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It is generally assumed that flows around wall-mounted sharp-edged bluff bodies
submerged in thick turbulent boundary layers are essentially independent of the
Reynolds number Re, provided that this exceeds some (2–3) × 104. (Re is based on
the body height and upstream velocity at that height.) This is a particularization of
the general principle of Reynolds-number similarity and it has important implications,
most notably that it allows model scale testing in wind tunnels of, for example,
atmospheric flows around buildings. A significant part of the literature on wind
engineering thus describes work which implicitly rests on the validity of this
assumption. This paper presents new wind-tunnel data obtained in the ‘classical’ case
of thick fully turbulent boundary-layer flow over a surface-mounted cube, covering an
Re range of well over an order of magnitude (that is, a factor of 22). The results are
also compared with new field data, providing a further order of magnitude increase in
Re. It is demonstrated that if on the one hand the flow around the obstacle does not
contain strong concentrated-vortex motions (like the delta-wing-type motions present
for a cube oriented at 45◦ to the oncoming flow), Re effects only appear on fluctuating
quantities such as the r.m.s. fluctuating surface pressures. If, on the other hand, the
flow is characterized by the presence of such vortex motions, Re effects are significant
even on mean-flow quantities such as the mean surface pressures or the mean velocities
near the surfaces. It is thus concluded that although, in certain circumstances and for
some quantities, the Reynolds-number-independency assumption is valid, there are
other important quantities and circumstances for which it is not.

1. Introduction
Over the last 30 years or so there have been increasingly numerous comparisons

between full-scale (field) data and wind-tunnel data on both the flow around and the
surface pressures on buildings of all kinds. The wind-tunnel experiments of Castro &
Robins (1977) (hereafter denoted by CR) on surface-mounted cubes were some of
the first to demonstrate the crucial importance of modelling appropriately the details
of the upstream boundary layer. For smooth upstream flow conditions – i.e. when
the thickness of the approaching boundary layer was very much smaller than the
cube height – Re effects were found, not surprisingly. In contrast, for cases where the
boundary-layer thickness was much larger than the cube, so that the flow ‘seen’ by
the cube was fully turbulent (and highly sheared), no Re effects were reported for
Re > 4000. It must be noted, however, that this conclusion rested on somewhat limited
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data and was not a result of an extensive study of possible Re effects; the major
thrust of that early work was to highlight the importance of ensuring appropriate
simulation of the atmospheric boundary layer. But there has since been some wind-
tunnel evidence, albeit over rather restricted Reynolds-number ranges, that Re>

(2–3) × 104 is sufficiently high to ensure negligible Re effects (e.g. Cherry, Hillier &
Latour 1984; Djilali & Gartshore 1991) and such an assumption has formed the basis
of most model scale testing for almost half a century. However, Re independency has
more recently been questioned, not only conceptually (by, significantly, one of the
‘fathers’ of wind engineering; see Davenport 1999) but also as a result of relatively
new data obtained in the field (e.g. Hoxey et al. 1998; although, again, this data was
obtained over a very restricted Re range).

It is not difficult to imagine why the Reynolds number could remain an important
parameter even when Re > (2–3) × 104. This is particularly true for those flows in
which the shear layers arising from separation of the boundary layers at the salient
edges of the body roll up rapidly to form concentrated relatively steady vortical
regions. The most obvious example is for bodies at an angle to the approach flow, on
which strong conical vortices appear, similar to those above delta wings. Such vortices
are often less affected (than the Kelvin–Helmholtz-type vortices arising in other kinds
of separated shear layers) by changes in upstream flow characteristics, partly no doubt
because they are usually a much more persistent feature of the generally unsteady
flow; see e.g. Kawai (2002) for a discussion of their dynamics. Their viscous cores
have a relative size and influence that must be dependent on a Reynolds number
based on the thickness of the rolled-up vortex sheet, so this dependency may persist
well beyond Re > (2–3) × 104, since the latter Re is based on a typical body dimension,
h. Practically important flow characteristics, like the peak-suction surface pressures
which usually occur near salient edges and beneath these conical vortices, would then
also be dependent on Re over a wider range than in cases where such strong vortex
motions are less prevalent.

In comparisons between model tests and full-scale tests, assessing Re effects is
complicated by the known effects of changes in upstream turbulence intensity and scale
on bluff-body flows and also by the inevitable mismatch in spectral-energy content in
the upstream flow between atmospheric boundary layers and wind-tunnel simulations
of them. There is a significant literature on both these topics. In the case of the former,
one might note as an example the relatively recent work of Saathoff & Melbourne
(1997) (and many references therein). Recognizing that one of the flow features
most likely to be dependent on upstream-turbulence characteristics is the fluctuating
pressure near the leading edges of the body, they conducted experiments on a generic
body, a two-dimensional blunt flat plate (thickness h). Measurements with a variety
of upstream conditions showed conclusively that increases in upstream turbulence
intensity σu/U and/or integral length scale Lx/h increased the magnitude of the
pressure fluctuations measured at a point on the surface very near the leading edge
and underneath the separated shear layer. The mean flow was likewise significantly
affected; the length of the separated bubble, for example, noticeably decreased with
increasing σu/U . The effects can be explained on the basis of the dynamics of the
separating shear layer and its vorticity field and are consistent with the findings of
Hillier & Cherry (1981) and, incidentally, with those of CR for a cube. Such behaviour
provides some explanation for flow differences commonly found between model and
full-scale situations which, although ostensibly similar, may not be sufficiently similar
in terms of the upstream turbulence field. Any differences caused by the large Re
discrepancy can be masked by those due to differences in the background turbulence.
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The second issue noted above, that of spectral mismatch, is also well known.
In wind-tunnel modelling of single buildings in atmospheric boundary layers, for
example, it is common and indeed often necessary to use quite large scales (e.g.
1 : 100); this usually means that the largest turbulence scales in the simulated flow are
much smaller than the full-scale equivalents. The question arises as to which part of the
turbulence energy spectrum should be matched most closely. It has become clear that
merely matching the upstream longitudinal integral scale and the turbulence intensity
(at the body height, say) does not necessarily produce good agreement between the
full-scale and model-scale data. Melbourne (1980) argued that, in fact, matching the
small-scale turbulence levels is much more important in determining the peak (neg-
ative) pressures occurring near salient edges of the body, and he suggested a ‘small-
scale spectral-density parameter’ Sm, defined (for the present case) by Sm = f Su(f )/U 2

h

evaluated at f = 10Uh/h, where Su(f ) is the usual longitudinal spectral energy density
at frequency f and z = h and Uh is the mean velocity at z = h. The essential reasoning
is that f = 10Uh/h typifies the scales in the surrounding turbulence which are most
likely to affect the dynamics of the separated shear layers, whose thicknesses are,
initially at least, much smaller than the body dimension, and typically O(0.1h). There
is some evidence that this approach produces much closer agreement between model-
scale and full-scale data (see Tieleman 2003, for example). Nonetheless, the effect of
the relatively much larger integral scales at full scale, particularly those characterizing
the cross-stream fluctuations, cannot easily be reduced. The relatively large cross-
stream integral scale is associated with relatively larger cross-stream excursions in
the unsteady wind direction and this has unavoidable affects, even on the mean flow
around the body let alone on fluctuating quantities like the r.m.s. pressure coefficients.

