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This thesis can be divided into two related parts. In the first part the idea of the holographic
beta function is reviewed and a new method is developed that allows to compute the
scalar potential of one-scalar truncations of the five-dimensional gauged supergravity theory,
provided that the beta function of the field theory is classical. A class of deformations that is
likely to have a classical beta function are the N' = 1 preserving operators in short multiplets
of the N' = 4. We classify all single-trace operators with such properties, and give extra
emphasis to F-terms and D-terms. By writing the deformations in the most general way
in terms of N' = 1 superfields we find interesting relations to pairs of Kaluza-Klein towers
that originate from the same ten-dimensional field in the gravity dual. The ideas of the
holographic beta function can be generalized to vacuum expectation values, we record some
basic observations, and give an outlook for future work.

In the second part a full uplift of the GPPZ flow to ten dimensions is constructed using
the exceptional field theory formalism. We obtain the metric, the axion-dilaton matrix,
and a full set of RR potentials and fluxes, which are checked to satisfy the IIB equations
of motion. The uplift contains an extended version of the GPPZ solution where the mass
term m and the gaugino condensate o are complex, and a U(1) gauge field A, is included
for consistency. We argue that the phases of the complex scalars are related to the U(1)g
and the bonus U(1) symmetries of the field theory. We complete a thorough analysis of the
asymptotics of the uplift close to the conformal boundary and close to the singularity. While
the near-boundary asymptotics are found to agree with the zero-temperature limit of the
Freedman-Minahan analysis, we could not fully match with the Polchinski-Strassler solution.
The near-singularity limits confirm and extend the results of Pilch-Warner. We show that
there are conformal frames in which the singularity in the Ricci scalar is improved, but
never completely eliminated. In order to relate the singularity to the presence of D-branes
a search for D-brane sources is initiated and the first preliminary results are positive. In
anticipation of a future Kaluza-Klein analysis of the solution we start a systematic derivation
of corresponding spherical harmonic functions.
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Chapter 1

Introduction

A thesis on holography necessarily has to start with a reference to Maldacena’s original
article [1] in which it was argued that a four-dimensional conformal field theory on a stack
of D3 branes, and the gravitational physics on the AdSs x S® geometry which arises close
to these branes are dual to each other. It took a combination of remarkable knowledge,
intuition, and insight to put different pieces together, take the right limits, and realise that
various approximations can be trusted in order to lay foundations to what is today known as
the AdS/CFT correspondence. However, one must not forget that this result was a product
of an enormous collective effort of dozens of researchers in the high energy community that
paved the way to this important breakthrough. The AdS/CFT correspondence is in fact
one concrete realisation of the so-called “holographic principle”, according to which the
degrees of freedom in certain physical systems are encoded on lower-dimensional surfaces.
The ideas that ultimately converged in this principle and in the creation of the duality had
their origins in the study of black holes and their intriguing properties, some of which remain
a mystery to this day. In the seventies Hawking and Bekenstein studied thermodynamic
properties of black holes [2-7], and discovered that many of these properties are related
to the two-dimensional black hole surface, rather than its volume. Much of this work was
refined and improved in the years that followed, and new discoveries were made. Based on
the ideas of 't Hooft [8] the holographic principle found its way into string theory in the
nineties, among others through work done by Thorne and Susskind [9, 10]. From there it
took several years and an enormous amount of research to arrive at the discovery of the
AdS/CFT duality. A lot of effort was put in the study of black holes and black branes
in string theory, AdS and other curved spaces and their symmetry properties, truncations
and decoupling limits, and many other related topics were studied by a large number or
remarkable scientists such as Gibbons, Townsend, Skenderis, Horowitz, Strominger, Seiberg,
Sfetsos, Klebanov, and many many others. The list of citations would break all reasonable

bounds. After the duality was conjectured by Maldacena, the flood gate was opened, and



2 Chapter 1. Introduction

many researchers committed to studying the implications of the proposal and understanding
it in a quantitative way. The articles by Witten, Gubser, Klebanov, and Polyakov [11, 12]
were among the first important contributions and filled in many details. From then the
power of the implications of the duality was recognized by a wider community and research
in various directions ensued. Big reviews were written [13, 14], and year after year we
gained a more refined and generalised idea of the inner workings of the holographic principle.
Today, twenty years after the discovery of the AdS/CFT duality, we have a much better
understanding of much of the details, however the end of the possibilities is not in sight,
and holography is still one of the dominating research areas within the high energy physics

community.

Maldacena’s conjecture relates a superconformal field theory to gravitational physics, and
since the early days of this conjecture possibilities were explored whether or not non-
conformal field theories can have a holographic dual. A natural way of approaching the
non-conformal case is by deforming the conformal field theory in such a fashion that the
conformal symmetry is restored in some appropriate limit. At the same time it was also
realised that the radial direction in the bulk gravity theory can be related to the energy
scale of the field theory so that the conformal boundary of the AdS space is dual to the
limit of infinite energies on the field theory side, and movement away from the conformal
boundary corresponds to a field theory renormalisation group flow from the UV towards
the IR [15-29]. Thus given a conformal field theory, a general deformation will break the
conformal symmetry and therefore trigger a renormalisation group flow. The dual bulk
description of this system can be thought of as foliated along the radial direction so that
different points along the radial direction correspond to different energy scales on the field
theory side. If the deformed field theory exhibits conformal fixed points, then on the gravity
side the AdS geometry is restored at some points of the radial direction, away from the field
theory conformal points the bulk geometry will deviate from the AdS. The standard way of
describing a field theory renormalisation group flow is through the so-called beta-function
which is assigned to all running coupling constants and describes the rate of change of each
constant as the energy scale is varied. Over the years a precise formulation of the dual
description of beta-functions was constructed [26, 30-34], which relates them to the scalar
potential of the gravity theory. Since general beta-functions are complicated objects this
opened up the possibility to circumvent the quantum calculations by studying the gravity
dual. In the first part of this thesis we reverse this logic and study what knowledge about the
gravitational theory can be inferred provided that the beta-function is known. We restrict
our attention to the cases of deformations by one operator, which leads to the running of
one coupling, and therefore to a domain-wall profile of one dual scalar mode in the bulk
theory. As we will show in the main text, given an exact classical beta-function one can
directly integrate it to the so-called “fake” superpotential. This superpotential describes

the self-interactions of the dual bulk mode and can be used to determine the corresponding



scalar potential. The scalar potentials so obtained match those computed purely from the
gravitational perspective, which can be found in literature, and we list all possible one-scalar

potentials for dimensions d € {3,4, 6} that correspond to relevant deformations.

Given the success of the holographic computation of the bulk scalar potential we perform
a systematic analysis of N/ = 1 preserving deformations of the N' = 4 super Yang-Mills
theory in four dimensions by %BPS chiral operators. These chiral operators fall into short
representations of the PSU(2,2|4) superconformal group, the structure of which and the
relation to bulk modes has been analysed before [35-41]. Our analysis provides a general
prescription how the A/ = 1 branching of any operator in any short multiplet can be identified
with NV = 1 superfields, and determines their quantum numbers. Given this prescription it is
straightforward to list all possible F-terms and D-terms that can be used to construct N' =1
symmetric deformations of the N' = 4 super Yang-Mills theory. It was noted long before
the discovery of the holographic principle that the compactification of the ten-dimensional
supergravity theory on a five-sphere gives rise to pairs of Kaluza-Klein towers that originate
from the same ten-dimensional field [42]. Using our analysis we show that if the operators
corresponding to the modes of one of these towers are top components of an N’ = 1 chiral
superfield, then the operators in the twinned tower are necessarily top components of a
related real superfield. Thus for scalar superfields we obtain F-terms and D-terms that are
related to each other. By writing a general F-term and D-term deformation we see that
the former is parametrised by a holomorphic function, the A/ = 1 superpotential, while the
latter is gives rise to a harmonic function. This is in agreement with what was found for

supersymmetric deformations from the bulk point of view [43].

Some supersymmetric flows are accompanied by a vacuum expectation value of some
operators, such as the gaugino condensate in the GPPZ flow [21-23]. Unlike coupling
constants the condensates do not have to be added to the action, and therefore do not need
to be top components of superfields. In the GPPZ case, for example, one can show that the
gaugino bilinear operator that develops a vacuum expectation value is in fact in the bottom
component. Nevertheless there are indications that the holographic beta-function can be
generalised to condensates in the sense that the holographic description of their energy
dependence as domain-wall profiles of some supergravity modes is the same. Nevertheless,
there are still some open issues. To obtain a classical beta-function one needs to resort
to particular /' = 1 non-renormalisation theorems, so that in order to apply the same
formalism for condensates one needs to first show that they are similarly protected. We

hope to address this issue in future.

In the second part of the thesis we construct a full uplift of the GPPZ solution of the
five-dimensional supergravity theory to the ten-dimensional type IIB theory. The GPPZ
solution, constructed by Girardello, Petrini, Porrati, and Zaffaroni [21-23] was one of the

first studies of a deformed CFT and its holographic dual. The four-dimensional ' = 4 super
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Yang-Mills theory is deformed by addition of mass terms for chiral superfields. The mass
terms break the N’ = 4 symmetry down to AN/ = 1, which is why this model is sometimes
referred to as NV = 1*, in order to distinguish it from the pure N' = 1 super Yang-Mills
case. In the UV the mass terms, being a relevant deformation, become negligible and one
recovers the NV = 4 super Yang-Mills. Using this fact as a boundary condition the authors
constructed a domain wall solution of the five-dimensional gauged supergravity theory in
AdS5 [44, 45]. The N' = 1* theory is very rich in itself, exhibiting a variety of different
vacua [46-48], which can be of Higgs, confining, or Coulomb type, and are classified by the
solutions of the F-term equation and the gauge symmetry breaking pattern. The potential
ability to better understand these vacua through the holographic dual is in itself an exciting

prospect.

The original GPPZ solution of the five-dimensional gauged supergravity theory involves
two real boundary conditions, mg and og corresponding to the field theory UV mass term
and the gaugino condensate. Using these boundary conditions one finds a non-normalisable
mode m(r) and normalisable mode o(r) in the bulk that have a domain-wall profile with
respect to the radial coordinate r and are interpreted as describing the energy dependence
of the field theory mass and condensate respectively. Because the scalars m and o couple
to the geometry one also obtains a domain-wall profile of the metric which asymptotes to
the AdS space at infinity. One notable feature of this GPPZ solution is a singularity that
appears in the IR at some finite value of the radial coordinate. Whether the singularity in
m or in ¢ appears at a larger value of r is controlled by a parameter A, so that for A < 1
one finds the singularity in m first, and for A > 1 in o. For A = 1 both singularities coincide.
It was argued by GPPZ [23] that on physical grounds one should expect A < 1, which is the

case we restricted to in this thesis.

The appearance of the singularity introduces difficulties in interpreting the field theory
dual. Even though the GPPZ solution exhibits some qualitative features that favour the
interpretation of one of the confining vacua, it is not possible to extract a definitive answer
from the five-dimensional singular solution a priori. It is known that sometimes uplifting
a five-dimensional solution to ten dimensions resolves singularities that appear in the
lower dimension [29, 48-50]. However, even though the GPPZ solution and partial uplifts
have been studied in literature [25, 51-56] before, a full ten-dimensional uplift was never
constructed. We construct such an uplift using the approach developed by Baguet, Hohm,
and Samtleben [57], which is based on exceptional field theory [58, 59]. We obtain the full
ten-dimensional metric, which agrees with that of the partial uplift by Pilch and Warner [54],
the axion-dilaton, and a full set of form-potentials and fluxes. To verify that the uplift is
indeed a solution of the 1IB theory we checked explicitly the Einstein equation, as well as

the equations of motion for all fields.

The uplift that we obtain is an extension of the GPPZ solution in the sense that we promote



the real fields m and o to complex fields, and include an additional U(1) gauge field A,
which is necessary for the truncation to be consistent. The two complex phase rotations of
m and o are accounted for by two U(1) symmetries, one of which can be identified as the
R-symmetry of the field theory and acts as coordinate diffeomorphism on in ten-dimensions,
while the other corresponds to the so-called bonus U(1) symmetry [60, 61] in field theory
and is part of the SL(2)1p on the gravity side.

Given the full uplift of the GPPZ solution we perform some important checks on the
asymptotics of the fields. The leading order terms in the expansion close to the conformal
boundary can be seen as diagnostic of the consistency of the uplift. As expected we find
the AdSs x S° background and linear 2-form perturbations that correspond to the field
theory deformation. After expanding the axion-dilaton, the metric and the 3-form flux we
find agreement with the zero-temperature limit of Freedman and Minahan [62], however
some of the subleading terms cannot be matched with the analysis by Polchinski and
Strassler [48]. By taking the near singularity limit we see that the singular behaviour in the
radial coordinate can be improved, however, some singularities in the compact coordinates,
called the “ring singularity” by Pilch and Warner [54] persist. The exact structure depends
on the parameter A that we discussed above, but the singularity can never be completely
removed. This suggests that one might need to take into account stringy effects to obtain a

full description.

As advocated by Polchinski and Strassler [48] and Pilch and Warner [54] it is possible that
the resolution of the singularity proceeds via the Myers’ effect [50] by which the D3 branes
are polarised to higher-dimensional branes by the presence of form fluxes. In order to show
that such branes are indeed present we make first attempts of their detection by integrating
the fluxes against a test function. The idea is that only in the case where there are non-zero
delta-function sources the integral will give a non-zero result, and should be a reliable
detection mechanism if applied correctly. The advantage of the integration is that it avoids
the manual search of the sources in the equations of motion, but it also introduces some
caveats. For example one needs to make sure that all boundaries are taken into account on
which the integral gives a non-zero contribution; these could be located at the singularity or
at the conformal infinity, and depend on the topology of the space-time. Another difficulty
is the analytic evaluation of the integral, and if resorting to numerical methods one needs to
ensure that the errors are under control. These are issues that we leave for investigation in

further projects.

This thesis includes some additional detailed calculations that might not appear in published
articles. In the holographic beta-function part we include the derivation of the GPPZ
potential using the gauged supergravity approach. This helps to understand the associated
group theory and the symmetry breaking on the one hand, but also shows its complexity

compared to the holographic computation on the other hand. Also in the context of the
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holographic beta-function we review the A/ = 2 harmonic superspace approach to N' = 2
supersymmetric actions, and show how an N = 2 mass term can be added. Furthermore we
consider the N = 2 decomposition of N' = 4 short multiplets in a fashion similar to that of
the N’ = 1 decomposition. The GPPZ uplift part contains a derivation of some formulas
for the Kaluza-Klein curvature tensors for the cases where the space-time manifold has a
compact part and where Kaluza-Klein gauge fields are turned on. In another section we
explain in detail how spherical scalar, vector, and tensor harmonics can be derived subject
to a symmetry constraint. We demonstrate two different approaches, a group theoretical
one, and one based on the defining equation. We find and list some solutions, however a
complete set of all harmonics requires further work. The appendix contains a discussion of
the s0(6) sigma matrices, and an extensive list their identities. These sigma matrices appear
in the N' = 4 super Yang-Mills action in four dimensions and in calculations related to it.
Finally, in another appendix we record some techniques for holographic calculations of N = 4
four-point function using the Witten-diagram approach. These techniques could be useful
in future in order to test predictions for the scalar potential provided by the holographic

beta-function approach.



PART 1

FieLD THEORY BASICS







Chapter 2

The N = 4 Super Yang-Mills
Theory

2.1 The Superconformal Algebra

The AdS/CFT correspondence in its original form relates a theory of gravity in five dimensions
to a conformal field theory in four dimensions. Apart from the conformal symmetry the field
theory is also maximally supersymmetric, and these two symmetries combine into a larger
symmetry group, known as the superconformal group. Superconformal algebras only exist
in dimensions d < 6, however in this section we will specialise to d = 4, in order the review
the superconformal algebra in the dimension in which our field theory computations will be

performed.

To study the structure of a superconformal algebra it is worth breaking it down to simpler
subalgebras. Start with the Lorentz algebra, the generators of which we will denote by
M. It can be extended to the Poincaré algebra by adding translations P. The Poincaré
algebra can be further extended in two ways, one can either add dilatations D and special
conformal transformations K to promote it to a conformal algebra, or one can add Poincaré
supercharges @ and Q, and R-symmetry generators R to get the usual supersymmetry
algebra. One may wonder if these two extensions are compatible. Indeed, it turns out that
this is the case under some conditions, and both are combined into a bigger algebra, the
superconformal algebra, which contains both the conformal algebra and the supersymmetry
algebra as subalgebras. To make the superconformal algebra close, one needs to add the
same number of additional fermionic generators as there are Poincaré supercharges. These

new supercharges are called conformal supercharges S.

The superconformal algebra is a superalgebra, and following [14] we can group the generators

in four blocks, two bosonic, which form the maximal bosonic commuting subalgebras, and



10 Chapter 2. The N = 4 Super Yang-Mills Theory

two fermionic as follows:

(2.1)

( My, P, K, D | Q2,54 )
QozAa aA ‘ Rl

The statements made so far are true for any superconformal algebra, so let us now specialise
to the dimension d = 4. In this case the algebra is denoted by psu(2,2|4), the corresponding
group is PSU(2,2|4), and constitutes the global symmetry group of the N’ = 4 super Yang-
Mills theory in four-dimensional Lorentzian space-time. It contains 16 Poincaré supercharges
Q, Q, 16 conformal supercharges S, S, 15 generators of the conformal subgroup SU(2,2)
and 15 generators of the R-symmetry group SU(4) [13, 14, 63-66].

The block structure of the superconformal algebra in (2.1) applied to the case d = 4 leads to
the following maximal bosonic subgroup, which makes the commuting bosonic subgroups
manifest:

PSU(2,2/4) D SU(2,2) x SU(4)g (2.2)

We define the algebra by listing all possible commutators. First consider the commutators

of the R-symmetry generators with the rest:

(R, R'] = if*/*RF [R',M,,] = [R',P,) = [R',K,] = [R',D] =0
[R', Q] = (R)*5Q5 (R, Qaal = (R) AP Qun
(R, S = (R)"5SE (R, Saa] = (R) 4" Sap

The symbols f“* denote the structure constants of the SU(4), and because this SU(4) is
one of the commuting bosonic factors, its generators R’ commute with all other bosonic
generators. The matrices (R)45 and (R'),? are the 4 and 4 representations of the R-
symmetry generators R [63], and the commutators involving supercharges reflect the fact that
they transform in the fundamental or anti-fundamental representation of the R-symmetry.

This implies that the R-symmetry is the automorphism group of the supersymmetry algebra.

The commutators of the conformal subalgebra are standard and can be found in many places

in literature:

[M" MP?) = —in? MY + in”? MM — in”® MM + inh? MYP
[MHY) PPl = —in"P PY + in"P P*
[MF KP] = —int? K" 4+ in"P K*
[P¥, P"] = [K*,K"] = [D, D] = [D,M""] =0
=

(D, P*] = —iP*
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(D, K" = iK"
[PH K] = 2i(M" — 5 D).

The conventions for the space-time metric can be found in Appendix A. Next consider the
commutators of the supercharges with the generators of the conformal subalgebra. One can
see that the commutator of the special conformal generator K with a Poincaré supercharge @
produces a conformal supercharge S, which shows that without the conformal supercharges

the algebra would not close.

[D,Q3] = —5Qa [P",Q3] =0

D, Saa] = 4San [P¥, Saa] = ic" Q)
M, Q2) = o Qf (K", Qi) = ilt,57
(M, Sqa] = ", Spa [K*, Saa] = 0.

The definitions of the sigma matrices o* and o* used in the commutators can be found in

Appendix B.1. The remaining commutators are those involving two supercharges:

{Q4. Qsp} = 201, Pud; {Q2,QF} = {Saa, Ssn} = {Q4, 55} =0
{San, S5} =200, K033 {Q4, 558} = —i0™ o5 My03; + eap(05D + RY),

where we have defined RS = 37, RI((R?) ,& — (R")"3). Note that as above R’ are the abstract
generators of the R-symmetry algebra su(4), while the matrices (R')? 5 and (R?) ;& are the
representations 4 and 4 of R*. The reason why this peculiar combination of R-symmetry
generators in form of RS appears on the right-hand side of the anti-commutator {QZ, Ssp}
is the consistency with the commutators of the R-symmetry with the supercharges. Using
the Jacobi identity [R, {Q, S}] = {Q, [R, S]} + {5, [R, Q]} one finds that the matrices (R")45
and (R%) 48 appear through the commutators [R, Q] and [R, S] and form a combination as
indicated. It is also useful to note that for unitary representations in terms of hermitian
matrices a representation and its conjugate are related by R = —R* = —R! so that it is
true that (R’),Z = —(R)B . This allows us to rewrite RE as RE = —2Y, R(R)B, =
25 RU(RY) 4"

2.2 The N = 4 SU(N) Super Yang-Mills Theory in Four Di-

mensions

The N = 4 super Yang-Mills theory will be the basis for many computations and results in
what follows, and therefore in this section we will write down the formulation of this theory

in the conventions, notation and terminology which are in accord with the rest of the thesis.
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This theory was originally derived from the N/ = 1 super Yang-Mills theory in ten dimen-
sions [67, 68] by dimensional reduction on a six-torus. It is an instructive exercise to perform
this reduction, however, since this computation can be found at many places in literature

and is not very useful in the current context, we shall not repeat it here.

2.2.1 Action and Fields

We will take the SU(4) covariant formulation available in literature [69-72] as a basis and
adopt it to our needs. In particular, we take the fermions A4 to transform in the anti-
fundamental representation rather than fundamental. This convention is more common in
literature related to holography [13, 14, 21], and in practical terms this change amounts to
swapping the left-chiral and right-chiral Weyl fermions in the transformation rules. Other
differences are the use of the definitions for sigma matrices that we think are more standard
and intuitive, which are listed in Appendix B, and the mostly negative metric. All this leads
to some sign differences in the action and the supersymmetry transformation as compared

to some of the literature. Thus the action we will use in this text is given by
1 1 - -
Sy = tr /d4:p{—§FWF’”’ - §D#¢ABD“¢AB + 2iA*G" Dy a
— p— - 2 p— —
+ V29 (6" A Ap] = 6as M AP]) + L6707, 6PN dan, depl | (23)

Note that it is also possible to include the topological term §L = tr (ﬁigFWFW) in the
action. This term does not have any effect on the local properties of the theory, and in
particular no symmetries of the theory are affected. Since we will not make reference to
this term in this text we will choose not to include it in the action. It is also possible to
rescale all fields by the coupling constant {A,, A4, pAB} — %{Au, A, 4B}, which removes
the coupling constant from the field strength, covariant derivatives, and interaction terms,
so that it appears only as an overall factor g% in front of the action. The topological term

and the rescaling will be briefly addressed in Section 2.4.

Sometimes it is more convenient to work with explicit colour indices. To this end we can

evaluate the trace in (2.3) using
1 ' 1
tI‘(TaTb) — §6ab tI’(Ta [Tb, TC]) _ %fabc tI‘([Ta, Tb] [TC, Td]) — _gfabefcde (24)
to get the action in component form with respect to the SU(IN) gauge group:
1 1 - -
Si= [dta{= B F D, pD 0P XA DN

- 2
L9 rabe a c 1a ybAyc g abe pcde 1a gc
5l (9NN — BN AN ) — T AP PG pdtp | (25)

7
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From the action S; we can read off that the field content of the N/ =4 SYM theory consists
of six real scalars, four chiral Weyl fermions and one gauge vector field, which together
constitute the N = 4 gauge multiplet. The SU(4)g and the Lorentz quantum numbers of
these basic fields are the given by

P = 6(q) A =430 Ay =1 (2.6)

If one thinks of the N' = 4 theory as the dimensional reduction of the N’ =1 super Yang-
Mills theory in ten dimensions, then the six scalars are the six real components of the
ten-dimensional gauge potential Ajs which are aligned along the compact directions. In the
notation ¢4% the 6 is represented by an anti-symmetric pair of SU(4) indices, and it is not
manifest that this gives six real scalar fields rather than six complex ones. A manifestly real
representation can be obtained by applying the Lie-algebra isomorphism su(4) = s0(6), in

which case the scalars are in the fundamental 6 of the SO(6) and can be written as
o'(x)eRC, I=1,...,6. (2.7)

The linear transformation that relates ¢! and ¢4 is given by the six-dimensional sigma

matrices X7 48 which are described in Appendix B.2, and reads

1

AB TAB (I

=—3 . 2.8
ey S (28)
A representation is said to be real if it is equivalent to its conjugate representation. In
other words, the conjugate representation can be obtained from the original one by a linear
transformation. In our case the scalar fields 4% are in the real representation 6 of the
SU(4) and the reality condition reads

bap = ((ZﬁAB)* = %EABCD¢CD- (2.9)

This identity follows directly from the analogous one that holds for the six-dimensional
sigma matrices described in Appendix B.2. A way of understanding the reality condition is
that it means that among the six complex scalars 8 three are in fact complex conjugates
of the other three, and thus ¢Z contains only six real degrees of freedom. One can also see

this by spelling out the definition of X745 and the resulting components of ¢A5:

0 ¢ +igd  —(¢*+i¢°) o' —ipt
ap_ L | (6" +i¢%) 0 o' +igt  ¢* —ip®
¢ V2| @Prig® —(oh +igh) 0 @3 —igt | (2.10
—(¢' —ig*) —(¢? —id®) —(¢* —ig?) 0

One may wonder about the normalisation of the kinetic term for the scalar fields in (2.3),
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and it is instructive to transform to the manifestly real SO(6) basis. Using the identities
from Appendix B.2 we see that %D,@% BD“QE“AB = %DI@‘” DF¢* | and so because the scalar

fields ¢! are real, the normalisation of the kinetic term is indeed canonical.

2.2.2 Gauge Transformations

In this subsection we would like to discuss our conventions related to the SU(N) gauge

group and gauge transformations which we used in writing down the actions (2.3) and (2.5).

As customary in physics we will use the conventions for Lie algebras where the imaginary

unit appears explicitly in the commutator, while the structure constants f®° are real:

(7%, T = ifebere. (2.11)

Gauge transformations are associated with a propagating gauge field A}, and the correspond-
ing field strength Fy,, both of which transform in the adjoint representation of the gauge
group and can therefore be thought of as elements of the algebra by writing 4, = A}T*
and Fy,, = Fj,T". The field strength is computed from the gauge field as follows

Fu, = 0,A, —0,A, —ig[Au, A, (2.12)
Ff, = 0,A% — 0,A% + gf*° A AL (2.13)

This definition is such that the gauge coupling g appears explicitly in the field strength
and in the covariant derivatives. It is also common to rescale the gauge field according to
A, — éAu and eliminate the explicit gauge coupling g from both the field strength and the

covariant derivative. This possibility will be further commented on in Section 2.4.

Gauge transformations act on ordinary fields $(a:) as well as on the gauge fields A, and the
field strength F},,. Gauge transformations that are close to the identity can be described as
exponentials of vectors on the tangent space of the gauge group, which is the gauge algebra,
and we can write an element of the group as g(z) = e®(®) For a given choice for a basis
{T*} for the algebra, the vector a(x) € su(N) can be decomposed into it as a(z) = a(z)*T°.

With these definitions gauge transformation act on fields as follows

b — % 8¢ = iag (2.14)

F — e“Fj e ™ 6F,, = ia, Fl] (2.15)
. : . 1

A, — el <AM + ;au> e~ 3 = ilos Ay + Oy (2.16)

Note that the field qg can be in any representation “R” of the gauge group, and the group

and algebra elements that act on it are represented by the corresponding matrices g and
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TF. The covariant derivative of qg is given by
Dué = (9 — igAy)d. (2.17)

The gauge field A, entering this definition is implicitly assumed to be in the correct
representation “R”, so that it can also be written as A, = A}Tg. The covariant derivative
is defined such that it transforms covariantly under gauge transformations, and one can

check that these transformations are given by

—, —

(D,¢) — €°D,é §(D,¢) = iaD,¢. (2.18)

Fields that transform in the adjoint representation make no exception and have the same
gauge transformation rules and covariant derivatives as for fields in any other representation
as in (2.14) and (2.17), with the algebra generators Ty, in the adjoint representation.
However, the fact that the generators in the adjoint representation are given by the structure

constants as

(L) = if (2.19)

allows us to write the transformations in (2.14) and (2.17) in an alternative way. Given
some field B%(x) that transforms in the adjoint representation one can think of it as an
element of the algebra by writing B(z) = B(z)*T*. Then the gauge transformations and

the covariant derivative can be written as

6B = i[a, B] (2.20)
D,B = 9,B —ig[A,, B). (2.21)

2.2.3 Supersymmetry

Superconformal multiplets are built by applying supercharges to primary operators. Since
such multiplets will be the subject of our study later in this text, it makes sense to spell out
the basic supersymmetry transformations in detail. This will show that the action in (2.3) is
indeed supersymmetric and that our definitions are consistent. Moreover it will also provide
elementary building blocks for supersymmetry transformations of composite operators, which
can be build from supersymmetry transformations of basic fields. Some of the steps in the
variations involve transformations that might not be obvious on the first sight, and carrying
them out will serve us as a honing steel for our supersymmetry transformation techniques.

The action in (2.3) is invariant under the following N = 4 supersymmetry transformations

Sep™B = 2v/2i (X[AEB] - %GABCD >\C§D) (2:22a)
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_ _ 1 -
Sedpap = —2V2i (A[Afs] - 26ABCD)\C§D) (2.22b)
Oedan = —iF 0t Pegq + ﬁ(Du(EAB)UZBEIBB +iglpan, °éac (2.22¢)
5£S‘dA = _iFuV‘}MyngBA - \/i(DuﬁbAB)&udﬁfﬂB + ig[¢ABa &BC]gdC (2.22d)
Se AP = iAAGHEA + idgotEN. (2.22¢)

These infinitesimal transformations are related to the supercharges by
660 = [£4Q" +E4Q4, O] = (€4Q" + £7Qa)O (2.23)

which allows us to read off the action of @ and Q on the fields from the infinitesimal

transformations by setting either & or € to zero. The result is

QOAGBC — \/3; ABCD o QandBC = —2v/2i 5BAS (2.24a)

Q“dpe = 2V2i 6{pAgy QaadBc = —V2ieapop Ay (2.24b)

Q*"N\gp = iF, 0" ;"6 +ig[e", deplof  Qaadss = V2Dudbanol, (2.24c)
QN8 = _\/2D, ¢ Bh e QaaN'P = iF,, 6" 08 +iglpac. o° P10}

(2.24d)

QA AF = j\igHan QanA* = iXSat (2.24¢)

Let us show that the action (2.3) is indeed invariant under the supersymmetry transformations

in (2.22). Schematically the terms in the action transform as follows

5F31, ~ FL, gl DI + c.c. (2.25a)

§(Du)? ~ DFp DA+ gDygleat N, @] + c.c. (2.25b)

SN Dy ~ Fy €0 0P Do) + Dyp EDF (2.25¢)

+ g[Fuw, 9Ja* X + gAat[Ea, )\, N + g0, pléa* DA +ce. (2.25d)

S(gAIN, @] + c.c.) ~ gEFH [, N + gD £% [, Al + gAIEN, N + [, BIE[6, A] + c.c. (2.25¢)
3(g%[0, 00, 8]) ~ g°[d, BJE[D, Al + c.c. (2.25f)

One can see that that terms of different orders in g match structurally, which leads to
their cancellation in the variation of the action. Let us now compute the variations exactly.
Note that throughout these computations one often needs to use various identities for
six-dimensional sigma matrices listed in Appendix B.2. We will not include the symbol
for the trace over the colour indices in our computations to avoid the clutter, but still

occasionally cyclically permute fields as if the trace was there.

Consider first the variations that give terms proportional to g2. We see from the schematic
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variations (2.25) that there are two such terms and both come from variations of interaction

terms. The variation of the quartic scalar interaction terms is easily evaluated:

2 _ _ 2 _ —
551677, 67 b, depl = 1667, 67P)[bas. dep]

= V2ig? ([¢ars, deplle??, 6°P) = (€437, 6P )[bap, don]).  (2.26)

The only other term proportional to g comes from the cubic interaction term involving

fermions:

5v2g ()\%[)\aB, P — GNP, QEAB]) ‘92 = 2V/2g (5)\%[)\043, 8] — GNGNE, QBAB])

= 2v2ig* ([6ac, 67 )lep A, 6"7] ~ (017, bopl AP, dap)). (2.27)

To make progress note that using the definition ¢A8 = %21 ABpl we can obtain a sigma
matrix from each of the scalar fields, so that we end up with a product of three sigma
matrices from each term. Moreover, the commutator of the scalar fields makes sure that
two of the six-dimensional indices of the three sigma matrices are anti-symmetrise. Using

identities for products of three sigma matrices from Appendix B.2 we obtain
SITVeKl = 95TV e Kl 4 T vk, (2.28)

Let us show that the last term in this equation inserted into the variation which we were
computing gives a vanishing result. If one evaluates the colour trace in the variation one
obtains two structure constants with one index contracted of the form f®¢fad The anti-
symmetry of the term LU/ SE] makes it cyclic in the three indices, and because it couples
to the scalar fields the cyclicity can be transferred onto three of the four free colour indices
in fabefade Lyt this vanishes by the Jacobi identity for structure constants, concluding
the proof. Thus we only need to keep the term —26/[VSK] and after inserting it into the

variation it is straightforward to see that the result is

529 (N as, 65] = XA, 6.5))

92

= —V2ig*([€ars, do)[6"?, 677] — [E'AP, 6°P)[oap, dop]). (229)

This is exactly the negative of the variation of the quartic scalar interaction term, and we
can conclude that the action is supersymmetry-invariant at order g2.
Next consider the variation terms of the order g°. The variation of the gauge kinetic term is

straightforward to compute and gives

1 o <A, FA-
5 <—2FWF’“’> = —2iF" (£40, DA + €45, Dy\a) - (2.30)
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To compute the variation of the scalar and fermion kinetic terms note first that the covariant
derivative contains the gauge field, which also needs to be varied. Thus for any field ¢ in

the adjoint representation the variation is given by

6Dyp = (0Dp)Y + Dy

o A A (2.31)
= g[gAUu)\ +¢& U,u)\Ayw] + D,ov.

Since the terms that arise from the variation of the covariant derivative are of order g we
can neglect them for order ¢° calculations, and will come back to them later. With this in
mind the variation of the kinetic term for the scalar is given by

5 (—;DquABDMCbAB)’ L =2V2i (D dapE D" NP — D¢ Pea D M) (2.32)

g
Next we will show that the order ¢° terms coming from the variation of the gauge and scalar
kinetic terms are cancelled by the variation of the fermion kinetic term. The application of

the variation leads to the following intermediate result
5 (20045 Duda)| | = ~2i(DuAAG 9N + Dydact 0"
g

= =2 (DA Fu5?0" €4 + DyAa B0’ 5" €4) (2.33)
—2v/2i (DA Db apo?o"eP — DAADL 6 P o ates) .

Consider the first term after the last equality. According to the definitions in Appendix B.1 the
sigma matrices with two indices are given by o"*¥ = %a[‘%” I'and gmv = %6[“0” I. In the same
appendix we find that aPcltg? = —2nPligh] +iePrvo 5, and oPalio?) = —oapPligy) —jePrvo g, .
So in sum we can say that gPo"” = —inrlrg?) — %e”‘”"&a and oPgt = —inflig?l 4 %ep“l"’aa.
In the second term we can integrate by parts and split the resulting pair of covariant
derivatives D, D, into its symmetric and anti-symmetric parts. The anti-symmetric part is
proportional to the field strength, and a careful calculation shows that for any field +) in the

adjoint representation it holds that

([Dyu Do) = g f**Fp,0°. (2.34)

Since this term is proportional to g it can be discarded at the ¢g° order. The symmetric

combination D, D, in contrast, symmetrises the two sigma matrices, and we should use

the formula (Po#) = o(PGH) = —pPt_ After these intermediate transformations we obtain
5 (20045 Dyra) ’go = 2i (D*AM Fy6"€a + DPAaFu0”E")
+ 7 (DA F 606 — DyAaFruoot™) (2:35)
+2v2i (DN€PDydan — D*AaépDud™?) .
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To simplify further recall the Bianchi identity for the field strength, e’#*?D,F,, = 0.
To prove it one uses the relation in equation (2.34) to show that [D,,[D,,D,]Jy¢ =
gfabC(DpFW)bi/JC for any adjoint field . We then contract with the Levi-Civita tensor
to get €##Y?[D,, [D,, D, | = —ig|e"* D,F,,,,1]. The left-hand side vanishes by the Jacobi
identity, and since 1 was arbitrary the proof is concluded. This eliminates the second term

from the variation and after re-ordering some terms we obtain

5 (2&1“5#1)@ A)’ — 9 <£A0MD,,5\A +&%5,D,\ A)
a o (2.36)
—2V2i (D,@ ABEADINB — DH¢AB§AD“)\B) .

This cancels exactly the other order ¢° variations we obtained earlier, so that supersymmetry
of the action (2.3) is established at this order.

Finally let us consider the order g. Such terms will appear in the variation of the scalar and
fermion kinetic terms, as well as in the variation of the cubic interaction term. The order g
terms in the variation of the scalar kinetic term arise from the variation of the covariant
derivative. Using the result in (2.31) derived earlier we obtain

b (—;DMQEABDMQSAB>‘ =—g (ADngD[d_)AB7Du¢AB] + XD5“§D[¢A37DM<5AB]) . (2.37)

9

The variation of the fermion kinetic term contains several order g contributions, namely one
from the variation of the covariant derivative and two from the variation of the fermions

themselves. After substituting the variations one obtains
5 (2iA45# Dyra) ]g — —2igM 5" (o AP + 80,05, A4
+2g (Du)\AU“éB[ﬁbAC, ¢cB) + DAt éppac, ¢CB]) (2.38)
— V2i (Aa0?5"¢5[D,, D,]¢"P — XA6201EP[D,, Dyldan) -
Remember that the last term was obtained from the splitting of a pair of covariant derivatives
into its symmetric and anti-symmetric parts. While the symmetric combination contributed

at order ¢", the anti-symmetric one is proportional to g, which is why we must include it

here.

Finally we need the variation of the cubic interaction term at order g. The fermions
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contribute two terms, and the scalar contributes one, so that we get

5V (XDan, 017 = MO, Gan])| =

2v2igF,, ([)\AO’W&B, AP — [\ eB, @AB])
+4g (ADU“é_BWADa Dudap] +A5"¢p[dap, Du¢AB])
—ig (AalAg, €438 — eAPOPecp] + MARP sy — seancnéAC)) .
(2.39)

One can see that the order g variations are lengthy, and it makes sense to split the problem
of matching the terms. We can single out the terms that will cancel by the fields that they
contain, and one finds by inspection that there are three types of such terms, namely (FA¢),
(A?), and (DA¢?). Let us study these terms one by one.

First consider the terms of the form (F'\¢), there are two of them, one from the interaction
term, and one from the fermion kinetic term. In the fermion kinetic term we have to evaluate
the anti-commutator of two covariant derivatives first. We have already derived the result

in (2.34), which can be conveniently written as

[D/N Du]w = _ig[Fpua 1/}] (2.40)

for any adjoint field v. One can now substitute this result into the corresponding term in
the variation of the fermion kinetic term, use the cyclicity of the colour trace, and the fact
that olPgtl = —2igt and glPotl = —2i5"" to obtain exactly the negative of the analogous
term in the variation of the cubic interaction. Thus we see that the terms of the form (FA¢)

cancel exactly.

Next study the terms of the form (\3). Again, the cubic interaction term and the fermion
kinetic term each contribute one term that matches this pattern. First note that in the
variation of the interaction term there are terms with three fermions of the same chirality.

After evaluating the colour trace these terms are of the form
FPP NN (Aeép)  and  f™eapep (AP (A D). (2.41)

Since such terms do not appear anywhere else we expect that they should be identically zero.
This can indeed be shown using an appropriate Fierz identity, which states that a product
of two fermion bilinears vanishes if three of the four fermions are cyclically symmetrised [73].
This is just another Jacobi-type identity, and can be written as follows. For any fermions ;
it is true that

(V192) (P3304) + (P2103) (b11pa) + (3th1)(Y2ths) = 0. (2.42)

Thanks to the contraction with the structure constants and the Levi-Civita tensor the
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fermions A and X in (2.41) can be symmetrised in exactly such a cyclic way, and therefore

vanish. To see that the remaining terms cancel one should now apply the identity agd&ﬁﬁ =

—255(55 to the fermion kinetic term. After some careful reshuffling of the terms one obtains

S(ADA) = dig (A, ABJEAP + WV, MPJgag) + ... (2.43)
5(gArg) = —4ig ([\a, ABJE" AP + M APJears) + ... (2.44)

It is manifest that both terms cancel.

Finally we would like to show the cancellation of the terms which are of the form (DAg?).
Each of the three variations under consideration contributes one such term, which all have
to cancel simultaneously. To bring these terms to the same form we integrate the variation
of the fermion kinetic term by parts, rename some indices, and regroup some terms. This

gives the following intermediate result

8(D¢D¢) = —g (Apo€P68[6ac, Dy = AP ¢pdp[0"C, DiGac]) +...  (2.45)
S(AD)) = 2g(>\Da“§B {[QZ)DC, Dyécs) — [pcs, DMDC]}
) B - (2.46)
+APa"¢s {[épc, Dut™P) — (677, Dudpcl} + ...
3(97) = 49 (Apo#€%[6*7, Dubap] + A 5" ep(éap, Dud™]) + .. (247)

In the next step one adds these three terms together, and separates the six-dimensional
sigma-matrices off the scalar fields. The result of this operation is
§(DdD¢ + ADX + gArp) =
g pat€P[¢!, Do) (~0RThe R AC + 4nl POTY, 4+ 4t AP 1) (2.48)
+ g [0! "] (—0BE AOT o + A hos OB 4 SR AR

The cancellation is now all due to the sigma-matrix identities, which can be found in

Appendix B.2. The identities that we need here are the following

»IACTS o = 461 (2.49)
SUPCSI = —9i(n17)P, (2.50)
$IADS I 5 = 61765 + 2i(=1)P . (2.51)

The cancellation is now indeed obvious. At this point we have applied all supersymmetry
variations in (2.22) to the action in (2.3) and have shown that they leave that action invariant.
To conclude the section we would like to list the complete variations of all terms in the

action, which can be used as a reference.
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The gauge kinetic term
1 _ _
5 (—2FWF‘“’> = = 2iF™ (€40, DA + €45, D,04) . (2.52)
The scalar kinetic term

5 <—;DM<Z>ABD“¢AB) = 2V2i(Dudapt* D'AP - D, PeaDp)
— 9 (Apo"eP5R[bac, Dug ] = AP54¢pd (6", D dac]) .
(2.53)

The fermion kinetic term
5 (20N16"Dya) = 2iF™ (€40, DA + E45,D,00)
—2V/2i (qugABéTAD”XB - DM¢ABfAD'u)\B)
+ g ([Aa, ABJEANT + W, 3P Jgars])
+2g (DHAA0“53[¢AC, ¢cB) + DAt Epldac, ¢CB])
+ 2v2ig (Aa0?€pFyp, 0" P] = MGEP[F,y, pa5)) -
(2.54)

The cubic interaction
3(V29(X3[han, 071 = MNP 9ap])) =
= — 4ig ([Aa, ABJENE + W NPJeap)
+4g (Apo"€[¢"7, Db ap) + A5 Epldan, Du¢AB])
+2v2igFu (a0 €p,6%] = [M5E8, 645))
— V2ig?([¢ar, dep)[o"?, °P) — (€437, 6P an, don))-
(2.55)

The quartic interaction

2
d (%[¢AB,¢CDH¢AB, ¢CD]> = \@if([ﬁA)\B, dop)[¢*P, L) - [EAS\B’QZ)CDH(Z)AB’QECD])-
(2.56)

2.3 The N = 4 Theory in N' = 1 Language

The N =4 SYM theory can also be viewed as a theory with fewer supersymmetries by only

keeping the generators of some symmetry subgroup and disregarding the rest. One might
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want to do this for example to simplify the multiplet structure or to break the symmetry
down to subgroups that one might want to consider. In our case we will make use of specific
non-renormalisation theorems that are known to hold in a theory with N' = 1 supersymmetry.
Thus it makes sense to reformulate the N'=4 SYM theory that we have been considering

so far in the AN/ = 1 language.

Restricting from N = 4 to /' = 1 means breaking the R-symmetry according to SU(4)g —
SU(3) xU(1)g. In a generic N = 1 theory the U(1)g symmetry will be broken by interactions
and is therefore not a symmetry of the theory. However, in the case of the N’ = 4 theory
the SU(4)g is a symmetry of the action, and therefore after the restriction to N =1 the
U(1)g is a symmetry of the action too. The SU(3) factor, in contrast, is an ordinary global
flavour symmetry for the chiral N’ = 1 multiplet, as we will see shortly. With respect to this

decomposition the representations in which the A/ = 4 fields are branch as follows

6 — 3.2+ 39 (2.57)
4 — 31+ 1_3. (258)

The U(1) charges in the subscript correspond to the generator given by the following matrix

Ty = . (2.59)
-3

Because tr(TymTuay) = 12 # 3 it is not canonically normalised. Since we will use the U(1)
charges merely for bookkeeping we prefer not to rescale the generator and so to keep integer
charges. We see that under the branching just provided the six scalars decompose into a
complex triplet of scalar fields and the fermions split into a triplet and a singlet. The gauge
potential being a singlet does not decompose at all. After splitting the fundamental SU(4)
index to A — (i,4) we obtain the following field decomposition

P8 = {9V ¢} = {7k, 2} (2.60)
A = {Ai AL (2.61)

The complex scalar z is in the 3_5 of the SU(3) x U(1) and z; is in the 35. One can see
that this decomposition makes sense by writing out the components of the field ¢45. This



24 Chapter 2. The N = 4 Super Yang-Mills Theory

was already done in equation (2.10) and we just copy the same result once again:

0 ¢ +ig®  —(¢? +ig°) ¢! —ig!

ap_ 1 | —(¢*+i¢%) 0 o' +igt  ¢* —igd
UT| erie -0 rish 0 g PP

—(¢' —iph) —(¢* —id®) —(¢*—i¢®) 0
This shows that the new complex scalars are given by
b = \}5 (¢i n i¢z’+3) (2.63)
1 , .

7= s (o' —io™?) (2.64)

and are indeed complex conjugates of one another. Overall, this branching suggests that
in the N/ = 1 language the gauge multiplet branches into three chiral multiplets and one
gauge multiplet, which is indeed the case [74]. The scalars and the fermions which are in
the 3 of the SU(3) are components of chiral multiplets, and the remaining fermion and the
vector, which are both singlets of the SU(3) form the gauge multiplet. We can now take the
N =4 SYM action in (2.3) and decompose all fields in it as just explained. This gives the
formulation of the A" =4 SYM theory in terms of N/ =1 fields

_ 1 , — _
SN=1 gy / d'o{ =5 Fu F" = 2D,5 DV 4 2iN5 DA + 235" DA
+ V29 (€720 o, 2] — eipdb [N, 2) + 229 (AP aZ] — A4, 21])
+ 6%[, 2)[28, 2] + 6Lk, 2| [2F, 2} (265)

By construction this action has only the A/ = 1 subgroup of the full ' = 4 symmetry
manifestly exposed, the rest of the symmetries of the N' = 4 superconformal group are not
manifest and are therefore called hidden. The fact that all cubic and quartic interactions are
proportional to the same coupling constant g is the only hint that the hidden symmetries
are there. Note that it is possible to regroup the four scalars in the quartic interaction,
and one finds different ways of writing this interaction in literature. After expanding the
commutators one realises that some terms are equal and can be grouped together. One can
also evaluate the colour trace, which produces two SU(N) structure constants contracted in
one index. This allows one to apply the Jacobi identity to further transform this interaction

term. We will just leave this term as it is.

Unlike the N' = 4 theory, the N’ = 1 viewpoint admits a fully off-shell superfield formulation,
while the former would need an infinite number of auxiliary fields. To write the N' = 1 action

in this way we view the N’ = 4 fields as components of the following N' = 1 superfields:

Zi =z + V20)\; + 0°F; (2.66)
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_ I 1 .-
V = 00"0A, + 020\ + 620\ + 592921). (2.67)

As we anticipated before, the whole field content of the N = 4 theory fits into a triplet of
chiral superfields Z; and a vector gauge superfield V. As usual, chiral fields have to be taken
to depend on the chiral coordinate y* rather than x*, see Appendix A.5 for a summary of
some standard supersymmetry definitions used here. The vector superfield has already been
gauge-fixed to the Wess-Zumino gauge, and one can construct the field strength multiplet

W, from V in the standard way:

W, = _}DQefZgVDatﬂgV
et (2.68)

_ + 2:1y  ya

=29 (Ao + 67 (capD + 5y ) + 6%DasX?) |

where F't = o F},, is the self-dual part of the vector field strength, and Dy = ok, D, the
covariant derivative with respect to the SU(N) gauge group, which should not be confused
with the auxiliary field D in the #° component of W,. It is possible to remove the overall
factor of 2¢g in the components of the field strength W, by rescaling V" — iV. This in fact
allows to factor out the gauge coupling g out of the action, and such a normalisation is

sometimes referred to as holomorphic. See Section 2.4 for more details on this.

After this preparation it is now straightforward to show that in terms of N' = 1 superfields

the NV = 4 action takes the following form

1

T / A20 WeW, + h.c.

SNl =24 /d41: {/d49 e 2V 7,29V 7 +
2 g o
- z‘g*:(‘ (/d%)e”’fzi[zj, 7] + /d29 ETYAIVAE Z’f]) } . (2.69)
The proof that this action indeed reproduces the action in component form (2.65) introduced
earlier is elementary but tedious, therefore we will not present it here. To sum up, the A" = 4

theory written in the language of N = 1 superfields contains a gauge vector multiplet and a

triplet of chiral multiplets with the superpotential given by

W = 2tr (ig\;?eijkzi[zj, Zk]> : (2.70)

2.4 The Holomorphic Gauge Coupling

In this section we would like to discuss two main normalisations for the Yang-Mills field
strength called the canonical and the holomorphic normalisations, which are related by

rescaling of the gauge potential, and in the supersymmetric case by the rescaling of the gauge
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vector superfield. These normalisations are often mentioned in literature [66, 75, 76], but
here we would like to give a self-consistent overview compatible with our conventions. Note
that in this section we will suppress the colour indices in expressions linear and quadratic in
fields to make the notation more transparent. To restore them simply add a colour index to
each field and contract the colour indices for all field bilinears. To distinguish quantities in
canonical normalisation from those in holomorphic normalisation sometimes we will use the

superscripts ‘¢’ for canonical and ‘h’ for holomorphic

Let us start with the Yang-Mills action, and later generalise to the super Yang-Mills case.

The usual way of writing the Yang-Mills action is the following:

s = /d4a; (—iFMVF“”>. (2.71)

In this case the gauge kinetic term is said to be canonically normalised and the field strength
is given by
F{)* = 9,A% — 9, A% + gf " AL AC. (2.72)

To change to the holomorphic normalisation rescale the gauge potential to A, — éA#. This
leads the rescaling of the field strength F,ﬁ‘;) — %F ,51;) so that the gauge coupling g does not
appear in the definition of the field strength and other quantities related to the gauge field

like the covariant derivatives and the gauge transformation of the gauge field itself:
F{O* — Fle = 9, 4% — 9, A% + foeAb AC. (2.73)

In this case the gauge coupling appears in the action as a factor in front of the gauge kinetic

term ,
h v
s = /d% <492FWF“ ) . (2.74)

This way of writing the Yang-Mills action seems more natural as it separates the geometric
nature of the gauge field and its field strength from the field theoretic coupling. This form
of the Yang-Mills action is often used in the study of instantons, while the canonically
normalised one is more appropriate for perturbative calculations, where it is useful to have
the coupling g appear in the action so that it can be used as the perturbation expansion

parameter for perturbation theory.

