
University of Southampton

Parametric feedback cooling and

squeezing of optically levitated particles

by

Jamie Vovrosh

A thesis submitted in fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Physical Sciences and Engineering

Department of Physics and Astronomy

June 2018

http://www.southampton.ac.uk/
Vovroshj@gmail.com
Faculty Web Site URL Here (include http://)
http://www.phys.soton.ac.uk/


University of Southampton

Abstract

Faculty of Physical Sciences and Engineering

Department of Physics and Astronomy

Doctor of Philosophy

by Jamie Vovrosh

http://www.southampton.ac.uk/
Faculty Web Site URL Here (include http://)
http://www.phys.soton.ac.uk/
Vovroshj@gmail.com


ii

Free space gradient force traps are hugely versatile experimental systems. Their realisa-

tion opens up new avenues for the exploration of various areas of fundamental physics,

including both quantum physics and thermodynamics. Their high levels of sensitivity

also have attractive implications for force sensing. In this thesis a novel experimental

setup will be presented, along with experimental protocols, as a framework upon which

such studies can be built.

Using a paraboloidal mirror to create a diffraction limited, gradient force optical trap,

the motion of nanoparticles ranging from 18 nm to 312 nm in diameter was detected via a

single photodiode. Several properties of the levitated particles were measured, including:

the mass, radius, oscillation amplitude (via the use of a volts to metre conversion factor)

and the damping experienced at various pressures. This was done via two methods. The

first, widely established, method required fitting a power spectral density, derived using

the kinetic theory of gases, to the motion of the particle. The second, novel method,

involved scanning the wavelength of the trapping laser. Using this method, it was

possible to determine the mass of a levitated particle without assuming the kinetic model

and material density. From the wavelength scan, the sensitivity of the experimental

system was measured to be 200 fm/
√

Hz. Within this optical setup, the ability to

control the trap frequencies of all three motional degrees of freedom, through varying

the power of the trapping laser, was demonstrated. The ability to independently control

and separate the transverse trapping frequencies from one another, as well as from the

z axis, was also shown to be possible, using elliptically polarized light. The effect of

changing the pressure inside the chamber in which a levitated nanoparticle is trapped is

also explored. Trapping of nanoparticles at pressures as low as 10−5 mbar, without any

active feedback, was achieved.

A method for measuring the internal temperature of levitated particles was then demon-

strated. This was done through measuring and fitting the Planck equation to the emitted

thermal spectrum of a levitated silica nanoparticle. It was then shown that the tem-

perature of levitated particles can be controlled via the intensity of the laser light as

well as the pressure within the chamber. Over a pressure range of 1000 mbar to 0.04

mbar, an increase of temperature from 388 K to 480 K was measured. In the range of

trapping laser intensities between 0.21 TW/m2 and 0.4 TW/m2, the resulting change of

a particle’s temperature, from 367 K to 463 K, was observed.

To control the centre of mass motion of levitated particles within the optical trap,

parametric feedback cooling was implemented via modulation of the trap depth. Using

this technique, the effect different feedback parameters have on particle motion was

explored. The combination of optimizing the feedback parameters, alongside reducing

the pressure, resulted in temperatures of Tz = 14±1 mK, Tx = 5±1 mK and Ty = 7±1 =

mK. The observed Q factors on the order of 107 with predicted Q factors on the order

of 1012 hold great promise for the realisation of ultrasensitive force detection. The

system presented here has a force sensitivity on the order of 10−20 N/
√

Hz. Theoretical
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considerations show that, with some improvements to the experimental system, it would

be possible to achieve centre of mass temperatures, and thus low phonon numbers, close

to the quantum ground state.

The second method to control the centre of mass motion of a levitated nanoparticle

used squeezing pulses to classically squeeze its mechanical motion. This quadrature

squeezing was achieved via non-adiabatic shifts of the nanoparticle’s trap frequency and

was carried out on a number of particles. The squeezing pulses implemented consisted

of a rapid reduction in the trap frequency, followed by a brief period in time where the

system was allowed to evolve, before the trapping frequency was rapidly returned to its

original value. The effect of using single and multiple pulses to control this was explored

and the optimal duration for a squeezing pulse characterized. For a single pulse, the

maximum amount of squeezing was found to be λ = 3.2± 0.2 dB.

To further increase the amount of squeezing applied to the levitated nanoparticle, a

multiple pulse scheme was implemented. The effect of varying the time between pulses

was investigated and the optimal time was found. The maximum amount of squeezing

achieved in the system, occurred after 5 pulses, giving a squeezing factor of λ = 9.4 ±
0.1 dB. The multiple pulse scheme was then applied to parametrically feedback cooled

nanoparticles. The effect on the phase space, including its decay to a thermal state, after

the application of squeezing pulses was characterized. The squeezing on parametricaly

cooled particles. after the application of 5 pulses, was measured and the squeezing factor

found to be λ = 8.4± 0.1 dB.
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Chapter 1

Introduction

An optomechanical system can be defined as one in which light and a mechanical system

interact. These types of systems exist in many forms and sizes, with variations includ-

ing optical cavities [4–6], macroscopic mirrors [7–9], micromechanical cantilevers [10] and

optical tweezers [11–13]. This wide range of devices, as well as their high sensitivity, has

allowed for optomechanical systems to be used in a variety of fields such as magnetic res-

onance force microscopy [14], measurement of the Casimir force [15–17], biology [18–20],

spectroscopy [21] and thermodynamics [22–24]. These far-ranging applications illustrate

that optomechanics is an area of research with great potential, capable of pushing the

boundaries of both science and metrology [25]. The most famous example of this is the

detection of gravity waves by the LIGO project [9].

One of the most promising of these optomechanical systems is optical trapping, which has

been proven to be achievable in both liquid and vacuum environments. An optical trap

is formed by tightly focusing a laser beam with a high numerical objective. A dielectric

particle near the focus will experience forces arising from the particle’s interaction with

the light, which can be used to confine the particle within the focus of the laser beam [26].

Optically levitated particles in vacuum environments are particularly attractive systems

to work with for many reasons, with one of the most significant benefits being the

particle’s decoupled nature from the environment, resulting in expected quality factors

approaching 1012 [13], alongside the high degree of control over the levitated particles

motion within the trap [3, 27].

The work presented in this thesis concerns itself with constructing a system capable

of optically trapping nanoparticles within a vacuum environment in order to develop

experimental techniques and methods which could be used to test fundamental physics.

1
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A description of the questions posed within the field of physics that motivate the con-

struction of such a system will follow, after which a summary of the contents of this

thesis will be provided.

1.1 Thesis motivation

This section will briefly outline some of the physical principles which an optically levi-

tated nanoparticle could be used to test.

1.1.1 Quantum to classical transition

The predictions given by quantum mechanics have been verified by all tests to date

[28], but still seem to be in conflict with our common sense. As quantum theory knows

no boundaries, in theory everything within existence should fall under the scope of the

superposition principle. In practise however, quantum effects have only been observed

on the small scales of molecular [29], atomic [30] and subatomic [31] particles, leading

us to question why macroscopic objects are only ever found in classical states. This

division illustrates that there is a point at which matter ceases to behave according to

the laws of quantum physics, instead undergoing a quantum to classical transition. This

is invariably linked to the quantum measurement problem. The Quantum Measurement

Problem can be defined as our inability to determine the mechanisms behind an object

moving from a state of quantum superposition, to a classical state. Studies of this

problem seek to gain a deeper understanding of the mechanism behind wave function

collapse, and to determine whether wave function collapse even occurs at all. An example

of such a theory that circumvents the need for wavefunction collapse is the many-worlds

interpretation [32]. These topics are major areas of discussion and debate within the

scientific community [33–37].

A full discussion is beyond the scope of this thesis, however it is worth highlighting

that decoherence theory, which describes how a system will effectively lose its quantum

features when coupled to a quantum environment of sufficient size [37, 38] is often given

as a justification for the lack of macroscopic quantum super positions. Alternatively, it

is possible that quantum mechanics breaks down beyond a certain mass or complexity

scale. In order to investigate these theories further, quantum superpositions of truly

massive, complex objects are required.

Many argue that if the environment is the mechanism which causes the quantum to

classical transition to occur, a system would behave quantum mechanically if the en-

vironment was removed, regardless of particle mass or size. Others argue that in the
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absence of environmental factors, such as in a highly isolated, massive system, other

possible sources of decoherence would become apparent. Various theoretical ideas of

what these sources could be have been proposed [39, 40], and are referred to as collapse

models. Therefore if a macroscopic quantum system can be realized the possibility to

study various quantum to classical transition mechanisms could be studied.

To date, the largest mass for which the quantum superposition principle has been ob-

served is on the order of 104 atomic mass units (amu) [41], however this has not been

sufficient to rule out the various collapse theories which have been proposed. In order to

test these theories further, it is therefore necessary to realise the quantum superposition

of more massive objects. Optically levitated particles are extremely promising systems

for enabling such tests to be achieved due to their high level of isolation from mechan-

ical and environmental influences, in addition to their high sensitivity to small forces

[42]. Several proposals currently exist as to how best to test stochastic collapse models

through the use of levitated nanoparticles. One such proposal suggests mechanically

isolating a nanosphere within a vaccum and, once this has been achieved, reducing the

temperature and pressure to a low enough level such that the particle becomes suscep-

tible to decoherence processes other than the environment [43]. Alternative proposals

include nanoparticle matterwave interferometry, such as that presented in reference [44].

The findings herein illustrate that a levitated nanosphere as small as 20 nm diameter,

cooled down to 20 mK in its centre of mass motion, could be used as a point source for

nanoparticle interferometry on Earth.

1.1.2 Single particle thermodynamics

Macroscopic thermodynamics operates within a regime in which thermal fluctuations

are irrelevant. However, during the last couple of decades, significant progress in the

fabrication and control of nanoscale mechanical devices has been achieved [45]. For the

regime in which these devices operate, thermal fluctuations are relevant [46–51], making

research into stochastic thermodynamics possible. Research into stochastic thermody-

namics has very successfully extended the laws of macroscopic thermodynamics to the

level of single trajectories [52, 53]. Furthermore, the discovery of fluctuation theorems

has also allowed for systematic investigations into out of equilibrium processes [50, 54].

Optical tweezers are an example of one of the aforementioned systems which operate

on the scale where thermal fluctuations are detectable. Optical tweezers possess several

desirable traits which make them particularly valuable in the study of stochastic thermo-

dynamics, including the ability to quickly control the potential landscape experienced

by a particle and also to record the particle’s trajectories with a high level of precision
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[55]. Several studies involving particles optically trapped within a liquid solution have

been carried out to date [48], including demonstrations not only of individual thermo-

dynamic processes [23] but also of a classical, micromechanical Stirling engine [22]. This

heat engine was created by varying the temperature of the liquid heat bath (controlled

with laser absorption). Despite the success of carrying out this experiment within a

liquid solution, the liquid solution itself places limitations on the accessible parameter

regime for the temperature and optimization of the heat engine. These limitations can,

however, be overcome by performing similar experiments within a vacuum environment.

Conducting a heat engine within a vacuum environment enables access to a much larger

temperature regime, potentially as low as the quantum ground state [27]. It also presents

the opportunity to perform a thermodynamic cycle in both the over damped and under

damped regime. Several experiments have already been carried out in vacuum to explore

stochastic thermodynamics, including the use of fluctuation theorems to investigate a

system relaxing from a non-equilibrium state, towards equilibrium [24]. Further to this,

there now exist proposals to create heat engines using optically levitated nanoparticles

within a vacuum environment [56].

Creating such thermodynamic cycles in vacuum holds the potential to realise quantum

heat engines, due to the isolated nature of this type of environment. To date, the only

heat engine which has been demonstrated within a vacuum was classical in nature and

was created using an ion, held within a modified linear Paul trap [57]. Despite the

fact that there has been no experimental realization of a quantum heat engine thus far,

there exists a body of theory [58] regarding how one could be created, as well as well as

several proposed experimental schemes [59]. If a heat engine operating in the quantum

regime could be realized, it could potentially be used to investigate the quantum limits

of classical thermodynamical concepts. This includes the Carnot efficiency limit which

could, as a result, be overcome [60].

1.1.3 Force sensing

The use of nanotube resonators within a cryogenic system has successfully demonstrated

sensitivities on the order of 10−21 N/
√
Hz [61] 1. Ultimately however, the limiting

factor restricting the sensitivity of the nanotube resonators and other clamped systems

is thermal noise. The minimum detectable force in the presence of thermal noise is

1 The noise-equivalent power (NEP) is a measure used to quantify the sensitivity of a detection
system and can be used to compare it with other detection systems. The NEP is the power that results
in an SNR of 1. The NEP represents the threshold above which a signal can be detected. The minimum
detectable power Pmin is equal to Pmin = NEP ×

√
measurement bandwidth. At higher input powers,

a low NEP is beneficial since it will lead to lower noise characteristics in the output signal. A low NEP
value corresponds to a lower noise floor and therefore a more sensitive detector.
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inversely proportional to the square root of the mechanical quality factor (Q factor) of

the oscillator. The Q factor in clamped systems is limited by surface imperfections,

material loss and clamping loss. Taking this into consideration, it becomes obvious

that both high mechanical quality, as well as decoupling from the physical environment,

are exceedingly desirable traits in force sensors. Both of these are properties found in

levitated nanoparticle systems.

Optically levitated nanoparticle systems have reported Q factors on the order of 107,

with predicted Q factors on the order of 1012 for the particles centre of mass motion

[13]. Optically levitated particles have been shown to have force sensitivities on the

order of 10−21 N/
√
Hz [62, 63] for the levitated particles centre of mass motion and

predicted sensitivities as high as 10−29 N/
√
Hz for the torsional degree of freedom [64].

The coupling of levitated particles to electric [65] and magnetic fields [66–68] opens up

possibilities for alternative sensing techniques. Several proposals exist for the utililsation

of levitated nanoparticle systems, including the detection of gravitational forces such as

high frequency gravitational waves [69], sensing van der Waals and Casimir forces [70],

sensing non-Newtonian gravity [71], conducting nuclear spins [72] and detecting dark

matter [73].

1.2 Aim of this thesis

To achieve the aforementioned motivations, the ability to optically trap a particle and

control its motion is required. The research outlined within this thesis has therefore been

carried out with the aim of creating an experimental system capable of both trapping a

nanoparticle and manipulating its centre of mass motion. Specifically the goals of the

research undertaken, as outlined in this thesis, were as follows:

• To build an experimental system to optically levitate nanoparticles.

• To develop tools to characterise the particle within the optical trap.

• To demonstrate cooling of a levitated particle’s centre of mass motion below 20

mK via parametric feedback.

• To perform squeezing of the nanoparticle motion.

• To perform squeezing of cooled nanoparticle motion.
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1.3 Thesis outline

In this thesis, the development of a levitated nanoparticle system is described. Using a

high numerical aperture (NA) parabolic mirror in order to tightly focus a laser beam, a

high electric field gradient is created. In the presence of an electric field, a nanoparticle

behaves as a dipole. When the particle is in the focus of a laser beam, the focused

electric field generates a gradient force on the dipole, which pushes it towards the center

of the laser focus. This restorative force causes the motion of the particle to oscillate

within the trap. The vast majority of the research presented in this thesis concerns itself

with controlling and manipulating the centre of mass motion of the levitated particle

by modulating the intensity of the laser. A brief outline of the contents of this thesis is

provided here:

• Chapter 1 - Introduction. This thesis begins with an outline of the various

motivations for carrying out the research presented within.

• Chapter 2 - Gradient force optical traps. The second chapter provides an

overview of the fundamental theory used to understand optical trapping. This

theory underpins the work presented in this thesis. Several important quantities

used throughout this study are also defined.

• Chapter 3 - Experimental methods and setup for optical trapping of

nanoparticles. This chapter details the experimental setup used throughout the

study, to optically trap nanoparticles. Details are given on the methods used

to deliver particles into the trapping region, the design of the parabolic mirror

trapping objective and the detection system used to detect the trapped particles.

• Chapter 4 - Optomechanics of levitated particles. Underpinning all the

work detailed in this thesis is the ability to control and measure the motion of a

particle within an optical trap. The methods used to extract various parameters

about trapped particles are discussed.

• Chapter 5 - Nanoscale temperature measurements using blackbody like

radiation from a levitated nanoparticle. This chapter outlines the experi-

mental method used to detect blackbody like radiation from an optically trapped

particle. Using the measured blackbody radiation the internal temperature of the

particle is calculated.

• Chapter 6 - Parametric feedback cooling of levitated particles’ centre

of mass motion. This chapter details the method by which parametric feedback

cooling was implemented on optically trapped nanoparticles. Studies into the
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optimisation of parametric feedback cooling are presented and after optomisation

cooling on the order of 5-14 mK is achieved. This section ends with a discussion

of the limitations of the parametric feedback cooling applied in the system.

• Chapter 7 - Classical squeezing of the motion of levitated nanoparticles.

In this chapter classical squeezing of an optically levitated particle via a pulsed

laser intensity scheme is demonstrated. The application of multiple pulses to an

uncooled and cooled nanoparticle is reported.

• Chapter 8 - Conclusion The experimental results are summarised and a sum-

mery is given of the future work needed to advance the experimental techniques

detailed.

1.4 Supporting Publications

From the work outlined above the following papers have been produced.

Parametric feedback cooling of levitated optomechanics in a parabolic mir-

ror trap. Jamie Vovrosh, Muddassar Rashid, David Hempston, James Bateman, Mauro

Paternostro, Hendrik Ulbricht JOSA B. 2017 Jul 7;34(7):1421-8.

Experimental realization of a thermal squeezed state of levitated optome-

chanics. Muddassar Rashid, Tommaso Tufarelli, James Bateman, Jamie Vovrosh,

David Hempston, M.S. Kim, Hendrik Ulbricht Physical Review Letters. 2016 Dec

30;117(27):273601.

Force sensing with an optically levitated charged nanoparticle. David Hemp-

ston, Jamie Vovrosh, Marko Toros, Muddassar Rashid, Hendrik Ulbricht Applied Physics

Letters 2017 Sep ;111(13):133111



Chapter 2

Gradient force optical traps

To form a stable optical trap one must generate optical forces that act against gravity

and other forces to keep an object localised. The most straightforward way to do this is

to tightly focus a Gaussian laser beam using a high-power lens. In such an arrangement,

two forces act upon the particle; the gradient force Fgrad and the scattering force Fscat.

The total force on the particle can thus be written as

FTotal = Fscat + Fgrad. (2.1)

The gradient force points towards the region of highest laser intensity. In contrast, the

scattering force points in the direction of the beam propagation and thus pushes the

particle away from the laser focus. Therefore, there are two methods which can be used

to create a stable optical trap, the first of which is to eliminate the scattering force.

There are several methods which can be used to achieve this. The scattering force can

be compensated for by another force such as gravity [74], the scattering force can be

cancelled by two counter-propagating beams [75], providing the two beams are of the

same power, shape and are well aligned, or alternatively the back reflection from a mirror

could be used to form a standing wave [76, 77]. However, inaccuracies in alignment can

result in these trap schematics being unstable. The second method by which a stable

optical trap can be created is to make the gradient force dominate over the scattering

force, such that the particle is held at the laser focus. To achieve such a feat a tightly

focused beam is required. This is referred to as an optical tweezer [78] (see figure 2.1).

This is the sort of trap we use and discuss in this thesis.

This section will begin, with a brief overview of different types of optical traps to provide

context. Then the physics required to understand the realization of a gradient force

optical trap, created with a Gaussian laser beam will be given. To begin with, the

8
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X
Z

Y

Figure 2.1: Forces present in a gradient force optical trap. To create the
gradient force trap a laser beam is focused by a lens. A nanoparticle is shown in blue
and the optical forces which arise due to the particle’s presence in the trap are shown.
The gradient force acts as a restorative force pushing the particle towards the centre
of the trap and the scattering force pushes the particle in the direction of laser beam

propagation.

shape and intensity of a Gaussian laser beam will be discussed. Then the gradient and

scattering forces will be derived, followed by a discussion about balancing these forces to

create a stable trap. After this, several key parameters which are useful when describing

the optical trap and motion of the particle within the trap will be defined.

2.1 Methods for optically trapping nanoparticles

This section will give a brief history of optical trapping, along with a description of a

few of the various experimental methods used to optically trap nanoparticles.

2.1.1 Origins of optical trapping

Kepler in 1619 stipulated that light can impart momentum to matter, as an explanation

for why comet’s tails face away from the sun [79]. Later Maxwell’s electromagnetic

theory was able to show that light does, in fact, impart momentum to matter. It took

many years and the invention of new technologies, namely the laser, before optical traps

could be realized; that is to say, instruments which use highly focused laser beams to

impart forces to hold or move macroscopic objects.
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Ashkin was the first to experimentally demonstrate that light could indeed impart mo-

mentum to matter [80]. Ashkin achieved this by focusing an argon ion laser through

a fluid vessel containing a solution of liquid and micron scale particles. He observed

that these particles were pushed in the direction of laser propagation, due to radiation

pressure from the light. This force is referred to as the scattering force Fscat. He also

observed that particles, with refractive indexes higher than the medium were attracted

into the centre of the lasers focus. The force responsible for this is referred to as the

gradient force Fgrad. Using these realizations, Ashkin and Dziedzic were able to demon-

strate levitation of a 20 µm diameter silica microsphere in free space, using gravity to

balance the upwards force from an upwards directed laser beam [81, 82]. This method

was later demonstrated in a vacuum of roughly 1 mbar [11].

In 1986, Ashkin extended this work to trapping a particle in all three spatial degrees of

freedom in liquid [78]. This was the first demonstration of a gradient force optical trap.

In this gradient force trap, the focus was tight enough that the restorative force on the

particle, due to the high laser intensity gradient at the focus, was greater than the force

due to radiation pressure. In 1997, a single beam gradient force trap was realised for 5

µm diameter dielectric microspheres in air, using a single laser beam pointed downwards

[83].

In the years that have followed, a huge variety of experimental configurations have

been used to form optical traps, in different environments. All of these optical traps

utilize either the scattering or gradient force. This section describes the three main

experimental approaches to optical trapping (see figure 2.2). Depending on the set

up optical traps have been shown to be useful tools in a variety of fields, including

biophysical studies [18, 84–87], tests of the fundamental natures of gravity [88], quantum

mechanics [88, 89], as well as rotational and torsional dynamics, both in fluids [90, 91]

and free-space [92, 93].

A) B) C)

Figure 2.2: Common optical trap types. A) Optical tweezing of particles in so-
lutions often takes advantage of high numerical aperture oil or water immersion micro-
scope objectives to generate high laser intensity gradients. B) Nanoparticle levitation
in optical cavities, where the particle is levitated in the standing wave of a resonant
mode in an optical cavity. C) Free space gradient force traps are created using high

numerical aperture optics such as parabolic mirrors.
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2.1.2 Optical tweezers in liquid solutions

Optical tweezers in liquid solutions have become an invaluable tool in many research

areas, including biochemistry and biophysics [18, 84–87], where their uses, for example,

include single molecule force spectroscopy [86]. Complete optical tweezer setups are

so widely used they can be purchased commercially from large optics suppliers (e.g

Thorlabs), as well as small specialist companies. Optical tweezer setups utilize focused

optical beams to trap microspheres and other particles in liquid environments such

as aqueous solutions. Optical tweezers resemble inverted optical microscopes. The

position of the trapped particle can be monitored in real time, via camera or a quadrant

photodetector [94].

The liquid surrounding an optically tweezed particle has several purposes. Firstly, the

liquid solution provides a buoyancy force, which partially offsets the force of gravity.

This reduces the required strength of the trapping force in the vertical direction [78],

which is often chosen to be the propagation direction. A liquid solution also allows for

high numerical aperture (NA) immersion microscope objectives to be used, providing

the possibility for a greater gradient force achievable for a given laser power. Biological

samples can be studied in vivo and in an appropriate solution [19]. The liquid solution

also provides a damping force to the particles of interest, reducing its speed, thus allowing

a particle to be tracked, targeted and trapped easily. In addition, collisions provide

a mechanism for heat dissipation caused by particles absorbing light. However, the

Brownian dynamics of a liquid solution drown out the ability to detect the effects of

the optical potential affecting the particle. This results in solution-based traps being

unable to conduct studies of classical or quantum optomechanics. For more information

on optical trapping in liquid solution, the following reviews are recommended [95, 96].

