to the longer, frugal-chased mappings). Us-
ing this control flow, Alg. 1 is our high-level algorithm and keeps
track of the constraints, and the PJs that satisfy them, for specific

views. To check if a specific view PJ is the image of a constraint
PJ, for one of the views it contains, it calls upon Alg. 2, which in
turn checks the cases of Def. 2, by calling Alg. 4; the latter iterates
over connected components of the views or the constraint respec-
tively. Algorithm 4 calls Alg. 3 which, after examining whether a
constraint and a view PJ have been processed before, calls again
Alg. 2. Hence, algorithms 2, 4, and 3 are mutually recursive.

In line 2, Alg. 1 iterates over all constraints, and in line 3 finds all
the different view PJs that match the antecedent (denoted PJVant),
for a specific constraint. For each PJVant, line 5 constructs new PJs
for all constraint consequents. For each consequent PJ, “initializa-
tion” means the following (pseudo-code omitted due to space):
1) Depending on the pattern of PJVant, the variable nodes in a con-
sequent PJ become distinguished or existential (initially constraint
node types are undetermined). Fig. 3(f) shows that when we trig-
ger constraint c1 for the antecedent PJ for TP , the variables of the
constraint (originally of unknown (?) type) take a specific type. We
change to distinguished all constraint variable nodes that have been
“unified” with distinguished view variables; the rest are existential.
2) For all views triggering the constraint (V iewSet), we include
joinboxes in the consequent PJ. Such joinboxes include all joins to
other consequents (which eventually become part of every view),
as well as the joins inherited from any variable shared with PJVant.

In effect, when we trigger constraint c1, in Fig.3(e), for the view
PJ TP in Fig.3(d), after line 5 we have constructed the two con-
sequent PJs shown in Fig.3(f), which capture the addition of pred-
icates “P” and “D” in the views they contain. Subsequently we
need to examine if for some of these views there are pre-existing
PJs satisfying the consequent PJ’s predicates. To check this, for
every consequent PJ, PJCci , we query our index for view PJs that
capture its pattern (it could be a “more” general pattern, i.e., one
that has distinguished variables in places that the consequent PJ
has existential ones) (lines 6-7). Retrieving such a view PJ, we
need to examine it for all views common to the “triggering” views
(line 8). The main method to check whether the predicate of PJCci
is partially satisfied by a relevant view s in a view PJ, PJVci , is
isPJSatisfiable (line 16), which is a recursive implementation
of Def. 2. Due to it’s recursive nature, some previous calls of
isPJSatisfiable might have traversed the connected component
of the constraint and might have actually already memoized the
specific combination, of PJs and view currently in question, as be-
ing “satisfiable” or “unsatisfiable”.

If we find this combination satisfiable, we avoid calling the method
again (line 9), and we call updateJoinboxes (line 10) which up-
dates several join pointers on our view and constraint PJs. It first
transfers the joinbox information for the specific view s from the



Algorithm 1 Compact Frugal Chase
Input: An indexed set of view PJs, a set of LAV-WA constraints Σ
Output: Chased PJs after the frugal chase converges for Σ
1: while Index of view PJs changes do
2: for all σ ∈ Σ : P (~x, ~y)→ C1(~x, ~z), ..., Cn(~x, ~z) do
3: for all PJVant← antecedent PJ in views do
4: V iewSet← views in PJVant not used to trigger σ
5: initialize constraint PJs for V iewSet
6: for all constraint PJs PJCci do
7: for all PJVci ← view PJs capturing pattern PJCci do
8: for all view s common to V iewSet and PJVci do
9: if PJVci is marked as satisfiable for σ,PJCci and s

then
10: updateJoinboxes(PJVant,PJVci ,PJCci ,σ,s)
11: if PJCci “satisfied” for all views in V iewSet

then
12: continue to the next consequent PJ (line 6)
13: continue (line 8)
14: mark PJVci as satisfiable for σ, PJCci and s
15: State ST ←UNDECIDED
16: if isPJSatisfiable(PJVci ,PJCci ,s,ST ) then
17: updateJoinboxes(PJVant,PJVci ,PJCci ,σ,s)
18: if PJCci has been “satisfied” for all views in

