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Abstract For zero-truncated count data, as they typically arise in capture-
recapture modelling, the nonparametric lower bound estimator of Chao is a
frequently used estimator of population size. It is a simple, nonparametric
estimator involving only counts of one and counts of two. The estimator is
asymptotically unbiased if the count distribution is a member of the power
series family and is providing a lower bound estimator if the distribution is
a mixture of a member of the power series family. However, if there is one-
inflation Chao’s estimator can severely overestimate as we show here. This is
also illustrated by routinely collected country-wide data on family violence in
the Netherlands. A new lower bound estimator is developed which involves
only counts of twos and threes, thus avoiding the overestimation caused by
one-inflation. We show that the new estimator is asymptotically unbiased for
a power series distribution with and without one-inflation and provides a lower
bound estimator under a mixture of power series distributions with and with-
out one-inflation. For all estimators bias-adjusted versions are developed that
reduce the bias considerably when the sample size is small. A simulation study
compares the modified Chao estimator with the conventional estimator as well
as with an estimator suggested by Chiu and Chao more recently.
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1 Introduction

The size N of a target population needs to be determined. For this purpose
a trapping experiment or study is done where members of the target pop-
ulation are identified at T occasions where T" might be known or not. For
each member ¢ the count of identifications Xj; is returned where X; takes val-
ues in {0,1,2,--- ,T} for i = 1,--- , N. However, zero-identifications are not
observed, they remain hidden in the experiment. Hence, a zero—truncated sam-
ple X1, -, X, is observed, where we have assumed without loss of generality
that X,,11 = --+ = Xy = 0 (for a general introduction into the topic see
Borchers et al. 2004, Bunge and Fitzpatrick 1993, Bunge, Willis, and Walsh
2014). One way to undertake capture-recapture modelling is on the basis of
a zero-truncated count distribution fi, fo, ..., fr where f, is the frequency of
count z with T being the largest observed count and n = f; + ... + fr is
the observed sample size. The frequency of zero-counts (of hidden members of
the target population) remains unobserved and needs to be estimated. For this
purpose Chao’s (1987) conventional estimator fZ/(2f2) for the unobserved fre-
quency fo of zero-counts is frequently used. Chao’s estimator n + f2/(2fs) of
the population size N is asymptotically unbiased if count X follows a Poisson
distribution and represents a lower bound if X follows a mixture of Poisson
distributions. In fact, it is pointed out in Chao and Colwell (2017) that the
result of asymptotic unbiasedness of Chao’s estimator holds under the weaker
condition that only the rare counts need to follow a Poisson distribution, more
precisely the counts of ones and twos, the singletons and doubletons, and the
unseen units need to follow a Poisson distribution. The purpose of this note
is to present a modification of the Chao estimator in the case of one-inflation
as it can severely over-estimate in this case. This is in considerable contrast
to the expectation of users of the estimator as it is expected that it provides a
meaningful lower bound , i.e. a lower bound that is relatively close to the true
population size.

One-inflation can occur when the population under study has a subpopulation
that cannot be captured anymore after the first capture. Below we discuss an
example of police data on perpetrators of domestic violence. Here it is realistic
to assume that some individuals in the population refrain from domestic vio-
lence after their first contact with the police, in other words their probability
to have another capture is zero. A second example is hospital admissions of
drug users: the first hospital admission may lead to a change in drug use. In
animal studies the idea may be relevant in trap avoidance, where an animal
avoids the trap after being captured for the first time. Recently, the problem
of one-inflation has received some attention in the literature. Chiu and Chao
(2016) consider estimating microbial diversity in the presence of sequencing
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errors. Bunge et al. (2012) consider estimating population diversity with unre-
liable low frequency counts (see also Bunge et al. 2014, Willis 2016). All have
in common that the frequency f; of observed singletons is inflated. Whereas
in Bunge et al. (2012) several approaches are suggested to deal with inflated
singletons including a mixture model and left-censoring, Chiu and and Chao
(2016) and Willis (2016) suggest a sort of double estimation procedure. First,
the observed frequency f is re-estimated (Willis 2016) or bias-adjusted (Chiu
and Chao 2016) and then incorporated in the ratio-estimator of Willis and
Bunge (2015) or the Chao estimator (Chiu and Chao 2016). In addition, Puig
and Kokonendji (2018) suggest several lower bound estimators for count distri-
butions with log-convex probability generating functions including compound
and mixed Poisson distributions. These, hoowever, do not cover the case of
one-inflation. Here, we will develop a lower bound estimator generalizing the
original Chao (1987) estimator without dealing with the frequency f; of sin-
gletons measured with error.