The idea of the holomorphic coupling can be generalised to the super Yang-Mills case. We
recall the definition of the field strength superfield W,, in (2.68), which corresponds to the

canonical normalisation:

Wéc) _ _EDQe—QgVDangV
4 B (2.75)
=29 (M + 07 (capD + Ff3) + 0%iDacA?) .
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In order to derive the super Yang-Mills action it is useful to recall the definition of the dual
field strength FW = 2€w,ng Po and it is possible to show using the identities and definitions

in Appendix B.1 that the following relations for various field strength bilinears hold:

~ 1
Fu = ie/u/pano (2.76a)
E,F"W = —F, F" (2.76b)
(FO)P(F)ap = —2(F ) (FHM (2.76¢)
(F7)ap(F7)™ = —2(F ) (F7 )™ (2.76d)
(F)u(F )+ (F7 ) (F) = F (2.76e)
i [(F ) (FY = (F7)u (F)] = B . (2.76t)
Thus we see that the F-terms of the field strength superfield bilinears are given by
WOWo = 4g%0% (2iAc¥ Dyd + D? = FLFF1) 4 (2.77)
WW* = 4626 (2iAa¥ Dy + D = Fp 7)) 4 .. (2.78)
and the super Yang-Mills part of the action therefore reads
s©., = [de [0 L wew
(2.79)

1 - 1
4 .Y —
= /d x (—4FWF’“’ +iAd" Dy + 2D2> .

To change to the holomorphic normalisation we should now rescale the whole gauge vector
superfield, rather than just the potential, therefore we set V — %V. This gives a definition
of the field-strength superfield that is independent of the gauge coupling

«

W) = —EDQe*VDaeV
4 B (2.80)
= o + 07 (eapD + Fily) + 6%iDas X,

Analogously to the Yang-Mills case we now get an action in which the gauge coupling has

been factored out of the action:
s /d4 /d2 S WOW, + c.c. (2.81)
SYM — .
v Sy = 1
= g2/d433 (—4FWF“ + iATF DA + 2D2) : (2.82)

As in the Yang-Mills case such a rescaling has the advantage of emphasising the geometric

nature of the action rather than the perturbative one. Apart from this it also allows one to
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introduce a generalised complexified gauge coupling, usually defined as follows

0 4mi
T=oo + R (2.83)
The #-angle in the real part of 7 is a new coupling, and is not related to the Grassmann
coordinates 0¢. The key insight is now that in the holomorphic normalisation the gauge
coupling does not appear in any of the field definitions nor in the covariant derivative, and
enters the action in a holomorphic way as a multiplicative factor in front of the W*W,
F-term. This in fact allows us to replace the real gauge coupling constant g by the complex

coupling 7.

Using the same identities (2.76) for the field strength as before it is straightforward to show
that

T 1 -
RFLF+#V+C~C- = —4—g2FWF“”+ 327T2F’WFW' (2.84)
It follows immediately that the holomorphically normalised super Yang-Mills action can be
written as
Ssyat = / dte / 20 W, e, (2.85)
1672

= [d* L g+ 0 g Liserpoy 4 L p?
= [d*z —@ nv + 327T2 uv + ?2)\0 n + 2792 . (286)
We see that the topological term 326;2 F ;}Vﬁ’ ¢ now appears naturally in the action. Since in

this text we will not touch upon topics related to this term, we will abstain from using the
complexified gauge coupling and will use the canonical way of writing the super Yang-Mills
term rather than the holomorphic one. In this way all kinetic terms will be automatically

canonically normalised.

To conclude this section let us contrast the quantities that involve the gauge coupling
g in the canonical normalisation with those in the holomorphic normalisation, where g
disappears. These quantities are the field strength, the covariant derivative, and the gauge

transformations of the gauge potential.

Recalling the Section 2.2.2 the canonical quantities are given by

Field strength:

Fu = 0,A, —8,A, —iglA,, A, (2.87)
Fl, = 0,A% — 0,A% + g f“bCAZA,‘j (2.88)
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Gauge transformations:

A, > (A, + gaﬂ)e—w (2.89)
1
0A, =ila, A + ga“a (2.90)

Covariant derivative for any field d_;:
Dyé = (9, — igAu)$ (2.91)
Covariant derivative for a field B in adjoint representation:

D,B = 0,B —ig[A,, B]. (2.92)
The same quantities in holomorphic normalisation are given by the following expressions.

Field strength:

Fu = 0,A, — 0,A, —i[A,, A, (2.93)
Ff, = 0,A% — 0,A% + [ A A (2.94)
Gauge transformations:
Ay — (A, +i0,)e " (2.95)
0A, =ila, Ay + 0, (2.96)

Covariant derivative for any field qg:

Dué = (9 — i4,)é (2.97)
Covariant derivative for a field B in adjoint representation:

D,B = 0,B —i[A,, B]. (2.98)

Thus we see that in the holomorphic normalisation the coupling constant g disappears from

all definitions.
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Chapter 3

The Operator Spectrum of the
N = 4 Super Yang-Mills Theory

The holographic duality ensures that gauge invariant operators of the SYM theory, and their
correlation functions can be related to the gravity modes, and their dynamics. Thus it seems
essential to understand and classify the possible field theory operators, understand their
symmetry transformations and multiplets, and explore ways of systematically constructing
them.

Recall that the field content of the N/ =4 SYM theory in four dimensions consists of six
scalars ¢!, four Weyl fermions Ao, and one gauge field A, all in the adjoint representation
of the SU(N) gauge group. All of these fields can be identified as components of one vector
multiplet of the N = 4 supersymmetry. Thus to construct a gauge invariant operator one
can take products of various fields and their derivatives, and trace the result with respect
to the gauge group: O = tr(FWEF® ) where F() can be any of the fields listed above.
Operators of this form are called single trace operators, and correspond to single particle
states of the gravity theory. These are the objects that are most interesting to us. One
can construct more general operators called multi-trace operators by taking products of
single trace operators. These operators can have identical quantum numbers as single trace
operators, but correspond holographically to multi-particle states of the gravity theory
and are generally suppressed as 1/N. In what follows we shall restrict our attention to

single-trace operators.

In a theory with conformal symmetry a common approach to classifying operator multiplets
is by finding primary operators and their descendants. Since the R-symmetry group SU(4)y
with generators R’ and the Lorentz group SO(1,3) with generators M), are commuting
bosonic subgroups of the superconformal group PSU(2,2|4), representations of the latter

can be labelled by the quantum numbers of these subgroups. Additionally, there is one more

31
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generator of the superconformal group that commutes with both R? and L, the dilaton D,
and thus can also be diagonalised at the same time [14], so that the corresponding quantum
number is the so-called conformal dimension A. In unitary representations the value of
A is bounded from below [14], and this fact is the basis for the classification by primaries
and descendants. Some generators can be assigned a conformal dimension A’ in the sense
that when applied to a state of conformal dimension A they create another eigenstate of
the dilaton generator D with conformal dimension A + A’. One such generator is P, and
its commutator with D can be written as [iD,iP,] = iP,, from where we immediately see
that P, has the conformal dimension of unity. There are three other generators in the

superconformal algebra that have a non-zero conformal dimension:

Flp=1 [Klp=-1 Q=5 Blh=—y (31)
where () and S stand for all Poincaré supercharges Qﬁ, Qaa and conformal supercharges
Sad, S’dA. These pairs of conformal raising and lowering operators can now be used to
construct multiplets of the superconformal group. Because the conformal dimension must
be bounded from below, every multiplet has an operator of the lowest dimension Op, called
a primary. In pure conformal theory without supersymmetry this means that [K,, Op] = 0.
In a superconformal theory the supercharges constitute a second pair of raising and lowering
operators, and in theory for a superconformal primary we should demand [K,,Op| = 0
and [S,Op] = 0. However, since the conformal dimension of S is —% and that of K, is
—1, [S,0p] = 0 is a stronger condition and already implies the other one. Thus we have
found that superconformal primary operators Op are those for which [S,Op] = 0, and
the superconformal multiplet that they generate can be constructed by computing their
descendants by applying Poincaré supercharges ) and Poincaré translations P,. Since
according to the superconformal algebra {Qé,QB B}t = 205 gpuég some combinations of
supercharges can be replaced by the operator P,, and the number of combinations of
supercharges that can be applied to a primary without generating derivatives is therefore
finite. In fact, in a theory with 16 supercharges like the N’ = 4 in four dimensions, the

maximal number of such combinations is 16, and the highest dimension operator is Q3Q%Op.

3.1 Superconformal Primaries

At this point the task of constructing superconformal multiplets is reduced to finding
superconformal primaries. To find them observe that descendants are by construction
commutators of Poincaré supercharges () with other operators, thus a primary operator is
one that cannot be written as such a commutator [14]. Upon inspection of the supersymmetry
transformations of all fields of the N = 4 SYM theory we realise that scalar fields appear on

the right hand side only as commutators. Thus a symmetric combination of scalar fields
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cannot be a descendant, and therefore it must be a superconformal primary.

Another refinement of the classification of multiplets is the fact that some primaries are
annihilated by certain combination of supercharges and the state of maximal conformal
dimension is never reached. Such primaries are called chiral, and the multiplets that are
based on them are called short, otherwise the primary is non-chiral and the multiplet is long.
The most typical case of a chiral primary is annihilated if more than half of all supercharges
are applied to it, thus for an A/ = 4 theory in d = 4 the highest dimension operator in such
short representation would be of the form Q*Q*Op rather than Q*Q®Op. Such operators

are sometimes also called %BPS because they preserve half of the supersymmetry.

The reason we are interested in %BPS operators is that it was shown that they are exactly
those that correspond to supergravity modes, which also turn out to be in short represen-
tations. This makes sense since supercharges have helicities i%, and in a theory with 16
Poincaré supercharges, 8 of positive and 8 of negative helicity, one would generate operators
that correspond to supergravity modes of spin higher than 2, which should not be the
case for a theory of gravity. Short representations based on %BPS primaries, in contrast,
admit operators that are generated by at most 4 supercharges of the same helicity, which
corresponds to supergravity modes with spin at most 2. Representations in long multiplets
must thus correspond to stringy modes that were truncated by the supergravity limit and

are therefore not accessible in the supergravity approximation.

As we found out above, superconformal primaries are traces over symmetrised products of
scalars of the N/ = 4 theory. It can be shown [13] that chiral primaries are exactly those
primaries that are traceless with respect to the SU(4)g indices, which is commonly denoted
by

0, = trotlt . gle} (3.2)

where the curly braces mean that the SU(4) indices are symmetrised and the trace is removed.
Because the scalar fields are in the 6 = [0, 1, 0] of the SU(4), a symmetric traceless product
of p such fields corresponds to the irreducible representation [0, p, 0] of the SU(4). Further,

it can be shown that the conformal dimension if this operator is A = p.

A common way to denote the chiral primaries is
Op =Chh g tr(¢" ... ¢"), (3.3)

where Cﬁ.,. 1, 18 a symmetric traceless SU(4) tensor with respect to its lower indices. The
upper index A counts the multiplicity of independent symmetric traceless tensors with p
indices, and therefore its range is equal to the dimension of the representation [0,p, 0] in
which the operator is. Thus a choice of the tensors Cﬁ... I corresponds to a choice of basis for
the corresponding SU(4) representation and replaces p SU(4) indices, each of which goes from

1 to 6 by one index that goes from 1 to the dimension of the representation. For example,
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the operator tr ¢11¢/2} is in the [0,2,0] = B = 20’ of the SU(4), and can be written as
City, tr(¢n¢™) with A € {1,...,20}. The fact that C' . tr(¢¢'2) is in the 20’ of the SU(4)
manifests itself in the fact that SU(4) transformations that act on it can be represented by

20 x 20 matrices 74P and the transformation rule becomes Cﬁ._ 5, — TAB C’E I

3.2 Superconformal Descendants

To construct the descendants recall again that given a superconformal primary Op only
a finite number of Poincaré supercharges can be applied to it before we start generating
derivatives, which are conformal descendants. If we only pick out those superconformal
descendants that cannot be written as derivatives, we get operators that are primaries of the
conformal subalgebra, and as we have seen, there are only a finite number of such operators

in a given superconformal multiplet.

The group theoretical treatment of superconformal descendants was performed in [77], and in
the appendix of [39] the result is presented in a convenient graphical form that we reproduce
in Figure 3.2. The down-left arrow corresponds to the action of @, the down-right to Q,
and the number in the left column is the conformal dimension A, which increases by %
at each level because the Poincaré supercharges Q and @ have the conformal dimension
of % Because the supercharges Q and @ are complex conjugates of each other, the whole
short multiplet build by acting with @) and @ on the primary is invariant under complex
conjugation. The action of the complex conjugation on an operator in the short multiplet
corresponds to mirroring with respect to a vertical axis, which is schematically represented in

Figure 3.1. One can convince oneself this is indeed the case by comparing the representations

Figure 3.1: The complex conjugation of operators in short multiplets interchanges operators
that are mirror-equivalent to each other with respect to the central vertical axis.

N

appearing in the multiplet in Figure 3.2 with their mirror images.

The representations that appear in square brackets in Figure 3.2 are the SU(4) highest

weights, and one can see that the representations that appear in an order p multiplet have
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weights up to p—4. Because negative weights are not possible this means that representations
built on a superconformal primary with p > 4 are generic, while those for p =1, p =2 and
p = 3 will be shorter. These ultra-short multiplets can be found, at least for on-shell fields by
removing representations with negative weights. More technical details on these multiplets

can be found in [40]. The numbers in the subscript are the Lorentz quantum numbers.

Figure 3.2: The short multiplet of the A' = 4 super Yang-Mills theory in four dimensions
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The first non-trivial example for which traces over the colour indices do not give zero is
the p = 2 short multiplet. It is the supermultiplet built on the superconformal primary
troll¢/t = [0,2,0] = 20/, and operators of this multiplet were used by GPPZ [21-23]
to study field theory deformations. This is exactly the multiplet that corresponds to the
massless multiplet of the graviton on the bulk side. Because of this, and since the graviton
multiplet is the only one present in the gauged supergravity approach, the p = 2 short
multiplet was one of the first and basic operator multiplets to undergo tests of the holographic

principle.
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We can check the first few terms of the p = 2 supermultiplet against the structure in

Figure 3.2. Consider the repeated application of the Poincaré supercharged @, we expect the
. Q Q .

following result: [0,2,0]¢ ) = [0, 1, 1](%,0) = [0,1,0] 1) @ [0,0,2] 4 ¢y, or, in other words

Q Q —
20'(0,0) = 20(1 o) = 6(1,0) & 10(g ) (3.4)

1
2

these are exactly the representations we obtain if we apply the super-transformation rules

introduced earlier:

1l (s = 1
0=twrols" = {ngng - Sa”eABCD} (B gCP) (35)
J = 2
Q™10 = 7\;5 {zUAGz;QF - 35”5%“‘51{31} tr(AGoE) (3.6)

1 a
QBBQaAO — _9 {2(1 AGxJ)BK _ 351J€AGBK} tr()‘EG)‘?])

1 1
_ 1 [suaBynox _ 5IJ6ABGK} fp( B
7 { 3 ( bcK)
+ PR AGENBE £1(X 6 Ar))
_ B 9 {Z(IAGEJ)DH _ 161J€AGDH} tr(éf;DH[¢BC, éccl).
V2 3
In the last descendant the first two terms, which are symmetric in the spinor indices (o),
form the operator in the 6(; ¢y, and the other two terms, which are proportional to €8 form

together the operator in the E(o,o)- These are exactly the representations we expected to
find.

3.3 Matching with the Bulk Representations

The N = 4 SYM theory is holographically related to the type IIB string theory in 10
dimensions, and therefore also to the type IIB supergravity theory on AdSs that is obtained
by dimensionally reducing the 10-dimensional theory on the S°. By the holographic principle,
everything that appears on the field theory side must be mapped to quantities on the string
theory side, in particular the quantum numbers that appear on either side must be equivalent.
However, it is not clear that all these quantities will still appear after taking the large N
or the supergravity limit on the bulk side. In fact it must be that this is not true since
by taking these approximations we simplify the theory by eliminating degrees of freedom.
However, it has been established that the operators in short representations do map to bulk
modes that survive the supergravity limit, and in this section we would like to study what

this correspondence exactly is.

Let us start with the bulk side of the correspondence. To dimensionally reduce from ten to
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five dimensions one compactifies the string theory on a five-dimensional sphere. The resulting
field content of the type IIB supergravity theory on AdSs x S° was systematically constructed
in [42] long time before the holographic correspondence was discovered. One starts by taking
the so-called Freund-Rubin ansatz for the background solution. The ten-dimensional modes
around this solution are then expanded into harmonics around the five-dimensional sphere,
and the expansion coeflicients of each ten-dimensional field become towers of five-dimensional
modes on AdSs, the so-called Kaluza-Klein modes. The isometry group of the five-sphere
is SO(6), and the spherical harmonics determine the SO(6) representation of the modes
that they correspond to. By analysing the linearised equations of motion one can obtain
expressions for the mass of every mode. The result of this analysis is summarised in Table III
of [42]. The isometry group of AdSs is SO(4,2), and so one obtains the total isometry group
SO(4,2) x SO(6). Because the ten-dimensional theory that we started with also had an
N = 2 supersymmetry, the five-dimensional theory inherits supersymmetry transformations,
and one realises that the resulting total symmetry group is PSU(2,2|4), the superconformal
group, which is exactly the symmetry group of the N' =4 SYM theory in d = 4 that we

discussed in the previous sections.

The supergravity theory involves only modes of at most spin 2, so it is a proper theory of
gravity, and not some higher spin theory. This is possible since all fields that are kept in
the supergravity limit fit into short representations of the superconformal group. Since the
early times of the holographic duality it was found [11, 12] that gauge-invariant operators of
the SYM theory should correspond to supergravity modes, and their correlation functions
to supergravity solutions with boundary conditions dictated by the SYM operators under
consideration. This conjecture has been subjected to substantial testing ever since, and
the body of literature on this topic is immense. It emerges that in terms of representation
theory the contents of short supermultiplets of Figure 3.2 can be exactly matched with

Kaluza-Klein towers of the supergravity theory.

If one inspects more closely which field theory operators correspond to which bulk modes
some patterns start to emerge. First remember that tensor indices of ten-dimensional fields
split into those along the S® and those that point into AdSs directions. This gives rise to
bulk fields with various tensor structures. For example a ten-dimensional 2-form field A,
where the hatted indices refer to ten-dimensional quantities will split into a 2-form field
A, a 1-form field A, and a scalar A,p after dimensional reduction. After studying the
quantum numbers of such fields and comparing them to the quantum numbers in short
multiplets one realizes that 5-dimensional fields that originate from the same 10-dimensional

one fall into columns, as shown in Figure 3.3.

The splitting of the vector indices of fields is not the only thing that happens upon dimen-
sional reduction—also the space-time coordinates on which the fields depend separate into

coordinates on the lower-dimensional AdS spacetime and the coordinates on the internal S°.
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Figure 3.3: The mapping of five-dimensional fields that emerge after dimensional reduction
on the S® to operators in short multiplets in the A" = 4 SYM theory. Those five-dimensional
fields that correspond to the same ten-dimensional field sit in columns that sweep across
short multiplets. On the left graph one can see the bosonic fields, and on the right graph
the fermionic ones. The labels in red correspond to the five-dimensional scalars. The labels
of the fields correspond to those used in [42].
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An observer living on the AdS space does not see the internal space, instead the isometries of
that space manifest themselves as symmetries of the five-dimensional fields. Instead of one
ten-dimensional field, an observer in five-dimensions will see a host of five-dimensional fields
distinguished by the way they transform under these internal isometries, thus measuring
irreducible representations. Formally speaking what happens is that ten-dimensional fields
¢(x,y) with the coordinates x on the AdS space and y on the internal space are expanded into
a basis on the S° that provides various irreducible representations of the S° isometry group
SO(6). These are exactly the spherical harmonics, and the expansion can be schematically
written as ¢(x,y) = >, #(2)rY*(y). The infinite towers of five-dimensional modes ¢(x)y
is what people refer to as Kaluza-Klein fields, and it is those fields that are physical fields
from the five-dimensional perspective. One may wonder how these Kaluza-Klein fields are
mapped to the short multiplets on the field theory side. Remember that each superconformal
primary composed of p scalar fields gives rise to a short multiplet that we call of order p.
It turns out that starting with the lowest spherical harmonics in the decomposition of the
ten-dimensional bulk fields each consecutive layer in the Kaluza-Klein tower corresponds to
an operator of a short multiplet of a higher order. The location of this operator in the short
multiplet is the same as that of all other operators corresponding to the same Kaluza-Klein
tower. Thus viewing fields mapped across the short multiplet in Figure 3.3 as roots of
Kaluza-Klein towers one can imagine the towers growing perpendicularly to those multiplets

with each new level corresponding to an order p increased by one. Figure 3.4 demonstrates
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what we mean on a three-dimensional picture. The precise mapping of Kaluza-Klein towers,

Figure 3.4: Mapping of Kaluza-Klein towers on AdSs to short multiplets on the field
theory side. The green surfaces and the black contours represent the short multiplets,
while the red arrows running across them represent the Kaluza-Klein towers, where only a
selection of towers is shown as an example. One can see that the towers pierce the multiplets
perpendicularly so that the location of the operators corresponding to one Kaluza-Klein
tower stays the same. The lowest short multiplet is that with p = 2, however, some towers
only start from p = 3 or p = 4, which leads to ultra-short p = 2 and p = 3 multiplets.
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and their quantum numbers and masses to the field theory operators is summarized in
Table 3.1 at the end of this section.

Before ending the section we need to explore one more detail. After looking at the mapping
of the bulk fields to field theory operators in Figure 3.3 one may notice that some bulk modes
appear multiple times. One reason for this is due to the complex conjugation symmetry of
short multiplets explained in the previous section, so that operators related by mirroring
with respect a horizontal axis as shown in Figure 3.1 in fact correspond to the same complex
bulk field. A corollary of this is that fields that sit on the symmetry axis are real. The
mirror symmetry is however not the whole story, and one can see that there are copies of the
same bulk fields in Figure 3.3 that are obtained not by mirroring, but rather by reflecting
through the centre of the diamond-shaped multiplet. In [42] it was shown that some bulk

fields give rise to two Kaluza-Klein towers, instead of just one. The additional appearances
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of bulk fields in the short multiplets corresponds exactly to two such “twinned” towers that
emerge from the same ten-dimensional field. We can formulate this more precisely: in an
order p short multiplet any operator of conformal dimension A = p + x, thus one that one
obtains by applying a supercharge to the primary 2z times has a twin operator of dimension
A =p+ (4 —x). We see that almost all operators have twin operators, except those that
map to themselves or their own complex conjugates. These correspond to x = 2, and are
therefore operators that sit on the horizontal line exactly half way between to top and the

bottom corners of the multiplet.

It is interesting that even though the representations that appear on such twinned towers
are exactly the same, the masses of the corresponding modes are actually different. This
asymmetry is also visible in the mapping to the short multiplets and manifests itself in the
fact that in general twinned towers do not start in the same short multiplet, so that the
location of their roots is skewed. To better explain what we mean by skewed we plotted the
roots of all Kaluza-Klein towers and the multiplets in which they start in Figure 3.6. The way
in which the twinned towers are skewed gives rise to an interesting relation between operators
of the same short multiplet that sit in twinned Kaluza-Klein towers: if the distances of the
shortest connection between these operators along the edges along which the supercharges
act is 2n for some integer n, then one of the representations will be [m1, p, ms], and the other

one [mq,p—n, mo] for the same my, mg, and p. We have plotted this relation in Figure 3.5.

Figure 3.5: Relation between SU(4) quantum numbers of twinned operators. In the
example shown there are 2n = 6 edges that connect both operators, so that n = 3. Therefore,
if one of the operators is in the representation [mi,p, ms| then the other one is in the
representation [mq,p — 3, mz|. This relation is true for all twinned operators.

[ma, k, ma] A X

To conclude, let us describe the matching Table 3.1. Each column in this table corresponds to
one short supermultiplet, and we have written out the three lowest multiplets for p = 2, 3,4
according to the multiplet structure in Figure 3.2. Each row corresponds to one of the
21 infinite Kaluza-Klein towers found in [42]. One can clearly see how the multiplets
corresponding to p = 2 and p = 3 are shortened because some Kaluza-Klein towers start
at a higher value of p, starting with p = 4 all higher short multiplets are generic and the

representations can be read off the table. The relations between the masses of the Kaluza-
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Klein modes and the quantum numbers of the operators are given in separate columns. After
looking at the mass formula for twinned operators one discovers an interesting detail: if the
mass squared of one of the twins expressed in terms of the order of the multiplet is given
by m?(p) then the mass of the other twin is given by m?(—p), thus the masses of twins are

related by p — (—p).

The lowest multiplet corresponding to p = 2 is the graviton, or massless, multiplet which
constitutes the field content of the gauged supergravity theory [44, 77]. It contains the
massless graviton in the 1y ;) at A = p+2 =4, and the scalars in the 20, the 10, and
the 1. with subscript ‘c’ standing for complex representation, and thus giving a total of
42 real scalar degrees of freedom. In particular, the 10, contains the scalars studied by
GPPZ [21-23] which, after the symmetry breaking SU(4) — SU(3) x U(1) branches as
10 — 6 + 3 + 1, and what in GPPZ are the scalars m;; and o are the 6 and the 1 under
this branching.
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Figure 3.6: Skewed roots of Kaluza-Klein towers with respect to short multiplets. The
horizontal lines represent short multiplets of different orders. The horizontal separation
distinguishes superconformal descendants that are obtained from the primary by applying
the supercharge @ a given number of times. On the bulk side this corresponds to different
bulk fields. The roots of Kaluza-Klein towers are represented by big single and double circles.
Red colour was used for bosons and blue colour for fermions. Double circles mean that
there are multiple towers that start at the same point. Small red and blue dots that run
upwards from the roots represent higher Kaluza-Klein modes. The twinned towers are those
connected by dashed red and blue lines, and one can see that the twins always correspond to
the same ten-dimensional field. Moreover one can see that twinned roots are all skewed in
the same way so that the connecting lines are all parallel. In fact the twin relation does not
only hold for the roots of the towers, but for all modes on all towers, so that the diagonal
lines should be copied and transposed vertically to connected all red and blue dots. Finally
note that for the cases p = 0 and p = 1 no gauge-invariant operators can be constructed,
even though from the group theoretical perspective it is perfectly possible to write down the
representations. On the bulk side these cases can be identified with the so-called singleton
fields that can be gauged away except on the boundary of AdS, and therefore decouple from
the other operators [13]. On the graph these modes correspond to the greyed out area on the
bottom of the graph, and the washed out red and blue dots. Thus the parts of the towers
that fall into the grey area should be removed and the corresponding towers should start at
the p = 2 multiplet. In spite of this the p = 0 and p = 1 layers have been included to better
demonstrate the symmetry of the set-up and the twin relations.
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Chapter 4

Scalar Potential in Gauged

Supergravity

In the course of this part of the thesis we will establish a holographic method for the
computation of the bulk scalar potential, put prior to this let us review the traditional way
of obtaining it. Thus in this chapter we will demonstrate the non-holographic computation
of the scalar potential in the framework of gauged supergravity. We will review some basic
facts first, then specialise to the GPPZ potential [23], and indicate the steps that lead to its
computation. This calculation demonstrates how fundamentally different the holographic
computation is on the one hand, but also allows us to introduce and study some technical

aspects of maximal gauged supergravity in five dimensions that will be useful later.

4.1 Gauged Supergravity in Five Dimensions

In this section we would like to recall some facts about gauged supergravity. The GPPZ
computation is done for the gauged N' = 8 supergravity in a five-dimensional AdSs space-

time, and therefore this is the theory we would like to focus on at the moment.

Gauged supergravity can be derived from ungauged supergravity by promoting some of
its global symmetries to gauge transformations. The ungauged A/ = 8 supergravity in five
dimensions was first considered in [78] and has a global Eg) symmetry, which is the split,
real form of the complex Eg. Since Eg¢ has complex dimension 78, the split real form Egg) is
of real dimension 78. The 6 in the parenthesis in the subscript stands for the difference of
the numbers of non-compact and compact generators, thus in our case the 78 generators
consist of 42 non-compact, and 36 compact ones. Apart from the global Eg ), the theory
has a composite local Sp(4) symmetry. It is local in the usual sense that it depends on the

spatial coordinates, but it is not a gauge group since it is not associated to any gauge fields.

47
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Among other fields the five-dimensional supergravity theory contains 42 scalars. These are
described by a non-linear sigma model and take values in the coset manifold Egg)/Sp(4).
These 42 scalars correspond to the 42 non-compact directions of the Egg), and the lo-
cal composite symmetry group Sp(4), which is the maximal compact subgroup of Es(6)
and therefore of dimension 36, mods out the 36 compact directions through the quotient
Eg(6)/Sp(4). In short, the 42 scalars are in fact equivalence classes in Egg) and the local
Sp(4) transformations correspond to the choice of a representative in each equivalence class.
Fixing a “gauge” in Sp(4) corresponds to fixing the representatives for the scalars equivalence

classes.

The gauging of the supergravity theory means that we choose a subgroup of the global Eg )
and promote it to a gauge group. This is a non-trivial procedure, as appropriate gauge
fields need to be found, and gauge couplings have to be introduced. At the end of the day it
can be shown that it is consistent to gauge an SU(4) subgroup. It can be embedded in the
first factor of the maximal SL(6) x SL(2) subgroup of the Eg), which is obvious from the
algebra relation su(4) = so(6) C sl(6). After the subgroup SU(4) is promoted to a gauge
group, the Eg(g) global symmetry is broken, and only its subgroup SL(2), which appears as
the second factor above, survives. The composite local Sp(4) remains unaffected. In total,

starting with the ungauged supergravity with the symmetry
Eg(s) x Sp(4)", (4.1)

where “CL” stands for composite local, we promoted an SU(4) subgroup of the global Egg)
to a gauge group breaking the latter to SL(2). The gauged supergravity theory has therefore
the symmetry

SU(4)8218e % ST,(2)8loPal Sp(4)CL. (4.2)

More details can be found in the original literature in which the N' = 8 gauged supergravity
is derived [44, 45].

4.2 The Scalar Potential

The gauged supergravity theory described in the previous section has a potential for its 42

scalars that can be written in the following way (see equation (5.4) in [45]):

2

__9 ab _ abed
P=— (2Was W = WpeaW b . (4.3)

The indices a,b,c,... € {1,...,8} refer to the fundamental representation of the Sp(4),

and are raised and lowered using the symplectic metric Q4 = (_24 104). Furthermore

Waop = W = Q% MWyae. The scalar fields in the potential P are hidden in the object
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Wabed, which is quadratic in elements called “vielbein” which parametrise the coset manifold

Eg(6)/Sp(4), on which the scalars live.

In order to describe the scalars as an Eg(g)/Sp(4) coset let us first find how the relevant
representations branch. The Lie algebra embedding sp(4) C ¢g(6) is special [79], and the
representation branching can be found by standard Lie algebra techniques, or by using
computer software [80]. We find that the fundamental, the anti-fundamental, and the adjoint

representations of the eg) branch as follows

27 — 27 (4.4a)
27 27 (4.4D)
78 — 36 + 42. (4.4c)

We see that the adjoint representation 78 of the ¢g(g) branches into the adjoint representation
36 of the sp(4) and an additional 42. The quotient Eg)/Sp(4) means that we have to
remove those compact 36 generators of the sp(4) from the 78 generators of the eqg), leaving
just the 42. To construct the coset one starts with an adjoint field of the eg(g), which can be
thought of as living on the 78-dimensional tangent space of the Eg(g). The group Sp(4) is
36-dimensional so that the tangent space of the coset Eg(g)/Sp(4) is 42-dimensional, and
corresponds exactly to the 42 scalars. These 42 scalars can be represented by a vielbein

Va cd a5 follows:

V=] 42 | €Eqe)/Sp4). (4.5)

Recall that the scalars have to transform both under the Eg) and the Sp(4), and therefore the
vielbein V, * carries both Eg(e) indices A, B, ... € {1,...27}, and Sp(4) indices a,b,c, ... €
{1,...8}. Here we are following the standard index conventions where an upper index refers
to a fundamental representation, and a lower index to the corresponding anti-fundamental
representation. The fundamental representation of Eg) is the 27, thus the lower index A
transforms in the anti-fundamental 27 of the Eg). The fundamental representation of Sp(4)
is the 8, so that the anti-symmetric and symplectic-traceless index pair cd corresponds to
the 27 of the Sp(4).

In the ungauged theory the Eg ) is a global symmetry of the theory. The gauging is achieved
by promoting an SO(6) subgroup of the Eg) to a gauge group, which sits in the g as

described by the following inclusions:
Eg6) D Sp(4) D SL(6) x SL(2) D SO(6) x SO(2). (4.6)

After the promotion of the SO(6) to a gauge group the global symmetry Egg) is broken
down to SL(2), which is the maximal subgroup of the Eg), which commutes with the SO(6),
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as one can see above. Thus after the gauging the representations need to be branched under
the algebra inclusions
¢(6) 2 5p(4) D 50(6) x 50(2). (4.7)

We saw the branching of the relevant representations under sp(4) C ¢g() in (4.4), the further
branching under s0(6) x so0(2) C sp(4) is given by

27 — (15,1) + (6,2) (4.8a)
42 — (20',1) + (10,2) + (1,2). (4.8b)

Thus given the branching of the fundamental representation we see that the Eg) index of

the vielbein has to be transformed as follows:

VIch
Vi v, ( Cd) (4.9)
I

with indices I, J, K,... € {1,...6} and «, 3,7, ... € {1,2} transforming in the fundamental
6 of the SO(6) and the fundamental 2 of the SO(2) respectively. It is in this basis that the

symbols Wypeq in (4.3) are expressed in terms of the vielbein [45]:
Waed = €6" ViaabViged (4.10)

with €2 =1, and ¢/ a six-dimensional identity matrix.

4.3 The Scalar Potential in GPPZ

In order to specialize to the GPPZ case [21-23] and apply the formula (4.3) to compute the
scalar potential a number of steps have to be taken. First, the scalar fields that one turns on
break the global symmetry, so that one needs to determine the symmetry breaking pattern,
and parametrise the tensors in terms of the remaining symmetry groups. Then the scalars
to which one truncates need to be parametrised in terms of the non-compact generators on
the scalar coset manifold. The resulting algebra element X containing the scalars is then
exponentiated to get the vielbein V. Once the vielbein is computed the formulas (4.10)
and (4.3) yield the scalar potential. In the following subsections we will go through the
details of the steps just described.

4.3.1 Symmetry Breaking and Group Theory

In the previous section the vielbein was parametrised in terms of the s0(6) x s0(2) subalgebra

of the eg(g). This was convenient because precisely the first factor, the 50(6), is the one that
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gets gauged, and the second one, the s0(2), is part of the s[(2) algebra of the residual SL(2)
global symmetry that survives the gauging. Since SO(2) is the maximal compact subgroup

of SL(2), it can be used to label representations of the latter.

Recall that in holography the SU(4) gauge group of the supergravity maps to the global
SU(4) R-symmetry group of the field theory. In GPPZ [21-23] field theory deformations
are considered that break the N’ = 4 supersymmetry down to A/ = 1. This breaks the
R-symmetry down to SU(3) x U(1) € SU(4), where U(1) is now the R-symmetry of the
N =1 supersymmetry, and the SU(3) becomes the flavour symmetry that mixes the three

chiral multiplets that are formed after the supersymmetry breaking.

Because of the symmetry breaking pattern on the field theory side it is natural to choose an

algebra basis on the gravity side that reflects the corresponding subgroups, namely
su(4) D su(3) x u(1), (4.11)

similar to the previous section, taking subgroups further branches the indices of the vielbein.

The relevant representation branchings that we need are (see equations (4.8))

15 —> 19+ 34+ §_4 + 8 (4.12)
63 5+3,. (4.13)

In total, the labelling of the representations changes according to

50(6) x 50(2) = su(4) x u(1) D su(3) x u(l) x u(1). (4.14)
with
(15,1) — 15, (4.15)
— 1(0,0) + 34,0) T 3(—1,0) + 8(0,0) (4.16)
(6, 2) — 62+ 6_9 (417)
— 3(_272) + 3(2’2) + 3(_2’_2) + 3(2’_2) . (418)
From these branching rules we can now induce the index structure of the vielbein:
Vv 1Jed ] _ _ ) _ ) _\ed]t
1 1 9 1 1 1 1
(v ) = [0 e v v v Ve e )] (419
= (1(0,0)7 3(4,0)» 3(~4,0): 8(0,0)» 3(—2,2): 3(2,2) 3(—2,—2)3(2,—2)) : (4.20)

Note that the conventions for the SU(3) indices are now different: instead of denoting the

fundamental representation by an upper index and the anti-fundamental by a lower index, we
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are now following the conventions of GPPZ to denote the fundamental representation of the
SU(3), the 3, by a lower-case Latin letter from the middle of the alphabet, i, j, k, ... € {1,2,3},
and the anti-fundamental by the barred indices 7,7, k, ... € {1,2,3}. The upper and lower
SU(3) indices, in contrast, shall now denote rows and columns, respectively, which makes it

easy to write the vielbein as a matrix, as we will see in what follows.

The next step is to write the vielbein V' explicitly in terms of the 42 scalars. Recall that these
scalars are described by a sigma-model, and therefore take values in the target manifold
Eg(6)/Sp(4). One standard way to model this is to take the scalars to be proportional to the
non-compact generators of the Eg() and exponentiate the resulting Lie algebra element to

get the vielbein with values in the group manifold:
42
V = exp (Z ¢T> : (4.21)
i=1

Since we are considering a symmetry breaking pattern where the Eg(g) group is broken to
SU(3) x U(1), we need to write the generators of the Eg) in this basis. In particular, this
means that also the column index ed in (4.19) will have to be branched to the corresponding

subgroups, as it was done with the row index.

Recall that the 42 scalars of the theory are in the 42 of the Eg) in the ungauged theory,

and after gauging we have to consider the subalgebras according to
e(6) O 5p(4) D 50(6) x s0(2) = su(4) x u(1). (4.22)
Under these inclusions the 42 branches as
42 — 42 — 200+10_534+102+ 14+ 1_4. (4.23)
In the GPPZ case we are breaking the symmetry further to
su(4) x u(1) D su(3) x u(l) x u(1), (4.24)

and the representations branch as

20') — 8(0,0) + 6(_4,0) + 6(4,0) (4.25)
10_3 — 62, _2) + 3(_22) + 1(_6_2) (4.26)
105 — 6(_92) + 3(22) + 1(62) (4.27)
14— 1o (4.28)
14— 1 4. (4.29)

All in all, recalling that the row and column indices of the vielbein were in the 27 of the
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Sp(4), and the scalars in the 42, we can use all branching rules listed above to write the

vielbein in the following block form:

27 15¢ 62 6_2

15¢ 206 ﬁg 10_2

V= 21 42 — 6., | 10_, 20), 1_4 N
62 ﬁg 14 206
1(0,0) 84,00  3(-1,0) 8(0,0) 8(—22)  3(2,2) 8(—2,-2)  3(2,-9)
8 3 3o
1(0.0) 0 0 0 00 |0 (22) | 2(=2-2) O
_ 8 6, 6 16 o 3(_o_
3(_4’0) 0 (070) 0 ( 470) 0 ( 212) ( 67 2) ( 27 2)
6 3 1 6
3(1.0) 0 0 0 (4,0) 22) (62 2-2 0
80.0) 800 640 640 800 [622 302 |32-2 6e-2
EPO 0 3(—2-2) 622 |800 6o |lo-4 O
32-2 | 3(-2-2) 62 L(-6-2 3(2-2 |6(-10 8w |0 10,~a)
§ — — — —
@2 3220 L2 622 3p2 |log O 8(0,0) (4,0
3_ J— J—
(722 0 3(22) 0 6(_22) |0 Lo |6(-10 800

(4.30)

This parametrisation of the Eg)/Sp(4) coset vielbein in terms of the su(3) x u(1) x u(1)

representations leads to the following tensor structure for the vielbein and the algebra

elements:

z oz oz Fy | A% Ak | AR A&

2 zil—f zik zim zi/,—C 2" zil—g 2,
2 zik 2" Ziiqz zi]—€ 2 zi/,—€ 2%
217 zijl} Zijk ij]}l Zij;; Zij_k Zij_’; Zij_k

. . (4.31)

z zl% 2 zll—d ZZIE 2, ZZI—g 2
2 zfl—c 2h zil—d Zi}?; 2 | 2 2%
2 zi]; 24, zil—d 2z i 25z i
2 25]—C 2h zzl—cl zi]—g 2% ZTE 2

The next step is to pick the scalars to turn on, fit them into the coset element just described,

and exponentiate it to get the vielbein.
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4.3.2 Computing the Vielbein of the Scalar Coset

The scalars considered by GPPZ [21-23] are in the representations 6, _9) and the 1(_g _o)
that come from the branching of the 10_», and are denoted by m;; and o. On the field
theory side m;; corresponds to a mass term for the A" =1 chirals, and o corresponds to the
gaugino condensate. The authors showed that after an appropriate choice for the generators,
which lead to canonical kinetic terms, the supergravity scalars m;; and o can be mapped

into the algebra as follows:

0 0 0 0 0 0 0 0
0 0 0 0 0 ’”35 f 0
0 0 0 0 0 o 077

¥ 0 0 0 07 A 00 euA (432)

0 0 0 eug 0 0 0 0
0 2 T 0 0 0 0 0
0 o T% 0 0 0 0 0
0 0 0 ej,;[% 0 0 0 0

The unbarred indices refer to the fundamental 3 of the SU(3), the barred ones to the anti-
fundamental 3. Repeated indices are summed over, and necessarily involve one unbarred
and one barred index to produces an SU(3) invariant contraction. It is necessary to choose
m;; to be diagonal to project out an additional chiral primary operator that would otherwise
lead to a third bulk mode. Therefore the authors of GPPZ take

mij = méij = \/§O¢5ij . (4.33)

In the last equality we defined «v as a rescaling of the mass term m. Note that in (4.32) we
have reproduced the original form of X found in [23], in which the distinction between row
and column indices which we used in writing down (4.31) was not used. We shall reinstate
this distinction and denote rows by an upper index and columns by a lower index, so that

X is given by

0 0 0 0 0 0 0 0
0 0 0 0 adl, Té 0
0 0 0 0 0 o8y a’, 0
i7 — 1]
X = 0 O 0 () ae’y 0 0 ae’, (4.34)
0 0 0 aey, 0 0 0 0
0 @y o4 0 0 0 0 0
0 odz ad’y 0 0 0 0 0
0 0 0 aey, 0 0 0 0
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To get the vielbein V' we need to exponentiate X, which can in fact be done by hand. Notice
that X is in block form, and that each entry in the block formed by rows and columns (2, 3,

6, 7) is an identity matrix. Therefore we can separate out this block, and exponentiate it

like a normal matrix:

o

0 o o
00 o @
P c 0 0|

c a 0 0

|al

cosh |o| cosh |a] EIE ||a\ sinh |o| sinh |a/| |a‘ cosh |o| sinh |o] sinh |o| cosh |a]

\ E

% sinh |o| sinh |« cosh |o| cosh |a] o] sinh |o| cosh |a] fay cosh |o| sinh |o
B %coshhﬂsinh\a\ %sinh\a!coshbz! cosh || cosh | |JT‘ sinh |o| sinh |«
sinh |o| cosh |« cosh |o| sinh |a/| sinh |o| sinh |« cosh |o| cosh |a]
Gl Tl Go
(4.35)
The rest of X is formed by rows and columns in positions (1, 4, 5, 8) and is given by:
0 O 0 0
1] — 17
x= |0 0 acg oy (4.36)
0 aey O 0
0 ae 0 0

To exponentiate this block we need to carefully multiply the e-tensors. It is useful to notice
that X2 = (2|a|)?Y, where Y has the properties Y2 =Y, and YX = XY = X, and is given
by

0 0 0 0
0 0" 0 0 ._ U
Y = kl e L a2 o 51]7 :5[2752]127 5119531—5215]* (437)
1 a® 57 1¢7
00 3ppd%  29%
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Using these properties it is now easy to exponentiate X:

(X2) + Z inﬂ)(X?)"X

exp X =

K
g~

n=0 n
L 2n 241
= —(2 Y+(1-Y)+ 7YX
;(2)(@;) Zz +1 ) 2lal
1 1
= cosh(2[a])Y + Wu Y) + msmh(2|a|)X (4.38)
1 0 0 0
0 cosh(2\a|)(5ij’—d 2‘04 sinh(2]a|)e ” % inh(2|a)e ii
o %sinh(2|a|) i cosh(|a])?0; ﬁsmhqap 5
0 Frsinh(2laf)e’y, Epsinh(la)?67  cosh(ja])*s,

After combining the two blocks of X in (4.35) and (4.38) we thus obtain the vielbein, in
which both rows and columns are written in the basis in which the 27 of the Sp(4) is split
to SU(3) x U(1) x U(1) indices. Recalling the tensor W is computed in terms of the

vielbein in the following way
Wabcd — eaB(S]J‘/Ia abVJﬂ cd, (439)

we see that the column indices of the vielbein have to be converted back to the Sp(4) basis,
in which the 27 is parametrised by an antisymmetric index pair ab. In GPPZ the authors
indicated that this basis change can be performed using certain gamma matrices [23], which
are contracted with the column index of the vielbein. In the basis in which we are working

the following vector of gamma matrices has to be taken:

ab

i (1, oy @y 4 4i(1=Ty) 4'(1—Ty) +(1+To) 7(1+Ty)
’4{4[2\/5’4’4’4’4

(4.40)

The capital gamma matrices used here are the SO(7) gamma matrices in the basis described
in [25] so that

. (0 —14
FO = ZF1F2F3F4F5F6 =1 . (441)
1., O
The small gamma matrices were defined by GPPZ [23] in terms of the SO(7) gamma matrices,

and their bilinear are given by

1

Vi =WV, Vg =YV Vi = Vi — §5klwk'm~ (4.42)

After this change of basis we will denote the resulting components of the vielbein as follows:

N ab
eXp(X)F 4\/> (‘/(1)7 ‘/(2)1 ‘/(3)7 Vv( 4)» ‘/(5)7 ‘/(6)7 VY(7)> VY(S)) . (443)
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Using the results for the vielbein in (4.35) and (4.38) we obtain the following vielbein

components:

S
‘72.7 —
ON 4\/?18 (444)

V(i2) = eijk,yjfc cosh || cosh |a] + eijﬂjk

sinh |o|sinh |a|+ (4.45)
lofle

ol cosh |o|sinh |a| + v27%(1 + FO)W sinh |o| cosh |

Vig) = Gijkﬁ]}% sinh || sinh |a| 4+ ei,]—g'yjk cosh || cosh |a]+ (4.46)
olla

V25'4F(1 = Tg) =

V274 (1 — FO) sinh |o| cosh |a| + \fyk’y (1+ FO)— cosh |o| sinh |

o] |al
V= 24" cosh(2|a)+ (4.47)

(4)
\/§eijk7 (1 Fo) smh(2|a|) + \[e”k'y (1+ Fo)— sinh(2|a])

. 2
Ve =¢ kﬂ ﬁ sinh(2|a]) + v2y'(1 — Tg) cosh? |a| + \fé’kv (1+ FO)W sinh? ||

(4.48)
Vi = € 577" cosh |o] sinh "% % nh h 4.49
6) = €517 ’a’cos |o| sin \oz\—l—ejk’y o ’sm |o| cosh ||+ (4.49)
V2y (1—Fo)cosh|a|cosh]a|+\f51k7 (1+F0)‘ o |smh|a|sinh\a|
i i gk 9 . i gk &
Vi =€y Wsmh |o| cosh || + €5 — cosh |o|sinh |a|+ (4.50)

|

ﬁ&iky (1 —I'g)——— sinh || sinh |a| + v/27*(1 + ') cosh |o| cosh |a/

oo
o]l

B B _ B 2
Vi = elkl'ykl%sinh(2|a|) + V26" 4% (1 = T) -~ sinh? || + v/2¢"(1 + ) cosh? |,

|alf?
(4.51)

The remaining step is to compute the tensor W< which eventually gives the scalar
potential P via the formula in equation (4.3). Before this can be done, however, there is

another intermediate step that one has to take. Recalling the definition of W°? again
szbcd — GaB(SIJ‘/}a abVJ,B cd7 (452)

we see that the contraction of the rows of the vielbein is given in the s0(6) x s0(2) basis,
while our vielbein is written in the su(3) x u(1) x u(1) basis. Therefore we need to investigate
how the contractions in the two bases are related to one another. The following subsection

is devoted to this calculation.
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4.3.3 Contractions in the Sub-Algebra Basis

In this subsection we will show how the index contraction in (4.52), which is written with
respect to the so0(6) x so(2) basis, translates to a contraction in terms of the subalgebra
su(3) x u(1) x u(1) C s0(6) x s0(2). Keeping only the relevant indices and considering the

most general case the contraction we are looking to rewrite is of the form
eyl zy, (4.53)

where Y, and ZB] are some generic tensors in the (6,2) of the s0(6) x s0(2). Since the
fundamental representations of both the s0(6) and the so(2) are real there is no meaning to
writing the indices upstairs or downstairs, and in (4.53) we simply chose a convenient way

of writing.

First consider the s0(6) contraction. To take the su(3) x u(1) C so0(6) subalgebra it is
convenient to apply the isomorphism s0(6) = su(4) first. We used this isomorphism in the
other direction in Chapter 2, where we saw that Y4B = 2/ ABy! / V2. One can use the sigma
matrix identities in Appendix B.2 to invert this relation to get Y/ = 34 ;Y48 /(2/2) so
that after applying another sigma matrix identity the so(6) part of the contraction in (4.53)

can be written as
ey < 1
sHylz7 = gngngYABYCD = ZEABCDW‘BZCD. (4.54)

Next we need to branch the 6 under the subgroup su(3) x u(1) C su(4). Using the embedding
in which the u(1) generator is given by

H = (4.55)

the 6 branches as
6 — 3 5+ 30 (4.56)

We also saw in the field theory discussion of Chapter 2 how this translates to the branching
of the tensors. After splitting the su(4) index A to (i,4) the tensors in the 6 branch as
follows

6 =YA4B o (YU Y = {7FY,, V') = {34,345}, (4.57)

where we have introduced the su(3) tensors Y3 and Y. To check that we have assigned Y%
and Y™ to the 35 and 3_5 correctly we can apply the u(1) transformations and compute

the corresponding charges. Using the U(1) generator H we defined in equation (4.55) the
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following result is obtained:

Sy Y = HAY A + gty d = sidy Al 4 §idyid = oyt (4.58)
5U(1)Yi4 — qiAYAL | gAAYiA _ GidyAj  gsiAyid _oyid (4.59)

so the assignment is indeed correct. To work out the contraction in (4.54) one needs to
decompose the su(4) indices as just explained, and substitute the definitions Y% = €ky;,
and Y = Y. The result is

1 o
sMylz) = ZGABCDYABZCD =Y Z'+Y'Z,. (4.60)

The same can be written using the representations and their charges rather than tensors in
the following way
(6,6) — (32,3_2) + (3_2,39). (4.61)

Next consider the s0(2) contraction given by
Py, Z5. (4.62)

The generator of counter-clockwise s0(2) rotations is given by

. .
Ta5:< , é) exp(iaTl) = (COSO‘ Sma), (4.63)

—1 sina  cos«

~Y

and has eigenvalues +1. Therefore carrying out the algebra isomorphism so(2) = u(1)

amounts to diagonalising T,,” and branching the fundamental representation according to

2—11+1_4. (464)

—i 1
The generator T, aﬁ is diagonalised by the unitary matrix U = - < ) 1) so that the
i

S

isomorphism is given by

1
T—UTU ! = 0 (4.65)
0 —1

Y; Y; 1 (Ys —iY; Y+
Yo= | Y)eu( Y= (2" = . (4.66)
Y Y V2 \Y2 + iV, '
It is manifest that Y correspond to the eigenvalue +1, and so is in the 1;, and similarly

Y~ isin the 1_;. To carry out the contraction invert the isomorphism just spelled out to get

Vi=—YT-Y") Y= ! Yt+Yv7). (4.67)

SR
S

2
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Thus we see that the su(2) contraction transformed to the u(1) basis is given by

Y, Zs =i(YTZ™ Y~ ZM). (4.68)
In terms of representations this can be written as

(2,2) —i(1t,17) —i(17,17). (4.69)

We can now combine the s0(6) and the s0(2) contractions to find the contraction of two
tensors in the (6,2). Note that according to equation (4.23) the so(2) charges that we need
are in fact twice as large as those considered in this section. Therefore in order to apply our
contraction formulas to the representation we encountered in the previous section we need
to take 2 — 19 + 1_5 under the isomorphism s0(2) = u(1). With this in mind the combined

contraction in tensor form reads
SR ARV Ar AR AV AR SF AR G2 (4.70)
It is again convenient to write this in terms of representations and their u(1) charges:

((6,2),(6,2)) — Z[@”(2,2)7 3(—2,-2)) — (3(2,-2), B(~2,2)) + (3(—2.2): B(2,—2)) — (3(—2,-2), 3(2,2)” :

(4.71)
The two u(1) charges we used above are with respect to the decomposition under so(6) x
50(2) — su(3) x u(l) x u(l) so that the first charge in the subscript refers to the u(1)
contained in the su(4) and the second to the u(1) from the the so(2).