V iewSet then
19: continue to the next consequent PJ (line 6)
20: continue (line 8)
21: else
22: mark PJVci as unsatisfiable for σ, PJCci and s
23: add PJCci to Index, update joinboxes of affected PJs

consequent to the view PJ. Fig. 3(g) shows that the pre-existing PJ
for Doctor in Fig. 3(d) already satisfies the Doctor predicate for S3,
and hence S3 will be deleted from the consequent PJ of Fig. 3(f)
(an additional optimization of our algorithm, shown in the figure, is
that if the Doctor PJ of Fig. 3(f) remains unsatisfiable until the end,
for some views (e.g., S1), instead of adding it to our index as an ad-
ditional PJ we can merge it with an existing one (Fig. 3(g))). More-
over updateJoinboxes updates the joinboxes of all other conse-
quent PJs, s.t. if they are not satisfied and end up as new PJs in our
index, their joins already point to PJVci for this predicate and view.

If after updateJoinboxes, which has just deleted the satisfied
view from the consequent PJ, the consequent PJ, PJCci , becomes
empty, this means that the corresponding consequent predicate is
partially satisfiable by existing view PJs for all applicable views.
Hence, in line 12, the algorithm jumps to the next consequent PJ.
Otherwise, in line 13, the algorithm goes on examining the next
applicable view s for PJVci and PJCci , i.e. it jumps to line 8.
If we have no prior information for s, PJCci and PJVci we call
isPJSatisfiable, in line 16. A global variable ST (initially set
“undecided” at line 15) maintains which of the two cases of Def. 2
we are currently checking. If we find a partial satisfaction, lines
17-20 repeat the steps described in lines 10-13. Since our algo-
rithms visit joined predicates recursively, we wouldn’t like to fall
in an infinite cycle and visit the same PJs again for the same view,
such as the ones currently considering. In line 14, starting in good
faith, we set our pair of PJs and view as already visited and sat-
isfiable, in order to avoid an infinite recursion. If the pair fails to
prove partial satisfiability we reverse this decision in line 22. At the
end of Alg. 1 (line 23), we will add to our index each consequent
PJs with the information for the views left in it (i.e., those views
not partially satisfying the consequent predicate). In Fig. 3(f) both
sources remain in the consequent PJ for Patient, and this entire PJ
is added to our output (Fig. 3(h)). If a new PJ gets added to our

index, all view PJs containing the same views (and joining with the
new predicate) update their joinboxes accordingly (Fig. 3(h)).

Algorithm 2 isPJSatisfiable(PJVci ,PJCci ,s, ST )

Input: A prexisting view PJ PJVci , a constraint PJ PJCci , view s,
the state ST of this recursion so far

Output: true if the predicate in PJCci for view s is partially satis-
fiable in PJVci

1: if PJVci is marked unsatisfiable for σ, PJCci and view s then
2: return false
3: for all Vk ← node on edge k of PJVci do
4: joinsVk ← the joinbox joins for s from Vk
5: Ck ← node on edge k of PJCci
6: joinsCk ← the joinbox joins in Ck
7: if Ck is an antecedent variable in the constraint then
8: if joins with antecedent in joinsCk * joinsVk then
9: return false

10: else
11: if Vk is a distinguished variable then
12: if ST == 1 then
13: return false
14: ST ← 2
15: if !checkCase2(joinsVk ,joinsk ,s,ST ) then
16: return false
17: else
18: switch (ST)
19: case(2):
20: if !checkCase2(joinsVk ,joinsCk ,s,ST ) then
21: return false
22: case(1):
23: if !checkCase1(joinsVk ,joinsCk ,s,ST ) then
24: return false
25: case(UNDECIDED):
26: ST ← 2
27: if !checkCase2(joinsVk ,joinsCk ,s,ST ) then
28: ST ← 1
29: if !checkCase1(joinsVk ,joinsCk ,s,ST ) then
30: return false
31: if ST == 1 then
32: for all PJCcj ← joined predicates in joinsCk do
33: if PJCcj is marked as satisfiable for s, but maps

Vk to a different variable than Ck then
34: return false
35: return true

Checking partial satisfiability. In order to check whether PJVci
can partially satisfy PJCci for s, Alg. 2 is called. This returns false
if at some other point this combination has been marked as unsatis-
fiable (lines 1-2). Dictated by Def. 2, the partial satisfiability check
happens on a variable per variable basis (line 3), for the specific
view s, and Alg. 2 returns true if no variable check fails (line 35).