The remainder of this thesis will discuss and present data taken by optical trapping in

gaseous environments, with pressures ranging from atmospheric to ultra-high vacuum.

2.1.3 Cavity levitation of nanoparticles

Optical trapping in a cavity follows the same principle as using counter-propagating

beams to levitate particles, using a standing wave of a resonant mode in an optical

cavity. The symmetry of a cavity field ensures that the time average of the scattering

force is zero, enabling particles to become trapped via the scattering and gradient forces

[97]. The standing wave within the cavity is a stationary wave, resulting in particles

becoming trapped by the gradient force at stationary antinodes [98]. This means that

cavity traps have very strong axial confinement, but poor radial confinement, because

of the relatively large cavity waists (corresponding to low NA). Unlike single beam
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traps, cavities are able to contain stable trapping points at each field antinode. This

enables trapping of a number of particles in close proximity to one another. Cavity

trapping allows for passive cooling and control of axial motion of the particle [99–102].

There is also the potential to implement previously developed techniques from cavity

optomechanics.

2.1.4 Free space gradient force traps

Unlike optical trapping in liquid solution, particles in free space optical traps are able to

move ballistically under drastically reduced drag, due to the elimination of the viscous

force arising from the liquid environment. Initially, this presented some experimental

challenges, when free space gradient force traps were first realized, in terms of loading

particles into the trap [81]. Since then a multitude of methods have been developed

(see section 3.3.2). One advantage of free space traps is that the reduced damping on

a trapped particle has allowed for studies of classical and potentially quantum optome-

chanics. The rest of this chapter will cover the theory necessary to understand a gradient

force trap. Firstly a discussion of the properties of the laser used to create the trap will

be given, before providing the theory required to understand a gradient force trap.

2.2 Gaussian beam optics

The nature of an optical trap depends on the properties of the laser used to created

the optical trap. Therefore, it is necessary to have an understanding an understanding

of the properties of the laser beam that will be used to create the trap. The profile of

the light beam generated by the laser used in the experiments in this thesis can be best

approximated by a Gaussian function. That is to say, a beam whose transverse magnetic

and electric field amplitude profiles are given by the Gaussian function; thus implying

a Gaussian intensity profile. The amplitude of the beam can be expressed as a solution

to the time independent paraxial Helmholtz equation as [103]:

E(rrad, z) = E0
W0

W (z)
exp

(
−r2

rad

W (z)2

)
exp

(
− i

(
kz + k

r2
rad

2R(z)
− ψ(z)

))
, (2.2)

where rrad is the radial distance from the centre of the beam, z is the axial distance from

the beams focus, k = 2π/λ is the wavenumber for a laser wavelength λ, E0 = E(0, 0) is

the electric field amplitude at the origin. W (z) is the radius of the field amplitude given

by equation 2.4. W0 = W (0) is the beam waste at the origin given by equation 2.4. R(z)

is the radius of the curvature of the beams wavefronts at z and ψ(z) is the Gouy phase.
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The Gouy phase is the phase shift a Gaussian beam acquires as it passes through a focal

point, with respect to that of a plane wave with the same optical frequency [104]. The

Gouy phase is given by,

ψ(z) = arctan

(
z

zR

)
. (2.3)

Overall, the Gouy phase shift introduced in a Gaussian beam passing through a focus

(from the far field to the far field on the other side of the focus) is equal to π.

Equation 2.2 is the static model of a Gaussian laser beam derived using the paraxiamal

approximation. For the purposes of this thesis, this equation provides a rough figure to

evaluate the experimental setup. As some of the experiments discussed in this thesis

will use a highly divergent beam, the paraxial approximation will not be a completely

accurate description of the experimental setup. This can be seen when examining the

relative error introduced by approximating sin(Θ) ≈ Θ, where increasing the angle Θ

from 0 to π/2 results an error of up to 57%. Therefore, the values quoted in this chapter

should be treated as ball park figures when dealing with highly diverging beams, in

our case resulting from high NA optical elements. To perform a more in-depth analysis

would require the use of a full vectoral treatment of the Gaussian laser beam [105].

2.2.1 Gaussian beam profile

In an optical trap, the particle is trapped at the focus of the laser beam used to create

it. The properties of the particle motion in the laser focus will therefore depend on the

properties of a Gaussian beam at its focus. The shape of a focused Gaussian beam at a

given wavelength is given by [103],

W (z) = W0

√
1 +

( z
zR

)2
. (2.4)

where zR is the Rayleigh range given by

zR =
πW 2

0

λ
. (2.5)

The Rayleigh range is used to define the depth of the focus of the beam shown in figure

2.3. The radius of curvature of the beam waist is given by [76],
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R(z) = z

[
1 +

( z
zR

)2
]
. (2.6)

b

W0

ZR

W(z)
√2 W0

Θ

Figure 2.3: Gaussian beam waist. The purple lines describes the beam width
W (z) of a focused Gaussian beam as a function of the distance z along the beam. Here
W0 is the beam waist, b is the depth of focus, zR is the Rayleigh range and Θ is the

total angular spread.

2.2.2 Laser intensity and power

The intensity of the laser beam used to create an optical trap affects several important

properties of the trap, such as the shape and depth of the trapping potential. The shape

and intensity of the Gaussian beam can be seen in figure 2.4. The intensity distribution

of a Gaussian beam can be found by evaluating the time averaged Poynting vector and

using equation 2.2 to get:

I(rrad, z) =
|(E×H∗)|

2

=
|E(rrad, z)|2

2η

= I0

(
W0

W (z)

)
exp

(
−2r2

rad

W (z)2

) (2.7)

where H is the magnetic field polarized in the y direction and given by H(r, z) =

ŷEx(r, z)/η, * denotes the complex conjugate, η is the the characteristic impedance of

the medium in which the beam is propagating. The characteristic impedance of free

space is an expression of the relationship between the electric-field and magnetic-field
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intensities in an electromagnetic field propagating through a vacuum. In free space

η ≈ 337 Ω. The beam intensity profile at the laser focus can be seen in figure 2.5.

A) B)

Figure 2.4: Intensity at a Gaussian beam waist for a laser beam λ = 1550 nm,
focused through an objective with an NA = 1. A) The beam waist is elongated in the
direction of laser propagation, in this case z. B) The beam waist is symmetric in the

axial directions x and y. Where rrad =
√
x2 + y2 .

B)A)

Figure 2.5: Gaussian beam intensity profiles, for a Gaussian beam with λ = 1550
nm focused by a focusing objective with NA=1. A) The intensity profile in the direction
of beam propagation, where the dashed line shows the Rayleigh range. B) The intensity

profile in the axial direction, where the purple solid line shows the beam waist.

2.2.2.1 Beam power through an aperture

When designing the optical system it is important to select optical components such

that the maximum amount of light passes through each of the optical elements. The

laser power that passes through an aperture of radius rapp in the transverse plane at

position in z is given by,

P (rapp, z) = P0

[
1− e

−2r2app

W (z)2

]
, (2.8)

where P0 is the total power transmitted by the beam given by,
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P0 =
1

2
πI0W

2
0 . (2.9)

The fraction of power transmitted through an aperture of radius r = W (z) is 0.865P0.

To achieve 0.99P0 we require an aperture of r = 1.52W (z).

2.3 Gradient force traps

2.3.1 Derivation of the gradient force

The way light interacts with matter, specifically a spherical object, depends on the size

of the particle. In cases where the dimensions of the particle are much greater than the

wavelength r >> λ, a simple ray optics treatment is sufficient. However, in our case the

wavelength of the trapping laser (1550 nm) far exceeds the particle dimensions (between

18 and 312 nm) r << λ. Thus, the particles can be treated as point dipole charges in

an electric field and the conditions for Rayleigh scattering are satisfied. We treat the

particle as a dipole in an inhomogeneous electromagnetic field. The force applied on a

single charge in an electromagnetic field is known as the Lorentz force,

F =
∑
i

Fi =
∑
i

qi

(
Ei +

dxi
dt
×B

)
, (2.10)

where F is the Lorentz force, q is the charge of the particle, the index i is the number

of charges, E is the electric field, dxi/dt is the particle velocity and B is the magnetic

field. We can calculate the force on the dipole by substituting in terms for the electric

field in equation (2.10). For a dipole, the distance x1 − x2 is the distance between the

two charges. Taking into account two charges have opposite signs and expanding E2:

F = q

(
E1 −E2 +

d(x1 − x2)

dt
×B

)
= q

(
E1 + ((x1 − x2) · ∇)E−E1 +

d(x1 − x2)

dt
×B

)
= q

(
((x1 − x2) · ∇)E +

d(x1 − x2)

dt
×B

)
. (2.11)

We assume that the dielectric particle is a linear dielectric. In this situation the dipole

moment is given by P = qd = αE, where d is the distance between the two charges and
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α is the polarizability of the particle in question. We can write this equation in terms

of the electric field, the magnetic field and polarizability:

F = (P · ∇)E +
dP

dt
×B

= α

(
(E · ∇)E +

dE

dt
×B

)
. (2.12)

By using the Maxwell-Faraday equation (2.13), along with the vector identity equation

(2.14), we can rearrange equation (2.12) to give us equation (2.15).

∇×E = −dB
dt
, (2.13)

(E · ∇)E = ∇
(

E2

2

)
−E× (∇×E). (2.14)

Thus,

F = α

(
∇E2

2
−E× (∇×E) +

dE

dt
×B

)
= α

(
∇E2

2
−E× (−dB

dt
) +

dE

dt
×B

)
= α

(
∇E2

2
+
d

dt
(E×B)

)
. (2.15)

It can easily be seen that the second term in equation (2.15) is the time derivative of

the Poynting vector, which describes the power per unit area passing through a surface.

When sampling over frequencies much shorter than the frequency of the laser’s light

(which is ∼ 194 THz for 1550 nm laser light), the power of the laser is constant and

therefore the second term averages to zero. Thus, we are able to obtain the following

equation, where we have renamed the force as the gradient force Fgrad [106]:

Fgrad =
α

2
∇E2, (2.16)

where α is the polarizability of the particle given by,

α = 4πn2ε0r
3m

2 − 1

m2 + 2
, (2.17)
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where n is the refractive index of the particle, r is the radius of the particle, ε0 is the

vacuum permittivity, m = n/nm is the relative refractive index between the particle and

the surrounding medium nm. Substituting equation 2.17 into 2.16 and using the relation

I = cnε0
|E|2

2
, (2.18)

we find,

Fgrad =
4πnr3

c

(
m2 − 1

m2 + 2

)
∇I(z, rad). (2.19)

This equation shows that the force on the dielectric particle is proportional to the gra-

dient of the intensity of the beam. The gradient force changes sign as the particle passes

through the focus, such that the force always acts towards the focus (as shown in figure

2.6). This means that when the particle moves away from the focus it will feel a force

pulling back towards the focus. In other words, the gradient force described here tends

to attract the particle to the region of highest intensity, thus acting as a restorative force.

This causes the particle to oscillate back and forth through the focus with a predictable

trapping frequency and potential (see equations 2.31 and 2.27 respectively).
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Figure 2.6: The gradient force on a silica nano-particle as a function of
radial distance from the trap centre, with a laser power of 55 mW and a focusing
NA of 0.9. It should be noted that forces are much weaker in the axial direction due

to lower intensity gradient.
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2.3.2 Balancing optical forces

In reality, we find that our particle is not positioned exactly at the focus of the trapping

laser. This occurs due to photon pressure, which results in the force referred to as the

scattering force Fscat. The scattering force arises due to photons from the trapping laser

scattering off the trapped nanoparticle. As scattering is an anisotropic process, with

light being scattered in all directions, with intensity proportional to cos2(Ψ), where Ψ is

the scattering angle. This results in a net momentum transfer is in the axial direction of

the trap, and the scattering force exerted from the laser light works against the gradient

force in the axial direction ẑ of the trap.

On the quantum level, this can be understood by considering the gradient force as

forward Rayleigh scattering, in which identical photons are created and annihilated

concurrently. In contrast, for the scattering force the incident photons all travel in

the direction of the trapping beam and scatter in all directions. By conservation of

momentum, therefore, the particle will accumulate each photons’ original momentum,

resulting in a forward force in the direction of the beam [107].

In a scenario where the scattering force is stronger than the gradient force, the particle

will be forced out of of the optical trap. However, if the gradient force is greater than

the scattering force, the resulting trapping position is displaced slightly downstream

of the intensity maximum. The sum of optical forces effecting an optically trapped

nanoparticle can be written as,

FTotal = Fgrad + Fscat. (2.20)

The scattering force, on a particle can be calculated by considering the photon flux

impinging on and leaving a particle under the conservation of momentum. This allows

us to write,

Fscat =
nσs
c
〈S〉, (2.21)

where σs is the Rayleigh scattering cross section and 〈S〉 is the time-averaged Poynting

vector. The Rayleigh scattering cross section is given by,

σs =
128π5

3

r6

λ4

(
m2 − 1

m2 + 2

)
. (2.22)

While the time averaged Poynting vector can be written as,



Gradient force optical traps 20

〈S〉 =
|E|2

2ε0c
. (2.23)

Substituting equations 2.18, 2.22 and 2.23 into equation 2.21, we can write an expression

for the scattering force1:

Fscat =
128π5n

3c

r6

λ4

(
m2 − 1

m2 + 2

)2

I(rad)ẑ. (2.24)

From this equation it can be seen that the scattering force scales with the particle size

as r6 and from equation 2.19 the gradient force scales as r3. Therefore, for particles

with a radius larger than the following condition, the scattering force will dominate (See

appendix A for derivation).

r > 3

√√√√ 3λ4

16π4

∇I
I

(
m2 + 2

m2 − 1

)
. (2.25)

In the case where the scattering force is dominant, the particle will experience a net force

in the propagation direction of the laser beam and will be pushed out of the trapping

region created by the gradient potential. For the optical trapping setup outlined in

section 3, we find that Fscat = Fgrad for a particle with a diameter of 580 nm, suggesting

this is the largest particle which can be trapped in the system (see figure 2.7).

The strength of the scattering and gradient force in the axial direction of the trap for a

150 nm diameter particle can be seen in figure 2.8. In the case where the gradient force

dominates, the particle is pulled towards the center of the focus and its motion can be

described as harmonic, within a potential well created by the gradient force.

2.3.3 Trapping Potential

The depth of the potential well U created by our beam can be found by considering the

energy of a dipole U = −p.E, where p is the dipole moment. Substituting in p = αE

we arrive at,

1It should be noted that the scattering force equation and derivation shown here is true for the case
in which the small-size approximation is true. The small size approximation is true, provided that the
circumference of the trapped nanoparticle particle is smaller than the wavelength of scattered laser light.
In this situation the scattering of the photons is in phase with the incoming photons. This approximation
breaks down as the size of the particle becomes comparable to λ/2 and interference effects begin to be
introduced due to phase variations introduced by the surface of the particle. Since the particles used in
the experiments are very small compared to the wavelength (λ = 1550 nm) this approximation holds for
the work presented in this thesis.
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Figure 2.7: Comparison of the gradient and scattering force as a function of
particle radius. It can be seen that particles with a radius less than rmax ∼ 290 nm
will experience a net force in favour of the gradient force and remain trapped. However,
in contrast particles with a radius greater than rmax ∼ 290 nm will experience a greater

effect from the scattering force and be expelled from the trap.

U = α|E|2, (2.26)

using equation 2.17 and 2.18 we arrive at

U =
8πI(z, r)r3

c

(
n2 − 1

n2 + 2

)
. (2.27)

It should be noted that an assumption has been made that the focus is unaffected by

the presence of a particle. For particles with a small radius compared to the waist of

the focus, this assumption holds true, but if r ≈ W0 a more complete model for the 3

dimensional intensity should be used [108, 109].

The size of the focus of our trapping laser has a great effect on our ability to trap a

particle. The shape of the trapping potential for a range of particle sizes can be seen in

figure 2.9. The tighter the focus, the deeper the potential well that our particle finds
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Figure 2.8: Optical forces affecting an optically trapped silicon particle, with
a 150 nm diameter, 55 mW trapping power and a NA of 0.9. In the case shown here the
gradient force dominates. The equilibrium point around which the particle oscillates

occurs when the total force experienced by the particle is zero.

itself within. The depth of the potential well plays a large role in keeping a trapped

nanoparticle within the optical trap. If the thermal energy of the particle is roughly

equal to, or greater than the depth of the potential, then the particle can escape from

the trap. In thermal equilibrium, to keep a particle optically trapped, the depth of the

trapping potential must be at least ' 10kbT [78] to make particle escape via thermal

excitation improbable. Figure 2.10 shows, for a given set of parameters, the size range

of particles where their size becomes too small to trap easily.

2.3.4 Trap stiffness

An important concept in applications of laser tweezers is the trap stiffness, k0. For small

displacements x, y, z from equilibrium, the trapping potential can be approximated by

a harmonic function and the restoring gradient force becomes linearly dependent upon

x, y, z. In this situation the relationship between the gradient force, trap stiffness and

particle position can be written as,

F
(x,y)
grad = −k(x,y)rrad,

F
(z)
grad = −kzz.

(2.28)
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Figure 2.9: Trapping Potential depth as a function of radial distance rrad
from the trap for silica nanoparticles of varying radius. Calculated under the
following experimental parameters; NA= 0.995, power = 700 mW and λ = 1550 nm.
It can be seen that the trap depth increases with larger particles. This contributes to

the difficulty in trapping smaller nanopartilces.

Figure 2.10: Trapping Potential depth as a function of silica nano-particle
radius. Calculated under the following experimental parameters; NA= 0.9, power =
55 mW and a λ = 1550 nm. The grey region marks the area where particle sizes are
small enough that, with the given NA and power, trapping will be difficult; in this case,

particles with a radius of less than roughly 20nm.

The trap stiffness depends on the direction of displacement. For a single beam gradient

trap, it is often sufficient to distinguish between transverse and longitudinal stiffness.

The trap stiffness can be found in the transverse2 x and y dimensions and longitudinal

2This is because the intensity gradient in the x and y dimensions is equal to each other and much
higher than that of the z dimension. See figures 2.4 and 2.5.
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stiffness z by taking the derivatives of equations 2.28, assuming the paraxial approxi-

mation and expanding the trap stiffness to the first order to find [13],

k(x,y) =
4α(NA)4π3

cε0λ4
P0, (2.29)

and,

kz =
2α(NA)6π3

cε0λ4
P0. (2.30)

Using the trap stiffness we can define our trap frequency f0 to be:

ω0 = 2πf0 =

√
k0

m
. (2.31)

The subscript 0 has been used to denote the equation is the same for any degree of

freedom. The trap stiffness and trap frequency play an important part when trying to

cool the trapped particle to lower temperature, as will be explained in section 6.1.

2.3.5 Ratio of Trap Frequencies

The ratio between the trap frequencies can be used as a tool for analyzing the shape of

the potential well of a three dimensional trap and will be used as such in section 4. To

derive this ratio we consider the potential energy Ui of a harmonic oscillator, for each

spatial degree of freedom (i = x, y, z) given by,

Ui =
1

2
mω2

i q
2
i , (2.32)

where ωi is the trap frequency and qi is the particle position in the transverse or z direc-

tions. Substituting equation 2.9 into equation 2.27 and performing a Taylor expansion

to second order in z and rrad for rrad = 0 and z = 0 respectively we obtain,
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Urrad |z=0 = − 2α

πW 2
0 cε0

P0 +
4α

πW 4
0 cε0

P0r
2
rad +O(r)3 (2.33)

Uz|rrad=0 =
2α

πW 2
0 cε0

P0 +
2αλ2

π3W 6
0 cε0

P0z
2 +O(z)3 (2.34)

Equating the second order coefficients with Ui from equation (2.32).

ω2
rrad

=
4α

mπW 4
0 cε0

P0 (2.35)

ω2
z =

2αλ2

mπ3W 6
0 cε0

P0 (2.36)

The ratio between the transverse and axial direction of the trap can thus be calculated

to be,

ω0rrad

ω0z
=
πW0

λ

√
2 (2.37)

Providing the electric field can be described by equation 2.2, the wavelength of laser

light used is λ = 1550 nm and a W0 ≈ 750 nm, we find a ratio of 2.22. Throughout the

previous discussions we have assumed that the trap is perfectly symmetric in the x and

y direction, however this may not be the case experimentally. For example the intensity

profile of the Gaussian laser beam, or the alignment of the optical trap may may result

in the x and y directions not being perfectly symmetric. If this was the case, then we

would be able to observe it via a deviation of the ratio of the trap frequencies from the

expected value of 2.22.

2.3.6 Linear spring approximation

In the model presented so far in this chapter, we have assumed that the spring constant

is linear. However, this is not strictly true for large amplitude oscillations [62]. As can be

seen in figure 2.11, at the center of the trap the gradient force behaves linearly. However

at a distance of roughly 300 nm the gradient force begins to no longer behave in a linear

fashion. For the majority of investigations in this thesis, the particle explores the linear

region of the trap. In the case where the particle explores the nonlinear region of the
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trap and therefore nonlinear dynamics become apparent, further detail will be given in

the appropriate chapters (see sections 4.6 and 7.6.4).
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Figure 2.11: Domain of the linear spring approximation. In the model pre-
sented here, the electric field intensity has a Gaussian profile as a function of distance
from the centre of the trap (cyan curve) (see equation 6.7). This results in a Gaussian
shaped optical potential well (blue curve) (see equation 2.27). The resulting optical
gradient force is given by differentiation of the laser intensity (red curve) (see equation
2.19) and the gradient force near the centre of the trap is approximately linear (black
dashed line), with slopes given in equation’s 2.29 and 2.30 depending on the direction

of interest.



Chapter 3

Experimental methods and setup

for optical trapping of

nanoparticles

Since Arthur Ashkin first demonstrated optical trapping of micrometer sized particles

using lasers [75], many experimental schemes have been realised to trap and manipulate

particles; With trapping schemes ranging from simple lens based traps [20], to complex

setups integrating multiple optical technologies [110]. A variety of novel techniques have

been developed for use in optical traps, including trap stiffness manipulation [62], and

devices to apply forces [71]. In addition, the use of optical tweezers in combination

with other technologies, such as fluorescence spectroscopy [111], has turned them into

extremely useful and versatile tools. Despite the large variety of experimental schemes

which have been realised to control and manipulate optically trapped particles, each part

of the experiment can be broken down into the same components based on function,

namely: the laser system, the nanoparticle source, the optical tweezer, the detection

scheme, and the manipulation apparatus. Below, each of these components will be

elaborated upon.

The laser system: The laser system consists primarily of the laser which will be focused

by the trapping objective, but also of the various components used to generate the ideal

beam properties, such as beam shape, light polarisation, beam intensity modulation etc.

The nanoparticle source: The nanoparticle source is responsible for selecting and

delivering the particle into the optical trap itself, ideally at any pressure for any particle

reproducibly. This in itself is a much harder task than it initially seems and is at

the time of writing, currently a major hurdle in the field. Practically, several different

27
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methods are used for a variety of different particles at different pressures. A few examples

of particle delivery method include: laser-induced thermomechanical stress (LITHMOS)

[112], launching particles coated to a ultrasonic transducer [113], dispersion via vaporised

solution into the chamber [1, 114]. The later of which is the method used here.

The optical tweezer: The optical tweezer itself is the region in which a nanoparticle’s

motion will become bound within a potential well. Several experimental methods are

utilised to form such a trap, multiple laser beams [115–117], single objective lens [13, 118],

optical cavities [119], hybrid magnetic Paul traps [120] and finally the method used in

this body of work, a parabolic mirror objective [3, 114].

In addition to the method used to create the optical trapping site, the properties of

the trap are also governed by the surrounding environment, specifically the density and

constituency of the particles in the trapping chamber. This is determined by the vacuum

chamber in which the optical tweezer operates.