The major difficulties in assessing the overall Reynolds-number effects are therefore
twofold. First, at model-scale, one must be sure that in varying Re, which is
usually done in an experiment by varying the flow speed, the upstream turbulence
characteristics covering as wide a spectral range as possible do not change significantly.
Second, in the context of comparing model-scale and full-scale data, one must take
account of the almost inevitable differences caused by the differences in the boundary
layers’ largest-scale motions, even if simulations have been assiduously arranged to
ensure similarity in, say, Melbourne’s parameter, Sm. In wind-tunnel simulations of
typical neutrally stable atmospheric boundary layers there is limited scope to vary
Re by more than, typically, a factor of about 3. Changes in free-stream velocity
greater than this factor would often lead to significant changes in the boundary-layer
characteristics (because of, for example, transitional surface roughness effects at the
lower velocities) and changes in body size would require a completely new set of
boundary-layer-simulation hardware. It should be emphasized that flow changes with
Re will be most rapid at the lower end of the Re range, so if they are not evident
there they are unlikely to exist at higher Re.

In this paper we describe a carefully designed set of experiments on boundary-layer
flow over a surface-mounted cube, undertaken in two wind tunnels, of sufficiently
different sizes to allow variation in Re by a factor of 22 to be achieved with
little change in upstream-boundary-layer characteristics. Data is also presented from
corresponding field measurements, yielding a further order-of-magnitude change in
Re. The wind-tunnel flows were designed to be similar to the (rural) atmospheric
boundary layer approaching the 6 m cube in the field experiments. Here, emphasis
is placed largely on the extent to which the flows were affected by Re and attention
is concentrated on the two cases defined by cube orientations of zero and 45◦ to
the approach flow. The latter case typifies flows in which strong, relatively steady,
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concentrated vortex regions exist over the obstacle; the former is, in that respect,
very different. One could thus view these two cases as examples of two extremes
in the whole range of possible flow types, for a whole range of possible shapes of
sharp-edged bodies. The following section outlines the experimental techniques, § 3
summarizes the flow characteristics in both wind-tunnel and field boundary layers
approaching the cubes and § 4 presents and discusses the major results; § 5 gives the
major conclusions.

2. Experimental techniques
2.1. Laboratory methods

Experiments were conducted in the large closed-circuit ‘R. J. Mitchell’ wind tunnel,
whose working section dimensions are 3.4 m × 2.5 m × 8 m long, and a much smaller
0.9 m × 0.6 m × 4.5 m open-circuit tunnel, both within the School of Engineering
Sciences at the University of Southampton. Thick boundary layers were generated
using a technique often employed by wind-engineering practitioners, first devised
by Cook (1973, 1978). Toothed barriers spanning the floor of the working section
near its entry, followed by a square section, biplanar mesh across the entire working
section and an appropriate rough surface thereafter can together be designed to
yield mean-velocity profiles which are closely logarithmic over a significant portion
of the working-section height, with turbulence stresses and spectra similar to those
found in atmospheric neutrally stable boundary layers. There are other ways of
simulating atmospheric boundary layers (see Hunt & Fernholz 1975, for an old, but
still appropriate, review); this particular method has the advantage of maximizing the
depth of the logarithmic region but the disadvantage of not simulating the largest-scale
eddies in the upper part of the atmospheric boundary layer. For the present purposes,
since it was intended to make comparisons with full-scale data over a cube merely 6 m
in height – less than one-tenth of the height of the logarithmic region – maximizing
the depth of this region was deemed most important. It is crucial to design the barrier
wall and mixing-grid geometries in tandem with the intended roughness, since any
mismatch will yield unacceptably long fetches before reasonably well-developed flows
are attained. In the present cases, commercially available expanded aluminium mesh
was used to provide the surface roughness; the mesh for the smaller tunnel had a
total height of 3 mm and that for the larger was roughly three times the size in all
salient respects. These gave roughness lengths z0 of 0.09 and 0.35 mm, respectively,
where z0 is defined in the usual way via the mean-velocity log law expressed as

U

u∗
=

1

κ
ln

z − d

z0

. (2.1)

Here u∗ and d are the friction velocity (
√

τwall/ρ) and the zero-plane displacement,
respectively. Since (2.1) contains three unknowns (u∗, d and z0), use only of a measured
mean-velocity profile (i.e. U versus z) to obtain all three parameters is somewhat
ill-conditioned (although it is the approach which frequently has to be used by
meteorologists!). It is generally accepted that a significantly better alternative is
to measure the friction velocity independently, by extrapolating turbulence-stress
measurements to the wall, and then to fit the separate mean-velocity data to (2.1) to
ensure the correct u∗ by adjusting d appropriately. This yields a z0 estimate. In the
present work, boundary layers grown naturally over the mesh surfaces (i.e. without
an upstream barrier and mixing grid) were examined to determine z0 and d , using
the approach outlined above. As will be shown in due course, the resulting values
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provided satisfactorily consistent data in the simulated flows. For the smaller tunnel,
the barrier wall had a height of 62 mm, with triangular cut-outs at the top, of pitch
50 mm and depth 50 mm, and the mixing grid consisted of a biplanar grid of 9 mm
bars at a pitch of 60 mm. The barrier and mixing grid used in the larger tunnel were
approximately a factor of 3 larger than those used in the smaller tunnel, with the
intention that the boundary-layer characteristics would (at appropriate fetches) be
very similar in the two tunnels.

Smooth-surface cubes of height h equal to 240 mm or 80 mm were used in the
larger and smaller tunnels, respectively, and were fitted with 0.8 mm i.d. pressure taps
at numerous salient points on the top surface and the front and rear faces. Standard
tube connections to a (Furness FC-012) micromanometer allowed the measurement of
mean surface pressures. The fluctuating pressures were obtained using both piezore-
sistive sensors (Endevco 8507C-2) and omnidirectional condensor-type microphones
(Panasonic WM-60A). The former had a diameter of 1.27 mm and a frequency res-
ponse which was flat from d.c. to around 15 kHz, whereas the latter were of diameter
6 mm and so were each mounted in a small cavity beneath a 0.5 mm pinhole in the
surface, yielding a response which was flat between 20 Hz and 20 kHz.