If the constraint variable, Ck, is an antecedent variable, we only
need to check that the corresponding view PJ variable, Vk, joins
with the antecedent view PJ in the positions that Ck joins with the
antecedent constraint PJ (lines 7-9) (i.e., the variables satisfy the
constraint antecedent homomorphism). If Ck, is existential, but Vk
is distinguished we have to be in case 2 (lines 11-16). We check
this by calling, in line 15, checkCase2 (shown in Alg. 4) which
essentially checks that the joined predicates, to the constraint vari-
able, can be mapped to some of the joined predicates of Vk. This
ends up in recursively considering the connected component of the
constraint that Ck is in. On the other hand, checkCase1, omit-
ted due to space but almost identical to Alg. 4 (just the outer for
loops are reversed), considers that all joined predicates of Vk, i.e.,
the corresponding connected component of the view, are images of
constraint predicates joining with Ck.

If Vk is existential then depending on the current state (lines 18-
24), we will check to make sure that PJVci can still partially satisfy



Algorithm 3 joinsSatisfiedRecursively(jdV , jdC , s, ST )
Input: Join description jdV of view PJ variable, join description

jdC of constraint variable, source s, state ST of the recursion
Output: true if the joined predicate described by jdV is the satis-

fying homomorphism’s image of the joined predicate jdC
1: if jdV == jdC //Joins are to the same predicate name on the

same position then
2: neighborV PJ ← joined PJ in view described by jdV
3: neighborCPJ ← joined PJ in constraint described in jdC
4: if neighborV PJ has been marked as satisfiable for

neighborCPJ for view s then
5: return true
6: if neighborV PJ is marked as unsatisfiable for

neighborCPJ for source s then
7: return false
8: mark neighborV PJ as satisfiable for neighbourCPJ

for source s
9: if isPJSatisfiable(neighborV PJ ,neighborCPJ ,s,ST )

then
10: return true
11: mark neighborV PJ as unsatisfiable for neighbourCPJ

for view s
12: return false

PJCci , in accordance to the corresponding case of the definition.
If ST is “undecided” we will check both cases (lines 25-30). Af-
ter these checks and if we are left in the state of case 1, we test
whether case 1(c) of Def. 2 is satisfied, by checking in our mem-
oization structures to see whether the same constraint variable has
been mapped somewhere else in the same view and if so we fail
(lines 31-34). Algorithms 4 and method checkCase1 call Alg. 3
which ends up calling isPJSatisfiable recursively for the joined
predicates of our variables, called neighborPJS. Alg. 3 marks the
PJs as satisfying (line 8) to avoid an infinite recursion (line 4 guar-
antees that); this marking is reversed in line 11 if proven wrong.

Algorithm 4 checkCase2(joinsVk , joinsCk , s, ST )
Output: true if every joined predicate in joinsCk is partially sat-

isfiable with a predicate in joinsVk

1: for all join descriptions jdC in joinsCk do
2: for all join descriptions jdV in joinsVk do
3: if !joinsSatisfiedRecursively(jdV ,jdC ,s,ST ) then
4: continue outer for (line 1)
5: return false //there is one join in constraint not satisfied by

any join in source
6: return true

Alg. 2, implements exactly definition 2 for view s and the pred-
icates in PJVci and PJCci . In order to prove that our compact chase
outputs PJs which capture the frugal chased views, we should point
out that the algorithm always terminates since: 1) marking the
PJs considered avoids infinite recursion, hence every consequent
PJ gets satisfied or added, 2) once finished processing a constraint
we do not trigger it again for the same predicate and 3) since our
constraints are chase-terminating, and we proved equivalence of the
frugal chase to the standard one, we cannot be triggering constraints
indefinitely, as at some point we will be finding all consequent
predicates partially satisfiable and stop adding new ones. Note that
our implementation finds a partially satisfiable set by keeping the
first partially satisfiable atom it discovers, together with all those
compatible to it. Summarizing, the following holds:

THEOREM 6. Given a set of view PJs representing our original
LAV mappings, and a set of LAV-WA TGD constraints, Alg. 1 al-
ways terminates and produces a set of PJs which represent the set
of mappings produced after one runs the frugal chase on each one
of the view formulas using the constraints.