The detection system: The detection system is responsible for providing information

on the particle’s motion within the optical trap. Several schemes have been developed,

most of which are based on interference between light which has been scattered by the

trapped nanoparticle, with either unscattered trap light or a local oscillator [12, 13, 119].

Once the information is detected, it is then saved for analysis and often utilised in

feedback loops to control the particle motion [13].

The manipulation apparatus: The manipulation apparatus is used to impart some

kind of change to the nanoparticle motion within the trap. Examples include needles

used to displace trapped particles via electric fields [121] and reduction in the oscillation

amplitude, by modulating the the trapping laser light [3] to name just a couple of

examples. The manipulations that will be demonstrated in this thesis include parametric

feedback cooling, capable of reducing the center of mass motion of the optically trapped

particle and pulsed squeezing scheme, able to squeeze the phase space of the parametric

oscillator.

In this chapter a discussion of the development of the optical tweezer system will be

provided, along with details of the experimental scheme used in the following studies

to optically trap nanoparticles. The methods of particle manipulation once optically

trapped will be discussed in later chapters, along with the results of the experimental

manipulation.
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PBS

1550 nm

Figure 3.1: Optical setup for trapping nanoparticles. The λ/2 wave plate
controls the power of the trapping laser beam, as well as allowing a small amount of
the trapping laser light to be picked off and monitored when desired. The beam splitter
shown in this figure is a polarising beam splitter (PBS). This optical setup forms the

basis for all the experiments carried out in subsequent chapters.

3.1 Experimental setup overview

The basic optical setup used to create an optical trap is generated with light from a

stabilised fibre laser (λ = 1550 nm, NKT Koheras Basik CI5, 40 mW). The light then

seeds an erbium doped fibre amplifier (EDFA, NuPhoton) to a maximum power of 1W.

The light is focused by a high numerical aperture (NA=0.995) parabolic aluminium

mirror, which is mounted in a vacuum chamber. The optical setup can be seen in

figure 3.1. In this setup, a variety of particles have been trapped, with silica (SiO2)

nanoparticles trapped in vacuum as low as 1×10−6 mbar. The λ/4 wave plate controls

the polarization of the light entering the optical trap, as well as the direction of the

scattered and diverging light thought the polarizing beam splitter. This light is then

collected by a single photodiode (Thorlabs PDB450C ). The signal measured on the

photodiode is then recorded on an oscilloscope (Teledyne LeCroy HDO6104 ).

The vacuum chamber was connected to a roughing pump (Oerlikon lybold vacuum pump

140125T ), capable of reducing the chamber to roughly 10−2 mbar and a turbo pump

(Pfeiffer PM Z01300) capable of reducing the pressure further to 10−6 mbar. The pres-

sure is read from a (Oerlikon Leybold Vacuum, D-50968 Koln, Type: ITR 90 No: 12094,

F-No:1669/2012 ) pressure sensor.
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3.2 The laser system

Earlier experiments were carried out using an IPG fibre laser (λ = 1550 nm, 10 W).

However, due to laser stability issues, the laser was later replaced with a NKT Koheras

Basik CI5 fibre laser. This laser is used for all the experiments outlined in this thesis1.

The stabilised fibre laser (λ = 1550nm, NKT Koheras Basik CI5, 40mW) then seeds

an erbium doped fibre amplifier (EDFA, NuPhoton). The beam diameter is entirely

dependant upon the fibre collimator used for output from the EDFA fibre output. The

collimator chosen was a Thorlabs 3.0 mm diameter FC/PC fibre collimator, which pro-

duces a beam waist marginally larger than parabolic mirror dimensions. This allows for

a large amount of the laser light to be collected (see section 2.2.2.1) and the alignment

method used in these experiments (see section 3.4 for details). The NKT Koheras Basik

CI5 fibre laser emits 40 mW of laser power which is amplified up to a maximum power

of 1 W. Loss in the optical setup through processes such as absorption results in about

700 mW reaching the optical trap.

3.3 Nanoparticle Source

The nanoparticle source for an optical trap consists of two parts, the particles themselves

and the equipment used to deliver the particles to the trapping region. The ideal source

would be able to reliably deliver particles to the trapping region at any pressure, without

affecting the pressure in the chamber itself, or introducing any contaminant. Finally,

the delivery system should be controllable and repeatable. Such an ideal system has yet

to be developed and is an area of active research within the community.

There are several methods to deliver a particle into an optical trap which operate at

vacuum. Some methods used rely on coating/growing nanoparticles on a surface and

then firing the particles off the surface. These methods include Laser-induced thermome-

chanical stress (LITHMOS) [112], launching particles coated to a ultrasonic transducer

[113] and laser ablation. These methods have the drawback of relying on producing a

large number of particles being flung in the direction of the optical trap. A more precise

delivery method can be created by using a standing wave trap inside a hollow-core pho-

tonic crystal fibre. A particle trapped at one end of the fibre can be moved through the

fibre by means of the standing wave trap, to create an optical conveyor belt. By placing

the fibre between two different vacuum chambers, one at atmospheric pressure and one

at the desired vacuum, it’s possible to transfer a single particle into an optical trap in a

vacuum, in a controllable way [122].

1With the exception of figure 3.3.
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The method implemented in this work is dispersion via vaporised solution into the cham-

ber [114]. This method is experimentally much simpler than the aforementioned meth-

ods, however has the drawback of only working at atmospheric pressure and emitting

large amounts of water vapor into the vacuum chamber.

3.3.1 Nanoparticle selection

There are several parameters to consider when selecting a nanoparticle to optically trap.

Firstly the nanoparticle requires a high polarisability, allowing it to couple strongly with

the optical gradient field. Secondly, it must have low absorption at the wavelength of

light used to form the optical trap, in our case 1550 nm. This is to prevent the particle

heating within the optical trap, to an extent where it deforms, melts or emits a large

amount of blackbody radiation. Low emission of blackbody radiation is a desirable

characteristic for proposed nanoparticle interferometry experiments, such as [44].

These criteria are met by silica and silicon particles, however due to the ease of availabil-

ity of silica nanospheres, they are the material of choice for the experiments carried out

in this thesis unless otherwise specified. In addition to trapping silica particles, trapping

of polystyrene, nanodiamonds2, silicon and carbon nanotubes has also been achieved.

The silica spheres that have been used range between 18 nm and 312 nm in diameter.

3.3.2 Particle delivery method

Nanoparticles are loaded into the optical trap via the use of an Omron micro-Air nebu-

liser, shown in figure 3.2. The nebuliser uses a 3 µm mesh to generate aerosol droplets

of the liquid solution. To trap a particle in the system the vacuum chamber is opened at

atmospheric pressure, then the nebuliser is used to disperse droplets of liquid containing

nanoparticles into the chamber near the trapping region. Once a particle is trapped, the

chamber is closed and evacuated.

To prepare a solution of nanoparticles for use in optical trapping, we purchase a pre-

made solution of nanoparticles and dilute to the required concentration. The suspension

is then sonicated for 15 minutes (37 kHz, 300 K), before being loaded into the nebuliser

(for more details on the method used to prepare the particles see appendix B). To reduce

the chance of aggregation, or particle clusters becoming trapped in the optical setup, we

dilute the system to a concentration of roughly 1 nanoparticle per droplet. The mass of

a nanoparticle is given by,

2As a point of interest several studies using optically trapped nanodimonds have been demonstrated
in multiple optical trapping systems [68, 116, 123].
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A

B

C

Figure 3.2: The nebuliser consists of three parts A) A mesh on top of a piezoelectric
crystal element. Liquid in the space between the piezoelectric crystal and the mesh is
pushed through the mesh by the motion of the piezoelectric crystal. The mesh breaks
the liquid into micrometer sized droplets of water. Under standard humidity conditions,
the droplets quickly evaporate and only the solid nanoparticles are left behind [1]. B)

The nanoparticle solution loading area. C) The power supply.

m = ρVp =
4

3
πρr3. (3.1)

where ρ is the density of the nanoparticles in question, Vp is volume of a nanoparticle.

From this, and using the concentration of the purchased nanaoparticle solution CSol we

can calculate the number of particles in the solution:

Nparticles = Csol
Vdroplet

ρVp
=
Csol

ρ

r3
aerosol

r3
. (3.2)

where Vdroplet is the volume of the aerosol droplet and raerosol is the radius of the aersol

droplet. Therefore, we can write the dilution factor required to dilute a commercial

nanoparticle solution to provide a single particle per droplet as DF = 1/Nparticles. The

concentration of a typical off the shelf nanoparticle solution is 25 kg/m3. Therefore, for

example we can calculate a dilution factor for nanoparticles with radius of 65 nm to be

equal to 0.001.

3.4 The Optical trap

Several iterations and refinements were made over the course of the PhD, to create a

stronger and more stable trap. Initially we started with lens based traps, before moving
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onto a parabolic mirror to create the an optical trap.

3.4.0.1 Problems with Refractive Optics

Initially, optical trapping was performed using an aspheric lens from Thorlabs (AL1210-

C) with an NA of 0.6 and a focal length of 10 mm. However, this was found to be more

problematic than initially anticipated. The issues turned out to be a consequence of the

way the Thorlabs lens was designed. The aspherical lens used was cut for a wavelength

of 780 nm and then coated with an antireflection coating for 1550 nm3. At the design

wavelength (780 nm), the focus waist is 0.6 µm and has a clean focus with minimal

aberrations. However, as the design wavelength of the lens is significantly lower than

the wavelength of our trapping laser (1550 nm), we find the focus waist to be 66 µm,

with significant aberrations. To quantify the increase of aberrations in the focus when

using 1550 nm laser light we use the Strehl ratio. The Strehl ratio is a measure of the

image quality ranging between 0 and 1 [124]. For the design wavelength of the lens (780

nm) the Strehl ratio of the Thorlabs (AL1210-C) lens is 0.82. However, with the 1550

nm trapping laser light, the Strehl ratio equals 0.2, a much lower value. The larger focal

beam waist, resulting from chromatic aberrations when using 1550 nm light resulted in

the need for higher laser powers to trap nanoparticles, than the parabolic mirror used

throughout this thesis. Additionally, the aberrations resulted in multiple trapping sites

forming at the focus (shown in figure 3.3). The use of several lenses to correct for these

aberrations provided some improvement, without solving these problems completely.

The problems resulting from chromatic aberrations motivated the switch from refractive

to reflective optics.

3.4.0.2 The Mirror Trap

A solution to the problems raised by lens-based traps was found in the form of parabolic

mirrors, one of which can be seen in figure 3.4. The mirrors were designed and then

commissioned from Symons Mirror Technology, who machined the mirrors with a dia-

mond lathe from an aluminium block, with a surface roughness of less than 4 nm. There

is no optical or protective coating attached to the aluminium surface.

The parabolic mirror as a reflective high NA optic offers several advantages and acts as

a cheap alternative to comparable lens optics. The mirror is easy to implement and to

use at ultra-high vacuum, which is more difficult for high NA objective lenses. Another

3It should be noted that since switching to a parabolic mirror trap low cost aspheric lens have become
commercially available, with the design wavelength of 1550 nm such as Thorlabs C660TME-C. Trapping
with the Thorlabs C660 TME-C was tested and found possible, without the creation of multiple trapping
sites.
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Figure 3.3: Optical trapping with an aspherical lens from Thorlabs
(AL1210-C ) multiple particles can be levitated at the focus. This image was taken
perpendicular to the direction of beam propagation. The laser used to trap these par-
ticles was a IPG Laser (10 W,1550 nm) outputting a power of 4 W. This is the only

time this laser was used to collect data presented in this thesis.

advantage, is that the mirror does not have chromatic effects, which make the position

of the focal point independent of the wavelength used. The latter might be interesting

for multi-wavelength spectroscopy and manipulation techniques.

A) B)

Figure 3.4: The parabolic mirror used for trapping. A) The first iteration of
the parabolic mirror had a diameter of 20 mm, a depth of 4.5 mm, a surface roughness
of less than 10 nm and a max NA of 0.9. This mirror has not been used to collect any
of the experimental data shown in this thesis. B) This mirror is one of the two mirrors
used throughout the work presented here with an NA = 0.9951. The mirrors were
made to be smaller than the beam width such that the alignment method outlined in

3.5.1 could be used.

3.4.1 Evaluation of the numerical aperture

Figure 3.5 A shows a parabola. Parabolas made from a reflective material have the

property that light which travels parallel to the parabolas axis of symmetry and strikes

its concave side will be reflected to its focus, independent of where the reflection occurs

on the parabola. Conversely, for a point source located at the focus, all the light emitted
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Figure 3.5: A) Geometry of a parabola A parabola is a plane curve (solid black
line), which can be defined using the focus (green dot) and the directrix (solid purple
line). The focus by definition does not lie on the directrix. The parabola is a line,
in which all constituent points are equidistant from both the focus and the directrix
(shown by the red lines, which are of equal length). The line perpendicular to the
directrix, and which passes through the focus is called the axis of symmetry. The point
on the parabola that intersects the axis of symmetry is called the vertex (yellow dot).
The distance between the vertex and the focus, measured along the axis of symmetry, is
the focal length f. B) Geometry of the parabolic mirror. The polarisable particle
is trapped in the diffraction limited focal point of the parabolic mirror. We have used
a number of different mirror designs thoughout the experiment, which differ in the
working distance, the focal point with respect to the plane surface of the mirror and
the NA. The more of the paraboloid used for the mirror, the higher the NA. The NA
can also be varied/reduced for a given mirror by modification of the waist of the laser
light incident on the mirror: If the light spot is smaller than the machined paraboloid,

the NA is reduced.

would be reflected into a collimated beam, leaving the parabola parallel to the axis of

symmetry.

The geometry of the mirror trap is illustrated in figure 3.5 B. The numerical aperture

(NA) is defined as the light acceptance cone of the parabolic mirror. As the scattered

light from a trapped particle diverges from the focus, we consider the solid angle at the

distance z0 as a fraction of the maximum angle of acceptance 2π. Thus allowing us to

write [125]:

NA =

∫ θ

0
sin θ′dθ′ = 1− cos θ. (3.3)

The general paraboloid function is z = r2
z/(4f), where z is the height above the bottom

of the mirror, rz is the radius of the paraboloid at z, and f is the focal length (see figure

3.5 A). For the paraboloid as shown in Fig.(3.5) at the maximum radius r0 and at the
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corresponding height z0, with z0 ≤ f , the angle θ between the optical axis and the edge

of the paraboloid is given by

tan(θ) =
r0

(f − z0)
=

r0

f − r2
0/(4f)

. (3.4)

We can thus define the NA of the parabolic mirror to be

NA = 1− cos

(
arctan

[
r0

f − r2
0/(4f)

])
. (3.5)

There are two mirrors used in the experiments presented here. The first mirror used has

a focal length of f=3.1 mm and r0=1.27 mm, which gives a NA of 0.995. The second

had the same focal length of f=3.1 mm but larger radius of r0=6.9 mm, resulting in a

lower NA equal to 0.9.

3.5 Continuous Detection System

3.5.1 Alignment of the Detection System

The trapping laser used has a beam diameter slightly larger than the width of the

parabolic mirror, the reflection from the flat surfaces of the mirror (seen in figure 3.4)

results in wave interference, to create a bright spot in the center of the detection beam,

overlapping the Escat and Ediv fields. The bright spot is a result of near field diffraction

by the flat mirror edges around the parabolic mirror. The spot can be used to align the

beam reflected from the parabolic mirror to the photodiode used for detection. However,

due to the high power of the Poisson spot, it increases the signal-to-noise ratio (SNR),

reducing the position resolution we are able to detect. To remove the Possion spot when

trapping nanoparticles in the setup, an iris is placed in front of the parabolic mirror.

When the iris is open, the Possion spot can be seen by placing a CCD in the setup.

While the iris is open, the Posssion spot can be observed; reducing the size of the iris

aperture reduces the size of the Possion spot and it finally disappears when the iris

aperture is equal to the size of the parabolic mirror (This process is shown in figure 3.6).

Any reduction in the iris aperture’s diameter below that of the parabolic mirror width

results in a decrease in the trap frequency of any optically trapped nanoparticle, as the

power entering the trap is reduced. An image of a trapped particle taken while the iris

is closed can be seen in figure 3.7.
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Figure 3.6: Removal of Poisson spot. As the iris aperture is closed, the size of
the Poisson spot starts to decrease in size, until the iris aperture size matches that of

the parabolic mirror, at which point it vanishes completely.

Figure 3.7: Image of a trapped 100 nm silica particle The image was captured
with a CCD (Point Gray Research CMLN-12S2M-CS ) placed in the beam path just in

front of the photodiode.

3.5.2 Homodyne detection

In the absence of a trapped particle, the light focused by the mirror will be highly diver-

gent and very little of it will reach the detection system. However, if a particle is trapped,

then a portion of the scattered light from our nanoparticle is scattered back toward the

parabolic mirror and as the light is coming from the focus of our parabolic mirror, it

will become collimated before being sent to the detector. Interference between this back

scattered field Escat and the highly divergent field which passes without interacting with

the particle through the focus Ediv (the reference field), provides interferometric position

resolution. These fields can be seen in figure 3.8.

The resulting interferometric signal Etotal is given by

|Etotal|2 ≈ |Escat + Ediv|2, (3.6)
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Figure 3.8: The wave fronts present with a particle in the optical trap.
The amount of scattered field Escat collected and thus collimated by the parabolic
mirror depends on the NA of the parabolic mirror, with larger NA’s collecting a larger

percentage of the scattered field.

and is proportional to the phase difference between the Ediv and Escat field. A phasor

diagram of the signal components is shown in figure 3.9. The length of Escat remains

constant, as the particle is sub-wavelength and confined towards the center of the laser

focus, however the phase does change due to the change in path length of the scattered

light. This change in path length is caused by the particle oscillation within the trap.

This causes a change in the length of Etotal. It is this modulation that we detect to

monitor the particle position. More detail on the detection scheme used can be found

in section 4.5.

A) B)

Φ1 Φ2

EscatETotal

Ediv

Escat
ETotal

Ediv
Figure 3.9: Phasor diagram of detected signal components. The length of
Escat is constant as the particle is sub-wavelength and is confined close to the center
of the focus, however the phase does change due to the change in path length. This
changes the angle φ causing a change in the length of Etotal. A) The phasor diagram
for a particle with phase φ1. B) The phasor diagram for a particle with phase φ2. It

can be seen that Etotal has increased compared to φ1.
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In the detection arm of the experimental set up, the reference field is allowed to diverge.

By making the reference field amplitude comparable with that scattered by the particle,

a large modulation visibility is observed at the detector. This results in a high particle

position resolution. For optimal detection efficiency, the detector must be sufficiently

far away so that the divergent beam wavefronts are approximately flat over the detector

area. For a detector of radius a at a distance d from a point-like source, the distance

from point source to edge of detector is
√
d2 + a2. The difference between this and the

on-axis distance d must be less than ≈ λ/4.

√
d2 + a2 − d < λ/4 =⇒

√
1 + (a/d)2 − 1 < λ/(4d)

=⇒ (a/d)2/2 < λ/(4d)

=⇒ d > 2a2/λ.

(3.7)

For example in the case of a 1 mm diameter detector (a = 500 µm) with 1550 nm light,

the detector must be at least 30 cm away.



Chapter 4

Optomechanics of levitated

particles

The first demonstration of optical trapping was carried out by Ashkin in 1970, [75] who

demonstrated for the first time, optical trapping of micrometer sized particles. Subse-

quently through several studies by Ashkin and others [126], methods of manipulating

and trapping with light were extended to molecules and atoms. This resulted in the

branching of the field into two distinct fields: one concerned with the optical trapping

of atoms and molecules and the other microscopic objects.

The latter field, concerned with the trapping and manipulation of microscopic objects

is referred to as ”optical tweezers”. Optical tweezers, as discussed previously, can take

many forms, with each system offering different levels of control over the particle size

and motion within the trap and therefore are suitable for differing studies of particle

motion. Such studies include measurement of a particle’s velocity [12], the relaxation

of the particle motion from a non-equilibrium steady state [24] and the rotation of

birefringent particles [127].

As mentioned before, the type of trap used in these experiments is a gradient force trap.

The first demonstration of a gradient force trap was carried out in 1997 by Omori et al.

[83] who trapped a micro-particle in air. Later in 2011 Giesler et al. [13] used parametric

feedback cooling to optically cool and trap a particle at vacuum, advancing the versatility

of gradient force traps. The work presented in this chapter will demonstrate optical

control over a particle’s motion within a gradient force trap created using a parabolic

mirror objective.

In this chapter, we will discuss the motion of the particle within the aforementioned

optical gradient force trap (described in section 3). In addition to this, control over

40
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the frequency of the motional degrees of freedom will be presented and a description of

two different methods to extract key experimental parameters of an optically trapped

particle will be demonstrated.

4.1 Harmonic particle motion

For a particle in a harmonic potential with a trap stiffness of k0 = mω2
0, experiencing a

damping force (with damping rate Γ0), the equation of motion can be written as,

mẍ(t) +mΓ0ẋ(t) + k0x(t) = Fth(t) (4.1)

where Fth(t) is an external noise experienced due to thermal stochastic noise. The equa-

tion written here is for the x motion, but similar equations apply in the y and z degrees

of particle motion, all of which have there own distinctive frequency of oscillations (ωz,

ωx and ωy). The solution to this equation can be written as,

x(t) = x0 sin(ω0t+ φ) (4.2)

where x0 is the amplitude of motion and φ is an arbitrary phase. The power spectral

density (PSD) is a useful tool for analysing the dynamics of a trapped nanoparticle and

can be derived from equation 4.1. The PSD for the particle motion can be calculated us-

ing the Fourier relationship and details how much each frequency component contributes

to the variance of the particle position signal.

dnf(t)

dtn
= (iω)nf̃(ω) (4.3)

applying this Fourier relationship to equation 4.1,

m(iω)2x̃(ω) +mΓ0(iω)x̃(ω) + k0x̃(ω) = F̃ th(ω) (4.4)

where ∼ denotes the term in question is now in terms of frequency. rearranging x̃(ω) to

be the subject

x̃(ω) =
1

m

(
F̃ th(ω)

(ω2
0 − ω2) + (iωΓ0)

)
. (4.5)
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Taking the squared magnitude will yield the power spectral density Sxx(ω) = 〈|x̃(ω)|2〉,

Sxx(ω) =
1

m2

〈|F̃ th(ω)|〉2

(ω2
0 − ω2)2 + (ωΓ0)2

. (4.6)

This equation shows how the energy is distributed across frequency space. This equation

can be expressed in more intuitive quantities by integrating equation 4.6 to find the

positional variance of the particles oscillation 〈x2〉.

〈x2〉 =

∫ ∞
0

Sxx(ω)dω

=
1

2

∫ ∞
−∞

Sxx(ω)dω

=
〈|F̃ th|〉2

2m2

∫ ∞
−∞

1

(ω2
0 − ω2)2 + (ωΓ0)2

dω

=
〈|F̃ th|〉2

2m2

π

ω2
0Γ0

(4.7)

Using equipartition theorem 1
2kbTcm = 1

2mω
2
0〈x2〉, where Tcm is the centre of mass

temperature of the particle motion. Thus we find

〈|F̃ th|〉2 =
m

π
2kbTcmΓ2

0. (4.8)

Thus we can write equation 4.6 as,

Sxx(ω) =
kbT0

πm

Γ0

(ω2
0 − ω2)2 + ω2Γ0

, (4.9)

This equation is the power spectral density of the particle motion and forms a useful

tool for analysing the motion of optically levitated particles. The motion of an optically

trapped particle and corresponding PSD can be seen in figure 4.1.