4.3.4 Evaluation of the Scalar Potential

To apply the contraction rules just derived to equation (4.52) and compute W®? recall

that in the notation (4.43) we have

<V(5)7 Viey, Vinys V(S)) = (3(22,2),3(2.2) 3(—2,-2)» 3(2,-2))- (4.72)
After comparing with the contraction rules in (4.71) we see that the tensor W? is given by

szbcd _ Eaﬂ(le‘/Ia abVJB cd (473)

. r,aby ri,ed v ru,aby rised B,aby si,ed v ri,aby s,ed
=i (Ve Vo = Vi Vi Ve Vi - Vi Ve ) - (4.74)
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At this point everything is explicit in the su(3) x u(1) x u(1) basis and we can insert 1/abc?

into the formula (4.75) to obtain the scalar potential. After the substitution we obtain

P = _g; (2Wabwab _ Wabchade)

z (4.75)
g a'b' ' d yxrabed
- _E (QQaCQa’c’be’Qdd’ - Qaa’Qcc’be’Qdd’) w 14
0 1
with 0 <_1 0) | (4.76)

In GPPZ [23] the authors set g2 = 4. The expression in (4.75) is best evaluated in a computer
algebra software such as Mathematica [81], and to this end it is convenient to rewrite the

scalar potential in the following form:

P=— (2 tr [ToVia )P0 (Vi ) ToVs 1y Do (Vian)']
AE (4.77)
—tr [TV ) To(Vip ) | [foV{B,1>Fo<V<i4,n>t]) |
where we have defined
Vie = [V V) - (Vio Vi) - (Vi Vi) (Vi V)] @7g)

and Iy is the same as in equation (4.41). After inserting the expression for the vielbein
found in (4.44) we do indeed reproduce the GPPZ scalar potential [23]:

P = —g ( cosh?(2a) + 4 cosh(2a) cosh(20) — cosh?(20) + 4). (4.79)

To summarise we see that to compute the scalar potential for a given truncation of gauged
supergravity one needs to go through some lengthy and non-trivial steps. This is why it is
quite surprising that the holographic computation of the same potential is rather simple and
can be performed in just a few lines, as we will see in the next chapter. Nonetheless it was
useful to review the direct approach presented in this chapter for various reasons. It gave us
an opportunity to study the group theory of the truncations in which we are interested, and
also allows to cover multi-scalar cases in a systematic way, which is not yet well understood
in the holographic computation. Even though the expression of the GPPZ potential was
known, it might be useful to repeat this calculation for other truncations in order to check

new analogous results obtained holographically.
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Chapter 5
Holographic Beta Function

Let us first recall how holography allows us to reconstruct bulk data from field theory. Start
with a field theory in d dimensions which becomes conformal in the UV. Assuming the
holographic principle holds, there is a dual description of this theory in terms of a theory
of gravity in one dimension more. The extra dimension can be interpreted as the energy
scale of the field theory, and the UV regime is matched to the asymptotic infinity of the
spacetime of the dual gravitational theory. This is why the field theory is sometimes said to
live on the boundary of the bulk. From this it follows that if the field theory is conformal in
the UV, the dual space-time is asymptotically AdS.

The degrees of freedom of the field theory are given a dual bulk description via the so-called
operator-field correspondence. Given a scalar gauge-invariant operator O of conformal
dimension A, the dual description involves a solution to the bulk theory with a non-trivial
scalar field ¢ of mass m? = A(A — d). To find the correct dual interpretation of this field
one needs to look at its asymptotic behaviour at the bulk infinity in more detail [82, 83]. In
this near-boundary analysis one expands the field ¢ in an asymptotic series in the radial
bulk coordinate 7 and looks at terms of the form ~ ¢pe™ (=2 and ~ ¢oe 2" If the former
term is non-trivial, then ¢ is interpreted as a source for a field theory deformation by the
operator On:

Lerpr = Lerr + ¢oOA. (5.1)

If, in contrast, the latter term is non-trivial, then the field theory remains undeformed, but

the operator O acquires a vacuum expectation value given by

(Oa) ~ do. (5.2)

In either case the bulk solution is of domain-wall type and the metric can be cast in the
following form
2 2 2A(r) WV . _
ds* =dr*+e N datdx” Jim A(r)=r. (5.3)
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The limit r — oo at spacial infinity ensures that the solution is asymptotically AdS. This
domain-wall profile is precisely the description of the RG-flow that is triggered on the field
theory side by the operator Oa. One of the desired properties of such RG-flows is that Oa
does not mix with other operators as one flows towards the IR. If it does, then additional
non-trivial modes have to be included on the bulk side. It has proven fruitful to find such
consistent truncations of the bulk theory with solutions to the field equations that involve

only few non-trivial fields.

Now assume we have found a field theory deformation by an operator O which does not
mix with any other operators along the corresponding RG-flow. As explained above in the
dual picture this corresponds to a consistent truncation of the bulk theory to a single scalar
¢(r). In theory one should now solve the field equations for ¢(r) and A(r) to determine the
radial domain-wall profile, and since this profile is related to the running coupling on the field
theory side, we should be able to extract quantitative information about the beta-function.
The bulk equations of motion can be derived from the action of the truncated theory which

is of the following form:

_ 1
2K2

S /dd“x\/?g (~R+ (90) + 262V (9)) (5.4)
The variation of this action leads to coupled second order equations of motion for the scalar
field ¢ and the metric function A. For the specific case of domain-wall type solutions as in
equation (5.3) it was shown [26, 32, 33] that the solutions for ¢ and A can be obtained as
solutions of certain first order equations, and the second order equations of motion will be

automatically satisfied. In such a set-up the scalar potential V (¢) can be written as

_ 1
2k2

V() = 5oz (002 = T5502) (5.5)

d—1
in terms of what is usually called a fake superpotential WW(¢) and the first order differential

equations for ¢ and A are the following:

O d(r) = 0pW (5.6)
1

O A(r) = === W. (5.7)

As mentioned before the domain-wall profile of the solution relates directly to the field
theory beta-function in the dual description. The precise correspondence was worked
out in [30, 31, 55, 84], and the beta-function can be given directly in terms of the fake

superpotential in the following way:
B(r) = ~(d— 1) 7. (5.8)

From here one could proceed as follows. Choose a CFT with a holographic dual, then find a
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deformation by an operator O which does not mix with other operators along the RG-flow
that it triggers. Next find the gravity dual and determine the corresponding truncation. On
this truncation find the scalar potential and the superpotential, and finally compute the
beta-function for the running coupling of O using (5.8). Such computations have been done
before, however the computation of the superpotential is rarely trivial. Therefore we would
like the ask the opposite question: are there cases where the beta-function is known exactly?
In this case we could reverse the procedure and learn about the superpotential of the gravity

theory. Let us see how this works.

Assume we know (7). It follows from the first-order equation of motion (5.6) for ¢(r) that

dW(é(r))  dW do dW\?
e - - (d¢> . (5.9)

This can be used to turn the equation (5.8) for the holographic beta-function into a first-
order differential equation with respect to the radial coordinate r, and to integrate it. The
integration constant can be determined by matching the leading constant term in the large
r expansion of W with the cosmological constant of the asymptotic AdS space. For large

radii » we must get

Lo~ (R=267V) - (R + d(dL;U) : (5.10)

where L is the radius of the asymptotic AdS space. From this one can infer that the leading
constant term in W should be —(d — 1)/L. Furthermore we can insert the first order field
equation (5.6) for ¢ in the beta-function equation (5.8) and integrate to get ¢ in terms of
the beta-function, where the integration constant is fixed by the asymptotic behaviour of
¢(r) for large radii. From now on we will measure distances in term of the AdS radius L,

and thus effectively set L = 1. The procedure just outlined leads to the following results:

B (d—1)
W(r) = D) T a0 (5.11)
o) =~ [ @ s we) (5.12)

Using the fact that ¢(r) is monotonic we can invert it to r(¢) and then insert into W(r)
to obtain W(¢), and eventually, using (5.5), the scalar potential of the bulk theory V(¢).
The question to ask now is: are there interesting cases in which the beta-function is known
exactly? The beta-function () corresponding to a generic coupling A receives several
contributions. It has a classical part, which is in essence given by the dimension [A] of
the coupling. Quantum loop corrections might renormalise the coupling as well and add
additional terms to the beta function. Finally, the wave function renormalisation Z» might
be not scale-invariant itself, and contribute corrections to the beta-function known as

anomalous dimension v (u). One of the classical results is that supersymmetry is strong
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enough to provide cancellations of many quantum loop corrections, in fact, it is known that in
N =1 theories the superpotential does not renormalise at all [85]. Thus in supersymmetric
theories where interactions for component fields arise as F-terms of a superpotential, the
beta-functions for the corresponding couplings only renormalise through wave function
renormalisations which contribute the anomalous dimension. On the other hand it is also
known that there are classes of operators with protected dimensions, those are the operators
for which the wave function renormalisation Z is scale invariant. For the couplings that
multiply these operators this means that the contribution of the anomalous dimension
vanishes. In fact there are theories with operators that are both N/ = 1 F-terms, and have
a protected dimension. One such class of operators, which we will discuss in detail later,
are operators in superconformal theories sitting in short multiplets. These operators are
particularly interesting for holography because they are precisely those with the dual gravity
modes surviving the supergravity limit. Some of these protected operators are also F-terms
of some N = 1 subgroup of the full supersymmetry, and therefore the beta-function for their
couplings is free of quantum corrections and anomalous dimension, and is simply given by its
classical value. For an operator Ox in d dimension the coupling has dimension [\] =d — A,

and therefore the classical beta-function reads

Ba(p) = —(d — A)A(p). (5.13)

With this result we can now go on to evaluate equations (5.11) and (5.12) to determine

the superpotential W and the radial profile of the gravity mode ¢. Using the definition

Balp) = ji\o(gi we can integrate (5.13) to get A(1) = Aop~ (4=, In holography we interpret
¢ as the source for the operator Oa, and the radial bulk direction as the energy scale,

therefore we need to identify A with ¢, and u with " and get
B(r) = —(d — A)gge @A), (5.14)

As expected this matches exactly the derivative of the leading term of the asymptotic
expansion of ¢(r) for large r. This form of the beta-function can now be directly integrated

as shown in equations (5.11) and (5.12) to get

- oz 2D

= 1— <@)26—2(d—mr with - a = d— A (5.15)
—(d—A)r

o(r) = %ln (Z —_F zz Z(dﬁ)r> (5.16)

One can check that W(r) produces the correct cosmological constant for the asymptotic
AdS space and ¢(r) has the correct asymptotic behaviour near the boundary. As mentioned

before, we can now invert ¢(r) and insert into W(r) to obtain the superpotential as a
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function ¢. The result is:

MK¢)——{d—1ym§P(z>. (5.17)

Finally, using (5.5) one can use the superpotential to construct the scalar potential:
-1 2
V(g) = 6547 cosh? (2) [(d —9A) cosh <f) —(3d— 2A)} . (5.18)

Before turning to a general discussion we can test our result on the well-known holographic
flow discovered by GPPZ [21-23]. The authors discuss the deformation of the N' =4 SYM
theory in dimension d = 4 by mass terms that preserve N' = 1 supersymmetry. Written in
N =1 language the N'= 4 SYM theory contains a triplet Z; of chiral superfields, and the

deformation is given by the superpotential
W =m & tr Z, Z, (5.19)

We will see later that the operator O = 6% tr Z; Z; is in a short multiplet of the A" =4 SYM,
and therefore fits our requirements. Its F-term is a relevant operator of conformal dimension
A = 3, and m is the coupling that holographically corresponds to a supergravity mode.
Plugging d = 4 and A = 3 into our formulas, and transforming conventions via x? — 2,
é — V2m, W — 2WV we recover exactly the superpotential and the scalar potential given in
equations (25) and (21) in [23]:

W = —% {cosh (?/n%) + 1} (5.20)
V= —% [cosh2 <f/n§) + 4 cosh (f;g) + 3] . (5.21)

Let us now generalise this construction and explore further deformations of N'=4 SYM in

d =4 in a systematic way.
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Chapter 6

N = 1 Deformations of the N = 4
Theory

In the previous chapter we noted that for deformations of the N' = 4 super Yang-Mills theory
that preserve an N’ = 1 supersymmetry non-renormalisation properties of the superpotential
can be used to facilitate the computation of the beta function. Moreover, it is known that
operators in short representations of the N' = 4 super Yang-Mills theory that we discussed
in Chapter 3 are protected and therefore have vanishing anomalous dimension [14]. In this
chapter we are going to combine these two ideas and study deformations by chiral operators
that preserve an N = 1 supersymmetry. We will use the formulation of the N' = 4 super
Yang-Mills theory in the N' = 1 language which we introduced in Section 2.3, and will recall

the most important facts in the next few paragraphs.

The representations of the A = 4 fields are as follows. The six Lorentz scalars ¢! are in the
6 of the SU(4)z symmetry, the four Lorentz fermions A4 in the 4 of the SU(4)g, and the
gauge fields A, are SU(4)g singlets. Restricting to A = 1 is equivalent to the decomposition
under U(2,2[1) x SU(3) x U(1) € SU(2,2/4) [37]. In particular, the R-symmetry decomposes
as SU(4)g — SU(3) x U(1)y. Under this decomposition the fundamental representations of
the SU(4) branch as

4—31+1_3

6 >3 _5+3 (6.1)

4 — -.3)71 + 13.
with the normalisation of the U(1) charges chosen such that the U(1) C SU(4) generator is
given by diag(1,1,1, —3). Thus the basic fields of the N' = 4 theory decompose as

¢I — {Zza Zi}

Aa = {Ai AL (6.2)
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and we get complex scalar triplets z* and z; in the 3_5 and 35 of the SU(3) x U(1), one
fermion triplet \; in the 3_1, and a singlet fermion A in the 13. The vector A, was an SU(4)
singlet to begin with and therefore remains an SU(3) singlet with no U(1) charge. While the
N =4 SYM theory does not admit an off-shell superfield description with a finite number
of auxiliary fields, its A/ = 1 description does, and we can pack all fields into three chiral

multiplets and one vector multiplet as described in Section 2.3:

Zi =z + \/59)\1' + 92FZ’

_ _ __ _ (6.3)
V =00"0A, + 0°0X + 0°0X + 36°6°D .

Note that since the complex scalar z; has two units of U(1)g charge, and \; one negative
unit, the fermionic coordinate 6, must have a charge of three positive units under the U(1),
automorphisms. The vector multiplet V is in Wess-Zumino gauge, and can be used to

construct the field strength multiplet:

Weo = —iD%vaaeV

. (6.4)
— A, +0° (eaﬁD 4 F(jﬁ) 0% D\

where F* = g F),, is the self-dual part of the vector field strength with o = %0[“6” i
and Dog = ok, D), the covariant derivative with respect to the SU(N) gauge group. The
on-shell values of the auxiliary fields can be determined by writing the A/ = 4 action in

terms of NV = 1 off-shell multiplets and by deriving their equations of motion, the result is

9 pabe,  ojbske

Fff = == %127z (6.5a)
V2 /

D% = jgfabeziaze, (6.5b)

Next we would like to discuss the branching of short multiplets. In particular, we would like to
describe the branched operators in terms of N' = 1 superfields, find their quantum numbers,
and indicate a way to obtain all operators explicitly. A way of explicitly constructing short
multiplets was described in [38]. One starts with the so-called “twisted chiral superfield”
WA, which was defined in [86], and contains all N' = 4 fields. Then the operators that
comprise the order-p short multiplet are found as components of the superfield W[Z Bl This
is a good starting point for the decomposition under an N’ = 1 sub-algebra, and the method

was outlined in [37]. The crucial point is that W ap) decomposes to N = 1 superfields as
W[AB] — {ZZ7 Zia Waa V_Va} ) (66)

with the chiral superfields Z; and W, as above. Because the fields of the order-p short
multiplet can be found as components of W[’A B after the restriction to ' = 1 the branched

operators can be found as components of superfields that are constructed by taking products
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of p superfields in {Z;, W, } and their conjugates. For example, for p = 2 some of the
combinations include Z;Zj), Z; 77 — %63Zk2k, ZiWea, W2, and so forth. Note that the
superfields have to be combined in such a way that they form irreducible representations of
the SU(3) group. All possible combinations for p € {2,3,4} can be found in [37]. Starting
with this construction we would like to understand in more detail how these AN/ = 1 superfields
fit into the N = 4 short multiplet.

First consider the easiest case, the order-2 multiplet. Under SU(3) x U(1)g C SU(4)y the

representations of this multiplet branch as in Figure 6.1. Now we know that the branched

Figure 6.1: Branching of the order-2 short multiplet under an A" =1 C N = 4 subalgebra,
which induces the branching su(3) x u(1)i C su(4)y of the R-symmetry algebra.

648064

{618735531 } {6,1833,5571}

(323 2)(6_ 21032) 34803 410 (3 232)(621_g3_ 2)
43 401 153 153, 153 153,
(50 5 3 3 1 331
o o (o]
o x o 0
o} 0) o Q O o
o ‘o o o
o ¢

representations on the right diagram have to be components of some N = 1 superfields, but
how to determine which exactly? First of all we know the quantum numbers of the chiral
superfield Z; and the field strength superfield W, that capture all fields of the A' = 4 theory
in the A/ = 1 language:

Zi = 3(00)

(6.7)
Wa = 13(30),

where the first number in the subscript is the U(1)y charge and the two numbers in
parentheses are the Lorentz quantum numbers in the SU(2) x SU(2) notation. Additionally,
as explained above, we also know that fields in order-p short multiplets are contained in
superfields build of p-fold products of Z; and W,. This information is enough to reconstruct
the decomposition in terms of AV = 1 superfields. Consider the superfield Z? = Z;Zj). Here
we have just introduced a short-hand notation in which the SU(3) indices are suppressed.
In this case we will implicitly assume that all SU(3) indices are symmetrised and the traces
are removed, so that a general product (Z)™(Z)" corresponds to the SU(3) representation

[n, m]. Given the representations in (6.7) we see that the resulting superfield corresponds to
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the representation

Since Z; is a chiral superfield, so is Z(;Z;, and given that the representation of 6 is
Oo = 13(%0) (6.9)

we observe that the %, #', and 6% components correspond to the 54(00), the 51(; 0y and the
— 2 ’
6_2(00), respectively. The way these components fit into the decomposition can be read off

from the multiplet decomposition above, which is presented in Figure 6.2.

Figure 6.2: The way the components of the A = 1 chiral superfield Z(;Z; fit in the N = 4
order p = 2 short multiplet.

72 = 64(00)

The lowest component of Z(;Z; is encircled and can be found at the top of the diagram.
As we take superfield components with higher powers in § we descend down the graph, 6
corresponds to going down left, and # corresponds to going down right. The fact that Z;Zj)
is a chiral superfield is manifest in the sense that its representation is a straight line going
down left. Proceeding in the same way we can find other combinations of Z;, Z*, W, and
W that cover the whole order-2 multiplet. The result is presented in Figure 6.3, and can

also be found in Appendix F along with higher order short multiplets up to p = 5.

We can generalize the N = 1 decomposition to p > 2 along the same lines as the p = 2
case. First fix the order p, and list all p-fold products of superfields Z; and W, and their
complex conjugates, where W and W can at most occur quadratically. The representation
of the resulting superfield and its components can be derived from those of Z;, W, and the
coordinate @ as shown for the p = 2 case. For a general product of superfields it is given by

(Z)"(2)"2(W)* (W)*2 = [ng, ] (6.10)

Q(nl_n2)+3(k1_k2)(%7k2270d?)~

The way the resulting superfield sits in the short multiplet can be determined without doing
explicit branchings. If one denotes the sites in the short multiplet where representations
sit by two-dimensional coordinates (ki, k2) with the origin being in the top corner and the
first coordinate going down left, and the second down right, then the bottom component
of the superfield (Z)™(Z)"2(W)*1 (W)*2 sits precisely at the site with coordinates (k1, k2),
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Figure 6.3: Complete decomposition of the N' = 4 order-2 short multiplet under the N' =1
subalgebra up to complex conjugation. The diagrams for conjugated superfields can be
found by mirroring with respect to a vertical axis.

Z2 = 64(00) I/I/Z - gS(é()) 1/1/2 == IG(OO) ZZ == go(oo)

Nt N

WZ =341 WW =1y,

and has a rectangular shape. The length of the side of this rectangle that corresponds to
the first coordinate is equal to the number of chiral superfields Z; and W, that appear in
the product, the length of the other side is equal to the number of anti-chiral superfields Z°

and Wg. However the length of either side can at most be 2, as we cannot go beyond 62.

Let us take WZ2Z as an example. It is a product of 4 basic superfields, and therefore sits
in the p = 4 short multiplet. Because W is an SU(3) singlet, the SU(3) representation is
determined by Z and Z, and is equal to [1,2] = P = 15. The superfields Z and Z contribute
a U(1)g charge equal to =2 and W and W a charge equal to +3, thus the total U(1) charge
equals to 5. The superfields Z and Z are Lorentz scalars, and W, is a left-handed Weyl
fermion, thus the Lorentz quantum numbers are (%, 0). Since there is one superfield W
and no W, the top corner that corresponds to the lowest component is located at (1,0).
The total number of chiral superfields is 3, the number of anti-chiral superfields is 1, and
therefore the dimensions of the rectangular region are (2,1). The result of this construction

can be found in Figure 6.4.

The representations of the component fields that appear read

. 15 . 75 15 2. 7K
]. . 155(%70) 9 . 153(170), 153(070) 9 . 15_1(%70)
6: 15 69: 15 15 6%0: 15
8(3.3) 50,3)" " 5(1,3) 2(3,3)

The corresponding fields can be derived by simply extracting the correct components from
W Z%Z, and one can check that these representations really appear by starting with the N = 4
representations in Figure 3.2 and performing the decomposition under SU(3) x U(1) € SU(4).
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Figure 6.4: Fitting of the N/ = 1 superfield (WQZ(Z-Z]-)Z’“ — traces) into the N/ = 4 order
p = 4 short multiplet.

WZ2Z = 18510

6.1 Composite Chiral Superfields and F-Terms

With this complete decomposition of the N/ = 4 chiral multiplets in terms of the N’ = 1
subgroup it is now straightforward to extract operators which are N' = 1 F-terms. The
only chiral superfields into which a short multiplet decomposes are shown in Figure 6.5.

Due to our construction everything is explicit, the representations can be read off, and

Figure 6.5: Chiral ' = 1 multiplets in order-p N' = 4 short multiplet. The bottom
components are encircled in red, the top components are encircled in blue. The corresponding
anti-chiral superfields can be constructed by vertically mirroring the diagrams and conjugating
the representations.

= [0, p] 2p(00) ZPTIW = [0,p — 2p+1( 0) ZP2W? = [0,p—2] 2p+2(00)

G d 4

the operators can be extracted as corresponding superfield components. These are exactly
the operators we set out to look for. The superfield Z? is a generalization of the GPPZ
deformation Z?, and its F-term can be used as an N' = 1 deformation. The superfield
ZP~1W,, is chiral, but also has a free spinor index which makes it less useful for constructions
of supersymmetric deformations. Lastly, the chiral superfield ZP~2W W, is a Lorentz scalar,
but it also contains gauge kinetic terms, so that after the addition of its top component
to the action a deformation of these kinetic terms will be produced which depends on the

scalars z;.

It is interesting to note which supergravity modes the top components of these chiral
superfields correspond to. This can be done in a straightforward way by looking up the

corresponding representations in Table 3.1 in Section 3.3. As pointed out previously, each of
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the three types of chiral top components in Figure 6.5 corresponds to a Kaluza-Klein tower
in the bulk, so that there are only three Kaluza-Klein towers with modes corresponding to
top components of chiral superfields on the field theory side. The chiral top components in
the lowest possible short multiplet p = 2 correspond to three modes in the bulk graviton
multiplet, and top components in higher short multiplets with p > 2 build Kaluza-Klein
towers on top of these modes. More concretely, we see from Figure 3.2 that the F-term in
ZP originates from the SU(4) representation [0,p — 2,2] o) and has conformal dimension
A = p+1. From Table 3.1 we read off that this operator corresponds to the bulk mode A,z
with mass m? = A(A — 4). The next case, the top component of ZP~1W,,, sits within the
representation [0,p — 2, 1]( 10) and has conformal dimension A = p + % so that according to
Table 3.1 it corresponds to the supergravity mode A~ with mass m? = 2 — A. Finally the
top component of ZP~2W? comes from the representation [0, p — 2, 0] (00)> has A = p + 2,

and corresponds to the supergravity mode B with mass m? = A(A — 4).

6.2 Composite Real Superfields and D-Terms

As it is known, another way of generating supersymmetric actions is by taking top components
of real superfields, which for scalar superfields are known as the D-terms. Let us therefore
study which A/ = 4 chiral operators can be written as top components of N' = 1 real
superfields. Given our construction of the N' = 1 decomposition of the N/ = 4 short multiplet
one can immediately make one observation: since the top component is the one proportional
to #2602 we need a product of at least two basic chiral and two basic anti-chiral superfields in
{Z;, 7", Wy, W4 }. In the language of the pictorial diagrams that we drew this is reflected
by the fact that the A" = 1 multiplet with a #26% term has the following shape

g

Thus the simplest V' = 4 chiral operators which correspond to a 6262 component of a N = 1
superfield can be found in the order p = 4 short multiplet, while operators corresponding
62 components of chiral superfields can be found in all short multiplets, as we saw in the

previous section.

A further observation is that there are many more operators which can be found in top
components of real superfields than in top components of chiral superfields. Recall that we
showed in the previous section that up to complex conjugation any order-p short multiplet
has exactly three chiral composite superfields ZP, W,ZP~! and W2ZP~2 which lead to
three different types of 2 components. To obtain a #26% component one does not require a
chiral superfield, but rather some generic superfield plus its complex conjugate. This leads
to a number of possible 6262 components that is increasing with the increasing order of

the multiplet. For example, as we argued above, the p = 2 and p = 3 multiplets do not
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contain such operators, the p = 4 multiplet contains six, namely Z2Z2, WZZ? + c.c., W2Z?,
WWZZ, W*WZ +c.c., W2W2, the p = 5 multiplet has 9 and so forth. They can all be
easily constructed by starting with at least two chiral and two anti-chiral superfields and
adding further superfields until one reaches the required order. The cases for p = 4 and

p =5 can be looked up in Appendix F.

While each of these operators may or may not be of relevance, we would like to point out
one class of 6262 operators, that in some sense can be called twins of the F-term and other
62 operators we found in the previous section. Consider the chiral superfield ZP. One way

of including its 62 term in the Lagrangian is to add a term of the form
/d29 420 (02 77). (6.11)

Now we can use the fact that the Grassmann variable ;4 has the same quantum numbers as
the field strength superfield W to extend this to

/d20 %0 (02 + W) 2P + c.c. (6.12)

Thus we have added the top component of the superfield W?2ZP. Because the SU(3)
representation only depends on the Z? piece, the top components in both W2ZP and ZP
transform in the same representation. In fact, as we will see in Section 6.4 the top components

in both ZP and in W 2P holographically correspond to Kaluza-Klein modes of the same
bulk field.

The remaining two types of #? components discussed in the previous section also have their

6262 twins, which can be constructed in exactly the same way as follows
20 120 (02 1 T2
/d 0 420 (6% + W)W 2P + c.c. (6.13)

and

/d29 420 (6% + W)W22P + c.c. (6.14)

and all conclusions made about the ZP-type top components also apply to these two types.

6.3 The N = 1* Flow and Additional Bulk Modes

After the general arguments of the previous sections now is a good time to perform a sanity
check and see how the GPPZ flow fits into our general scheme. In addition we will learn how
the elimination of auxiliary fields leads to additional terms which need to be analysed in
detail. The GPPZ deformation breaks N’ = 4 to N = 1, and can be written as a deformation
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of the superpotential:
W—=W+W,  W=m"ZZ;. (6.15)

In order to get a deformation by a chiral operator the coupling m* has to be taken symmetric
in the SU(3) indices, and is therefore in the 6, the chiral superfield Z(;Z;) has the quantum
numbers 64(g). From our previous analysis it is obvious that this deformation will introduce
operators from the order-2 short multiplet. The components of Z(;Z;) sit in this multiplet

as in Figure 6.6. Given that 6, is in the 13 we expect the F-term of this deformation to

Figure 6.6: The A/ = 1 composite superfield that was used in the GPPZ deformation is
Z?, and its components can found in the order p = 2 short multiplet of the N' = 4 theory.

7% = 6400)

contribute operators in the representation 6_5 and their complex conjugates. Let us see how
this is realised. The deformation of the superpotential leads to the following new terms that

appear in the action:

82((51/\/) —
4 L2 \UPY) : 9 12
S — S—l—tr/d T ()\z)\] 02:07, + FidF —|—c.c.> + |0.F|7, (6.16)
where the F-terms are defined as usual:
— = oW 9(0W)
Fraor = 07, " 0Zi \zion (6.17)

The 6_5 that we were looking to obtain is the operator in parenthesis in (6.16) and is linear
in W and 6F;. With 6F; integrated out it becomes of the form m (A2 +23). This is the chiral
operator of our interest, and the corresponding coupling m is interpreted as a supergravity
mode living in AdS5;. However, supersymmetry forces us to include an additional term,

|6F;|%, which after integrating out the auxiliary field reads
tr/d4:c (m™*mz27) . (6.18)

The representation of the scalars is z; = 32, and therefore for generic couplings m*“ the
representations that appear in the product are 39 x 3_y = 8 + 1g. This is just the traceless
part of the tensor product, and the trace. Given that the N'= 1 decomposition of short

multiplets consists of symmetric and traceless combinations of superfields Z; and Z?, we see
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that the traceless part, the 8, is indeed a chiral operator, and we therefore should include
another mode in the gravity description. More precisely it is the bottom component of the
superfield (Z;Z7 — trace) in the order-2 short multiplet, and corresponds to the bulk mode
hg — aqpys. For the same reasons the trace part is not a chiral operator, it is in fact the
Konishi operator, and is known to correspond to a stringy mode. It is possible to project out
the traceless part by a specific choice of m¥, and therefore eliminate the additional gravity
mode. To do so we need to choose m¥ such that the traceless part of mikmjk vanishes, in

other words that its trace is equal to the coupling itself:

. 1 ..
m’kmjk ; *5;mlkmlk. (6.19)

w

It is easy to see that a diagonal mass term m* = md&* does indeed have this property, which
is exactly the choice made by GPPZ. In the end what remains is a single chiral operator,
m(A?+ 23), the relevant coupling m triggers an RG-flow, which can be described by a gravity

mode.
One may wonder if this procedure can be generalised. We can start by replacing Z2 by Z?
as deformation of superpotential:

W =m"Z 2 (6.20)

with a coupling m* % completely symmetric in its indices. From the group theory perspective
the situation is very similar, and the part of the N’ = 4 multiplet that is involved is exactly

the same, as one can see in Figure 6.7. As above, the F-term operator is marked by the blue

Figure 6.7: Generalization of the GPPZ deformation from Z2 to ZP. In terms of the N’ = 4
short multiplets of order p the components of Z? can be found at the same sites.

ZP = [0 pbp(OO)

circle and will appear as the operator

82(5W)

= ANy m
O=diagz 57,

+ Fi6F  ~ (AN + 222)2P 72 (6.21)

and corresponds to a Kaluza-Klein mode in the same tower on top of A,3. Again, the
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additional term |5]:i|2 will make an appearance and is given by
tr/d”‘x\&fi!Q - tr/d4x (MM ey, Gz .z 22 E). (6.22)

As before we have to check whether or not this operator contains any chiral parts. Group-

theoretically this corresponds to the decomposition of the tensor product
31 %371 = [p—1,0] x [0,p — 1], (6.23)

but we know that chiral operators built of scalar fields have to form symmetric and traceless
combinations. Therefore an operator of this kind will be the only chiral contribution from
the tensor product decomposition and is equal to the SU(3) representation [p — 1,p — 1]. To
project out this operator we need to choose m~% such that the symmetric traceless part

of mkiZ"'iPmka,“jp corresponding to the representation [p — 1, p — 1] vanishes.

6.4 N =1 Preserving Deformations and the G(3) Flux

The N = 1 preserving deformations studied so far have one thing in common: they all
come from F-terms of superfields of the form ZP, which we used as a short-hand notation
for the symmetrised products Z;, ... Z; ) of chiral SU(3) triplets. We showed that these
F-terms correspond to operators in the N' = 4 short multiplets which are of the same type,
namely those with the quantum numbers [0,p — 2, 2](070) and their complex conjugates. In
holography this has as consequence that these operators correspond to Kaluza-Klein modes in
the same Kaluza-Klein tower, in this particular case the tower originating from the harmonic
expansion of the anti-symmetric potential A,g with indices pointing in the internal directions
in the bulk, where we have used the notation of [42]. The corresponding field strength is
the G(3) form field, and therefore the deformations we are considering correspond to G 3)
flux in the bulk. This type of deformations has previously been discussed in literature,
including GPPZ [23], Distler-Zamora [20], Leigh-Strassler [87], Polchinski-Strassler [48],
Polchinski-Grana [43] and others.

We can write this type of deformations in a general way. Consider the series expansion of a

holomorphic function f(Z;) around the origin:
. 1 o 1 .
1(Z:) = [(0) + Z:0'[(0) + 5, 2:2;0'0 f(0) + 5,22, 20" 00" [(0) + .. (6.24)

We can rename f evaluated at the origin and its derivatives to m in order to bring the

expansion to the following form:

F(Z)=m+m'Z + 5 mIZ,Z; + mI* 2,7, 7 + ... (6.25)

2-1) 3(3—1)
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which gives su(3) tensors m™?- which are symmetrised in their indices. This allows us to

write the most general superpotential deformation by short multiplets as follows

W = Z,2;0'0" f(Z)

y g y (6.26)
=m"Z2,2; + mI*Z2,2; 2 + mM 2,2, 2,7 + ...

We took the second derivative of f because the constant leading term in its expansion only
contributes a constant shift when inserted into the action, and the linear terms will vanish
after taking the colour-trace. This is reflected in the fact that the short multiplets start at
p = 2, and are therefore quadratic in N/ = 1 superfields. Thus one class of N’ = 1 preserving
deformation by chiral operators using N = 1 F-terms and leading to G3) flux in the bulk

can be parametrised by the second derivative of a holomorphic function f(Z;).

At this point it is worth remembering that upon harmonic expansion on the sphere many of
the ten-dimensional bulk fields give rise to two Kaluza-Klein towers. In terms of the SO(6)
quantum numbers these two towers are identical up to a few low-lying modes that can only
be found in one of the towers [42]. However, the masses of these modes are different, and

2. see said Section for details.

in the notation of Section 3.3 are related by m(p)? — m(—p)
The anti-symmetric potential A,3 which we found to be dual to the F-terms of the type
ZP also has this property, and gives rise to two Kaluza-Klein towers. Therefore a natural
question to ask is what kind of operators corresponds to this second tower and whether
there are operators among them that can be used as N = 1 preserving deformations. First
let us locate these operators in the A/ = 4 short multiplet in Figure 3.2. After comparing
with the bulk modes in Table 3.1 we see that the Kaluza-Klein towers of A,z correspond to

operators sitting at the locations depicted in Figure 6.8. The operators in representations

Figure 6.8: The bulk field A, gives rise to two Kaluza-Klein towers. The modes on these
two towers are dual to N' = 4 operators in representations Ry and Ry and their conjugates,
which can be found in short multiplets of any order p. Exceptions are the multiplets p = 2
and p = 3, which are ultra short and therefore do not contain R.

Ry = [0,p — 2, 2](070) and their complex conjugates R; are the ones discussed above and
are associated with one of the two Kaluza-Klein towers. The other tower is covered by

the operators in representations Ro = [0,p — 4, 2] (0,0) and its conjugate Ry. We see that as
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expected the representations are really the same, with the only difference being that the
order of the short multiplet in which R; and Rs sit differ by 2, and therefore for p € {2, 3}
only R is present, but not Rs. The corresponding dual bulk modes are the low-lying modes
that can only be found in one of the towers. Because the representations of Ry and Ry are
the same, they decompose in the same way under the N’ = 1 subgroup. In particular, the
su(3) C su(4)r decomposition is identical, and since W, and W are su(3) singlets, Ry will
be covered by N = 1 superfields that are composed of the same number of Z; and Z?, but
since the order of Ry differs from R; by 2, we need to add two powers of W, and W . It is
easy to see that only W2 works out, and so the fields in Ry which sit at the §/* component
in the superfield Z*1 Z*2 will sit at the #1162 component of W2zk 72 in Ry. The superfield
We and 4 have the same quantum numbers, and therefore compensate each other. To
illustrate what we just said consider the case p = 3 for Ry and p =3+ 2 =5 for Ry. For
both cases the A,z harmonics are in the 45, which under su(3) C su(4)g decomposes as

45 3, + 33+ 64+ 8+ 100+ 15_4. (6.27)

The operators in R and Ry can then be found in the N' = 1 superfields listed in Table 6.1

below.

Table 6.1: The bulk field 4,3 gives rise to two Kaluza-Klein towers, both of which contain
a mode in the 45 of the 50(6). The gauge theory duals of these modes are two operators in
the 45 of the su(4)r, which are in the p = 3 and p = 5 short multiplets. The table shows
the N/ = 1 decomposition of these operators and the components of the N/ = 1 superfields in
which they can be found.

Ry and Ry ‘ Superfield Component in R; | Superfield Component in R

3, | W2Z & Ww?z

35 | W2z A Ww?z
64 | W22 s W W z2 @
8 | WZZ £ Wwzz @
10, | 73 % W2z3 <$>
154 | 227 & w2227 <8>

One can see that the effect of adding W2 is to push the representations of the N' = 1
multiplet contained in the components of the superfields by 2 in the 6 direction. Consider,

for example W?2Z = . The marked operator is the bottom component of this superfield

and is in the 34. To find where the operators with the same quantum numbers are located

in WW2Z proceed as in the following cartoon:
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PN

At this point we can make several observations. The first is that top components of the

superfields ZP are always mapped to top components of W?2ZP. These are exactly the 0262
operators that we called twins of #2 operators in Section 6.2. This follows directly from the

procedure just discussed, and pictorially the mapping is given by

PORY

The precise operators that appear are )\(i)\j)zp*Z in the 62 component and (F *)2)\(1-/\]'),21’*2
in the 6262 component, plus additional terms enforced by supersymmetry which involve

auxiliary fields and derivatives.

A further observation is that while for a given order p there is always only one possible 62

component corresponding to the mode A,g, namely

Zp’gz — .)/ ~ )\(Z—)\j)z”_Q, (6.28)

which sits in the representation R, there are generally multiple different possible #2672

components contained in Ro. We have seen that there is at least one, with the same quantum

. <8> : (6.29)

but there are other superfields of the same order which correspond to the same box diagram

numbers as ZP|j. and is given by

W2zp

as in equation (6.29), and are therefore also 6262 components. Those are superfields of the
form W~ Z"1 Z*2 with k1 + ko = p, and k1 > 2, and it is easy to see that there are p — 1 such
superfields.

As with the deformations of %-type in R; we would now like to write down the most general

620%-type deformation in Ry. Consider the series expansion of an analytic function 9(Z;, ZY):

9(Z;,Z") = ¢(0,0) + Z;0'g(0,0) + Z'0;g(0,0) + Z; Z70"9;¢(0,0) + %Zl-zjaiajg(o, 0)+...
(6.30)
As before we can rename g evaluated at the origin and its derivatives to /m in order to obtain
a nicer representation:

1
22-1)
; are automatically symmetrised in their upper and lower indices
because partial derivatives commute. To represent W2 Zk Zk2 with k1 > 2 we again have to

and the components m
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take the second derivative with respect to Z;, and therefore the deformation reads
58 = /d29 @20 (W*2,2,0'0°9(Z;, 27) + c.c.) (6.32)

This is almost correct, except for the fact that in order to give irreducible representations
of the su(3) algebra, additionally to being symmetric, the products Z*1 Z*2 also have to
be traceless. Equivalently, we should demand that the component tensors m be traceless:

m;i;;; = 0. This property is enforced on g(Z;, Zi) by simply demanding that
90,9 = 9%g = 0. (6.33)

In other words, g should be a harmonic function. These results are in accord, and provide
further insights into the findings of Polchinski and Grafia [43]. In their paper the authors
analysed perturbations to the G(3) flux in the bulk which are compatible with the boundary
N =1 supersymmetry. They found that the flux receives two contributions. The first one is
expressed in terms of a holomorphic function ¢(z), and matches with the quantum numbers of
operators of the form A\ 0;0;¢. This is exactly the superpotential deformation by operators
in R; we found, and the holomorphic function ¢ is exactly what we called holomorphic
function f. Furthermore the authors noted that after integrating a second order differential
equation for the G(3) flux a second contribution appears as an integration “constant”. This
contribution appeared to be a harmonic function (z, z), and the operators parametrised by
it had the same quantum numbers as the ones parametrised by the holomorphic function
¢, and a conformal dimension A’ greater than the conformal dimension A of the first
contribution by 4. Our results show that ¢, which corresponds to operators of the form
F2XIN 0;071), is exactly the harmonic function g that we found above. The field theoretical
explanation as to why % has to be harmonic rather than holomorphic is that the short
multiplets are built on top of superconformal primaries which are symmetric and traceless
products of the N' = 4 scalars ¢

0, = trtlt . gt} (6.34)

As one decomposes these multiplets under the A/ = 1 subgroup and re-expresses all operators
in terms of N' = 1 superfields the property of being symmetric and traceless descends down
to su(3) indices of the superfields Z; and Z’. Therefore any deformation involving both Z;
and Z' will be traceless, or equivalently vanishing under the action of 92, and therefore a

harmonic function of Z; and Z°.
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6.5 Condensates

A further feature of supersymmetric theories that is worth exploring is the condensation of
gaugino bilinears. As pointed out in Chapter 5 true deformations of the gauge theory are
related to non-normalisable asymptotics of bulk modes, while normalisable modes correspond
to vacuum expectation values of gauge-invariant operators. In the previous sections we
explored operator deformations of the N' = 4 super Yang-Mills theory that break the
supersymmetry to AV = 1. Let us now look for potential operators that might acquire

expectation values and fit them into our scheme.

Recall that in the case of GPPZ [23] it was found that after the deformation of the N' =4
theory by mass terms for N' = 1 chirals the gaugino bilinear does indeed acquire an
expectation value. The authors then proceeded to show how both the mass term and the
gaugino condensate can be simultaneously described as a particular supergravity solution.

Let us briefly review which operators are involved.

The authors considered the N = 4 descendant QJQ\[:4 tr 17} of the order p = 2 chiral
primary tr ¢{/¢/}. It is in the 10 of the SU(4)g, and under N' =1 € N = 4 decomposes
as 10 — 6 + 3 + 1. In terms of N = 1 operators the 6, the 3, and the 1 correspond
to the #2-component of Z2, the #-component of W, Z, and the bottom component of W?2
respectively. This is reflected in the multiplet diagrams in Figure 6.9. Note that it is only

Figure 6.9: The descendant Q/2v:4 tr p/¢/} is in the 10 of the SU(4)r, and under N =
1 C N = 4 decomposes as 10 — 6 + 3 + 1. In terms of A" = 1 operators the 6, the 3, and
the 1 correspond to the #?-component of Z2, the §-component of W, Z, and the bottom
component of W? respectively.

Z2 = 64(00) W2z = 35(%()) I/I/Yz = IG(UO)

true for the order-2 multiplet that the second descendant of the chiral primary decomposes
into N' = 1 superfields that are all chiral. Starting with the order-3 multiplet the second
descendant QJQ\/:4 tr o1 ¢’ ¢&} decomposes into chiral and non-chiral N = 1 superfields, we

saw the explicit decomposition as an example in Section 6.4.

The conclusion of this analysis is that the mass terms correspond to the top component of
Z?, which is a 6, and the gaugino bilinear which acquires an expectation value is the bottom
component of the ' = 1 operator W2, which is the singlet 1. We can now try and apply

our holographic beta-function formalism developed in Chapter 5 to the condensate. The
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conformal dimension of both m and o is A = 3, but the fact that m is a non-normalisable

solution and goes as e~ (¢=2)r A

, and o, in contrast, is normalisable and goes as e™ =" suggests
that for o we should take A — d — A = 1. Changing conventions in the same way we did for
m in Chapter 5 and using formulas (5.17) and (5.18) for the superpotential and the scalar

potential we obtain the following result

W= —Z(cosh (20)+1) (6.35)

V= —g [5 + 4 cosh (20) — cosh? (20)} . (6.36)

This indeed reproduces correctly the results in (A.19) and (A.22) in GPPZ [23] if one sets
m = 0. This result is very pleasant, but requires an explanation. The formulas that we just
used to derive the superpotential and the scalar potential were derived in Chapter 5 from
the point of view of the running coupling to which modes like m correspond to, and their
description by the beta function and its relation (5.8) to the bulk superpotential eventually
led to the result. The same description is not possible for condensates, as they do not
appear as couplings in the action for which we could write a beta function. It seems that
the way to proceed here is to study the energy dependence of the condensates, which is
what the beta function describes for the couplings. For the gaugino condensate we know
that it is proportional to A3, where A is the UV scale. From this we can now compute
d(o)/dlog A = 3A3, which indeed does look like the classical beta function (5.13) for the
coupling of an operator of dimension A = 1. However there are still several questions to
answer. First of all one needs to argue why the relation (5.8) between the beta function
and the bulk superpotential is also true for the condensates. Next one may wonder whether
or how this scheme generalises to higher chiral multiplets. We saw that in the case of
F-terms it is rather straightforward to go from Z2 to ZP. Extending this to the condensates
it is now tempting to go from the bottom component of W?2 to the bottom component of
W?22ZP=2, The superfield components in which we are looking for deformation operators and

condensates are marked by blue circles in Figure 6.10. However, it is not obvious which of

Figure 6.10: The F-term operators are the top components of ZP, the generalizations of
the gaugino condensate (A\) to (AAzP~2) are the bottom components of ZP~2WW?2. Both
types of operators are highlighted by blue circles in the diagrams above.

2P =0, plap(o0) Zr2W? =[0,p - 2]2p+2(00)
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the corresponding condensates (A\zP~2) are non-zero and how to compute their values. It
was shown Cachazo, Douglas, Seiberg, and Witten [88] that in A/ = 1 theories one can write
down certain Ward-identities for chiral operators:

LOf(Z, W) oW

(tr W Y ) ~ (tr Y f(Z,W)), (6.37)

where f(Z, W) is a holomorphic function and W is the classical superpotential. We can now
substitute f(Z, W) = ZP~! to obtain exactly the operators W?2ZP~2 that we need:
ow
(tr W2ZP~2) ~ (tr Z——-ZP72). (6.38)
0z
This relates the expectation values of operators W?2ZP~2 to expectation values of chiral
operators made up of only the chiral superfields Z, and so to answer the question whether
some operator W?2ZP~2 acquires an expectation value we may study operators on the right
hand side of (6.38). The exploration of the answers to this and other related questions is

part of an ongoing project.



Chapter 7

N = 2 Deformations of the N = 4
Theory

In this section the N/ = 4 theory is written in the N/ = 2 harmonic superspace language.
We derive the kinematic equations and eliminate auxiliary fields to obtain the component
form of the action. It is known that any potential term that is a function of the the A/ = 2
hypermultiplet superfield leads to a non-trivial Kahler potential and a non-trivial metric
for the resulting sigma-model. A mass-term that preserves the N' = 2 supersymmetry
can be added by a Scherk-Schwarz construction. We analyse the operators that the mass
deformation adds to the action by writing out the physical component fields. It is found that
this mass deformation produces two scalar chiral operators, thus in order to holographically
describe this deformation one needs to turn on two supergravity modes. Both modes are in

the graviton multiplet.

7.1 Decomposition of the Fields

Recall that the field content of the N' = 4 super Yang-Mills theory consists of six real scalars
A8 = %Z“‘Bqﬁ[ in the 6 of the SU(4)g, four fermions A4 in the 4, and a gauge field
Ay, which are all in the adjoint of the colour SU(N) gauge group. The description the
N = 4 theory in the NV = 2 language amounts to the branching of representations under the

following subgroup of the R-symmetry:
SU(2)y x SU(2)g x U(1)x C SU4)p - (7.1)

The index ‘H’ stand for ‘hypermultiplet’ as the corresponding SU(2)y group will become
the flavour symmetry for the hypermultiplets. The index ‘R’ is for R-symmetry, and ‘X’ has
no meaning other than to distinguish the U(1)x form another U(1) that will appear later.

87
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The U(1)x also acts as an R-symmetry, and is only allowed in scale-invariant theories [89)].
The embedding of the product subgroup into the SU(4)g can be specified by providing the
Cartan generators of the corresponding Lie algebra. Disregarding any normalisation of the

generators we choose the following embedding;:

1 0 00 000 0 10
0 -1 0 0 000 0 0 1
I — Hp = Hy = 79
710 0 00 "Tloo1 o *“lo 0o -1 (7.2)
0 0 0 0 000 —1 00 0 -1

Using this subalgebra embedding we can deduce the branching of the representations of the
N =4 fields. The U(1) charges will be specified with respect to the normalisation of the
Hyx generator as specified above, which we will not normalise to any conventions in order to

have integer charges for the bookkeeping. The branching is as follows:

6 —(2,2),+(1,1),+(1,1)_, (7.3)
4—(2,1), +(1,2)_, (7.4)
4—(2,1) ,+(1,2),. (7.5)

To apply this branching to the fields we choose to denote the SU(2)y; index by “a,b,...”
and the SU(2), by “i,j,...”. With this choice the fundamental SU(4) index decomposes as
A — (a,1), and the N' = 4 fields split into the following N = 2 fields:

¢ab = Eab(b = (17 1)2

Ya = (2’1)—1 PN {¢a:(271)1
@Y

)‘i = (1’ 2)1

Il
(@)
S
-
Il
—
ot
-
SN—
S

Using the explicit components of $4% in equation (2.10) one can check that ¢ is really the
complex conjugate of ¢, and that % contains a pair of complex scalars and their conjugates,

which makes a total of four real degrees of freedom.

A more careful analysis reveals that in terms of N' = 2 supermultiplets these branched
fields fall into a gauge supermultiplet and a hypermultiplet doublet [89, 90]. One way of
representing these supermultiplet is by writing them into superfields. A more detailed
off-shell superfield analysis will be preformed in the following sections, but at this point
we can write out the physical components in a schematic way. The hypermultiplet doublet
contains all fields that are doublets under SU(2);, and we can write it as an A = 2 superfield

@’ in which the physical components sit as follows:

QL = [+ 0 + 01 = (2,2),. (7.7)
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The Grassmann variables 6 used above are doublets under the SU(2)g, and consistency of
the superfield Q' and its components require that the rest of the quantum numbers of the

fermionic coordinates are as follows:
0'=(12), 6=(12),. (7.8)

We can see that 6" have a non-zero U(1)x charge, which shows that U(1)x is really an
R-symmetry. The remaining fields are singlets under the SU(2)y and make up the gauge

multiplet which fits into a real vector superfield in the following way
V = 0'0t0;A, + 026 + 020 + 0%0°\; + 020'\; = (1,1),. (7.9)

Here we have suppressed the SU(2)y doublet indices in 6? and 62 for simplicity. Analogously
to N/ = 1 we can apply certain superderivatives to this superfield to get a chiral field

strength [91], and its anti-chiral conjugate. It has the following form:

W = ¢+ 6\ + 007 FH, = (1,1), (7.10a)
W =6+0 + 099 F,, = (1,1)_,, (7.10b)
where '™ and F'~ are the self-dual and anti-self-duel parts of the fields strength corresponding

to A,. This structure can also be motivated by the fact that the field strength multiplet

can be written in terms of N/ = 1 superfields as follows [90]:
W (z,0") = ®(x, 0%) + (6%) Wa(z,0%) + (6%)°G(z, 0Y), (7.11)

with G being auxiliary, and ® and W, the two N = 1 superfields into which the N/ = 2

gauge multiplet decomposes. Their physical components can be written as follows:

O(z,0") = ¢+ 0\ (7.12)
5 B

Wa(z,0") = Ao + (01)F 5. (7.13)
After inserting these component into (7.11) and omitting the auxiliary superfield G' we

recover exactly (7.10) upon identification A; = (A, \).