Mean-velocity and turbulence-stress data within the boundary layers at the
(subsequent) cube locations and around the cubes themselves were obtained using
appropriate combinations of hot-wire anemometry (HWA), laser-Doppler anemo-
metry (LDA) and particle-image velocimetry (PIV) systems. For HWA, errors caused
by inadequate yaw response were minimized by using crossed-wire probes with ±60◦

wires (rather than the more standard ±45◦ wires, see Perry, Lim & Henbest 1987)
and employing the effective-cosine-law method to calibrate for yaw sensitivities. The
probes had wires of about 1 mm in length and were driven by Newcastle (NSW) CTA
bridges, with outputs filtered to avoid aliasing and massaged by appropriate gain
and offset to allow the best use of the analogue–digital converters (IOTech ADT488).
Calibrations were performed against a standard pitot-static tube using the same
micromanometer as was used for the (static) pressure measurements, and all analogue
signals were digitized and passed to a (Macintosh) desk-top computer. Specialized
software (‘Virtual instruments’, written in National Instruments’ LabVIEW) allowed
on-line calibration and measurement of all necessary quantities. The probes were
supported on traverse systems driven by the same computer. Sampling rates were
typically between 2 kHz and 10 kHz, depending on the quantities being measured,
with sample times of 60–120 s.

For LDA, a two-component fibre-optic Dantec system was used, with burst-
spectrum analysers (BSAs) to process the Doppler bursts. Since turbulence intensities
close to the surface and near to the cube were often greatly in excess of 25 %, interval
time weighting was used in obtaining the mean and fluctuating velocities. The same
software package as used for HWA and pressure measurements was employed. (This
actually allows simultaneous HWA and LDA measurements, but that facility was not
used in the present work). In the small-tunnel experiments, the probe was located
outside the working section, with the beams transmitted through the perspex side
walls. Since the lens focal length was 300 mm, the measurements were made in a
plane a little away from the tunnel centreline but, given the high degree of spanwise
uniformity in the flows, this was quite acceptable. In the large tunnel, the probe
had to be located on a suitable traverse system inside the working section and this
was always arranged so as to minimize the possible influence of blockage. In both
tunnels the beams were oriented so as to measure the axial and vertical velocity
components.



102 H. C. Lim, I. P. Castro and R. P. Hoxey

The work presented here was undertaken in the context of a much larger study,
in which PIV has been used extensively (to identify flow structures, etc.). Here we
will present only a very small subset of the PIV data, as a means of clarifying some
resolution issues for the field ultrasonics (see § 2.2 below). Both a Dantec system and
a TSI system were used. Each employed the same New Wave Gemini 120 mJ Nd:Yag
dual-fire laser to illuminate the field, usually in vertical planes oriented at various
angles to the axial direction. In the former case, a 80C60 HiSense camera (1280×1024
pixels) was used, with final interrogation areas of typically around 1.2 mm2, whereas
in the latter case a camera (2048 × 2048 pixels) with final interrogation areas of
around 0.6 mm2 was employed, to give greater spatial resolution where necessary. In
both cases, the use of recursive algorithms designed to allow the shifting of successive
interrogation areas by an amount depending on the local velocity (Hart 2000) was
necessary to minimize errors. Typically, final interrogation areas of 16 × 16 pixels
with a 50 % overlap were used. The resulting vectors were validated using a simple
peak-height scheme and the number of rejected vectors was always below 5 % and
usually much lower. Typically, 1000 image pairs were obtained in every case; this
was a compromise between minimizing the statistical errors arising from a finite
sample size and maintaining a reasonable total sampling time. With sampling rates
of around 2 Hz, the latter was typically around 500 s. Seeding for both LDA and
PIV measurements was provided either by a hydrosonic seeder or a standard smoke
machine. Both yielded particles of appropriate size, whose image sizes were 2–4 pixels
in the PIV case.

2.2. Field methods

Field measurements were carried out on a 6 m smooth-surfaced cube mounted on a
turntable in a level open field site at Silsoe Research Institute. The approach fetch
for all the data presented herein was low grass extending at least 600 m upstream and
both previous and our current data indicated that under neutrally stable conditions
the mean-velocity profile is well fitted by (2.1). The present data gave a z0 value
around 8 mm, obtained using the technique discussed in § 2.1 from data given by
four ultrasonic anemometers mounted on the reference mast (see below). This gives a
Jensen number, Je =h/z0, of 750, within the range 690 to 890; these were the values for
the large- and small-tunnel tests, respectively. The cube was instrumented with 9 mm
internal-diameter surface-static-pressure tappings, allowing up to 16 simultaneous
pressures to be obtained. Upstream wind-velocity components were derived from a
three-dimensional ultrasonic anemometer at the cube height, mounted on a mast 3.4h

upstream of the front face of the cube and 1.04h beyond a side face – sufficiently
removed from the cube for the data not to be influenced by it and for the mast not to
influence the flow over the cube. The pressure signals were transmitted to solid-state
transducers with a range of ±0.6 kPa, using 6 mm internal diameter plastic tubing
up to 5 m in length, arranged to give an overall frequency response flat to around
8Hz. Transducer drift was invariably small but was nonetheless corrected by means
of a computer-controlled sequence which applied a zero pressure, followed by the
total pressure from a pitot-static tube mounted upstream, to all the transducers at the
beginning and end of every 30 minute record. Typically, pressures were sampled at
25 Hz. For all the data presented here, only the central 20 minutes of the 30 minute
records have been used.

It was important to select only those records which corresponded to the required
wind orientation with respect to the cube and for which the data suggested genuinely
neutral conditions. For the former, the upstream ultrasonic records were scrutinized
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Figure 1. Mean-velocity profiles: (a) small tunnel; (b) large tunnel. Figures for the velocity
at cube height, Uh, are in m s−1 with Re × 10−4 (based on the appropriate h) in parentheses.
The solid lines give the log law (2.1).

to ensure that they did not contain sudden shifts in wind direction other than those
attributable to genuine turbulence and also to deduce the mean wind direction. Only
those records indicating directions (averaged over the 20 minute record length) which
were within ±2◦ of that required were selected. For the latter, the ultrasonic outputs
included sound-speed data allowing deduction of the temperature. (Note that, even
for fully saturated air, changes in sound speed arising from specific humidity changes
can be shown to be entirely negligible compared with those arising from direct
temperature variations.) The implied temperature data can be used to deduce −wθ ,
the Monin–Obukhov length scale LMO and the obstacle Froude number, Fr= U/Nh,
where N is the Brunt–Vaisaila frequency. In all cases Fr was large enough – O(10)
at least – to suggest that buoyancy effects on the flow over the cube would be totally
insignificant (see Snyder 1994 for a discussion of this point). However, there were
records for which the values of h/LMO indicated that the upstream profile over the
cube height might have been slightly stable or even unstable. Such records are not
included in the present analysis.

Simultaneous measurements of velocities over the cube were also made using a
further four (Solent WindMaster) ultrasonic anemometers. These were located 0.06 m
(0.01h) above the top surface and, usually, along an axial line 500 mm (0.083h) away
from the centreline, so as to avoid disturbance at the centreline static pressure holes.
Both these and the upstream sonic provided samples at 25 Hz over the identical 30
minute periods used to obtain the pressure records. Reference static pressure was
provided in all cases by the heavily damped output of an upstream surface-static
tapping, set flush into the ground some 4h upstream of the cube. Calibration against
mast-mounted instruments showed that this provided an accurate and appropriate
reference.