4.1.1 Damping

The viscous damping rate Γ0 is a result of the collisions with air molecules in the sur-

rounding environment. From kinetic theory Γ0, can be written as [128],

Γ0 =
6πηairr

m

0.619

0.619 +Kn
(1 + cK) (4.10)
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Figure 4.1: A) Time domain data of a 50 nm diameter particle at 1 mbar. The
particle position relative to the centre of the trap is shown over time. The data has
been passed through a 50 kHz low pass filter to remove noise in the system. The
method used to extract the positional information is described in section 4.2. B)
Corresponding PSD showing the frequency peaks arising from the motion of the
particle in all three spatial degrees of freedom. The x and y peaks have different
frequencies, due to deliberate breaking of the symmetry between the x and y spatial
degrees of freedom and is discussed further in section 4.4. The additional peak that can
be seen between the z and x peak is due to nonlinear effects discussed in more detail

in section 4.3.

where ηair is the viscosity of air (ηair = 18.2 µPa s [129]), r is the radius of the nanopar-

ticle, cK = (0.31Kn)/(0.785 + 1.152Kn+Kn2) which is a function of Kn the Knudsen

number. The Knudsen number is a dimensionless number which indicates whether the

description of the system via fluid dynamics should take into account statistical mechan-

ics (in the case where Kn ≥ 1), or continuum mechanics (Kn << 1). The Knudsen

number is defined to be Kn = l̄/r, where l is the mean free path of air molecules.

The form of the equation to express the mean free path, used to describe the system,

depends on whether the particles in question are considered to be ”soft” spheres, follow-

ing a Lenard-Jones potential, or hard spheres colliding. In the case of our experiment

we find that the assumption of hard spheres corresponds with experimental results and

therefore we can write the mean free path as,
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l̄ =
kbT0√

2πd2
gasPgas

. (4.11)

where dgas is the diameter of the gas particles (dgas = 0.375 nm [130]), T0 is the tem-

perature of the environment and Pgas is the pressure of the gas. It is possible to relate

Γ0 linearly to the measured pressure by expanding equation 4.10 in Kn−1 to get,

Γ0 = 0.619
9π√

2

ηaird
2

ρkbT0

Pgas
r

(4.12)

Therefore at low pressures where the mean free path is relatively large, for example at

P=10−3 mbar, l̄ = 6.6 cm and it can be seen that Γ0 is linearly proportional to Pgas.

4.2 Extraction of parameters from fit to PSD

This section details a method to extract parameters of an optically trapped particle such

as mass m and radius r, and parameters about the motion of the nanoparticle in the

trap, such as damping of the particle motion Γ0, from fitting to the measured power

spectral density. Experimental data is directly recorded from the photodiode signal,

which means the particle position is recorded in volts as function of time. Directly

plotting the PSD from a recorded time trace will have units of V2/Hz, therefore the

experimental PSD can be written as,

Sxx(ω) = γ2kbT0

πm

Γ0

(ω2
0 − ω2)2 + ω2Γ2

0

, (4.13)

where γ is a conversion factor from volts to meters in units of V/m1. To fit this equation

to the experimental data we simplify equation (5.13) as

Sexpxx =
A

(B2 − ω2)2 + ω2C2
. (4.14)

Where A := γ2kbT0Γ0

πm , B := ω0 and C := Γ0 are free fit parameters. The conversion

factor γ is a result of the detector’s measurement is in Volts. To convert our power

spectral density to m2

Hz , we require a conversion factor with units of m
V . The conversion

factor can be calculated using

1Due to the nature of the detection scheme described in section 3.5.2, the relationship between particle
position and voltage measured on the detector is not completely linear, however it can be treated as
linear to a good approximation.
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γ =

√
A

C

πm

kbT0
. (4.15)

where the particle is assumed to be in thermal equilibrium at T0 =300 K. Extracting

the fit parameter C from equation 4.15 and using equation 4.12 it is possible to calculate

the mass of the trapped particle.

4.2.1 Measuring particle radius and mass

To calculate the particle’s radius from equation 4.12, we use the fit parameter C = Γ0

extracted from the Lorentzian fit, pressure P measured from a pressure sensor and known

constants. This allows us to write,

r = 0.619
9π√

2

ηaird
2

ρkbT0

Pgas
C

. (4.16)

Using the calculated radius from equation 4.16 it is possible to calculate the mass M

using M = 4πρr3/3. An example of fit and extracted parameters is shown in figure

4.2. The methods used to calculate the errors in the values of r and m can be found in

appendix C.

4.2.2 Calculating position sensitivity

Once the mass of the particle has been calculated, the conversion factor can be obtained

using equation 4.15. The noise equivalent power (NEP) of a detector characterises the

resolution of a detector. For the balanced photodiode detectors used the NEPdet = 70

nV/
√

Hz. Equivalently, we can work out the position resolution of our setup,

Sxx,min =
NEPdet

γ
. (4.17)

A typical value for Sxx,min is 17 fm/
√

Hz in our system. The current experimental

position resolution, Sxx,exp = 0.53 pm/
√

Hz, is limited by the noise floor, which currently

is at NEPexp = 2 µV/
√

Hz as analysed from experimental data.
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Figure 4.2: Fit to PSD of particle motion. Equation 4.15 is fitted to the x
frequency peak for a particle trapped at 1 mbar with 700 mW laser power trapped with
a parabolic mirror with an NA of 0.995. From this fit it is possible to evaluate the
following parameters for the particle; m = 1.4 × 10−18 kg, radius r = 50 ± 1 nm and

Γ0/2π = 270± 10 Hz.

4.3 Reducing pressure - Emergence of particle motion

At atmospheric pressure, the particle motion within the trap is heavily damped such

that any coherent oscillatory behaviour is suppressed by 1/f noise, due to a frequent

collisions with gas particles. As the pressure is reduced in the vacuum chamber, the

rate of collisions with particles is decreased and thus so is the damping (see equation

4.12). This results in the particle motion becoming less perturbed by gas collisions

and the sinusoidal motion of the particle becomes more prominent. This can be seen

by examining the PSD’s for a particle at different pressures. In figure 4.3 a 75 ± 3nm

diameter particle’s motion in the z axis is shown. As the pressure is reduced the particle

motion resembles the oscillatory motion expected from a damped harmonic oscillator

and can be seen in figure 4.1.

Looking at a wider frequency range, we begin to see the emergence of cross terms between

the transverse and axial degree of freedom (see figure 4.4), in addition to the expected

frequency peaks from the motion in the z, x and y spatial degrees of freedom. These

cross terms arise due to the nature of the experimental detection scheme described in

section 3.5.2.
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Figure 4.3: The viscous damping experienced by a trapped particle at dif-
ferent pressures. The data shown is for a 75± 3 nm particle trapped with 0.7 W, in

a parabolic mirror trap with NA=0.995.
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Figure 4.4: Observed experimental frequency peaks as the pressure is re-
duced bellow 1 mbar. This results in sum/difference cross terms emerging in the
measured signal. The data shown here is for a 72± 4 nm diameter particle trapped in

a parabolic mirror with NA = 0.9, with 700 W laser power and at 1× 10−1 mbar.
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4.4 Controlling the particle’s trap frequency

As highlighted in section 4.3, as we reduce the pressure, several peaks emerge corre-

sponding to a modulation of the laser light by particle motion. These peaks can be

identified and controlled, based on their dependency on the proprieties of the laser focus

in which the particle is trapped. For the motional degrees of freedom, the frequency

peaks corresponding to particle motion are constant with pressure and vary proportion-

ally to
√
P , as shown in figure 4.5 and in equations 2.29, 2.30 and 2.31. Therefore, the

trap frequency can be controlled by varying the laser power and hence the optical spring

constant, to achieve a ω0 in the range 10 kHz to 300 kHz.

A) B)

Figure 4.5: Controlling the trap frequency by use of laser power. A) Z
frequency peak at different laser powers. As the intensity is decreased in the
trapping region, the trapping potential becomes shallower, resulting in a reduction in
the trap frequency. B) The z trap frequency with different trapping laser
powers. These measurements where taken with a 100±1 nm particle at 1 mbar, while

the laser output power was varied.

The optical focus is elongated in the direction of the propagating beam, in comparison

to the transverse axis. This results in the z frequency peak having a lower trap frequency

than the x and y dimension. In addition to this, the system is more sensitive to the z

motional dimension, resulting in a greater amplitude of the peak comparatively to the x

and y frequency peaks2. The final identifying feature of the z motional peak is that as the

polarization of the trapping light is changed, via a quarter wave plate between elliptical

and circular the z peak remains constant in frequency. In contrast changing the quarter

wave plate alters the trapping potential in the transverse axis, allowing for control of the

transverse frequency peaks. As the wave plate angle is changed, the x and y frequency

peaks can be brought together, or separated as shown in figure 4.6. From the discussion

in section 2.3.5, we would expect the ratio of the axial and transverse frequency peaks

2The greater sensitivity is a result of the particle oscillating with a larger amplitude than in the x
and y degrees of freedom. This larger oscillation amplitude is due to the lower trap stiffness in this
dimension.
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to be 2.22. However, this is not what we observe (when the axial frequency are of the

same frequency), instead we observe a ratio of 2.5. This suggests that the minimum

beam waist is actually W0 = 872 nm.

A) B) 192°

186°180°

174° 180°186°

174°

Figure 4.6: Separating the x and y frequency peaks of a 100 ± 2 nm particle
at 1 mbar. Changing the quarter wave plate results in a change in the polarisation
of the laser light used to form the optical trap in question. A) Z frequency peak
for different quarter wave plate orientations. It can be seen that the z peak is
unaffected and remains at the same trap frequency. B) The X and Y peaks for
different quarter wave plate angles. By changing the quarter wave plate the x and
y peak can be separated. The numbers on top of each peak represent the associated

angle of the wave plate.

Finally, it should be noted that the frequency of oscillation for the spatial degrees of

freedom of the nanoparticle motion are constant in pressure. Recently it has been shown

that the rotational and torsional peaks of non-spherical nanoparticles can be observed

in optical traps [90, 93, 127]. Frequency peaks arising from rotational motion3 [93, 131]

depend on the pressure, allowing them to be separated from the motional degrees of

freedom. Torsional peaks4 are constant in pressure, but depend on the polarisation of

the light in the optical trap, allowing them to be identified [90].

4.5 Extraction of parameters from wavelength scan

As described in section 3.5.2 the optically trapped nanoparticle modulates the trapping

laser field, as the back-scattered laser light from the particle accrues a position-dependent

phase shift. For simplicity, to model the particle movement, we will omit the stochasti-

cally driven nature of the particle and therefore model the particle motion in the trap

as z(t) = z0 sin(ωt), where z0 is the amplitude of the motion of the particle in the z

direction.

3Rotational peaks arise when a trapped particle is rotating in the optical trap.
4Torsional peaks would arise due to a twisting of a trapped particle due to an applied torque.
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The oscillating trapped particle Rayleigh scatters the trapping light in all directions,

according to a dipole emission pattern. Roughly half of which is then collected and col-

limated by the paraboloidal mirror, in the opposite direction to the trapping laser. The

interference of both the scattering field and the reference field forms a homodyne detec-

tion scheme. Where the intensity modulation of the detected light at the fundamental

frequency of the particle’s motion can be written as [3] 5,

I1(t) ≈ 2EdivEscatJ1(β) sin(θ) sin(ω0t). (4.18)

where Jn(β) is a Bessel function, with n=(0,1,2. . . ) and θ = 2fk + π, where k = 2π/λ

and is the wavenumber. The intensity modulation of the detected light at the second

harmonic frequency of the particle’s motion can be written as,

I2(t) ≈ 2EdivEscatJ2(β) cos(θ) sin(2ω0t) (4.19)

It can be seen that J1(β) and J2(β) are proportional to the amplitude of first and second

trap frequencies of the particle in question. The ratio of these two amplitudes allows for

z0 to be extracted. Expanding the Bessel functions to first order we have

J2(β)

J1(β)
=
β2/8

β/2
,

=
1

4
β.

(4.20)

from reference [3] we know

β = kz0 −
z0

zR
. (4.21)

Substituting this into 4.22 and rearranging for z0 we find

5The theory for extracting parameters of an optically levitated nanoparticle from a wavelength scan
was developed by James Bateman and can be found in full in reference [3], I then verified this theory
experimentally. Only the key information about the theory required to understand how to perform this
technique, along with my experimental results of applying this technique, is reported here



Optomechanics of levitated particles 51

z0 =
4J2(β)/J1(β)

k − 1/zR
.. (4.22)

The amplitudes of the first order and second order peaks can be obtained experimentally.

Using the dependence of these amplitudes on the wavenumber k, we can change the

wavelength to make the amplitude of one harmonic more prominent than the other. As

we know z0 in terms of volts through the detected signal, γ, the conversion factor from

equation 4.15 can be obtained. This means it is therefore possible to obtain mass m and

radius r of the particle, without any knowledge of the pressure Pgas and damping factor

Γ0. Therefore, this method transcends any assumption about the theoretical kinetic

model being used.

The parabolic mirror used has a focal distance of f = 3.1 mm. By varying the trapping

laser wavelength by 0.25 nm in steps of 5 pm, we are able to vary the phase θ by 1.5π,

in steps of 0.03π. The resulting change in amplitude vs wavelength can be seen in

figure 4.7, while in figure 4.8 we show an example of the particle PSD’s at two different

wavelengths.

Comparing the change in amplitude of the first and second order z motion peaks in figure

4.7 and using 4.22, it is possible to extract the maximum position of particle motion

in the z direction, z0 = 119 ± 10 nm. From equipartition theorem: m = kbTcm/ω
2
0z

2
0 ,

with Tcm = 300 K, we can obtain a pressure independent measure of the particles mass

m= 3 ± 0.5 × 10−19 kg. Assuming a spherical particle with density ρ = 2650 Kgm−3,

the particle has a radius r= 30± 2 nm. Finally using γ = V/z0 where V is the voltage

detected on our photodiode, and equation 4.17 the position resolution can be calculated

to be Sx,exp = 200± 20 fm/
√

Hz.

The wavelength scan method to evaluate the position resolution presented here is more

accurate than the method used in section 4.2. The lower accuracy in fitting to the

power spectral density is due to the larger error on the pressure measurement, in the

experimental system. By circumventing pressure readings and exclusivity using the

measurements of the optical intensity measured by our detector, it is possible to make

a more accurate measurement. In principle, this method can be used to measure any

particles oscillation amplitude or mass, without knowing its density.
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Figure 4.7: Wavelength scan to measure relative amplitude change in
the first and second harmonic of the trap frequency for the z-peak. For
a 60 nm diameter silica particle, trapped with 385 mW laser power at 1 × 10−2

mbar, we can observe how the amplitude of the first order peak (top panel, fitted
with 2EdivEscat sin (α)2J1(β) sin(ω0t)) and second order peak (lower panel, fitted with
2EdivEscat cos (α)2J2(β) sin (2ω0t)), changes as the wavelength of the laser if varied to
extract a parameter independent position resolution. By varying the trapping laser
wavelength by 0.25 nm in steps of 5 pm, we are able to vary the phase θ by 1.5π in

steps of 0.03π.
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Figure 4.8: PSD’s of the particle motion at different wavelengths. The green
data shows the PSD of the particles motion at 1550.225 nm and the blue at 1550 nm.

A) The first harmonic. B) The second harmonic.
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Figure 4.9: PSD of a 100 nm diameter particle at different pressure without
feedback. Particles could be trapped for some hours without significant changes to
the PSD. For pressure below roughly 5×10−6 mbar the particle was lost from the trap.

4.6 Nonlinear behaviour at low pressures

As shown in figure 4.3, as the pressure is reduced and damping from air collisions

become less frequent, the particle motion becomes more pronounced in the PSD of

particle motion. The resulting change in the shape of the PSD of particle motion, as

pressures are reduced bellow 1× 10−1 mbar, can be seen in figure 4.9. As the pressure

approaches ≈ 1×10−1 mbar, the error in fitting equation 4.15 starts to increase, because

equation 5.13 no longer represents a good description of the underling physics. For

the purposes of this thesis, nonlinear effects are not discussed in depth, as parametric

feedback cooling (outlined in chapter 6) is used to suppress any nonlinear effects [13].

To prevent our measurements from being subject to nonlinear effects, the mass of a

particle is calculated using the particles motion at ≈ 1 mbar. There exist several studies

discussing nonlinear effects in optically levitated traps [24, 62] that the author would

like to point an interested reader towards.
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4.7 Conclusion

Several properties of the levitated particles are measured, including the mass, radius,

oscillation amplitude (via the use of a volts-to-meter conversion factor) and the damp-

ing experienced at a given pressure. This is done via two methods. The first method

required fitting a single Lorentzian to a PSD of the motion of the particle, derived using

the kinetic theory of gases, to determine the radius of the particle along with other pre-

viously mentioned parameters. The second method demonstrated, utilized a scan of the

trapping laser wavelength, to change the amplitudes of the first and second harmonics of

nanoparticle motion and determine a nanoparticle size from the ratio of the scan ampli-

tudes. This method is able to determine the mass of the particle, without assumptions of

the kinetic model and material density. This method holds great promise for measuring

the mass of particles, without knowledge of the underling kinetic model or particle shape

[112, 131, 132]. Using the methods outlined in this chapter for measuring nanoparticle

size, particles of diameters ranging from 18 nm to 312 nm have been measured within

the optical trap, falling within the size range specified for each particle solution by the

manufacture.

The ability to control the trap frequencies of all three motional degrees of freedom via

the power of the trapping laser is demonstrated. Separation of the transverse frequencies

and independent control of the transverse trapping frequencies from the z axis is also

demonstrated via the use of elliptically polarized light. The effect of changing the

pressure within the chamber on a levitated nanopartile is also explored.

To the contrary of many reports, trapping of nanoparticles down to 10−5 mbar, without

any active feedback, was achieved. The theoretical model was tested as the pressure

was decreased and found that below pressures of roughly 1 mbar, fitting equation 4.15

resulted in increasing amounts of error with further decrease of pressure. This is at-

tributed to the emergence of nonlinearities in the particles motion which result as the

pressure in the chamber is reduced. The different frequency components found in the

PSD of the signal are shown and their origins explained.

The control of the of the trap frequencies and characterization methods described in

this chapter will be used throughout the rest of this thesis to determine properties of

the levitated particles, used in each of the experiments.



Chapter 5

Nanoscale temperature

measurements using

blackbody-like radiation from a

levitated nanoparticle

Nanoscale temperature measurements involve the determination of temperature at the

sub-micron scale. Previously established temperature measurement techniques such as

the use of thermocouples [133], liquid-in-glass thermometry [134], Raman spectroscopy

[135–137], fluorescence [138] and optical interferometry [139] have also proved useful

in measuring temperature at nanoscale. Using such methods has applications in many

fields: temperature mapping in microcircuits [140, 141], measuring emission properties

of silica particles [142], measurement of intracellular temperature fluctuations [143, 144],

and thermometry in microfluidic devices [145, 146]. Being able to make similar nanoscale

temperature measurements on optically levitated nanoparticles promises to be an inter-

esting tool for exploring the melting point size dependence of nanoparticles within optical

traps [147]. It will also allow for interesting insights into the possible phase transitions

of nanoparticles. The characterisation of heating rates of optically trapped nanoparti-

cles, as well as their equilibrium temperatures calculated from their blackbody emission,

will be crucial in influencing the design of nanoparticle matter-wave interferometers

[44, 148–150]. Methods of measuring temperature can be classified into categories ac-

cording to various factors. These factors include the level of physical contact between

the measurement device and the medium of interest, as well as whether they are cali-

bration dependent or independent. When characterising thermometric devices in terms

of the degree of physical contact between the measurement device and the medium of

55
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interest, the categories of classification are invasive, semi-invasive and non-invasive. In-

vasive sensors require physical thermal contact with the medium of interest in order

to make a measurement. Semi-invasive sensors are technically invasive sensors, whose

measurements can be interpreted at a distance non-invasively. Non-invasive tempera-

ture measurement sensors make no physical thermal contact with the medium of interest

during a measurement. Examples of each include thermocouples [133], thermochromic

liquid crystals applied to a surface and observed remotely [151], and infrared pyrometry

[134] respectively. In the case of levitated nanospheres, non-invasive methods must be

used. When classifying thermometric systems according to the physical process under-

lying the measurement there are two categories: primary and secondary. Cases where

the measurement is characterised by well-established equations of state, which directly

relate the measured parameter to temperature, are known as primary, whereas cases

in which the system requires calibration are referred to as secondary. Some calibration

methods take advantage of identifiable transitions at a specific temperature, an exam-

ple being phase change. These transitions can be useful for determining a particular

temperature accurately, or in identifying whether a temperature has been exceeded.

To date, the only demonstrated method of measuring the internal temperature of a

levitated particle is that presented by Millen et al. [2] who, by analyzing the gas sur-

rounding a nanosphere, alongside the sphere’s Brownian motion, were able to determine

the surface temperature in two spatial dimensions of a levitated sphere. A potential way

of improving on this method is presented in this chapter, inspired by infrared thermome-

ters. Infrared thermometers have been used to measure a number of nanoscale objects

thus far, including the average temperature of many nanoparticles on substrates [152]

and the temperature of molecular ions in ion traps [153]. Infrared thermometers measure

the thermal radiation emitted by a body due to its temperature. A body emits energy

in the form of thermal radiation, with the quantity of radiation rising with increasing

temperature [154]. The energy emitted throughout the electromagnetic spectrum due

to the temperature of a blackbody can be modelled by Planck’s law [154]. Infrared

thermometers are classified depending on whether the device is sensitive to all or a spe-

cific band of wavelengths. Those that are sensitive to all wavelengths are classed as

total radiation, or broadband thermometers. Devices sensitive to radiation in a specific

band of wavelengths are classed as spectral band thermometers. The spectrometer used

in the measurements presented in this chapter has a finite wavelength range, and thus

only a certain range of temperatures will be measurable. This is due to the reduced

photon emission at certain wavelengths, which is dependent on the temperature of the

blackbody. For this reason, this method can be considered to be a form of spectral band

thermometry.
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An infrared temperature measurement system generally consists of three elements: the

emitting source of interest, the propagation medium, and the measuring device [139]. In

our case an optically levitated nanoparticle will be the source of interest, the propagation

medium will be air, and the measurement device will be a spectrometer. Using this

setup, a non-invasive secondary temperature measurement of the levitated particle was

performed. The temperature was measured by fitting the Planck equation to the thermal

spectrum emitted from the levitated particle. The following section will explore the effect

both the intensity of the laser light, and the pressure in the vacuum chamber, have on

the temperature of the levitated particle.

5.1 Blackbody radiation

Blackbody radiation is the thermal electromagnetic radiation emitted by a blackbody.

It has a specific spectrum and intensity that depends only on the body’s temperature.

For the purposes of the analysis presented in this chapter, it will be assumed that

there are no additional effects, beyond that of emissivity, effecting the spectra of the

blackbody radiation emitted by trapped particles. A more complete derivation of the

expected blackbody-like spectra from an optically trapped nanoparticle is beyond the

scope of this thesis, however the theory presented here is sufficient to allow for prelimi-

nary investigations to take place. Blackbody spectra display a characteristic peak at a

certain frequency. This shifts to higher frequencies with increasing temperature, and at

room temperature most of the emission is in the infrared region of the electromagnetic

spectrum. The thermal radiation spontaneously emitted by physical objects can be ap-

proximated as blackbody radiation. The spectrum of blackbody emission is described

by Planck’s law, which is normally expressed as a spectral energy density given by [154],

UE(ν) =
8πhν3

c3

1

ehc/λkbTBB − 1
(5.1)

where ν is frequency, h is Plank’s constant, c is the speed of light in vacuum, kb is

the Boltzmann constant and TBB is the temperature of the object emitting blackbody

radiation. Therefore UE has units of J/(m3 Hz), or energy, per unit volume, per unit fre-

quency interval. We can rewrite the spectral energy density as a function of wavelength.

The energy contained in a unit frequency dν interval must be equal to the energy in the

corresponding wavelength interval dλ.