We can make a connection to the A/ = 1 representation of the N' = 4. We obtained
the N' = 1 description of the fields by branching the representations of the fields under
SU(3) x U(1)y € SU(4), where U(1)y is the R-symmetry of the /' = 1 theory, and we have
used the subscript ‘Y’ instead of ‘R’ in order not to confuse it with the R-symmetry of the
N = 2 description. To relate N' =1 and A/ = 2 fields one needs to branch the global SU(3)
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symmetry of the A" = 1 theory further as follows:
SU(2) x U(1)y x U(1)y € SU(3) x U(1)y € SU4). (7.14)

The Cartan generators of the N' = 1 description are given by the following matrices:

10 0 0 100
01 0 0 01 0
Hy — Hy = 7.15
" lo o -2 0 Y7 lo oo 1 (7.15)
00 0 0 000 -3

and we see that the SU(2) factor is the same as in the N = 2 case. To match the U(1)

charges one needs to relate the corresponding U(1) generators, which is:

10 0 0

9 1 01 0 0

ZHx+ —Hy = Hy = 7.16

3N T T 0 21 0 (7.16)
00 0 -1

Thus the representations in the N' = 2 language can be recovered up to the SU(2) factor
by branching the SU(3) global symmetry and summing the U(1) charges as above.

The decomposition we just did can also be understood from the perspective of short multiplets.
As explained previously one usually defines short multiplets for orders p > 2. The case
p = 1 corresponds to the N = 4 fields themselves, and is usually not considered as a short
multiplet because the fields by themselves are not gauge invariant. Nonetheless, from the
group theory point of view there is nothing that stops one to consider the p = 1 case and
the fields can be arranged in a multiplet diagram very much like the p > 2 cases. Together

with the branching to the A/ = 2 quantum numbers we obtain the following picture:

[(A1),22),(1) ]

(a2,20,][@n,02) ]
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We saw the the 6, the 4 and the 4 correspond to the scalars and the fermions. The
singlets are given by the self-dual and anti-self-dual curvature tensors of the connection
Ay by 149y = F* = Fy0 and 1oy = F~ = F,,6". The decomposition to the N = 2

sub-symmetry performed earlier can by summarized as follows:

V={s,X\,F*}
Qa = {qaiﬂzja’&a}

(
(

)

(1) 2)17 (17 1)0}
) 1

{ 1,1),,
{(2,2)4,(2,1)_,(2,1),}. (7.17)

By comparing the content of the superfields with the representations in the multiplet diagram
it is obvious how the N = 2 superfields fit into the ' = 4 multiplet. This can be summarised
by the following diagrams:

Q= (272)0(00) W=, 1)2(00) W=, 1)72(00)
N N
N AN AN P AN P
/Q /})\ & Q\ /Q P /(\ Q\ /Q /})\ /((\ /Q\
« » )¢ o © o » h:¢ o © o » )¢ o ©
s N, NS N \// N 4 \\/ NS
A4 A4 A4 A4 -4 A4
N /Q\ )}\ L7 \\ /Q\ , Q\ 7 N /D N }1\ //
< /Q\ /}) N /a\ /Q\ ,
o b b o
A4 R4 A4

The construction goes very much like in the N/ = 1 case and can be readily generalised
to the short multiplets with p > 2. For any given p one needs to construct all possible
products of the superfields @, W, and W with exactly p terms. The representations of the
composite superfield is determined from the quantum numbers of Q, W and W since W is
a singlet with respect to both SU(2)y and SU(2)g all non-trivial SU(2) quantum numbers
arise from the hypermultiplet @ = (2,2)¢. To obtain the representation of Q™ for some
n > 1 remember that the N’ = 4 primaries are given by symmetric products of the scalar
fields, this property descends down to N/ = 2 so that in the tensor product decomposition of
Q" only the completely symmetric representations must be kept. For SU(2) the dimension
of any representation [k| is given by k + 1, in particular the fundamental representation is
o= [1] = 2. The completely symmetric part of the product of n fundamentals, [1]"” is given

by [n], from which it follows that that representation of Q™ is given by
Q"=Mm+1,n+1)o. (7.18)

This completely determines the quantum numbers of any product of N' = 2 superfields.
After obtaining the quantum numbers for the composite superfields the representation
of the component fields can be determined using compatibility with 6° = (1,2),. Given
the quantum numbers of the component fields the last step requires the matching of the
representation to those obtained from the branching of the N' = 4 representations in the
short multiplet. Unlike for the N/ = 1 case there does not seem to be a straightforward rule

that determines which components of the superfields enter the short multiplet. We performed
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the decomposition for the cases p = 2 and p = 3 manually by matching all components, and
it turned out the superfield components can be assigned to the multiplet in a unique way just

from their representations alone. The complete decomposition is presented in Appendix F.

7.2 N = 4 Theory in N = 2 Language

Our ultimate goal is to find deformations of the A' = 4 super Yang-Mills theory that preserve
an N = 2 supersymmetry subgroup. We cannot simply pick a deformation of our choice, for
example an operator in A/ = 2 decomposition of a short multiplet and add it to the action,
since a general deformation would break the supersymmetry completely. It is therefore
necessary to find a way of adding deformations to the action in which the preservation of an
N = 2 supersymmetry is ensured. Analogously to the N’ = 1 case there is a way to formulate
action for N/ = 2 supersymmetric theories in terms of superfields [91]. The construction is
more subtle and technical since an infinite number of auxiliary fields in form of S? harmonics
have to be added. The N = 4 theory can be written in the A/ = 2 harmonic superspace

language as follows:

S = Ssym + Sq
(7.19)

1 — 1
-1 / dte a0 (W) + / Az dud*0t t(QFDH Q).

The du integral integrates over the coset SU(2)/U(1) = S? which is parametrised by the
+
i
analytic superspace, which comprises half of the whole harmonic superspace. The SU(2)g
+

7

vielbeins u;", and the coordinates zy = z# — 20 grgI )u:“u; are used to parametrise the

, so that for examples QT = Q'u

doublet indices can be contracted with the vielbeins u P

which converts any number of SU(2)y indices to a number of ‘+’” and ‘—’ superscripts. For
a large number of superscripts an abbreviation is used which allows to write a number
followed by a plus or minus sign, so that one could write @t = Q*Y and Dt*+ = DH+2). The
f-integration is normalised so that [d*6T(6T)" = fd40_(c§)4 =1, and W is the non-abelian
field strength constructed from the pre-potential V™. Note that W does not depend on
the harmonic coordinate u. All fields in the action above are in the adjoint representation of
the gauge group SU(NV), and therefore are elements of the corresponding algebra. In order
to follow the conventions in [91] we choose the N by N matrices T spanning the algebra to
be normalised so that tr(7%7°) = §.

A particularity of the harmonic superspace approach is that the introduction of the 52
harmonics u;t leads to infinite towers of auxiliary fields, which is equivalent to the standard
harmonic expansion on the two-sphere. On the other hand, we are dealing with a gauge
theory, and in particular the gauge parameters \(z, 6, 0, u) will also depend on the harmonic

coordinates on S? and have an infinite harmonic expansion. One can show [91] that the
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gauge can be chosen in such a way that the infinite harmonic towers of A(z, 0, 9, u) and
V+H(z,0,0,u) cancel leaving only a finite number of fields in V*+(x, 6, ). This is similar to
choosing the Wess-Zumino gauge in N' = 1 theories, which also reduces the number of fields
in the vector superfield V. After this gauge fixing the following non-vanishing components

remain in the pre-potential:

Vi (2,6,0,u) = — 2i0 o0 A, (x) — ivV2(0) (x) + iv2(0) ¢ ()
F AN 0TN () — 4(0T) 0N (2)u; (7.20)
+3(6)%(0%) DY (2)u; u; -

The construction of the field strength W from V*++ is non-trivial, however, the details are
not important at this point and can be found in [91]. What matters is the form of the super
Yang-Mills part of the N/ = 4 action which is obtained after the superspace integration is
carried out. In the Wess-Zumino gauge mentioned above the component form of this part of

the action is given by the following:

Ssym = tr /d4a:{ - %FWF“” + DD g — iN' D (7.21)
Vo2 L oyge gy s gn Loy
= 316,91 = 5NN = J5hlo XN+ {DYD

We see the kinetic terms of all fields in the vector multiplet appearing in their canonical
form, as well as the auxiliary fields D¥. The superspace integration also generates some
interaction terms, which take a form similar to the N' = 4 action. Next, consider the matter
part of the N' = 4 action in (7.19):

1
Sq _ 5 tr /d4xA du d49+ (Q:D++Q+G) , D++Q+a — D++Q+a i i[v++7 Q+a] (7.22)

The superfield Q*%(z,670%,u) can be expanded in its Grassmann parameters to a finite

sum of components, and reads:

Q-i-a — fta + 9+wa + é—l—i)a + (9+)2M—a + (é-{-)QN—a + ie-‘raué-i—A;a
OO 1) 0K (01 @) PO (1.23)

where all component fields Fte, ¢, 4% M~% N, ALl n(=2a y(=2a and P(=3)e gtill
depend on both the space-time coordinate x, and the harmonic coordinate u on the sphere.
Thus each of these component fields leads to an infinite harmonic expansion in the coordinate

u.

The standard way to carry on from here is to first insert the expansion of Q¢ into the
action and integrate over the Grassmann coordinates. Since everything is explicit here

the computation is very straightforward. Next one varies the action with respect to the
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component fields. Many of the resulting equations of motion are not dynamical with respect
to space-time coordinates x, and reveal that the only dynamical fields are contained in the
towers of F+9, ¢ and ¢ Thus one uses the kinematic equations of motion to eliminate
all auxiliary component fields, and all auxiliary fields in the harmonic towers of T4, 1%,
and 1®. This leads to the action written in terms of physical fields only. Since we will need
the equations of motions just mentioned for the mass deformation, let us write them out
more explicitly. After integrating over the Grassmann coordinates the matter action S, take
the following form:
_ _ 1 _ _ 1 _ _ A
Sq _ /d4l' du {PéfS)aa++F+aa _ §n£72)aa++waa _ 525;2)a8++waa _ % gwwaa
_ _ 1 _ _ _ _
+ M POTEN T AT AL A;““DMFJF““}
_|_%f&EE{BF(;i—dF—i—I;aDijE(x)ui—u; + 4F(;Ld5\5i(:v)&5au; _ 4F(;Fd)\5i(l,)¢éaui— (7.24)
+i2V2F b (2) M — 22O (m) N~
T 2 Ba e (R
+7abacx_7abacx.
N AGAAOR ARAC)
The barred indices a,b € {1,..., N? — 1} refer to the adjoint representation of the gauge
group SU(N), and the corresponding covariant derivative is denoted by D,. The fields
where the dependence on x is explicit depend on z only, while all other fields depend on
both x and the harmonic coordinate u. After varying the action above we get the following

equations of motion:

§/6P)a . ottFtia = (7.25)
5 /62 . oty =0 (7.26)
5/6x 2. ottt =0 (7.27)
§/SM;T: ottNTae 4 faBaﬁF%a(b(x)a -0 (7.28)
§/6N;% . ottar—ae fa’_’éﬁF“_’aq_ﬁ(x)a -0 (7.29)
§/6A M —%a++A;&a + D, FT% =0 (7.30)

Note that we should also write down the equations of motion resulting from the variation
with respect to FT9 % and )%, as well as all fields that come from V7, but this is not

necessary at this point.

Next one notes that the action in (7.24) is linear in P(-%), (=2, and x(=2) and therefore to
integrate out these fields we just remove the corresponding terms. This action is also linear
in M~ and N, but these two fields mix in M, 20T TN~ and so the total contribution
from all terms containing M~ and N~ will be —M_ 29+t N~%_ Similarly, for A, there is

one term that is quadratic, and therefore the contribution to the action from all terms with
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A is 4A “a8++A_a“ After these observations the action in (7.24) reduces to

Sy = /d4x du {_%qulqu}aa _ Mot N %A;pﬁaﬁ--FA;ﬁa}

+% fUBEF E DI (wyuy uf + AR N (@) — AFFIN ()™, (T31)

L a b e I G 7haTe
LA OBy R C)

where we have to substitute M, N7, and A, with the corresponding solutions of equa-
tions (7.28), (7.29), and (7.30). Moreover, equations (7.25), (7.26), and (7.27) determine
the dependence of Ft, v, and ¢ on the harmonic coordinate u and truncate the infinite

harmonic towers to only one term. Thus for P(=3) n(=2) and x(=2) on-shell we have

FH(z,u) = fo%2)uf,  ¢%(z,u) = 9% (2),  Y*(z,u) =" (). (7.32)

At this point all the dependence on the harmonics uf is completely explicit and we can

perform the u-integration using

/du 1=1, /du ufu]_ = %eij , /du u?;u;r)u(_kul_) = %eime]-néglm = é(ﬁikﬁjl + €i€j) -
(7.33)
Finally we can restore the super Yang-Mills part of the action given in equation (7.21) and
integrate out the auxiliary field D¥. This gives us the complete A’ = 4 action in N = 2

component form:

S = Ssym + Sq
= / d'z %wam“ + DA D} (7.34)
Lpa, pam 4 p ¢aD“¢“ iNTPAT}

— iyt —

NG g

AN TA%%C}
T P0G g g )
e 575 )

= tr / diz {—EFWF‘“’ + D¢ D + ED# faiDuf® — M’JDXZ- - f%zpq]ﬂ}

Oliar ¥°] -

{-
{
1ife c{fal)\bwca fgi)\g)wéa NG
{
{

1 - < 1

+{fai[)\i77w[}a] fm[ uwa] [¢aa¢ ] \/§ QE

2[ 2[
{ Ui G161+ § s 155 £ + 110,017}
(7.35)

i, X1}
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7.3 Deformation by N/ = 2 Mass Term

In the previous section we showed how the action of the N' =4 SYM can be written in
the language of A/ = 2 harmonic superspace. In this section we would like to consider
deformations of the N' = 4 theory that break the supersymmetry down to A’ = 2. In the
N = 2 language of the previous section this amounts to adding operators to the action (7.19)

that preserve the already manifest A/ = 2 supersymmetry.

A natural way to do so is to add potential terms to the matter part of the action in (7.22):
1
S 5 tr / d'zadud'ot (QIDH QY + LM (gt u)) . (7.36)

In the end we would like to generate a scalar potential for the physical fields, associate the
emerging couplings to bulk modes, and potentially study their RG flows from a holographic
perspective. However, it was shown in [91] that a deformation of the N/ = 2 theory like
above does not generate a scalar potential, but rather a non-trivial metric for the scalar

manifold.

It turns out that a way of generating a non-trivial N' = 2 scalar potential is by the Scherk-
Schwarz dimensional reduction method [92]. One imagines that the theory in four dimensions
comes from a dimensional reduction from another theory with one dimension more, and
a supersymmetry that extends to that extra dimension. One then gauges an electric U(1)
subgroup of the higher-dimensional supersymmetry so that translations along the extra
dimension correspond to U(1) rotations. This gauging partially breaks the higher-dimensional
supersymmetry to A/ = 2, and the unbroken supersymmetry algebra acquires a central charge
that corresponds to the gauged U(1) [93]. After dimensional reduction to four dimensions
we end up with the N/ = 2 theory that we started with, where the central charge is realised
as shifts along the extra dimension as Z = —io3ds, where o3 is the Cartan generator of the
SU(2)y;- The only dependence of the matter fields on the extra dimension is through a U(1)
phase: Q1%(z5) = eimx5Q+a. Thus the central charge is nothing else than a mass for the
superfield

(ZQ*)" = m(03)",Q", (7.37)

and can also be seen as rotations by the U(1) subgroup of the SU(2)y; global symmetry. In

the presence of the supercharge the harmonic derivative is altered to

(DENY®, = 66D +i(07)° 29 +i(01)* Z°, (7.38)
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and the matter part of the action now reads

5 = %tr / iz dud®ot (QF DT — m(0s),(07) + mlos),(07)71Q™)
(7.39)
=tr /d4xA dud*et (;Q:{DJ“JFQJF“ + [m(0+)2 - m@ﬂﬂ@?@?) .

Note that the integrand does not depend on the extra dimension, and thus the integration
goes only over the four-space. Moreover, the explicit appearance of fs in the action is only
possible if the supersymmetry has a central charge. The fact that the sigma matrix o3,
a generator of the SU(2)y, appears in the action explicitly breaks SU(2)y; to its Cartan
subgroup, which is just the U(1) that is generated by o itself, since SU(2) has rank one.

It seems possible to generalise the massive action just derived to a complex m so that the

N = 2 symmetry is still preserved. In this case we would like to write
Sgc =S5q+05m

4 1+ (Lot ta | 1 g+ 2 1\ 0+0+ (7.40)
:tr/d zadud®6 §QGD QT+ [m(07)" —m(07)1Q7 Q5 ) -
We can see the change induced by the addition of 65y, by performing the #-integration, the

result of which is

0Sy = tr /d%; du m (F;M; - %wm + M;Ff“) —m (F;N; - %W/Zl + N;Ffr) :

(7.41)
We see that because the integrand in §Sy, is proportional to #2 and 62, no new terms are
added for P(-3), (=2 and x(=?). Looking at equations (7.25), (7.26), and (7.27) we realise
this has for consequence that then kinematic equations of motion that eliminate the infinite
harmonic towers for the physical fields remain the same and are given by (7.32). This allows
us to read off the component form of the mass deformation for fermions from the equation
above:

(5Srf§rm =tr /d4:c du (—21/}21#1 + 21/_12@51)

1 (7.42)
= tr /d4x du 1(03)% <m¢awb - ﬁfmﬁazﬂlﬁ .

The other part of 6,5 contributes additional terms to the equations of motion (7.28)
and (7.29) that were obtained by varying with respect to M~ and N—. The new equations

are given by

O/SMy s OF TN 4 (VR M) fmfs) up =0 (7.43)
0/5My " OHENTR 4 (VUG (@) £ m i) up =0 (7.44)
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OJSNT® oM — (V2T G (@) +mf5) up =0 (7.45)
83Ny ™ s 9T M — (V2T G () 4 mfi) uy = 0. (7.46)

The different components of M~ and N~ can be grouped together, which introduces the

Cartan generator o2 in the mass term:
SSML ™ OFENT 4 (VU g(2) — m(og), ) up = 0 (7.47)
5/6Na—?z .o9ttp e (ﬁfagéfgqu;(x)a _ m(o_g)abfz_zbi) u; = 0. (748)

As before, the whole contribution to the action comes from the term
/ Az du (—M;%HN*M). (7.49)

After eliminating the auxiliary fields M~ and N~ by solving their equations of motion we

arrive at the following mass contribution to the action

55" = tr / 'z (= ml*fi foi + V2006 + mA)fi, fail ) (7.50)
— i /d4a: %(ag)ab( — P ¥ V2 + M) s, 1) (7.51)

Finally, we should combine the bosonic and fermionic contribution to obtain the total change

in the N/ = 2 action due to the mass term:

0Sm = tr /d406 du <—!m\2f1if2i + V2(me + me)[fi, fai] — %%1/11 + 7;%%)

= tr /d4l‘ du %(O‘g)%( — |m|2fm'fbi + \@(m(ﬁ + mqg) [faia fbl] + %%W - %'J)cﬂz}b) .
(7.52)

We can see several operators appearing in this deformation. Their holographic interpretation

will be the subject of the following section.

7.4 Relation to the Bulk Modes

In this section we would like to analyse the operators that emerge after the mass deformation.
In particular we would like to answer the question whether they correspond to chiral operators
and are therefore part of a short multiplet of the N/ = 4 theory. If this is the case, then the

corresponding modes in the bulk have to be turned on.

We have shown in the previous section that the deformation of the N' = 4 theory by N = 2
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mass terms leads to the addition of the following component fields to the action:
4 2 i = N[ g m m o271
55 = tr/d o{ = Il i fos + V3 + RO)F, foil — Sats — TU(7.53)
Furthermore we recall the representations of the N' = 2 fields with respect to the Lie group

SU(2)y % SU@2)g x U(1)x € SU(4)p:

fa=(2.2)000) Ya=(21) 319 &=L 1)y (7.54)

The fields fi and 1; are in the N/ = 2 hypermultiplet, and ¢ is the complex scalar
from the A/ = 2 vector multiplet. We can see explicitly that the mass term breaks the
SU(2)y symmetry. Thus the terms in the action transform as follows under the remaining
SU2)g x U(1)x:

m tr @2151 — 2V2¢[f1, fzz‘]) + c.c. = 1100y + 1_2(00) (7.55)
Im|* tr (fff%) = 1o(0) (7.56)

It is straightforward to see that the fermion bilinears in equation (7.55) are the same as
the ones that were considered by GPPZ [23], and therefore are part of the order-2 short
multiplet. The N' = 4 order-2 short multiplet can be represented as follows

and the operators that we are looking for sit in the ﬁ(oo) and the 10y, and are given by
Aarpy and MNP (A,B=1,....4). (7.57)

Thus we conclude that the fermion bilinears in (7.55) are chiral operators of dimension
A =2+ 1 = 3, and correspond to the bulk mode A,5 with mass m? = A(A —d) = —3.
Recall that under the inclusion SU(2)y x SU(2)g x U(1)x C SU(4)g the 10 decomposes as
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follows:
10 — (2, 2)y + (3,1)_,+(1,3), (7.58)

The bilinear 121y = 1_5 is contained in the (3,1)_, since SU(2) is broken and we have to
omit the first factor. The operator ¥?1)! is contained in the 10 in the same way. Exactly as
in the GPPZ case, there are also cubic scalar terms that appear in the 10 and 10, these are
exactly the scalars in (7.55), and therefore have to be considered together with the fermion

bilinears.

Next consider the operator in (7.56) given by
ffie=H15—fif (7.59)

It is a quadratic operator made of scalars only, thus we have to look in the top component
of the order-2 short multiplet, which is the 20’. In terms of the 6 ' = 4 scalars ¢!, which
are in the 6 of the SU(4) the 20" is a symmetric traceless product of two such fields and
can be written as 20" = C% J¢I ¢’ for some symmetric traceless constants C - As we saw in

Section 7.1, we can write f{ fz; in terms of it’s real components ¢’ as

Fia = = (6 4 (637 + (6 + (67)7) = —5Cu6lo? (7.60)
with 011 = 022 = 044 = 055 =1. (7.61)

we see that C7y is not equal to its trace so that the traceless part of it is non-zero, and
therefore corresponds to a component of the 20’. In terms of the branching of the 20’ we

can say that this component corresponds to the following term:
20" — (1,1)5 + ... (7.62)

Thus we have shown that the operator in (7.56) has a chiral component with dimension A = 2,
and therefore corresponds to the bulk mode h% — anp,6 With mass m? = A(A —4) = —4.
The remaining part of this operator, the trace, is not chiral, and the corresponding bulk

mode is not visible in supergravity.

In sum we have found that the NV = 2 mass deformation leads to two chiral operators, and
therefore two different bulk modes need to be turned on. Note that in the N' = 1 mass
deformation of GPPZ a similar situation arises: additionally to the 10 and 10 the following
operator is produced:

m* e =3 x3=8+1. (7.63)

The 1 is not chiral and therefore is not visible in supergravity. The 8, however, is, and
would lead to an additional supergravity mode. In GPPZ the 8 is eliminated by choosing

mi; = md;j, which also eliminates the additional bulk mode. In the N' = 2 case, in contrast,
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the additional term (7.56) is proportional to |m|?, and therefore there is no freedom of
choosing a non-vanishing component in m to eliminate it, and so both bulk modes have to

be considered.
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Chapter 8

IIB Uplift of D = 5 Maximal
Supergravity

This chapter summarises the main uplift formulas which are used to construct the GPPZ
uplift in the next chapter. In the first section the general formalism is presented, while in
the second section a particular parametrisation of the scalar matrix tailored for the four

scalar truncation is worked out.

8.1 Main Uplift Formulas

D = 5 maximal SO(6) gauged supergravity [44, 45, 94] is a consistent truncation of IIB
supergravity around AdSs x S°. Its field content comprises the D = 5 metric 9w together
with 42 scalar fields parametrising a 27 x 27 symmetric Egs) matrix which we parametrise
in an SL(6) x SL(2) basis as

M M B Mab,cd Mzzb
Myn = ( abicd ab 5 ) . with inverse M™MY = ( d v, (8.1)
Maacd Maec Maac Maa,c,@

according to the decomposition of the fundamental representation of Eg) as
27 — (15,1) ® (6,2) , (8.2)

under SL(6) x SL(2). Indices a,b,c,d =1,...,6,and «, § = 1,2, label the fundamental repre-
sentations of SL(6) and SL(2), respectively. Index pairs ab and cd in (8.1) are antisymmetric.
The remaining bosonic field content in five dimensions is given by 15 non-abelian vectors
fields Aff’ and 12 topologically massive 2-forms B}, 4o. The truncation we are eventually

interested in and which which carries the GPPZ solution [23] contains four scalar fields, a

105
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single vector and no 2-forms.

In this section we collect the relevant IIB uplift formulae of D = 5 supergravity from [57] (see
also [52, 53, 95-97]), in the next section we explicitly evaluate these formulas for the four-
scalar truncation. The IIB fields are expressed in terms of the D = 5 fields introduced above
while their dependence on the five internal coordinates y™ is carried by the fundamental S°
sphere harmonics, %, (a = 1,...,6), with Y% = 1, and the S° Killing vectors

Kiagym = —V2Y0,0%, m=1,...5. (8.3)

By émn we denote the round metric on S® which can be expressed as

o

Gmn = K:[ab]mlc[ab]n ) (84)

in terms of the Killing vectors (8.3). We also define its volume form

d’klmnp = \det G Eklmnp = 5a[kélmnp] ) (85)

in terms of a 4-form potential Co’klmn. We will also need the tensors

’C[ab] mn = amK:[ab} n anlc[ab] m

1, .
Klat] kim = 5 Dktmnp Kjan)™ (8.6)

where indices n, p on the right-hand side are raised with the background metric (8.4). In

terms of these objects, the IIB metric takes the following form

ds?> = A2 (z,y) G () dat da”
+ Gon(2,9) (dy™ + Kpay™ () Al (2)da ) (dy" + Kpeg" () A (2)dz”) . (8.7)

with the internal block Gy, (x,y) given by inverting the matrix
G (w,y) = Az, y)** Kiay)™ (0)Kieg™ () M (z) (88)

in terms of the submatrix M<d(x) from (8.1). We use indices y, v and m, n for the external

five and internal five coordinates, respectively. The warp factor A(x,y) is defined as

det G (z,y)

Az, y) = 5
) =\ et G ()

(8.9)
The IIB dilaton and axion combine into a symmetric SL(2) matrix m,3 whose inverse is
given by

m®(z,y) = Az, y) "> Y () V" (y) MY (x) . (8.10)
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The relevant components of the IIB 2-form doublet and 4-form gauge potentials are given by

1

Con® = =5 ePAY3 g, Y Kiap)mn Mab™ (8.11)
Clukmn = —% Ormnpa VK1) Au™ = Kia)? A" Copomn
Crnpwp = —3% Kiatjm (2 9] €por MabcaF™ + 3 V2 Eapedes 3[“AquAp]ef) :
Chtmn = Ctmn — é Dty GPTATLO,A

1
C;J,Vpo' = _E yayb \/ ’9’ EquUTDTMbc,NMNca + Auupa )

with ijab being the five-dimensional field strength of A,ﬂb. The function A, p0(x) in the
last line is defined by integrating
1
Diyupor) = go5 /191 €upor (10 5369 4+ 2 MI9opL ) 1, — MeagaMghda) MPhee 5 16
1
T 480 lg| Epvpor D (MNaC D)\Mac,N) (8.12)
1 7 1
+ % \9\ Epvpor Mab,cd Fﬁ)\ab FﬁACd + @ \/5 Eabcdef F[MyaprachT]ef .
The p-forms (8.11) are given in the standard Kaluza-Klein basis
Dy™ = dy™ + K[ab}m(y)AZb(:n)dx“ , (8.13)

see equation (8.7). As compared to the full uplift formulas [57] we have suppressed in the
p-forms (8.11) all terms anti-symmetric in more than one vector field since these will not

survive in the truncation to a single vector field which we will impose next.

8.2 Parametrisation of the Scalar Matrix

In this section we spell out the explicit parametrisation of the scalar Egg) matrix My (8.1)
in the 4-scalar truncation of D = 5 maximal supergravity. To this end, we change to a

complex basis, in which the SL(6) vector decomposes according to

(X} — {Xi X;= X7}, ii=1,23. (8.14)
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In this decomposition, the Eg) matrix (8.1) decomposes as

k k
Mijp My Mg Mg Mo
k k
Mg Mgy Mg Mg"™  Mg"»
— k k
Mun = | Mg, Mg, Mgy Mz Mz |, (8.15)
Miakl Miaki ]\41'04H Mia,kﬂ Mia,k:ﬂ
Mza Kl Mga 4 MEQH M%a,k B Mga,EB
with its non-vanishing entries given in terms of the SL(2) vector v® = (1, —1)% by
; 2m
Mg = —0;" e~ (#+9) ginh () sinh (20) 8.16
il = —0ij 7 (20) (8.16)
2m
M@= 5:;* cosh <\[) cosh (20) , (8.17)
1
Mbe = 5 gF ¢~ sinh (f) cosh (20) v* | (8.18)
ko z]k zw ﬂ
Mz = cosh (\f) sinh (20) v*, (8.19)

T 1
Mijko‘ = 1 £k =% ginh (

) (8.20)

%\3

i 1 1 2m

i, _ = 21 2 ayBye _ = (w—) o : a, B
M 5 sinh <\[) (v*0?) 5 ¢ sinh (\/§> sinh (20) v%v” | (8.21)
MiwiB — % cosh? (\[> (V) v % cosh (?}g) cosh (20) v® (v°)* (8.22)

together with those components related by complex conjugation. Plugging this explicit form
of the scalar matrix into the uplift formulas of Section 8.1 yields the IIB uplift of the 4-scalar

truncation of the D = 5 theory which we will describe in Section 9.2.



Chapter 9

Uplift of GPPZ Solution

9.1 The GPPZ Flow

The GPPZ flow [23] is a solution of the N' = 8 SO(6) gauged supergravity in five dimen-
sions [44, 94]. The field content of the theory can be organised in representations of the
SO(6) x SL(2) subgroup of Eg). It consists of 15 massless vectors fields in the adjoint of
the SO(6), 12 topologically massive 2-forms transforming in the (6, 2) of SO(6) x SL(2) and

42 scalars transforming as
42 = 20/(0) =+ 10(_2) +T0(2) + 1(4) + 1(_4) , (91)

where the subscripts are the charges under the SO(2) subgroup of the SL(2). The masses of
these scalars are m? = —4 for the 20’, m? = —3 for the 10 and 10 and m? = 0 for the two

1s.

According to the AdS/CFT dictionary, the 42 scalars are dual to relevant and marginal
operators' of the A' =4 SYM. The N = 4 SYM contains six scalars ¢! and four fermions
Ao transforming in the 6 and 4 of the SU(4), respectively. Then the scalars in the 20’
correspond to scalar bilinears (tr #I¢7) — traces) of conformal dimension A = 2, the scalars

in the 10 are massive deformations (A = 3), schematically
Q*tr o7 ~ tr(Aady + 6°) (9:2)

and the scalars in the 1 are the gauge-coupling deformations.

We are interested in massive deformations of four-dimensional N' = 4 SU(N) SYM that

break supersymmetry to ' = 1. In A = 1 notation the six scalar fields ¢! are arranged

'Recall that the mass of an AdS scalar is mapped to the conformal dimension of the dual field theory
operator by A = 2 + /4 + m?2.

109
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in three complex scalars, which together with three of the four fermions form three chiral
superfields Z;, i = 1,2, 3, while the remaining fermion sits in the vector multiplet. Of the
full SO(6) R-symmetry only a U(1) x SU(3) subgroup is manifest, under which the vector

superfield is neutral and the three chiral superfields transform in the 3y /3.

To identify the relevant 5d scalars we need to describe the mass deformation in more detail.

The mass deformation in N' = 1 language is a change in the superpotential of the theory,
W = m" tr(Z;Z;) (9.3)

and we need to decompose the SU(4) ~ SO(6) representations into SU(3) x U(1) and single
out the gaugino. The fundamental of the SU(4) splits as

4-53+1 (9.4)

and thus the \,, which is in the 4 of the SU(4), splits into a 3 corresponding to the three
fermions in the chiral multiplets Z; and a 1 which is the gaugino A. The fermionic mass

term in the 10 then decomposes as
10—-1+3+6. (9.5)

and we identify the 6 with the mass deformation, while the scalar in the 1 corresponds
to a gaugino condensate. Integrating out the auxiliary fields we find that N' =4 SYM is
deformed not only by the mass term but also by a part of the 20" (and also by the Konishi
operator, which however decouples in the supergravity limit), unless the three fermion masses
are taken to be equal. If the masses are equal, the part corresponding to the 20’ does not
appear, and there is a residual SO(3) symmetry that allows us to keep only two holomorphic
scalars, ¢ € 1 and m € 6, while setting all the remaining fields consistently to zero. These

two fields are dual to the operators?

3
O3 = Ztr()\i)\i), Oy = tr()\4/\4). (9.6)
i=1
Similarly, we get two anti-holomorphic scalars, g, m (the complex conjugates of ¢ and m)

from the 10. This is as expected, since m and ¢ are dual to chiral operators.

In AdS/CFT the QFT generating functional of correlation functions becomes the on-shell
value of the bulk action. Since m and o couple to complex operators, the generating functional
will only contain the modulus of m and ¢. Indeed, in N' = 4 SYM, (0303) = (0303) =0
but (O303) # 0 and the same is true for Oy, which means the generating function will

2These operators are obtained from the 20’ by acting with two supercharges and they contain also a part
proportional to ¢® that we suppress here.
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depend on |m|? and |g|? but not on m?, m?, o2, 32, and similarly for the contributions coming

from higher point functions. Indeed, we will see in the next section that there is consistent

truncation of the bulk supergravity to the modulus m and ¢ of m and o,

m=me? oc=oce". (9.7)
We are thus lead to looking for 5d solutions of the form

ds? = dy? + e2*Wdgtdz, (9.8)

with g = 0,...,3 and non-trivial profile for the real fields m(y) and o(y). The radial
coordinate y ranges from —oo, which corresponds to the IR, to 400, which corresponds to

the UV. With this truncation the Lagrangian reduces to

L= \/Tg{—iR—F S (om)?

2
{(cosh “=)? +4cosh Tn; cosh 20 — (cosh 20)? + 4] } (9.9)

Because of fake supersymmetry, the fields ¢, m and o satisfy the first order equations

b= % [cosh %/n; + cosh 20| , (9.10)
= stmhi’g, (9.11)
o= —;sinhQU, (9.12)
descending form the superpotential

W = —% {cosh ?/Tg + cosh 20} . (9.13)

The solution, which is often denoted as the GPPZ flow [23], is given by
m(y) = \23 log 11—2:8:23] = V3arctanh e~ W~ | (9.14)
o(y) = %log —1 i_ Z_zg_z;] — arctanh e 3 ~C2) | (9.15)

Bly) =y + 5log [1 — 0] 4+ Slog [1 - 602
(9.16)

1
m(y) 1 log cosh o (y) .

= y — log cosh
Y g /3 3
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where C; and Cy are two arbitrary integration constants®.

Generically, solutions of the type (9.14) can represent both deformations of the dual field
theory by an operator O and/or different vacua of the same theory characterised by a
vacuum expectation value (O). The behaviour of the solution in the asymptotic AdS region,
y — 400, discriminates between the two options. For y — +00, the asymptotic behaviour

of some field ¢ consists of a non-normalisable part and a normalisable one

0 AT AL ) e AY(B ), (9.17)
where A is the conformal dimension of the dual operator and the dots in the leading
non-normalisable part are local functions of A while the dots in the normalisable part are
functions of both A and B. The coefficient A of the non-normalisable solution is interpreted
as a deformation of the Lagrangian while the coefficient B of the normalisable solution is
related to the vacuum expectation value of the dual operator, B = 1/(2A — 4)(O), where O
is the operator dual to ¢ [82, 98].

For y — +00, the GPPZ solution behaves as

~Y .1
W) .Y (9.18)
mly) o~ moe V. mo=v3e? (9.19)
1
(y) —ope Y, oo = 2e372 (9.20)

~Y
y——+oo 2

From these asymptotics we see that, since A = 3, mg corresponds to a mass deformation
and op = R(A\) is the real part of the gaugino condensate. It is then natural to interpret
the solution as a flow from the mass deformed N' =4 to ' = 1* in the IR.

The metric has a naked singularity for y — C; (with y > C4),
ds? = dy* + a(y — Cy)daz"dz,, + .. ., (9.21)
where a = 2¢“11C2(2sinh (3(C} — C5)))Y/3. The Ricci scalar is singular
R=—(y—C1)2+... (9.22)

and there is no change of frame in which the singularity disappears or is milder. Notice that

3The integration constants C; used here are identical to those used by Pilch & Warner [54], and are
related to those used by GPPZ [23] by C{9FF%) = ¢y, C{FF%) = 3C,. Also the definition of ¢(y) differs
between Pilch & Warner and GPPZ. Here we are using the Pilch & Warner definition, which is related to
GPPZ by ¢(CFP2) — ¢ — % See Appendix A for more details.
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also the solution for m diverges at y = C

m(y) = —\ég log(y —C1) + ... (9.23)

while the behaviour of o depends on the relation between C7 and Cs. If Cy < C then o is

regular.

Singularities of this kind are common in most 5d solutions and criteria have been proposed
to establish whether the solutions are physically acceptable or not. In particular in [99] it
was proposed that a singular solution is physically acceptable if it can be obtained as the
zero temperature limit of a regular black-hole. The conditions for the existence of the black
hole solution constrain the parameter of the singular solution. In this case the criterion
gives Co < C1. By looking at the behaviour of Wilson loops it was shown in [23] that the

solutions with Co < (' confines. Such solutions should then be dual to the confining vacua

of N = 1*.

9.2 Uplift of the GPPZ Solution

The general uplift of the N’ = 8 SO(6) gauged supergravity to type IIB was constructed
in [57], and we recalled the main formulas in Chapter 8. In this section we first review the
4-scalar truncation of D = 5 maximal supergravity in which the GPPZ solution lives and
then apply the uplift formulas to obtain the full IIB uplift of the GPPZ solution. Finally, we
explicitly verify that the entire set of IIB field equations is satisfied by the ten-dimensional

solution.

9.2.1 Four-Scalar Truncation of D = 5 Supergravity

As discussed above, an important ingredient in the construction of the GPPZ solution is
the invariance under an SO(3) subgroup of the gauge group SO(6) that allows to truncate
the full theory to a pair of complex scalars [23]. One can actually embed the flow in a
larger theory that is obtained by truncating the A/ = 8 supergravity to the full set of SO(3)
invariant fields [54]. This gives an N = 2 supergravity coupled to two hyper-multiplets. Of
the 42 scalars of the N' =8 in (9.1) we only keep the 8 singlets under the

SO(3)diag C SO(3) x SO(3) C SO(6) , (9.24)
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subgroup of the gauge group SO(6) ~ SU(4). These form the coset space Gg(2)/SO(4) and

are dual to the operators

3

O1=tr> (ii — diradivs), Oy =tr> (didirs), (9.25)
i=1 =1
3
03 =tr Z()\z)\z) 04 = tr()\4)\4) (9.26)
i=1
Os = tr(FTFT), Og =tr(F~F7), (9.27)

where F* are the self-dual and anti-self-dual field strengths. @; and O, are the SO(3)diag
singlets contained in the 20’, the complex operators O3 and O, are the SO(3)diag singlets
in the 10 and the 10, and O5 and Og correspond to the two 1s. Among the SU(4)g gauge
fields, the truncation to singlets under (9.24) only keeps a single U(1) gauge field, dual to
the U(1)g subgroup of SU(4)gr — SU(3) x U(1)g."

The further truncation to the 2 complex scalars dual to O3 and O4 can also been shown to
be consistent as it corresponds to the truncation to singlets under an additional discrete
subgroup within U(1)g x SL(2), the latter being the global symmetry of the N’ = 8 gauged

supergravity, see [54] for details. We parametrise these scalars as

m=me"?, g=oce". (9.28)

The five-dimensional theory [45] then reduces to

1 1 1 1 1 1
%,C == _ZR - EF’UJJ Pr — 5746”‘”‘)0-7— AuFVpFO'T + §5Mm3“m—l— §3u0(9”0

2 1
+ % sinh? (\/77;)) D,pD" o + 3 sinh? (20) DywD w — Vior ,  (9.29)

with the Maxwell and Chern-Simons terms of minimal supergravity, covariant derivatives
2
Dyw=0w+2A4A,, Dyp = 0up + 3 Ay, (9.30)

and the scalar potential

3 2 2
Voot = 3 (4 cosh (\g:) cosh(20) + cosh? (\;g) — cosh?(20) + 4) , (9.31)

only depending on the absolute values of the complex scalars. The scalar kinetic term is an
(SU(1,1)/U(1))? coset space, and the covariant derivatives (9.30) correspond to the gauging

of U(1)r which is realised as a linear combination of the two U(1)s.

“We normalise the U(1) so that the charges are those of the QFT, see the discussion around (6.88) in [83].
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Note that the angles ¢, w source the Maxwell equation

1 2
v, R 4 G R I g sinh? (\g) Do+ g sinh? (20) D,w
. (9.32)
2

J".

Setting the vector field to zero thus implies the constraint J,, = 0 among the derivatives of

the angles w and ¢.

The GPPZ solution (9.14) lives in the further (consistent) truncation of (9.29) to two real
scalars, i.e. setting angles and the vector field to zero. For the uplift formulas we will also

employ the variables [54]
w=e’, y=emV3 (9.33)

in terms of which the flow equations (9.10) take the form

ji= s (=), (9.34)
1

v=(1- vy, (9.35)

¢:;(1+u4)+4i2(1+1/4). (9.36)

Employing the U(1)r gauge symmetry, we can also give a version of this solution with

non-vanishing angles by setting
w=-—A, p=—=A, Ay =04\, (9.37)

for some function \.

9.2.2 Uplift of the Four-Scalar Truncation: Metric and Axion-Dilaton

In order to apply the explicit uplift formulas for the uplift given in Chapter 8, we first
evaluate the matrix (8.1) for the four-scalar truncation (u, v, ¢,w) by exponentiating the
associated generators within the group Egg) . Since all scalars are SO(3) singlets according

to (9.24) it proves useful to decompose the S° sphere harmonics Y* into
Y — {u',0'}, (9.38)

with u'u’ + v'v® = 1. Moreover, for the compactness of notation, it is useful to define the

rotated functions

U' = cos (le(cp + w)) u' 4 sin (jl(cp + w)) o' (9.39)
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) 1 ) 1 .
V' = —sin (4(g0 + w)) u' + cos (4(<p + w)> v, (9.40)
where ¢ and w are the z-dependent phases of the scalars m and o of the D = 5 theory
defined in equation (9.28). This transformation is a local U(1)g transformation from the

perspective of the dual QFT. Similarly, we define the rotated 1-forms

0" = cos <i(cp + w)) Du' + sin (i(gp + w)) Dv' (9.41)
A’ = —sin (i((p + w)) Du’ + cos (i(gp + w)) Dv' (9.42)

where the covariant derivatives
TR S A m
Du' = du' — 3V A dxt | (9.43)
. 1.
Dv' = dv' + 3 u'A, dzt (9.44)

correspond to the Kaluza-Klein basis (8.13). Let us also note that the proper identification
of the U(1) vector field A, among the 15 SO(6) fields A, gives rise to the relations

4

F™ Myp eq F* % = 3 P ™ (9.45)
32v/2
Eabedes FoFIAY = — = Bl ds. (9.46)

We can now give the fields of the uplifted solution. The IIB metric (8.7) takes the explicit

form

dstip = A7 (g () da*da” + AYP d33) (9.47)

with the warp factor A and the internal metric d32 given by

A~8/3 = (1 %) (2 4 v°) + vV (1 - V4)2 (NQ - V2>2 (1 + ,M2V2)2

16 ptvo 16 ptv8
(U-V)? 1) 2 2. 9v2( 2,  2)\2
TR (1—V> (1 — p*v?) (/,L —|—1/) , (9.48)
o (v (@@ +02) U+ p?) (i ind
ds? = 5o CEEFVY
(1—’/4)2 2 2 iy iAd ipd
—ST((U —V?) (016" — N'AY) + 4 (U - V) ©'AT)
(1_/~‘4)(1_V4) 2 2 i iAd ind
+ S (U2 =v2)(0'6' — NA) —4(U - V) OiA7)

# GBS ) (e e + (a7 v))
(1— o) (1825/2;2) (12 — 15) (VieH) (U7 AY)

+
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4 _ y4 — 8 . .
(p 4u)25/16 ) (U0 (VIATY) (9.49)

respectively. For vanishing angles (i.e. U' = u, V' = v%, ©! = du’, A’ = dv’) we recover the
result from [54]°. Tt is important to note that the only singularities of the IIB metric can be
located at p,v =0 or u,v = co. Indeed, the warp factor (9.48) can be estimated using that
U2V?2>(U-V)? and U?V? =U? (1 - U?) < § to be

3,2 6 2172
_sys o (L2 (W2 +0%) UV 4 n%
A3 > 16 a5 - L (1-u') (1-0") (9.50)
(1+N2V2)3(M2+V6) 1 4 4\3
> 6L - T (1 —u ) (1 —v ) (9.51)
2 2\3 2,6
we+v 14 pv
_ | 162”&”6 Ny (9.52)

We will take a closer look at the possible singularities in Section 13.2. For the symmetric

SL(2) dilaton/axion matrix mag,

1 2 R
Mag = — ( 7] T) . T =Cytie®, (9.53)

ST \-Rr 1
the uplift formula (8.10) yields
Map = A2 84285  map (9.54)

where S is an SO(2) rotation matrix parametrised by

SZ(COS(i(p—}lw) sin(

—sin(%gﬁ—%w) cos(

:‘3) , (9.55)

and mgp is a GL(2) matrix with entries

iy = S (1) (7)o (1) (2 -07) (2 V7)) 050)
mig = (=) (41;1_2:44) (+ ) v-v), (9.57)
o= S (100) (2 +02) = (101) (2 =07) (02 79)) . 039

It is straightforward to check that the determinant of mygy is given by A~%/3 (9.48) as
required in order to have mq3 € SL(2). Again, for vanishing angles we recover the result

from [54].

®We corrected a typo in [54] in the form of index contractions of the pen-ultimate term in (9.49).
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It is remarkable that the dependence of the IIB uplift on the a priori z-dependent 5D
angles (p,w) is entirely captured by a rotation of the internal coordinates (9.40) and an
SO(2) C SL(2)ip rotation (9.55). We will see in the following that this feature persists for
the full IIB uplift. In particular the 2w-periodicity of the 5D theory implies that the 1IB
uplift is invariant under the combination of an exchange U’ ++ V? with a constant SL(2)
rotation (9.55) with S = —io9, as is easily verified for (9.49) and (9.58).

9.2.3 Uplift of the Four-Scalar Truncation: p-Forms

We now evaluate the uplift formulas in (8.11) on the four scalar truncation in order to derive
the IIB p-forms. For the 2-form doublet, we find

Crna = A28, Crna (9.59)
where S is the SO(2) rotation matrix in (9.55), and the 2-form C, are
Cy = by ¥ ( (1 — ,u2V2> (/LQ + I/6> Viel nek + (1 + ,u2y2> (uQ — V6> VEA A NP
+ 212 (1 - ,u41/4) U ed A Ak)
+ by ¥ ( (1 + ,u,2y2) (,u2 — 1/6) Utel nek + (1 — szz) (,u2 + V6) U A A AR
+207 (1 ptv*) VIOl AAF) (9.60)

Cy = —Cy (9.61)

Ui Vi Ot Al ’

with the functions

=t (1) (2 +2) + (1) (2= 2) (2= 77)) . o)
by = 13;;;2 ((1=v") (B +02) U-V)). (9.63)

Again, the dependence on the 5D angles (p,w) is entirely captured by the SO(2) rota-
tion (9.55) and the rotated basis (9.40). The internal component of the 4-form potential

takes the form
o 1 . .
C=C+ 5 A cijmenn (fr@mUm = V™V 42 fUMVY) O A O AR AN
1 . . . .
+ IAg/i” fsO'ANOI AN AN (9.64)

where the background field C is given in (8.5) and

h= e () () (1)’ 059



9.2. Uplift of the GPPZ Solution 119

3(U%-V?) N2 (2 2)? 2 22
fQ—W(l—V) (2 = %) (14 12?) ", (9.66)
_3(U-v)(Ur-Vv? 1\3 4

fa= 3 200 (1—1/ ) (l—u ) . (9.67)

Finally, the external component C),,,, is determined by integrating the y-independent
function®

1 1 o) 20V2
58[” CypO'T] = —g Wuvpot (Vpot - 6 F/{)\ F > — T F[,LLVFPO'AT} s (968)

with the scalar potential Vot from equation (9.31).

9.2.4 Five-Form Field Strength and Self-Duality Equations
As a first consistency check, we compute the IIB 5-form field strength

15 N
Fpy.is = 5013, Cpy. i) — 7 €08 Clinin“ 06 Cras)” » (9.69)

fi2...fi5 4 [ iz fafis
and verify that it satisfies the first order self-duality equations
F=xF. (9.70)

Here and in the following, indices fi refer to the ten-dimensional coordinates, split as
{x"} = {a# y™}. After some computation we find that the internal components Fy,, . m.

calculated from the above expressions for C,,,* and Cipnn, take the compact form
F, YN TLY V 9.71
mi..ms — 3 Wmy...ms pot » ( . )

with Vpot the scalar potential in (9.31). The external component of the 5-form field strength
Flpor is computed from (9.68) and (9.69) as

Fuvpor = 50,Copor) — 10 Fi " Crogrim (9.72)
— _é Wywpor <Vpot - % F.» F"A) — gF[WFpUAT]

+ 1% F[Wgaygyb (4 Woor]kA MapcaF"™ 4+ 3 V2 e apede FpaCdAr]ef) (9.73)

= = W Voot (0.74)

6Here, and in the following, we use the notation wywper = 1/|g| Euvpor for the 5D volume form.
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upon using (9.46). Comparing to (9.71), we find that the 5-form we have is indeed self-dual.

Similar calculations lead to the other components of the 5-form
Fyumyms Dy™ A Dy™ A Dy™ A Dy™ =3 A x5 (UiAi - V"@i) T, (9.75)
where the current 7, is defined in (9.32) and the 5D Hodge dual x5 gives explicitly

2 A3 iy (UW’ - vi@i) =0 AOI AN AN
1 — 42 y y . .
+ (Vf) (VU7 +Vivi) ei A eF AN A AR (9.76)

Comparing to the result for

1 1 o o
FyupomDY™ = 2 @uporr (DHF’\“ +5 WL Fl,l,,zF,,3l,4> (UW — V@’) , o (9.77)

shows explicitly that the IIB self-duality equations (9.70) reduce to the Maxwell equations

of the D =5 theory (9.32). For the remaining components, we obtain after some calculation

1 , A

F,uupmn = _E W/,u/pch FUT (®Z A Az)mn ) (978)
Al/3 . .