3. The upstream boundary layers
3.1. Wind-tunnel flows

All mean- and fluctuating-velocity data were normalized using the mean velocity at
the cube height, Uh. The (LDA) mean-velocity profiles obtained over a range of wind
speeds in each tunnel are shown in figure 1. In each case the profiles were obtained
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Figure 2. Reynolds-shear-stress profiles: (a) small tunnel; (b) large tunnel. Symbols
as in figure 1.
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Figure 3. Turbulence intensity profiles: (a) small tunnel; (b) large tunnel. Symbols
as in figure 1.

at the eventual cube location, 3.5 m and 7 m downstream from the barrier wall in
the small and large tunnels, respectively. Notice in particular that the velocity ranges
imply Reynolds-number (Re =Uhh/ν) variations of 1.86 × 104 � Re � 7.31 × 104 and
6.75 × 104 � Re � 3.49 × 105 in the small and large tunnel, figures 1(a) and 1(b)
respectively, and that in neither case is there any significant profile change with Re.
The two Re ranges overlap and, together with additional HWA data from the large
tunnel (not shown for clarity), yield a factor 22 variation in Re. The fits to (2.1) extend
at least to z = 2h in both cases, so the cubes are submerged well within the log-law
region. Figures 2 and 3 show the corresponding profiles for the Reynolds stress −uw

and the intensities u′ and w′. The data do not extend beyond z/h = 2 in the large
tunnel but are quite adequate for demonstrating the Reynolds-number independence
of the profiles. Note that the intensities and stresses are a little higher in the large
tunnel. This is almost certainly a result of a rather smaller equivalent fetch, 29h

compared with 44h in the smaller tunnel. The flow is probably still developing at this
axial location; this would account also for the slightly different shape of the stress
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with Re × 10−4 values given in brackets; (b) normalised using U 2
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tunnel.

profiles in figure 2(b) compared with those from the smaller tunnel in figure 2(a).
However, any remaining axial-flow development at the cube location in the large
tunnel is most unlikely to be important, and the differences in stress levels between
the two tunnels are not significant compared with those which might be expected to
yield noticeable changes in the flow around the cube. At the cube height, for example,
the longitudinal turbulence intensities (figure 3) are 11.2 % and 13.2 % in the small
and large tunnels, respectively. These may be compared with the field value of around
18 %; possible effects of this rather larger difference are discussed in due course.

Figure 4 presents longitudinal-velocity spectra, Eu(f ), obtained at z =h. In
figure 4(a) the spectra are plotted in the form in which collapse in the inertial
subrange may be expected, whereas in figure 4(b) they are normalized in a common
wind-engineering form, using parameters independent of the turbulence; this is more
appropriate for revealing differences in the small-scale energy levels. The results are
discussed in detail, in comparison with standard spectra for the atmospheric surface
layer and with the field spectra, in the following section.

3.2. Field data

Mean-velocity and turbulence statistics at the Silsoe site have been measured a number
of times over recent years (e.g. Richards, Hoxey & Short 2000; Richards & Hoxey
2004) and further data has been accumulated as part of the current project. It has
become clear that under neutral conditions the flow characteristics depend critically
on the local wind direction. As an example, figure 5(b) shows measurements at z = h

of the longitudinal turbulence, i.e. the r.m.s. intensity of the velocity component in the
mean wind direction, measured over each of 120 (20 minute) records, as a function
of the wind direction φ; φ = 0 corresponds to the direction of the inward normal to
the front face of the cube – actually a geographical direction of 58◦ from true North,
see figure 5(a). These records were obtained in the period January–March 2004. The
Reynolds shear stress is also shown. The mean wind direction for each record was
taken as that implied by V/U , where V and U are the orthogonal velocities in
the horizontal plane averaged over that record. Only records which did not contain
sudden changes in overall wind direction, as indicated for example by noticeable
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Figure 5. (a) Cube orientation and definition of φ. (b) Turbulence intensity (left-hand scale,
circles) and Reynolds shear stress (right-hand scale, triangles) at z = h, as a function of the
mean wind (Uh) direction. The solid line is the u′/Uh value averaged over −5◦ � φ � +5◦ and
the dashed line is the corresponding average Reynolds shear stress.

bimodality in the probability densities of v′ or arctan(v′/u′), are included in the figure
and in the subsequent analysis. (Here u′ and v′ are the fluctuating velocities, rather
than the r.m.s. values). It is clear that for wind directions between about −5◦ and +35◦

both the longitudinal intensity and the Reynolds shear stress can be assumed to be
roughly constant, at around 0.182 and 0.0035, respectively, whereas for φ < −10◦ there
is a gradual increase in turbulence levels. This corresponds to a significant change in
upstream topography for the latter wind directions; it becomes much rougher because
of the presence of more trees, shrubs and low buildings.

The vertical and lateral turbulence intensities w′/Uh, v′/Uh averaged over the same
range of wind directions were around 0.082 and 0.151, respectively. Although the
former is close to the wind-tunnel values (see figure 3), v′ is rather higher, as is
u′. However, the field data, including ratios such as u′/u∗ and v′/u′, are within the
ranges expected for a rural-type (neutrally stable) boundary layer; see, for example,
ESDU (1985). The differences in the horizontal intensities between field and wind-
tunnel boundary layers are typical, and the possible effects on the cube flows will
be discussed in due course; they are largely a result of the largest-scale motions,
which cannot be reproduced at wind-tunnel scales. Note, incidentally, the significant
degree of scatter in the data in figure 5, even within the wind-angle range deemed to
yield approximately constant characteristics. The scatter is typical of field data and
is much larger than occurs in laboratory data. It cannot be accounted for by the
slight non-neutrality of the boundary layer in a few cases included in the figure and
is generally thought to be the result of the inherent non-stationarity of the flow.