UE(ν)|dν| = UE(λ)|dλ| (5.2)
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noting ν = c/λ gives dν/dλ = −(c/λ2), allowing equation 5.1 to be given as,

UE(λ) = UE(ν)
∣∣∣dν
dλ

∣∣∣ =
8πhc

λ5

1

ehc/λkbTBB − 1
(5.3)

with units of J/(m3 m), or energy, per unit volume, per unit wavelength. The scalar irra-

diance E0 is the number of photons emitted per unit time or, in other words, the number

of photons emitted multiplied by how fast the photons are moving E0(λ) = UE(λ)c. As

radiation in thermodynamic equilibrium is isotropic and unpolarized E0(λ) = 4Ed(λ),

where Ed(λ) is the plane irradiance. Therefore,

Ed(λ) =
E0(λ)

4
=
c

4
UE(λ) =

2πhc2

λ5

1

ehc/λkbTBB − 1
(5.4)

The photon density can be obtained by dividing equation 5.4 by the energy per photon

hc/λ,

Qd(λ) =
2πc

λ4

1

ehc/λkbTBB − 1
(5.5)

where Qd has units of photons/(s m3), or total number of photons emitted, per second,

per unit area, per unit wavelength. Figure 5.1 illustrates equation 5.5 for an object at

differing temperatures.
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Figure 5.1: Blackbody spectra for an object at different temperatures.
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5.1.1 Total photon density of a blackbody spectrum at different tem-

peratures

As a nanoparticle is much smaller than the surrounding objects, such as the vacuum

chamber, the number of blackbody photons emitted will be much smaller (assuming

roughly equal temperatures). However, as shown in figure 5.1, the number of photons

emitted depends on the temperature of the blackbody in question. It is possible by

integrating equation 5.5 over all wavelengths to find the total number of photons emitted

by a blackbody, per second, per unit area,

Qd = σdT
3
BB (5.6)

where σd = (4.808πk3)/(h3c2) = 2.520 × 1015 photons s−1 m−2 K−3 and is the photon

equivalent of the Stefan-Boltzman constant. The number of photons emitted at different

temperatures can be seen in figure 5.2. It can be seen that as the temperature of the

particle increases, the number of photons emitted will increase. This will therefore result

in an increased number of photons emitted from an optically trapped nanoparticle, in

comparison to the background thermal spectrum, resulting in an increased signal to

noise ratio.
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Figure 5.2: Total photon density of a blackbody spectra at different tem-
peratures (Blue line). The dashed green line shows Qd at the melting point of silica
Tmelt = 1873 K. [2] The shaded yellow area shows the temperature range 486-763 K in
which the spectral peak would be visible in spectra measured in these experiments (see

figure 5.7).
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5.1.2 Blackbody spectrum peak dependence on temperature

As will be discussed in section 5.4, to determine an optically levitated nanoparticles

temperature, equation 5.19 will be fitted to the experimentally measured blackbody

spectrum. When fitting equations to experimental data, error is greatly reduced when

the distinctive features such as a turning point are included in the fit. To work out what

temperature range the experimental setup is most sensitive to, it is possible to deduce

the wavelength at which most photons will be emitted at a given temperature. This can

be calculated by differentiating equation 5.5 with respect to λ and setting it equal to

zero, giving

∂Qd(λ)

∂λ
= 2πc

(
hc

kbTBBλ6

ehc/λkbTBB

(ehc/λkbTBB − 1)2
− 1

λ5

4

ehc/λkbTBB − 1

)
= 0. (5.7)

Which, when simplified, gives

hc

kbTBBλ

ehc/λkbTBB

(ehc/λkbTBB − 1)
− 4 = 0 (5.8)

defining x ≡ hc/λkbTBB we can write the equation as

xex

(ex − 1)
− 4 = 0, (5.9)

which has a numerical solution x = 3.92069. Thus, solving for wavelength in units of

nanometers, we find

λmax =
hc

xkbTBB
=

2.28822× 106nm.K

TBB
. (5.10)

The wavelength at which the blackbody spectrum peaks, at different temperatures, can

be seen in figure 5.3. The shaded yellow area shows the temperature range 486-763

K, in which the blackbody spectral peak would be visible in spectra measured in these

experiments.

5.1.3 Experimentally measurable blackbody spectrum

The simple theory presented so far has failed to take several experimental factors into

account. For a given wavelength, it is possible to write an expression for the number

of photons which can be detected (N(λ)) from a real world object emitting blackbody
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Figure 5.3: The wavelength at which the blackbody spectrum peaks as a
function of temperature (Blue line). The dashed green line shows the wavelength
λmelt = 1222 nm at which the spectral peak occurs for a blackbody at the melting
point of silica Tmelt = 1873 K. The shaded yellow area shows the temperature range
486-763 K in which the spectral peak would be visible in spectra measured in these

experiments.

radiation. Real objects only emit a fraction of the radiation which would be emitted

by an ideal blackbody emitter. The emissivity of real objects accounts for this and is

defined as the ratio of the radiant power from the real object, over the radiant power of

a perfect blackbody, at the same temperature and wavelength, observed under the same

experimental conditions.

ε(λ) =
QdObject(λ)

QdBlackbody(λ)
(5.11)

Multiplying equation 5.5, by the detectable area of the blackbody in question Adet, a fac-

tor taking into account the absorption of emitted light by the optics in the experimental

setup µ(λ), and finally the emissivity ε(λ) of the material it can be shown that,

N(λ) = Adetµ(λ)ε(λ)
2πc

λ4

1

ehc/λkbT − 1
(5.12)

For the purposes of the analysis in this chapter it is assumed µ(λ) and ε(λ) are con-

stant with wavelength. This assumption is justified by noting that ε(λ), in the wave-

length range measured, varies by less than 0.03 for silica [155] and by less than 0.02 for
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aluminium [156]. We also assume µ(λ) of the optical elements is constant across the

wavelength range considered, a justification of this assumption will be given in section

5.3.

5.2 Temperature of a levitated particle

In a steady state, TBB is determined by the balance between heating due to laser ab-

sorption and cooling due to collisions with the gas, as well as the emission of blackbody

radiation. The experiments presented in this chapter occur in the underdamped (Knud-

sen) regime, where an optically trapped, and therefore heated nanoparticle1 will have

a nonequilibrium gas surrounding it. To understand how a particle will behave under

these experimental conditions, the theory derived in reference [2] is used and presented

here. We will use the term Tint, to define the temperature of the levitated particle as

a way to distinguish temperatures calculated by the method presented in reference [2].

However it should be noted that Tint should be equal to TBB, providing the assumptions

made in the derivation of this theory hold true.

In the case where the temperature of a spherical nanoparticle is higher than its surround-

ing gas, heat is transferred to the colliding gas particles. The impinging gas particles

with a temperature T imp do not equilibriate to the same temperature as the nanopar-

ticle at temperature Tint [2]. Instead, they emerge with a different energy, but can be

assumed to be thermally distributed for highly inelastic collisions [157] with a different

temperature. In this situation, the nanoparticles centre of mass motion adopts a non-

equilibrium, steady state, that mediates heat transfer between the two non-interacting

thermal baths (the impinging gas and the emerging gas). Under theses conditions the

equation for the power spectrum of the nanoparticle’s fluctuating position is [2]

P (ω) =
2kBT0

πm

Γ0

(ω2
0 − ω2)2 + ω2Γ0

, (5.13)

where the effective damping rate Γ0 := Γimp + Γem and T0 is an effective centre of mass

temperature,

T0 :=
T impΓimp + T emΓem

Γ0
, (5.14)

where the T em is the temperature of the emerging gas particles and T im is the temper-

ature of impinging gas particles. In the experiments considered here the gas particles

1Where heating of the nanoparticle is the result of the absorption of light, from the trapping laser.



Nanoscale temperature measurements using blackbody-like radiation from a levitated
nanoparticle 63

impinge at room temperature, T im = 294 K. Γem is the damping rate of the sphere due

to the emerging gas. It is given by

Γem =
π

8

√
T em

T imp
Γimp, (5.15)

where Γim is the damping rate of the nanoparticle due to the impinging gas, and is given

by

Γimp =
4π

3

mmolNr
2v̄T imp

m
, (5.16)

where mmol is the molecular mass and N is the number density of gas molecules N =

N0Pgas/Patmos [123], where N0 is the number of gas molecules per cubic meter at at-

mospheric conditions and Patmos is atmospheric pressure. v̄T imp is the mean thermal

velocity of the gas given by

v̄T imp =

√
8kbT imp

πmgas
, (5.17)

Using the equations outlined in this section, it is possible to calculate temperature of

the nanoparticles’ using [2],

Tint = T imp +
T em − T imp

αSilica
, (5.18)

where αSilica is the accommodation coefficient for silica. The accommodation coefficient

for silica is 0.777 for moderate surface temperatures is around 300 K [158].

5.3 Experimental Setup

The experimental setup is based upon the setup introduced in section 3, and shown

in figure 3.1, however several additional components have been added to allow for the

blackbody spectra from levitated particles to be measured. To allow for the blackbody

photons to be separated from the Ediv and Escat fields, a half wave plate and a polarizing

beam splitter is used which allows advantage to be taken of the randomly polarized

nature of blackbody emission [159]. Once the blackbody spectrum is separated from the

Ediv and Escat fields, a spectrometer (ARCspectro FT-MIR) is then used to collect the

blackbody photons. The experimental setup can be seen in figure 5.4.
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PBS PBS

1550 nm

Figure 5.4: Experimental set up used to measure blackbody-like radia-
tion from levitated particles. The blackbody emission emitted by the chamber
BBchamber and the blackbody emission for the levitated particle BBparticle are shown
in blue. Due to its unpolarized nature, the emitted blackbody radiation is scattered,
reflected and transmitted at each beam splitter. For the purposes of this diagram, only

the blackbody radiation which will reach the spectrometer will be highlighted.

In the optical trap, a silica particle was optically levitated under different trapping laser

powers and pressures, and the photon emission measured over the course of 6 hours

under each condition. The PSD for the z motional peak can be seen in figure 5.5, from

which it can be evaluated that the particle used in these experiments was 148 ± 2 nm

in diameter.
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Figure 5.5: PSD of the trapped particle motion in the z degree of freedom.
The blue line shows equation 4.15 fitted to the data. This is used to determine the
particle’s properties according to the method outlined in section 4.2. The diameter of

the particle was 148± 2 nm. The data is shown for a pressure of 1.77 mbar.

The levitated particle is trapped at the focus of the parabolic mirror and therefore

collects ≈ 50% of the diverging blackbody-like emission from the particle. The collected
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blackbody radiation is reflected as a collimated beam. In contrast, the blackbody-like

emission from the parabolic mirror diverges, resulting in an increasingly weaker signal

the greater the distance between the parabolic mirror and the spectrometer. The beam

paths are illustrated in figure 5.6.

Blackbody emision from chamber
Blackbody emision from particle

Figure 5.6: The blackbody fields emitted at the trap sight. The blackbody
emission emitted by the mirror BBmirror passes through the focus and diverges. The
particle radiates blackbody emission BBparticle in all directions. The blackbody emis-
sion from the particle is collected by the parabolic mirror, collimated and sent along

the same optical path as Escatt.

The collimated blackbody radiation then passes through the optics in the system, before

arriving at the spectrometer. Despite the detection range of the spectrometer being be-

tween 2-6 µm, the wavelength dependent absorption of the optics reduces the wavelength

range of the detected photons which can be reliably used. The transmission spectra can

be seen in figure 5.7 and from this it can be seen that the transmission spectra varies

significantly at certain wavelengths. For this reason, the flattest part of the transmission

spectra, between 3-4.75 µm, is used and allows the assumption of a constant absorption,

µ, to be used.

It should be noted that despite the experimental capabilities demonstrated in sections

4 and 6 to trap and hold a particle down to pressures on the order of 10−6 mbar, during

the week in which the spectrometer was borrowed to perform these experiments, parts

of the vacuum system were broken. This limited the lowest pressures that could be

achieved in the chamber to the order of 10−2 mbar.
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Figure 5.7: The transmission spectra of the blackbody detection optics. The
wavelength range of the data collected, and used in the data analysis, is shown in yellow.
The transmission varies by less than 0.00006% in this region, and is therefore assumed

to be constant when fitting equation 5.12 to the experimental data.

5.4 Extraction of parameters from fit to measured spectra

Despite attempts to reduce the blackbody radiation from objects other than the nanopar-

ticle reaching the detector, a significant percentage of the photons measured at the de-

tector come from sources external to the levitated nanoparticle. To compensate for this,

for each experimental parameter measured, a spectrum was taken both with a particle

trapped and without a particle trapped; such spectra can be seen in figure 5.8.

Subtracting the spectrum without a particle, from the spectrum with a particle, gives

the spectrum of emitted photons from the levitated nanoparticle, as shown in figure

5.9. To obtain the temperature of the levitated particle, we fit equation 5.12 to the

nanoparticle’s spectrum, with fit parameters ABB and BBB, giving an equation of the

form

N(λ) =
ABB
λ4

1

eBBBλ − 1
, (5.19)

where ABB = Adetµε2πc and BBB = hc/kbTBB. Therefore, using the fit parameter

BBB, we can calculate the temperature of the the levitated particle. The method used

to calculate the error in the values of TBB can be found in appendix C.
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Figure 5.8: Measured spectra with and without a trapped particle. The
spectra displayed were taken with a trapping laser intensity equal to 0.4 TW/m2 at 10
mbar. The blue data points show the spectrum in the absence of a trapped nanoparticle,
and the green where a nanoparticle is trapped. The inserted graph shows a zoomed
in section of the data, to demonstrate the higher number of photons collected when
there is a trapped particle. It can be seen that at either extreme of the data shown,
the difference in the number of photons detected decreases as the transmission of the

optics decreases (see figure 5.7).

5.5 Pressure vs particle temperature

At any given trapping laser power, the temperature of levitated nanoparticles depends

on the temperature (300 K) of the background gas and the rate of collisions with the

background gas. The measured temperature of the particle from figure 5.5, at various

pressures, is shown in figure 5.10. It can be seen that, as the pressure is reduced, the

temperature of the particle increases. This is owing to the reduction in the rate of

cooling from gas collisions.

By varying the pressure between 1000 mbar and 0.04 mbar, it is possible to achieve

values of TBB ranging between 388 K and 480 K respectively. It is expected that a

similar increase in TBB, as pressure is reduced, would be observed with different particles

within the optical trap, as the cooling from background collisions is reduced. An increase

in TBB could explain observations of particles being lost at certain pressures, due to the

particle burning, graphitization [123] or melting [2].
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Figure 5.9: Fitting to the particle spectrum. The spectra displayed were taken
with a laser power equal to 0.4 TW/m2. Each of the particle’s spectra is obtained
by subtracting the measured spectrum without a particle, from that with a particle.
The black lines show equation 5.12, fitted to each spectrum, giving TBB = 466 K at a

pressure of 10 mbar and TBB = 480 K at a pressure of 0.04 mbar.

5.6 Trapping laser intensity vs particle temperature

At any given pressure, the temperature of levitated nanoparticles depends on the in-

tensity of the trapping laser, with an approximately linear dependence TBB ∝ I, as

suggested from reference [123]. To test this relationship, the trapping laser intensity

was varied and the temperature of the particle from figure 5.5 was measured. The

results are shown in figure 5.11.

It can be seen from figure 5.11, that as the intensity of the trapping laser is increased,

TBB increases in a linear relationship, corresponding with similar studies carried out on

nanoparticles trapped in liquid solutions [160]. By varying the laser intensity between

0.21 TW/m2 and 0.4 TW/m2 it is possible to achieve values of TBB, ranging between

367 K and 463 K respectively. Even though absorption of silica is low at 1550 nm, it can

be seen that the temperature of the particle can be raised with increased laser intensity,

because of poor heat transfer to surrounding gas at low pressures.
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Figure 5.10: Effect of pressure on particle temperature. The temperatures
measured were taken with a trapping laser intensity equal to 0.4 TW/m2. It can be

seen that as the pressure is reduced, the temperature of the particle increases.

5.7 Improving the experimental system

While the work in this chapter has shown that it is possible to determine the temperature

of a levitated nanoparticle by measuring its thermal radiation, the system used is far

from ideal. The detectable temperature range is limited by the wavelength range which

the spectrometer used is capable of measuring. The further away from the peak the

spectra is measured, the less photons are emitted, which makes it harder to determine

the temperature of the levitated particle. For the purposes of designing a better system,

the aim will be to have the peak of the blackbody spectra detectable at any of the pos-

sible temperatures the levitated particle can take. The lowest possible temperature a

particle within an optical trap could have depends on the temperature of the background

gas. Therefore, for a system operating at room temperature, the lowest temperature an

optically levitated particle could have would be ∼300 K. The maximum temperature an

optically levitated nanoparticle could have is given by its melting temperature; in the

case of a silica nanoparticle its melting point is 1873 K. In an ideal system, the spectrom-

eter used would be capable of measuring the peak wavelength within this temperature

range (300-1873 K). To achieve this, the spectrometer used would need to have a wave-

length range of 1222-7627 nm (see figure 5.3). In addition to having a spectrometer with

a greater wavelength range, the optics which the blackbody signal passes through needs

to have a flat transmission profile over the same wavelength range as the spectrometer.
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Figure 5.11: Effect of laser power on particle temperature. The temperatures
measured where taken with a pressure equal to 0.04 mbar. It can be seen as the laser

power is increased the temperature of the particle increases.

The biggest limiting factor of the current experimental setup is the varying absorption

at different wavelengths of the optics in the system. The optics were simply what was

available at the time the spectrometer was borrowed and sadly not ideal for the task

at hand. The errors in the measurement of the particles’ temperature are as large as

±40 K in the results presented here. This is larger than the errors reported from fitting

5.13 to the PSD of particle motion in reference [2] in order to determine the particles’

temperature. However, with optimised components, this problem could be overcome.

An improved design for the optical setup is shown in figure 5.12.

In this experimental redesign, the number of optical components has been minimized to

reduce absorption loss within the system, and the optics in the detection system have

been replaced with optics capable of high transmission over a wider range of wavelengths.

A summary of the components follows:

The trapping objective: As discussed in chapter 3, the parabolic mirror used as a

trapping objective is machined out of aluminium. This material has a relatively flat

transmission over the wavelengths detectable by the spectrometer used, with a reflec-

tivity of > 95% from 2-20 µm. This can be improved upon by coating the mirror with

a layer of gold, which has a flatter reflectance, and a greater average reflectance > 97%

over a larger wavelength range (0.8-20 µm).
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1550 nm

PBS

Figure 5.12: Proposed experimental set up for using blackbody-like radia-
tion from a levitated nanoparticle to measure its temperature. For the pur-
poses of this diagram, only the blackbody radiation which will reach the spectrometer

is highlighted.

Vacuum window: The use of a calcium fluoride (CaF2) window (such as Eksma optics

530-6710 ), which has a useful transmission over the spectral range from 0.2-8 µm, would

be beneficial as this would be sufficient to measure the full temperature range which the

particle could explore.

Beam spliter: The use of a beam splitter (50:50) such as Thorlabs BSW11 made of

Zinc Selenide would have a useful wavelength range of 1-12 µm, which would allow for

the full range of interesting wavelengths to be detected. The drawbacks of using such

an optical component however, are that 50% of the blackbody radiation would be lost,

due to reflection, and the ability to filter out the trapping laser wavelength (1550 nm)

optically would no longer be present. However, due to the narrow line width of the

trapping laser, its effect can easily be removed from the spectra when analyzing the

data.

Mirrors: While the aluminium mirrors (Thorlabs PF10-03-G01 ) used have a relatively

flat transmission over the wavelengths detectable by the spectrometer used, with a reflec-

tivity of > 95% from 2−20 µm, improvement is still possible. For example, unprotected

Gold Mirrors (such as Thorlabs PF10-03-M03 ) could be used. These would offer both a

flatter reflectance and also a greater average reflectance > 97%, over a larger wavelength

range (0.8-20 µm).
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5.8 Conclusion

The temperature of a levitated particle was measured by fitting the Planck equation to

the emitted thermal spectrum of a levitated silica nanoparticle. Varying the pressure

between 1000 mbar and 0.04 mbar resulted in an increase of TBB, from 388 K to 480 K,

illustrating that the temperature of the nanoparticle increased with decreasing pressure.

The trapping laser intensity was varied from 0.21 TW/m2 to 0.4 TW/m2, resulting in

an increase of TBB, from 367 K to 463 K. This shows that even though the absorption of

silica is low at 1550 nm, the temperature of the levitated nanoparticle can be increased,

with increasing laser intensity, due to the poor heat transfer to the surrounding gas at

low pressures.

While methods do exist to measure the particle temperature in an optical trap by fitting

5.13 to the PSD of the trapped particles motion [2], they are dependent on knowledge

or assumptions about the properties of the trapped nanoparticle (accommodation co-

efficient, shape, material etc), as well as knowledge of the background gas the particle

is trapped in (temperature, material etc). Measuring the blackbody spectrum of an

optically trapped nanoparticle, in contrast, does not require any such knowledge of the

particle’s properties beyond the material of the particle, providing an advantage.

If the improvements discussed previously were implemented then this system, and method,

could be used to perform a variety of studies. Such studies include measuring the melt-

ing point of individual nanoparticles, observing the deviation from Plank’s law which

occurs at small nanoparticle sizes [161], and investigating why different particles are

lost from optical traps, under different experimental parameters, such as pressure, laser

wavelength, laser power etc. Limiting the rate of blackbody emission is also important

for the design of nanoparticle matter wave interferometers, as it limits the path length

of the particles trajectory during interferometry. This technique is therefore a promising

tool for designing and building such a device [44].



Chapter 6

Parametric feedback cooling of

levitated particles centre of mass

motion

Reducing the centre of mass motion of macroscopic oscillators has been shown to be

a route to increased force sensitivity [70] and a path towards preparing macroscopic

quantum states [162, 163]. Such a macroscopic system in a quantum state opens up

a new mass range in which to study quantum effects [39, 40]. A number of propos-

als already exist to take advantage of such systems at different centre of mass motion

temperatures to create macroscopic quantum superpositions. Proposals at non-ground

state temperatures include nanoparticle matter wave interferometers, such as the one

proposed by Bateman et al. [44] which requires cooling of a 20 nm diamter particle to

a temperature of 20 mK. Other proposals requiring ground state cooling include cre-

ating quantum superpositions of living organisms [164]. In addition, to the ability to

test quantum physics, many applications have been proposed for such systems ranging

from detection of exotic forces [70, 165] to detecting gravitational forces such as high

frequency gravitational waves [69].

The idea of laser cooling came about shortly after the work of Ashkin in 1970 [80] who

demonstrated that radiation pressure could have a noticeable influence on a particle’s

motion. In 1975 Hänsch and Schawlow used the novel technique of Doppler cooling to

cool atoms to a temperature of 0.24 K (reducing the temperature by a factor of 50)

[166]. Also in 1975 Dehmelt [167], Hänsch and Schawlow [166] proposed using non-

conservative traps for cooling the atomic motion of particles, before being demonstrated

by Wineland et al [168] in 1978. The 80s and 90s saw fast development in different

cooling techniques, such as sideband cooling [167] and Sisyphus cooling [169], to name

73
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but a few. The introduction of these novel techniques allowed for the temperature of

trapped atoms to be reduced to lower and lower temperatures. For more information on

the laser cooling and trapping of atoms and their applications, the following references

are recommended [170, 171].

Parallel to the aforementioned research into atom cooling, research into cooling macro-

scopic objects such as cantilevers and mirrors was also explored. The first demonstration

of the cooling of a macroscopic mechanical oscillator was achieved by Cohadon et al.

[172] in 1999. Cohadon et al. managed to reduce the motional temperature of a mirror

by a factor of 40, by monitoring the Brownian motion of the mirror with a feedback

loop and applying radiation pressure at the right times. These techniques were further

developed by Kleckner and Bouwmeester, who in 2006 managed to cool a cantilever res-

onator to temperatures of 135 mK. Later Poggio et al. [163] in 2007 managed to cool the

fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature

of 2.2 K down to 2.9 mK using active optomechanical feedback. The lowest temperature

in this system was limited by the measurement noise present in the system.

In addition to the cooling methods mentioned previously in trapping systems, laser

cooling methods have been implemented in several types of nanomechanical oscillators.