Fuukmn = - 12 F;w *5 (6Z A Az)kmn y (979)

again in accordance with the self-duality of the IIB field strength.

9.2.5 Dual Six-Forms

For an explicit check of the remaining field equations, we further truncate down to two
real scalar fields, i.e. we assume constant angles and set the vector field to zero, so that in
particular the IIB metric is block diagonal. This is precisely compatible with the GPPZ
solution (9.14). The ten-dimensional IIB 3-form field equations take the form
V, (moP Fivh ) = 2 cas pirid 9.80
ﬁ(m 3)__55 ip B (9.80)
and we have explicitly checked that they are verified if the five-dimensional scalar fields
satisfy five-dimensional equations of motion induced by (9.29). Rather than going through
the details of this calculation, let us give an equivalent consistency check by extracting the
dual 6-forms in ten dimensions. The field equations (9.80) may be rewritten as the Bianchi
identities
O .1 = 28 Floy s Fpopnp) 9 (9.81)
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for the dual 7-form field strength Fj, 5, defined by

1
Fproin® = 5 |Gl epr...pmaop M FF7P5 (9.82)

The Bianchi identities (9.81) may then be integrated to

Fﬁ1~~-ﬁ7a = 78[f)10

ﬁ2~-~ﬁ7}a —84 Eaﬁ C[ﬁ1ﬁ2 5FA

p3-..p7]
« 6
— 707 C[ﬁ1ﬁ2 8Cpsp4 vEpspopn) s » (9-83)

in terms of the dual 6-form gauge potential C, 5. With the above explicit expressions
for the IIB gauge potentials (9.61) and field strengths (9.71), (9.74) of our ten-dimensional
solution, we find that equations (9.82) can be explicitly integrated to give the following

non-vanishing components of the 6-form

«

C/u/pa‘rm = Wuvpor S (984)

A=
C;u/pU, R Wyvpor g’ Exmn” s (985)

which are given in terms of the following 1-forms and 2-forms

1— 12,2 441 — 1202 + 2 1202 (1 + p20? o
1:_( ;,LI/)((,U, V)( ,ul/) /JV( MV))EiijZV]Ak, (986)

(1]

8utvt
=2 _ gl 7 (9.87)
U+V,0A
v 0 . o 0 -
22 = ein (2” - ;:) U O A OF + e (2“ + 2”) Ut AT A AR (9.88)
S . (9.89)
U+V,0A

9.2.6 Einstein Equations

It remains to check the dilaton/axion equations and the Einstein equations. In our IIB
conventions, these read

N 1 M 1
vﬂ (mﬁ’yauma“{) = _6 mﬁ,yFﬂlfQﬂB 7Fu1u2u3a + ﬁ 5015 m’yaFA

ol ,YFﬂlﬂzll% ’ (9'90)

and

1 1 e 1 . 1
5 G B = & Fis s Fo™ 7T 4 4 Faor ™ o Pmag = o0 Gio Fpor®FP7ma
1

1 .
— Z 8ﬂma58,;m°‘f3 + g G[“) aﬁma/;@pmaﬁ . (9.91)
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It is a tedious computation to check that with the above expressions for the metric (9.47),
the dilaton-axion matrix (9.54), gauge potentials (9.61) and field strengths (9.71), (9.74),
these field equations are indeed satisfied. We have explicitly verified all components of these
equations using Mathematica [81]. Let us just note that the contribution from the 5-form

field strength to the energy-momentum tensor on the right-hand side of (9.91) is simply

given by
) 8
E P1P2PsPa s = ~3 A3 VPQOt G, (9.92)
8
ka1k2k3k4 Fnk1k2k3k4 = g AlO/g ‘/’1)20t Gmn : (993)

In contrast, the remaining terms on the right-hand side of (9.91) produce very lengthy
expressions in the scalars p, v, their derivatives, and the internal coordinates U?, V¥,
which we do not report in detail. They combine however precisely into the Einstein tensor
computed from the metric (9.47) upon using the first order flow equations (9.36). All the

ten-dimensional equations are thus satisfied.



Chapter 10

Curvatures for Kaluza-Klein
Metrics

The process of dimensional reduction via compactification of some of the space-time dimen-
sions and Kaluza-Klein expansion of the fields leads to space-time metrics of a particular
form. It is clear that also the inverse process of uplifting lower-dimensional theories to
higher-dimensional theories with compact dimensions and Kaluza-Klein towers leads to the
same type of metrics. We saw an example of such an uplift in equations (8.7) and (9.47),

and the metric that appears in these equations is of the following prototypical form:

A

ds® = Q(x, y)z{gw,(x)dw“dm”

+ Gn (2,9) [dy™ — K™ (y) AL (2)da] [dy” — K7™ (y) A (x)da" ]}, (10.1)

A general Kaluza-Klein metric as in equation (10.1) contains an overall warp-factor Q2(z,y)
that depends on both external and internal coordinates, an external metric g, (x) which is
independent of the internal coordinates and serves as the metric of the lower-dimensional
theory, an internal metric gy, (x,y) which in general depends on both the external and
internal coordinates, and Kaluza-Klein gauge fields AZ (), which by assumption can only
depend on the external coordinates, contracted with a set of Killing vectors K" (y) of
the internal manifold. The index conventions used in writing the metric in (10.1) are the
following. The curved coordinates will be denoted by letters from the middle of the alphabet,
and the flat indices by letters from the beginning of the alphabet. As in the other chapters
we will use capital Latin indices for the total manifold, small Latin indices for the internal
space and small Greek indices for the external manifold. Moreover the coordinates on the
external manifold will be called x*, the coordinates on the internal manifold y™, and the

coordinates on the total manifold ZM = (z#,y™).
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Kaluza-Klein theories often admit various truncations in which many fields can consistently
be set to zero, leaving only a small number of non-vanishing fields. The back-reaction of
these non-zero fields to the geometry will produce space-time metrics of different forms,
in particular there might be a simple enough truncation that removes the warp factor, or
in which the gauge fields are all zero. In such a set-up one might be interested in first
computing the curvatures corresponding to g,, and gp,, then use these curvatures to
deduce the curvature of ds? = g, (2)dz"dz” + Gmn(z,y)dy™dy™, and finally turn on a non-
trivial warp factor and gauge fields to obtain curvatures of the metric as in equation (10.1).

Therefore in this chapter we will carry out a study of how such a computation can be done.

Let us first consider a metric as in (10.1) and assume that the warp factor is trivial. A
similar example was considered by Duff, Nilsson, and Pope [100], in which it was assumed
that the internal metric only depends on the internal coordinates. However, we would like
to maintain a general internal metric g, (z,y), which can depend on both the external
and internal coordinates, and thus generalise the formulas found in [100]. Thus our goal
is to compute the curvature for a metric in block form deformed by off-diagonal elements

containing the gauge field which is of the following form
d§% = 6 @ Pnap + ¢ @ 64, (10.2)

As in [100] it is useful to work in the tetrad formalism and we define the hatted vielbeins as

follows:

e* =e%(x) (10.3)
&% = e(x,y) — K'(z,y)A'(x). (10.4)

The unhatted vielbeins are those of the external and internal metric in the case where the
gauge field is set to zero, so that nageaeﬂ = gudztdz” and Sape®e® = Gmndy™dy", and
we have extended [100] by promoting the internal tetrad e®(y) to e®(x,y). The vectors
K (x,y) = e (z,y) K™ (y) are components of the Killing vectors of the internal manifold.
As such they satisfy the Killing equation V(mez) = 0. Moreover these vectors form an
algebra with the commutator [K?, K7] = fUkK* where the vectors K’ are understood as
the elements K' = K imay% of the tangent space, which act by differentiation. Therefore

the components of the Killing vectors satisfy
KMo, K" — Kim9,, K" = fukhn, (10.5)
As we will be working with flat indices, it is useful to note that the following identity holds

KV,K] — K7V, ,K} = fI*K}. (10.6)
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This identity can be proven by converting to curved indices with the tetrad and noting that
Va.e™ = 0, or by spelling out the covariant derivatives and using the fact that a certain
anti-symmetrisation of the spin connection can be expressed in terms of the vielbeins as

follows: wycpja = —ef?@b} Ema-

In the tetrad set-up just described the computation of the curvatures will be performed in
two steps. We will start by using the first Cartan equation to determine the spin connection.
Once this is done one can use the second Cartan equation which relates the Riemann tensor

to the spin connection to compute the curvatures.

10.1 The Spin Connection

To compute the spin connection we will use the first Cartan structure equation. Since we
are looking for a solution which corresponds to a Levi-Civita connection we need to assume

that the torsion vanishes. The first Cartan equation with zero torsion is the following:
déet + otg neP =o. (10.7)

After splitting the space-time index into its external and internal parts we see that there are

six types of components of the spin connection that need to be determined:

Wap = Wy,ape” + Qeape”
WAB = § Wap = a)'y,abén/ + a’c,abéC (10.8)

~ A ~ ~ ~C
Wab = w’y,abev + We,ab€

The first Cartan equation involves the computation of the differential of the tetrad, dé#. In
order to compute it one needs to express the hatted tetrads in terms of the unhatted ones
first, compute the differential while substituting the differentials of the unhatted tetrads by
the corresponding spin connections using the unhatted version of the first Cartan equation,
and finally express the unhatted tetrads of the result back in terms of the hatted ones. The
external tetrads é* = e® do not receive any contributions from the gauge field, and therefore

the corresponding Cartan equation is easily evaluated:

0 = dég + Qap A &% + Doy A E°
= —wap NP+ Dap NP + Doy N E° (10.9)

= (.08 — Wy,ap)& AP + (QGeap — Dp.ac)e A E° 4 Qe ape® N E°.
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Each of the three 2-forms above has to vanish separately, which allows us to obtain the

following equations for the spin connection:

Dy.ap — Doy = WyaB — Way (10.10a)
&)c,a/ﬁ - w,@,ac =0 (1010b)
djc,ab - d)b,ac =0. (10100)

Next consider the Cartan equation for é%. It is useful to compute the differential dé® first.

After some lengthy algebra we find the following result:

1 . . o .y
déa = ~weapt A" — S KF5e" NP+ (VoK AL + 6] Dacam — wean K AL)E N, (10.11)

After substituting dé, just found into the Cartan equation the rest of the algebra is trivial,

and we find a second set of equations for the spin connection:

djc,ab - a}b,ac = Wec,ab — Wh,ac (1012&)
Ba,ap ~ Dpaa = KoFop (10.12b)
Daab — Dbaa = VoKL AL — el"Oneam + Weap K AL (10.12c)

It is a general fact that the six equations (10.10) and (10.12) do not determine a unique spin
connection, and further conditions have to be specified to single out a particular solution.
In our case the condition that we impose on the spin connection is that it be of Levi-Civita
type, and it is known that the restriction to Levi-Civita solutions is sufficient to find a unique
solution. By definition a Levi-Civita connection is a connection which is compatible with the
metric and for which the torsion is zero. The zero torsion condition was already implemented
by writing the first Cartan equation with vanishing right hand side. Metric compatibility
in the tetrad basis reads @Cn A = 0, which directly translates to wg (ap) = 0. With this
condition we can now use equations (10.10) and (10.12) to find the anti-symmetric parts
We,[AB], Which automatically give the full spin connection. Let us consider one example that
is demonstrative for this procedure. We pick a component type of the spin connection with
a certain distribution of external and internal indices, for example @, q5. There are three
cyclic permutations of the indices, for which we write down the corresponding equations
obtained in (10.10) and (10.12):

Daab — Dbaa = VoKL AL — el"Oneam + Weap KA, (10.13a)
Dape — Dapa = VaIKGAL + €l Onepm + we K€ AL (10.13Db)
C:-)b,oza - wa,ab =0. (1013(})

To obtain the anti-symmetric parts of the spin-connection add two of these three equations

together and subtract the remaining one. After using the fact that V(mK fl) = 0 we obtain
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the following results:

N ; 1 L

Wa,lab] = v[aKg] + 5(6218a€bm - eﬁ”@aeam) + wcyawaAZa (1014)
R 1

Wa,[ba] = §(eanaaebm + eznaaeam) (1015)
R 1

Wh,[aa] = i(egnaaebm + e;;naaeam)- (1016)

Thus we have found the solutions for two different types of spin connection components
since one of the three solutions above is redundant due to the anti-symmetry. Proceeding in

an analogous fashion we obtain the whole set of components of the spin connection

O,y = Wer, (10.17)
G = 5 KiFL (10.18)
Wb = %m;Fg;7 (10.19)
Gent = —%(e?aaebm e Do) (10.20)
Oyab = Vi, Kpy + %(e?c‘%ebm — €)' Oyeam) + wea KAl (10.21)
We,ab = We,ab- (10.22)

These components can be assembled back to 1-forms by contracting with the hatted vielbeins

giving us the final solution:

1 ..
ap = wap + 5 FagKIE (10.23a)
| 1
Qab = il{glﬁ’gmé7 — i(eznﬁaebm + €' OaCem )€ (10.23b)
1
Wah = Wap + V[aKg]AZ + i(eg‘awebm — €} Oyeam)€’. (10.23c)

10.2 Curvature Tensors

Once the spin connection @4p has been computed one can use the second Cartan equation
to obtain the Riemann tensor. The second Cartan equation can be written in terms of

2-forms as follows:

1A
§RABCDéC/\éD = OyupB :d@AB+@AcA@0D. (10.24)

In what follows we would like to make a simplification by assuming that the gauge group
is the U(1), which is abelian. The reason for taking this assumption is that on the one

hand this case is of most relevance to the uplift described in the preceding section, where
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an abelian gauge potential appears in the metric, and on the other hand the restriction to
G = U(1) leads to some simplification in the algebra. The generalisation to the non-abelian
case should be straightforward, but tedious. After restricting to the U(1) gauge group there
is only one gauge field A, (z) and one Killing vector K™ (y). The abelian field strength is
simply given by F' = dA = % B A ¢%. The only change in the spin connection is that the
gauge algebra index counting Killing vectors and gauge fields can now be omitted. After a
direct application of the second Cartan equation (10.24) to the Levi-Civita spin connection

in (10.23) the following components of the Riemann tensor are obtained:

Ropys = Raprs — iK “Ko(FarFps — FasFagy + 2Fa5Fys) (10.25)
Ragra = %V'yFaﬂKd + %(Faﬂafygmn — F1a08)9mn) K™ e (10.26)
Rapea = FapV g — égmnefceil]aagmraygns (10.27)
Ropya = %?[bKd}FM + iKbKd FogF, " + %egeg <vvaagm + ;gmnawgmraag@ (10.28)
Rapea = epefe (_@raagns + ;Fa'ya’ygans> (10.29)
Ruped = Raped — %e?e{}e’fcefl} OaGmr 0% Gns- (10.30)

Note that the flat indices in the Riemann tensor above refer to the hatted vielbein, which
has to be used to convert to curved indices. Thus, while é* = e, the vielbein with the
internal index is é* = e® — K*A. After restriction to gmn(x,y) = gmn(y) we find a complete
agreement with [100]. Additionally we provide the component -Rab’yda which might have
been missed by the authors. Note that the sign for the Killing vector used here is consistent
with [100], but opposite to our uplift. To obtain the Ricci tensor we contract with 7 and
5% and get

Ry = Roy — %KaKaFaﬁFﬁ (10.31)
+ %grs (—Vyaagrs + ;gmnawgmraagm) (10.32)
Roc = —%VﬁFaﬁKc - %Fagaﬁgmnf(meg - % 230° G K oG (10.33)
+ %@m”ei (VBaGmr = VrDaGmn ) (10.34)
Rue = Rue + 3 KaKoFo ™ (10.35)
+eqer (—;VQ Grmn — ié’”a&gmnaa% + ;g“aagmraagns> (10.36)

Yet another contraction with the flat metric yields the Ricci scalar, which can be written

entirely in terms of the Ricci scalars corresponding to g, and g.n, the Field strength F,z
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and some covariant derivatives of the internal metric:
N |
R=R+R- ZKGK“FWF"‘B (10.37)

~mnyr2 ~ mnsrs (o ~ ~ L, ~
-9 v2gmn +49"g <48ugmraugns - 48ugmna“grs> . (1038)

10.3 Conformal Rescaling of Metric

So far we have expressed the curvatures of the total manifold in terms of the curvatures
of the external and internal manifolds, the gauge field strength coupled to Killing vectors,
and some derivatives of the metric. The last step in the generalisation to the metric in
equation (10.1) that we started with is the restoration of the warp factor, which is achieved

by a conformal rescaling as follows:

aun — L (x,9)dun- (10.39)

The effect of such a rescaling of the metric on the curvatures is known [101], which have to

be transformed in the following way:

Rynrs = Runrs + 20spu Vi VRINQ = 2050, Vi Vs In Q
+205vVa I QVRINQ — 245y Vi In QVg In O (10.40)
— 20R N sV I QVEIn Q
Rur — Ryp— (D —2)VyVrInQ — GyrV2InQ
+(D=2)VymQVRInQ — (D — 2)imri* ' Vsin QV InQ
1
QQ

(10.41)

R o5 (R=2(D=1)V?InQ — (D= 2)(D ~ 1)g" Vy nQVzIn Q) (10.42)
The letter D denotes the total dimension of the space-time manifold for which g is
the metric. These rescaling formulas can be readily applied to the curvatures without the

conformal factor derived in the previous subsection.
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Chapter 11

Spherical Harmonics on the S°

11.1 General Considerations

Any scalar and tensor valued analytic function on an m-sphere can be expanded into a
complete set of functions that transform covariantly under the corresponding rotation algebra
s0(n+1). These functions are the spherical harmonics. Historically one of the first examples
to be considered was the reduction on 7-spheres, and the corresponding formalism was for
example described in [102, 103] and applied in [104, 105]. Some details about the general
expansion on n-spheres can be found in [106, 107], and the important analysis of the mass
spectrum upon reduction on S° was done in [42]. More recent reviews and applications of
this formalism include [108-110].

In this section we would like to study various scalar, vector, and tensor harmonics on the S°
which appear upon Kaluza-Klein reductions of tensor and scalar fields on the five-sphere.
For each given tensor type they constitute a complete set, and therefore any tensor can
be expanded in a basis made of appropriate S° harmonics. The spherical harmonics we
will consider in this section can be defined as solutions to the following Laplace eigenvalue

equations on the five-sphere:

0= V2Yy®Em 4 k(k 4 4)y (Bm) (11.1a)
0= V2Y{Em 4 (k2 + 6k + 1)y E™) (11.1b)
0= VY51 + (K + 6k + 3)Y o ) (11.1c)
_ Sy (km) 2 (km)
0= VY (K + 8k + 10)Y, 570 (11.1d)
(k=0,1,2,...)

The symbol V denotes the covariant derivative on the S5, and upper and lower Latin

131
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indices n, p, ... refer to the S® tangent and cotangent spaces. The bold numerals written as
subscripts serve as a distinction between harmonics of various tensor types and the value of
the numeral gives the number of independent tensor components. We will omit the subscript
1 for the scalar harmonics in order to simplify the notation. For each given eigenvalue k one
generally finds multiple solutions, which are distinguished using the superscript m = m(k).
Sometimes m can be viewed as an eigenvalue of some differential operator acting on the
harmonic, however we will use it exclusively for bookkeeping to count the degeneracy for a

given k.

Additionally to being solutions of their defining equations, all but the scalar harmonics have
to be divergence-free, so that the defining harmonic eigenvalue problems above have to be
supplemented by the following constraint equations:

_un (k:,m) _un (kvm) _un (kvm)
0= VY™ = vy = vy (11.2)

It is useful to orthonormalise the harmonics so that the harmonic expansion can be performed
by projecting out the corresponding coefficients via integration on the S°. We will choose

the following normalisation for all harmonics:

(k,m)y (k' ;m’) (k;m)y-(K';m")n (k;m) v (K';m’) [np]
[ytemy e = [ vy = [ ¥iotm¥io
3
(k,m) (K'sm") {np} m kk' smm/
= Y Y = . (11.
g5 14{np}~ 14 2=1(k + 1)(k 2)5 0 (11.3)

While this particular normalisation is standard for scalar harmonics, it is rather deliberate

for vector and tensor harmonics, and was chosen purely for convenience reasons.

As mentioned at the beginning, all S™ spherical harmonics transform covariantly under the
isometry group of the sphere, which is the SO(n + 1) rotation group, in other words, they
form irreducible representations of the so(n + 1) algebra. The isometry group of the S° is

the SO(6), and the harmonics transform in the following SO(6) representations:

y®m = [k,0,0] = %(k+1)(k+2)2(k+3) =1,6,20,...  (1l.4a)
Yaw™ = [k, 1,1] = %(’f +1)(k+3)*(k +5) —=15,64,175,... (11.4b)
m 1
Yf{;’[n;] = [k,2,0]® [k,0,2] = Z(k +1)(k+2)(k+4)(k+5) =10¢,45:,126¢,...
(11.4c)
k,m 3
Y1(4{n2,} =[k,2,2) = J(k+1)(k + 4)2(k+7) = 84,300,729, . ...
(11.4d)

One can see that for a given harmonic type the index k fixes the representation, and the

index m enumerates the states in that representation. For example if we set kK = 1 in the
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vector harmonic then Yébm) will transform as the 64 of the so(6) and therefore the index m

will assume 64 different values which can be taken to be m € {1,...,64}.

The supergravity solution that we are studying in this text was obtained after a truncation
of the full theory to a certain invariant sub-sector. This sub-sector corresponds to those
solutions that are invariant under the SO(3)giag subgroup which is embedded in the SO(6)
isometry group as

SO(3)diag C SO(3) x SO(3) C SO(6). (11.5)

This means that all solutions for all fields that we obtain are invariant under this SO(3)qiag,
which in particular implies that all harmonics into which these fields can be expanded have
to be invariant too. This can be either enforced at the level of their defining equations (11.1),
or in terms of their representations in (11.4). For the latter this means that if a set of
harmonics is known, then we must only keep those that are singlets under the SO(3)diag
subgroup. As an example consider again the vector Ys(il’m) = 64. We need to determine how
many singlets there are under the embedding (11.5). We have listed a number of relevant

branchings in Appendix E, and we find that
64 — 2(1) +6(3)+6(5) +2(7). (11.6)

Thus we expect that among the 64 vector harmonics there are only two that are invariant
under the SO(3)giag and will show up in the expansion of vector fields in our solution. If all of
the 64 harmonics are known then the singlets can be explicitly constructed by decomposing
the s0(6) indices into so0(3) indices and forming the singlets in the standard way. If this is
not the case then one is forced to work with the defining equations (11.1), and to find a way
to enforce the invariance on the level of differential equations. In what follows we will take
both routes and use the differential equation approach to find solutions for general values of
k. In situations where the differential equation approach is to cumbersome the group theory
method can be used to treat individual cases, which turns out to be tractable for the lowest

values of k.

11.2 Scalar Spherical Harmonics with SO(3) x SO(3) Sym-

metry

This section can be seen as a warm up exercise for the determination of the SO(3)giag
spherical harmonics. The solution strategy for the SO(3) x SO(3) invariant harmonics turns
out to be simpler, and by performing it several concepts can be explained and studied that

will be relevant for the SO(3)giag harmonics which we will study in the next section.

Scalar spherical harmonics corresponding to a d-dimensional sphere S¢ can be identified
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with symmetric and traceless representations of the so(d + 1) algebra, which in terms of
Dynkin labels can be written as [k,0,...,0]. This can be seen by thinking of the S¢ as

embedded into R in which case the harmonics can be written as
Y& (T /) = 7c§f Myl oyt (11.7)

The notation here is such that the capital indices I, J,... € {1,...,6} refer to the embedding
coordinates of the S° in RY, and can also be viewed as the fundamental index of the s0(6).
The radius r is given by 72 = (y")24-- -+ (y™1)? and C( I) is a set of linearly independent
symmetric and traceless k-tensors. A straightforward counting shows that for a given k
there are (dj;k) - (d+2—2) such tensors, and this is exactly equal to the dimension of the
representation [k, 0, ..., 0] of the so(d + 1), as it should be. So we see that the easiest way
to find all scalar spherlcal harmonics for any given d is to choose the tensors C’} I) and to
express the coordinates y! /r in terms of the angles on the sphere. One can then use the

(k,m)

Gram-Schmidt procedure to find a basis in which the €} } are normalised and orthogonal.

Yet another defining property of the spherical harmonics is that they are annihilated by the

R Laplacian, which is where they derive their name “harmonics” from:
V2 (rFyhm) 0. (11.8)

This follows directly from the fact that C'} (k. I) are traceless. We can change to spherical

coordinates on R%*! and re-write the Lapla(nan to get [111]

10 4,0 .
— 72(ky(km)y d 2\ ky(km) _ k-2 o 2 (k,m)
0 = V2(rky (km) <rdar 7t v) Y 72 (k(k+d—1)+ V) Y
(11.9)
thus obtaining
VyEm — _k(k+d—1)Yy®E™ gk =0,1,2,... (11.10)

For d = 5 this reduces to the defining eigenvalue equation in (11.1). This method was
for example used in [109] to find a set of harmonics with a particular symmetry, which is
different from the one considered here. The advantage of this method is that we do not have
to refer to an embedding in R%! and can solve the Laplace equation in terms of coordinates

on the sphere that are appropriate for the problem at hand.

We are interested in scalar spherical harmonics on S°, thus we have to set d = 5 and the
spherical harmonics will be organised in terms of representations of the s0(6). As we saw

before the dimensions of the lowest representations are given by

54k 54k —2
[k,(),()]:( Jg )—( +5 ) 5 (k‘—i—l)(k:—i—2)2(/~c+3):1,6,20’,50,105,196,...

(11.11)



11.2. Scalar Spherical Harmonics with SO(3) x SO(3) Symmetry 135

Further, among these harmonics we would like to pick out those that are invariant under the
subgroup SO(3) x SO(3) € SO(6), in other words those that correspond to the SO(3) x SO(3)
singlets under the branching of the representations [k,0,0] of the SO(6). To find these
harmonics we will take the path of solving the Laplace eigenvalue problem. First we need to
choose coordinates in which the action of the SO(3) x SO(3) is manifest. This is done by
imagining R% as R? x R3 so that each SO(3) acts on the corresponding R3 factor. Next we
can write each of these R? factors in spherical coordinates so that the complete metric on
RS is given by

ds® = dr® + 120> 4 r* cos® 0dS2}) + r? sin® 0dYy). (11.12)

We can now derive the form of the Laplacian V2 on the S® written in these coordinates.
Using @?1) and @%2) to denote the Laplacians on the spheres corresponding to dQ%l) and
dQé) we get

° 2 - 1 a a 1 ° 2

— cos?fsin? 60— +

- 11.1
cos? Osin? 0 90 96 " coszg T 9V<2> (11.13)

For SO(3) x SO(3)-invariant solutions we must impose @%1) = @%2) = 0, thus the harmonics

we are looking for must be solutions to the following equation:

;2 20 ain2 Q (k:)) ()
cos? 0 sin? 90 (COS Osin gagy = —k(k+ 4y, (11.14)

One can show that a general solution to this equation is of the form

Cy cos(k +2)0 + Cysin(k + 2)9
sin 26

Yk = (11.15)

Not all of these solutions are good spherical harmonics. Note that in the coordinates on RS
that we chose it is true that 72 cos? § = (z1)?4(22)2+(2%)? and 72 sin? 0 = (24)2+(25)%+(25)2.
To be compatible with the definition of Y*) in (11.7) the solutions Y(¥) thus have to be
homogeneous polynomials in cos @ and sin 0 of degree k. However, one can show that this
is only possible when both C; = 0 and k is even. The latter assertion makes sense since
otherwise one would have odd powers of cosf and sin 6 leading to square roots, which is not

acceptable. All in all our solutions are given by

20V/1+31+22 sin26 T

1
le Z cos(2nd) cos(20) ™ (11.16)

<2l —:_21> (cos® §)! 7" (sin” §)™.

21\/1+3l+2 Z
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Note that the form of Y2 in the last line is particularly useful for rewriting the harmonic
to a form as in equation (11.7), one simply needs to substitute the expression of cos? # and

sin? @ in terms of the coordinates y! that was provided above to obtain

ven - ﬂjng - (iﬁ) 12+ 6+ PP+ ()2 + (0

(11.17)
The solutions Y'Y have been normalised to conform with the standard convention set in
equation (11.3), which is also used in [111] and many other places in literature:
3

yhy® — gk il . 11.18
g5 2k=1(k +1)(k +2) ( )

The reason for this particular choice of normalisation is that it implies that

Z Cﬂ..fkcﬁ..lk = ok, (11.19)
o Ty

We can list the lowest lying harmonics corresponding to [ € {0,1,2,3}. The angles 6 and ¢
can be transformed to coordinates @ and v, which were used in Chapter 9 and are summarised

in Appendix A.4, using cos? § = u?, sin? @ = v, and sinf cosf cos ¢ = (u - v):

y©® =1 (11.20)

1

Y® = — cos 26 = —(u? —v?) (11.21)

~§
~Sl-

Y@ = (2cos40 +1) = ——(3u* — 10u?0? + 3v%) (11.22)

4/15 415

Y©® = &1ﬁ(cos 20 + cos 60) = 4\ﬁ( — Tu'v? + Tutot — %) (11.23)

To sum up, we find that among all SO(6) scalar spherical harmonics there is always one for
each even k that is invariant under SO(3) x SO(3) C SO(6), and there are no such harmonics
for odd k. In terms of group theory this means that for even k the SO(6) representation
[k,0,0] has exactly one singlet after the branching under SO(3) x SO(3), while for odd &
there are no singlets. We can verify this for the lowest representations by comparing with

the branching rules in Appendix E:

0,0,0)=1 — (1,1) (11.24)
[1,0,0] =6 — (3,1)+(1,3) (11.25)
2,0,0] =20" — (1,1) + (3,3) + (5,1) + (1,5) (11.26)
[3,0,0) =50 — (3,1)+(1,3) +(5,3) +(3,5) + (7,1) + (1,7) (11.27)

etc.
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The fact that there are no singlets for odd k£ makes sense: to get a singlet all £ indices have
to be contracted into traces, which is only possible for even k. For the same reason it is
clear that for even k there will be at least one singlet. It is not obvious to us why there is
exactly one, but one can view the explicit construction of the harmonics above as a proof
that this is indeed the case.

11.3 Scalar Spherical Harmonics with SO(3)giag Symmetry

In this section we would like to describe a subset of the S® scalar spherical harmonics that
are invariant under the SO(3)diag C SO(3) x SO(3) C SO(6) symmetry. We will proceed as

described in the previous section and solve the Laplace eigenvalue problem

ViYW = —k(k+40)Y®, k=0,1,2,... (11.28)

First of all we need to fix a coordinate system on R® in which the SO(3)giag symmetry
is manifest. A good choice are the coordinates introduced in [54], which we reviewed in

Appendix A.4. The metric on the RS written in these coordinates reads

ds® = d(ru’)d(ru’) + d(rv')d(rv*)
=dr? +r? [d@Q +cos? 0 (02 + 02) 4 sin? 0 (dp + 01)? + sin? 0 (cos ¢ op — sin ¢ 03)2} .
(11.29)

The terms proportional to 72 form the round metric on the S°. The left-invariant 1-forms o;
were constructed in Appendix D, and are parametrised through three Euler angles. We are
looking for solutions Y *)(#, ¢) that do not depend on these Euler angles, and are therefore
invariant under SO(3)qiag rotations. In these coordinates and under the assumption that

V) do not depend on the SO(3)giag angles the Laplace equation (11.28) becomes

L0 (n2hcos?0 <k>) ! 3(- 0 <k>) ) _
sin? § cos? 6 96 (sm fcos Haay +sin2900s2081n¢8¢ Sln¢8¢y +h(k+4)Y = 0.
(11.30)

This partial differential equation is separable. After separating the angles and equating the

two parts to +m(m + 1) one obtains the following solutions:

Y(0,0) = A(0)B(¢) (11.31)
A(0) = c1(sin 6 cos 9)m2F1(—k +m, K +m+2;m+ §; cos? 6)
> 2 A (11.32)
+ co(sin @ cos 9)_(m+1)2F1(—§ -m—1, 5 m +1; 5~ m cos? )

B(¢) = c3 Py (cos @) 4+ c4Qm(cos ¢). (11.33)
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The four constants ¢; are integration constants, o F} (a, b; ¢; ) is the hypergeometric function,
and P,,(z) and Q,,(z) are the Legendre polynomials of the first and second kind. Our
separation ansatz was invariant under m — —(m+1), and so are the solutions A(6) and B(¢)
up to redefinition of 4. This is because P_(,11) = P but Q_ (1) = Qm — gontmmy P [112].

tan(mm)
To find which of these solutions are good spherical harmonics note first that @,, is never a
finite polynomial in its argument, so we should discard it by setting ¢4 = 0. Because the
terms proportional to ¢; and ¢y in A(f) are interchanged upon m — —(m + 1) but P, is
invariant, we can set co = 0 without loss of generality. Furthermore, P, is only a finite
polynomial for integer values of m, and 9F(a, b; ¢; x) is a finite polynomial only if a or b is a
negative integer or zero. Therefore k& must be an even integer and we should set k = 2[, and
assume m < . The series expansion of o F} is in non-negative powers of cos® # and therefore
for a negative m the denominator in (sin 6 cos )™ cannot be cancelled, so we need to take

m > 0. Thus we obtain the following solutions for the scalar spherical harmonics:

Wmm&@:qm@m%%@mﬁﬂl+ml+m+2m+§@8@ Pr(cos¢) (11.34)

_ (), 21=2+4m gl (m + 1)!(1 4+ m + 1)
cm = (=1) 20+1 2m)!2m+2)I(1 —m)!’

1=0,1,2,... and 0<m<l.

(11.35)

The constants ¢; ,,, are chosen such that the harmonics are properly normalised according to
the normalisation in equation (11.3). In determining ¢ ,,, we made an arbitrary sign choice
by adding a factor of (—1)!*™. This sign choice makes the harmonics look nice by removing
overall minus signs and additionally with this convention the m = 0 case matches exactly
the SO(3) x SO(3) invariant solutions in (11.16).

Under our assumptions on the range of the variables [ and m the hypergeometric function

and the Legendre polynomials can be expanded into finite-order polynomials as follows:

3
2F1(—l+m,l+m—|—2;m+§;C0529):

U +m+n+1)! ((—-m) (m+n+1)! 2m+2) (—4cos?6)"
nz:‘; (l+m+1)! (—m-—n) (m+1)! (2m+2n+2)! n!
(11.36)

n(cos @) = Z < ) (m—i—n) (cosq;z—l)". (11.37)

This determines the harmonics uniquely up to an overall sign. The result for the harmonics
Y (@m) in (11.34) and the allowed quantum numbers are again supported by the explicit
construction of representations and the appearance of SO(3)giag singlets. Under SO(3)giag C

SO(3) x SO(3) the representations (rj,ry) collapse to r| ® ry, and we see the following
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picture

[0,0,0)=1 —1 (11.38)

[1,0,0)=6 —3+3 (11.39)

2,0,0]=20"— (1+1)+3+(5+5+5) (11.40)

[3,0,0)=50 — (83+3+3+3)+(5+5)+(T+7+7+7) (11.41)
etc.

We see the explicit appearance of one singlet in the case [ = 0 and two singlets in the case

I = 1. We see also that for odd k there are again no singlets at all.

Here is a list of the first few harmonics corresponding to [ € {0, 1,2,3}. They are properly

normalised and the angles 6 and ¢ were transformed to coordinates i and ¥ using cos? § = u?,

sin? § = v?, and sinf cosf cos ¢ = (u - v).

y (0,0 _ (11.42)
1
v(20) _ \}6 cos 20 - %(qﬁ —?) (11.43)
2
y @D = \}6 cos ¢ sin 26 = \/;(u -v) (11.44)
1 1
y(4.0) _ 4\/5(2 cos460 + 1) = m@u‘l — 10u*v? + 30v?) (11.45)
y@n _ Nlm c0s  sin 46 - \/g(u ) (u? = 0?) (11.46)
2
y42) — \/1370 sin? @ cos? 0 (3 cos2¢ + 1) = E[3(u )2 — w20 (11.47)
y(60) — 8\%((}08 260 + cos 66) = 4\1ﬁ(u2 — vt - 6uv? +0t)  (11.48)
1 1
y (61 — % cos ¢ (sin 260 + 3 sin 66) = 2\/%(16 ) (5ut — 14u%0? 4 5vt) (11.49)
1
y(6:2) 2\1ﬁ sin® 0 cos® 6 cos 20 (3cos2¢p+1) = W(UQ - v2)[3(u . v)2 — u2v2] (11.50)
2
y(6:3) — \/1375 sin® @ cos® O cos ¢ (5cos2p —1) = ﬁ(u 0)[5(u - v)? — 3u*v? (11.51)

We see that the harmonics with m = 0 correspond exactly to the SO(3) x SO(3) invariant
ones found in the previous section. Note also that while @2 and ¥? are invariant under both
SO(3) x SO(3) and SO(3)giag, the combination @ - ¥ is only invariant under SO(3)giag. This
is why in all harmonics with m = 0 only powers of @? and "2 show up, while for m # 0

terms proportional to @ - ¥ appear and break SO(3) x SO(3) down to SO(3)4iag-

The scalar harmonics can also be converted to the {wj,ws} basis, which is introduced in
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Appendix A.4, using wy = 2u®? — 1 =1—2v? = u? — v? and wy = 2(u - v). Here is the result:
y (00 — 1 (11.52)
y@o - YL 11.53

NG ( )
yen - 22 11.54
NG ( )
qw? — 1
Y0 = 1 11.55
Wi (11-55)
y@n - e 11.56
/10 ( )
2 2
+ 3wz — 1
y@y - 1T o T2 11.57
21/30 ( )
2w? — 1)
(o0 _ w12wi = 1) 11.58
Wi ( )
6w? — 1)
ylon _ w2l6ur = 1) 11.59
44/35 ( )
2 2
y(62) _ wilwi+3ws — 1) (11.60)
4T
2
Y(G’S) _ w2(3w1 + 5w2 — 3) . (1161)
44/35

11.4 Vector Spherical Harmonics with SO(3)4iag Symmetry

11.4.1 Lowest Vector Harmonics from Group Theory

The lowest vector harmonic Yéo’m) with k& = 0 transforms in the [0,1, 1] = 15 of the s0(6).
This is the symmetric and traceless part of the product of two s0(6) spinors of different
chiralities, and it can also be viewed as the antisymmetric part of the product of two s0(6)
vectors. Both can be mapped to each other by some appropriately defined Clebsch-Gordan
coefficients 27! AB, which are also discussed in Appendix B. However, it is also true that
the lowest vector harmonics corresponding to the case k = 0 are given by the S° Killing

vectors K117, which are defined as [57]

v0m o K = g,y (11.62)

The coordinates y! are the embeddings of the S° into RS, and the anti-symmetrised index
pair [I.J] corresponds to the 15 of the s0(6) in which the lowest vector harmonics transform.
This also implies that the index m will assume 15 distinct values, as it has to be mapped to

the index pair [IJ]. These Killing vectors satisfy the Killing equation

Vo B[ + v,k =0, (11.63)
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and the overall normalisation in (11.62) was chosen such that viewed as differential operators
K = K179, the SO(6) commutator is canonical:

(K17 KKD) = 61K gL 4 ILRTR _ GILRIK _ GIK eIl (11.64)
The decomposition of the 15 under SO(3)giag C SO(3) x SO(3) C SO(6) is given by
15— (3,1)+(1,3)+(3,3) > 3+3+ (1 +3+5). (11.65)

We see that one singlet appears. If one decomposes the 6-index I — (i,7), then the first step

in the decomposition above can we written as
KU {K[ij}’[{[ﬁ],]{[iﬂ} = {Eiijé,l)’ eiJ’IQK(I}L?,)’ Kg’?’)}’ (11.66)

and the second step is the identification 7 <> 7. The singlet that we saw appearing above
comes from (3,3) - 3® 3 =1+ 3+ 5 and corresponds to the trace

VOO o SR o = KU K4 kB0 iy g 2ay 4 By, (11.67)

where we are viewing the components of the Killing vectors as components of some 1-forms
on the sphere. We can now parametrise the embedding of the S® into RS as in [54] in terms
of two three-vectors @ and @ and write y/ = (#, 7). The SO(3) x SO(3) rotations act on
the components of ¥ and ¢ in the fundamental representation. We then decompose the
differentials dy’ into left-invariant 1-forms. This gives the following expression for the vector

harmonics 1-form:

Y5(0’0) ~ 2cosfsinfsin¢ o' — cos ¢ df + cos O sin O sin ¢ de (11.68)

1 w2 1
=/1—w? —w? 01+§w1+1 dwl—gdwg. (11.69)

We can now proceed similarly and use group theory to find the k = 1 vector harmonics that

are SO(3)diag singlets. The k = 1 vector harmonics on the S° transform in the [1,1,1] = 64
of the SO(6), and the harmonics with the SO(3)giag symmetry should appear as singles of
the decomposition of this representation under SO(3)giag C SO(6). It is not straightforward
to find this decomposition by appropriately symmetrising the indices since both vector
and spinor indices appear in the [1,1,1]. We can make progress by noting that the [1,1, 1]

appears in the following tensor product

6®15=[1,0,0]®0,1,1]
=[1,0,0] +[0,2,0] + [0,0,2] + [1,1,1] (11.70)
=6-+10+10 + 64.



142 Chapter 11. Spherical Harmonics on the S®

All other representations in this decomposition can be written with vector indices only, and
can therefore be decomposed by hand. After writing I — (¢,7) as before we get the following
decomposition under SO(3) x SO(3) C SO(6):

6=T - {T, 7"} = (3,1) + (1,3) (11.71)
15 = [0,1,1] = T/ — (bl plal 7l
= {kTlik] Tl gakplily (11.72)

=(3,1)+(3,3) + (1,3)

(10 + 10) = TU/E] — Uikl 7ok T[Uk],T[iﬁf]}
_ {EijkT[123]7€ijkT[Ejk}7 6@—11211[1‘5115]7 eijET[iﬁg]} (11_73)
= (1,1)+(3,3) +(3,3) + (1,1)

As a side remark note that the tensor TH7X] is reducible because it can be decomposed into
the self-dual and anti-self-dual parts using the 6-dimensional epsilon tensor e//KLMN “which
correspond exactly to the 10 and the 10. This has no effect on the decomposition. We
can now compute the tensor product on the left-hand side of (11.70) using the decomposed
representations and compare them to the representations that appear on the right-hand side

to find what the 64 decomposes into. The result is
64 — (5,3)+(3,5)+ (5,1) +(1,5)+(3,1) + (1,3) + (3,3) + (3, 3). (11.74)

To compute the decomposition under SO(3)giag C SO(3) x SO(3) we recall that the repre-

sentations (ry,ry) collapse to r1 ® ra, and we get
64— (T+5+3)+(T+5+3)+5+5+3+3+(5+3+1)+(5+3+1). (11.75)

We see that the 64 contains two SO(3)qiag singlets, therefore we expect to find two k =1

vector harmonics that are invariant under the SO(3)qiag-

To construct explicit expressions for the harmonics recall that the scalar harmonics were
constructed by taking symmetric and traceless products of k& embedding coordinates y!, see

equation (11.7). In terms of group theory, since each 4’ is in the [1,0, 0], this corresponds to

[1,0,0" (11.76)

[£,0,0]

We can generalise this construction to vector harmonics by taking products of k coordinates
y! = [1,0, 0] with one Killing vector K/ =[0,1,1] and project out the representations that

we need, in other words we need to take

([1,0,01" ® [0, 1,1])| (11.77)

[k,1,1]
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For k =1 we get the case that we studied above:

yI KK] ‘

[1,1,1] = ([17070} ® [Oa 1, 1])‘[1,1,1] : (1178)
As before, its not straightforward to see what the projector to the [1, 1, 1] should look like,
but we know that the singlets are contained in the (3,3) parts of the 64. Two possibilities
to construct a (3, 3) out of ! KKl are the following:

Ik R and kT R (11.79)

There are two other inequivalent ways to construct a (3, 3), they, however, correspond to
those in the (10 + 10), therefore we can assume that the representations we constructed
in (11.79) are indeed those contained in the 64. The SO(3)qiag singlets in the (3,3) are the
traces over the free indices after identifying ¢ with 2. This gives us the following expressions

for the harmonics

Yél’o) ~ Z ¢k KM — _ gin 6 cos® O sin ¢ o (11.80)

=1

Y5(1’1) ~ Z ¢RI ki) — gin? 6 cos 6 sin ¢ cos ¢ o> — sin? 6 cos §sin? ¢ o°. (11.81)

=17

Finally, we can normalise the vector harmonics as fixed in equation (11.3). With this
normalisation and an arbitrary choice for the overall sign the SO(3)giag invariant £ = 0 and

k = 1 vector harmonics read

Y5(0’0) = cos fsin O sin ¢ (20! 4 d¢) — cos ¢ df = u'dv’ —v'du’ (11.82)
9 2

Y5(1’0) = % sin 6 cos? 6 sin 10} o2 = E(Gljkvlujduk) (11.83)
9 2

Ys(l’l) = —=sin?f cos fsin ¢ (cos ¢ 0% — sin ¢ o°) = ("Ml dv). (11.84)

V3 V3

We can change the (6, ¢) coordinates to (w;,w2) and re-write the harmonics as follows

1/1 -1 1
Y5(0’0) = \/E 0‘1 + Z ( +2w1> wy dwy — 5 dwsy (11.85)
T /14w \Y/2
vt = 5 ( 5 1) VC o? (11.86)
(1,1) 1T /14w V2
Yy = 12( 5 ) (wa/Co? — Ca®). (11.87)

We verified explicitly that these harmonics indeed solve the defining equation (11.1) for &k =0
and k = 1, and the divergence constraint (11.2). Also the orthogonality and normalisation
holds as in (11.3).
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In general, it is true that after branching the representation [k, 1, 1] of the SO(6) to repre-
sentations of the SO(3)qiag only odd-dimensional representations with d =1,3,5,...,2k +5
appear. This is because the sum of the weights in [k, 1, 1] that correspond to spin represen-
tations, 1 4+ 1, is even, and this property is preserved by the branching. Remember that
for SO(3) a representation with weight w has dimension d = w + 1, and so even SO(3)
weights give rise to odd-dimensional representations. The meaning of this is that bosons
branch to bosons. The multiplicity with which an SO(3)qiag representation of dimension
d appears in [k, 1,1] seems to be given by the formula k + 1 + 22(2 + k — x), where z is
defined by d = 2z + 1 and has the range x € {1,...,k + 2}. For the singlets, that is z = 0,
the multiplicity becomes k + 1 and is the upper bound on the number of SO(3)giag invariant
vector harmonics that we are expecting to find. Even though this is exactly the number
of singlets we found for the cases k = 0 and k = 1, for some singlets the harmonics might

actually turn out to vanish, so this upper bound does not have to be satisfied.

11.4.2 Solving the Laplace Equation

The lowest vector harmonics found from group theory arguments allow us to make some

important observations. First of all it is clear that the solutions have to be of the form

Ys =v1 (07 (Zs)o'l + U2(07 ¢)02 + 1)3(07 ¢)0.3 + 7}4(07 (ZS)dH + U5(97 (b)d(b (1188)

Because we are looking for SO(3)giag invariant solutions the only 1-forms that can be
considered as a basis are the invariant forms df and d¢, and the left-invariant 1-forms o®.
Moreover the coefficient functions v;(6, ¢) must not depend on the internal angles «;. Let
us recall that we are solving the following differential equation that we already gave in
equation (11.1):

VY — e+ ek + )Y, k=012, (11.89)

n

Note that this equation is written in some coordinate basis such as {da;, df, d¢}, where «;
are the internal Euler angles, which is why after applying it to our ansatz in (11.88) the
internal angles reappear and it is hopeless to solve the resulting coupled partial differential
equations directly. It is therefore useful to rewrite the defining equation in terms of the
invariant 1-form basis. The framework in which this is done is the well-known Cartan
formalism. We view the invariant 1-forms as a set of local sections of the cotangent bundle,
and define

e’ = {o!, 0% 0%, db,do} = e, dy™. (11.90)

One could now define the metric go, = e}'gmne; and the Christoffel symbols F’;m =
enTr el — end,,eb in the new basis and start computing the curvatures. However, for our

problem it is sufficient to contract the defining equation (11.89) with the transformation
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matrices e])'. Note that the divergence constraint (11.2) is invariant under the change of
basis and therefore does not need to be rewritten. After carrying out the transformations

just described we arrive at the following differential equations for the components v; (6, ¢):

1 1 1
— 2 in2 i -
0= (8 + 6k + kv, + 2 eag(sm 0 Dgv1) + PN -y <Sin¢8¢(sm¢0¢v1) s ¢v1)
p)
Snfcosp (060~ Dovs)

(11.91)

L 1 < 1 : 1 )
Do (510”0 Byuz) + sin? 6 cos? 6 sin¢8¢(sm¢a¢v2) sin? ¢U2

— 2
0=(8+6k+Ek )U2+Sin20

2 1 1
+ sin 6 cos 0 (tan <Z>89U3 ~ sinfcosf 3¢U3)
(11.92)
1
sin ¢
Dp(sin® 6 cos® O Dpuy) + Sii(b(?qg(sin ¢ Opva) — 21)4)

1
_ 2 2
0= (84 6k + k*)us + cos20 08.9((308 0 Opvs) +

Sin¢8¢( 0¢U3) (11.93)

sin? @ cos? 6

1
0= (8+ 6k + k? —_—
(8+6k + kT)va + sin? 0 cos? 6 (

2 1 1 1 1
(tan29 ¢8¢(sin¢vl) + (= )Sin¢8¢(sin¢v5)>

~ sinfcosf sin sin2f  cos20
(11.94)

1 1 . 1
(sin¢8¢(S1n¢8¢v5) - sin2¢v5>

sin? 6 cos? 6

1
_ 2 2
0= (8+46k+ k*)us + o520 08.9(008 0 Opus) +

2
i 0 .
sin 6 cos 0 cos” 004
(11.95)

One might notice that the original eigenvalue that we used in the Laplace equation is
(44 6k +k?), while here these terms have become (8+ 6k +k?). This is because the Laplacian
contains a part that is proportional to the Ricci tensor, which in case of the sphere S° is

simply given by Ry, = 49mn, and therefore contributes an additional 4 to the equation.

