
Will it Blend? Merging Heterogeneous Cores
Ilias Vougioukas

University of Southampton
Arm Research

Cambridge, UK
ilias.vougioukas@arm.com

Andreas Sandberg
Arm Research

Cambridge, UK
andreas.sandberg@arm.com

Stephan Diestelhorst
Arm Research

Cambridge, UK
stephan.diestelhorst@arm.com

Bashir M. Al-Hashimi
University of Southampton

Southampton, UK
bmah@ecs.soton.ac.uk

Geoff V. Merrett
University of Southampton

Southampton, UK
gvm@ecs.soton.ac.uk

Abstract—Heterogeneous processors allow different perfor-
mance/power operation points by pairing high performance Out-
of-Order (OoO) cores with small energy efficient In-Order cores.
Timely switching between the cores types allows the system
to tailor to energy budget and performance constraints. Each
core migration incurs a penalty though, which is caused by
the necessary transfer of state between cores. Heterogeneous
systems are kept from further increasing performance through
more frequent migrations, as the benefits are suppressed by
these overheads. Sharing some of the components between cores
can reduce the transfer overheads and potentially overcome this
problem. However, multiplexing core components can have also
an adverse effect on performance when done without taking into
consideration the extra latency. For this reason, it is critical to
strike a balance between component sharing and complexity.

In our work, we show that sharing the translation mechanism
and the level 2 caches capture most of the potential benefits for
in-order cores, while the branch predictor state is most critical
for Out-of-Order cores. Finally, even under a best case scenario,
on average 10% of applications could transfer to an OoO core to
gain extra performance, while 6% of execution could migrate to
In-Order cores saving significant energy, without incurring any
penalty to the system. Under a more relaxed trade-off policy,
benefits increase significantly as, on average, for 66% of the time
executed a migration to the opposite core to improve the energy
delay product.

Index Terms—Heterogeneous multiprocessors, HMP, Out-of-
Order, In-Order, memory translation, TLB, cache memory, gem5,
simulation, branch prediction.

I. INTRODUCTION

Modern systems have to balance performance with energy
efficiency. To address this, they use heterogeneous cores to
allow them to operate at different performance/power effi-
ciency [1], [2]. Out-of-Order (OoO) cores are used to deliver
high performance, as their wider pipeline, ability to reorder
instructions, and larger caches allows them to better exploit
memory level parallelism (MLP) and instruction level paral-
lelism (ILP). Heterogeneous systems use significantly smaller
and simpler In-Order (InO) cores that function at a much
more energy efficient operation point. By taking advantage
of migrations between them, workloads can therefore select
the best setting for any given energy/delay goal [3].

This happens as workloads, can be broken down into smaller
periods of execution that exhibit some commonality, usually
referred to as phases. These phases can be characterized as
high ILP or MLP for instance, or very memory intensive.
In the first two cases it would be beneficial, for example, to
execute on a OoO core while in the last case the InO core
could conserve energy while waiting for memory responses.
Phases are claimed to vary in “size” ranging from large code
blocks to just a few thousand instructions [1], [4]. As such,
studies performing more frequent switches between the two
core types show that this could potentially unlock additional
benefits [4]–[7].

However, every migration to a new core unavoidably leads
to some slowdown [8]–[10], as the system needs to transfer
state from one core to the other. For current systems, the
slowdown is mostly attributed to private caches, the branch
predictor state, the register file and the address translations. For
infrequent switching this slowdown is arguably not noticeable
as the system has time to amortize these costs. On the other
hand, as the migrations happen more frequently the overheads
counterbalance any switching benefits, ending up outweighing
them after a certain point. In the past it has been difficult to
capture these overheads and provide a more accurate responses
to whether it is feasible to improve performance/energy effi-
ciency through frequent migrations and which configuration
makes this possible. In this work we:

• Describe a mechanism that quantifies hardware migration
overheads.

• Show that sharing level 1 caches is not as beneficial as
sharing some of the translation mechanism.

• Show that even under the best case, at most, only 10% of
workload execution can improve performance or preserve
energy, by switching without having any negative conse-
quence. Under a more relaxed policy like energy-delay
product (EDP), we can find 66% of phases where it is
beneficial to migrate.