Nanomechanical oscillators which were involved in the race to reach the ground state

include membranes [173], nanobeams [174] and photonics crystals [175]. To date, three

groups have independently demonstrated cooling to the ground state of a mechanical

oscillator. In 2010 O’Connell et al. [162], reached a phonon occupancy of 0.07. The

next year in 2011 Teufel et al. [176] and Chan et al. [177] reached phonon occupancy

numbers of 0.34 and 0.85, respectively. For more information on mechanical resonators,

the following references are recommended [4, 178].

The mechanical systems mentioned previously (with the exception of trapped atoms)

are directly coupled to their thermal and mechanical environment, which imposes limits

to thermalization and decoherence. As a consequence, coupled systems often require

cryogenic precooling. In contrast, an optically levitated particle in ultrahigh vacuum

has no physical contact to the environment and therefore can be considered decoupled

from its environment [11, 179].

The first experimental realisation of cooling in a levitated system was reported by Li

et al. in 2011 [65], in which they demonstrated trapping and cooling of a microsphere

in a scattering force trap. They achieved milliKelvin temperatures by using three or-

thogonal counter propagating laser beams. Shortly following this Gieseler et al. in 2012

[13] demonstrated cooling of a levitated nanosphere, via a parametric feedback cooling

scheme implemented in an gradient force optical trap created with a single laser. This

scheme achieved temperatures of 50 mK and was limited by detection noise. Since then
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there have been several demonstrations of cooling in levitated systems including: optical

cavities [101], hybrid electro-optical traps formed using a Paul trap within a single mode

optical cavity [100] and similar optical dipole traps [27]. Each of these experimental re-

alisations have different experimental benefits and challenges. For example in reference

[101], cooling is only achieved along the longitudinal motion of the particle and to extend

the ability to cool in all spatial degrees of freedom is challenging experimentally. In the

case of the hybrid electro-optical trap, they have low trap frequencies and a low finesse

cavity which results in low cooling rates.

At the time of writing, there are three setups which have demonstrated milli-kelvin

temperature cooling of a levitated nanosphere. Fonseca et al. [99] have demonstrated

temperatures of 1-3 mK with use of a hybrid trap consisting of a optical cavity and Paul

ion trap, limited by their detection noise and achievable vacuum 10−6 mbar. The lowest

reported temperature was reported by Jain et al. [27], achieving a temperature of 450

µK (n = 63) in an optical gradient force trap. Their current limitation is due to feedback

noise. In addition to this limitation, they observe photon recoil and argue that photon

recoil places a limit on reaching the ground state in optically trapped systems. The

third setup was designed and built by the author consisting of a gradient force optical

trap produced by a parabolic mirror, achieving temperatures on the order of 5-14 mK. A

discussion of this setup will form the basis of this chapter and was published in reference

[3].

In this chapter, discussion of parametric feedback cooling and application in the author’s

setup will be discussed. First, the theory of feedback cooling will be presented. Then,

the modifications made to allow for parametric feedback cooling to the setup shown in

figure 3.1 and described in section 3.1 will be discussed. Experimental studies into the

effects of the feedback cooling parameters will be presented. Finally a discussion into

the limitations of the system will be presented along with a discussion of the challenges

in reducing a levitated particle to the ground state.

6.1 Principle of parametric feedback cooling

The harmonic motion of an optically levitated nanoparticle undergoing small oscillations

can be accurately modeled as a parametric oscillator. A parametric oscillator is an

oscillator which is driven by varying some parameter of the oscillator, in our case the

trap stiffness is varied. It is possible to amplify or reduce the amplitude of the particle

motion by varying the trap stiffness at a certain frequency and relative phase to the

particle motion. To reduce the amplitude of motion of the particle, the trap stiffness

and hence trap depth is increased as the particle climbs the potential well and its kinetic
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energy is reduced. As the particle moves back towards the centre of the trap, the trap

stiffness is reduced and hence the trap depth. This process is shown in figure 6.1. This

results in the particle gaining less kinetic energy as it moves back towards the centre

of the trap than it lost climbing the potential well. Modulation of this type results

in a reduction in the particle’s average kinetic energy, reducing the average positional

variance and hence the particle’s centre of mass temperature Tcm. The modulation

described here to cool the particle’s motion corresponds to a modulation at twice the

trap frequency applied at the correct relative phase to the particle motion, we call the

feedback phase φ.

1 2

34

5

Figure 6.1: The particle motion during feedback cooling. 1) Before the para-
metric feedback is activated. 2 and 4) As the particle moves away from the centre
of the trap, the parametric feedback loop is activated and the particle’s motion during
feedback cooling is hindered by an increase in trap stiffness. 3 and 5) As the particle
moves towards the centre of the trap, the trap stiffness is reduced. The overall effect of

steps 2-5 is to cause a reduction in the particle’s energy.

By adjusting the size of the modulation depth we can control the amount of damping

we induce via feedback cooling and thus raise or lower the temperature of our trapped

nanoparticle as desired. From equations 2.26 and 2.27, it can be seen that the trap

stiffness is proportional to the laser intensity used to create the trap, therefore by mod-

ulating the laser power the trap stiffness can be modulated. The modulation of the trap

stiffness applied to achieve feedback cooling to the system can be described as,

kfb(t) = k0η sin(2ω0t+ φ). (6.1)

where we define η to be the modulation depth of the optical feedback signal with η =

Ifb/I0 where I0 is the laser intensity without feedback and Ifb is the amplitude of the

feedback modulation. Giving a time varying trap stiffness of the optical trap equal to
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k(t) = k0 + kfb(t)

= k0 + k0η sin(2ω0t+ φ).
(6.2)

This trap stiffness modulation provides a damping force to our particle as it moves within

our trapping potential. This force is created by varying the intensity of the trapping

laser and is a time-varying, nonconservative optical force. The force that arises due to

the parametric feedback cooling feedback force can be written as

Ffb(t) = kfb(t)x(t). (6.3)

we can write the equation of motion for our trapped particle in the x direction (polar-

ization direction) undergoing a feedback cooling force as,

ẍ(t) + Γ0ẋ(t) + ω2
0x(t) =

1

m
(Fth(t) + Ffb(t)), (6.4)

As shown in references [3, 13], activating the parametric feedback loop gives rise to

additional damping δΓ and a frequency shift δω. The resulting spectral line shapes are

defined by the power spectral density Sx(ω), which follows from equation 6.4 as

Sx(ω) =
kbT0

πm

Γ0

([ω0 + δω]2 + ω2)2 + ω2(Γ0 + δΓ)2
(6.5)

Intergrating both sides over ω gives the mean square displacement

〈x2〉 =

∫ ∞
0

Sx(ω)dω

=
Γ0kbT0

m

1

ω2
0(Γ0 + δΓ)

(6.6)

Using the equipartition theorem we note,
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1

2
kbTc.m =

1

2
mω2

0〈x2〉

= mω2
0

Γ0kbT0

m

1

ω2
0(Γ0 + δΓ)

=⇒ Tc.m = T0
Γ0

Γ0 + δΓ

(6.7)

where T0 is the equilibrium temperature in the absence of parametric feedback cooling. It

is therefore apparent that to implement parametric feedback cooling in the experimental

setup shown in figure 3.1, the ability to firstly measure the position of the particle is

required, and secondly the ability to produce a modulation of the trapping laser intensity

at twice the particle’s frequency, with the correct time delay is required.

6.2 Experimental setup

The experimental setup is built upon the setup shown in figure 3.1 and described in

section 3 with some additional components. The detected signal at the photodiode

can be considered to be a carrier wave containing three signals of differing frequencies,

corresponding to the trap frequencies of each spatial degree of freedom plus noise. This

signal measured at the photodiode is then sent to three different lock-in amplifiers (ZI

HF2LI Lock-in Amplifier)1, where the signals are extracted for each spatial degree of

freedom. In each of the lock-in amplifiers the frequency ωi and phase θi of the particle

motion in one spatial degree of freedom (i = z, x, y) is extracted. This information is

then used to create a sine wave with amplitude Ai, at twice the frequency of the trap

frequency and a phase shift φi relative to its measured phase. These frequency-doubled

and phase-shifted signals for each spatial degree of freedom are added together, before

being sent to a acusto optical modulator (AOM) (PhotonLines, 80MHz ). The signal sent

to the AOM modulates the intensity of the laser light before the laser light reaches the

trapping objective. This completes the feedback loop used to perform feedback cooling

on levitated particles. The feedback capable setup can be seen in figure 6.2.

The modulation due to the feedback is visible in light detected on the photodiode and

can be seen alongside the motional peaks resulting from particle motion as shown in

figure 6.3

1Originally the process of generating a feedback signal from the detected signal was carried out using
a pair of FPGA’s (National Instruments NI-PXIE-7961 ). However, due to the ease of use, the lock-in
amplifiers became the main device used for cooling.



Parametric feedback cooling of a levitated particles centre of mass motion 79

1550 nm

PBS

Figure 6.2: Experimental setup for parametric feedback cooling of optically
levitated particles. The output of the laser is intensity modulated by an AOM
(PhotonLines, 80MHz ) according to the feedback signal. The laser light is focused
by a paraboloidal mirror, at the focus of which a silica nanoparticle is trapped. The
scattered light from the particle is collected and collimated by the parabolic mirror. The
scattered light contains encoded in it, the modulation of the light due to the feedback
signal and the modulation due to the particle motion. This light is then detected by a
photodiode. Once detected, the modulation of the light caused by the particle motion is
separated via the use of three lock-in amplifiers. The feedback signal is then generated

and fed into the AOM.

6.3 Extracting Experimental Parameters

We assume that the particle without feedback is at thermal equilibrium with the sur-

rounding gas and is approximately at 300 K. Therefore, in a steady state solution we

assume the particle is also initially at T0 = 300 K. However upon activating feedback

cooling, this is no longer true. To calculate the temperature of a cooled particle we re-

quire two lots of information about the particle’s motion, one in which the particle is in

thermal equilibrium with the surrounding gas and one of the cooled particle respectively.

We refer to the data taken for a particle in thermal equilibrium as the reference save.

The reference data is taken at roughly 1 mbar without feedback cooling where a fitting

with minimal error can be obtained (see section 4.6)2. When referring to parameters

extracted from the reference save, the subscript 0 is used, while for the cooled data the

subscript fb is used. We fit the following equation to the PSD of the cooled particle

motion.

2It was found that the error in fitting a PSD to the motion of an optically levitated particle did not
have a dependence on the laser intensity. For this reason the reference save, was taken at the same
power the experiment being conducted.
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PS
D

Figure 6.3: Observation of the parametric feedback signal. For a 66 ± 3 nm
silica particle trapped at a pressure of 1×10−2 mbar. A feedback signal is applied to each
of the three spatial degrees of freedom with the following parameters; ηz = 1%, φz =
45◦, ηx = 1%, φx = 45◦, ηy = 1%, φy = 45◦. The motional peaks and corresponding
feedback signal are shown in the same colour. The z motional and feedback peak is
shown in blue, x motional and feedback peak are in green and finally the y motional

and feedback peak are shown in red.

Sx(ω) =
Afb

(B2
fb + ω2)2 + ω2C2

fb

. (6.8)

Where the fitting parameters equal,

Afb = γ2kbT0Γ0

πm

Bfb = ω0 + δω

Cfb = Γ0 + δΓ

(6.9)

An example of equations 4.15 and 6.8 fitted to a uncooled and cooled PSD can be seen

seen in figure 6.4.

The temperature of a cooled particle can be worked out using equation 6.7 with the

extracted fitting parameters from equations 4.15 to the PSD of an uncooled particle and

6.8 to a PSD of the particle’s cooled motion. The resulting equation can be written
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Figure 6.4: Extracting temperature by fitting PSD. Uncooled: The data is
taken at P = 5 mbar, with Tcm = 300 K and Γ0 = 243 ± 3 Hz evaluated from the
fit. Cooled: The data is taken at P = 2 × 10−5 mbar, with Tcm = 167 ± 3 K and
Γ0 + δΓ0 = 74± 2 Hz evaluated from the fit. The subscript z has been used to indicate

that the PSD has been taken for the z spatial degree of freedom.

Tcm = T0
Γ0

Γ0 + δΓ
= T0.

Afb
Cfb

C0

A0
. (6.10)

In addition to calculating the temperature from the fitting parameters the following

parameters can be calculated from the fit parameters.

Γ0 =
AfbC0

A0

δΓ = Cfb −
AfbC0

A0

δω = Bfb −B0

(6.11)

The methods used to calculate the errors in these values and Tcm can be found in

appendix C.

6.4 Optimisation of parametric feedback cooling

There are two tunable variables of concern when implementing parametric feedback

cooling, namely the modulation depth and phase of the parametric feedback signal. In

this section we study the effect of these parameters on the feedback’s cooling rate.
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6.4.1 Phase dependence

The first parameter optimised when performing parametric feedback cooling is the phase

of the feedback signal. To study the effect of the phase we systematically change φ to

switch between parametric cooling and parametric heating (while keeping η constant).

The relationship between the phase φ and motional temperature Tcm can be written

as [180]:

Tcm =
T0

1 + ηω0sin(2φ)
2Γ0

, (6.12)

The effect of changing the feedback phase φ on the PSD of particles motion can be seen

in figure 6.5, in which we observe a shift in the trap frequency of the particle and a

change in the amplitude of PSD peak.
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Figure 6.5: Effect of varying the parametric feedback phase on the particle’s
motional PSD. The red PSD shows the uncooled particle at 10−1 mbar, with the green
dashed line showing the central frequency. The other PSD peaks are taken for a cooled
particle (ηz = 2%) at 10−5 mbar. The particle used in these measurements is a 100± 2

nm diameter silica particle.

The observed shift in trap frequency can be explained by considering that parametric

feedback cooling modulates the trap stiffness and therefore changes the shape of the
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Figure 6.6: The effect of feedback phase on the trap frequency. It can be
seen that as the feedback phase φz is varied away from the optimal feedback phase the
particle’s frequency is altered. The data is for a cooled (ηz = 2%)100± 2 nm diameter

silica particle at 10−5 mbar.

optical potential. The change in trap frequency with the feedback phase is shown in

figure 6.7. A similar effect of this kind has been observed in other systems and is often

called the optical spring effect [56, 181, 182]. The observed shift in frequency poses no

experimental difficulty, as the bandwidth of the lock-in amplifier is more that sufficient

to track any changes.

From equation 6.12 it is easy to see that the optimal cooling occurs when φz = 45◦.

In reality, the phase we implement experimentally is found to be different from this

value and depends on the time delay in the feedback loop between the measurement

of the particle motion and implementing the trap stiffness modulation of the trap. A

typical value for the delay in our setup is on the order of 6 µ s. This delay has been

accounted for in figure 6.7, which shows how varying the feedback phase affects the

particle’s temperature. As the feedback phase moves further from φ = 45◦, a heating

of the particle motion can be observed. Ultimately, as can be seen from equation 6.12,

optimising the feedback phase can only cause a limited amount of cooling and other

parameters need to be optimised to achieve a greater cooling of the particle motion.
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Figure 6.7: Effect in varying the phase on the temperature of a cooled par-
ticle. The maximal cooling occurs at φz = 45◦. The temperature increases according
to equation 6.12 as shown by the blue line. The data is for a cooled (ηz = 2%) 100± 2

nm diameter silica particle at 10−5 mbar.

6.4.2 Modulation depth dependence

The next parameter to be optimised is the modulation depth of the parametric feeback

signal. Equation 6.12 shows an inverse relation to the modulation depth η of the feedback

introduced to the system. This suggests that as we increase the modulation depth we

increase the cooling rate as shown in figure 6.8.

One would therefore naively expect if we increase η to its maximum value we could

achieve the lowest temperature at a given feedback phase and pressure. However, as η

increases there is initially a decrease in temperature as predicted by equation 6.12, how-

ever as the modulation depth approaches η = 0.4% the temperature begins to plateau.

As the modulation depth is increased and exceeds 1%, the particle temperature in-

creases. This increase in temperature is suggestive of measurement noise in the system

and thus places a limit on the amount of cooling that can be achieved in the system.

Further increasing the modulation depth results in further increase in the temperature

and the particle becoming lost from the trap. This we infer to be due to the particle
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/2

Figure 6.8: δΓ for different feedback modulation depths η for a feedback cooled
(φ = 45◦) 100 ± 2 nm diameter particle at 1×10−5 mbar. The blue dashed line shows
th relation δΓ = 2ηω0x̄

2/x20 [3]. As the feedback gain is increased δΓ is also increased.

experiencing a greater impulse at higher modulation depths. The effects described here

on the particles temperature can be seen in figure 6.9.

6.5 Pressure dependence

The temperature of the levitated particle is a balance between the cooling rate from

feedback cooling and the thermalisation rate from background gas collisions. From

equation 4.12 it can be seen that reducing the pressure in the chamber reduces the rate

of gas collisions. The effect of pressure on Γ0 can be seen in figure 6.10. As damping

due to the environment decreases in magnitude, the feedback modulation depth is kept

constant. This means that the effect of the feedback becomes more dominant as the

pressure in the vacuum chamber is reduced. The effect on the particle’s motional PSD

can be seen in figure 6.11.

As the pressure is reduced the area under the particle’s PSD decreases and an increase

in δω is observed. The change in δω can be seen in figure 6.12. It can be seen that ω+δω

increases as pressure decreases, before tending towards a constant value. Experimentally

this challenge is overcome by setting the bandwidth of the lock-in amplifier so it can

track the change in frequency as the pressure is reduced.
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Figure 6.9: Temperature for different feedback modulation depths η for a
feedback cooled (φ = 45◦) 100 ± 2 nm diameter particle at 1×10−5 mbar. As the
feedback gain is increased, the expected result is a decrease in temperature as shown
by the model fit. However, experimental results show a heating of the particle as the

modulation depth is increased above 1%.

The other important observation from figure 6.11 is that the area under the power

spectral density of particle motion decreases as the pressure in the vacuum chamber is

reduced. The area under the power spectral density of particle motion is proportional to

the trapped particle centre of mass motion and hence temperature, suggesting a decrease

in temperature. In contrast, it can be seen in figure 4.9 that for the uncooled case the

area under the PSD does not change. The temperature of the particle as the pressure

decreases can be seen in figure 6.13. The pressure is decreased to 1 × 10−6 mbar, the

lowest attainable in the vacuum system described in section 3.1.

6.6 The Quality factor

Another property of the particle motion that is affected by reducing the pressure is the

quality factor (Q factor). The quality factor of a mechanical resonator is an important

figure of merit for various sensing applications and for observing quantum behaviour.

The performance of a mechanical resonator depends critically on its quality factor, which

characterises both the maximum response of an oscillator to a disturbance at its reso-

nance frequency and the coupling rate to its surrounding dissipative environment. [183].
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Pressure Pgas (mbar)

Figure 6.10: The viscous damping experienced by an trapped particle at
different pressures. The damping rate Γ0 decreases linearly with pressure. The
dashed lines show fits according to 4.12. For a perfectly symmetric particle Γz =
Γx = Γy should be true. However as observed, this is not the case suggesting that the

levitated particle is not perfectly spherical.

The Q factor is defined as the energy stored in the oscillator over the energy dissipated,

over one radian of oscillation. For our system, the Q factor is given by

Q =
ω0

Γ0
, (6.13)

From this equation it is easy to see that reducing the pressure (and hence damping

affecting the particle motion) should result in an increasing Q. Experimental verification

of this can be seen in figure (6.14). It can be seen that at pressures on the order of 10−6

mbar the maximum Q factors are measured for the particle motion. The highest recored

Q factors are Qz = 4.8 ± 0.5 × 107 , Qx = 1.2 ± 0.1 × 108 and Qy = 1.7 ± 0.2 × 107.

Assuming that the scaling from the lines of best fit in figure (6.14) can be extrapolated

to ultra-high vacuum, we would expect Qm ∼ 1012 at ∼ 10−9 mbar, in agreement with

previous studies [62].



Parametric feedback cooling of a levitated particles centre of mass motion 88

Figure 6.11: Change in PSD of particle motion with pressure. As the pressure
in the vacuum chamber is reduced the area of the power spectral density decreases. The
area under the PSD is directly related to the change in temperature of the particle.
The change in trap frequency seen in this data is a combination of effects, firstly due
to power variation in the trapping laser power and the optical spring effect discussed

in section 6.4.1.

From the measured Q factors it is possible to calculate the force sensitivity limit [63, 71].

In the case of a mechanical oscillator, the force sensitivity limit arises from the classical

thermal noise, and can be expressed as

SthFF =

√
4kbT0mω0

Q
. (6.14)

The maximum force sensitivity measured in the system for each degree of freedom (z,

x and y) using the Q factors from figure 6.14 are SthFF,z = 1.5 ± 0.9 × 10−20 N/
√
Hz ,

SthFF,x = 1.2±0.7×10−20 N/
√
Hz and SthFF,y = 3±1×10−20 N/

√
Hz. These values show

that this system is on a similar level of sensitivity to other levitated systems [71]. With

further reduction in pressure and temperature it is expected that the force sensitivity

would increase.
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Figure 6.12: Change in δω with pressure. It can be seen that as the pressure
decreases δω increases by less than 10 kHz between 6× 10−2 mbar and 2× 10−6 mbar.
This change of frequency lies within the bandwidth of the lock-in amplifier and poses

no issue for the parametric feedback cooling loop.

6.7 Lowest achievable temperature

Optimising the feedback parameters to η = 0.6% and φ = 45◦ for each spatial degree of

freedom and reducing the pressure in the vacuum chamber to its lowest pressure 1×10−6

mbar, we achieve temperatures of Tz = 14 ± 1 mK, Tx = 5 ± 1 mK and Ty = 7 ± 1

mK (as shown in figure 6.15). Temperatures on this order are the lowest achievable

in the experimental system described in section 6.2. However, this is not the lowest

temperature which could be theoretically achieved for an optically levitated particle.

The ground state of a quantum mechanical system (such as a particle in an optical trap)

is its lowest energy state. For atoms in optical traps, their ground state has been realised

experimentally [184, 185]. However, this has yet to have been achieved for nanoparticles

in optical traps. A mechanical oscillator in the quantum ground state exhibits discrete

states which are separated in energy by ~(ω0 +δω) ∼ ~ω0 [186, 187]. The mean thermal

occupancy 〈n〉 is given by,
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Figure 6.13: Dependence of the center of mass temperature on pressure. It
can be seen that the particles temperature varies linearly with pressure. Assuming that
this trend continues, it is predicted that ground state temperatures could be achieved

at pressures on the order of 10−9 mbar.

〈n〉 =
kbTcm
~ω0

. (6.15)

The quantum ground state can be achieved when 〈n〉 < 1. Therefore the ground state

temperature Tground for a harmonic oscillator can be written as,

Tground =
~ω0

kb
. (6.16)

For the particle in figure 6.15 we find the ground state temperatures for each degree of

freedom to be T zground = 4 µK, T xground = 7 µK and T yground = 8 µK. Therefore it can be

seen that, to cool the particle to the ground state an improvement of the systems ability

to cool by factor of roughly 102 needs to be achieved. For the particle in figure 6.15 we

find the phonon occupancy to be nz = 3250, nx = 670 and ny = 830 phonons.
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Pressure Pgas (mbar)

Figure 6.14: The Q factor of particle motion at different pressures. It can be
seen that as the pressure is reduced the reduced damping results in an increased Q factor
with the highest values measured in the system to be Qz = 4.8× 107 , Qx = 1.2× 108

and Qy = 1.7× 107.

6.8 Feedback Limitations and reaching the ground state

The obvious question is, can the system be modified to allow for improved if not ground

state cooling? In this section we discuss what limits the experimental systems ability

to cool an optically trapped particle. The ability to cool a particle depends upon the

resolution of which its position can be measured and how accurately the feedback mod-

ulation can be applied. There are several sources of noise in the system which need to

be minimized, to produce the highest possible position resolution, including measure-

ment uncertainty due to the random arrival of photons at the particles location and

measurement back action due to momentum transfer from photons to the particle.