The divergence constraint takes the following form
0 = sin? 9L8¢(sin pv1) — Op(sin? @ cos® Gvy) — L(9¢)(sin D vs). (11.96)
sin ¢ sin ¢
One can split the set of partial differential equations for v; into their homogeneous parts

and the inhomogeneities. The differential equations can then be written as

. . 9 ‘
= k+ k)6 N T———— e Y 11.
0=(8+6k+ k)5 +H] + ——T!|u, (11.97)
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The homogeneous differential operator H;, which by definition is diagonal, is given by

1 1 1 1
1 .2 .
= 0 - —5 11.
g sin? (989 Sin” 600 + sin? 6 cos? (Sin ¢8¢ sin.¢ 9y sin? gb) (11.98)
1 1 1 1
2 .2 .
= 0 — 11.
" sin? 089 Sin” 00y + sin? 6 cos? (sin ¢8¢ sin¢ 9y sin? gb) (11.99)
1 1
3 _ 2 .
7‘[3 = COSQQae cos” 0 0 + SinZ 0 cos2 0 51n¢8¢—sin¢8¢ (11.100)
1 1
4 _ ) 2 :
H4 = m (8.9 sin“ 0 cos 89 + ma¢ S11 ¢8¢ — 2) (11101)
HE = La cos® 0 Jp + ! ( = Opsin ¢ 0y — 1) (11.102)
57 cos2f ! 97 sinZ0cos?0 \sing ¢ * " sinZ6 ’
The inhomogeneous part is given by
0 0 0 s —0p
) 0 0 ta111¢89 B sin600598¢ 0 0
T = 0 0 0 0 0
—tanzﬁsirlld)@qgsind) 0 0 0 —(ﬁ — ﬁ)ﬁ(%sm(b
0 0 0 cos? 00, 0
(11.103)

Note that the divergence constraint (11.96) is similar in structure to the inhomogeneities in
the v4 differential equation. It turns out that one can indeed use the divergence constraint
equation to eliminate vq from that equation in favour of an additional homogeneous vy
term. After adding (— tan#) times the constraint equation to the vy differential equation

one obtains

1

_ 2
0= (84 6k+k)os + —57—

(89 (sin? 0 cos? 0 Dgvy) — 2 tan O Op(sin? O cos? O vy)

2 7]
sin3 0 cos 6 sin ¢ ¢

+ ——0y(sin ¢ Oyv4) — 21)4) - (singus). (11.104)

1
sin ¢

q Consider first the system for vy and vs. The homogeneous parts of each of these differential
equations can be solved by separation of variables, and we need to introduce degeneracy
parameters mo and ms. After applying the separation rule and equating the resulting parts

to £m;(m; + 1) we obtain the following homogeneous solution for vy

v2(0, ) = A2(0) B2(0) (11.105)

AQ(@) = Cl(tal’l 9)m22F1(—§ — 1,

+ ¢o(tan 0) "2, By (—

k 1
§+2;§—m2;00829)

ko k3 )
S 1,2 492 ;

> ,2+ ,2—|—m27cos 0)

(11.106)
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. m 1 mo 1
By(¢) = c3sin¢ 2F1(72 + 1, 3~ 72; §;COS2 ®)
+ ¢4 sin ¢ cos ¢ 2F1(7 bt 1- — i 5308 ®)

Next observe that the partial differential equation for v does not have any inhomogeneities,
so that the solution we just found is the full solution for v3. Moreover, since v; = 0 are
also solutions to the homogeneous equations, the homogeneous solution for vy together with
v1 = v3 = v4 = v5; = 0 provides a full solution to the vector harmonics Laplace equation.
This solution produces good vector harmonics only for the range of parameters k = 2[ + 1,
1 =0,1,2,..., and mg = 1,2,...,(l + 1). This can be derived as follows. Consider the
solution By(¢). The symmetry mg — —(mg + 1) leaves all terms invariant, and has the
fixed point mg = —%. Therefore we can assume mo > my = —1/2. For this range of mao,
the c3 term produces finite polynomials only for mgo = 1,3,5, ..., and the ¢4 term only for
mg = 2,4,6,..., so that in total we get a good Bs(¢) solution for ms = 1,2,3,... Next
consider A3(f). The invariance of the eigenvalue (k* + 6k + 4) under k — —(k + 6) is
reflected in the solution and leaves both terms invariant. This symmetry has the fixed point
ko = —3, and we can restrict the values of k to k > kg = —3,—2,—1,.... The form of
the solution As(f) suggests to consider the cases of even and odd k separately. For even
k = 2l it is obvious that the hypergeometric function turns into a finite series. However, this
series starts with a constant term and both the ¢; and the ¢y parts contain overall powers
of tan §. Because we already found that mso > 0 these terms will produce negative powers
of sinf and cos # which render the solution unacceptable. Therefore the even case k = 21
is ruled out. For odd k& = 2[ + 1 we need to first apply the Euler transformation formula
oF1(a,b;¢;2) = (1 — 2)" %Y Fy(c — a,c — b;c; ) and obtain

k+3 k43 1

As(0) = c1(sin 9)_(m2+1)(cos 0)" ™29 Fy ( — Mg, = = M — M cos? 0)
k kE+1
+ co(sin §)™2(cos 0)m2+12F1(%5 + mo, —% + ma; g + ma; cos? 0).

(11.108)

We see again that the negative powers of the trigonometric functions in the ¢; terms spoil
the solution so that we are forced to set ¢; = 0. The ¢y part yields a good solution whenever

—% + mo < 0, which implies mo < % = [+ 1. Moreover, because my > 1 we need to

take k > 1. Using the notation }}5(k:,m2) to denote the particular solution corresponding to
V] =v3 =14 = v5 =0 we get

V™) (9 ) = ¢y (sin )2 (cos 0) ™ Fy (1 + 3 + ma, —1 — 1+ m; g +ma; cos” f) x

s cos? @) for odd mao

(11.109)



148 Chapter 11. Spherical Harmonics on the S®

The constants c¢;,,, are an overall normalisation. Here are the few first such solutions
so obtained, for which we have chosen an arbitrary overall sign, and which we have also

normalised as in Subsection 11.4.1:

175(1’1) = jg sin @ cos® A sin ¢ o (11.110)
~5(3’1) = \/gsmecos 6 cos(26) sin ¢ o> (11.111)
~5(3’2) = \/Esm 0 cos® Osin(2¢) o (11.112)
~5(5’1) =4/ 1(1)5 sin 0 cos?(0)(3 cos(46) + 2) sin ¢ o (11.113)
)75(5’2) \% sin? 6 cos® 0 cos(26) sin(2¢) o2 (11.114)
~(5,3) 2 .3 4p 2

5 = ggsin 6 cos™ Osin (5 cos(2¢) + 3) o (11.115)
v = 121\/5 sin 6 cos® B(3 cos(26) + 2 cos(66)) sin ¢ o2 (11.116)
~5(7’2) = i\ / % sin? @ cos® 0(4 cos(46) + 3) sin(2¢) o> (11.117)
:,)(7’3) W sin® 6 cos? 0 cos(26) sin ¢ (5 cos(2¢) + 3) o2 (11.118)
~5(7’4) = (1;\/§sin4 6 cos® 0sin(26)(7 cos(2¢) + 1) o> (11.119)

Note that the solution Ys(u) is exactly one of the solutions found by group theory arguments.

As before we can change the basis from the angles {6, ¢} to the variables {w;,ws} and

obtain

N 1/2

70 = \/g (1 J;wl) V¢ o? (11.120)
1/2

~(3,1):\/§<1+w1) wi 2

Y, =5 5, VCo (11.121)
1/2

Yy =5 5 VCo (11.122)

1/2 2

Yy \/ 05 5 5 Via (11.123)

N 1/2

A \E (1 J;wl) wiwe/C o (11.124)

~(573)_ i 1—|—w1)1/2w%+5w§—1 2

5 =00 < 5 5 Vi (11.125)

~ 1/2 2

7 - \2/45 (1 +2“’1> (8w 5 DL 7 2 (11.126)
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~2 1[5 (1 —|—w1>1/2 (8w} — 1)wy

AR Y 11.12
~ (7’3) 1 1 + w1>1/2 (’LU% + 571)% — 1)’[1)1 2

Yo — 11.12
- 1 /5/1 12 (32 + Tw? — 3

AL 12\/;< J;“”) (Bur + ;”2 N (11.129)

The system of equations for vo and vz admit a second set of solutions, namely the one with
v1 =v4 = vs = 0 and vg # 0. To find these solutions we need to first solve the homogeneous
differential equation for vs, then plug the solution into the differential equation for v, and
solve the resulting inhomogeneous differential equation to obtain the full solution with both
vo # 0 and vz # 0. Observe that there are no inhomogeneities in the equation for vz, so that
it can be solved directly by separation of variables. It is also separable and therefore splits
into two ordinary differential equations that we have to set equal to a constant that we call
+m(m + 1). This leads to the following solution:

v3(0, ¢) = A3(6)Bs(9) (11.130)
m+1 k k 1 2
A3(0) = ci(tan0)" 9 Fi1(—= — 1, = + 2; = — m;cos” 0)
Qk Qk 23 (11.131)
+ co(tan ) "o Fy (— 5~ b3y + 2; 3 4 m; cos? 0)
m 1 m 1 mm 13
Bs(¢) = 032F1(—5 T g ¢)+C4(COS¢)2F1(—§=E+§ 153 C08 2¢) (11.132)

First of all note that since the term m(m + 1) in the original ansatz is invariant under
m — —(m + 1) this symmetry must manifest itself in the solution. Indeed, we see that in
Asz(0) this simply swaps ¢; with ca. In Bs(¢) each of the two terms is invariant under this
symmetry. Moreover, the term proportional to cs is a finite polynomial only if m is an odd
integer, while the same is true for the ¢4 term for even m. In total we see that m has to
be an integer, and also without any loss of generality we can set ¢; = 0. This gives the

following solutions for vs.

k k
v3(0, @) = cpm(tan 0)*m2F1(—§ -1, 5 +2; g + m; cos® 0) x

{ oF1 (=1 — 5,5 : cos? @) for odd m
P33+ h

L.
2
3.
27

N[ =

(11.133)

) )

cos? ¢)cos¢ for even m

The next step is to substitute this solution into the differential equation for vo, and look for
a solution. As the resulting differential equation is inhomogeneous one needs to first find
the solution for its homogeneous part and then use methods like the variation of parameters
to derive a particular solution for the inhomogeneous equation. The general solution can
then be constructed as a sum of the particular solution and a linear combination of the

homogeneous solutions. This computation is still work in progress, and the results will be
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reported elsewhere.

11.5 Tensor Spherical Harmonics with SO(3)g4iag Symmetry

In this section we will again resort to group theory methods to find a set of the lowest

(k,m)
YlO [np

harmonics will be the singlets in the 10, of the so(6) after the branching to the SO(3)giag
subgroup. The 10, = 10 ¢ 10 can be represented by an anti-symmetric 3-tensor of the
SO(6):

SO(3)diag invariant tensor harmonics - As indicated in equation (11.4) these tensor

10 ® 10 = Tl (11.134)

The 10 and the 10 can be extracted by splitting 79 into its self-dual and anti-self-dual
parts. Taking an educated guess based on the construction of the vector harmonics we
can attempt to construct these tensor harmonics as tensor products of S° Killing vectors

Ky[l”] = O,y'y’! and embedding coordinates y’. We are looking for a combination that
y K]

mp] and one such combination is

gives a harmonic of the form

3
I7-JL 7KL _ 9. Ja . K]
y Kp, K, 1K 1Y Oy’ Opy™. (11.135)
To find tensor harmonics that are invariant under the SO(3)giag We need to find the singlets
that are contained in the 10.. According to Appendix E the 10 contains two singlets,
and therefore the 10, contains four of them. After splitting the SO(6) index to a pair of
SO(3) x SO(3) indices as I — (i,2) and then taking the diagonal subgroup by identifying

1 =7 one obtains the following singlets

cIkligk] Z k(K] Z Ik ligk] IRl (11.136)

1=1 1=

where we have to substitute y/ 8[ny‘] ap]yK] for TH/K]. By our choice of coordinates we have

2" = u' and 2° = v, and so we can write the singlets in (11.136) as

Yl(g,o) _ Eijk(uiduj A duk) (11.137)
Y1 = ﬁﬁ”’“(vlduf A du® 4+ du A v+ uFdv' A du?) (11.138)
Y1(8’2) - %wk(uldv] A doF + oI dvP At oFdut A do?) (11.139)
Y1(8,3) — R (uidel A du®). (11.140)

We have checked that these four tensor harmonics indeed verify the defining Laplace
equation (11.1) for k& = 0, as well as the divergence condition (11.2). Moreover these

harmonics were normalised according to the conventions set in (11.3). As for the vector
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harmonics we can change basis to the (wy,ws) variables and express the forms in terms of

left-invariant forms o’. To further simplify the expressions these left-invariant forms can be

traded for the vector harmonics Ys(k’m) which we found in the previous section, which gives:
00 V3 < (0,0) wadw dwz) (1,0)
Y, =—(1 Y, — Y. 11.141
10 c (L4 wy) (Y5 21+ w1) T )M s ( )
1 wadwy dws IR (0,0) (1,0)
v = (Y(O’O)— 2 )/\Y(’ 22w Ve — dwy) A YR
10 C( +w1) ( Yy 2(1 + w1) 5 5 T C( wa Y w1) A Yy
(11.142)
y(02) _ 1(1 —wy) (Y(O,O) _ wadwy dw2> Ay 1(2w2Y(0’0) — dw) A YD
10 ¢ 5 21 — wy) 9 5 ¢ 5 5
(11.143)
©03) _ V3 < (0,0) wadw de) 1,1)
Y. =—(1- Y, — — Y 11.144
10 1§ ( wy) | Yp 2(1 — wr) 9 A Xy ( )

These are all SO(3)qiag invariant Y7o harmonics with & = 0 since there are no more singlets

contained in the 10.. The construction of higher tensor harmonics is still in progress and

will be reported elsewhere.
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Chapter 12

UV Asymptotics of the Uplifted

Solution

In order to interpret our ten-dimensional solution we can compute its asymptotic behaviour
for large values of the radial coordinate and check whether the various fields have the fall-off
expected from the AdS/CFT dictionary. It is also interesting to compare our results with
the asymptotic behaviours of the other supergravity solutions that are supposed to describe
N = 1%, namely the Polchinski-Strassler solution [48] and the zero-temperature limit of
the Freedman-Minahan solution [62]. To this purpose we perform the change of variable
t = e /r, where r is the radial coordinate used in [48, 62]. In this section we only give
terms up to quadratic order in the deformation parameters m and o and we fix the values

of the angles ¢ and w to zero.

1471
1—ar

Axion-Dilaton The expansion takes a particularly simple form for the field B =
that appears in the Kaluza-Klein expansion around S° [42]. The first terms can be easily

computed for any value of the angles ¢ and w and are

4m% 9 2mooo i 9 9 . 4m% 9 2Mo00 i
B~ — (9’[’26 v W@ Z(QO w) (U — v )*22 79712 [& vp =+ 3\/§T4e 7‘(90 w) (U"U),

(12.1)
where mg and og are given in Appendix A and are related to the UV mass deformation and
the expectation value of gaugino condensate. From (12.1), setting the angles ¢ and w to

zero, we can compute the expansions of the dilaton and axion

2
2mj

mopoo
e~ 14 gr—z(vf —v?) + 3 (u? —v?) (12.2)
4m? 2 mgyoy
CON§TQO('LL’U>+% T4 (’LLU) (123)
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The leading behaviour of the dilaton is the same as for the zero-temperature limit of the
Freedman-Minahan solution [62]. As already discussed in their paper, the behaviour does
not agrees with the asymptotic limits of the dilaton in the Polchinski-Strassler solution [48],

where the leading behaviour of the dilaton is given by a scalar of the SO(6).

Metric The large r behaviour of the metric is
m2 m2 \ dr2
dS%O =T (1 + 242> d84 <]. + F% T + Cl55 (124)

where ds? is the flat Minkowski metric in four dimensions and the internal metric ds? is

given by

2
dsg = (dui)2 + (dvz) + du;du; <T Aij + WTBZ-])

m2 m m2 m
+ dvidv, (r Cij + %‘TOD + duidv; | “ By + %‘TOFU (12.5)

with coefficients

1 1

Aij = _6(3 + 4(u? —v?))6i; + ViV (12.6)
1

Bi; = %[(u2 - U2)5z’j + v;v5] (12.7)
1 1

Cij=—506~ 4(u® = v*))di; + FRCA (12.8)
L 2 _ 2

Dij = ﬁ[ (u” —v7)dij + uiuy] (12.9)

E; %[ 8(u - v)5;; — Sugv; + 6vsu;] (12.10)

EFij \33[ 2(u - U)(sij + uv; + vin] (12.11)

Two-Form Potentials and Field Strengths The first terms in the expansion of the

2-forms potentials (9.59) are

1/1 1 1 1
C == (mo 4= UO) eijrvidu; A dug + 5 <\/§mo _ ”“) cipvidoy Adv,  (12.12)
r

V3T 273 r 273
1 m lo
+ <37’0 + = 5 g) el-jkuiduj A dvy, (12.13)

1 1 1/1 1
< VAT JO) €ijruiduy A\ duy — o <m0 * j()) cijkuidvj A dvg - (12.14)

) el-jkviduj A dvg . (12.15)
r
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A simple derivation gives the asymptotic behaviour of the fully internal components of the
field strengths F; = dC;

F1=3<1m0 L og 309

2\ 7 T2, BEY]
F ——§ (10—1-10()) €idu; N dv; N\ dvy, — (3\/§mo_300) dui A dus N\ du
2 = 2 \/g r 23 ijk Wty 7 k r r 1 2 3

) €ijkdu; A duj A dog + (3\/370 ) dvy A dvy A dvg  (12.16)

(12.17)

The terms in 1/7 in equation (12.12) reproduce the large r behaviour of the 2-form potentials
of the Polchinski-Strassler background [48], but the leading terms in oy disagree. For
different values of the angles, ¢ = /2 and a constant arbitrary w we also recover the leading
behaviour in the 7' = 0 limit of the 3-forms in the [62].

Five-form flux Using (9.71) it is easy to derive the large r behaviour of the purely internal

component of the 5-form flux

PR, (4 12m?

5\ 8 ) €mymey" AY™ A dy™ A dy™ A dy™ A dy™, (12.18)
where y™ are the six coordinates of R that parametrise the internal manifold. Again this

expression agrees with that given by Freedman and Minahan.
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Chapter 13
Singularity

13.1 Uplift in Pilch-Warner Coordinates

In this section we present the uplift solution in the coordinates introduced in [54]. First let

us recall the definition of the new radial coordinate ¢ and other constants

1
fme 00 A= B0 o Zog (:Z%) . Cb=log (020) . (13.1)

where C] and Cs are the 5d integration constants, and mg and og are related to the leading
asymptotic behaviour of the 5d fields m and o (note that mg and o differ by constants
relative to the ones in [54]). Defining p, v as in (9.33), the solution of the first order equations

in terms of these variables takes the form

1+ A3 1+¢
pu(t) =/ T8 v(t) = T—¢ (13.2)

For more definitions and conventions see Appendix A.

Warp-Factor The warp-factor A we used earlier and the warp factor £ in [54] are related
by
& =NA"53, (13.3)

In the new coordinates we find

1
(1 —#2)* (1 — A2¢6)

() () et () (1) g o (1) (1 2]

(13.4)

£ =

5 X

157
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Metric The uplifted ten-dimensional metric was already obtained by Pilch and Warner [54],
see equations (6.1)—(6.7) in their text. It takes a block form containing the AdSs and the

S5 parts as follows

ds3y = V/2ds? 4 + ¢ 3/ 2ds? (13.5)
ds%A = e2¢(y)nwda:“da:l’ + dy? (13.6)
dsg = ardutdu’ + 2axdu’dv’ + agdv'dot
+ ag(uldv’ + v'du')? + 2a5(u'dv) (v du!) + 2a¢(utdu) (v do?).
The coefficients a; of the internal metric can be found in equation (6.3) in the Pilch and

Warner text [54]. We can expand the fields p(t) and v(t) in terms of the radial coordinate ¢

to get the following expressions for the coefficients a;:

(14 At4) (1T +¢3(1 — 2wy) (1 — At?) — At6)

! (1— #2)% (1 — \2¢6) (13.8)
—2wat? (14 At?) (1 — At
= 220 (1 02) (1L 2 139)
(1—12)2(1 — A26)
T+ M) (T +22(1+2 1— At?) — \tS
a3:( + )( + ( JQF wl)( ) ) (13.10)
(1 —#2)2 (1 — A2t6)
£2 (14 M2)% (14 M) (14362 (1 — M2) — AtS
. (L+ M7 (14 ?)’( +3 (2 At?) — Atf) (13.11)
(1—12)3 (1 — A26)
202 (1 — A28 (1 + ¢4 (1 — A2
B (A (Rl (R S0)) (1312
(1 —12)" (1 — A\2t6)
_ 442 2 342 2 (1 y42
0 — 462 (14¢%) (1 ;\t (1+t*(1— Xt ))). (13.13)
(1—12)3 (1 — A2¢6)
Axion/Dilaton The axion/dilaton matrix mqg is given by
maﬁzlmab:1<m11 mn) (13.14)
§ 3 mi2 Mi2
with the components
(1+At%) 6y | 42 4
mi = 1—=A°)+t°2w; +1) — A" (2w + 1 13.15
NS TR ) (1= M%) + 22wy + 1) = X 2wz + 1)) (13.15)
(1+xth) 6y | 42 4
= 1= X% + 22wy — 1) — M* 2wy — 1 13.16
= TR ) (1= A%) + 22w — 1) = Mt (2wz — 1)] (13.16)
9 2 1— 4 1 2
s — wat? (1 — At*) (1 + At?) (13.17)

(1 —12)% (1 — X26)
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Two-Form Potential The 2-form potential is given by
Ca = Crn ody™ N dy™. (13.18)
The new basis for the 2-forms will be given by the following six 2-forms
{dwy,dwy, 01} N{o2,03} (13.19)

The expression for C,, in terms of this basis is rather complicated, but reduces to a manageable

expression in the ¢ — 1 limit, which we will report later in Section 13.2.

Four-Form Potential The 4-form potential is given by

C=C+ 52 (frd} + fodi + f3d3) (13.20)

with the coeflficients

—12ws t4(1 + At2)%(1 — At*)?
= 13.21
h (1 — 2)3(1 — A2t6)2 (13.21)
12wy t4(1 — Mt2)2(1 + Att)?
= 13.22
f2 (1 — 2)4(1 — X2¢6)2 (13.22)
4811)1’(02 )\tG

T (1= 2)3(1 — A25)

(13.23)

and the 4-forms

dy = Tmetn(ymy™ — ™™ dul A du? A do® A dot (13.24)
1/2 1
_C Ewl ;dwl/\dwg/\JQ/\J?’
1
+§(1+w1 —w3) dwy Aot Ao? Ao 4 wiwy dws Aot Ao Ao
d3 = TR (ymym 4 y™u™)dul A du? A do® A do (13.25)
Cl/Q Wo
= ——=— dw; ANdwy Ao® AP
4 (w+1) 0T
1 .
+ wiwe dwy A ot /\02/\03—1—5(1 —w%—i—w%) dws Aot A a? A o?
d3 = du® A du? A dv' A do? (13.26)
C1/2 1

dwy A dws A a® A o®

4 w1+1
—I——dwl/\a Ao Ao + d’LUQ/\O’ Ao Ao
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The combined 4-form reads

5 t4 ~ , ,

C=C+ 452(1_t2)4<1—A2t6)2|: fl dwl/\de/\O' Ao
+ fo dwy Aot Ao AP (13.27)

+f3dw2/\01/\02A03}

with
. Cl/z wo beo N
=5 1+ Mt 1-— X\t 139

= T A=A (13.28)

fo = —ws [(1+ M)2(1 = X2 = wd(1 = X2)2(1+ M = wd(1+ M2)2(1 - a2
Fo=wr [(1= X22(1+ M2 = wd(1 = MD2(1 4+ XY = wd (1 + M2)2(1 - Ah)?].

Six-Form Potential The non-vanishing components of the 6-form potential are the

following

« «

C,uupafm = Wuvpor Emn®,

CHVP@ mn” = Wuvpot gTAE)\mna . (13-29)

We can transform the 1-forms Z¢ and 2-forms =§ into the Pilch-Warner basis and rewrite

some of the differentials in terms of vector harmonics. The result for the 1-forms is

—

—_ —

V3 (M3 4 £) (A2 4 2310 4 228 — 3N+ D)8 4 at 124+ 1) [ Yol
2 (t2 _ 1)2 ()\2t6 - 1)2 —Y5(170) .
(13.30)

For the 2-forms we get
o _ VBEOE 1) (M4 1) ( (1+wn)vCo! ) N
@) =T \ - du — (1 - w)dws + (- w)VEe!) g
V30 + 3AT = 30 — 1) (—% 1wa1 dwy +wz\/Co' — widw; — wzdw2> et
C (tQ - 1) ()‘2t6 - 1) —% 1+<w1 dwy + wg\/fal YE)(LO)
(13.31)

Note that there is further t-dependence in the volume form w,, o~ and the inverse metric

¢™. In the basis where t is used for the radial coordinate they are given by

g = diag(—e 201 720(1) 7201 o=20(1) 42) (13.32)

1
qub(t) _ ?(1 - t2)(1 o )\2t6)1/3€201 (13'33)
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1 1 2 2/3
Wuvpor = ¥€4¢(t)€uypm- = t75 (1 - t2) (1 — )\2t6) 64cleu,jpm-. (1334)

13.2 Singularity

In this section we discuss the behaviour of the ten-dimensional solution as we approach the

position where the five-dimensional solution has a curvature singularity.

As we reviewed in Section 9.1, in five dimensions we have a metric coupled to two real scalars
m and o, which have a domain-wall profile along the radial direction. The complete solution
is given in (9.14) and contains two integration constants C1 and Cq, which parametrise the
mass deformation and the gaugino condensate, respectively, as discussed in Section 9.1. The
geometry is singular as the radial coordinate y approaches either C'; or C', as one can verify
by computing curvature invariants. As in [54] we parametrise the location of the singularity
by defining

t=exp(—(y—C1)), Y=2V1-t (13.35)

The singularity of the 5d metric is then located at ¢ — 1 or equivalently x — 0, and the

curvature scalar and Kretschmann invariant are given by

16 _ 640 _
R = —? + O(X 2), R,uypo'R'Lng = F + O(X 6) (1336)
Since the scalar fields are also singular in this limit one may wonder if there is a different
conformal frame than the Einstein frame, where the geometry is regular or at least less
singular. It turns out that this is not the case. We will see later that the situation is different

in 10 dimensions. We also define (again following [54])
A= 3C17C2) (13.37)

It was argued in [23] that C'; > C5 and this translates to A < 1 with the equality corresponding
to the case where the singularities in m(y) and o(y) coincide. The singularity structure
of the 10d solution depends on whether A < 1 or A = 1 and we will discuss the two cases

separately.

13.2.1 The XA < 1 Case

We have computed the curvature scalar of the 10d solution and it has a limit which is regular

in the radial coordinate as y — O:

o g — V2 3427 —wi(1—4A+ %) —wd(1+ A+ X
x—0 1— A2 (1 —w? — w2)5/4

. (13.38)
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However, the Ricci scalar is now singular at
(=1-wl-ws=0 (13.39)

which is precisely the ring singularity discussed in [54]. The metric near the singularity is

given by
1/4 2 /1 9
a2 = Sl et antar i)+ 5 (0 s+ )
Lfl=A. o 1+A., X’ X’ 4
+ 5% <1+)\dw1 +t1o )\dw2> + R /\2)“’\\ + 16¢2(1 _)\2>2WD + O(x%)

(13.40)

where YS(O,O) is an SO(3) vector harmonic, the expression for which can be found in Chapter 11.

The coefficient fy and the differentials w| and wp are given by

wi — w3

fo= A=Y
wi = (1+A)(2¢ +1)2e*7 (1 — X))V datds” + (2 + (3¢ — 1)(1 — A)dx®  (13.42)
wp = [(1=Nd(wd) + (1 + X2d(wd)]
— [+ 23 = 20) — 2A(w} = w)] [(1 = N)2dw} + (1 + X)2duws] (13.43)
+8AC+1) [(1 = 2)?dwd — (14 \)2duw]

(13.41)

Pilch and Warner in [54] also computed the near-singularity metric. Their metric is
reproduced by setting fo = w; = wp = 0 and %YS(O’O) — o' (modulo a typo in one of
the coefficients of dw}). Note that dx* + x*(0% + 03 + 03) is just the flat metric on R*
and the terms in the first line of (13.40) combine to give the eight-dimensional Minkowski
spacetime. This was interpreted in [54] as evidence that the singularity is associated with
7-branes. We cannot however ignore the terms with fo,w,wp and %Y5(070) because they
are of the same order as %X2 (0?2 + 02 + 02). Taking these terms into account, we find no
evidence for 7-branes in the near-singularity structure of the metric. At the position of the

5d singularity, x = 0, the 10d metric is of co-dimension 4:

C1/4
V2

1 (1-A 1+ )
<2e201(1 — N3y, datda” + T (1 —dwi+ 5 u Adw§)> - (13.44)

ds®

Note that the limit x — 0 is not a decoupling limit, i.e. the metric in (13.40) does not solve
the bulk equations of motion and the curvature of this metric does not agree with (13.38).

To properly account for (13.38) one needs to keep higher order terms in x. First consider the
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ten-dimensional metric Gsn. One can check that in the expansion in the radial coordinate
x around y = 0 the lowest order in y that occurs is the constant order x°, which is also

GMN shows

manifest in (13.40). The same analysis performed on the full inverse metric
that its lowest order in y is the order y 2. Given this information we can deduce to which
orders we need to expand Gyn and GMY in order to obtain results consistent with the full
computation of the Ricci scalar in the limit xy — 0. Schematically the Riemann tensor and

the Ricci scalar are given in terms of the metric and its inverse as follows:

Runrs ~ 0°G + G~1oGoG (13.45)
R~ GG 9*G + G710GHG). (13.46)

Since G~! ~ 1/x? to get the correct constant term in the Ricci scalar the Riemann tensor
needs to be at least of order x*. Then, from the second term in (13.45) we infer that 0GOG
has to be at least of order %, and since a derivative with respect to y lowers the order in y
by 1, G has to be at least of order x”. Similarly, one can deduce that one needs to keep
terms at least up to order x* in the inverse metric G—'. We have explicitly checked that
keeping the metric and inverse metric to these orders one indeed obtains a curvature scalar
consistent with (13.38).

Similarly, one can study the order to which one has to keep the other fields in order for the
bulk equations to be satisfied, order by order in x2. In general, one cannot truncate this
series at some fixed order and have the field equations satisfied, as different orders contribute

to different terms in the field equations.

We now provide the near-singularity behaviour of the warp factor and all other fields.

Warp-Factor Following [54] we define
2 =A% (13.47)

Then the warp factor has the following leading behaviour as y — 0,

1/2
- 8i4 + 0% (13.48)

£

Axion/Dilaton In the limit x — 0 the axion/dilaton matrix mqg is regular and takes
the following form:

Mag = (12 (1 T ) +0(x%) (13.49)

wWo 1—w
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Two-Form Potential In the limit y — 0 the 2-form reduces to the following expression,

3 1 1
cl = ‘? (Y;O’O) At = Sdwy AV — Cdws A Y5(1’1)> +0(x?) (13.50)
3 1 1
c? = \C[ (—YEEW A 4 Sdwn AYERY — Cdws A Y§1’0)> +0(3) (13.51)
where the SO(3)qgiag invariant vector harmonics Yék’m) = 5(Z’m) dy™ are 1-forms on the S°

cotangent bundle, and k and m are integers that label the harmonics, see Chapter 11 for

more details.

Four-Form Potential The limit y — 0 for the 4-form is regular and gives the following

result

. 1 /1 -1 1
C = C+Z ( —|—w1> w2 dwlAdw2A02A03+f(wldwg—wgdwl)A01A02A03+O(X2)

2 161/C 16
(13.52)

Six-Form Potential We get

(1,1)
(1= X)23dr Adat A da® A dx® A (xdx) A (_;(170)) +0(x?). (13.53)

@6401
2 5

C(G) —

The coordinate 7 denotes the time. Note that there are some powers of x that come from
the volume form wy, s+ and cancel some divergences. See equation (13.34) for the expansion

of wypor in terms of the radial coordinate.

13.2.2 The A\ = 1 Case

We now set A = 1 first and then take the xy — 0 limit. The Ricci scalar then becomes

2 2 a2 2
a1 <8 1) (8 +wi — 8u)(10 — wi —10w}) , o (13.54)

2 (8= wf —4up)r

6v/3

Thus in this case the 10d metric is still singular at xy = 0, though diverging at slower
rate than the 5d solution. In addition, the metric is singular at (wi,ws) = (0,£1) (which
corresponds to (0, ¢) = (w/4,7/2 £ w/2)), but there is no ring singularity anymore. The
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metric itself takes the following form

3 1 8 2
ds? = /2 121/36201nu,,dm”dm”x2/3 + <8x2 + 1> dx* + a2 (><2 - 1> dw3 + 1252]

+0O(x"?)
(13.55)

The differential é5 is given by

1,5 ¢ s C(l4wd) , 5 2—wi wiws

2 3
5y = Y007 4 Sdwf - dus

— ——dw; — = dws + L dw? + ——=dwydw
4 4802 2 1s(r 2 ez 2 a2
w1 (0,0 9 1,02 2+wi [ 2we 1,0 1) ?

(13.56)

and  is defined as )
Q= g\/4—w% — 4w3. (13.57)

The leading order terms in this metric reproduce the result found by Pilch and Warner [54],

but we have additional subleading terms.

Warp-Factor The warp factor has the following leading behaviour under A — 1, then
x —0

£ = o +0(x7®) (13.58)

Axion/Dilaton The axion/dilaton matrix m,g is regular and takes the following form:

Maf = —x

1 24w 2wo
30

) + O(x%). (13.59)

2w2 2 — w1

Two-Form Potential The limit of the 2-form may be written in terms of wedge products

of the vector harmonics found in Chapter 11:

V3 (00 20 —3uw Ly V3 wwy 1,0
ot = V2 (y oo _ 6w y<v>_( ! ) y(10 2
c ( 5 502 dwg) NYy 2 dwy + 202 ANYg "+ O(x9)
(13.60)
2 _ V3 (_y00 _ 2+3w ) 1o, V3 ( ’w1w2) (11) s 2
C* = R ( Yy 1502 dwy | NYg 7 + 2 dwy + 302 ANYs 7+ O(x%)

(13.61)
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Four-Form Potential The limit of the 4-form is regular, and is given by

8 U’ZCI/Q 2 3
C=C+—"——dwi Adwg No*“ No° — —
1
+ E(wldwg — wadwy) Aot A a? Ao+ (’)(XQ)

1 ~1 1/2
( +w1) MZCAQ dwi A dwy A o® No® — — 3
) 1440 48€2 (13.63)

—6( 1dwy — wadwy) Aot Ao Ao 4+ O(x?)

Six-Form Potential For the 6-form we get

et 1 2 3 7/3 YE,(M) 10/3
C(G)—>—22/335/6d7/\dx Adx® Adx® A (xPdx) A Ly + 003, (13.64)

where 7 is the time coordinate. Again, as in the case A\ < 1, there are some powers of y that
come from the volume form w0 and cancel some divergences. See equation (13.34) for

the expansion of w07 in terms of the radial coordinate.

13.2.3 Different Frames

Since the solution involves non-trivial scalars there is an intrinsic ambiguity in the definition
of the spacetime metric: one can rescale the metric with powers of the scalars. Different
probes see different metrics and different conformal frames carry different physical meaning.
For example, supergravity probes see the Einstein frame metric and strings see the string
frame metric. In some cases singular geometries are regular in a different frame. For
example, the geometry of non-conformal Dp branes is singular in the Einstein and string
frame but it is regular in the “dual frame” [113] and this is also the frame best suited for
holography [18, 114]. Here we want to analyse the dependence of the singularity on the

choice of frame.

Usually one uses the dilaton when discussing different frames'. Since our solution has both
an axion and a dilaton we will consider a general rescaling by both: gzs — gps = 0?2 9pp
with the scaling factor Q = e*®C# given by some powers of the dilaton e® and the axion Cj

parametrised through constants z and z. Given the definition of the axion/dilaton matrix

Mo

2 g
Mapg = — ( I T) L =Cytie®, (13.65)
Rr 1

'One reason for this is that the axion is more properly viewed as a 0-form potential and has an associated
gauge invariance.
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we can write the rescaling parameter as 0 = my(—mi2/ma2)?. To compute the effect of
the rescaling on the Ricci scalar we can use the standard formula for the Weyl rescaling of

the Ricci scalar (see for example [101]), which we also discussed in Chapter 10:

R=07 R~ 18¢""V;V;log ) — 726" (V,10g ) (V; log Q)| . (13.66)

The )\ < 1 case After the rescaling the Ricci scalar takes the following form:

7)()\<1) (w17 w2)

R(A<1) —
(1—w?— w%)271w3+22(1 — wy )2H2w—22

O(x), (13.67)

where 73(’\<1)(w1, wg) is a polynomial in wy and wy with coefficients containing x, z, and
M. After a careful inspection it is evident that there is no choice of  and z that removes

the denominator. One can also show that the numerator PA<1)(

w1, ws) is non-zero for any
choice of z, z, and A < 1, therefore the singularity in the curvature cannot be completely

removed.

One can now study what type of singular behaviour the terms in the denominator entail.
The term (1 —w? —w3) is just the original ring singularity along the circle w? +w3 = 1. The
term wo leads to singularities on parts of the ring corresponding to 6 € {0, 7} or ¢ = 7/2,
while the term (1 — wj) reduces the singularity to a single point (w1, wz) = (1,0), which
is equivalent to the value § = 0. Thus we see that the least singular behaviour that we
can get is achieved by choosing = > 5/4 and z < —1 which leads to a singularity of type
(1 —wy)® with @ > 9/4, i.e. in this case we only have a singularity at a single point. It would

be interesting to understand the meaning of these frames.

The A =1 case We can now repeat the same analysis for the case A = 1. The transformed

Ricci scalar has the form

o= = (5 -1) ) L0 (1369)
X2 (4 — w2 — dwd) T "W (2 — wy )2+25-22

First of all, also in this case it can be shown that PA=1 (wy,wy) cannot be identically zero

2 in the radial coordinate

for any choice of x and z. This means that the singularity x~
can never be removed. Notice however that the term (2 — wy) in the denominator is never
zero since —1 < w; < 1, and therefore we can arrange that the singularity in the angular

directions is removed completely by choosing x > 9/4 and z < 0.
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Chapter 14

Identification of D-Branes

One of the most intriguing and controversial features of the GPPZ solution [23] is the
singularity that one finds as one follows the radial direction from the conformal boundary
towards the inside of the bulk. On the field theory side the flow along the radial direction can
be interpreted as the renormalisation group flow from the UV to the IR, and the appearance
of the singularity in the bulk suggests that the strongly coupled IR physics on the field theory
side cannot be accounted for by the five-dimensional dual. By uplifting the five-dimensional
solution to ten dimensions one is hoping that the features of that theory might suffice to
shed light on the singularity and provide physical input to the field theory counterpart.
If this is the case then the singularity in five dimension should be removed, or at least
improved, in higher-dimensional physics. One mechanism by which this could come about is
that the singularity that one sees in five dimensions is a remnant of a brane source in ten
dimensions. If this is indeed the case, then one should be able to see the source appearing in
the equations of motion of the ten-dimensional form-fields that couple to the corresponding
branes. In the GPPZ solution both scalars that are turned on correspond to components of
the ten-dimensional 3-form flux F5 and its dual F%, which couple electrically and magnetically
to D1 and D5 branes. One might wonder how this type of branes might appear in a set-up
in which one had only D3 branes to begin with. One possible explanation was suggested by
Polchinski and Strassler [48] in which they argue that the transverse F; flux can polarise
D3 branes, which makes them acquire dipole momenta under the F7. The fact that such
polarisation processes should be possible was first observed and described by Myers [50].
We saw that after the uplift various other Fi,, ) fluxes get turned on, which may or may
not lead to polarisations of the corresponding Dp branes. For example it was suggested
by Pilch and Warner after examining the ten-dimensional metric near the singularity that
7-branes might be present in the system too. If such claims are to be true, then it should be
possible to find the corresponding delta function source in the equations of motion of the

field strength that the branes couple to. Such a delta function source would appear because

169
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in the presence of branes the action has to be extended to contain the DBI part, which after

variation becomes the source in the equations of motion.

Finding a delta function source in the equations of motion is certainly not easy. As one
knows from the simple example of a point source in electrodynamics one needs to carefully
examine the equations of motion at points at which the field strength is singular and decide
whether a delta function appears. In what follows we would like to start with the example
of a point charge and develop an efficient method for point source detection which avoids

the manual examination of the equations of motion.

14.1 Looking for a Point Charge

In this section we would like to study the simple example of a static electric point charge
in four dimensions, and how it can be described via a source term in the action. We will
see how the delta function source appears in the equations of motion, and how it can also
be detected by integrating the electric flux. Thus let us consider the free theory of a U(1)

gauge potential C1 = A,dz*. Up to an irrelevant overall rescaling the action reads
S ~ /d493 F F* ~ /F2 A (xF). (14.1)

In the last term we have written the field strength as a 2-form F, = dC which is the
differential of the potential C;. To obtain the equations of motion we need to vary the action

with respect to A, which gives the familiar result
0, F" = 0. (14.2)

Before solving this equation of motion we may choose a gauge, which we set to the Coulomb
gauge by fixing d,A" = 0. It is now straightforward to show that the following potential
and field strength indeed solve the equation of motion (14.2):

i
AP = 5“0%% FO = —9,A° = %% (14.3)
In solving the equation of motion we have introduced the integration constant ¢, which, as
we know, is the charge of the point particle located at the centre of the coordinate system.
However, it turns out that we were too quick to conclude that the equations of motion
are solved, and what really is the case is that we have solved the equations of motion only
almost everywhere. Indeed, it is true that for r = 0 both the potential and the field strength

diverge, and we can verify the equation of motion only where the field strength is finite.
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Therefore, the precise statement is:

47 7o

giFY = L <5l ”) =0 (r#0). (14.4)

One may wonder what physical process the divergence at r = 0 corresponds to, and how
one could quantify it. One standard way is to regularise the divergence at r = 0, and to
show that 0, F'* indeed produces a delta function, which one interprets as a source. A more
systematic and cleaner way to arrive at the same conclusion is to integrate the equation of
motion against a sufficiently nice test function. If there is no source then the integral should
vanish, otherwise one will obtain a non-vanishing result. For our purposes the Gaussian
G(x) = ex™ is a good enough test function, not least because it falls off exponentially at
infinity and therefore allows integration by parts without picking up additional boundary
terms. One may object that our choice of the Gaussian centred at the coordinate origin is
biased by the knowledge that there should be a source at exactly that location, however,
any shifts of the Gaussian would lead to exactly the same results. The integration of the
equations of motion against the Gaussian test function can be performed analytically and

yields the following result:
/d?’x O FY"G(x /dga: :cZFOZef = q/ drr - e2 =q. (14.5)

The fact the the result is non-vanishing shows that the left-hand side of the equation of
motion, 9;F% cannot have been zero everywhere. Moreover, since we know that 9;F% = 0
everywhere except at » = 0 we can conclude that 9;F* must be proportional to a delta
function, and its integration against the Gaussian should give the Gaussian evaluated at the

origin times the coefficient in front of the delta function. Since G(0) = 1 we thus find
O FY = ¢63(z). (14.6)

This result can be viewed from two different angles. Taking one point of view one might say
that the solution in equation (14.3) is not a solution at all, which is a perfectly acceptable
claim. Taking a different perspective, however, one might say that the solution is correct,
but the equations of motion are missing the source on the right hand side. To obtain such a
source term the action has to be extended in such a way that upon variation with respect to
the potential A,, a source term appears. It is straightforward to check that such an extension

would have to be of the following form:
S 55185 with 65 = /d4x Ay J# ~ /Cl A (i), (14.7)

where we have defined the source 1-form J; = J,dz*, and J* = ¢&3(x)6*°. We can think of

this source as a 0-brane, and the source part of the action as an integral over the world-sheet
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of that brane, which is a string in 4 dimensions located at the origin in space and extending
infinitely in the time direction. This can be made manifest by rewriting the new source term

in the action in the following way:

5S:/CUWhU:q/AMQ®&:q Ch. (14.8)

brane world-sheet

In summary, by not discarding the invalid solution we found an extended version of our
theory which allows for electrically charged particles. The change in the action that produces
this extension is the integral of the potential that couples to that source over the source
world-sheet. Moreover we saw that such sources can appear in solutions to the equations
of motion that originate from an action in which the source was not accounted for and
that it can be detected by integrating a test function across the part of the space-time that
is transverse to the world-sheet of the source. The same logic generalises seamlessly to

higher-dimensional sources called p-branes, which shall be explored in the following section.

14.2 Sources for p-Branes in Flat Space

Analogously to the previous section we can start with an action for a 3-from field F3. If it
does couple to any source then it will be through its potential Co. This potential has to be
integrated over the world-volume of a two-dimensional source object, a 1-brane, and the
two-dimensional source shall be denoted by J;. Thus the 1-brane action we would like to

write is of the following form:

sw/&Aw@+@A@m 119)
14.9
N/&A@Rﬂﬂ Co.

1-brane world-sheet

After varying with respect to Cs we obtain the equation of motion for the field strength Fj

with a source term on the right-hand side:
O FHPe = Jre., (14.10)

The source J*° describes a two-dimensional object, a string extending along one direction in
space and another in time. For a frame in which the string extends spatially along the !

direction and sits at the origin of the (22, z3) plane the source would be given by
T~ q6(22)5 ()54, (14.11)

The tensorial indices of the source necessarily span the part of the space-time tangent space

that is parallel to the brane. This means that the equations of motion will exhibit a source
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term only in the case where the free tensor indices of the field strength are oriented along

the source, which in our adapted frame reads
0, FHO = J% = ¢5(2?)5(2?). (14.12)

As in the previous section we can detect the presence of the string by integrating the
source over the space transverse to the string against a Gaussian test function G(x) =
exp [%((xz)Q + (.%3)2)} The result is as in the case of the point particle the charge, and by

using the equation of motion and integrating by parts we see that

q= [d%z J"'G(z) = /d2 FH9,G(x /d2 FHOL(§ 027 + 8,32°)G ()

(z2,x3)- plane

= /d% z, FFLG(x). (14.13)

We observe that the charge is obtained by integrating the quantity x,f*“1*2 over the space
transverse to the brane and with the free indices v; pointing along the brane. We can
generalise to arbitrary frames by introducing a projector P ” ? onto the parallel directions on

the tangent space and write
q= /deJ_ Plpo T, FP7H G(21). (14.14)

It is clear that there is nothing special about choosing a 1-brane and exactly the same
computation can be carried out for arbitrary p-branes in flat space. In a realistic setting the
branes carry some mass and energy and therefore back-react onto the geometry warping it
in the vicinity of the source. We will investigate in the following section how the detection

of such sources can be approached.

14.3 Realistic Branes

Before studying the brane sources first note that even though form-fields can couple both
electrically and magnetically to branes, only the electric coupling needs to be studied. This
is because one can always pass to a dual description in which a magnetic source is viewed as

an electric source for the dual potential.

Let us now study the brane sources in curved space-time. Consider a (p + 1) potential Ap; 1
that couples electrically to a stack of N Dp-branes located at the origin of the transverse
space. The resulting geometry was described in detail in literature, and we will follow the

conventions used in [115]. The metric and the potential A, are described in terms of a
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warp factor H, which is given by

Q

H=1+ ",

p<T, (14.15)

where r is the radial coordinate in the space transverse to the brane, and the charge @ is
given by [115]
(27ls) PN g, 2mk/2

L = 14.16
(7 = pwos, (14.16)

0= T(h/2)

The symbol wy, denotes the surface area of a (k—1)-sphere S¥~! embedded in a k-dimensional
Euclidean space R¥. The warp factor H appears with complementary powers in front of the

parallel and transverse parts of the metric, while the components of the potential parallel to

the brane contain the inverse of H:

ds’> = H '2dst, |, + H'/?ds?, (14.17)
Aot p=H ' —1. (14.18)

The Yang-Mills part of the action of this set-up is of the standard form S ~ [ /=gF,12 A
(xFp+2). Note, however, that we now have to include the non-trivial metric contribution in
the measure of the integral. The variation of this action leads to the sourceless equation of
motion for the field strength Fj, 4. Because of the non-trivial metric the partial derivatives
from the previous section are replaced by covariant derivatives:

1

V=5

The last equality in the equation of motion above is due to the anti-symmetry of the indices

0=V, Ptz — Byy (/=g Frtws2) (14.19)

Ve will

in Fpy9: the Christoffel symbols corresponding to some free index v in V, F#
appear contracted as I'),F#~f and since I , is symmetric in its lower indices the whole
contribution vanishes. Thus, in sum the covariant derivative in V,, F'#1--#r+2 is really only
covariant with respect to the contracted index, and the identity follows from the definition

of the Christoffel symbols in terms of the metric.

Given the solution for the potential A, ; in (14.18) it is easy to derive the field strength
Fyi2 = dApy1. The non-vanishing components are given by Fy. , = 0;Ag..p = —(%H/HQ,
where the index 7 can be any of the transverse directions, and after raising the indices using

the inverse of the metric in (14.17) we obtain

o;H
V=9

It is noteworthy that the result it proportional to 1//—g. This factor cancels exactly the

FOP — _gP2Ry = HP2729,H = . (14.20)

equivalent contribution in the covariant derivative in (14.19), so that the equation of motion
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takes a very simple form:

0;0,H 0O H
V=9 V5

Further, given the expression for H in (14.15) it is easy to see that 0;0;H is identically

VP —

(14.21)

zero away from the origin of the transverse space, so its support is at most the surface
corresponding to r = 0. Since the term /—g has no zeroes away from the origin of the
transverse space we can conclude that the equation of motion V;F"P = ( is true almost
everywhere, except at r = 0, where further investigation is necessary. This observation is
completely analogous to the sources in flat space discussed earlier. As before we can decide
whether V; F"P is identically zero or proportional to a delta function source by integrating
against a flat Gaussian test function G(z) = e=3%'¢" = ¢=3™" The integral is elementary,

and to carry it out we integrate the covariant derivative by parts to get

/dgfpa: V=g ViF*? G(z)) = /d9*p3: V=g t'FP G(x])

= —(7T—pwo_pQ = —(21ls) "PNgs. (14.22)

Thus we do find the delta function source indeed, and the correct equation of motion
therefore reads

4 -1
ViF%P = ——(21l,)" PN g,6°7P(z;) (14.23)
V=9

This is the result we were looking for: we see that the equations of motion are solved almost
everywhere in the 10-dimensional space, apart from the points that are on the brane. As
before one can take this as a reason to discard the solution, or extend the action to include

the source that we just found by adding a DBI part to the action.

One can easily generalise this procedure to a stack of NV Dp branes located at an arbitrary
point &y in the transverse space. The only change in the solution enters through a coordinate

change in the warp factor:

Q
Using 0;H = —(7 — p)Q% the integration against the transverse Gaussian leads to
the following expression
_ - _ (T — Ty
/dg Px /_g :L,’LFZO...p G(l‘) = —(7 —p)Q/dg p$ |{f(—q_jb|9)p G(.’E) (1425)

We can carry out this integral analytically by shifting the integration variable to & — ¥ + &,
and writing the integration in adapted spherical coordinates where the angle between ¥ and

Zo is one of the angle coordinates 6 so that ¥¥y = xxgcosf. This gives

— (7T —p)QG(%y) / ds_pQ/ dz (z + xo cos ) exp <—;x2 — xx( COS 0) . (14.26)
0
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The integrand is a total derivative so that the radial integration is equal to unity. The
angular integration gives the surface area of an (8 — p)-sphere, which we denote by wy_, so
that the final result reads

— (27l,) PN g,G(Zy). (14.27)

This result is equivalent to the previous case of a delta function source at the origin, and
the only difference is the shift in the transverse direction. A further generalisation is to k
stacks of N; Dp-branes located at &;, with >; V; = N. In this case the warp-factor is given
by [116]

k
Qi N;

H=1 = —0). 14.28

+;|f—fil7*p’ Qi NQ ( )

Due to the linearity of H the computations performed for one stack carry over straightfor-

wardly to the k-stack case and we get
9— ... 7— Ni . -
/d Pr /=g x;F" P G(x) = —(27ls) PNy, Z WG(J}Z) (14.29)

For a continuous distribution o(Z) of Dp branes, [ o(#) = 1, the warp factor is given by

—)

H(Z) =1+ Q/dg_px' e o(&)

_f/‘?—p'

(14.30)

For the same reasons of linearity the generalisation is again straightforward and we get

/ APz /=g 2P G(x) = —(27l,) PNy, / P2 o(2)G(2), (14.31)

which is the continuous version of all the results obtained so far, and can be reduced to the

discrete case by an appropriate choice of the distribution o ().