To layout the most general setting we consider discrete distributions of the
power series family with density

px(0) = a,0" /n(0), (1)
where a, is a known, nonnegative coefficient, § a positive parameter and
x = 0,1,--- ranges over the set of nonnegative integers; n(0) = > .- az0"

is the normalizing constant. The power series distributional family contains
the Poisson, the binomial, the geometric, the negative-binomial with known
shape parameter, the log-series and others. The coefficient a, defines the spe-
cific member of the power series, for example a, = 1/z! defines the Poisson,
ay = (Z) forx = 0,---,T with positive integer T' defines the binomial (a, = 0
for x > T) and a, = 1 gives the geometric. Assume further that the target
population of interest is not homogeneous so that a more adequate modelling
is achieved with the general mixture model for the power series family

m, = /9 p2(0) £(6)do. (2)

Whereas the modelling capacity of the power series distribution is limited,
mixtures of power series distributions experience enhanced flexibility in model
fitting. The mixture (2) has two parts, the mixture kernel p,(#) and the mixing
distribution f(6). If we leave the mixing distribution unspecified, the nonpara-
metric estimate is discrete (Lindsay 1995) and connects to clustering.

However, when mixed power series distributions are used to model the zero-
truncated distribution, problems may arise due to the lack of identifiability
of the mixing distribution (see Link 2003); in addition, boundary problems in
maximum likelihood estimation may occur for finite mixture models as out-
lined by Wang and Lindsay (2005). Hence a renewed interest in lower bound
estimation has emerged (Mao 2006; Mao and Lindsay 2007). The original idea
of Chao (1987, 1989) was to keep the mixing distribution unspecified and
to apply nonparametric inference based on the Cauchy-Schwarz inequality
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in the context of zero-truncated count mixture modelling which arises natu-
rally in capture-recapture experiments or studies. Here we take up this idea
again and develop it further for one-inflated count distributions. The asso-
ciated zero-truncated densities will be denoted as p}(0) = p.(0)/[1 — po(6)]
and m} (0) = m,(0)/[1 — mo(0)] for the zero—truncated power series and the
zero—truncated mixture of power series distributions, respectively.

2 Mixtures of Power Series Distributions and the Monotonicity of
the Probability Ratio

The power series (1) has an important property. If we consider ratios of neigh-
boring probabilities multiplied by the inverse ratios of their coefficients then

ry = & Potl _ g (3)
Qgp4+1 Pz

in other words, the ratio r, is constant over the range of  with value equal to
the unknown parameter 6. Note that r, is also identical to the zero-truncated

ag

+
quantities a—lp—f. A nonparametric estimate of r, is readily available with

a‘;ﬁ% where f, is the frequency of observations with count value .

The graph x — 7, is called ratio plot and was developed in Boéhning et al.
(2013) as a diagnostic device providing evidence for the aptness of a distri-
bution. The coefficient a, determines the type of ratio plot. For example, if
a; = 1/z! we investigate for a Poisson distribution and we call the associated
ratio plot Poisson ratio plot, or if a, = 1 we call it the geometric ratio plot.
The ratio plot might be used as guidance for choosing the component density
in the mixture. We follow the paradigm that the more horizontal the ratio
plot the more homogeneous is the population w.r.t. the component density,
and this would indicate a preference of the distribution with more horizontal
pattern in the associated ratio plot.

Py =

2.1 Example 1

We apply the ratio plot to family violence data for the Netherlands in the year
2009 provided by van der Heijden et al. (2014). Here the perpetrator study
is reported with the data given in Table 1. There were 15,169 perpetrators
identified being involved in a domestic violence incident exactly once, 1,957
exactly twice, and so forth. In total, there were 17,662 different perpetrators
identified in the Netherlands for 2009. The data represent the Netherlands
except the police region for The Hague. It is known that domestic violence
is largely a hidden activity and many incidents remain unreported (Summers
and Hoffman 2002). In Figure 1, we see the geometric ratio plot 7, = foi11/fx
against x for the family violence data in the Netherlands. Clearly, the ratio
plot shows some monotone increasing trend. We will see in the following that
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Table 1 Frequencies of the number of times perpetrators have been identified in a domestic
violence incident in the Netherlands in the year 2009

Year f1 f2 fs  fa fs  fer n
2009 15,169 1,957 393 99 28 16 17,662

this monotone pattern can be associated with some form of population het-
erogeneity. In addition, it is apparent that the first ratio f2/f1 is too small to
be in agreement with the line pattern we see in the ratio plot. This indicates
an inflation of ones or singletons in the data. In conclusion, we observe two
aspects in Figure 1: the occurrence of heterogeneity and of one-inflation.