6.8.1 Electrical noise floor

From figure 6.15 it may appear that there is still a significant amount of cooling which

could be achieved before reaching the noise floor, however in this figure the noise floor of

the oscilloscope is shown. The actual limiting factor in the system is the noise present in



Parametric feedback cooling of a levitated particles centre of mass motion 92

Figure 6.15: PSD’s showing the cooling of the center of mass motion of a
levitated nanoparticle from 300 K to a few mK. The red coloured PSD is of the
particle motion at room temperature without any cooling trapped at 7 × 10−2 mbar.
The blue coloured PSD shows the particle motion with cooling at 6×10−6 mbar, where

Tz = 14± 1 mK, Tx = 5± 1 mK and Ty = 7± 1 mK.

the feedback loop, specifically due to the lock-in amplifiers used to create the feedback

signal. The noise floor of the lock-in amplifier can be seen along with the PSD peaks

for a particle at various temperatures in figure 6.16. It can be seen that to reduce

the temperature lower than ∼1 mK, the noise floor needs to be reduced. To reach the

ground state, the noise floor would need to be reduced by a factor of roughly 10−2,

or the signal to noise ratio (SNR) increased by a factor of 102. The noise floor level

can be lowered by replacing the ZI HF2LI Lock-in Amplifier with lower noise feedback

electronics. The SNR can be increased by placing a low noise voltage amplifier after the

photodetector (Such as a FEMTO DHPVA-100 amplifier)3, therefore allowing for the

ZI HF2LI Lock-in Amplifier to cool the particle motion to lower temperatures.

6.8.2 Pressure reduction

As discussed in section 6.5, collisions from background gas limits the temperature which

can be achieved in the experimental setup. Looking at figure 6.13 and making the

assumption that the pressure and temperature will continue to decrease together in

3Alternatively the SNR could be increased optically, by using a higher NA parabolic objective or a
material which is more reflective to 1550 nm laser light.
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Figure 6.16: Fitted PSD’s to the motional amplitude of a nanoparticle at
various Temperatures. Solid lines show equation 6.8 fitted to experimental data
at different temperatures. Dotted line is the back ground noise level of the lock-in

amplifiers used to generate the feedback signal.

a linear relation, it is possible by extrapolating from the data shown to estimate the

pressure required for which the particle may reach its motional ground state is 10−9 bar.

To overcome this problem, one of the last changes the author was able to implement

in the experimental system was to upgrade the vacuum system with the addition of

cryopump (TVLK160, VAB) and a more powerful turbo pump (Pfeiffer PMP03901 ) to

the vacuum system. The system is now capable of pumping down to pressures on the

order of 10−11 mbar, which should fulfill the pressure requirement of the system to reach

ground state.

6.8.3 Detection resolution limits

To examine whether the particle motion is resolvable in the ground state we consider

the motion of the particle in the ground state given by

√
〈x2
ground〉 =

√
~

2mω0
. (6.17)
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The ground state for a 60 nm silica particle with ω0 = 2π × 100 kHz is 〈xground〉 = 17

pm. The detection resolution of our system has been measured in section 4.5 to be

Sx,exp = 200 ± 20 fm/
√
Hz. The detector used in these experiments has a bandwidth

of 100 kHz, meaning that the minimum change in position that could be resolved is 8

pm. This resolution is sufficient to resolve ∼ 2 points per oscillation satisfying Nyquist

theorem. While theoretical the detection resolution should not limit the progress towards

ground state cooling, Increasing the bandwidth of detector would still be beneficial.

6.8.4 Detection efficiency limits

To examine the detection efficiency in our system we consider the difference in inter-

ferometric signal across the wavefunction width. Maximum detection efficiency occurs

when 100% of information carrying photons are collected by the detector in the system.

To examine the detection efficiency in our system we must consider the fraction of laser

light passing through the focus the particle interacts with. The area of the laser focus

is given by σwaist = πW2
0/2. The amount of light scattered by the particle is given by

the Rayleigh scattering cross-section,

σs =
2π5

3

(2r)6

λ

(
n2 − 1

n2 + 2

)2

. (6.18)

For a given laser power P0, the power scattered by a nanoparticle within the trap is

given by,

Pscat =
σs

σwaist
P0. (6.19)

Therefore we can find the number of photons scattered in a second, by dividing Pscatt

by the energy of an individual photon,

Nscat = Pscatt/hflaser , (6.20)

where flaser is the frequency of the trapping laser. The percentage of photons collected,

ηtrans, can be calculated by accounting for the number of photons lost by absorption

in the optical components and the amount of photons collected by the parabolic mirror

optical trapping majority, which collects 50% of the scattered photons (a significant

improvement on lens based traps). Combining this with the quantum efficiency of the

detector ηQ, we can write an expression for the power detected as
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Pdet = ηQηtransPscat. (6.21)

Where the signal amplitude measured on the detector in volts is given by Vdet = Pdet×1.0

A/W × G, the transimpedence gain is given by G ∼ 105 V/A. The phase of scat-

tered light is modulated by the position, and we can expect a phase difference θ ∼
k〈xground〉/λ ∼ 70 µrad (see equation 4.21) across the ground state, along the optical

axis. Thus we expect about 100 nV of difference in electrical signal from the detector,

according to the estimated fraction of the Rayleigh scattered photons incident on it.

The sensitivity of the balanced photo detector is 70 nV/
√
Hz and a bandwidth of 100

kHz, which gives a NEP of 0.2 nV for the detector, meaning ground state motion should

be resolvable. Therefore, it can be seen that the detection efficiency does not provide

a constraint on the approach to the ground state. It should be pointed out that para-

metric cooling should work on timescales shorter than 1/Γ0, even without continuously

tracking position, providing that the frequency and phase of the centre of mass motion

is known.

6.8.5 The standard quantum limit

Information about the particle position in our optical trap is obtained from photons

scattering off the trapped particle. Greater amounts of information can be obtained by

increasing the number of photons which interact with a trapped particle NP . However,

the stochastic arrival of photons adds an uncertainty to these measurements (even for

an ideal detector). For a laser beam with NP photons we find an uncertainty in photon

number 4n =
√
NP due to shot noise [188]. Consequently, there is a momentum

uncertainty 4p of

4p =
√
NP~kq, (6.22)

where kq is the wave vector of a scattered photon traversing direction q. Thus from the

uncertainty principle we can write

4q = 1/2kq(
√
NP ). (6.23)
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Figure 6.17: Measurement back action The standard quantum limit is reached
when the measured position uncertainty is equal to the momentum imparted by the

photons that carry the positional information.

It can be seen now that momentum uncertainty increases with an increasing number

of photons (4p ∼
√
NP ). In contrast, position uncertainty increases with decreasing

number of photons (4q ∼ 1/
√
NP ). This must be taken into account when trying to

reduce the uncertainty in measured energy 4U . 4U is given by,

4U =
1

2
mΩ2

04q2 +4p
2

m
. (6.24)

Uncertainty is minimised when both terms are equal and is referred to as the quantum

limit (see figure 6.17).

6.8.6 Photon Recoil Limit

The measurement uncertainty can be reduced by increasing the number of photons

reaching our detector as is evident from equation (6.23). This can be achieved by

increasing the intensity of the trapping laser. However, each photon from the laser

which traps the particle, when it scatters off the nanoparticle, imparts a momentum

kick to the trapped particle. The imparted momentum transfer can be of up to p = h/λ

depending on the scattering angle. The imparted scattering angle can be considered to

be quasi random with a small preference to the forward direction allowing the resulting

force to be modelled as a stochastic driving force. The power of the scattered photons

can be calculated from Pscatt = σRI0, where I0 is the intensity at the focus, σR is the

Rayleigh scattering cross-section from the particle equal to,
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σR =
8π3

3ε30

α2

λ4
(6.25)

considering this equation and the equation for the particle polarisability 2.17 we can

write,

Pscatt = σRI0 =
128π5

3

r6

λ4

(
n2 − 1

n2 + 2

)2

I0 (6.26)

Where I0 given by,

I0 =
2P0

π2
0

=
8P0NA2

πλ2
(6.27)

where P0 is the laser power. Using equation 6.26 and 6.27 for particle with a radius

of 33 nm in a 0.7 W laser where the laser focus is is formed by a NA= 0.995 focusing

objective, we find Pscatt = 0.14 µW. From reference [27] the photon recoil rate is given

by,

Γrecoil =
1

5

Pscatt
mc

2π

λω0
. (6.28)

In our system the collisional damping from background gases is much larger than this

effect. However, as the particle is cooled and the temperature reduced, a point will be

reached where photon recoil will become an observable effect. Using the values quoted

in this section we find for our system Γrecoil = 2π × 239 Hz.

6.8.7 Detector bandwidth

Finally we discuss the possibility of improving the position uncertanty by using a detector

with a narrower bandwidth. We can relate our uncertainty in measuring position q and

the bandwidth of our detector B by taking 4t = 1/B and using equations (6.23) and

the number of scattered photons Nscatt = Pscatt∆t/~ω. We can write our position

uncertainty as

4q ≥
√

B~ω
Pscat4k2

. (6.29)
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From this one could argue that by reducing the bandwidth of the detector it is possible

to reduce the error in position uncertainty. However, for a full understanding we must

take into account the classical particle trajectory, which can be expressed as q(t) =

q0(t)sin(Ω0t+ φ(t)), where q0(t) and φ(t) vary over time scales of the order ∼ 1/Γrecoil.

This means that the maximum time for measurements of position tmeasure, is the time

for which q(t+4tmeasure) is correlated with q(t).

In ultrahigh vacuum, the dominant decoherence process is recoil heating and therefore

Γdecoher = Γrecoil ∝ Pscat. Setting B ≈ Γrecoil, the position uncertainty (6.29) can be

written as

4q ≥
√

~ω
4k2

q

. (6.30)

Therefore, we can see that the position uncertainty becomes independent of power. Thus

the minimum uncertainty in position measurement is given by zero point motion. This

means that it is possible to work in the region where photon shot noise is the only

limiting factor.

6.9 Conclusion

We have demonstrated a parametric feedback scheme to cool the motion of an optically

trapped nanoparticle in high vacuum in all three spatial degrees of freedom. Theoretical

considerations show that with some improvements to the experimental system, centre

of mass temperatures and thus low phonon numbers close to the quantum ground state

could be achieved. Potentially, to reach the ground state of a laser trapped nanoparti-

cle, parametric feedback cooling could be combined with other optical cooling methods

such as passive dynamical back-action cooling [5]. Passive dynamical cooling could be

implemented with the addition of an optical cavity to the system [101, 120]. The ob-

served Q factors on the order of 107, with predicted Q factors on the order of 1012, hold

great promise for ultrasensitive detection and sensing. With the system presented here,

having a force sensitivity on the order of 10−20 N/Hz. Potential applications include

detecting gravitational forces such as high frequency gravitational waves [69], sensing

van der Waals and Casimir forces [70], sensing non-Newtonian gravity [71], nuclear spins

[72] and detecting dark matter [73].



Chapter 7

Classical squeezing of the motion

of levitated nanoparticles

Squeezing a quantum state of light has been implemented in a huge variety of exper-

iments and systems [189], however in contrast the squeezing of a massive mechanical

harmonic oscillators has not had many experimental realisations to date. The first

demonstration of squeezing in a classical mechanical oscillator was by Rugar and Grütter

[190] in 1991, who used parametric amplification to squeeze the motion of a microcan-

tilever. Since then, squeezing of classical motional states in electromechanical devices

by parametric amplification and weak measurements has been proposed [191] and has

been demonstrated experimentally in an optomechanical micro-oscillator [192]. Schemes

have also been proposed and discussed by numerous authors which rely on sinusoidal

modulation of the spring constant [193–196]. In regards to squeezing below the ground

state fluctuations in optomechanical cavities, Genoni et al. [197] proposed that this

may be possible via continuous measurements and feedback. Experimental demonstra-

tion of quantum squeezing in optomechanical systems include high frequency microwave

optomechanical device [198, 199] and in a hybrid photonic-phononic waveguide [200].

An alternative method to those mentioned previously is via non-adiabatic shifts of the

mechanical frequency [201]. This method has previously been discussed in relation to

light fields [202, 203] and similar ideas, utilising impulse kicks on a mechanical oscillator

[204, 205]. This method of mechanical squeezing via non-adiabatic frequency shifts of

a levitated particle motion will be demonstrated in this chapter. The non-adiabatic

frequency shifts will be applied in a pulse scheme to levitated nanoparticles. Each pulse

will consist of the trap frequency being rapidly reduced for a time, before being brought

back to the original trap frequency.

99
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In this chapter a discussion of the theory behind squeezing a levitated particle will be

presented, followed by a description of the experimental setup. Several experimental

studies will then be presented. The first of which will be the optimisation of a single

pulse, both in terms of pulse duration and depth. Next, this method will be extended to

applying multiple pulses to the levitated nanoparticle. The effect from varying the time

between two pulses will be investigated, allowing for an optimal pulsing scheme to be

devised. Then, the effect of applying greater number of pulses on the phase space and

amount of squeezing to the particle motion will be explored. This will be followed by

the application of squeezing pulses to parametric feedback cooled particles. Finally, a

discussion about combining the techniques of parametric feedback cooling and squeezing

pulses to achieve a quantum state will be presented.

7.1 Principle of squeezing by repeated frequency jumps

Under normal unperturbed motion of the particle in an optical trap, the motion is

harmonic and the particle can be considered to be in a thermal state. The effect of

squeezing on a harmonic oscillator is quite prenounced in the root mean square (rms) of

the particle motion, but also visible in the phase space of the harmonic oscillator. The

phase space of a dynamic system is the space in which all possible states of that system

are represented, with each possible state corresponding to a single unique point in that

phase space. For a levitated nanoparticle the phase space consists of all possible values

of position and momentum variables. A harmonic oscillator in a thermal state has a

symmetric and circular phase space distribution. If a harmonic oscillator undergoes a

non-adiabatic frequency change, or in other words a sudden frequency jump, then the

harmonic oscillator’s motion becomes squeezed [201]. In the experiments carried out in

this chapter, repeated frequency jumps will be used to enhance this squeezing effect.

The squeezing pulse scheme implemented here can be seen in figure 7.1. Point 1, the

particle’s motion is harmonic and unsqueezed - the corresponding phase space is shown as

a blue circle. The sudden change in frequency between point 1 and 2 from ω1 to ω2 (note:

ω1 > ω2) leads to squeezing in one quadrature and the phase space of the particle motion

becomes an oval. If the oscillation frequency of the particle was to immediately jump

back, it would cancel quadrature squeezing and restore the particle to its original state.

If the particle motion is allowed to evolve for a quarter of a period of the new frequency,

the phase space rotates such that its largest spatial extent is in the other quadrature

(shown at point 3). At this point, a sudden jump back to the original frequency ω1

enhances the amount of squeezing (as shown by the further elongated oval at point 4).

The process of undergoing steps 1-4 is referred to as a frequency pulse in this work. It
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Figure 7.1: Squeezing by repeated frequency pulses. The particle begins with
an oscillation frequency of ω1 at point one with a circular phase space distribution
(shown in blue). Undergoing an abrupt frequency change from ω1 to ω2 at point 2
causes a transformation in the phase space resulting in an oval-shaped phase space.
Allowing for an evolution in time equal to T2/4, where T2 = 2π/ω2 , the oval shaped
phase space will have rotated by 90 degrees shown at point 3. A sudden frequency
jump from 3 to 4, back to the original frequency, enhances the squeezing. Allowing
the system to develop for a time equal to T1/4, where T1 = 2π/ω1, and then applying
a pulse (steps 1-4) again will enhance the squeezing effect, causing the phase space to

become a more and more elongated oval.

is possible (as will be shown in this chapter) to enhance the squeezing experienced by

the particle, by allowing the particle to evolve for a quarter of its oscillation time, before

applying another squeezing pulse (show by the red dashed line). This process can be

repeated many times.

7.2 Theory of Squeezing

The model presented here was developed by Tommaso Tufarelli and Muynshik Kim.

The model can be found in reference [206]. We present the derivation here to provide a

theoretical basis for the work carried out in this chapter.

A quantum mechanical treatment of the squeezing protocol implemented in this chapter

will be presented, in anticipation that future experiments may achieve quantum squeez-

ing. However, it should be pointed out that since a levitated nanoparticle within an

optical trap behaves as an harmonic oscillator, the classical and quantum equations

of motion for position and momentum are formally identical. Therefore, the classical
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analysis of these squeezing experiments only requires X̂ and P̂ to be interpreted as clas-

sical variables rather than quantum operators and the expectation values interpreted as

ensemble averages in the classical sense,

〈f(X̂, P̂ )〉 =

∫
P(x, p)f(x, p)dxdp. (7.1)

for any function f of the canonical variables, P (x, p) being the joint probability density

for classical position and momentum. Differences between the classical and quantum

treatments would only become apparent when close to the quantum ground state. The

experiments carried out in this section, even those implemented with parametric feed-

back cooling, are carried out in the regime of high thermal excitation.

To achieve squeezing, our system comprising of a nanosphere trapped in a harmonic

potential is manipulated along the z axis, by switching between two Hamiltonians Ĥ1

and Ĥ2, where

Ĥj =
p̂2

2m
+

1

2
mω2

j ẑ
2, (7.2)

where ẑ is the z component of the position operator, p̂ the z component of momentum

operator and the trapping frequency ωj able to assume either a value of ω1 or ω2. As

shown in figure 7.1 ω1 > ω2. As mentioned previously, the squeezing protocol presented

here relies on the rapid switching between these two Hamiltonians [202, 203]. The

annihilation operators corresponding to these two trap frequencies â and b̂ can be written

as

â =

√
mω1

2~

(
x̂+

i

mω1
p̂
)
, (7.3)

b̂ =

√
mω2

2~

(
x̂+

i

mω2
p̂
)
. (7.4)

Note we have set ~ = 1. The annihilation operators are related by a squeezing transfor-

mation of the form,

b̂ = cosh(r)â− sinh(r)â†. (7.5)

with the squeezing parameter given by,
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r ≡ 1

2
log
(ω2

ω1

)
. (7.6)

Before squeezing takes place, the particle is initially prepared in an arbitrary thermal

state of Ĥ1. At time t = 0 the trap frequency is rapidly changed from ω1 to ω2 and

the Hamiltonian becomes Ĥ2. The system is then allowed to evolve for a time t, equal

to τ (the pulse duration), before rapidly switching back to the Hamiltonian Ĥ1. In the

Heisenberg picture, this is a simple harmonic evolution of the operator b̂ given by,

b̂→ b̂e−iω2τ (7.7)

In terms of the quadratures,

X̂ =
â+ â†√

2
(7.8)

and

P̂ =
−i(â− â†)√

2
(7.9)

The matrix transformation can be written as (X̂, P̂ )→M(X̂, P̂ )> where,

M =

(
cos(ω2τ) e2rsin(ω2τ)

−e2rsin(ω2τ) cos(ω2τ)

)
. (7.10)

The matrix M contains a combination of rotation and squeezing in the phase space

of mode â. The squeezing parameter λ(τ) is encoded in the singular values of MM

and can be found as follows: Using det(MM>) = 1 it is possible to parametrise the

eigenvalues of MM> as (µ, 1/µ) for some parameter, where µ > 0. Note
√
µ quantifies

the deformation of the standard deviations of the rotated quadratures. The mechanical

squeezing parameter can be written as,

λ(τ) = 10 |log10(
√
µ)| (7.11)

where λ(τ) is given in units of decibels. The analytical expression for λ(τ) is unwieldy

if τ is left generic. However, under the condition ω2τ = π/2 maximum squeezing λmax

is obtained and it can be written,
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λmax = 10 log10

(
ω1

ω2

)
. (7.12)

7.3 Experimental Methods

To experimentally realise squeezing of an optically levitated particle non-adiabatic trap

frequency jumps need to be introduced. The trap frequency is proportional to the square

root of the trap stiffness and hence the square root of the trapping laser power (see

equations 2.29, 2.29 and 2.31). Therefore to switch the trap frequency between one at a

higher frequency ω1 and one at a lower frequency ω2, the trapping laser power needed to

be manipulated. To achieve this rapid switching between potentials, a pulse modulation

is imparted to the trapping laser. The experimental set up to achieve this is built upon

the setup shown in figure 3.1, described in section 3 with additional components. The

laser light is directed through an AOM, where it is modulated by an FPGA (Field

programmable gate array)1, which is used to generate a negative pulse profile. The light

from the AOM is amplified by an EDFA, before being split by a beam splitter into two

beams. One of the beams is low in power and used to trigger the oscilloscope. The

second more powerful beam is then directed into the paraboloidal mirror, at the focus

of which is a trapped silica nanosphere. The Rayleigh scatter from the trapped particle

is collected and directed onto the single photodiode, where it is recorded by the scope.

The optical set up used is shown in figure 7.2.

7.3.1 Pulse Generation, data sampling and recording

The optical pulses applied to the system are controlled by a program which runs on

the FPGA2 and generates a voltage signal to send to the AOM. The AOM is capable

of modulating the laser light by 100%, however this full modulation is not used as the

particle would be lost from the trap. A pulse is generated every 4 seconds and takes

roughly 6 µs delay before it travels through the trap and is recorded by photodetector

2 (as labeled in figure 7.2) and recorded by the oscilloscope.

The photodetector 1 (as labeled in figure 7.2) is used to trigger the oscilloscope at the

fall of the negative pulse. Both signals pertaining to the trapped nanosphere and pulse

applied to the AOM are recorded. The recorded signal or time traces are 2 seconds long,

with the centre being at the trigger of a negative pulse. To analyse the data, roughly

1The FPGA system used consisted of the following national instruments products: NI PXIE-1062Q,
NI PXIE-8133, NI 5781 and a NI PXIE-7961.

2The Labview/VHDL program was written by Ash Setter.
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PBS

PBS

1550 nm

Figure 7.2: Optical setup for squeezing of an optically trapped nanoparticle.
A 1550 nm laser light is directed through an AOM, before being amplified by an EDFA.
The AOM modulates the laser light according to a signal from an FPGA, to generate
a squeezing pulse at regular intervals. The light from the AOM is then split into two
beams, one used to trigger the oscilloscope and the other directed into the paraboloidal
mirror, at the focus of which is a trapped silica nanosphere. The Rayleigh scatter
from the trapped particle is collected and directed on to a single photodiode and the

particle’s motion within the trap recorded.

1500-2000 samples are taken for each experimental parameter varied, the methods used

will be described in section 7.4.2 and 7.4.3.

7.3.2 Generated Pulses

The pulses are generated in an FPGA, before being sent to the AOM to modulate the

light. The FPGA which generates the squeezing pulses runs on a clock rate of 40 MHz

and therefore can give a spatial resolution of 25 ns. The analog-to-digital converter allows

a voltage output resolution of 0.3 µV; this allows for a squeezing pulse to be created

to high precision (see figure 7.3 A). Providing the AOM is operating within the linear

regime, it is capable of recreating the pulses, however, the pulse becomes deformed as it

passes through EDFA 3. The pulse deformation occurs due to a non-uniform pumping of

the gain medium in time. As the power entering the EDFA drops, the EDFA attempts to

compensate for this. The result of the EDFA compensation is that the pulse overshoots

the original laser power and then quickly decays to its original value (see figure 7.3 B).

3Considering the work done in reference [206], a sensible question would be, why was the same
experimental set up not used? In short, the laser (IPG fiber laser (λ = 1550 nm, 10 W)) used in those
experiments broke and no new grants were won to allow for a new laser more suited to the task at hand
to be purchased.
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A) B)

Figure 7.3: Generated Squeezing pulse. A) Squeezing pulse generated by the
FPGA. B) Squeezing pulse in the laser light measured on photodiode 1. It can be
seen that after the pulse is implemented, the laser power over-shoots its original value
and then quickly decays back to its original value. Rapidly switching laser frequency,
without allowing time for the phase space to decay is expected to produce no net

squeezing.