Yet another generalisation that one could think of is the case of intersecting branes. As
an example we will consider stacks of D5 and D3 branes intersecting on a two-dimensional

surface, which in the notation of [115] shall be denoted by (2|D5 L D3). We can choose the

branes to be embedded in the 10-dimensional space as follows

t 1 2 3 4 5 6 7 8 9

D3 x x x x

Db X x x + X X X

The solution for this system can be expressed in terms of two warp factors Hs and Hjy
defined as
H3:1+%, H5:1+%, (1432)
r r
where Q)3 and )5 are some charges with a particular value [117, 118] that is of no relevance

to the current discussion. Note that both warp factors have exactly the same behaviour
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with respect to the radial coordinate r, even though they correspond to different branes.
The radial coordinate r in this case shall only refer to the three-dimensional part of the
transverse space that is shared by the D3 and D5 branes. This is a general feature and for
any system of intersecting branes with the common transverse space of dimension k all warp
factors will be of the form H = 1 + Q/r*2 so that [0, H ~ 6(z ). The solution for the

metric is given by
ds? = (HyHs)'/2|(H3Hz) ™' (~dt* + da? + da3)
+ Hy'de? + Hy Y(dad + do? 4 dod) + (do? + dad + d;vg)}, (14.33)
which reduces to the one stack case considered earlier by setting @3 = 0 or )5 = 0. The

field strengths expressed through the warp factors take exactly the same form as before:

8‘H3 (7) 6H5
- lz'{?f ) Fipizase = _}17527 (14.34)

6 _
Fipias =
and as before we can use the inverse of the metric above to raise the indices of the field
strengths. With /—g = H§/2H5_1/2 we obtain

(50123 _ 0iH3 [(7)i012456 _ 81H5‘ (14.35)
V=g’ V=g
In complete analogy to the previously considered cases the divergences of the field strengths

read

V,F(5)z‘0123 _ Ui Hs V‘F(7)i012456 _ U Hs (14 36)

1 - ) 1 — T .
V=g v—g

Given that 00 H; ~ 6%(x,) the detection of the branes can be performed through an

integration of the divergences V;F(®) and V;F(") against a Gaussian test function across

the common transverse space.

14.4 D-Branes in the Uplift

14.4.1 General Considerations

In this section we would like to apply the knowledge about the brane sources just developed
to our uplift setting and try to integrate various ten-dimensional form-fields in order to
investigate the presence of branes. There is one big difference between the toy examples of
the previous sections and the search of the branes in the uplift, namely that in the staged
settings we knew exactly which direction were parallel to the branes, and which transverse.

In our setting we cannot infer such knowledge, and so it is not possible a priori to write
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an integral with respect to the transverse coordinates only. Note however, that in the
previous examples one could in fact have integrated over the whole space rather than just
the transverse directions since the field strength did not depend on the parallel coordinates
z|. Thus the integral i dz| would just give the infinite world volume of the brane. To
regularise it we can extend the Gaussian to cover the parallel directions as well, so that each
would contribute a factor of [ dz e~2%" = \/2r. This extension to the integral over the
whole space would also eliminate the problem that d” Pz 14/—g is not an invariant measure,

while d'%z/=g is.

Another issue one might wonder about is how to deal with the angular coordinates that we
use in the uplift and whether or not they need to be treated differently in the integration.
One observation that one might make is that since angular coordinates describe compact
domains no regularisation via the Gaussian is necessary. Thus with respect to our coordinate
system where z# = {22!, 22, 23, 2%y, a1, ao, a3, 0, ¢}, with 2! being the time coordinate, we

can take the Gaussian to be
1
G(z) = exp —5(33% + 23+ 23 + 25 + )| (14.37)

Since we do not know a priori which directions on the tangent space correspond to transverse
and which to parallel directions we will need to integrate all components of the field strength.
Thus the integrals of the equations of motion that we would like to evaluate will be of the

following form

/dloa: —g V,, Frtr G(z)

= (4%, /=g Frtr Gz) — /dl% Vg i 9. Gz). (14.38)
Obulk

This is just partial integration written in terms of the product rule. As long as the bulk
boundary corresponds to {z!,... 2%} — 00 or y — oo the Gaussian G(z) will make sure
that the contribution from the boundary integral [ d”%,(...) vanishes. However, if there
are other horizons in the bulk, for example if the space-time is cut off at some finite value of
the radial coordinate y = yg, then there would be non-zero contributions, which require a
careful analysis. If there are no such horizons and therefore [ dgEM(. ..) = 0 we see that the
integration by parts does not lead to any problems related to the compact coordinates and

we obtain
/dlow —g V, Flte G(z) = — /dlox V—gFHte 9, G(x). (14.39)

We can further simplify by first noting that 9,G(z) = —2#G(z) for z,, € {z!,... 2%y}, and
0,G(x) = 0 whenever z* is one of the angular coordinates. Furthermore, because we know

that our specific solution does not depend on the coordinates {z!, 2%, 23, 24} the contribution
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where x* is one of these coordinates vanishes by parity. So we see that the only contribution

that we get is when x# = y = 2%, and in absence of boundary terms we can write

/le:U —g V, Frte G(z) = /dlox \/—g(ézly)F’“”'“P G(x). (14.40)

The integration formulas developed so far allow us to perform a check on the uplifted
form-fields. Since in the uplift all possible fluxes are turned on, it should be in principle
checked for each one of them whether or not they contain an electric D-brane source. The
most plausible attempts at explaining the GPPZ singularity are based on D5 branes [48]
and D7 branes [54], which is why we would like to start by focussing our attention on these

two cases.

14.4.2 Looking for D5 Branes

The D5 branes couple electrically to the Cg form, which produces an F% flux, therefore in
order to detect the presence of D5 branes we need to analyse the F7 equations of motion,

which in their source-less form are given by
Vi (magFM-75) = 0. (14.41)

The presence of D5 branes with electric coupling to F7 would produce a delta-function source
on the right-hand side of (14.41). Before applying the integration prescription in (14.40) we
recall that in principle we need to perform the integration for all possible configurations of
indices pg ... 7. In order to reduce the amount of data to analyse it is possible to reduce
the number of free indices in (14.41) by passing from F; to its dual F3. In our conventions

their components are related by

PO 1 P
Fivefn B — 2 (_g)=2 o Syp, o (14.42)
Note that whenever we write \/—g we mean the determinant of the full ten-dimensional
metric. The dualisation transforms the equation of motion of F; into the Bianchi identity
for the F3, which is given by

iy Fopisis) o = 0 (14.43)

Recall that sources that are electric with respect to F7 would appear as magnetic sources
in the Bianchi identity for its dual F5. To check for the presence of electric D5 source we

will integrate the equation of motion (14.41) over the bulk, as described in the previous

subsection. After substituting the equation of motion (14.41) into (14.40), and changing the
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integrand to the dual description we arrive at the following expression:

PO 1
/dl% V=9 Vi, (mag FI-17P) Ga) = gemmmo /dwx (yé[f;uFusuguw}a) G(z)

leulmuwz(ﬂ
6 U189 100"

(14.44)

As explained above, none of the fields in our solution depend on any of the coordinates
{z', 22,23, 2*}, and they enter in the integral Z(") only through the Gaussian G(x). Therefore

the integration with respect to these coordinates is trivial and contributes a factor of 4m2.

We can carry out the integration with respect to the SO(3) angles {1, aa, as}. Since they
do not appear in the warp factor it turns out that the integrand in (M is just a polynomial
in trigonometric functions in «;, and therefore the integration with respect to these angles
can be carried out analytically. After this is done many components in Z(*) vanish by parity,
and only the following six components remain non-zero:
Ié?6,9,1o;a Ié,77),8,9;a IEE,77),8,10;a with € {1,2}. (14.45)
Next the integration with respect to the other two angles # and ¢ can be studied. Since
they appear explicitly in the warp factor the integrand becomes a fraction with polynomials
in trigonometric functions in 6 and ¢ in the numerator and the denominator, and it seems
that in general an analytic evaluation would be impossible to perform. However, it is still
easy to check whether or not some of the integrals vanish by parity. It turns out that three
out of the six components of Z(") in (14.45) are set to zero, and the remaining non-zero
components are

IEEQ,Q,lO;l IE(),77),8,9;2 IE(>,77),8,10;1~ (14.46)

To make progress we can compute the remaining three integrals in y, 6, and ¢ numerically.
To do so, we need to give numerical values to all parameters entering in the integrals, which

in our case are the two constants C7 and Cy. The numerical values we will choose are
Ci =13 and Cy =1.0. (14.47)

Given the singular behaviour of the solution at y = C; we would like to regularise the
integration by setting the domain for the radial coordinate to y € [C] + ¢, 00|, where ¢ is
a cut-off parameter. We will evaluate the integral for various values of ¢ in order to check
to which value the series of integrals with decreasing ¢ converges. In [54] it was found that
as one approaches the singularity along the radial direction the solution starts exhibiting
singular behaviour along the boundary of the (6, ¢) domain. This singularity was referred to
by the authors of [54] as the ring singularity, and we are able to confirm its presence. In

view of this we will also regularise the angular integration with the same cut-off parameter
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c. The integration domains for y, 6, and ¢ will be therefore taken to be

y € [Cr,00] =y € [C] + ¢, 9] (14.48a)
0e0,7/2) = 0¢€[c/2,7/2—c/2] (14.48Db)
¢ e0,7] = ¢ € le,m—¢]. (14.48¢)

Note that we evaluate the radial integral over the domain [C7, oo] rather than [—oo, 0o]. The
reason is that it seems that the integrand is badly behaved in the interval y € [Co, C1], and
numerical integration fails there. This certainly requires a more thorough investigation, and
one might need to conclude that the space-time terminates at the radial value y = C; thus
introducing a new horizon. If this is the case then then one will need to also include the
boundary integration as described in equation (14.38). Leaving this issue for a thorough
investigation in future we evaluated the integrals IéTG),Q,lO;lv ZEE,77),8,9;27 and IE(),77),8,10;1 in the
regularised range as described in equation (14.48). The numerical integration was performed
using the software Mathematica [81]. We used various built in integration strategies in
order to ensure numerical stability. An example for such an integration performed for the
component Ié’?g79710;1 is shown in Figure 14.1. One can see that different integration methods
all give very similar results and converge to a non-zero value for vanishing cut-off ¢ — 0.
However, at this stage we cannot yet claim with certainty that this indeed corresponds to
D5 brane sources. As noted above it is still not clear whether or not one needs to include a
horizon at y = C1 and the corresponding boundary integral. The exploration of this issue is

subject of an ongoing investigation.

14.4.3 Looking for D7 Branes

The case of D7 branes can be processed similarly to the D5 brane case. The potential electric
sources for these branes will be found in the equations of motion for the Fy form-field, which
is given by

Vi Fibo By g PR Y =, (14.49)

B B _

The term j 4~ appearing in this equation is the axion-dilaton current defined by j iy =
8ﬂm7amaﬁ . If there are any D7 branes to which Fy electrically couples then the corresponding
source terms will appear on the right-hand side of equation (14.49). To find these sources
we will proceed similarly to the previous subsection and integrate the Fy equation of motion
over the bulk. Again it proves useful to change to the dual form, which is essentially the

axion-dilaton current. The precise relation between the components is the following:

s B _ (_g)—l/2 gh-fino jﬂ10a6~ (14.50)
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Figure 14.1: Numerical evaluation of IEET6),9,10;1 for a cut-off ¢ € {0,1}, and the radial
integration performed in the interval y € [C + ¢, 00). The upper graph shows the value of
the integral produced by different numerical integration methods, the lower graph shows
the standard deviation computed from the values of the integral corresponding to different
numerical integration methods.
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As in the case of F7, the equation of motion of Fy transforms into the Bianchi identity for
its dual and reads

; B . B Y

a[ﬁljﬂQ]a + iy Jpsja = 0. (14.51)

After performing similar steps as for the F7 in the previous section we arrive at the following

expression for the bulk integral which we would like to evaluate:
/dl% gV Fie B g B pinein 7 G(z)
T / a1 (y3?,, jﬂm]aﬂ i, Finaa) Gla) (14.52)

J o) o

= M1--p107(9) B
=e¢ o -

Note that the axion-dilaton matrix mqg is SO(3)-invariant and therefore does not depend
on the three SO(3) angles «;. Consequently also the axion-dilaton current j M;aﬁ does not
depend on «;, and all components of the Bianchi-identity (14.51) which refer to these angles
vanish. This descends down to the bulk integral (14.52) in which the integrand does not
depend on «;, and therefore the integration with respect to these angles is trivial and gives
a numerical factor of 473. Since as in the previous subsection the integrand does not depend

2

on the coordinates {z!, 2%, 23, 4}, we can also evaluate the corresponding integrals, which
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give a contribution equal to 472. In this way seven of the ten integrals are trivial and give a
cumulative contribution of 167°. The remaining non-vanishing components of Z,'(g)#1 Mo;aﬁ

are given by
5 5 5
7' )5,9;aﬁ 7' )5,10;aﬁ 7' )9,10;ozﬁ V{a, B} € {1,2}. (14.53)

After also taking into account the parity in 8 and ¢ only half of the components above turn

out to be non-vanishing, namely the following:

1 2 2

5 5 5
7 )5,9;1 7' )5,10;1 7' )9,1();1 (14.54)

2 1 1

5 5
Z( )5,9;2 I( )9,1();2 . (14.55)

5
I( )5,1();2

These are the integrals that have to be evaluated numerically. We applied to same strategy
as for the D5 branes and employed different integration methods to evaluate the regularised
integral over the domain described in (14.48) while gradually decreasing the cut-off. The
emerging results are qualitatively similar in that the integration seems to converge to a
non-zero value for a vanishing cut-off. However, the numerical stability of the integration
worsens as one approaches the singularity, and different numerical integration methods
spread significantly close to the cut-off value ¢ = 0, which should be taken as a sign that it
might be necessary to employ more sophisticated integration methods. We hope the the
ongoing investigation will be able to improve the results of the numerical analysis as well
as clarify the precise topology of the space-time and the existence or non-existence of a

space-time horizon at the critical radial value.
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Chapter 15
Summary and Conclusion

In this thesis we set off by reviewing and recapitulating the N' = 4 super Yang-Mill theory in
four dimensions and aspects related to it. Since the particular application of the holographic
principle used in the text is restricted to the case of the correspondence between four-
dimensional gauge theories and their gravitational duals, it proved useful to set the stage by
introducing the field theory in the conventions that were used throughout the rest of the text.
We devoted a substantial time to writing down the supersymmetry transformations and
checking explicitly that they are indeed a global symmetry of the action. This was important
for several reasons. On the one hand the superconformal multiplets that are used later in the
text are built by repeated application supersymmetry transformations on primary operators,
which is why we had to make sure that the transformations that we used were indeed correct
and consistent. On the other hand, even though the N' = 4 super Yang-Mills theory is one of
the most used field theories in the context of holography, maybe even the most used theory,
it was not possible to find an explicit check of the invariance of the action in literature
in the way we performed it. While we are sure that such a computation has been carried
out by others, and might exist in a written down form, we find that going through some
non-trivial steps as they appear in matching the cancellations between various terms might
well contribute to the common knowledge of the community and be henceforth available as a
useful resource. A handy side-effect of reviewing the supersymmetry transformations of the
N = 4 super Yang-Mills theory was the recollection and derivation of certain sigma matrix
identities. While various versions and listings for so(1,3) sigma matrices exist in literature,
of which we chose and reviewed a particular one, identities for s0(6) sigma matrices are
more difficult to come by. We derived and checked an extensive list of such identities, and

highlighted the group theoretical aspect of some of them in one of the appendices.

A part of the revision of the N’ = 4 theory was the construction of short superconformal
multiplets and their relation to the dual gravitational modes. Even though this material

is considered well-known we believe that we found a way to present some aspects of the
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duality in a new light. We pointed out that the mapping of the supergravity modes to
operators in short multiplets exhibits interesting patterns; after the mapping to the short
multiplet, different tensorial components of the same ten-dimensional field fall into columns,
and Kaluza-Klein towers together with their twins “grow” perpendicularly to the multiplets
sweeping across multiplets of all orders in a skewed way. We also found that the masses of
twinned Kaluza-Klein modes are related in a simple way when expressed in terms of the

order of the short multiplet that they correspond to.

The next part of the thesis built upon the idea that renormalisation group flows in field
theory can be holographically related to domain wall solutions in supergravity. While this
relation per se is widely known the novel idea that we developed is that for some classes
of operators the beta-functions are classical and can be therefore computed exactly. After
invoking the holographic dictionary it is possible to relate these exact beta-functions to
domain-wall solutions in the bulk, which, in turn allows us to exactly determine the scalar
potential to which these modes are subjected. We were able to confirm these findings by

comparison to known potentials that were derived non-holographically.

The renormalisation group flows we considered are triggered by certain deformations of
the N' = 4 super Yang-Mills theory which share the common property of preserving an
N = 1 symmetry. This property rendered the exact computation of the beta-function
possible in the first place, and served as an inspiration to try and classify all possible N' =1
preserving deformations. What has emerged from this idea is a systematic study of the
N = 1 decomposition of the N' = 4 short multiplets, and a complete understanding of
the operators that would appear in the action. We understood that each F-term chiral
operator is always accompanied by an additional chiral operator which turns on an extra
bulk mode. One might eliminate this operator by carefully choosing the tensorial structure

of the corresponding coupling.

During the study of F-term operators and the similar non-scalar operators corresponding to
top components of chiral superfields it became clear that what was found to be the so-called
twin operators can be modelled as D-terms, or more generally as top-components of certain
real superfields. On the field theory side the two types of operators can be grouped by writing
a deformation containing both twins in a unified manner. We expanded further on the
supersymmetric deformation by top components of compound superfields and studied what
a general deformation containing operators from an arbitrary number of short multiplets
of different orders would look like. It was not surprising to find that chiral superfields
can be generalised to arbitrary holomorphic functions thereof, since this is the well-known
superpotential formulation. A similar analysis performed on real superfields shows that they
can be generalised to harmonic functions, which neatly matches the harmonic functions
that were independently found [43] to appear in the bulk description of the deformations we

considered.
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A prototypical field theory deformation that our investigation built upon is the GPPZ
mass term, which can be found in the lowest order short multiplet and corresponds to
a mode in the graviton multiplet in the bulk. An additional attractive feature of the
GPPZ deformation is the presence of a non-trivial gaugino condensate. This feature is
quite similar to what happens in real-life strongly coupled field theories, which develop
condensates as well. The holographic description of condensates follows a similar pattern as
true field theory deformations in the sense that for each operator that condenses a dual bulk
mode has to be turned on. While we can classify the corresponding operators in the same
scheme we developed for true deformations it seems that our understanding of the precise
relationship between the energy dependence of the condensates and the bulk physics needs to
be further understood. Even though in the GPPZ case the application of the beta-function
formalism to the condensate yields the expected results, one needs to further investigate if
any amendments are necessary in the general case. In particular we would like to understand
the subtle role of non-perturbative contributions, as well as anomalies, which have been
seen appearing in such settings. A similar disclaimer also applies to the true deformations
that were considered. While A/ = 1 non-renormalisation theorems can be used at their full
power to exclude certain quantum corrections, the absence of the anomalous dimension for
operators in short multiplets is not expected to be upheld once the the N/ = 4 symmetry is
broken down to A/ = 1. Thus it would be desirable to investigate and quantify under which

conditions the absence of an anomalous dimension can be maintained.

Apart from understanding the condensates in the framework of the holographic beta function
there are various other natural research directions that present themselves. One limitation
of our beta-function description is that it requires a one-scalar truncation in the bulk and
correspondingly a one-operator deformation in the field theory. Moreover since the bulk
radial direction can be related to the energy scale of the field theory the deformation operator
must not mix with other operators along the RG flow, otherwise additional modes in the
bulk would be turned on. Thus a natural extension seems to find descriptions that involve
multiple operators and bulk modes. These could either be pure deformation operators like
the mass term we saw earlier, or contain both true deformations and vacuum expectation

values that place the theory in a different vacuum, similarly to the case of the GPPZ.

Yet another attractive application of the formalism we introduced is holography in cosmology
and inflation, aspects of which were introduced and discussed in [34, 119]. Domain wall
solutions in AdS spaces similar to those that we used for modelling of field theory RG
flows can be analytically continued to FLRW cosmologies that interpolate between a static
Einstein Universe and a de Sitter vacuum [34] with the potential of the theory obtained
from that of the AdS theory by inverting the overall sign. Some applications to the study of
the inflationary universe were made by McFadden and Skenderis [120, 121] which confirmed

that perturbative quantum field theories can be used to describe cosmological inflation
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holographically, and to obtain quantitative results. In doing so we can reverse the logic we
were using in the holographic-beta function computation presented in this thesis. One can
start with the gravity potential with the properties that are required by inflation or other
processes that we would like to study in cosmology, and then try to determine the form
of the beta-function that could generate such a potential. From this one could attempt to
construct a field theory dual that could be used to further study the gravity side and with it
the cosmology, thus closing the loop.

The second project discussed in detail in this thesis is the uplift of the GPPZ solution from
five to ten dimensions. Even though it was constructed almost twenty years ago, to this
day the GPPZ solution remains one of the most interesting applications of the holographic
duality. It shares many properties with field theories used to describe the Standard Model
of particles, therefore making it an excellent candidate for providing a holographic handle
on the treatment of otherwise hardly accessible strongly coupled non-perturbative physics
of the QCD. The original GPPZ solution was constructed by relating the N/ = 4 super
Yang-Mills theory deformed by a chiral mass term with the maximal gauged supergravity
in five dimensions. This theory exhibits such features as a running coupling constant,
gaugino condensation, and confinement in the infra-red, but as one descends down the energy
scale a singularity in the dual bulk description appears, indicating that the supergravity
approximation has reached the boundary of its possibilities. In a collaboration we generalised
and upgraded the supergravity construction by uplifting the five-dimensional solution to ten
dimensions, and initiated a study of the new features that come with it which were invisible

from the five-dimensional point of view.

The uplift of the GPPZ solution was made technically possible due to ideas of generalised
geometry and double field theory which were used by Samtleben and Hohm to formulate the
so-called exceptional field theory construction [58, 122, 123]. This framework was further
specialised to prove that any solution of five-dimensional gauged supergravity lifts to IIB
supergravity in ten dimensions [57], and provided explicit formulas how to construct such
uplifts. We used precisely these formulas to obtain a full ten-dimensional version of the
GPPZ solution including all non-trivial fluxes. Along the way it became clear that it makes
sense to uplift a generalised version of the GPPZ solution in which the complex phases of the
modes corresponding to the mass deformation and the gaugino condensate are kept, thereby
doubling the number of uplifted degrees of freedom from two to four. In fact, a fifth degree
of freedom needs to be included in form of a U(1) gauge field to make the uplift consistent.
The complex angles just mentioned enter completely covariantly in the ten-dimensional uplift
and can be related to two distinct local U(1) symmetries. One of these U(1) symmetries
can be identified as the counterpart of the U(1)g symmetry of the dual N’ =1 field theory.
The other U(1) might be part of the local composite symmetry that appears in the coset

formulation of the supergravity scalar fields, and is necessary to maintain a previously fixed
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gauge. However, the details of this additional U(1) still need to be better understood, and

we are hoping to find a precise quantitative way of putting it in the right context.

Once the full uplift was obtained we initiated various studies and tests of the solution. After
spending some time on numerically checking that the uplift indeed satisfies all equations
of motion we proceeded with the analysis of the asymptotic structure of the fields and
the metric near the conformal boundary. Since the GPPZ solution was obtained by a
deformation by relevant operators, the contribution of which vanishes in the deep UV, one
necessary condition for the consistency of the solution is that it asymptotes to the AdSs x S°
vacuum near the conformal boundary. One way of thinking of this property is as boundary
conditions under which the solution was constructed in the first place. After looking at
subleading orders of the axion-dilaton matrix we found perfect agreement with the zero
temperature limit of the asymptotic analysis of Freedman and Minahan [62], but differences
to the analysis of Polchinski and Strassler [48].

For an expansion to subleading orders it is worth to remember that the solution can be
seen as a deformation of a background containing an S° part. Thus a natural basis for a
systematic expansion of fields is in terms of S® harmonics. The deformation breaks the
SO(6) isometry group of the five-sphere to an SO(3) subgroup, which is why the expansion
only contains those harmonics that are invariant under this symmetry. We devoted some
effort to the construction of such harmonics using their defining differential equation, as well
as by using group theory techniques. We derived the full set of scalar harmonics with this
property, an infinite subset of vector harmonics, and the lowest tensor harmonics. In the
further course of this project it will be useful to continue this derivation and complete the

number of the SO(3) invariant harmonics to a full set.

While the asymptotic analysis is very useful as a consistency check of the holographic
dictionary, as well as for a comparison with the asymptotics found by other authors, the
expansion of our solution near the singularity is expected to provide new clues about its
nature and physical interpretation. The behaviour of the metric close to the singularity
was constructed by Pilch and Warner [54], and an interpretation was given that the near
singularity geometry that emerges is that of D7 branes. However, we find that if all terms
of the same order are kept in the expansion then this interpretation can no further be
maintained. In fact, from this new point of view it seems that the geometry might be much
rather that of D5 branes. This would be consistent with the dielectric interpretation of
Polchinski and Strassler [48], where D3 branes are polarised to D5 branes. In the same
article Polchinski and Strassler also derive an asymptotic form of the metric close to the
singularity. However, we were not able to match the terms in our expansion with those

arising in the asymptotic expansion in their article.

The question about the presence of D-branes, and the possibility that they source the

singularity is of central importance to the uplift and was in fact one of the motivations for
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this project. The evidence available so far, some examples of which were discussed earlier,
is based on the asymptotic expansion of fields and the metric, and is therefore of indirect
and ambiguous nature. Thus it seems indispensable to find a better and more direct way to
detect the presence or absence of D-branes. By their coupling to form fields D-branes would
appear as delta-function sources in the equations motion, and even though the equations of
motion have been verified to hold without the source terms, the possibility for the presence
of branes should not be considered as ruled out. We use an example of a classical point
charge to show that the delta function sources typically appear upon differentiation of some
fields, which, if not treated with extreme care are easily interpreted to give no source terms.
Thus it appears that the manual search for source terms in complicated equations of motion
can prove to resemble the search for a needle in a haystack, which is why a better method for
the source detection is necessary. As we showed it is possible to fold the equations of motion
with certain test functions over the space-time manifold, with the result being either exactly
zero, or non-zero depending on whether or not sources are present. However, there are
important caveats to be aware of. It is crucial to understand the geometry of the space-time
that one integrates over, in particular all of its horizons and boundaries, which have to be
taken into account. Additionally one needs to check for contributions from the singularity.
The integration itself might be non-trivial, and require special algebraic care in order to
yield the correct results. As for now we have numerical evidence that certain D-branes are
indeed in the system, but to make the definitive claim further analysis is necessary. We

hope to complete this stage of our study in future.



PArT IV

APPENDIX

191






Appendix A

Notation, Conventions, Identities

A.1 General Conventions

In this appendix we would like to list the conventions and identities that we used throughout
this thesis. For Lorentzian space-times of any dimension we will use the “mostly positive”

metric. In the four-dimensional Minkowski space it reads

N = diag(—,+,+,+) (A.1)
n = det(nu) = —1. (A.2)

We fix the conventions for the the two-dimensional and four-dimensional Levi-Civita tensors
in such a way that when written with all indices up they have the canonical positive sign.
Because the determinant of the four-dimensional Minkowski metric is negative, the four-
dimensional Levi-Civita tensor with all indices down acquires an additional sign. We also
define the two-dimensional Levi-Civita tensors with an additional minus sign so that the
SU(2) indices can be raised an lowered by contracting with the e-tensors from the left, which
is the standard convention.
€12 = (12 — (1234 _ €12 = €j5 = €1234 = — 1. (A.3)
The generalised Kronecker delta with n upper and n lower indices is defined as a completely
anti-symmetrised tensor product of n ordinary delta functions:
i1.in _ slin | sin]
05 =0, o (A.4)
Note that by anti-symmetrising the upper indices, we automatically anti-symmetrises the

lower indices. A contraction of two epsilon tensors using the Minkowski metric 7, can be
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expressed in terms of the generalised delta-function as follows:

eil,._inklmkmejl“'j"kl'“km = npnlm!§Jt I (A.5)

i1...0n

The definitions for the Riemann tensor, the Ricci tensor, and Ricci scalar are chosen to be

identical to those used by Freedman and van Proyen [63]:

R, = (-9, + 8,09, + 7 15 —T719)

uvp ur vt pUvT uT (AG)
= 2(—6[#1“;’],0 + F;[MF‘;}T)
Ry =R,," (A.7)
R=g"R,, A8
m

A.2 Summary of Conventions for the Uplift

This subsection is a plain list of various definitions that we used in this text, which serves as

an easy look up, irrespective of similar definitions that may exist elsewhere in literature.

V3 1+ e Ww=CD (e
m(y) = 5 log IEp=r=enl \/?:arctanh(e (v Cl)) (A.9)
1 14 e 3=C2) a3
O'(y) = 5 log <1_6_3(y_02) = arctanh(e 3y 02)) (AlO)
1 1
¢(y) =  log(2sinh(y — C1)) + < log(2sinh(3(y — C2)))
_GtG log cosh my) llo cosh o (y) Gy
9 g 3 3 g Y).
C1 <0y (A.12)
mo = V39, o9 = %6302. (A.13)
m(y) =moe ¥ +--- (A.14)
o(y) =200e Y 4+ =2(A\\)e Y + ... (A.15)
Ply)=y+- (A.16)

e =NA"83, (A.17)
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t=e W= C1), x =2(1—1)"2, A= 301702 < (A.18)
AdS boundary: Yy =0 t=0 X =2 A.19)
Singularity: y=C t=1 x=0 (A.20)
1+ A3 I3 1+
=% = MINS — A.21
A v e 1—t (A.21)
RG > SS > :17: (y17 y6) = (Ul,UQ,’LLg,’Ul,UQ,’Ug) = (QZ?fU (A22)
j2=u?+0%=1 (A.23)
0 0
u=R| 0 | =R U=R|sinfsing | = (A.24)
cos sin 6 cos ¢
R eS0O(3), 6€][0,7/2], ¢e€l0,n] (A.25)
wy =202 —1=1-27%=1u? - ? = cos(20) (A.26)
wy = 2U.U = sin(26) cos ¢ (A.27)
—1 S w1, w2 S 1 (A28)
(=1—-wi—w
= 45sin? 6 cos? § sin? ¢ (A.29)

= sin®(26) sin” ¢
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&
3
1
? (A.30)
3

= é\/4 sin?(20) sin? ¢ + 3 cos?(20)

A.3 Fields and the Radial Coordinate in GPPZ and PW

In this section we introduce the notation used by Girardello, Petrini, Porrati, and Zaffaroni
(GPPZ) [23] and by Pilch, Warner (PW) [54], and point out their similarities and differences.
The definitions that we decided to use in this text are listed above in Appendix A.2.

The GPPZ solution [23] is given as

Hly) = 5 loa(2sinh(y — c1)) + ¢ log(2sinh(3y — c2)) (A.31)
3 14+ e~ (—c1)
m(y) = \Qf log <1J_rz(ycl)> (A.32)

1+ e 3y—c2/3)

We have replaced the capital integration parameters C7 and Cs by the small-lettered ¢; and
2, otherwise the solution is as in equations (38)—(40) in [23]. The authors argue that on
physical grounds one should assume that c2 < 3¢;. The radial coordinate y used in GPPZ is
such that the AdS metric takes the form

ds* = e*ny, datdz” + dy®. (A.34)

The AdS boundary is at ¥y = oo, and corresponds to the UV of the field theory. The

asymptotics of the fields in the near boundary limit y — oo are the following;:

m(y) = V3e =) 1 0 (6—2(?/—01)) (A.35)
o(y) = e 3W=/3) L 0 (6—6(21—62/3)> . (A.36)

The fields m(y) and o(y) can also be rewritten as follows

m(y) = v/3arctanh (e_(y_cl)) (A.37)
o(y) = arctanh (6_3(3/_‘32/3)) : (A.38)
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Using these expressions it is easy to see that ¢(y) can be brought to the following form:

1 1
o(y) =y — ate/3 + > log(l — e~26)) 4 ~og(1 — e6(—c2/3))
2 2 6 (A.39)
= —M—lo coshM—llo cosh o (y) ‘
=Yy 9 g /3 3 g Y)-
The metric of the GPPZ domain-wall solution is given by
ds? = 62¢(y)77wdx”da:” + dy? (A.40)

and because m — 0 and ¢ — 0 as one approaches the boundary at y = oo it is clear from
equation (A.39) that in this limit the AdS geometry of (A.34) is recovered.

We can connect the GPPZ notation with the notation in Section 7 in PW. First the authors
define

uly) = e (A.41)
v(y) = emW/V3, (A.42)

Note that there is a typo above the equation (7.1) in [54] where there is a factor of 2 in the
definition of v(y) that should not be there. The correct definition is in their equation (6.4).
The radial coordinate r used in PW is equivalent to the radial coordinate y used in GPPZ

up to rescaling. With L being the AdS radius the precise correspondence is

y=7 (A.43)

Let us denote the integration constants used in PW by capital letters C; and C5 to distinguish
them from the integration constants ¢; and co used in GPPZ. Their identification is as

follows:

Cl = C1 (A44)
C2 = c2/3. (A.45)

The radial coordinate y and one of the integration constant C; can be traded for new
variables t and A defined as follows in PW:

t=e WC1) (A.46)
A= 3C1=C2), (A.47)
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The fields p and v expressed in terms of these new variables take a simple form:

14+ A3
plt) =\ T (A.48)
1+¢
=4/ —. A4
V() =/ (A.49)

Yet another definition of the radial coordinate introduced in PW is the following
X =2(1— )2 (A.50)

Furthermore Pilch and Warner define the field A(¢) that controls the domain-wall profile of

the metric:

1 1
A(t) = 6 log(t73 — A%t%) + 3 log(t™t —t) + C4
1 1
=y+ 6 log(1 — (A?)?) + 3 log(1 — t?)
(A.51)

pAtpt _10gV+f1

YT 3% T

2
1 m
=1y — - logcosho — logcosh —=.
Y 3 g g /3
After comparing the definition of ¢(y) in (A.39) and A(t) in (A.51) we see that they are

related by
Ch+ Oy

2
A shift of ¢(y) by a constant drops out in the first order equations of motion so that A(y) is

A=o¢+ (A.52)

also a solution. This shift freedom is equivalent to an integration constant that we could
have called C3 that appears after solving the equations of motion for ¢(y). Note that any
shift of ¢(y) by a finite constant leads to exactly the same asymptotic behaviour near the

boundary because ¢(y) — y as y becomes large and the constant shift can be neglected.

Finally PW define the following constants

V3 1
= —ecl, og = —e3¢2,

o= 0= 3

(A.53)

Given the asymptotics in equations (A.35)—(A.36) these definitions seem somewhat unnatural

as the asymptotic behaviour of the fields becomes

m(y) =2mgoe Y + ... (A.54)
o(y) =300e Y + ... (A.55)

Generically, solutions of such type can represent both a deformation of the dual field theory
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by an operator O and/or different vacua of the same theory characterised by a vacuum
expectation value (). The behaviour of the solution in the asymptotic AdS region, y — +00,
discriminates between the two options. For y — +o00, the asymptotic behaviour consist of a

non-normalisable part and a normalisable one
~ €(A_d)y(A+"')+6_Ay(B+"'), (A.56)
y—r—+00
where A is the conformal dimension of the dual operator and the dots in the leading
non-normalisable part are local functions of A while the dots in the normalisable part are
functions of both A and B. The coefficient A of the non-normalisable solution is interpreted
as a deformation of the Lagrangian, while the coefficient B of the normalisable solution is

related to the vacuum expectation value of the operator O dual to ¢ by B = 52—(0) [82].

In this light it is more natural to define
mo = V3e, oo = 2e372, (A.57)

which leads to the asymptotics

m(y) =moe ¥ + (A.58)
o) =5 Aati d)e*f‘y + (A.59)

In our problem we have A = 3 and d = 4, so that 2A — d = 2. In this way mg and
oo represent directly physical quantities, namely the mass deformation and the gaugino

condensate op = (A\).

A.4 Coordinates on the S°

For the internal manifold we think of the round sphere as embedded in RS described by the
coordinates y1, . . . yg, so that on the sphere 42 = 1. The six coordinates can be thought of

as split into two triplets
37: (yl, ce yﬁ) — (ul, u2,u3, U1, U2, Ug) = (’J, 17) (A.GO)

This definition is in agreement with that used by Pilch and Warner [54]. By definition it
is true that @2 + 72 = 1 and the diagonal SO(3) acts on u’ and v’ simultaneously in the

vector representation. In [54] the authors show that @ and ¥ can be written as
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with 6 € [0,7/2], ¢ € [0,7] and R = R(a1, a2, a3) a generic SO(3) matrix parametrised by

three Euler angles «;. In [54] the authors further define

% — 1 = cos(26) (A.62)
W =sin(26) cos ¢ (A.63)

2
2

IS

w1
w2
so that the internal manifold is described by the coordinates {1, ag, oz, w1, wa}. To write

form-fields in terms of these coordinates it is useful to compute the differentials du’ and dv’.

In the coordinates just introduced this translates to
dii = dR.iiy + R.diig = R.(R™'dR.ug + dilp). (A.64)

As explained in Appendix D the Maurer-Cartan form R™'dR can be decomposed into

left-invariant 1-forms o so that the differentials du’ can be written as
dit = R(ic"T" ug + dug), (A.65)

and analogously for dv®. Since in the quantities in which we are interested the SO(3) indices
are always contracted the overall factor of R in the differentials drops out. With the fact
that the SO(3) generators are given by (77)%* = i¢'/* in SO(3)-invariant expressions we can

substitute

du' — €% )" + dul) (A.66)

dv' — TFu)o* + dug. (A.67)
PW define the following two useful variables which we also used in this thesis:

(=1-w!—ws (A.68)
0= 1\/4(1 —w? —w?) — 3uw? = lm. (A.69)
3 1 2 1 3 1 2

More precisely, they will turn out to be the coefficients of the leading terms of the warp

factor in the t — 1 and A\ — 1, ¢ — 1 limits.

A.5 Supersymmetry

The so(1, 3) sigma matrices o* and o# that appear in calculations involving four-dimensional
Weyl fermions are defined in Appendix B. The two-dimensional epsilon tensors, which are

introduced in Appendix A.1 are defined in such a way that the SU(2) doublet index is raised
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and lowered by contractions with the epsilon tensor from the left:
v =y ba=capt? Pt =Py s =07 (A.70)

The convention for the contraction of two four-dimensional Weyl spinors follows the standard

that is recognised in most of the literature:
X = 1"Xa X = 7aX" - (A.71)

The tensor product of two equal Weyl spinors is anti-symmetric in the spinor index, and is
therefore proportional to the two-dimensional epsilon tensor. With the contraction definitions

as above this leads to the following identities

Vathp = %eam/? PopP = %ed%Q (A.72)
Pyl = —%EQBW Yathy = _%Eaﬁ'@y- (A.73)

It might be easier to remember where the minus sign is by raising or lowering one of the
spinor indices. If the spinor indices end up in the same positions as for the contraction

convention in equation (A.71) then the sign is positive, otherwise it is negative:

1 - 1o

Vs = 5857 Pat = 50507 (A.74)
1 — 1 .. -

Yot = —2 00y Vi = — 50597, (A.75)

Using these identities we can derive another useful identity involving four Grassmann

variables 6 and 6 and two sigma-matrices:

(050) (05" 0) = 3929‘277% (A.76)

In this thesis we used the definitions for the chiral derivatives and chiral coordinates that

are equivalent to the definition in Wess and Bagger [66] and read

0 ~ — 0
9o +i(c"0)a 0, 7a i(0c") a0y (A.TT)

y" = a2t + i gt = ot — ifo”h = (y*)T. (A.78)

D, =
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Appendix B

Sigma and Gamma Matrices

B.1 SO(1,3) Sigma Matrices

Our definition of the sigma matrices and their compounds differs from the standard refer-
ence [66] but is fairly common otherwise. Therefore we provide an extensive list of definitions

and identities that we used throughout this thesis.

The Pauli matrices are defined as usual:

R N AT
1 0 1 0 0 -1

and we define the extended Pauli matrices by

ol =(1,0% (B.2)
ghao = dBeaBoh (1,—0") (B.3)

BB
As usual, the two-dimensional sigma-matrices can be used to define the four-dimensional
gamma matrices. Note that there is a minus sign in the Clifford algebra since we chose the
Minkowski metric to have a minus sign in the time component. Some authors rescale the
gamma matrices by an imaginary unit v* — ¢v* in order to restore the canonical form of

the anti-commutator, but we prefer to keep the minus sign:

" 0 o BV v
M=1_ {7 = 291 (B.4)
ot 0

Throughout this thesis we will work in the two-dimensional Weyl basis, therefore the

properties of the four-dimensional gamma matrices are not really needed at this point. For

203
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the sake of completeness let us just remark that apart from the symmetric combination of
two gamma matrices, which gives the anti-commutator of the Clifford algebra one can also
form an anti-symmetric combination. With the correct pre-factor these matrices furnish a

four-dimensional (Dirac) spinor representation for the Lorentz algebra:

P = ol = (0 ) (B-5)
Y APT) = a0 A = Ty — P, (B.6)

B.1.1 Identities

This subsection is a collection of useful formulas involving the two-dimensional sigma matrices.
We tried to cover most of the formulas found in [66], adapted their form to our conventions,

and checked the validity of all formulas using computer software.

The symmetric product of two sigma-matrices is just the anti-commutator of the Clifford

algebra:
ohg¥) = —pv1 (B.7)
glho¥) = —pv1. (B.8)
It is useful to compute various traces over the space-time and SU(2) indices:
tr(oto”) = —2nt" (B.9)

ol = 5555 (B.10)

An important definition are the anti-symmetric products of the sigma matrices:

O-'LLUQ(B _ %(O_[,ua_u])a 20.[#«/5.1/]75 (Bll)
a_ul/o'zB _ %(6_[MO_V])(5LB — 2 [NO"YO—:]B (B12)

They are both traceless, self-dual and anti-self-dual, and each furnish a two-dimensional

(Weyl) spinor representation of the Lorentz algebra

tr(c"”) = tr(a"’) =0 (B.13)
1
ieu,,pgapg =0 (B.14)
1
§ew,po5p‘7 = —i0u (B.15)

[c' aP?] = i(nHPo?? + n otP — nhoa¥P — nPat) (B.16)
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(6", G77] = i(nHPG"" + "7 Gt — nlIGYP — ntPGHY) (B.17)

The tensors o and ¢#¥ with both spinor indices raised or lowered are symmetric in these

spinor indices

g g e FHv

7 ap =7 (ap) o~ 7 (ah) (B.18)
vl _ g (af) G gaw (6,

By combining the equations (B.7) and (B.8) for the symmetric products with the definitions
for the anti-symmetric products in (B.11) and (B.12) one arrives at formulas that allow to

expand products of two sigma matrices:
oto? = -1 — 2ict” (B.19)

gho” = —n1 — 2ich”. (B.20)

The following block of equations covers all possible expansions for the tensor products of

two sigma matrices, i.e. the cases where no SU(2) indices are contracted.

W vl _ . v %
Taa%g5 = 10h3€a5 — ZUZBQw (B.21)
o _ 1
ot ;6 —inﬂ €aB€s ,8+277p00a50 % (B.22)
1
o 055 _577“1’500360-45 + 277,,00520 5t zaaﬂeaﬁ — zaaﬁ af (B.23)
i ﬂf = —i000e 4 igofe” (B.24)
. 1 y
550y = —5 e e + 2 onia s (B.25)
o 1 s
5ol = _in,weaﬁeaﬁ + 2000580 i 00f e 4 i gofe? (B.26)
ol g1 = —igho P +idfe P, (B.27)
R 1 . : VB f
O'((;&U )PP = _577” 65&6 + 277an” aﬂo'lwﬁd (B.QS)

: 1
ot 5" PP = —577“”5555 + 20,00t P ’“’B 2560"” Prisle b (B.29)

&
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Next we list various products of three sigma matrices.

1
5(0“6”0” —oPa"ot) = —ie"P7 0, (B.30)
1
5(0"0"5" —5o"a") = i a, (B.31)
Lo wgvop oy sosvan BP GV _ gl P VP
5(000 + oP5"ot) = e’ — ol —n'Po (B.32)
1
5(6"0”5” + ofovct) =P — ntvef —nYPot (B.33)

After adding the symmetric and anti-symmetric cases we get expressions for general products

of three sigma matrices:

otc¥o? = p*Po¥ — n*oP — n"Pot — i o, (B.34)

GhaV P = nPsY — P — nYPGt + (P G, (B.35)

We can anti-symmetrise the last two indices in equations (B.34) and (B.35) to derive products

of o# and o* with ¢"? and o"”:
p=vp T ) 1 pvpo
ota¥"P = —int ol + 5o (B.36)

1
Gho" = —intlrgel — 56" 7o (B.37)

Finally, using (B.34) and (B.35) again and the trace identity (B.9) on obtains the trace of a

product of four sigma matrices:
1
3 tr(oha”oPa%) = nnf7 — nrPnte 4 o nvP et Pe (B.38)

1
5 tr(ota”aPa?) = ntnP? — nhPn"7 + nHontP — ietre. (B.39)

After symmetrising the space-time indices pairwise and scaling by appropriate factors one

obtains yet another set of useful identities

(U;W)aﬁ (Jpo)aﬁ = —pHlepolv 4 %E#VPU (B.40)

— ,n#[pnalv _ EG#VPU. (B.41)

(6")* (5°7)4 .

87
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B.1.2 Self-Duality Projector

In this section we will show that the matrices o#¥ ? and " & 5 defined in equations (B.11)
and (B.12) not only furnish the spinor representations 4 and 4 of the SO(1, 3), as was shown
in equations (B.16) and (B.17), but can also be used as projectors onto the self-dual and

anti-self-dual parts of anti-symmetric SO(1, 3) two-tensors, such as the field strength F),, .

Given an anti-symmetric two-tensor like field strength tensor F),, its Hodge dual is defined

as )
F,Lw = ie,uupanU- (B42)
Because of the minus sign in the inverse relation %ewpgﬁ P9 = —F),,, we can split the field

strength into its self-dual and anti-self-dual parts by writing
1 = 1 = 4 _
Fo = i(F’“’ —iFy) + §(F,w +iFu) = F, +F,,. (B.43)

The self-duality and anti-self-duality are checked by taking the Hodge dual

1 .

(*F+)#V - §€/ﬂlpaF+l“j = lF;j;, (B44)
1

(*Fi);u/ = §€quUF7 = _iF/;V- (B45)

We will now show that that 0"’ 5 and o', . are exactly the projectors on the self-dual part

&b
F ,fy and anti-self-dual part F,,, of the field strength tensor. The key insight needed for the
proof are the relations (B.14) and (B.15). They are used in a straightforward way to show
that

v - +
g aﬁFMV BF/LZ/ =0. (B46)

Thus given the decomposition F,, = FQZ + F),, we see that

o gy = o aﬂij =F (B.47)
s =" = Fog (B.48)

Finally, we can use the relation in (B.21) to obtain the splitting into F* and F~ in the
same equation:

U[“U]F =i FT

ad%g5 aB€ap — iFd_Beag (B.49)

From the group theory perspective this is the manifestation of the fact that under the
identification of the (complexified) algebra of the SO(1,3) with that of the SU(2) x SU(2),
the 6 of the SO(1, 3) becomes the (3,1) + (1, 3) of the SU(2) x SU(2):

6 — (3,1) + (1,3). (B.50)
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One can easily convince oneself by a simple counting that the field strength Fj,,) carries 6
independent components, and is therefore the 6 of the SO(1,3). As we saw in equations (B.18)
the matrices o
to the 3 of the left and right SU(2) factors in the SU(2) x SU(2). Finally the anti-symmetric

tensors €45 and €, ; are the singlets 1. To summarise we have

ap and ot Vd 5 are both symmetric in their SU(2) indices and so corresponds

F,, = 6 of the SO(1, 3) (B.51)
Fises5 = (3,1) of the SU(2) x SU(2) (B.52)
capF; = (1,3) of the SU(2) x SU(2). (B.53)

B.2 SO(6) Sigma Matrices

The six-dimensional sigma-matrices for the SO(6) can be introduced in a complete analogy
to the SO(1, 3) case, and we define them following [72] in terms of the 't Hooft symbols 7’5
and 7' 5. Note that the SU(4) epsilon tensor ¢AB¢D used in this subsection has nothing to

1234

do with the SO(1,3) group and therefore its components are given by € = €1234 = L.

»iAB B.54

B.55
B.56
B.57

1 2 3 -1 =2 .3
= {nABv NABsMAB>MAB> AR “7AB}

<l _ g1 2 3 1 .2 .3
Yap = {77,43» NAB>NMAB> —MAB> —MAB> —”7AB}

(B.54)
(B.55)
Mg = €iapa + 0;40p4 — 0;pdas (B.56)
(B.57)

Mup = €iaB14 — 0i40B4 + 0iB0 A4.

By their definition the matrices 7458 and EIIL‘ p are anti-symmetric in their spinor indices:

The symbols 3145 are also equivalent to their four-dimensional counterparts ok, in the
sense that they can be interpreted as Clebsch-Gordan coefficients for tensor products of two
spinor representations. There are two spinor representations in the SO(6), the 4 and the
4, and the sigma matrices project onto the real 6, which is the anti-symmetric part of the
tensor products of two spinors of the same chirality. This is part of a more general statement
that any representation in a tensor product of any two spinors can be projected out by an
anti-symmetric product of a number of sigma matrices. The same is true for Dirac fermions
with sigma matrices replaces by the gamma matrices. For SO(6) the tensor products of

spinors are

44=6+10 (B.59)
4%4=6+10 (B.60)
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4®4=1+15. (B.61)

To cover all representations in the tensor product of two SO(2N) spinors one needs to take
anti-symmetric products of 0,1,2, ..., N sigma matrices. Anti-symmetric products of more
than N sigma matrices can be reduced to products of fewer than N sigma matrices by
contractions with the 2/N-dimensional e-tensor of the SO(2/N). Thus for SO(6) we need to

take anti-symmetric products of up to three sigma matrices:

1,=1 (B.62)

»I=%=6 (B.63)

sIs/ =5yl =15 (B.64)
sUs/skl =10 (B.65)
SUs/TE = 10. (B.66)

Moreover, we recall that the s0(6) and the su(4) algebras are isomorphic to each other.
Under this identification the spinor representation 4 of the s0(6) becomes the fundamental
representation of the su(4), and the sigma matrices £/ and ¥/ can be viewed as a way to

represent the real 6 of the su(4) by an anti-symmetric pair of fundamental indices.

The identities that hold for /48 and EIA p are structurally very similar to those for their
four-dimensional counterparts o/, and 7"%® however sometimes they differ slightly, and
sometimes one finds new relations due to the altered index structure. Below we provide an
extensive list of identities and properties of the six-dimensional sigma matrices, all of which

have been checked using a computer algebra system.

First of all we note that X145 and 2{43 are related to each other both by complex
conjugation and the contraction with the e-tensor. These properties combined lead to the
reality conditions in equation (B.71) and (B.72) which ensure that the sigma matrices in
fact carry six real degrees of freedom, and not six complex ones. This is in agreement with

the fact that the 6 of the su(4) is a real representation.

(uhABY =31 5 (B.67)
(Shp) =xlAB (B.68)
seapopEh P = ¥p (B.69)

3N POPTLp =248 (B.70)
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(BM45)" = SeapepSop (B.71)
_ « 1 _
(Bhp) = 3¢ PS0p (B.72)

Various contraction of the vector and spinor indices lead to trace-like relations similar to the

four-dimensional case

EI,ABiilB — 4517 (B.73)
STABSL ) = 45167 (B.74)
STABY[,CD _ 9 ABCD (B.75)
EIABiéD = 2€ABCD- (B'76)

Also similarly to the four-dimensions the symmetric product of two sigma matrices is

proportional to the identity

nACTl, — 61754 (B.77)
S mCB = 51758 (B.78)

Again, while the symmetrisation of six-dimensional indices of 3! and 3! can be reduced,
as we just saw in equation (B.77), the anti-symmetrisation cannot. We therefore define
symbols 217 and ¥/ as follows:

B Ap = ZslhACsY, (B.79)

ISesnen, (B.80)

=IJ B
E A —

They have the property of being traceless and can be transformed into the negatives of

each other by swapping the spinor indices. Additionally one also finds an interesting trace

property:

=) =0=(E")," (B.81)
(B1)a" ==(")", (B.82)
tr (EIJEKL) _ (EIJ)AB(EKL)BA _ §IK§IL _ §ILSIK (B.83)

Finally, as should be expected, the symbols /7 furnish the spinor representation 4 of the
SO(6), this is in complete analogy to the sigma matrices o in the case of the Lorentz

group. Since it holds that %!/ = —(EU)*, the symbols 3!/ correspond to the conjugate
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spinor representation 4. One can check that /7 and 37 indeed represent the algebra by

computing their commutators:

[ZIJ,EKL] —_ ’i(SIKEJL + idJLEIK . i(SILEJK _ idJKEIL (B84)
[EIJ,EKL] — i(SIKiJL + i(SJLEIK . i(SILiJK _ idJKiIL ) (B85)

We can construct new sigma matrices by contractions with the e-tensor followed by an
anti-symmetrisation. Unlike in four dimensions, the e-tensor that we need to use has four
indices so that we not just raise or lower an index but end up with four of them:

(ZIJ)ABCD _ (EIJ)[ABCD] =1 {(ZIJ)AEeEBCD _ (EIJ>BE€EACD} (B.86)

") apep = E)apep) = 3 {@U)AEGEBCD - (E”)BEGEACD} : (B.87)

As before it is useful to expand various products of pairs of ©/45 and iﬁ\ p in which the
vector indices are either symmetrised or anti-symmetrised. By adding the symmetrised
and anti-symmetrised identities one also obtains the tensor products of two sigma-matrices

without any symmetrisation.