6. EXPERIMENTAL EVALUATION
To evaluate our approach we compare our compact frugal chase

algorithm to the standard chase, as well as the parallel and the core
chase, in the context of compiling LAV wa-TGD constraints into
LAV mappings. First, we run our compact graph chase on a set
of conjunctive LAV mappings using a set of LAV weakly acyclic
constraints, feeding the resulting PJs to GQR [24] to rewrite a con-
junctive query (using the PJs representing the chased mappings).
Second, we have implemented and run the standard, parallel and
core chase algorithms in order to compile the same sets of con-
straints into our set of mappings, as in [1]. We compute PJs for the
standard, parallel and core chased mappings. In all cases the chased
PJs are inputed directly to GQR for query rewriting. Our compact
chase outperforms the standard and the core chase by close to 2 and
3 orders of magnitude resp., while our output remains very close to
the core. For producing our queries, constraints, and views, we
wrote a random query generator, extending the one used in Mini-
con [31], which is highly customizable as we discuss next. In fact,
it can generate queries and views (and constraints) which capture
most cases of the mapping scenarios identified in [3] (note that our
prototype implementation, however, does not consider constants).

6.1 Chain queries, constraints and views
Initially we generated 20 datasets of chain queries, chain con-

straints and chain views. We used a space of 300 predicates to gen-
erate our LAV weakly-acyclic constraints and views with each con-
straint/view having 5 predicates joined on a chain. The first atom in
our constraints is the antecedent. Each predicate has length 4 and
each constraint/view can have up to 3 repeated predicates. Each
view has 4 distinguished variables. Additionally in order to get
more relevant constraints to views, we generated 10% of our con-
straints from a smaller subspace of our space of predicates, of size
60. Also, we constructed around 10% of our views by taking one
constraint and dropping one of its atoms, causing our constraints to
most likely have all atoms except this one partially satisfiable on
these views (unless they map their existential variables to distin-
guished view variables causing case 2 of Def. 2). Lastly, we gener-
ated our 20 queries by randomly selecting 3 constraint antecedent
atoms and one of these extra non-partially satisfiable atoms that
the constraints contain; we do so as to not penalize the standard
and parallel chases by querying redundant atoms that they will add
(rather, the “extra” atom that the query contains will be probably
added by all chase algorithms, including the frugal).

We run our experiments on a cluster of 2GHz processors each
with 2Gb of memory. We allocate to each processor 300 views and
300 constraints and one hour of wall time for that job to be fin-
ished. Due to the density of our data in this setting, most of the
standard/parallel and core chase runs died after reaching 100 con-
straints (only 7 made it to 140), while for the compact chase all of
them reached 140 constraints and 14/20 completed with 180 con-
straints, which indicates that the compact chase scaled almost twice
as much. Figure Fig. 5(a) shows the average total time for running
the chases and rewriting the queries (note that the figure averages
over the successful queries at each point as discussed above). As
seen in the figure, the compact algorithm outperforms the standard
and parallel chases by close to two orders of magnitude and the
core by close to three. Moreover as Fig. 5(b) shows, the number of
PJs that the compact chase produces for 100 constraints, for which
all queries succeeded in all frameworks, is the same as the core
and is consistently less than the standard/parallel as the number of
views increases (for 100 constraints and 300 views the compact
chased mappings have 5895 predicates while the standard chased
ones have 6232). In fact, the frugal chase computes almost the
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Figure 5: (a) Total time for 20 chain queries, chasing 300 chain views with up to 200 constraints. (b) Number of PJs produced. (d) Number of
rewritings GQR produces, and (c) query rewriting time. (e) Average time of chasing 1000 and (f) 20 star views, with up to 250 star constraints.

same output as the core chase, and this is done very efficiently with-
out minimization. This leads to (equivalent but) fewer conjunctive
rewritings for both the frugal and the core chase as output of the
query rewriting problem as Fig. 5(d) shows. In particular, for 300
views and 100 constraints our system produced around 30% less
query rewritings than the standard/parallel chases, and only 13%
more than the core chase. Lastly, the sets of PJs in Figure 5(b) are
rather small for GQR, so it reformulates the queries extremely fast
(in miliseconds). Fig. 5(c) shows that the reformulation time for
the compact chased PJs (and the core chased PJs) is considerably
(more than 3x) faster than the standard/parallel chased ones, with
the gap between them increasing with the number of views (the
core time in Fig. 5(c) for 250 views seems to be an outlier). A side
note of our setting is that the parallel chase, which is just a specific
ordering on the standard chase execution steps, is slower than the
standard chase (see related work for the relevant discussion).