Fig. 1 Geometric ratio plot for perpetrator domestic violence identifications in the Nether-
lands 2009

0.30

0.25 LJ

ratio

0.15

We return to the question how unobserved heterogeneity is associated with
the ratio plot, or in other words, how unobserved heterogeneity can be iden-
tified in the ratio plot. It was shown in (2) that the occurrence of unobserved
heterogeneity leads to the mixture of power series distributions. We can like-
wise consider the ratio plot for mixtures

a; m
ry = o el (4)
Qg1 My
where we use the coefficients a, associated with the mixture kernel, for exam-
ple, in the case of a Poisson kernel a,, = 1/x! or the case of a geometric kernel
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a, = 1. The estimate of r, will not change, however, the interpretation of the
observed pattern in the ratio plot will. This is mainly due to the following
result (Chao 1987, and more general Bohning and Del Rio Vilas 2008):

Theorem 1 Let m, = [, p.(0)f(0)d0 where p.(0) is a member of the power
series family and f(0) an arbitrary density. Then, for r, = a“ﬁ% we have
the following monotonicity:

Te < Tptl
forallz=0,1,---.

This result says that in the case of a mixture of power series distributions the
ratio plot will no longer show a horizontal line pattern but will be increasing
monotonously. Hence, if a monotone pattern occurs in the ratio plot this may
be taken as indication for presence of heterogeneity which can be captured by
a nonparametric mixture (2). For this general form of allowing population het-
erogeneity the estimator of Chao had been developed. If on top of this general
heterogeneity one-inflation occurs, Chao’s estimator needs modification which
we will discuss in the next section.

3 Modified Chao estimation

As a consequence of the result in Theorem 1 we have that 22 < 4LM2 gy
a1 mo az M1

2
apaz My
< . 5
a% meo — mo ( )

Replacing the theoretical quantities m, by their sample estimates f,/N leads
to Chao’s estimate for fo (Chao 1987, 1989)

: _ aoaz f{
a% f2 . (6)

0=

By comparing (5) with (6) it can be seen that (6) provides a lower bound of
the part of the population that is missed. The estimate (6) is most popular and
frequently used in capture-recapture estimation, in particular in connection
with the Poisson density (a, = 1/z!) in the mixture (2). However, it should
be noted that other bounds are possible as well using the monotonicity result
in Theorem 1. Note that also

ai ma az M3

=2 <
az My as msz

(7)

holds, or equivalently

ajas m%

a3 ms
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This bound has never been used nor elaborated on, as it seems pointless since
we have observed counts of one, and no bounds seem to be required. If we
replace m; in (5) with the bound given in (8) we yield

apas [ aias m2 2 1
2 ( 2 2) S mo. (9)
ai as ms

The bound can be simplified to

2,3
apaz m

33—3 < my. (10)
a3 mj

Plugging in relative frequencies leads to

prew _ 9005 /3 (11)
a f3

Note that we can expect félew to be smaller than fo in the mean as

2 0,3 2

apasz Moy apgaz My
L (12)

Gy M3 ai ma

Specific forms of the modified Chao estimator arise for mixtures of particular
power series members. We have

3
%%, if m,, is a Poisson mixture,
3
A 3
new ; 3 1 1
1 ew _ %, if m, is a geometric mixture,
T-2)2 3 . . . . .
7(’(T—)3) %%, if m, is a binomial mixture.
3

Note that for T" becoming large the lower bound for the Poisson mixture and
the binomial mixture will agree. Furthermore, if the mixture reduces to a
power series distribution (i.e. there is no mixing involved), both estimators,
fglevv and fo, are asymptotically unbiased. Note that, similar to the original
Chao estimator (Chao and Colwell 2017), for asymptotic unbiasedness the
assumption of a power series distribution can be relaxed to hold only for the
rare counts, the doubletons and tripletons, i.e. counts of twos and counts of
threes, and the unseen units.

The question arises why the bound félew could be of interest, as, according
to (12), it will typically provide an even lower bound than the conventional
Chao lower bound estimator fo. This question is the topic of the next section.