OoO InO

I$ D$

L2

MEMORY

I$ D$

TLB

L2

TLB

(a) No sharing.

OoO InO

D$

L2

MEMORY

I$

TLBTLB

(b) Share caches.

OoO InO

D$

L2

MEMORY

I$

TLB

(c) Share caches and TLB.

OoO InO

I$ D$

L2

MEMORY

I$ D$

TLB

(d) Proposal: Share L2 and TLB.

Fig. 1: Different types of sharing schemes examined for HMP systems [8].

Start

M

m

M

m

M

m

M 

m

M

Period

Fo
rk

Fo
rk

Fo
rk

Fo
rk

migrations

Main run

Warm-up

Continue run End execution

Fig. 2: Our methodology uses a main run (M) that spawns
periodic forks which perform a migration (m) [8].

II. SETUP AND RESULTS

To quantify the overheads we use a modification of the
gem5 simulator [11]. Our methodology clones or “forks” the
simulation, creating an identical duplicate [8]. In the clone we
proceed to replace the core design with a new one without
any state. To simulate various levels of sharing, we flush
the combinations of components such as the caches and the
translation lookaside buffer (TLB), as shown in Figure 1.
To get enough data points, we perform this technique across
the entire execution of an application, periodically spawning
the forking points (Figure 2). To assess the performance
degradation of a certain core type, OoO or InO designs, we
swap the simulate a migration to a state-clear core of the same
type and register the performance difference. Figure 3 shows
that for InO sharing the Level 2 caches and the TLB is the
best setup, especially when taking into account complexity
and performance. The OoO core loses as much as 40% of its
performance when migrating at high frequencies. This happens
as the incoming core starts with no branch prediction state
which heavily penalizes the OoO pipeline (Figure 4).

To assess whether a migration is beneficial in a hetero-
geneous system we use the same forking methodology. First
policy examines phases that improve energy efficiency without
trading off performance, by switching from an OoO core to
an InO. Similarly, we examine cases where the OoO core
performs so much better than the InO design that the system
ends up saving energy. Another more lenient metric aims at
measuring the cases that minimize the EDP (Figure 5).

0%

20%

40%

60%

80%

100%

1k 10k 100k 1M 10M

Migra�on Period (Instruc�ons)

0%

20%

40%

60%

80%

100%

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

No sharing Share caches Share caches +TLB Share L2 + TLB

InO core performance drop

OoO core performance drop

Fig. 3: The average performance degradation for the two core
types as a function of migration frequency [8].

0.5

0.6

0.7

0.8

0.9

1.0

basicmath rijndael jpeg bitcounts

R
el

at
iv

e 
P

er
fo

rm
an

ce

Branch Predictor Performance Impact

Fig. 4: An OoO core that loses the branch predictor state
through migrations (coloured bars), performs as much as 40%
worse than a system that preserves it (clear bars).

We observe that minimal gains exists when the policy does
not trade performance and energy, no matter the migration
period. On the other hand, when using an EDP metric, we
show that for migration periods of 100k and 1M instructions,
a system that shares the caches and the TLB can improve by
about 60% and 30% on average, when switching to the OoO
and the InO core respectively [8].



No sharing (Max) Share caches +TLB (Max) No sharing (Avg) Share caches +TLB (Avg)

0%

2%

4%

6%

8%

10%

1 10 100 1000 10000B
e

n
ef

ic
ia

l M
ig

ra
ti

o
n

s

Migration Period (Thousands of Instructions)

(a) Beneficial migrations from the InO to the OoO core with the No
trade-off policy.

0%

2%

4%

6%

8%

10%

1 10 100 1000 10000B
e

n
ef

ic
ia

l M
ig

ra
ti

o
n

s

Migration Period (Thousands of Instructions)

(b) Beneficial migrations from the OoO to the InO core with the No
trade-off policy.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000B
e

n
ef

ic
ia

l M
ig

ra
ti

o
n

s

Migration Period (Thousands of Instructions)

(c) Beneficial migrations from the InO to the OoO core with equal
or better EDP policy.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000B
e

n
ef

ic
ia

l M
ig

ra
ti

o
n

s

Migration Period (Thousands of Instructions)

(d) Beneficial migrations from the OoO to the InO core with equal
or better EDP policy.