6.2 Star constraints and views
For our second experiment we evaluated our algorithm when it

degenerates to the standard chase, and has the same output, i.e.
no predicate is partially satisfiable. We did not measure query
rewriting; since both compact and standard chase produce the same
chased mappings in the form of PJs, GQR takes the same time to
rewrite these for any query, yielding identical rewritings.

We created a space with 500 predicate names, out of which we
populate our views and constraints. Each atom has 5 variables and
each view/constraint can have up to 3 occurrences of the same pred-
icate. In each formula, one predicate is the “star” joining with all
other predicates which don’t join directly to each other. Using this
setting we created 20 datasets of 1000 views and 300 constraints.
Each formula has 5 predicates (one of these five predicates in a
constraint is the antecedent). Additionally each view has 5 distin-
guished variables, choosing most of them from the star predicate;
this fact essentially introduces distinguished variables in the con-
nected component of the view and obliges our algorithm to fall in
case 2 of our definition, i.e., map the constraint consequent in its
entirety or not at all (since the consequents are “shorter” than the

source descriptions). Since the space of predicates is rather sparse
this setting causes the constraints to be unsatisfiable. Moreover it is
also difficult for this dataset to produce redundant predicates. This
means that the minimization the core chase runs is wasted time.

Each dataset is tested for up to 1000 views and 300 constraints
and each processor was allocated a specific number of constraints,
scaling from 20 to 300, and all the 1000 views, and we enforced
1 hour wall time. Fig. 5(e) shows the average time for the com-
pact chase versus the standard the parallel and the core chase on
all 1000 views. Note that for this experiment the size of the out-
put blows up exponentially as the number of constraints grows: the
number of predicates goes from around 5,500 in the original map-
pings to approximately 180,000 for 250 constraints. This exhausts
all algorithms: for the compact chase, all experiments run out of
time/memory, for 1000 views, between 250 and 300 constraints,
while the other chases crash around 180 constraints. As the figure
shows, the compact frugal chase scales to around 30% more con-
straints while being close to two order of magnitude faster than the
standard chase and almost three compared to the core. Additionally
note figure Fig. 5(f) which shows the compact chase performance in
the same setting but scaling the constraints for only 20 views. Such
a small database essentially reduces the advantage of our compact
representation: the 20 view formulas generated from our sparse
domain, have negligible overlap. Nevertheless our atom oriented
implementation of the frugal chase gives a speedup of about one
order of magnitude compared to standard/parallel and close to 2
compared to the core. The size of the chased mappings ranges from
hundreds for 180 constraints to thousands for 250 constraints.

7. RELATED WORK
Early approaches dealing with relational query rewriting, with

no constraints, involve algorithms such as the bucket [20], and the
inverse rules [12]. Modifications of the inverse rules algorithm
for full dependencies or functional dependencies where presented
in [12]. Koch [23] presented another variation of inverse rules for
answering queries using views under GLAV dependencies (for de-
pendencies common to both source and global schemas). A more



efficient approach to view-based query answering was proposed in
2001, by the MiniCon [31] algorithm. MCDSAT [5] exhibited a
better performance than MiniCon, and is essentially the MiniCon
algorithm cast as a satisfiability problem. In this paper we employ
GQR [24] which significantly outperformed MCDSAT.

There are approaches to data integration and query answering
under constraints for which the chase does not terminate, but rather
one has to do query expansion, using the constraints. The family of
DL-Lite languages [4] is a famous such first-order rewritable class
of constraints, which underlies the semantic web language OWL2-
QL. Extensions of DL-Lite include flavors of the Datalog+/- family
of languages [8]. Query expansion rewrites the query using the con-
straints into a UCQ, before even considering the views or data. Al-
though the LAV wa-TGDs used in this work are both FO-rewritable
and chase-terminating, we focus on running the chase on the views
without needing to take the query into account, in order to speed up
the system’s online performance. There are flavors of Datalog+/-,
such as the guarded fragment [7], for which the chase does not ter-
minate, but there is a finite part of the infinite chase sufficient for
query answering, but again, once a specific query is given. Our fru-
gal chase could substitute the chase algorithms in these fragments.