4 One-inflation

In practice, counts of one, the singletons, occur often more frequently than
compatible with a nonparametric mixture model. For example, in the family
violence study a portion of the perpetrators having a contact with the police
the first time might take this as a serious motivation for a change in behavior



8 Dankmar Bohning et al.

and it will never happen again. As Figure 1 indicates, there appear to be two
processes going on. The first process can be viewed as a mixture of geomet-
ric distributions (as the linear trend in the ratios of frequencies for counts
larger than one indicates) . The second process is an inflation of ones (as the
much lower ratio fa/f1 supports). In these instances, it is more appropriate
to allocate extra-mass at counts of one. Hence, we assume that the following
one-inflation model holds:

(13)

, (I-m)+mmy forz=1
My, for £ =0,2,3,---’

where m,, is the mixture of a power series member. Note that (13) can be
written as m/, = (1 — m)d1(x) + mm, for x = 0,1,2,... and dy(xz) = 1 for
x = y and zero otherwise. For a one-inflation model, more singletons will
occur than compatible with the nonparametric mixture model as the one-
inflation model is outside the class of nonparametric mixtures. Hence Chao’s
estimator is no longer a lower bound estimator as Theorem 1 no longer holds. In
fact, Chao’s estimator can experience serious overestimation as also becomes
clear when considering its form which involves fZ. Note that one-inflation
models behave differently than zero-inflation models as every zero-inflated
power series distribution can be written as the mixture (1 — 7)dg(z) + mm, =
(1 —=m)a,0%/n(0) 4+ mm(x) which is within the class of nonparametric mixtures
of power series distributions.

Here comes now the advantage of the new lower bound estimator.

Theorem 2 Assume a one-inflation model m., as given in (13), where m, =
Jo () f(0)d6 where p(6) is a member of the power series family and f(6)
an arbitrary density. Then

apa? mb>

3 2 /

I my. (14)
2 M3

We provide a short proof of the result in the appendix. As a consequence
of this theorem we can expect Jfglew to be a lower bound estimator in the
mean under heterogeneity of the parameter of the power series distribution
and under one-inflation.

Consider the case of a power series distribution with one-inflation, in other
words m!, = (1 — m)d1(z) + 7p,. Then, the conventional Chao estimator has
asymptotic bias

2
aogg [(1—m)+ 7pi] N — ao/n(O)N

ay P2

whereas the newly suggested estimator is asymptotically unbiased, even if the
power series distribution is one-inflated.
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Example 2

To illustrate the potential of large bias with the conventional Chao estimator
consider the following synthetic example. 500 counts were simulated from a
Poisson with parameter 1 and merged with 500 extra-ones so that in total N =
1,000 is the population size. The frequency distribution as follows: f, = 186,
f1 =690, fo =95, f3 =32, fasr = 7, so that the observed sample size is n =
814. The associated ratio plot is presented in Figure 2 and shows clear evidence
of one-inflation. In this case, ignoring the fact that fj is known, fgleW = 186,
corresponding exactly to the observed fy, which compares to the conventional
Chao estimator fo = 2,434, the latter giving a serious overestimate of the true
fo = 186.

Fig. 2 Poisson ratio plot for the synthetic data of Example 2
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Example 3

Vergne et al. (2014) discuss count modelling of highly pathogenic avian in-
fluenza H5N1 in Thailand. These outbreaks have enormous social and eco-
nomic impact on the the society. The first outbreaks of highly pathogenic
avian influenza H5N1 were reported in Thailand in January 2004. For around
two years, a large epidemic occurred through-out the country, causing massive
mortality in chickens and ducks. The economic consequences of these outbreaks
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Table 2 Frequency distribution of the count of reported outbreaks per subdistrict in Thai-
land from July 3rd 2004 to May 5th 2005.

count of reported outbreaks fo f1 fo fa fa fs  fe fr fs+ n
frequency of subdistricts 6,587 410 161 87 46 26 21 8 20 769