The longitudinal spectra, averaged for all the data obtained in the range
−5◦ < φ <+25◦ are included in figure 4 and illustrate the fact that it is not possible to
match both the large-scale and the small-scale turbulence. Figure 4(a) suggests that
if the integral length scale were deduced from the E(0) asymptote (and normalized
by h) the field value would be very much larger than the values in the two tunnel
boundary layers. One can write Lx/h= (U/hu2

∗)(u
2
∗/ u2)(E(0)/4) so that whilst this

yields around 1.4 for the tunnel boundary layers it gives a value somewhere in the
range 10–15 for the Silsoe site (depending on the precise value chosen for E(0)). But
it is well known that this method of estimating the integral scale is, for the field data,
very problematic; equivalently, deducing Lx from autocorrelations is not possible for
field data since the inherent non-stationarity gives autocorrelations which for the
longitudinal and transverse components do not have zero crossings. It is better to
use one or other of the usual spectral shapes typical of near-surface data. Kaimal
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u′/Uh v′/Uh w′/Uh −uw/U 2
h h/z0 Lx/h Sm λ/h

3′ × 2′ tunnel 0.114 0.089 0.078 0.0027 890 1.38 0.000236 0.130
11′ × 8′ tunnel 0.136 — 0.096 0.0044 690 1.46 0.000406 0.075
Field 0.182 0.151 0.082 0.0035 750 6.4–6.9 0.000161 0.027

Table 1. Salient parameter values at z = h. Sm refers to the parameter Melbourne (1980),
f Su(f )/U 2

h at f =10Uh/h, which, along with λ, is calculated from the spectra in figure 4.

et al. (1978), for example, suggested a spectral shape for the near-surface neutral
atmospheric boundary layer given by

f Eu(f )

u2
∗

=
102n

(1 + 33n2)5/6
, (3.1)

where n= f z/U and U is the mean velocity at the height z where Eu(f ) is measured.
In the inertial region this becomes f Eu(f ) = An−2/3 with A= 0.3. Now the classical
Kolmogorov spectrum can be written as

f Eu(f ) = Cε2/3(2πf/U )−2/3. (3.2)

Assuming that in the surface layer the flow is in equilibrium so that, using the log
law, ε can be replaced by u3

∗/(κz), these two expressions are equivalent provided that
C = 0.55. Although it is just within the range suggested in the literature, this is a
rather larger value of C than the current consensus of 0.49 (see, for example, Pope
2000). Accepting the latter value would, for equivalence, require A= 0.265 in the
Kaimal spectrum, which is the value used by Richards et al. (2000) in their analysis
of surface-layer spectra. A common alternative for the spectral shape is that provided
by ESDU (1985):

f Eu(f )

u′2
=

4n′

(1 + 70.8n′2)5/6
, (3.3)

where n′ = f Lx/h and Lx is the longitudinal integral scale. This is equivalent to the
Kaimal spectrum in the inertial subrange if Lx is related to the turbulence statistics
via Lx/h= 0.237(u′2/u2

∗); for the present field data, this suggests a value for Lx some
10 % larger than that given by fitting the measured data to the ESDU spectrum. The
latter procedure yields Lx = 38.2 m, much lower than the value suggested by the E(0)
asymptote (60–90 m), as noted above, and is usually seen as the preferred way to
estimate Lx from the atmospheric-boundary-layer data. Since the wind-tunnel flows
are intended to be simulations of the field situation, all the spectral data, both in
the field and in the wind tunnels, were fitted to the ESDU spectrum and the fits
yielded the values of Lx/h given in table 1. For the wind-tunnel cases, these values
are very consistent with those obtained from E(0) but, nonetheless, all values could
be viewed as estimates since their precision depends, of course, on the values taken
for the constants A, κ , on whether these are forced to yield an appropriate fit to the
Kolmogorov spectrum in the inertial subrange and on the extent to which Taylor’s
hypothesis (implicit in all the spectral relationships given above) is valid.

Note that the data in the inertial subrange appear to collapse quite well (figure 4a).
However, this kind of plot can be misleading in this respect since the spectral density
is normalized by a turbulence parameter (u2

∗ in this case). Figure 4(b) shows that
although there are some differences in the spectral energy at the small scales, the
variations are much smaller than the variations in Lx/h. In particular, Melbourne’s
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Figure 6. (a) Mean surface static pressure along the centreline of the cube. x ′ is measured
around the three faces, with x ′ = 0 at the upstream base; 1.0 � x ′/h � 2.0 is thus the top surface.
The legend gives the values of Re × 10−4 for each case, with the data source indicated: ST,
small wind tunnel; LT, large wind tunnel; RHS, Richards et al. (2001); CR, Castro & Robins
(1977). (b) The data at x ′/h = 1.069 (open symbols) and near the central point, x ′/h = 1.5
(solid symbols); the dashed line is the trend line from Richards et al. (2001), with the range of
values indicated by the vertical bar.

small-scale turbulence parameter (Melbourne 1980) (see § 1) is within a factor 2.5 for
the three cases. Possible effects of the inevitable mismatch in the large scales between
tunnel and field on the measurements on and around the cube are discussed later.
It is worth noting that the Reynolds number based on the Taylor microscale λ for
the longitudinal velocities, Reλ = u′λ/ν, varies from 840 in the 0.9 m × 0.6 m tunnel
to 1350 in the 3.4 m × 2.5 m tunnel to 13 000 in the field, for the spectra shown in
figure 4. This is, as expected, a variation roughly proportional to Re0.5 and is much
larger than the variation in the Melbourne parameter. The ratio λ/h is 0.13, 0.075
and 0.027 in the three cases, respectively. Again, the implications are discussed later.
Table 1 summarizes the values of the salient parameters for the two wind tunnels and
the field situation. The values of the turbulence intensities and the Reynolds shear
stress shown are averages in each of the wind-tunnel cases; the variations with Re are
within ±2 % for the mean velocity and ±8 % for the second-order statistics – only
marginally larger than the expected experimental uncertainties for those quantities.

4. Results and discussion
4.1. Mean-flow data

We consider first the surface pressure field on the cube. Figure 6(a) presents the
variation of the mean static pressure Cp along the axial centreline of the cube,
obtained in both wind tunnels and in the field for the normal case (φ =0). Only a
selection of data is included, for clarity; the data at the lowest tunnel speed for the
smaller tunnel and at the highest speed for the larger tunnel are shown. This provides
around a factor of 22 in Re, the field data providing a further factor of 7. Cp is defined
as (p − pr )/(0.5ρU 2

h ), where pr is the mean static pressure in the upstream flow. For
the wind-tunnel data, this was obtained in the free stream upstream of the cube;
the variation vertically through the flow was negligible. In the field, the reference
pressure was from the surface tapping (see § 2.2). Note that the Richards, Hoxey &
Short (2001) data was originally presented as pressure coefficients normalized by the

mean of the upstream dynamic pressure, i.e. using (U + u′)2h rather than U 2
h (here u′
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is the fluctuating component of the longitudinal velocity). Using the latter rather than
the former was found to yield Cp values typically some 7 % higher in magnitude,
so their field data presented here has been factored appropriately. The profiles in
figure 6(a) have the expected shape, in that the largest negative pressures occur just
beyond separation and are followed by a substantial pressure recovery associated with
the attachment process on the top surface, as shown frequently by previous studies.
Note that the data agree well with the earlier field data of Richards et al. (2001) at
the same site but are significantly different from the wind-tunnel data of CR. The
latter are similar to those of Murakami & Mochida (1988) and, in agreement with
CR’s discussion, are undoubtedly a result of very much higher upstream turbu-
lence levels, leading to much earlier attachment and pressure recovery on the top
surface.

