Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: Application to DES SV
Improving weak lensing mass map reconstructions using Gaussian and sparsity priors: Application to DES SV
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. Kaiser-Squires is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. GLIMPSE uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and GLIMPSE offer substantial improvements over smoothed Kaiser-Squires with a range of metrics. Both the Wiener filter and GLIMPSE convergence reconstructions show a 12 per cent improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated (n-ary logical and) CDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for GLIMPSE. With simulations, we measure the reconstruction of the harmonic phases; the phase residuals' concentration is improved 17 per cent by GLIMPSE and 18 per cent by the Wiener filter. The correlation between reconstructions from data and foreground redMaPPer clusters is increased 18 per cent by the Wiener filter and 32 per cent by GLIMPSE.
Gravitational lensing: weak, Large-scale structure of universe, Methods: statistical
2871-2888
Jeffrey, N.
51d70871-5a5a-4c9b-b650-2d64ff9417fd
Abdalla, F.B.
b32ec665-df5e-4703-9eef-a9b15ea7cf08
Lahav, O.
2e4e31a0-1b02-4b64-9d7d-fc7f81f56be8
Lanusse, F.
3ef54de2-bfba-4473-8327-e73f3234ee96
Starck, L.J.
57d180e2-8d8e-4f6e-b86f-d43d4cd5d1e8
Leonard, A.
c5c2303b-a49c-4aaa-bdd4-2ba663e58c4c
Kirk, D.
562ddcaa-f2c2-4e06-b87e-08e99b0e1244
Chang, C.
dd7aac7e-3325-4649-a6c5-06a9fa439666
Baxter, E.
09ded1f3-0305-4928-96de-6b565e9bf61b
Kacprzak, T.
eafb0701-9c49-4282-9fa1-27104e344c4d
Seitz, S.
e9affefb-3d49-41b0-b358-0cd0b9d034d9
Vikram, V.
5f868b6a-86ba-4fed-8fc4-58384dbf3729
Whiteway, L.
016405b3-bed6-4530-80cf-f9c68d96409c
Abbott, T.M.C.
6afa6308-fd36-4189-aef0-d86c784311d9
Allam, S.
0355ab50-73f1-493b-80dc-86c4d4422bee
Avila, S.
e9e53ce1-ed7c-432f-8203-db7c48347ab9
Bertin, E.
6f2de635-03bc-4e21-99ae-00db71b944f7
Brooks, D.
a3c528d9-fb8a-406c-bc92-56eff4985bcf
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carrasco Kind, M.
b569a608-55e3-4a2b-8875-d6602c32c980
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Crocce, M.
65f58884-1a85-41cd-9ef4-93f9fa62578a
Cunha, C.E.
2251baca-c601-4b62-ac1c-51a43bd1e421
D'Andrea, C.B.
4befc380-f47c-49cc-a84e-2e2d2ac14edd
da Costa, L.N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Davis, C.
b98148c3-cb02-4943-91a4-7ae0a23c681e
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Eifler, T.F.
0ef93d51-0f94-46cb-b882-a569b9a6b598
Evrard, A.E.
b72fc85a-1ab1-4c95-afad-e1ff76f8190c
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Fosalba, P.
7309d371-b57b-4fb5-99f2-1dd419e46285
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gerdes, D.W.
63df801a-6703-4911-902c-1115327d79dd
Gruen, D.
8d960f6a-1219-4ce1-9312-616e463616eb
Gruendl, R.A.
81783218-3c05-4a4a-8f7b-d123d50ba027
Gschwend, J.
cfbbfd77-feea-4e19-91b7-f40b8969f453
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hartley, W.G.
f8388551-09ca-4c65-88ea-e0f5d9090d2d
Honscheid, K.
c505a24c-7e4d-4761-a84d-5262868372ae
Hoyle, B.
fdc773d9-a7f6-45a5-8572-c195bc6b414c
James, D.J.
2c41d97c-8486-4379-b253-e5896572e81a
Jarvis, M.
3fd4f2bf-3b06-4058-af6a-093610b28dfd
Kuehn, K.
c8275e43-4cd6-44f5-9cce-8475d0e5f7de
Lima, M.
01e865ee-c676-4f04-9b0a-aaeb3b4138fa
Lin, H.
e136a2d6-c59b-4be7-a742-df006b2b3796
Smith, M.