Fig. 5: Percentage of beneficial migrations when being energy- and EDP-constrained [8].

III. CONCLUSIONS

In this work, we have proposed a full system simulation
methodology using gem5, to study the effects of migrations
in heterogeneous systems. Our methodology accomplishes this
by forking the simulation, comparing a system that migrates
with one that does not. We use our methodology to focus
on identifying how much sharing of internal components
(e.g. caches, TLB, branch predictor) is most desirable for
migrations as fine as 1k instructions.

Our results show that the two cores have asymmetric warm-
up times and behaviour, where the OoO core needs larger
instruction windows to amortize the cost of migration than
the InO core. Contrary to many academic studies we show that
sharing all the caches is not the most advantageous set up and
propose an alternative that only shares level 2 caches and the
TLB. Our design performs equally as well as the alternatives,
but can be physically much simpler to implement [8], [12].

We also measure the potential benefits for heterogeneous
systems running a suite of diverse embedded benchmarks. The
results show that, even when the overheads are not prohibitive,
migrating to save energy without sacrificing performance or
vice versa is limited to at most 10% of the execution. Relaxing
the policy to find equal or better EDP points is beneficial on
average for 66% of the workload execution.

REFERENCES

[1] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.
Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity into
a core,” in Proceedings - 2012 IEEE/ACM 45th International Symposium
on Microarchitecture, MICRO 2012, 2012.

[2] V. Villebonnet, G. Da Costa, L. Lefevre, J.-M. Pierson, and P. Stolf,
“Big, Medium, Little: Reaching Energy Proportionality with Heteroge-
neous Computing Scheduler,” Parallel Processing Letters, vol. 25, 9
2015.

[3] S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “DynaMOS,” in
Proceedings of the 48th International Symposium on Microarchitecture
- MICRO-48, vol. -, no. -, 2015.

[4] C. Fallin, C. Wilkerson, and O. Mutlu, “The heterogeneous block
architecture,” in 2014 32nd IEEE International Conference on Computer
Design, ICCD 2014, vol. -, no. -, 2014.

[5] A. Lukefahr, S. Padmanabha, R. Das, R. Dreslinski, T. F. Wenisch, and
S. Mahlke, “Heterogeneous microarchitectures trump voltage scaling for
low-power cores,” Proceedings of the 23rd international conference on
Parallel architectures and compilation - PACT ’14, 2014.

[6] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. G. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Exploring fine-grained heterogeneity
with composite cores,” IEEE Transactions on Computers, vol. 65, 2016.

[7] S. Navada, N. K. Choudhary, S. V. Wadhavkar, and E. Rotenberg, “A
unified view of non-monotonic core selection and application steering in
heterogeneous chip multiprocessors,” Parallel Architectures and Compi-
lation Techniques - Conference Proceedings, PACT, 2013.

[8] I. Vougioukas, A. Sandberg, S. Diestelhorst, B. Al-Hashimi, and G. Mer-
rett, “Nucleus: Finding the sharing limit of heterogeneous cores,” ACM
Transactions on Embedded Computing Systems, vol. 16, 2017.

[9] E. Forbes, Z. Zhang, R. Widialaksono, B. Dwiel, R. B. R. Chowdhury,
V. Srinivasan, S. Lipa, E. Rotenberg, W. R. Davis, and P. D. Franzon,
“Under 100-cycle thread migration latency in a single-ISA heteroge-
neous multi-core processor,” in 2015 IEEE Hot Chips 27 Symposium,
HCS 2015. IEEE, 8 2016.

[10] E. Rotenberg, B. H. Dwiel, E. Forbes, Z. Zhang, R. Widialaksono,
R. Basu Roy Chowdhury, N. Tshibangu, S. Lipa, W. R. Davis, and P. D.
Franzon, “Rationale for a 3D heterogeneous multi-core processor,” 2013
IEEE 31st International Conference on Computer Design, ICCD, 2013.

[11] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, D. A. Wood, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, and T. Krishna, “The
gem5 simulator,” ACM SIGARCH Computer Architecture News, vol. 39,
8 2011.

[12] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB behavior
of emerging parallelworkloads on chip multiprocessors,” in Parallel
Architectures and Compilation Techniques - Conference Proceedings,
PACT, 2009.