were dramatic, as more than 65 million birds were culled and over US$ 130
million was spent compensating farmers losses during 2004 and 2005 (Vergne
et al. 2014). Vergne et al. (2014) also provide the distribution of the num-
ber of outbreaks per subdistrict in Thailand from July 3rd 2004 to May 5th
2005. See also Table 2. According to this table, there are 6,587 subdistricts in
Thailand which reported no outbreaks. However, it can be assumed that there
were a considerable number of subdistricts affected by the pathogenic avian
influenza H5N1 but reported no outbreaks. Hence, it is of considerable interest
to have an estimate of this number. This can be accomplished by treating the
distribution as zero-truncated. Figure 3 shows the associated geometric ratio
plot based upon the first five frequencies (we restrict the plotting on the larger
frequencies), ignoring the the zero-counts. The geometric ratio plot shows ev-
idence for a geometric distribution, except for z = 1 which is lower than the
other ratio indicating one-inflation. This becomes even more clear if we us the
concept of geometric ratio plot under the null, a diagnostic tool developed in
Bohning and Punyapornwithaya (2018). The idea is to plot the logarithm of
#L% against x as before but also include a pointwise 95% confidence
band which is computed on the basis of power series distribution which is as-
sumed to be valid. If the distribution is valid then the band should contain
all empirical log-ratios. Figure 4 shows the geometric ratio plot under the null
for the H5N1 data set. Clearly, the first point is below the confidence band
indicating one-inflation. Again, we assume an arbitrary mixture of geometric
distributions with one-inflation as the analysis the ratio plots suggests. We
find €V = 551 and fy = 1,044. We note that the conventional Chao esti-
mator is about twice as large as the modified Chao estimator, an effect we
would expect if there is one-inflation. We conclude that we estimate at least
550 subdistricts of the 6,587 subdistricts to be affected by the outbreak.

Py =

Example 1 (revisited)

We return to Example 1 of the domestic violence study of section 2. A like-
lihood ratio test, testing a simple geometric against a one-inflated geomet-
ric, leads to a value of 98.9 which is highly significant given that the null-
distribution is a x2-mixture 0.5x3 + 0.5x3. We also include the geometric
ratio plot under the null for the domestic violence data in Figure 5. There is
clear evidence that the first ratio is outside the confidence band, indicating
one-inflation. To be more general, we assume an arbitrary mixture of geo-
metric distributions with one-inflation as the analysis the ratio plots suggests
(even though the remaining points are inside the confidence band there is
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Fig. 3 Geometric ratio plot for the H5N1 outbreak data of Example 3
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a cleare monotone increasing pattern visible). We find W = 48,527 and
fo = 117,577. Note that the conventional Chao estimator is much larger than
the modified Chao estimator, an effect we typically expect if there is one-
inflation. The size of the estimated hidden domestic violence is as expected
since dark number research estimates the number of reported domestic crimes
between 15% and 30% (Summers and Hoffman 2002). Our estimates given
here are likely on the conservative side.

5 Bias reduction

The Chao estimators can have severe bias when the sample size is small.
To understand the occurrence of bias we go back to the original Chao esti-
mator as developed in (5). As the arguments used in bias-reduction are not
readily available in the published literature we outline them here. We try to
estimate Nm?/my = E(f1)?/E(f2) using f?/fo. However, the latter estimates
E(f%/f2) which is not necessarily close to E(f1)?/E(f2) unless f1/N and fo/N
are close to my and mes, respectively. Hence the idea of bias reduction is to
express F(f1)?, which we cannot estimate directly, as fZ by means of E(f;)
and E(f2%) which we can estimate directly as f; and fZ. Indeed, we use that

Var(f1) = E(ff) — BE(f1)* = E(f1),
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Fig. 4 Geometric ratio plot under the null for the H5N1 outbreak data of Example 3
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by means of a Poisson assumption. It follows that E(f1)? = E(f%) — E(f1)
which can be estimated as fZ— f; leading to the numerator of the bias-corrected
Chao estimator. Turning to the denominator, we note that our interest is
in 1/\ = E(fy), but using 1/fs will estimate E(1/f3) if the latter exists.
Alternatively, 1/(1 4 f2) will estimate E[1/(1 + f2)] which can be evaluated
using the Poisson assumption for fo as

E( 1 ) = Z b x exp(— M)A/ fol = 1/X + exp(—A) /A &

fa+1 = (ot 1) E(f2)’

with the approximation error less than 0.001 for A > 5. This leads to the
bias-corrected Chao estimator

apaz fi(f1—1)

NChao-c =7+ @ forl (15)

In a similar way, we derive the bias correction for the modified Chao estimator

leading to

aga f3 —3f3 +2f
aj (fs+1)(fs+2)

NChao-N =1 + (16)

but leave the details for Appendix 2.
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Fig. 5 Geometric ratio plot under the null for the domestic violence data of Example 1
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6 Variance estimation

It is useful to put the proposed estimator into a likelihood framework. Evi-
dently, the estimator (11) uses only counts of ones and twos. Hence it seems
reasonable to consider a binomially truncated likelihood

log L = f>log(p) + f3log(1 —p), (17)
where p = P(X = 2|X = 2 or X = 3) = az/(az + a3f). The log-likelihood
(17) is maximized for p = fo/(f2 + f3), or, 6 = %;p) = Zi—ﬁ’ Furthermore,

it is easy to see that E(fol|f2, f3:p2) = gz%zg5 (f2 + f3). Replacing 6 by its

estimate 6 gives

2 r3

7 ap apas f5
0=——(fot f3)= T3
a292 + (L303 ( ) ag 3.2

which corresponds to the proposed estimator (11).