8bdc74e1-a37b-434d-ae75-82763109bf7a
21 September 2018
Jeffrey, N.
51d70871-5a5a-4c9b-b650-2d64ff9417fd
Abdalla, F.B.
b32ec665-df5e-4703-9eef-a9b15ea7cf08
Lahav, O.
2e4e31a0-1b02-4b64-9d7d-fc7f81f56be8
Lanusse, F.
3ef54de2-bfba-4473-8327-e73f3234ee96
Starck, L.J.
57d180e2-8d8e-4f6e-b86f-d43d4cd5d1e8
Leonard, A.
c5c2303b-a49c-4aaa-bdd4-2ba663e58c4c
Kirk, D.
562ddcaa-f2c2-4e06-b87e-08e99b0e1244
Chang, C.
dd7aac7e-3325-4649-a6c5-06a9fa439666
Baxter, E.
09ded1f3-0305-4928-96de-6b565e9bf61b
Kacprzak, T.
eafb0701-9c49-4282-9fa1-27104e344c4d
Seitz, S.
e9affefb-3d49-41b0-b358-0cd0b9d034d9
Vikram, V.
5f868b6a-86ba-4fed-8fc4-58384dbf3729
Whiteway, L.
016405b3-bed6-4530-80cf-f9c68d96409c
Abbott, T.M.C.
6afa6308-fd36-4189-aef0-d86c784311d9
Allam, S.
0355ab50-73f1-493b-80dc-86c4d4422bee
Avila, S.
e9e53ce1-ed7c-432f-8203-db7c48347ab9
Bertin, E.
6f2de635-03bc-4e21-99ae-00db71b944f7
Brooks, D.
a3c528d9-fb8a-406c-bc92-56eff4985bcf
Carnero Rosell, A.
d66191ef-a014-4029-bfe8-e9b3c653e3be
Carrasco Kind, M.
b569a608-55e3-4a2b-8875-d6602c32c980
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Crocce, M.
65f58884-1a85-41cd-9ef4-93f9fa62578a
Cunha, C.E.
2251baca-c601-4b62-ac1c-51a43bd1e421
D'Andrea, C.B.
4befc380-f47c-49cc-a84e-2e2d2ac14edd
da Costa, L.N.
b1ed9fd9-b99a-4012-8112-79cba46d8a23
Davis, C.
b98148c3-cb02-4943-91a4-7ae0a23c681e
De Vicente, J.
f1d6022a-1d82-4b26-b421-4627aa5a5568
Desai, S.
9fb3d948-7af8-43e1-8c9c-a11b6cc376ce
Doel, P.
00d69910-6075-4a52-9c7b-57e947a3b171
Eifler, T.F.
0ef93d51-0f94-46cb-b882-a569b9a6b598
Evrard, A.E.
b72fc85a-1ab1-4c95-afad-e1ff76f8190c
Flaugher, B.
cca72cda-37e5-4d1b-a792-c11946615fb5
Fosalba, P.
7309d371-b57b-4fb5-99f2-1dd419e46285
Frieman, J.
6c34b206-537c-429c-9aeb-5df1d1e5e656
García-Bellido, J.
0d901d62-f268-4982-a08b-880c578ab3d8
Gerdes, D.W.
63df801a-6703-4911-902c-1115327d79dd
Gruen, D.
8d960f6a-1219-4ce1-9312-616e463616eb
Gruendl, R.A.
81783218-3c05-4a4a-8f7b-d123d50ba027
Gschwend, J.
cfbbfd77-feea-4e19-91b7-f40b8969f453
Gutierrez, G.
78403287-6c1e-4238-9238-06c3a714f5cd
Hartley, W.G.
f8388551-09ca-4c65-88ea-e0f5d9090d2d
Honscheid, K.
c505a24c-7e4d-4761-a84d-5262868372ae
Hoyle, B.
fdc773d9-a7f6-45a5-8572-c195bc6b414c
James, D.J.
2c41d97c-8486-4379-b253-e5896572e81a
Jarvis, M.
3fd4f2bf-3b06-4058-af6a-093610b28dfd
Kuehn, K.
c8275e43-4cd6-44f5-9cce-8475d0e5f7de
Lima, M.
01e865ee-c676-4f04-9b0a-aaeb3b4138fa
Lin, H.
e136a2d6-c59b-4be7-a742-df006b2b3796
Smith, M.
8bdc74e1-a37b-434d-ae75-82763109bf7a