The immediate implication of the data in figure 6(a) is that there appears to be
little Reynolds-number effect. This is emphasized in figure 6(b), which shows Cp at the
centre of the top surface and at a location just beyond the leading edge as a function
of Re, using all the data available from the present experiments. Note that several
subsequent figures are arranged in a similar manner to figure 6, i.e. transect profiles
are shown on the left and variations with Re are shown on the right, at one or more
specific locations where one might expect the Re effects to be greatest. It is worth
emphasizing again that such effects would normally be expected to be greatest (per
decade of Re, say) at the lower Reynolds numbers. The fact that even the small-scale
data in figure 6 show no variation over a factor of over 20 in Re would immediately
suggest little likelihood of change with further increases in Re. Note, however, that at
the location near the leading edge (open symbols) there is a hint of a small Re effect
at the lower end of the Re range. One would eventually expect such an effect as the
Re value falls, not only because of the reducing extent of the inertial subrange in the
upstream spectrum (although Reλ is always above about 500) but also because the
boundary layer separating at the leading edge will be laminar, with the subsequent
transition in the shear layer occurring nearer and nearer the separation point as Re
rises. Once Re exceeds about 3 × 104, the changes are very small; this is consistent
with conventional wisdom. Figure 6(b) shows that the field experiments clearly yield
significantly lower Cp values. The data points shown were obtained by averaging
the results from all the available 30 minute records for which the averaged wind
direction was within ±2◦ or ±10◦ of the normal to the cube’s front face. Increasing
the allowable range of wind directions increases the resulting averaged Cp , but the
differences indicated are within the scatter of all the data. Only three records satisfied
the ±2◦ criterion, compared with 37 for the wider range. However, the Re value for
these 37 varied by a factor of about 2.8.

In an attempt to assess whether this field data showed any trend with Re, and to
increase the number of available data points, the central 20 minutes of each record
was split into four five-minute records. The trends in the resulting Cp values plotted
against Re suggested that Cp increases with Re (but with little statistical significance)
whereas Richards et al. (2001), using somewhat larger data sets, found an exactly
opposite trend. However, we believe that it remains more likely that the lower Cp

values in the field are a result simply of the relatively larger turbulence energies at the
lowest frequencies in the upstream flow (see § 3.1), as is frequently argued (e.g. CR),
and that little variation with Re is discernible. (Note that there is no unequivocal
way of separating these contributions from the larger-scale motions.) In any case,
there is certainly no theoretical justification for a Re trend within the range of, say,
106 <Re < 107 if one does not exist in the lower range of, say, 105 <Re < 106.
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Figure 7. (a) The axial velocity along the line y = 0 parallel to the top surface of the cube
and at 0.01h above it. The legend gives the values of Re × 10−4 for each case, with the data
source indicated: ST, small wind tunnel; LT, large wind tunnel. (b) U/Uh at x ′/h = 1.42 and
0.01h above the surface, as a function of Re.

Given that the mean pressure field is not significantly affected by Re one would
expect the mean velocity field to be equally insensitive. This was demonstrated by
making measurements of the axial velocity close to the top surface of the cube.
In view of the very high turbulence intensities (and mean shear) there, HWA is
inappropriate and the data was obtained using LDA (in both wind tunnels), PIV (in
the small tunnel) and sonic anemometers in the field. Figure 7(a) shows a number
of the resulting profiles. Note first that they clearly indicate that mean attachment
occurs around x ′/h= 1.75 – i.e. three-quarters of the distance along the top surface
or actually just beyond that point, recognising that the profile was obtained at
a distance 0.01h above the surface. Upstream of that location the mean flow is
reversed. Second, the data obtained using PIV and (in the field) the sonic anemometers
indicate noticeably more positive values of U/Uh. This is almost certainly a spatial
resolution issue and is the major reason we include these PIV data. The acoustic
path length of the sonic anemometers was equivalent to about 0.02h, so these would
be expected to overestimate U/Uh in this region of high shear. Similarly, a 16 × 16
pixel interrogation domain in analysing the PIV images implies a 1.25 mm × 1.25 mm
area – i.e. 0.016h × 0.016h, with equivalent doubling and halving of this for 32 × 32
or 8 × 8 pixel domains. It is clear that reducing the domain size led to noticeably
lower U/Uh values, tending towards the LDA data (which were essentially genuine
point measurements). The 16 × 16 data are quite close to those obtained with the
sonic anemometer, so resolution effects are clearly similar in the two cases, reflecting
the similarity in the normalized sampling volumes. Figure 7(b) shows the variation in
U/Uh at x ′/h= 1.42 with Re, using all the available data and, given these resolution
effects for the PIV and sonic data, there is little sign of any significant Re sensitivity.

The data obtained for the 45◦ orientation of the cube lead in some respects to
very different conclusions. Figure 8(a) shows the Cp distribution along the leading
diagonal on the top surface and this data also seems insensitive to Re, as suggested
by figure 8(b). There is a slight difference in the data from the two wind tunnels; this
may be partly a result of slightly different tapping locations but is just as likely to
be caused by the fact that such flows are inevitably slightly asymmetric; attachment
onto the leading vertical edge at y = 0 is inherently unstable, so the flow tends to
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Figure 8. (a) The mean surface static pressure along the leading diagonal on the top surface
of the cube at 45◦ to the approach flow. x ′/h = 1 is the leading corner (so the trailing corner is
at x ′/h =2.414). The legend gives the values of Re × 10−4 for each case, with the data source
indicated: ST, small wind tunnel; LT, large wind tunnel. (b) The data at x ′/h =1.215 as a
function of Re.
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Figure 9. (a) The mean surface static pressure along a line parallel to the 45◦ leading edge
and a distance 0.069h from it. The legend gives the values of Re × 10−4 for each case, with
the data source indicated: ST, small wind tunnel; LT, large wind tunnel. (b) The data at
x ′/h = 1.356 as a function of Re.

prefer attachment at just one side or the other, depending on the fine details of the
set-up. (See CR for discussion of this point). It is well known that in this 45◦ case,
two delta-wing-type vortices are generated by the separation along the two top 45◦

leading edges. The effects of changes in the upstream turbulence characteristics are
known to be much less significant for such cases. Indeed, even for a uniform laminar
upstream flow CR showed that the pressure variation along the leading diagonal was
very similar. So it is not surprising that the field data is in this case also similar
(figure 8a). (Note that the 45◦ data is taken from Richards et al. (2001), since in their
experiments the cube was physically rotated through 45◦ so that the upstream flow
was unchanged; recall figure 5(b).) Despite the similarity between the wind-tunnel
and field data, one might expect the flow immediately beneath the vortices to show
some Re effects, because of the influence of changes in Re on the size and influence
of the viscous core. Figure 9(a) shows the static-pressure variation along a line close
and parallel to the 45◦ edge and, in complete contrast with all the earlier data, the
profiles clearly depend strongly on Re. Note that in this case x ′ is measured in the
45◦ direction, starting with x ′/h= 1.0 at the leading corner. Figure 9(b) shows Cp at
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Figure 10. (a) The fluctuating surface static pressure along the axial centreline (y = 0) of the
cube normal to the approach flow. (b) The data at x ′/h = 1.356 as a function of Re. The solid
symbols are for data at x ′/h = 1.5, y/h = ±0.43.

the location x ′/h= 1.356 and it clearly varies strongly and monotonically, becoming
increasingly negative as Re increases. Even the field data point lies close to a linear
extrapolation of the wind-tunnel data. Note also that the CR data (not shown),
despite the very different upstream-turbulence characteristics, also agrees well with
the present results.