To continue developing a variance estimate we write (11) as T(6)(f2 + f3)

with T'(0) = m. We will use the fact that Var(X) = E[Var(X|Y)] +
Var[E(X]Y)] for any two random variables X and Y. This conditioning tech-
niques is helpful in the capture-recapture context (BShning 2008; van der
Heijden et al. 2003). We apply this here by using X = T(0)(f2 + f3) and
Y = fo + f3. The first term E[Var(X|Y)] can be approximated as

(fo + f3)*Var[T(0)] = (fo + f2)*Var(9)T'(6)*.
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A~ 2 6 8 2 A~ 2
As T'(0)? = a;g?’ %% and Var(0) ~ Z—%% we yield for the first

term
agaz f5 (2f2 +3f3)*
a§ f3 (fa+t fs)

The second term Var[E(X|Y)] can be approximated by T'(0)2(f, + f3) since
E[T(0)2(f2 + f3)|(f2 + f3)] = T(0)(f2 + f3), so that the result follows from
Var(fa + f3) = E(f2 + f3) under the conventional Poisson assumption. The
latter is then estimated by the moment estimate fo + f3. In total we yield

ajaz f5 (2f2 +3f3)* | afay  f9
as f3 (fa+ fs) a$ fi(fa+fs

Note that (18) can be written in a simple form as

72 (1 n (2f2 + 3f3)?

(18)

- ) st fo), (19)

where fo is given by (11). As we have seen in the previous section, it is neces-
sary to stabilize the estimator (11), it is also necessary to use a bias-corrected
version of the variance estimator. We suggest to use

;2 (2f2 +3f3)° )
14+ —— + 20
fO,b< (f2+1)(f3+1) /(f2 f3) ( )
as a variance estimator for fo, where fo,b = afff% is the bias-

corrected estimator of fy developed in the previous section in (16).

To investigate the performance of our variance estimator (20) we proved a
small simulation study comparing the estimated standard error according to
(20) with the true standard error estimated from the simulation. The results
are provided in Table 3. It can be seen that the approximation is excellent for
the larger population size N = 1000 and reasonable for the small population
size N = 50 where is provides a conservative estimate. A more detailed inves-
tigation of the proposed variance estimator is given in Kaskasamkul (2018).

Table 3 Ratio of estimated standard error using (20) to the true, simulated standard error
for various geometric distributions with and without one-inflation

ratio E(s.e.(fo)/s.e.(fo)

N 6 | no one-inflation 20% 50%
50 0.1 1.547 1.561 | 1.597
0.2 1.505 1.582 | 1.593

0.3 1.525 1.563 | 1.668

0.4 1.580 1.634 | 1.559

1000 0.1 1.044 1.061 | 1.071
0.2 1.000 0.967 | 1.027

0.3 1.000 1.011 1.037

0.4 1.050 1.021 | 1.018
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We are now able to give a more realistic estimation of the hidden frequency
fo for our examples. This is done in Table 4. All estimates appear to be
realistic. In the synthetic examples the standard error is relatively large, likely
due to the small frequencies in the upper counts.

Table 4 Estimates of the frequency of hidden units with standard error and approximative
normal 95% confidence interval; all examples use a geometric mixture kernel in the mixture
(2) except the synthetic example which uses a Poisson

example fop ° s.e. 95% CI
family violence | 48,085 (48,202) | 5,837 36,646 — 59, 525
synthetic 165 (169) 76 16 — 313
H5N1 523 (527) 166 199 — 847

§ Numbers in brackets refer to the Chiu-Chao estimator of section 7.1

7 Simulation

In the first part, we concentrate on the comparison of the the bias-adjusted
conventional Chao-estimator (15) and the bias-adjusted modified Chao esti-
mator (16). In the second part, we compare the bias-adjusted modified Chao
estimator (16) with a previously suggested estimator by Chiu and Chao (2016).

