The University of Southampton
University of Southampton Institutional Repository

Introducing particle interphase model for describing the electrical behaviour of nanodielectrics

Introducing particle interphase model for describing the electrical behaviour of nanodielectrics
Introducing particle interphase model for describing the electrical behaviour of nanodielectrics

This study proposes a new model for describing the electrical behaviour of nanocomposites. Unlike other models in the literature, this model has concentrated on the role of an interphase layer within the boundaries of nanoparticles. The experimental part investigates this role by filling an epoxy matrix with two types of surface-modified silicon nitride nanofiller: (a) the particles were dried at 200 °C, and (b) the particles were calcinated at 1050 °C. Electrical characterization showed that the epoxy which was filled with the calcinated particles has considerably better dielectric performance. Given that thermal and dielectric spectroscopy results demonstrate that the matrix molecular dynamics and polar content are comparable for all the investigated samples, the variations in the dielectric performance point to the particle interphase as an essential reason. As shown by infrared spectroscopy, the complex surface chemistry of the dried particles suggests a particle interphase with a high concentration of localized electronic states, which may enhance charge transport through hopping/tunnelling conduction. On the other hand, calcinating the particles results in a particle interphase with wider band gap, which may work as an energy barrier for charge movement. Consequently, this study highlights the paramount importance of particle interphase for designing dielectric properties of nanodielectrics.

Dielectric properties, Interface, Nanodielectrics, Particle interphase, Polymer interphase, Surface chemistry
0264-1275
62-73
Alhabill, Fuad N.
253d8162-b329-46cc-ace6-5e39a8caca33
Ayoob, Raed
9520a234-f49a-45b9-ba23-c4d0e500da14
Andritsch, Thomas
8681e640-e584-424e-a1f1-0d8b713de01c
Vaughan, Alun S.
6d813b66-17f9-4864-9763-25a6d659d8a3
Alhabill, Fuad N.
253d8162-b329-46cc-ace6-5e39a8caca33
Ayoob, Raed
9520a234-f49a-45b9-ba23-c4d0e500da14
Andritsch, Thomas
8681e640-e584-424e-a1f1-0d8b713de01c
Vaughan, Alun S.
6d813b66-17f9-4864-9763-25a6d659d8a3

Alhabill, Fuad N., Ayoob, Raed, Andritsch, Thomas and Vaughan, Alun S. (2018) Introducing particle interphase model for describing the electrical behaviour of nanodielectrics. Materials & Design, 158, 62-73. (doi:10.1016/j.matdes.2018.08.018).

Record type: Article

Abstract

This study proposes a new model for describing the electrical behaviour of nanocomposites. Unlike other models in the literature, this model has concentrated on the role of an interphase layer within the boundaries of nanoparticles. The experimental part investigates this role by filling an epoxy matrix with two types of surface-modified silicon nitride nanofiller: (a) the particles were dried at 200 °C, and (b) the particles were calcinated at 1050 °C. Electrical characterization showed that the epoxy which was filled with the calcinated particles has considerably better dielectric performance. Given that thermal and dielectric spectroscopy results demonstrate that the matrix molecular dynamics and polar content are comparable for all the investigated samples, the variations in the dielectric performance point to the particle interphase as an essential reason. As shown by infrared spectroscopy, the complex surface chemistry of the dried particles suggests a particle interphase with a high concentration of localized electronic states, which may enhance charge transport through hopping/tunnelling conduction. On the other hand, calcinating the particles results in a particle interphase with wider band gap, which may work as an energy barrier for charge movement. Consequently, this study highlights the paramount importance of particle interphase for designing dielectric properties of nanodielectrics.

Text
Introducing particle interphase model for describing the electrical behaviour of nanodielectrics - Accepted Manuscript
Restricted to Repository staff only until 8 August 2019.
Request a copy

More information

Accepted/In Press date: 7 August 2018
e-pub ahead of print date: 8 August 2018
Published date: 15 November 2018
Keywords: Dielectric properties, Interface, Nanodielectrics, Particle interphase, Polymer interphase, Surface chemistry

Identifiers

Local EPrints ID: 423223
URI: https://eprints.soton.ac.uk/id/eprint/423223
ISSN: 0264-1275
PURE UUID: 300014b8-3f75-4ba3-ab62-80717303babd
ORCID for Thomas Andritsch: ORCID iD orcid.org/0000-0002-3462-022X
ORCID for Alun S. Vaughan: ORCID iD orcid.org/0000-0002-0535-513X

Catalogue record

Date deposited: 19 Sep 2018 16:30
Last modified: 09 May 2019 00:36

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×