It is difficult to avoid the general conclusion that, provided the bluff-body geometry
and orientation is not such as to yield strong, relatively steady, vortical motions,
Re effects on the mean pressure field are not significant; otherwise, however, and in
certain regions of the flow, they are. Cp data collected at points near the top axial
edges of the 0◦ cube do not show Re effects, so it is not justified to suppose that
significant Re effects occur within regions near separation lines; only if the separation
leads to unusually strong and concentrated vortex motions do such effects occur.

4.2. Fluctuating data

The fact that in some cases the mean flow, as characterized by surface pressures
and near-surface velocities, is not significantly Re-dependent does not necessarily
imply that the same independence would hold for fluctuating quantities like the r.m.s.
pressure fluctuations or the mean square of the velocity fluctuations. Figure 10(a)
shows C ′

p profiles along the centreline top surface of the cube at 0◦; C ′
p is the r.m.s.

value (corresponding in some cases to the mean Cp data shown in figure 6(a)). There
clearly seems to be a Reynolds number effect, emphasized in figure 10(b), which
shows C ′

p at x ′/h= 1.36 as a function of Re. It is interesting that the field data
point again fits well with an extrapolation of the trend at lower Re even though the
same is not true for the mean Cp value (see figure 6b). The Re dependency seen in
figure 10(a) was also found in other profiles; measurements along the (top) transverse
centreline (i.e. along x ′/h= 1.5) were made, for example, and the results for two
symmetrically placed points close to the two opposite edges (at y/h = ±0.43) are
included in figure 10(b). The small differences between them at each Re are indicative
of a slight asymmetry but the trend with Re seems clear and is the same as the trend
found at points on the axial centreline.

In view of the differences in the levels of the upstream horizontal turbulence
fluctuations between the tunnels and the field, one might ask whether the variation in
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Figure 11. (a) The axial turbulence energy along the axial centreline of the cube (y = 0).
(b) The data at x ′/h = 1.58 as a function of Re.

C ′
p seen in figure 10(b) is caused by variations in, say, u′/Uh at z =h in the upstream

flow. Quasi-steady theory (e.g. Richards & Hoxey 2004), in which fluctuations in
surface loading are assumed to arise largely from the gustiness in the upstream flow,
is sometimes used to estimate the variance and/or peak levels of the fluctuating
pressure. For the normal cube orientation, where the variation in Cp with fluctuations
in wind direction are relatively small, the theory suggests that a more appropriate
normalization of p′ would use 2u′Uh, rather than U 2

h , where u′ is the r.m.s. value
of the velocity at z =h. However, replotting figure 10(b) as C ′

p/[2(u′/Uh)] ≡ p′/q ′

versus Re, where p′ and q ′ refer to r.m.s. values of the surface pressure and the
upstream dynamic pressure respectively, does not remove the Re trend. Plotting the
same quantity against u′/Uh does not collapse the data either. Of course, quasi-steady
theory is essentially a compromise and implicitly ignores the effects of unsteadiness
and turbulence generated by the obstacle itself on the fluctuating surface pressures.
One might not, therefore, expect to find such a collapse even in the absence of
Re effects and, in any case, the normalization would clearly be inappropriate if the
body were in a laminar flow (when u′ = 0). It is emphasised that the trend seen in
figure 10(b) is apparent within the wind-tunnel Re range, where the variations in
u′/Uh with Re are, by design, insignificant (see figure 3). We conclude that although
there must certainly be some effect of the different upstream characteristics between
full-scale and laboratory situations, there remains a significant Re effect.

There is rather less evidence of Re-dependence in the fluctuating-velocity data.
Figure 11, for example, shows the axial turbulence energy corresponding to the mean-
velocity profiles near the surface given in figure 7. Given the (PIV) spatial-resolution
issues discussed earlier, which lead to the underestimation of u′2/U 2

h , and the scatter
in the data from the larger tunnel there is little evidence of any definitive trend with
Re.

In contrast with the behaviour of C ′
p for the normal-cube case (figure 10), the C ′

p

data along the axial diagonal for the case where the cube is at 45◦ to the approach
flow were relatively insensitive to Re, as shown in figure 12. Only near the leading
corner can a clear dependence on Re be seen and the trend is shown in figure 12(b),
which includes data at x ′/h= 1.09 (just downstream of the corner) and x ′/h= 1.707
(the central point). Notice that in the central region of the top surface the fluctuations
are significantly lower than they are when the cube is normal to the approach
flow (cf. figure 10a), by at least a factor of 4. This is indicative of the dominance
and relative steadiness of the central attached flow generated by the vortex pair
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Figure 12. (a): fluctuating surface static pressure along top diagonal of cube at 45◦ to the
approach flow (y = 0). (b): data at x ′/h = 1.09 (open symbols) and 1.707 (the centre point,
solid symbols) as a function of Re.
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Figure 13. (a) The fluctuating surface static pressure along the transverse top diagonal of
cube at 45◦ to the approach flow (x ′/h = 1.707). (b) The data at y/h = −0.41 (open symbols)
and +0.41 (solid symbols) as a function of Re.

created by separation from the ±45◦ edges. However, these vortices themselves are
not particularly steady, as shown by Kawai (2002) and, in addition and as argued
earlier, are susceptible to Re changes. These two points are demonstrated by the data
in figure 13, obtained along the transverse diagonal. Figure 13(a) shows the profiles
of C ′

p and it is clear that at positions roughly underneath the conical vortices (i.e.
around y/h= 0.4) not only are the C ′

p values very much higher than around the
central region but they are also strongly dependent on Re. Figure 13(b), which shows
data at y/h= ±0.41, emphasizes the latter point. Note again the slight asymmetry –
rather greater for this 45◦ cube than for the normally oriented case, for reasons given
earlier – but this does not mask the clear Re trend.