Chase&Backchase (C&B) [11] is a technique for query mini-
mization and for finding equivalent rewritings, by first chasing all
constraints and mappings and then minimizing the chase. Afrati et.
al [1] presented an optimized version for finding equivalent rewrit-
ings, as well as maximally-contained, as discussed. In this paper
we outperformed the latter approach (running the standard chase
and then doing query rewriting). Additionally, the frugal chase can
replace the chase in the (C&B) algorithm, for finding equivalent
rewritings and be even more advantageous (being shorter than the
standard chase) for query minimization. Our frugal chase can be
used for query containment; in [25] we used the standard chase and
a compact graph-based algorithm for UCQ containment.

The chase algorithm has been studied in multiple variations in
the recent literature (for overviews see [30, 18]), which guarantee
chase termination for one or all instances, under different classes of
constraints, producing universal solutions. These include the naive
oblivious chase [7], the skolem oblivious chase [28] and the paral-
lel and core chase [10]. Whenever the oblivious and naive chases
terminate: 1) the standard chase also terminates and 2) they pro-
duce longer solutions than the standard chase [30, 18]. This justi-
fies our choice of optimizing and implementing the standard chase
since we focus on producing shorter chased mappings. The parallel
chase is just a specific ordering of standard chase step executions;
in particular, each parallel chase step decides all applicable con-
straints on the instance as it has been formed so far and, only after
finishing considering all constraints, adds all consequents before
going to the next step. Notice that this might penalize the paral-
lel chase as evident by our experiments; the “incremental” addition
of consequents that the standard chase performs might prove some
“parallel” rules satisfiable, and hence avoid applying them. Each
core chase step is a parallel chase step followed by minimization of
the produced instance. As its name suggests the core chase leads to
a minimal universal solution, i.e., the core, as opposed to the frugal
chase which leads to smaller but not necessarily minimal solutions.
The prize paid however by the core chase is extra minimization
(whose equivalent decision problem is NP-hard), as indicated by
our experiments. Nevertheless the core chase is more “general”
than the standard and the frugal chase since it is a complete algo-
rithm for producing universal solutions under more general classes
of constraints [10]. Notice that the “building block” of the core
and parallel chases is the standard chase which we could replace
with the frugal chase in order to implement these algorithms. This

can be very useful as the frugal chase step is not only faster but
produces smaller intermediate instances; the minimization step of
the core chase would also run faster on such instances. Other data
exchange literature that computes the core universal solution, in-
cludes [13, 16, 17]. The space of universal solutions (such as our
frugal chase) which lie in between the core and the standard chase
has been discussed by Henrich et al. [21]. Approaches in [32,
29] construct mappings and constraints that use negation to avoid
adding redundant predicates to a solution. We plan to evaluate our
approach in these settings and extend our algorithms to produce the
core by leveraging our compact graph-based format.

8. DISCUSSION
We have presented several contributions. First, we introduced

the frugal chase, which produces smaller universal solutions than
the standard chase. Second, we developed an efficient compact ver-
sion of the frugal chase. Third, we used this frugal chase to scale
up query rewriting under constraints, for the case of LAV mappings
and LAV weakly acyclic constraints. As our experiments show, we
gain the additional expressivity of using dependencies very cheap:
in essence, our algorithm only pays the cost of relational query an-
swering using our preprocessed views, which due to our optimized,
shorter chase, our compact format, and our indexing, becomes very
efficient. In future work, we plan to explore extensions of our
chase that would compute the core solution, as well as evaluate
our system both in data exchange scenarios (i.e., chase instances
rather than mappings) and with other chase-terminating cases of
constraints, including limited interactions of TGDs and EGDs.
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APPENDIX
PROOF OF THEOREM 2. We prove the theorem for Def. 2 since
it is equivalent to Def. 1 by Th. 4. The frugal chase step is appli-
cable iff the standard chase step is, by Lemma 1. We first show

that there exist homomorphisms that map B′ to B′′ and vice versa,
assuming σ is applicable; which means there is a homomorphism
h from the antecedent of σ, say φ(~x, ~z) to B s.t. it cannot be ex-
tended over the consequent, ψ(~x, ~y). We know by Lemma 1 that
there is a conjunct with at least one atom in σ, ψ2(~x, ~y), that is
not partially satisfiable for h. If ψ2 is the entire consequent of the
constraint, then the applicable homomorphism by definition will be
the same as the standard chase application homomorphism (modulo
names of fresh variables). This means that B′ and B′′ are homo-
morphically equivalent (in fact, they are isomorphic since there is
no essential optimization to the result of the frugal chase step).