SUABRJICD _ 9yl yAPCP (B.88)
SISV =
2[ABEC]D = 2Z(ZIJ)ABCD (B.89)
= . A B
SABSY, = 4i(nM) 6% (B.90)
3
2 ABx2J)CD _ ZéIJGABCD 4 (EIK)[AE<2JK)B]FEEFCD (B.91)
o 3 _ _
s{sl = 20" eancp + (B P (&) g epren (B.92)

<=7 3 A(B A B
Z(IABEC)D _ 551J5[C 5D] + Q(E]K)[ C(EJK) }D] (B.93)

[

3
W AByJ CD _ Z51J€ABCD + 22»(21J)ABCD n (EIK)[AE(ZJK)B]FEEFCD (B.94)
. 3 o _ _
SheSip = 15”6ABCD +2i(E") spep + )" E) g erron (B.95)
= 3 A(B 4 A (B A B
SIABYY, = 55”5[0 op) +4i(uM)H 6P 4 2(mTH L (27) P, (B.96)
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All these identities involving two sigma-matrices are various manifestations of the group
theoretical fact that in SO(6) the product of the fundamental representations decomposes
as 6 ® 6 =1+ 15+ 20". We can contract two of the spinor indices to obtain another useful
identity

$IACTI g = 61764 + 2i(21) Y. (B.97)

After adding a third sigma matrix and contracting various indices one arrives at some useful

properties for products of three sigma matrices

1 — —
5 (BIT75K 4+ 2Tl = K5 — §lnk - §TK 5 (B.983)
1 ey — — — — —
5 (B'2/5K + SRS = KT - §TK - K (B.99)
1 = = = ' =
5 (EIEJEK _ EKEJEI) — ylIsIynK] _ _%GIJKLMNELEMZN (B.100)
T N S -
3 (ZIEJEK _ ZKZJEI) — SUyITE] _ %EIJKLMNELZMZN (B.101)
SITInE = §IKy) _ §lInK _ /Ky L slis 5K (B.102)
TINITK = §IKST _ gIIEK _ sIKSI | FURITE], (B.103)

It is interesting that in equations (B.100) and (B.101) the anti-symmetrisation of only two
indices automatically anti-symmetrises all three of them. The second equality in the same
set of equations is due to the fact that for all SO(2N) groups an anti-symmetric N-tensor is
in fact reducible and decomposes into its self-dual and anti-self-dual parts. For SO(6) this
corresponds to the reducible (g) = 20 which decomposes into 10 + 10. Thus the right-hand
side of one of the equations (B.100) and (B.101) is the 10 and the other one is the 10. The
equations (B.102) and (B.103) can also be viewed from the group theory perspective and
correspond to the decomposition 6 ® 6 ® 6 = 3 x 6 + (10 + 10) + 50 + 2 x 64. The first
three terms on the right-hand side of (B.102) and (B.103) correspond to the 3 x 6 while
the remaining term is the 10 in one of the equations and the 10 in the other one. We see
that there are no terms corresponding to the 50 and 2 x 64. The reason is the following.
Were the spinor indices on the three sigma matrices on the left-hand side not contracted,
then we would have expected that all representations of the tensor product decomposition
should appear on the right-hand side. But since we did contract the spinor indices to get the
matrix multiplication on the left-hand side, the same index contraction on the right-hand

side made all entries in the matrices corresponding to the 50 and the 64 vanish, which is
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why they disappeared from the decomposition.

By adding yet another sigma-matrix and taking the traces we obtain

tr (RITRNTE) = a(s1 g — 51K 4 557K (B.104)
tr (SID/THDE) = 4(s1KE — 51 TE 4 51E67E), (B.105)

Let us just for completeness sake mention that also in six dimensions the gamma matrices
in Weyl basis can be defined in terms of the sigma matrices. The definition is completely

analogous to four dimensions:

41 — 0 xf {31,47} = —2671. (B.106)
>0 ’

Also here it is possible to show that properly normalised and anti-symmetrised products of

two gamma-matrices represent the so(6) algebra:

AIT VAT ] E (aIaT | sIT
' =AM A fz(vv +46'7) (B.107)

[,?IJ,,?KL] — Z'((SIK’?JL —|—(5JL’$/IK o 5IL,S/JK o 5JK,3/IL)' (B108)
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Appendix C

Quartic Bulk Couplings from
Witten Diagrams

In this appendix we would like to demonstrate how the results for the scalar potential in
supergravity can be related to quantities on the field theory side. In particular, we will
see that the most direct way to probe supergravity couplings is to compute field theory

correlation functions of very specific operators.

Recall that in the previous chapter we showed how a specific deformation of the field theory by
a chiral primary operator O of conformal dimension A allows to relate the beta function for
the induced RG flow to the supergravity scalar potential for the modes that holographically
correspond to Oa. In particular, we are able to integrate the differential equation for the
beta function in the specific case under consideration and obtain an expression for the
supergravity scalar potential. This scalar potential, expanded in a power series, provides a

prediction for n-point supergravity couplings to all orders.

After having obtained the scalar potential for the supergravity it would be desirable to
perform some consistency checks, and confirm that the assumptions that were made in the
derivation are indeed correct. To perform the easiest non-trivial test for the supergravity
couplings, in the following sections we would like to describe the holographic computation of
a generic four point function of chiral primary operators Oa. Later we can specialise to the
operators that fulfil the assumptions made in the holographic beta function computation

and test the predications made by the calculation.

Let us recall how holography relates field theory correlation functions to modes on the
gravity side. The fundamental idea of holography is that the string theory partition function
in the bulk should be equivalent to the boundary field theory partition function [13]:

Zstring = ZpT (Cl)

215
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On the field theory side we can define the generating functional for connected correlations

T where J collectively denotes all possible sources.

functions I'[.J] by writing Zpp = e~
Another proposition of holography is that a source Ja for a given field theory operator
Oa can be associated with a bulk mode ¢a. In the supergravity limit, where the 't Hooft
coupling A is assumed to be large, this translates to the fact that operators Oa in the UV of
the boundary theory are sourced by bulk supergravity modes close to the boundary, thus we
can identify Jn with the boundary values ¢y o of the supergravity modes ¢a. In the saddle
point approximation the string partition function, that is now actually the supergravity
partition function is dominated by the extremal value of the supergravity action, in other
words the on-shell action where the equations of motion are solved with boundary conditions

¢o,a- In sum, the saddle point approximation allows us to write

Dlpo,a] = Sopiianldo,al (C.2)

where on the left side we have replaced the sources J by the boundary conditions ¢g as
explained above, and the supergravity action on the right side is a functional of the said
boundary conditions. Given this identification, and the definition of the generating functional,
we see that the field theory correlation functions can be computed by taking functional
derivatives of the on shell supergravity action with respect to the sources, which we identified

with the boundary conditions ¢ for the supergravity modes [13, 14, 124]:

(O, (11)0, (22) ) = - %i et mi o Sl (©3)
The non-trivial part at this point is to find solutions to the supergravity equations of motion
given the boundary conditions ¢y A. Given the complexity of the supergravity theory, in the
general case the full solutions cannot be obtained. To still be able to obtain the correlators,
one solves the equations of motion perturbatively order by order in fields. Because in (C.3)
the sources are set to zero after functional derivatives are taken, to get an expression for
the n-point function one needs to solve the equations of motion to the n-th order in the

corresponding fields.

Very much like for the Feynman diagrams, perturbative solutions of the supergravity
equations of motion can be visualised diagrammatically. One such sample diagram, called
Witten diagram is shown below

X T3

) T4
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Unlike for Feynman diagrams, however, here the computations are done in position space,
and the big circle represents the bulk boundary on which the field theory lives. The
internal vertices represent the couplings of the supergravity theory, and we have two types
of propagators. The ones that connect internal vertices to points on the boundary are called
bulk to boundary propagators K (z,Z). Those incorporate boundary conditions that have to
be applied at first order in perturbation theory, for example, if the first order equation for a
scalar ¢(z) = ¢(O)(z) 4 ... is given by

(@ -m?)¢® =0 (C.4)

then it can be solved in terms of the boundary condition ¢ (%) by

02 = [dla K (2, m)60(@) (c5)
with the Green’s function K (z,Z) that we call the the bulk to boundary propagator that
obeys

(O, —m?*)K(z,%) =0 (C.6)

lim 259K (2,%) = 6(Z — 7). (C.7)

20—0

Note that we are using a coordinate system for the Euclidean AdS space in which the metric
is given by

1
ds* = Z—g(dzg + dz?) G = 20 20 (C.8)

with z = (20, %), 20 = 0 corresponding to the AdS boundary, and zp = oo to the origin.
Field theory amplitudes with Lorentzian signature can be obtained by analytic continuation.

The asymptotic behaviour of K (z, ) near the boundary in (C.7) reflects the fact that the
boundary conditions for the fields are imposed such that [11]

d(z) *3° 28 ~dg0(2) (C.9)

As before, d is the dimension of the boundary manifold where the field theory lives, thus the
bulk manifold is a (d + 1)-dimensional AdS space. The operator dimension A is related to
the mass of ¢ by m? = A(A — d). One can show that K(z, ) is given by [11, 124, 125]

A
o 20
KA(Z,.T) —CA <z§+<§—f)2> (ClO)
with T(A) d T(d/2)

CA: nd/QF(A_d/Q) for A> 5, Cd/QZW. (Cll)

Higher orders in perturbation theory will involve bulk to bulk propagators G(z, z’) since
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equations for higher orders in perturbation theory are not solved in terms of boundary
conditions, but in terms of lower order solutions, which are bulk fields, such as ¢(°)(z). These
Green’s functions are represented by lines in Witten diagrams that connect two internal
vertices. Their explicit form is known [125], but is not relevant for us. What is important is

the fact that being Green’s functions they satisfy

6(z—2)

= ()™ 5(z = 2) (C.12)

- (O, - m2)G(z, 2) =

The problem that the rest of this chapter is devoted to is the holographic computation of the
four point function of a chiral primary operator Oa(x). It is obvious that the computation

will involve the evaluation of the following Witten diagrams
A X xg xS xg

’
and additionally analogous t and u channel graphs for the exchange diagrams above. The
three exchange diagrams above show the contributions from the scalar, vector, and graviton
exchange, and it is part of the problem to correctly determine the exchanged particles, at
least for the scalar and the vector case. An additional inherent difficulty of the evaluation of
exchange diagrams is the fact that they contain two internal vertices which means that two

bulk integrals have to be carried out. An elegant way to simplify such diagrams was found

in [126], which we will describe in the next section and use for the evaluation.

The results that we will obtain for the exchange diagrams can be summarised as

(Oa(21)Oa(22)OA(73)OA(74)) o
e

> Cr [ Kaslw, @) Ka-i(w, #)Ka(w,82)Ka(w, ) (C.13)
=1 w

x (D (w, &) + D" (w, 7;) + D" (w, 7))

which involves a finite sum over four point contact bulk diagrams with pre-factors C; and a
various factors for the scalar (s) vector (v) and the tensor (t) exchange contributions that
need to be determined. We will explain these building blocks and give their explicit form in

the following sections.
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C.1 Reduction of Exchange Diagrams

In this section we would like to discuss the method for the reduction of exchange Witten
diagrams for four point amplitudes involving scalar, vector, and graviton exchange to finite
sums of four point contact graphs. The general procedure was discussed by [126], here we
would like to outline the method, and complement by additional computations. The results

will be used in the next section for a concrete case.

As mentioned in the previous section, unlike the contact Witten diagram, which corresponds
to one bulk integral, the exchange graphs require the computation of two bulk integrals. In
the past the evaluation of one of the two integrals was done by expanding the integrand in a
power series and re-summing the terms back in a clever way, as was done in [125, 127, 128]
and other papers. The procedure of expansion and summation is quite involved, and given
the relatively simple final expressions obtained, the authors of [126] recognised that there
could be a simpler method. The general idea is that one can apply (0 —m?) to one of the
bulk integrals and use the defining property of the bulk to bulk propagators in (C.12) to
get a differential equation, all while using the conformal symmetry to reduce the number of
degrees of freedom. The resulting differential equation can be solved recursively and the

recursion is finite for exactly those sets of parameters that correspond to supergravity.

In what follows we would like to sketch the main steps for the scalar exchange which were
described in [126]. The idea for the vector and graviton exchange is similar, although the
complexity is higher due to tensorial structures involved. For these cases we will limit

ourselves to a summary of the relevant results that we will need for our computation.

Using AdS coordinates as in the previous section, consider the following four point scalar

fg
T 4

As explained in the previous section, the graph contributes to the four point function

exchange Witten diagram:

(Oa, (T1)On, (T2)Ons (T3)On, (T4)) (C.14)

and represents the following amplitude

(&1, T, B3, ) — / / Ka, (2, 81) K a, (2, 73)G & (2 w) K o, (0, T2) K a, (w0, 7)  (C.15)
w z
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with the following short-hand notation that we will be using throughout the rest of the
chapter

1
— d+1 _ d+1

AdS AdS

Further, we will usually use & to denote boundary coordinates and add a vector arrow to
distinguish them from bulk coordinates, which will be denoted by z or w without the vector

arrow.

Before we proceed, we would like to discuss some identities and conventions regarding the
coordinates and their symmetry transformations, as these will be useful at several points

throughout further computations.

First recall that in the coordinates we are using the metric is given by g, = %(LW and
g = det(guw) = 2P, with D = d + 1 the dimension of the AdS space. As in [126]
we would like to write coordinate contractions using ¢,, rather than g,,, for example
22 = 2M2Y = >, 22", One of the key ingredients for the computation is the use of the
inversion transformation, which is given by z# = j%, in other words, 2% = 1/(2/ )2. Consider
the transformation of (z — w)? under inversions:

1 1 Jdw w422 -2 (2 —w)?

Z/Q w/2 Z/waz Z/Qw/2 Z/ZwIQ ( )

(z—w)* =22 +w?— 22w =

This allows us to define the so-called “chordal distance” u that is now manifestly invariant

under inversions:

(2 —w)”

Note also that because z = (zg, Z), w = (wg, W) we can split off the d-dimensional coordinates
in the chordal distance and write it as
2 (> 2
(20 — wo)” + (Z — W)

= 1
U 270100 (C.19)

which reveals that the chordal distance is also invariant under the d-dimensional Poincaré
subgroup of the conformal group that acts on the components z and @. It is known [125,
129, 130] that the bulk to bulk propagator G(z,w) is in fact a function of the chordal
distance only, and therefore we can write G(z,w) — G(u) and it follows from the properties
of the chordal distance that G(u) is invariant under D-dimensional bulk inversions and the

d-dimensional boundary Poincaré group.

It is natural to re-interpret boundary coordinates Z as bulk coordinates with x = (0, Z) and

write expressions like (z — :E)Q. This allows us to write bulk to boundary propagators as

= <0 ° 20 s —1\2A L, E?

(z -2
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Finally let us show that the bulk integration measure d”z,/g is invariant under bulk
inversions. Given the inversion transformation z# = i%, the corresponding Jacobian is given
by

ozt 2 zHz 9
=g =7 ((55 -2 zQV) =z2J, (2). (C.21)
To compute the Jacobian determinant J = det(J¥, ) observe that J#,Jf, = 6, from where

it follows that J = \/det(2%5})) = 22P . Thus we conclude immediately that

J" (2)

D
1 2 1
dPzg=dP2— = dDz’% —dPy (L) =Py — =adP VY (C.22)
20 0 20 (20)

Given these transformations it is now not too difficult to follow the steps in [126]. Start with
the amplitude defined in (C.15) and perform a coordinate translation on both integration
variables by Z1: z — z + Z1, w — w + Z1. Because the bulk to bulk propagator is invariant

under this shift, the net effect is the shift in the bulk to boundary propagators and we get
S(Z1, Ta, T3, Ta) = / /KAl(z,O)KAg(z, T31)G5 (W) K a, (w0, 721 Ka, (0, 71)  (C.23)

with #'3; = Z3 — Z1 and similarly for other coordinates. Now we can split the amplitude into

two parts as follows

(&1, o, T, Ba) = / Alw, F51) K a, (w, 721 ) K o, (w, F41) (C.24)
Afw, Fa1) = / Ka, (2,0)Ka, (2 #31)G 5 (1) (C.25)

and convert A(w,Z31) into an expression without integrals, which reduces the expression for
the whole amplitude to only one bulk integration. First, apply inversion to ¥31, z, and w.

Using the identities for coordinate inversions above it is easy to check that this leads to
Aw, T31) = |Z31| >23Cp, Ca (W' — ) (C.26)

Iw) = [ Gafw)()™ (“)A . (C.27)

The normalisation constants C'a for the bulk to boundary propagators were defined in (C.11),
mind also the difference in the argument of I in the equations above. It is easy to see that
I(w) = \213T(w/)\), A1z = Ay — As, for any real number A. Choose A = wy such that

e <1, “7> (C.28)

wo wo

and by the fact that I(w) is invariant under rotations in @ we realise that I(w/wp) only
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|| ;
depends on wo? OF equivalently on

-
w? 14_%'

(C.29)

This allows us to reduce the number of degrees of freedom in I(w) further, and we can write
I(w) = (wo)** f(1). (C.30)

Given that I(w) contains the bulk to bulk propagator, which, in turn, satisfies its defining
differential equation (C.12), one can apply the corresponding differential operator to f(t),
which results in a differential equation. Imposing asymptotic conditions on the behaviour of
f(t) selects one solution, and the differential equation can be solved recursively resulting in

a finite sum i 3
max A _ A
f(t) = Z aktk Fmin = i Fmax = Az — 1. (CS].)
k:kmin 2

This is only true if X7 is a positive integer, where

_A1+A3:FA

Ei
2 )

(C.32)

in which case it is also true that kpin < kmax. In the cases which we will be considering this
condition is fulfilled up to the case ¥ = 0, this extremal case will be commented on in the

next section.

The coefficients aj were given in [126] in a recursive form. We can re-sum the recursion to

obtain the following expression for kmin < k < kmax:

_1rEhHrET -9 T(k)T(k + Ass)
4 T(As)T(A1) (k28 4 )T (k + Qusthd )

ag (C.33)

Now we can go all steps backwards and re-substitute the expressions obtained into the
amplitude S(z;). As a last step, shift the only remaining integration variable w backwards

to w — w — T1 to get

k
. o~ OaCry (o, 26—
S($1,$2,l’3,1’4): Z akic 6 3 |:E31|2k 2A3X (034)
k:kmin k A13+k

></KA13+k(w7fl)Kk(%f3)KA2(w7f2)KA4(w,f4) (C.35)
w

We can reduce the number of constant pre-factors by redefining a to incorporate the C; in

it, and also shift the summation variable k to [ = Ag — k to render the expression symmetric
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in 1 and #3. This leads to

»+
S(¥1, T, T3, T4) = Zal|f31|_2l/ K, —i(w, 71) Kay—i(w, T3) Ka, (w, T2) K, (w0, 74)
I=1 w
(C.36)
) I(A;— ¢ — DI (Az -
—1+1)  T(A—HI(As -

1 r(eHrE- - —1)
a; =

TAT(St -1+ DI(S -

(C.37)

ICTISHINTIY
NNl

)

We see that the net result is that a scalar exchange diagram can be reduced to a finite sum

over contact graphs, or pictorially:

53 fl fg
>+

= Zal’l_"gl’_m (038)
=1
f4 To 4

This completes the discussion of the scalar exchange diagram, and we can proceed with

81

the vector and graviton exchange diagrams. The basic idea remains the same: split the
amplitude into two parts, convert one of them into a differential equation, and solve it
recursively. Some additional complexity is added by the tensorial structures that appear.
For this reason, we will abstain from going into the details of the derivation and will list the
net outcome, which is similar to the scalar exchange: the diagram reduces to a sum over

contact graphs weighted by some coefficients.

For the vector exchange it is assumed that the vector fields couple to conserved currents of
the scalars, in other words, a cubic vertex with a vector field will have two scalar fields of the
same dimension attached, and we must identify A; = Az and Ay = Ay4. This also implies
that the scalar that couples to the vector has a corresponding charge and the correlator that
the vector exchange diagram contributes to is (Oa, (21)Oa, (22)O} (73)OR, (74)). Thus the

amplitude we want to compute corresponds to the following Witten diagram
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Splitting this amplitude in the same way as for the scalar exchange and following similar

steps one can show that the amplitude is given by

I+
V (&1, %2, T3, 74) = Zaz|f31|72l/ Kay—1(w, @) Kay i (w, T3) Ka, (w, o) Ka, (W, Z4) X
=1 w

(C.40)

dirE- = == B
T
It = A — (‘l;z - i (d—2)* + 4m2) : (C.43)

Finally, let us consider the graviton exchange. After making a similar assumption as for the
vector, namely that the graviton couples to scalar bilinears of scalars of the same dimension,

we would like to evaluate the following diagram:

G(&y, T, 3, T4) = (C.44)
:?4
_ / / THY (2, 21, 82) Gyt (w) T (w, T, T) (C.45)
L. . . 1
T (w, &2, Z4) = DK, (w, T2) Dy K, (w, Z4) — igw,x (C.46)
X [ DpK a, (w,35) DK a, (w, #1) + Ao(Ag — d)Ka, (w, 75) Ka, (w, 7)]
(C.47)

Applying similar techniques as previously, we obtain the following result for the graviton

exchange:
A1+17%
G(Z1, T2, T3, Ta) = Y az|1531|_2l/ K, —i(w, 1) Ka, (w0, T3) Ka, (w, T2) Ka, (w0, Z4) X
=1 w
(C.48)
. " S " d(d — Az)
X [J,uo(w — a;l)Juo(w — JZQ)JV()(’LU — :Iil)Jyo(w — .CC4) — Ag(d — 1)
(
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A} T(A+1-9) T(A +)T(A -4 )

22 (C.50)
2T(A+1-g—1+1)T(A1=1) 1A, —9)°

a; =

C.2 Exchange Diagrams for a Particular Case

In this section we would like start with the results obtained in the previous section and
specialise to a particular case. One interesting case is the four point function of chiral
primary operators of equal dimension A in d = 4 super Yang-Mills which is dual to a

supergravity theory in AdSs.

Start with the scalar exchange diagram, and substitute Ay = Az = A into the definition of
»t.
- A +A3FA A

—AF=. 51
5 T3 (C.51)

E:I:

The dimension A is the dimension of the exchanged scalar operator, and its values are
restricted by the form of the trilinear couplings of scalars. We can study this coupling
by looking at the underlying group theory. In the cubic vertices under consideration A
couples to two superconformal primaries of dimension A, the SU(4) representation of which
is therefore given by [0, A, 0]. Consider for example the case A =3, [0,A,0] = [0,3,0] = HB.

The tensor product of two such operators decomposes as follows:

[0,3,0] ® [0, 3, 0] = B © BFR = FFEEER + P8 + FEFE + R + (C.52)
— FFEHE + B+ B e+ .. (C.53)
— [0,6,0] + [0,4,0] +[0,2,0] +[0,0,0] +...  (C.54)

It is easy to see the pattern: the tensor product of two superconformal chiral primaries of
dimensions A decomposes into a sum that contains dimensions Ae {0,2,...,2A}. To get
a vertex that is a singlet with respect to SU(4) the third operator has therefore to be of

exactly one of these dimensions, and we can therefore write & as follows:
YE=AFs,5€{0,...,A} (C.55)

This is consistent with the condition for the termination of the recursive solution for the
exchange diagram X7 > 0 up to the extremal case where s = A. This was also noticed
in [126], and the authors suggest that this case should be discussed separately. In the
appendix of [125] it is suggested that for such extremal cases the scalar coupling may need

to be altered to include derivatives, which seems to lead to sensible results.

Proceeding with the scalar amplitude we insert A; = Az = A and the parametrisation of A
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suggested above into (C.36) to get

A—s

S(Z1, @p, T3, Ta) = Y az|5531|72[/ Ka—i(w, @) Ka—i(w, T3) Ka(w, Z2) Ka(w, £4)  (C.56)
=1 w
B _ o 12
o = 1 NA—-s)I'A+s—2) A -2 é) (C.57)
AT(A=s =1+ 1I'(A+s—-2—-1+1) T(A-2)
As we will see, the factor
. T(A-2-1)7
| = Ha-2-1i7 2) (C.58)
(A -2)

in a; will also appear in the vector and graviton exchange in exactly the same form, and it
makes sense to separate it out:
A—s

S(F1, o, T3, 8a) = Y Ot | / Ka_i(w, &) Ka_(w, #3) K (w, &) Ka (w, 74) D\
=1 w

(C.59)

s) 1 MNA-s)I'(A+s—2)

ps = ‘
DT AT(A—s I+ DDA +s—2—1+1) (C.60)
Next, consider the vector exchange, for which we defined the variables
d—2 1
+ _ N - _o\2 9

™ = A ( 1 ﬂ:4\/(d 2) +4m). (C.61)

As noted in [126], in AdS5 supergravity the mass m? of Kaluza-Klein vectors is restricted to
values m? = p? — 1 with 1 < p < 2A; — 1 and p odd. This is enforced by the SU(4) group
theory, and the fact that the Kaluza-Klein fields have been worked out explicitly in [42] and
one can read off the masses for the vectors that appear. It is convenient to write p = 2v — 1
with v € {1,...,A; — 1}, and with A; = A we obtain

Ir=A—-vw, I =A+v-1, ve{l,...,A—1}. (C.62)

We can now substitute this into the vector exchange amplitude found in (C.40) to obtain

A—v
V(Z1, %2, T3, B4) = ) &1\531\_21/ Ka—i(w, %) Ka—y(w, 73) Ka(w, o) KA (w, £4) X
=1 w

(C.63)
(w—123), (w=131), 2 l(w — &), (w-iy),
g [(w — &) (w— 51)2] Ol w—7)°  (w—74)° (C.64)
a = AA FA-vl(A+v-1) T(A-2-1> o

A DM@t T(A-2p



C.2. Ezchange Diagrams for a Particular Case 227

Finally, as for the scalar exchange, we would like separate out the common factor C; in a;,

and obtain
A—v ~
V (%1, %2, T3, T4) = ) l|f31|721/ KAfz(U)?ﬂ_ﬁ)KAfl(wa53)KA(U),fz)KA(W,f4)D§U)

=1 w

(C.66)
W) _ B NA—-v)I'A4+v—1)
D" = A4 l)F(A—v—l+1)F(A+v—l)x (C.67)
« (’w—fg)g B (w—fl)g u)2 (’u}—fg)g B (w—f4)g (C68)
(’UJ — 3_3’3) (w — fl) ('LU — fg) (w — f4)

Since there is only one graviton field, no special discussion regarding various couplings is
necessary, and we can give the result directly, with the correct dimensions substituted, and

the coefficients split off as before:

A-1
G, Bp, T3, T4) = Y Cl\f?,ﬂ*m/ Ka—i(w, #1) K a—i(w, T3)Ka(w, 72) K (w, £4) D}
=1 w

(C.69)
@ AT(A-1)T(A+1)
b =5 razyra-n” (C.70)
X l:J'u()(’w — fl)JHQ(w — fQ)Jyo(w — fl)Jyo(w — .f4> — 4(43_AA)
(C.71)

It is pleasant to see that all exchange diagrams assume a similar form. In particular, the
w-integral corresponds to the same four point contact graph in all three cases. This gives
hope that the amplitudes can be summed over to give a sensible expression for the four point
correlator. However, several things need yet to be worked out. First of all, the extremal case
for the scalar exchange where ¥ = 0 needs to be addressed separately. As mentioned before,
it is possible, that the cubic coupling for this case may need to be altered, this would lead to
a different expression for the corresponding amplitude which is not yet known. Furthermore,
so far we only discussed s-channel exchange diagrams. In the full correlator the ¢ and
channels also contribute and need to be integrated in the sum. In practise nothing new
needs to be worked out and we only need to change the labels for the #; and add more terms
to the sum. However, changing the labels for the Z; means also that we will get different
contact graphs that we are summing over. In the best case, the s, t, and u channels can be
summed separately by taking into account all corresponding graphs for the scalar, vector,
and graviton exchange. Finally, to sum over diagrams, each of them needs to be weighted
by the corresponding values for the trilinear couplings. These couplings can be found in
literature [109, 131-134], and need to be matched carefully.
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Appendix D

Left-Invariant One-Forms for the

SO(3)

The left invariant 1-forms are dual to left-invariant vector-fields that span the Lie algebra
g of a Lie group G. Let {T%} be the set of generators that span g, and f the structure
constants so that

(T, T° = ifeere. (D.1)

To derive the left-invariant 1-forms start by choosing a group element g € G and compute
the corresponding Maurer-Cartan form w, = g~ 'dg. An elementary computation shows that
dwg + wg ANwg = 0. Note that the Maurer-Cartan form is a Lie algebra valued 1-form and

one can therefore decompose it with respect to the basis {T'*} by writing
wg =0T, (D.2)

The 1-forms o are exactly the left-invariant 1-forms. After inserting the decomposition

in (D.2) into dwy + wg A wy = 0 we see that the forms o have the following property:
a 1 abe _b c
do® = 3 @ Aot (D.3)

Let us find a set of left-invariant 1-forms for the SO(3) rotation group. The s0(3) structure

constants are given by f%¢ = ¢?¢ and because the fundamental representation of the so(3)

is equivalent to the adjoint representation of the su(2) the generators of the so(3) algebra

abc

are given by the structure constants, and can be taken to be (T%)% = ie®. The group

elements are computed by exponentiation of the algebra elements, R,(a) = exp(iaT?), and

229
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are given by the standard rotation matrices

1 0 0 cosa 0 —sina cosa sina 0
Ry(a)=|[0 cosa sinal| Ry(a)= 0 1 0 R.(a) = | —sina cosa 0
0 —sina cosa sinae 0 cosa 0 0 1

(D.4)

We can choose the parametrisation of a generic SO(3) rotation by three Euler angles to
be g(aq, ag,a3) = R.(a3)Rz(az) R, (1), where the range of the angles is 0 < aq, a3 < 27,
and 0 < ap < 7. Next we compute the Maurer-Cartan form wg(o, g, a3) = gildg, and
using the fact that the generators are normalised so that tr(T%T?) = 26, the left-invariant

1-forms are projected out by o% = % tr(wyT*). Thus we obtain the following result:

ol = cosay das + sin aq sin as das (D.5a)
o2 = sinay das — cos aq sin as das (D.5b)
03 = doy + cos oy dasz. (D.5¢)

These are the left-invariant 1-forms that we used in this thesis. A different set of left-
invariant 1-forms is discussed in the well-known review article by Eguchi, Gilkey, and
Hanson [135]. The forms mentioned on page 247 in their article can be constructed using
the same rotation matrices as we used above by taking the group element parametrisation
to be g(1,0,¢) = R.(¢)Ry(0)R. () with 0 < 1), ¢ < 27 and 0 < § < 7. The derivation
by Eguchi et al. was performed for the SU(2) group, which is a double cover of the SO(3),
hence the range of the angle v is doubled to 0 < ¥ < 47w. However, since both algebras
su(2) and so(3) are isomorphic, the left-invariant 1-forms are exactly the same. With this

parametrisation the following 1-forms are determined:

ol =siny df — costpsin b do (D.6a)
0% = —cost) df — sinsin 6 do (D.6b)
03 =cos dop+ dip. (D.6c)

To obtain exactly the same normalisation as in Eguchi et al. one needs to further rescale the

1-forms to o% — %0“.



Appendix E

Explicit Representation Branching

E.1 SO(6) — SO(3) x SO(3) — SO(3)diag

In this section we tabulate some useful branching rules for the decomposition under SO(3) x
SO(3) € SO(6) and SO(3)giag C SO(3) x SO(3) C SO(6). By the Lie algebra isomorphisms
50(6) = su(4) and so(3) = su(2) this is equivalent to studying the special embedding
SU(2) x SU(2) € SU(4) [79], and has nothing to do with the regular embedding SU(2) x
SU(2) x U(1) € SU(4). Note that the conjugate SO(6) representations are computed as
[k, m1, mo]* = [k, m2,m1]. The representations that can be obtained by conjugation are not
listed. Note that because all SO(3) representations are real, any SO(6) representation will
decompose in exactly the same way as its conjugate. Because the two SO(3) subgroups
are embedded symmetrically into the SO(6), all decomposed representations are symmetric
under the exchange of the two SO(3) factors. Note also that all SO(6) representations
[k, m1, mg] for which the sum m; 4+ mq is even, in other words those with an integer spin,

decompose into odd SO(3) representations and vice versa.

We used the Mathematica package “LieART” [136] to generate the representations and their
branching. Because the algebra embedding SO(3) x SO(3) C SO(6) is special, first one needs
to generate a projection matrix by providing the branching of the SO(6) generating spinor
representation 4 — (2,2). This branching can be deduced from the fact that 4 x 4 = 6 4 10
and the fact that taking tensor products commutes with the branching. We can compute
the branching of the representations on the right-hand side by realizing that the 6 is just the
fundamental representation and the (10 + 10) corresponds to an anti-symmetrized triplet
of fundamental indices. The branching of these representations can be done by hand by
looking at how an SO(6) index splits into two SO(3) indices. With the branching for the 6
and the 10 so obtained, the only branching for the 4 which is compatible with the tensor
product decomposition 4 x 4 = 6 4+ 10 is 4 — (2, 2).

231
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Finally, under the embedding SO(3)diag C SO(3) x SO(3) the representations branch accord-

ing to (ry,re2) = r; ®ro.

Table E.1: Some representation branching rules under the special subalgebra embedding

SO(3) x SO(3) € SO(6)

SO(3) x SO(3)

SO(6)
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E.2. SU(4) — SU(3) x U(1)

Table E.2: Some representation branching rules under the special subalgebra embedding

SO(3)ding C SO(3) x SO(3) C SO(6)

SO(6)

—~
=2 =2 =P = i = I = I e g
~— Y — ~— A ~— — — N
- + 4+ ++ A+ + D+ ++ D
+ e M~ M~~~ I~~~ o~~~ =
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E.2 SU(4) — SU(3) x U(1)

Table E.3: Some representation branching rules under the regular subalgebra embedding

SU(3) x U(1) € SU4)

—  SU(3) x U(1)

SU(4)
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Table E.3: Some representation branching rules under the regular subalgebra embedding
SU(3) x U(1) € SU(4) (continued)

SUM4) — SU@3) x U(1)

[2,0,0) = 10 — 1_6+3_,+6,

[1,0,1] = 15 — 1,+3,+3_4,+8,

[0,1,1] = 20 — 3, +35;+6,+8_4

[0,2,0] = 20 — 6,+6_,+8

[2,0,1] = 36 — 1.45+3,+3 ;+65+8_5+15

[2,1,0) = 45 — 3_g+3_4+6_,+8,+10,+ 15,

[0,3,0] = 50 —  10_g+ 104+ 15_, + 15,

[1,2,0] = 60 — 6, +6_;+8_35+10_5+ 15, + 15,

[1,1,1] = 64 — 3. 5+3,+6_5+6,+8;+8_+15_,+ 15,

[2,0,2] = 84 — 1y+3,+3_4+6_g+6g+8,+15,+15_, + 27,

(0,4,0) = 105 — 15 ¢+ 154+ 24, +24_, + 27,

[2,2,0) = 126 — 6_,+6_10+8 4+10_g+15_,+ 15, + 15", + 24, + 27

[1,1,2] = 140 — 3,+3;+6,+65+8y+8_3+10_;+15,+15,+15_,+24,+27_,

0,3,1] = 140 — 10_5+ 10y + 15, + 155 + 155 + 24, +24_, +27_,

[1,2,1] = 175 — 6,+6_,+8,+10,+10,+15,+15 o+ 155 +15 , +24, +
24, + 27,

[0,5,0] = 196  — 21,0+ 21_;5+35_g+ 354+ 42_, +42,

[2,3,0] = 280 — 10_,,+10,+15_¢+15_, +15 ¢ +21_, +24,+24_, +
27, + 35, + 42, + 424

[1,4,00 = 280" — 15, +1554+21 ;+24,+24 ,+27 ,+35_,+35,+42,+42;

[2,1,2] = 300 — 3 ,+3,+6_5+6,+8;+8 4+105+10_g+15,,+15_,+
15, + 15 10 +24_o + 24, + 274 + 27 _¢ +42_, + 42,

2,2,1] = 360 — 6,+6_,+8 3+10_3+10_5+15, +15_;; +15;+15_,+
15 + 241 + 245 +24_; + 279+ 27_5 + 35_5 + 42, + 42;

[1,3,1] = 384 — 10_g+105+15_y+ 15y + 15" 5+ 155+ 24,5+ 24_, + 24, +

24 1+ 275 +27_+35_g + 355 +42_, + 42,

E.3 SU(4) — SU(2) x SU(2) x U(1) — SU(2) x SU(2)

Table E.4: Some representation branching rules under the regular subalgebra embedding
SU(2) x SU(2) x U(1) c SU(4)

SUM4) — SU(2) x SU2) x U(1)
[1,0,00 = 4 — (2,11 + (1,2)_
[0,1,0] = 6 — (1,1)2+(1,1)_2+(2,2)0
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Table E.4: Some representation branching rules under the regular subalgebra embedding
SU(2) x SU(2) x U(1) C SU(4) (continued)

(3,1)4 + (3,1)0 + (3,1)_4 + (1,3)4 + (1,3)0 +
+ (3,3)4 + 2(3,3)0 + (3,3)_4 + (4, 2)2 + (4,2)_2 +

e o

SUM4) — SU(2) x SU(2) x U(1)

[2,0,0] = 10 - (2,2)04+(3,1)2+(1,3)_2

[1>07 1] = 15 — (171)0‘|‘(272)2+(2>2)—2+(3a1)0+(1>3)0

0,1,1] = 20 - (2,1)14+(2,1)-3+(1,2)5+(1,2)-1 +(3,2)_1 + (2,3);

[0’270] = 20/ — (171)4‘1‘(171)0+(1>1)74+(2a2)2+(2’2)72+(3a3)0

[2,0,1] = 36 - (2,1)1+(1,2)-1 +(3,2)3 +(3,2)_1 +(2,3)1 + (2,3)_3 +
(471)1 + (174)71

[2,1,0] = 45 — (2,2)2—1—(2, )_2—1-(3,1)4—}-(3,1)0—1—(1,3)0+(1,3)_4+(3,3)0+
(4’2)2+ (274)72

0,3,0] = 50 = (L,1)6 + (1,1)2 + (1,1)2 + (1,1) 6 + (2,2)4 + (2,2)0 +
(27 2)—4 + ( 3)2 + (37 3)—2 + (474)0

[1,2,0] = 60 = (2,1)5+(2,1)1 +(2,1)3+ (1,2)3 + (1,2)1 + (1,2) 5 +
(3,2)3+(3,2)1+(2,3)1 +(2,3)_35+(4,3)1 + (3,4)_1

1,1,1] = 64 = (1,1)24+(1,1)—2+(2,2)s +2(2,2)0 + (2,2)4 + (3,1)2 +
(3,1)2+(1,3)24(1,3)2+(3,3)2+(3,3) —2+(4,2)0+(2,4)o

[2,0,2] = &4 — (1,1)0+(2,2)2+(2,2)2+(3,1)0+(1,3)0+(3,3)4+(3,3)o+
(373)74+( >2)2+(472)72+(234)2+(274)72+(5a1)0+(175)0

[0,4,0] = 105 — (1,1)8—|—(1,1)4—|—(1,1)0—1—(1,1)_4—|-(1,1)_8+(2,2)6—|—(2,2)2—|—
(2’2)—2 + ( 72)—6 + (373)4 + (373)0 + (373)—4 + (474)2 +
(4,4)_2 + (5,5)0

2,200 = 126 = (2,2)0+(2,2)0(2,2) 4+ (3,1)5+(3,1)2(3,1) o+ (1, 3)a+
(173)*2 + (173)*6 + (373)2 + (333)72 + (4a2)4 + (472)0 +
(274)0 + (274)—4 + (474)0 + (57 3)2 + (375)—2

[1, 1,2] = 140 — (2, 1)1 + (2, 1)_3 + (1, 2)3 + (1, 2)_1 + (3, 2)3 + 2(3,2>_1 +
(3,2)_5 + (2,3)5 + 2(2,3)1 + (2,3)_3 + (4,1); + (4,1)_5 +
(1’4)3 + (1’4)—1 + (473)1 + (4’3)—3 + (374)3 + (374)—1 +
(5,2)_1 + (2,5)1

[0,3,1] = 140’ — (2,1)5 +(2,1)1 +(2,1)_3 + (2,1)_7 + (1,2)7 + (1,2)3 +
(172)*1 + (172)*5 + (37 2)3 + (33 2)*1 + (3a 2)*5 + (2’3)5 +
(2,3)1 +(2,3)-3+(4,3)1 +(4,3)_3+ (3,4)3 + (3,4)_1 +
(5a4)71 + (475)1

[1,2, 1] = 175 — (1,1)4—|—(1,1)0—|—(1,1)_4—|-(2,2)6+2(2,2)2+2(2,2)_2+
(2,2)
(1,3)
(2,4)

2 + (2,4)_2 + (4, 4)2 + (4, 4)_2 + (5, 3)0 + (3, 5)0
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Table E.4: Some representation branching rules under the regular subalgebra embedding
SU(2) x SU(2) x U(1) C SU(4) (continued)

SU(4)

—

SU(2) x SU(2) x U(1)

[0,5,0]

[2,3,0]

[1,4,0]

[2,1,2]

(2,2,1]

[1,3,1]

196

280

280’

300

360

384

—

§+(2,2)4+(2,2)0+(2,2)-4+(2,2)-5+(3,3)6+(3,3)2+
-2+ (373)—6 + (474)4 + (474)0 + (474)—4 + (575)2 =+
—2+(6,6)p
6+(2,2)2+(2,2)2+(2,2)-6+(3,1)s+(3,1)4+(3,1)o+
-4+ (173)4 + (173)0 + (1’3)*4 + (173)*8 + (3’3)4 +
0+ (3,3)_4 + (4,2)6 + (4,2)2 + (4,2)_2 + (2,4)2 +
+( 1)+ (4,4)2+ (4,4)2 +(5,3)2 + (5,3)0 +
+(3,5)-4+(5,5)0 + (6,4)2 +(4,6) 2
9+(2,1)5+(2,1)1+(2,1) 31(2,1)7+(1,2)74+(1,2)3+
,2)5+(1,2)9+(3,2)7+(3,2)3+(3,2) 1 +
2,3)1+(2,3)3+(2,3)-7+ (4,3)5 +
,) (8,4)-1 + (3,4)—5 + (5,4)3 +
—3+(6,5)1+(5,6)1

)4+2( ,2)o +(2,2)-4 + (3,1)2 +
J2+(1,3)—24+(3,3)6 +2(3,3)2+2(3,3) 2 +
)0 + (472)*4 + (2’4)4 + 2(274)0 +
2+ (1,5)2+ (1,5)_2 + (4,4)4 +
2 + (5’3)—2 + (375)2 + (375)—2 +

[V
N\_/

~
'y
+
—~~
=~
N

3
3)—3 + 2,3)—7 + (47 1)5 + (47 1)1 + (47 1)—3 + (174)3 +
)75 + (4> 3)5 =+ 2(47 3)1 =+ (47 3)*3 + (3a 4)3 +
4)5+(5,2)3+(5,2)-1+(2,5)1 +(2,5)-3 +
~1+(4,5)1 +(4,5)-3+(6,3)1 +(3,6) 1
)2+ (1,1) 2+ (1,1)-6 + (2,2)s + 2(2,2)4 +
2)4+(2,2)s+(3,1)6+(3,1)2+ (3,1)—2 +
1,3)6 + (1,3)2 + (1,3)—2 + (1,3)—6 + (3,3)6 +
(3,3)—2+(3,3)-6+(4,2)4+(4,2)0 + (4,2)-4 +

The branchings under SU(2) x SU(2) C SU(4) can be obtained by removing the U(1) charge
from the branchings under SU(2) x SU(2) x U(1) C SU(4) in the table above.
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—  SU(2) x SU(2)

SU(4)

E.3. SU(4) — SU(2) x SU(2) x U(1) — SU(2) x SU(2)
Table E.5: Some representation branching rules under the regular subalgebra embedding

SU(2) x SU(2) C SU(4)
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Appendix F

Explicit Branching of Short
Multiplets

In this appendix we would like to tabulate the explicit fitting of A' = 1 and N = 2 superfields
into short N = 4 representations for the lowest orders p € {2,3,4,5} in the A/ =1 case and
p € {2,3} in the N' = 2 case. More details on the way these decompositions were constructed

can be found in the main text in Chapters 2 and 7.

F.1 Short Multiplets in the A/ = 1 Description

The general rule for the decomposition is that for a given order p short multiplet one
should take all possible p-fold products of the field strength superfield W,, the chiral
superfields Z;, and their conjugates Wy and Z°. The quantum numbers of the composite
operators so constructed are computed from the quantum numbers of the superfields,
and the representations of the component fields can be deduced by consistency with the

transformation properties of the Grassmann coordinates 6.

F.1.1 Case p =2

The p = 2 short multiplet is given by
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After restriction to an A/ = 1 sub-algebra these representations branch under SU(3) x U(1) C
SU(4) as described in Appendix E.2, and can be found in the following A" = 1 superfields
and their conjugates that cover the short A/ = 4 multiplet:

Z? = 64(00) W7z = g5(%0) w2 = T6(00) 77 = go(oo) WZ = 31(50)

F.1.2 Casep =3

The p = 3 short multiplet is given by
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After restriction to an A/ = 1 sub-algebra these representations branch under SU(3) x U(1) C
SU(4) as described in Appendix E.2, and can be found in the following A" = 1 superfields
and their conjugates that cover the short N' = 4 multiplet:

Z3 - ﬁg(og) Z2Z — ﬁg(oo) WZ2 - 67(%0) WZZ - 83(%0) ‘/1/22 - 6_1(%0)

F.1.3 Case p =14

The p = 4 short multiplet is given by
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20’ (11)45(10)
45(01)84<00>

After restriction to an A/ = 1 sub-algebra these representations branch under SU(3) x U(1) C
SU(4) as described in Appendix E.2, and can be found in the following A/ = 1 superfields
and their conjugates that cover the short A/ = 4 multiplet:

=15 8(00) 737 = 24,400 Z27% =2Tg00) WZ?=10930) WZ?Z =155(;0)

GEHSoe

172227151(10) WZ3=10_ 3200 W?2Z2 =61900) WZ2ZZ = 8(n0) W2Z?2 = 650

&EHOCE

WWZ2 =8y, WWZZ=8¢yy) W2WZ=350y WWZ=39,, WW?=1yq,

F.1.4 Casep=2>5

The p = 5 short multiplet is given by
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196 g0

50(11)126(10)
12601)300(00)

After restriction to an A/ = 1 sub-algebra these representations branch under SU(3) x U(1) C
SU(4) as described in Appendix E.2, and can be found in the following A" = 1 superfields
and their conjugates that cover the short A/ = 4 multiplet:

Z5 = 2149(90) Z*Z = 35600) 7372 = 42500 WZ'= 15, (30) WZ3Z = 247010

Gh® it

I/I/ZZZZ == 273(10) I/VZZ == 24 1(10) VVZ_1 == 15 _)(10) I/IZQZ - 1012(00)

L& SS

‘I’ 2Z ()()) I’V ZZZ — 154 ()() WQZ — 10() ()()) VVszs — 10() %%
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VVWYZZZ = ﬁg(%%) M/ZWIZ2 = 67(0%) VV2VVZZ = 83(0%) WZVVZZ = 6_1(0%)

W2 IE/Q Z = 32(0())

F.2 Short Multiplets in the A/ = 2 Description

As for the branching under N' = 1, the decomposition of the N' = 4 short multiplets
under N/ = 2 can be formulated in terms of products of N' = 2 superfields. To find the
decomposition of the order-p N' = 4 short multiplet take all possible p-fold products of the
N = 2 superfields Q, W, and W that we introduced in the previous section. Their physical

components span the area of the N/ = 4 short multiplet that is covered.

F.2.1 Case p =2

The order-2 N = 4 short multiplet

decomposes into N' = 2 superfields as follows:
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F.2.2 Casep =3

The order-3 N = 4 short multiplet

decomposes into N’ = 2 superfields as follows:

W3 = (1,1), W2W = (1,1), wW2Q = (2,2),
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wWwaQ = (2,2), WQ? = (3,3), Q* = (4,4),

Here we have omitted those diagrams that can be obtained from the presented ones by

complex conjugation.



Appendix G

Holographic Supergravity
Potentials Listing

In this appendix we list explicit expressions for supergravity potentials that were obtained
using the formula (5.18) in Chapter 5, which was obtained using holographic RG flow
techniques. This formula is valid for supergravity modes that are dual to field theory
operators that preserve at least an N/ = 1 supersymmetry. We limit ourselves to dimensions
d =3, 4, and 6, which seem most relevant. Only relevant operators of the field theory with

dimensions A < d were considered.

G.1 Dimension d = 3 dual to AdS,

A=l
V= 41? [cosh?(v/2) — 6 cosh(v/26) — 7] (G.1)
- 41? (cosh(\@qﬁ) + 1) (cosh(\/iqb) - 7) (G.2)
- 21?cosh2 (\%) (cosh(v2) — 7) (G.3)
A=2
Ve—15 [cosh?(¢) + 6 cosh() + 5| (G.4)
= _4%2 (cosh(¢) + 1) (cosh(¢) + 5) (G.5)
_ _2%2 cosh? (2) (cosh(g) + 5) (G.6)
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G.2 Dimension d = 4 dual to AdS5s

A=1
V= 43? {CoshQ(\/ing) — 4cosh(v26) — 5} (G.7)
= 4i (cosh(ﬁqb) + 1) (cosh(\/ib) — 5) (G.8)
23? cosh? <\%) (cosh(\/§gz5) — 5) (G.9)

A=2
V= —% (cosh (3%) + 1) (G.10)
=3 cosh? <j§> (G.11)

A=3
— lcosh <\/§gb> + 4 cosh (\/gqb) +3 (G.12)
(cosh <\/> ) + 1) (cosh (\/§¢> + 3) (G.13)

3 cosh2 (%) (cosh (\/ng) + 3) (G.14)

G.3 Dimension d = 6 dual to AdSy

A=1
V= % [cosh?(V26) — 3 cosh(v2¢) — 4] (G.15)
= ooy (cosh(v/39) + 1) (cosh(v/2) — 4) (G.16)
_ % cosh? (\%) (cosh(v2¢) —4) (G.17)

A=2
V= % [coshQ ([ ) — 6cosh ([gﬁ) — 7] (G.18)
0 (cosh <\/;¢> N 1> <cosh (ﬁgb) - 7) (€.19)
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- 2 comt? (@gb) (cosh <\/§¢> - 4) (G.20)

A3
__ s <h ([ qs) ) (@.21)
ELpE (ﬁ@ (G2

A
R
S (e (B ) (en(2)0) @
e (3) o (39 9

A5
g— [h (@) + 3eosh ([ ¢> 2 (@.20)
- (h <\/§¢> + 1> (h <[ ¢) + 2) (@27
= T (22 (com (yf26) +2) (629
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