7.1 Comparison of the modified Chao estimator with the conventional Chao
estimator

In the following we will focus on the bias-adjusted conventional Chao-estimator
(15) and the bias-adjusted modified Chao estimator (16). Bias will occur for
any member of the power series family as sampling distribution for X. How-
ever, the bias-reduction has been developed under a Poisson assumption for
the frequency f,. To demonstrate how well the bias reduction works (outside
the Poisson sampling for X) we consider as basic sampling the geometric. The
latter, as mixture of a Poisson with a geometric, seems to be an attractive
distribution as it can incorporate some basic form of heterogeneity (the one
that can be modelled by an exponential). We look at two population sizes
N =50 and 1,000 and consider five different scenes with different parameter
constellations for each of them.

1. Scene 1 is the homogeneous geometric distribution with four parameters
0 =0.1,0.2,0.3,0.4 denoted as populations 1 to 4.

2. Scene 2 is as scene 1 but with 20% one-inflation. More precisely this means
that with probability 7 = 0.8 the count is taken from a homogeneous
geometric and with probability 1 — 7 = 0.2 it is taken as a count of one.

3. Scene 3 is as scene 1 but with 50% one-inflation.
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4. Scene 4 allows heterogeneity in the parameter of the geometric in addition
to 20% one-inflation. The count is taken with probability 7 = 0.8 from
a equally weighted mixture of two geometric distributions. The following
six two-component mixture populations were considered: 0y = 0.2,0.3,0.4
with 6; = 0.1, 8, = 0.3,0.4 with #; = 0.2 and 6, = 0.4 with 6; = 0.3
and denoted as populations 1 to 6. Here 6; is parameter of the geometric
from the first component and 65 is the parameter of the geometric from
the second component.

5. Scene 5 is as in scene 4 but with 50% one-inflation.
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The results of the simulation study are presented in Figure 6. For a generic
estimator N of population size we define relative bias as

B
gpv N=N-N

and relative standard deviation as

Lo o oo
EZ(Ni_N) /N

i=1

to allow for comparisons across different sized populations. It is clear that the
modified Chao estimator NChao—N with bias-reduction avoids the overestima-

tion bias of the conventional Chao estimator NChao—C that clearly occurs for
all populations with one-inflation as the left panels in Figure 6 indicate. It be-
comes also transparent that the larger the one-inflation the higher the overesti-
mation bias of NChao ¢- Furthermore, in a way surprisingly, also the relative

standard deviation is smaller for NChao N in comparison to NChao (s most
significantly for the one-inflation scenes, as the right panels in Figure 6 show.
2 3

apay f72

In Figure 7 we provide a comparison of the modified Chao estimator n+ =5 7
2 3

A~ 2 3 2
with its bias-corrected version N a0 N = 1+ o5 % (given in (16))
2
on the basis of a geometric distribution. Clearly, the bias-corrected version is

performing well.

7.2 Comparison to previously suggested estimators

Chiu and Chao (2016) also discusses the case of spurious singletons. Using the
Cauchy-Schwarz inequality they derived the inequality E(f1) > (2E(f2)?)/
(3E(f3)), for large observed sample size (Chiu and Chao 2016; eq. (4a)). They
propose further to estimate this quantity by fi =2 f2 /(3f3) and use this
estimate in the conventional Chao estimator f CC* = F2/(2f2) = (2£3)/(9£2)
which corresponds exactly to our proposed estimator in the Poisson case. In eq.
(6b) Chiu and Chao (2016) suggest to use the bias-corrected version fi(f; —
1)/(2f2 + 2) and we also suggest here to use the bias-corrected estimate of
fi = falfo — 1)/(2f3 2) with the same line of argument as for the bias-
correction for fo These bias corrections are utmost important, in particular,
when working with higher higher moment estimates as could be seen in the
previous section.
In our general power series framework, the bias-corrected Chiu-Chao esti-
mator takes the form

- agaz fr.cclfo.co—1)
Newr = : :
CcC n+ a% f2+1 ’

(21)
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Fig. 7 Comparison of the modified Chao estimator n+f§’/f22 with its bias-corrected version
(16) for a geometric distribution with parameters § = 0.1,0.2,0.3,0.4 (upper panels) and
with 20% one-inflation (lower panels)
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; _aia3 fo(fo—1)
heoe="32 “p571

a3

Chiu and Chao suggested also a different bias-correction in eq. (5) which
we did not consider as it is undefined if f3 of f; is zero. Also, they suggest a
population size estimator which replaces n by n — f; + fl which we did not
consider here, mainly to achieve a fair comparison. In our context, we consider
the singletons as true counts of ones. There are just more than compatible with
any Power series mixtures which is the source of a potential severe bias. We
will take up this point again in the discussion. In this context it is important
to see the difference of one-inflation models to zero-inflation models. Whereas
the latter is a also a Power series mixture, and hence, Chao’s conventional



20 Dankmar Bohning et al.

estimator is also a lower bound for zero-inflation models, one-inflation models
are not in the family of the Power series mixture and hence Chao’s estimator
no longer a lower bound, as we have seen in the examples.