We now examine the case where a part of the constraint, say
ψ1 is partially satisfiable, while another part ψ2 is not. Conjunct
ψ1 can have three categories of variables/constants: (1) Those that
are antecedent variables or constants in the constraint, i.e., belong
in ~x (we abuse notation and regard that constants are in ~x). (2)
Those existential variables, ~eψ2 , that (a) fall under case 2 of our
definition, i.e., they map to constants/distinguished variables or ex-
istential variables that join with a part of the database which is not
a partially satisfiable image, together with variables that (b) belong
in the same gaifman connected component with the variables in
(a). We denote by ~eψ2B the images of ~eψ2 in the database. All
atoms containing ~eψ2 in the constraint should be partially satisfi-
able, hence the variables of ~eψ2 exist only in the conjunction ψ1 in
the constraint. (3) Those existential variables that map to variables
that only exist in images of partially satisfiable atoms and are not in
~eψ2 , i.e, they are not contained in any “case 2 predicate” above; we

denote these variables in the constraint as ~eψ1 . We denote by ~eψ1B

the images of ~eψ1 in the database. All atoms containing ~eψ1B are
images of partially satisfiable atoms, hence ~eψ1B exists only in the
image of ψ1 in the database.

Hence, our constraint has the form: σ: φ(~x, ~y)→ψ1(~x, ~eψ1 , ~eψ2),
ψ2(~x, ~eψ1 ,~rc) with ~rc the rest of the variables belonging solely in
ψ2. In general, our database instance has the form (reusing φ,
and ψ1 as the images of the antecedent and the partially satisfi-
able conjunction, respectively): {φ( ~xB , ~yB), ψ1( ~xB , ~eψ1B , ~eψ2B ),
ψ3( ~xB , ~eψ2B , ~rB , ~yB))} with ψ3 denoting the rest of the atoms
in the database (if any). Terms in ~xB and ~yB are the images of
~x and ~y respectively, and ~rB contains the rest of the terms in the
database. Moreover, by definition there is no constraint predicate
that contains variables from both ~eψ1 and ~eψ2 . Hence, we can
“break” ψ1 in the constraint into two parts, one containing ~eψ1 and
one containing ~eψ2 (exactly one of the two parts might be empty).
Our constraint now can be written as σ: φ(~x, ~y) → ψ11(~x, ~eψ1),
ψ12(~x, ~eψ2), ψ2(~x, ~eψ1 ,~rc). Similarly our instance becomes: {φ( ~xB , ~yB),
ψ11( ~xB , ~eψ1B ), ψ12( ~xB , ~eψ2B ), ψ3( ~xB , ~eψ2B , ~rB , ~yB)}.
The standard chase run on this database with σ will produce the
instance: {φ( ~xB , ~yB), ψ11( ~xB , ~eψ1B ), ψ12( ~xB , ~eψ2B ), ψ3( ~xB ,
~eψ2B , ~rB , ~yB), ψ11( ~xB , ~eψ1), ψ12( ~xB , ~eψ2), ψ2( ~xB , ~eψ1 , ~rc)}.

The frugal chase will produce {φ( ~xB , ~yB), ψ11( ~xB , ~eψ1B ), ψ12( ~xB ,
~eψ2B ), ψ3( ~xB , ~eψ2B , ~rB , ~yB), ψ2( ~xB , ~eψ1B , ~rc)}. To verify that

the two instances are equivalent, the only non-obvious fact is that
~eψ1B can map to ~eψ1 . Since case 1 of Def. 2, states that in the

same positions that two atoms in the database contain h′(z), the
corresponding atoms in the constraint contain z, it means that the
restriction of h′(z) on these variables is one-to-one, and the inverse
can map h′(z) to z. Hence, the two instances are homomorphically
equivalent. Moreover, if the databases are views, the part contain-
ing distinguished variables (ψ12) maps to itself and the homomor-
phisms that prove equivalence are containment mappings. Lastly,
the fact that B′′ satisfies the constraint, is directly proven by using
the applicable homomorphism that we used to construct B′′.