In those cases where no Re effect is evident, it is possible to suppose that a
genuine Re-effect difference between field and laboratory is masked by an exactly
counterbalancing effect of differences caused by large-scale motions in the field. But
this seems highly unlikely; indeed, the data shown in figure 6(b), for example, might
suggest quite the reverse, i.e. that there is no genuine Re effect (if there were it
would be seen in the lower-Re wind-tunnel data) and it is the relatively larger energy
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Figure 14. Surface pressure spectra measured near the central point, for the cube normal to
the approach flow. (a): plotted so that the area is unity in each case; (b): plotted in the normal
way, to emphasise behaviour in the high and medium frequency ranges. Note the straight solid
and dashed lines, having the slopes indicated.

available at the largest scales in the field that leads to a rather more negative Cp

near the leading edge of the body. Caution is needed here, however, in view of the
limitations in the field data, discussed earlier. Notwithstanding this possible effect of
the large-scale motions, there is little else in the data that could be taken as evidence
that the relatively larger spread of scales in the field leads to significantly different
flow behaviour around the body. Overall, the results discussed above indicate that
nearly all the field data, whether for mean or fluctuating surface pressures or near-
surface velocities, lie either on plausible extensions of the very clear Re trends in the
wind-tunnel data or, in the absence of such trends, have mostly similar magnitudes
to those measured in the laboratory.

The spectral content of the fluctuating-surface-pressure field is also worth some
consideration. Detailed pressure spectra were not obtained for all surface locations
and cube orientations but in figure 14 we show spectra obtained near the central
point on the top of the cube normal to the approach flow. When plotted as f Ep(f )
versus f h/Uh, normalized so that the area under each plot is unity, as in figure 14(a),
two features are immediately apparent. First, it is clear that in the field the relatively
larger, lowest-frequency, motions in the upstream flow lead to a very much larger
energy content in Cp′ at the largest scales. This is not, however, indicative of large
differences in the character of the flow around the body although, as noted above, it is
consistent with the discernibly lower Cp values in the field. Second, although plotting
this way yields an inevitable peak in the spectrum, there is a separate secondary peak,
discernible most clearly in the field data around f h/Uh =0.6. This is more obvious
for the laboratory data when using scaling expected to lead to spectral collapse in the
high-frequency range, as shown in figure 14(b). In all cases, the small secondary hump
occurs around f h/Uh = 0.6; it is masked in figure 14(a) in the laboratory data because
it coincides roughly with the general peak. In the field data, the latter is at a much
lower frequency (perhaps around f h/Uh =0.0025 because of the relative dominance
of the large-scale motions). This ‘Strouhal’ number, 0.6, is much higher than would
be given by classical von Karman (alternate) vortex shedding, but it is similar to that
typical for the in-phase shedding which has previously been noted in strongly three-
dimensional flows around surface-mounted bodies. It is perhaps more likely, however,
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that it reflects the time scale of the largest structures occurring in the separated shear
layer above the body, as the attachment region is approached. A number of studies of
two-dimensional separated flows have found that the peak spectral energies (in both
velocity and surface pressure measured near reattachment) caused by these structures
occur around f xR/U = 0.5, where xR is the distance between the reattachment and
separation points (e.g. Hudy, Naguib & Humphreys 2003; Lee & Sung 2001). In the
present case, for the cube normal to the flow, xR is about 0.75h from the leading edge
(see figure 7a), so f xR/Uh ≈ 0.45, suggesting a similar cause.

Further comments regarding figure 14(b) are appropriate. Whilst the sampling
frequency for the lowest Re case was high enough to capture the expected (highest
frequency) f −5 range before filtering or aliasing effects, the other two spectra do not
extend that far but no doubt would have done if higher sampling rates had been
used. (The pressure signal in the field, for example, was sampled at 25 Hz, yielding
a normalized aliasing frequency near f h/Uh = 12, as evident in figure 14(b)). An
inertial subrange might be expected to have a f −7/3 slope and this is evident in the
higher Re laboratory data and (marginally) at lower Re. In the field, however, the
sampling rate was again too low to capture this region. At lower frequencies the field
data have a substantial f −4/3 region, as suggested by the ‘superposition of vortices’
model discussed by Hoxey, Quinn & Richards (2005). The laboratory data is not
inconsistent with this slope, given the presence of the secondary hump. This −4/3
dependency is significantly different from the −1 slope normally expected of a regular
boundary-layer pressure spectrum in the overlap region between the inertial range
and the low-frequency parts of the spectrum (see e.g., Farabee & Casarella 1991;
Goody 2004 and references therein). The flow above the top surface of the cube is of
course very different from a regular boundary layer, and it appears that the combined
vortex model of Hoxey et al. may have some merit.

5. Final remarks and conclusions
We conclude by emphasizing the major points arising from the work presented

in this paper. First, for classes of bluff-body flow in which there are no strongly
concentrated or relatively steady vortex regions, the mean pressure and velocity fields
are not significantly Re-dependent. Our data extend well over two orders of magnitude
in Re, from around 2×104 at the lowest. However, the fluctuating statistics may show a
dependence on Re. This could well be caused simply by the slowly extending range of
scales in the energy spectra as Re increases, measured by increasing λ/h values, even
if the basic upstream flow properties (such as the mean shear, the turbulence levels
and particularly Melbourne’s parameter) remain essentially constant. The major im-
plication of this conclusion is that if only mean wind loads are of interest, the classical
approach of scaling up from wind-tunnel tests is perfectly acceptable, for such flow
classes, whereas if fluctuating loads are expected, Re corrections should be considered.
Of course, in either case, appropriate simulation of the upstream flow, particularly at
the smaller scales represented by, say, Melbourne’s parameter, is required.

Second, and in contrast, for cases where strong concentrated vortices exist essentially
independently of the nature of the upstream flow (and usually, rather, as a direct
result of the body geometry and orientation), clear Re effects do exist in the mean-
flow field. Not surprisingly these are most evident in regions close to the cores of the
vortices, where the effects of changing λ/h (and even viscous effects) are likely to be
more significant. There is also Re-dependency in the fluctuating statistics, although
at locations remote from the concentrated vortices this is weak, which is similar
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perhaps to that found in the first flow class noted above. The Re trends are evident
at laboratory scales and may continue all the way up the Re range to typical field
values, although this latter statement cannot be proved from the present data; there
is an inevitable gap in the Re range above the largest laboratory Re and below the
field Re (see figure 9b, for example), so one cannot be sure whether the data might
become independent of Re within that gap region. Re variations in field experiments
are always limited to a factor of only 2 or 3, which, given the non-stationary nature
of the wind field, is usually insufficient to detect trends of statistical significance.
The implication here is that, for vortex-dominated flows, even mean wind loads are
likely to be Re-dependent so that corrections are required if full-scale data are to be
derived from wind-tunnel results. Precisely how to make such corrections is unclear
and requires further work.

Although all the results presented here have been for cubes there is no reason to
suppose that the conclusions would not remain valid for other sharp-edged body
shapes; rectangular objects of a wide variety of heights and aspect ratios produce
flows containing strong relatively steady concentrated vortices, or not, depending
on their orientation. The long-standing belief in Re similarity in bluff-body flows,
particularly when there is significant turbulence in the upstream flow (which might
intuitively be expected to strengthen the hypothesis), seems therefore to be generally
questionable. Its validity depends both on the kind of flow that occurs and on the
particular quantities of interest. Consequently, the design of laboratory experiments
intended to act as surrogates for typical field cases should be undertaken with caution.
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