We expect that NChao—N and NCC behave quite similarly. Indeed, there
are only small differences in their values for all examples (see column 2 in Table
tableexam). Nevertheless, we compared NChao—N and NCC in a simulation
study for a variety of scenarios. We look here at the setting of geometrically dis-
tributed counts with and without 20% one-inflation. The results are presented
in Figure 8. Both estimators behave very similar and identical for larger pop-
ulation sizes above 1,000. For the smaller population sizes NChao—N seems
to show benefits, in particular with respect to relative standard error. The
graphs for Poisson counts with and without one-inflation look similar and are
not presented here.
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8 Discussion

We have focussed here on one-inflation as this appears to be the most relevant
case in practice. Often in the application the occurrence of one-inflation can be
well explained and interpreted. For example, in the case of family violence in
the Netherlands, one-inflation might occur because many perpetrators might
change their behavior after their first identification by the police. However, in
principle, it is also possible to extend the approach to higher inflated counts
such as two -inflation. To demonstrate this, it follows from Theorem 1 that
Z—?% < %%’ or mgy > %%’f?’ Replacing the theoretical probabilities
by their associated frequencies gives the lower bound. Also, a bound can be
developed for the situation there is inflation for both, ones and twos. The ratio
plot may be helpful again to gain insights on the form of inflation. However,
the most practical case occurs with the inflation of counts of ones. In addition,
these zero-truncated count distributions as they arise in capture-recapture
settings have often very little information in the upper tail, so that there
comes in a natural restriction in considering types of higher inflated counts.

One-inflation can occur in several ways. Here, we view the occurrence of
ones as true ones, whether they arise from the Power series mixture or as
extra-ones. For example, we imagine in the case of family violence that some
of the perpetrators change their behavior after they have been identified by
the police the very first time, and then never re-occur in the police database.
This might lead to extra-ones in the sample. In any case, here is no doubt
about the observed sample size n. Another scenario is the case where we think
of the singletons as being misclassified, so that some of these might be truly
doubletons or tripletons etc. In this case, the observed sample size of different
units is overestimated and needs to be corrected, for example, using n— fi + fl
as suggested in Chiu and Chao (2018). Which estimator to use, will depend
on the application at hand.
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Appendix 1
We now give a proof of Theorem 2.

Proof:
For the non-inflated component we have that

p) S mo,
as M3
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and multiplying both sides with 7 gives

apa? (mmy)?

< mmg
a% (7Tm3)2 ’

which is the result as m/, = mm, for x # 1.

Appendix 2

Here we give some details on the bias-reduction for the modified Chao estima-
tor. We note that

Elf2 = E(f2)]> = E(f3) — 3E(f3)E(f2) + 2B(f2)*.

Using a Poisson assumption for fo, E[fs — E(f2)]® = E(f2), we yield

E(f2) = E(fy) = 3E(f3)E(f2) + 2E(f2)*.

Using the Poisson assumption once more, we have that E(f2)? = E(f3)—E(f2)
so that

2E(f2)* = E(f2) — E(f3) + 3[E(f2) + E(f2)’| E(f2).
It follows that
E(f2)’ = E(f3) — E(f2) = 3E(f2)?,

using the Poisson assumption again for E(f3)?
E(f2)* = E(f3) — E(f2) — 3E(f3) + 3E(f2)

= E(f3) +2B(f2) — 3E(f3),

which can be validly estimated by f3 — 3f2 + 2f>.
For the denominator we note that E[1/(f3 + 1)(f3 + 2)]? can be evaluated
using the Poisson assumption as (with the abbreviations f = f3 and A = E(f))

I S DR« S SOy
E((f+1)(f+2)>—Z(f+1)(f+2)><e p(=A)A/ f!

f=0
= exp(-X) 53 DUAF/(f +2)!
£=0
= exp(~X) 33 [exp(A) 1 - A)]
_ 1 exp(—A)  exp(=A)
A2 A2 A ’

which is an excellent approximation of % if A > 5 (see also Figure 9).
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Fig. 9 E[1/(f + 1)(f +2)]? and 1/E(f)? as a function of E(f)
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