7.4 Methods of data analysis

As will be discussed in this chapter, the effect of squeezing pulses on particle motion

becomes more prominent when analysing multiple instances of the particle undergoing a

squeezing pulse. 1500 samples of each pulse parameter are taken. As discussed, a squeez-

ing pulse is created by rapidly dropping the trapping laser power. This has the effect of

drastically reducing the signal measured on the photodetecor 2. The consequence of this

is that for the duration of a squeezing pulse it is not possible to accurately determine

the particle motion. In addition to this, the work presented here is interested in the

behaviour of the particle before and immediately after the pulse, therefore the motion

of the particle for the duration of the pulse time will be ignored. This section will detail

the experimental methods used to extract information about the motional behaviour of

the particle, before and after the squeezing pulse.
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Figure 7.4: Filtering of a single time trace. As squeezing is applied to the z
motional axis the motion of the other motional degrees of freedom are filtered out. a)
The filtered and unfiltered PSD of particle motion b) Original and filtered time trace

before the optical pulse. c) Original and filtered time trace after the optical pulse.

7.4.1 Filtering of experimental data

As discussed in section 3.5.2, the detected signal contains information about all three

spatial degrees of freedom. As the squeezing pulse is only optimized to the z spatial

degree of freedom, the motion from the other spatial degrees of freedom are filtered out

via the use of a band-pass finite impulse response filter. Due to the presence of the pulse

in the time trace, the signal is divided up into two sections; the region before the pulse

and the region after the pulse. Each of these sections is then filtered independently.

An unwanted consequence of this is that close to the pulse, the filtering results in edge

effects. The edge effects of filtering generally mean that the phase space cannot reliably

be calculated until roughly 46 µs after the pulses have ended. The time at which these

edge effects are present in the data is excluded from the analysis of particle motion. The

result of this filtering can be seen in figure 7.4.
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7.4.2 Root mean square of the particle motion xrms

The effect of the applied pulses on the motion of a particle can be seen more clearly

by taking the root mean square of the particle motion. The root mean square of the

particle motion can be calculated from multiple time traces of the particle motion. The

root mean square (rms) of the time traces of the signal is given by

zrms(t) =

√
1

Num

(
(z1(t))2 + (z2(t))2 + (z3(t))2 + (z4(t))2 + ...+ (zNum(t))2)

)
, (7.13)

where Num is the number of time traces used in the calculation, while the subscript

indicates the number of the time trace used and t indicates the time at which each value

of z is taken from the time traces. The zrms for a pulse applied to a levitated particle is

shown in figure 7.6. As expected, for a harmonic oscillator the zrms is constant before

the pulse. In contrast, the region after after the pulse oscillates - this is a signature of

quadrature squeezing and is caused by the oscillation between suppression and expansion

of the position quadrature of the particle.

7.4.3 Phase space analysis

Phase space distributions consist of a multidimensional space, in which each axis of

the coordinates is required to specify the state of a physical system. In the case of a

harmonic oscillator, the state can be described at an instant in time by position and

momentum. The position of the particle is known in time and thus the momentum can

be calculated using

pz(t) = mvz(t) = m
dz(t)

dt
. (7.14)

where vz(t) is the velocity of the levitated particle. A phase space plot can be gener-

ated for a given time, using the positional information in each of the 1500 data sets.

The experiments in this thesis are performed in the classical regime, in that we observe

quadrature variances that are several orders of magnitude larger than those in the quan-

tum ground state. Therefore, we may estimate the particles momentum by taking the

time differential of the position measurement. In passing we note that, in the quantum

regime, our continuous measurement process would require a more rigorous treatment

[207]. To generate the phase space plots, such as that seen in figure 7.5, a squeezing

pulse is applied to the system 1500 times and the motion of the particle recorded before
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and after each pulse, creating 1500 time traces. For each time trace the corresponding

momentum of the particle is calculated before and after the pulse using equation 7.15.

The phase space is then generated by plotting the momentum and position of a particle

at a time t defined relative to the start of the optical pulse, for each time trace. An

example of the resulting phase space can be seen in figure 7.5.

7.4.4 Calculating the squeezing parameter λ

To characterise the amount of squeezing caused by a squeezing pulse we use the definition

of squeezing given in equation 7.12, rewritten in terms of the quadrature variances [206],

λ = 10log10

(
∆z1

∆z2

)
. (7.15)

where ∆z1 and ∆z2 are the positional variance before and after the pulse respectively.

The positional variance is extracted by working out the variance in the position projec-

tion of the phase space. It should be noted that the same results would be obtained

using the momentum variance.

7.5 Single Pulse Squeezing

Initial investigations were carried out using a single pulse to optimise the squeezing

protocol. Before application of the squeezing pulse the circular phase space distribution

(as expected for a thermal state) is observed (see figure 7.5 A). Upon application of the

pulse the telltale signs of squeezing were seen, namely a reduction in one of the phase

space axes and elongation in the other (see figure 7.5 B). The squeezed state is observed

to rotate in phase space (see figure 7.5 B-C) and decay back into a thermal state.

7.5.1 Decay time of the squeezed state

To examine the decay of the squeezed state we look at the change of the zrms with

time, as shown in figure 7.6 A. Initially, before the application of the squeezed state

of the particle, the zrms is roughly constant, as the phase of the oscillation is random

between the 1500 individual pulse applications. The pulse region has been highlighted

in gray in figure 7.6 A. The region after the squeezing pulse illustrates damped phase

coherent oscillations of the zrms position of the particle. The oscillations are at twice

the frequency of particle motion, see figure 7.6B. This is a signature sign of quadrature
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A) B) C)

Figure 7.5: Experimentally measured phase space distributions of the par-
ticles mechanical state, before and after the squeezing pulse. Density plots
of the phase space distributions for z motion, at three different times, for a pulse du-
ration, = T2/4. The average displacement of the state has been subtracted in each
graph. A) State of the particle motion before the pulse is applied. The state
is well approximated by a Gaussian distribution, as is expected for a thermal state.
B) Phase space distribution shortly after the pulse has been applied (time
tafter). Note how it presents clear signatures of squeezing. C) The phase space
distribution at a time tafter +T1/4. The squeezed state rotates in phase space while
squeezing degrades with time, due to background gas collisions that restore the initial

thermal distribution.

squeezing. The oscillation in the zrms amplitude of the particle position is due to the

oscillation between suppression and expansion of the position and velocity quadratures

of the particle. The zrms oscillation decays within about 1550 µs to 1600 µs, which gives

a rate of thermalisation to the temperature of the background gas molecules between 605

Hz and 625 Hz. This is in good agreement with the value for Γ0 estimated via Lorentzian

fit of equation 4.15 and the expected theoretical value for a particle at Pgas=4.3× 10−2

mbar (from equation 4.12). The offset of the zrms motion observed in figure 7.6 A is

interpreted as noise, due to the rapid switching of voltage to implement the pulse and

will be accounted for in section 7.5.2.

7.5.2 Introduction of the noise model

The model presented here was developed by Tommaso Tufarelli and Muynshik Kim.

The model can be found in reference [206]. We present the derivation here, to provide

a theoretical basis for the work carried out in this chapter.

To account for the noise observed in the system, phase noise is introduced into the

theoretical model used to describe the effect of the squeezing model. The most significant

phase noise generated is during the abrupt voltage change. This is modelled in the

system by assuming that the squeezing operation induces some loss of coherence to

mode b̂, which is independent of the pulse duration τ2. We note that, all the adopted

pulse lengths demonstrated in this work are short enough to prevent other τ2 dependent
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A)

B)

Figure 7.6: A) Root mean square position zrms as a function of time obtained
from 1500 pulse sequences applied to the same particle The region of pulse duration
has been highlighted in grey. The sub graph shows a zoom in on the zrms oscillations.
B) zrms oscillation frequency The grey PSD shows the the power spectral density of
the filtered data PSDz. The red PSD shows the power spectral density of the zrms. It
can be seen that the zrms oscillates at ωzrms = 140× 2π kHz, twice the trap frequency
of the levitated particle ωz = 70 × 2π kHz. It can be seen that the amplitudes of the
zrms before the pulse at times t=-500 µs and t= 1550 µs are not equal. The zrms

amplitude is observed to vary in the between each pulse application, making it difficult
to determine an accurate decay time of the squeezed state.

forms of noise affecting the motion of the particle in a significant way. The noise in the

system is formulated in terms of covariance matrices [208].

The state of the system is initially thermal, therefore the assumption can be made

without loss of generality that 〈â〉 = 〈b̂〉 = 0 throughout the dynamics. The covariance

matrix of mode â therefore can be defined as

σa =

(
2〈X̂2〉 〈X̂P̂ + P̂ X̂〉

〈X̂P̂ + P̂ X̂〉 2〈P̂ 2〉

)
. (7.16)
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where 〈Â〉 ≡ >r[ρÂ] for any operator Â, and ρ is the density matrix for the z motion

of the levitated particle. In the convention used here, the covariance matrix of the

vacuum state is unit determinant. We assume that in an initial thermal state of mode

a, characterised by the covariance matrix

σa(0) =

(
2N1 + 1 0

0 2N1 + 1

)
. (7.17)

where,

N1 ≡
1

e
~ω1
kbT − 1

. (7.18)

The subsequent dynamics of the covariance matrix, as induced by the Hamiltonian Ĥ2,

can be determined by noting that 〈b̂†b̂〉 is independent of time, while

〈b̂(τ)2〉 = 〈b̂(0)2〉e−iω2τ . (7.19)

The loss of coherence is modelled by rescaling 〈b̂2〉 → Υ〈b̂2〉, with 0 ≤ Υ ≤ 1 with 〈b̂†b̂〉
unchanged. Using the relationship between â and b̂, we can obtain the matrix elements

for σa(τ)

[σa(τ)]11 = (2N1 + 1)

[
1 + c(τ)

2
+
ω2

1

ω2
2

1− c(τ)

2

]
(7.20)

[σa(τ)]22 = (2N1 + 1)

[
1 + c(τ)

2
+
ω2

2

ω2
1

1− c(τ)

2

]
(7.21)

[σa(τ)]12 = (2N1 + 1)s(τ)
ω2

1 − ω2
2

2ω1ω2
(7.22)

[σa(τ)]21 = [σa(τ)]12 (7.23)

where we have defined,

s(τ) ≡ Υsin(2ω2τ) and c(τ) ≡ Υcos(2ω2τ) (7.24)
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To calculate the amount of squeezing that has been applied to the levitated particle we

define,

µmin ≡ smallest eigenvalue of σa(τ). (7.25)

which quantifies the variance in the squeezed quadrature. We can define a squeezing

parameter (in units of decibels) by comparing µmin with the initial variance of the

particle oscillation quadratures in thermal equilibrium µmin(0) = 2N1 +1. Therefore we

can write,

λ = −1

2
10 log10

(
µmin(t)

2N1 + 1

)
. (7.26)

The factor of 1/2 occurs because squeezing is defined in terms of standard deviation

rather than variances.

7.5.3 Pulse duration

It can be seen from figure 7.1 that to achieve maximum squeezing, the duration of a

pulse should be T2/4, that is to say, the time in which it takes for the phase space

of the particle motion to be rotated 90◦. To quantify the effect of pulse duration τ

on the strength of the squeezing on the particle, a pulse of different pulse length was

applied to a levitated particle. The applied pulse jumped between ω1 = 2π×70 kHz and

ω2 = 2π × 22 kHz. The values of λ at different values of τ can be seen in figure 7.7. It

can be seen that maximum squeezing occurred at T2/4 as expected. A reasonable fit can

be obtained to the data in figure 7.7 by assuming that the squeezing pulse is affected by

phase noise, whose strength is τ independent, as described in section 7.5.2. It should be

noted that the largest squeezing factor achieved experimentally from a single squeezing

pulse is 3.2 dB, which is lower than the expected λmax = 5 dB from equation 7.12 and

is attributed to phase noise.

7.5.4 Increasing λ

The first and most obvious route to increasing λ would be to increase the difference

between ω1 and ω2, as can be seen from equation 7.12. This however is more experi-

mentally difficult than it would first seem, within the experimental set up. To increase

the ratio ω1/ω2 the laser power used to create the trap needs to be increased (as ω0 ∝
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Figure 7.7: Squeezing factor λ as a function of pulse duration τ . The theo-
retical fit to the data (blue line) has been done according to equation 7.26. It can be
seen that maximum squeezing occurs when τ equals T2/4 = 11 µs and 3T2/4 = 34 µs.
While minimum squeezing occurs when τ equals T2/2 = 23 µs and T2 = 45 µs . The
data shown here is for a squeezing pulse applied to a levitated 26±2 nm diameter silica

nanosphere of mass 2.6± 0.2× 10−20 kg.

√
laser power) and the light modulated by a greater amount. While the AOM is capa-

ble of modulating the laser light by larger amounts and quick enough, the EDFA used

was already operating at maximum power and thus the trap frequency could not be

increased. The solution therefore explored, is by use of multiple pulses as described in

figure 7.1.

7.6 Multiple Pulses

To increase the effect of squeezing, multiple pulses are implemented in the fashion shown

in figure 7.1. It is expected that if the pulses are applied optimally, each successive pulse

will increase the amount, by which the particle motion is squeezed by the same amount

allowing us to write,

λmax = 5N log10

(
ω1

ω2

)
. (7.27)

Where N is the number of squeezing pulses applied to the levitated particle.
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Figure 7.8: The measured optical signal for a 5 consecutive squeezing pulses.
The EDFA causes the laser to overshooting its original intensity. The effect becomes
more prominent with each successive pulse till the 4th pulse, after which a maximum

of optical intensity is reached.

7.6.1 Generating multiple pulses

To generate multiple pulses the experimental set up in figure 7.2 is used. The only

difference is that the FPGA now generates a signal containing multiple pulses, which is

used to modulate the laser light. The optical response to a 5 pulse electrical signal can

be seen in figure 7.8. The overshoot of the laser intensity caused by the EDFA becomes

more prominent with each successive pulse, until the 4th pulse where a maximum in

optical intensity is reached.

7.6.2 Time Between Pulses τ1

It can be seen from figure 7.1 that the correct time to apply a second pulse to achieve

maximum squeezing is after the phase space of particle motion has rotated 90◦ after

the first pulse has ended. To investigate this, two successive pulse were applied to a

levitated 20 ± 2 nm diameter silica nanosphere of mass 1.1 ± 0.2 × 10−20 kg, trapped

at ω1 = 2π × 56 kHz. The effect of applying two squeezing pulses with a different time

between the pulses λ1 can be seen in figure 7.9. It can be seen that maximum squeezing

occurs at around τ1 = 4.5 µs and τ1 = 12.5 µs, which corresponds to roughly T1/4 and
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Figure 7.9: Squeezing factor λ for the effect of two pulses as a function of
time beteen pulses τ1. The maximum squeezing occurs at roughly T1/4 and 3T1/4,
while the minimum occurs at at around T1/2 and T1.The data shown here is for a
squeezing pulse applied to a levitated 20 ± 2 nm diameter silica nanosphere of mass

1.1± 0.2× 10−20 kg.

3T1/4 respectively. While the minima occurs at around τ1 = 7 µs and τ1 = 16 µs, which

corresponds to roughly T1/2 and T1 respectively. This suggests as would be expected,

a similar relationship as to that shown in figure 7.7, for the width of a squeezing pulse

and λ.

7.6.3 Effect of multiple squeezing pulses on the phase space

The natural question once knowing the optimal time to leave between pulses, is to ask

what the relation between the number of pulses applied and the squeezing factor would

be. Therefore to investigate this, an increasing number of pulses was applied to a 62± 2

nm diameter levitated particle. The pulses applied to the system had the following ratio:

ω1/ω2 = 1.7± 0.2.The results of which can be seen in figure 7.10.

It can be seen that upon the application of a second pulse (See figure 7.10 C), the

phase space becomes more oval, as expected from the combined effect of two squeezing

pulses. However, upon application of the 3rd pulse, the phase space distribution starts

to extend into the nonlinear region of the trap (see section 2.3.6) and the phase space of

particle motion starts to curl at the edges (see figure 7.10 D). This effect becomes more
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Figure 7.10: Effect of multiple squeezing pulses on the phase space of par-
ticle motion. The blue dashed lines shows the distance from the centre of the trap
where linear spring approximation starts to break down. The data shown is for a 62±2
nm diameter particle trapped at 2×10−2 mbar. The phase spaces are shown for a time
tafter = 70 µs after the applied pulses have finished. A) N=0 The particle’s phase
space in a thermal state is circular in shape. B) N=1 Squeezing of the particle motion
is observed. C) N=2 The second pulse further squeezes the phase space distribution.
D) N=3 Nonlinear effects start to appear as the particle’s motion is squeezed into the
nonlinear region of the optical trap. E) N=4 The effect of squeezing is increased and
the nonlinear effects become more apparent. F) N=5 Both the effects of squeezing

and nonlinear affects are increased further.

pronounced as the number of applied pulses increases, meaning the particle is squeezed

into the greater extremes of the optical trap (see figure 7.10 D-F). The application of the

6th pulse to the levitated particle resulted in it being lost from the trap. The current

working theory for the 6th pulse, resulting in a particle becoming lost from the trap is

that, during the duration of the 6 pulses being applied to the system, the laser power

is not sufficient for the particle to remain trapped. This theory however, needs further

testing.

7.6.4 Nonlinearities in particle motion

As discussed in section 2.3.6, at large displacements the optical potential becomes anhar-

monic as the linear spring approximation breaks down. Therefore, at large oscillations

the particle can be considered to be a Duffing oscillator and the optical potential can

now be considered to feature a Duffing nonlinearity. For the Gaussian field distribution

used in these experiments, the nonlinear coefficients in the z spatial degree of freedom

is given by [62]
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ξ = −2/W 2
z , (7.28)

where Wz is the beam waist in the z spatial degree of freedom. It should be noted that

similar equations apply to the x and y spatial degree of freedom. For small displace-

ments |z| << |ξ−1/2
z |, the nonlinearity is negligible and the three motional degrees of

freedom decouple. In the situation where |z| >> |ξ−1/2
z | the linear spring approxima-

tion (described in section 2.3.6) is no longer valid the gradient force (equation 2.19), no

longer accurately describes the experimental system. In this situation the gradient force

is more accurately described by the modified equation

FDuff
grad = −kz

(
1 +

∑
ξzz

2

)
z (7.29)

The equation of motion can thus be written as

z̈ + ωzQ
−1
z ż + ωz

(
1 +

∑
ξzz

2

)
z = Fth/m (7.30)

To fully understand the spiral-like phase spaces that occur after multiple squeezing

pulses, the additional terms that arise in the equation of motion due to nonlinear nature

of the trap at its extremities will need to be modelled. This currently remains work for

the future.

7.6.5 Evolution of the phase space after the squeezing pulses

After the squeezing pulse, the phase space rotates and slowly decays back into its original

thermal state. The decay that occurs after 5 consecutive squeezing pulses is shown in

figure 7.11. It can be seen that the outermost edges of the phase space start to resemble

a spiral galaxy. This is because the outer most part of the phase space rotates slower

than the centre of the phase space and the outermost edges start to wrap around the

centre. This wrapping effect appears to be similar to whorls which are not associated

with classical stochasticity and occur in time independent anharmonic oscillators [209].

7.6.6 Squeezing parameter vs number of squeezing pulses

The ultimate characterization of the effectiveness of the squeezing pulses applied to the

system is given by the squeezing parameter. For each of the phase spaces in figure 7.10,
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Figure 7.11: Decay of the squeezed state created by the application of 5
squeezing pulses. The blue dashed lines shows the distance from the centre of the
trap where the linear spring approximation starts to break down. The data shown is
for a 62 ± 2 nm diameter particle trapped at 2 × 10−2 mbar. A) tafter = 46 µs Due
to the limitations in the data analysis methods used to analyze the system the state in
terms of the phase space can not be measured before this point. B) tafter = 206 µs As
the squeezed state decays the phase space starts to wrap around itself. C) tafter = 446
µs The phase space spirals around itself. D) tafter = 646 µs The phase space starts
to broaden as the squeezing decays, E) tafter = 946 µs The squeezed state becomes
more circular while still retaining some signature of squeezing. F) tafter = 1946 µs
The effect of squeezing in the system is gone and the system decays into a thermal state
heated by the phase noise in the system. This heated state decays back into a thermal

state at 300K before the next pulse is applied.

the squeezing factor is evaluated and plotted as a function of a number of pulses in figure

7.12. It is expected that with each successive pulse applied to the system, it will squeeze

the particle by,

λN = Nλ1 (7.31)

Where λN is the squeezing parameter after N pulses and λ1 is the squeezing parameter

for a single pulse. In figure 7.12 it can be seen that this relationship is not observed

exactly as expected. While the squeezing factor does increase with each successive pulse,

the increment is reduced slightly each time. It is believed that the this may be explained

by considering the decay in time of the squeezed state. Between the time in which the

final pulse is applied and the first snapshot of the phase space that can be taken (see

section 7.4.1), the phase space will have decayed from its original squeezed state by some

amount. This means that, if the phase space changes significantly during this time, the

true value of the squeezing can no longer be measured. The further from the centre
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Figure 7.12: The squeezing parameter as a function of pulse number. The
dashed line is the expected λ calculated using equation 7.31. The data shown is for a

62± 2 nm diameter particle trapped at 2× 10−2 mbar.

of the trap, the nonlinear effects are expected to have a greater effect on the particles

motion, explaining why this effect would be more pronounced in a shorter period of

time for the application of a greater number of pulses. Other effects which may play

a role includes increasing amount of phase space noise and the non-ideal pulse shapes,

which may reduce the effectiveness of the squeezing pulses implemented. The maximum

amount of squeezing measured after the application of 5 pulses, is characterised by the

squeezing factor as λ = 9.4± 0.1 dB.

7.7 Squeezing of a cooled levitated nanoparticle

Parametric feedback cooling of the particle’s centre of mass temperature (demonstrated

in chapter 6), results in a suppression of both phase space quadrants, therefore, decreas-

ing the particle’s average position and momentum. The amount in which the position

and momentum quadratures can be reduced is limited by noise in the system. In con-

trast, squeezing suppresses the distribution of states in one quadrature at the expense

of the other. Therefore, squeezing provides a potential method in which to increase the

amplitude suppression, achieved by parametric feedback cooling.
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Figure 7.13: Optical setup for squeezing a cooled optically levitated
nanoparticle. A 1550 nm laser light is directed through an AOM, before being am-
plified by an EDFA. The AOM modulates the laser light according to the parametric
feedback signal and a signal from an FPGA, which generates squeezing pulses at regular
intervals. The light from the AOM is then split into two beams, one used to trigger the
oscilloscope and the other directed into the paraboloidal mirror, at the focus of which
is a trapped silica nanosphere. The Rayleigh scatter from the trapped particle is col-
lected and directed onto a single photodiode and the particle’s motion within the trap
recorded. Once detected, the modulation of the light caused by the particle motion is
separated via the use of three lock-in amplifiers. The feedback signal is then generated

and added to the squeezing pulse, before being fed into the AOM.

7.7.1 Experimental setup

To implement squeezing pulses to a cooled nanoparticle, the parametric feedback loop

described in section 6.2 and the squeezing apparatus from section 7.3 were implemented

in a single setup (shown in figure 7.13). Both systems operate independently, generating

an electrical signal each; these signals are added together using a built in feature of the

ZI HF2LI Lock-in Amplifier. The same AOM is used to modulate the light, for both

the feedback cooling and squeezing pulses.

7.7.2 Effect of parametric feedback cooling on the phase space of par-

ticle motion

Parametric feedback cooling, when activated in the optical trap, has the effect of cooling

the particle motion; that is to say, reducing the amplitude of particle motion and hence

its energy. As the centre of mass energy is reduced, both the maximum amplitude and

velocity of the particle are reduced proportionately and the particle motion remains

in a thermal state. The effect on the phase space of particle motion for a 60 ± 3 nm
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Figure 7.14: Effect of parametric feedback cooling on the phase space of
particle motion. The data shown is for a 60 ± 3 nm silica nanoparticle at 5 × 10−2

mbar. A) Tz = 300 K The phase space of an uncooled particle. B) Tz = 142 K It
can be seen that as the particle is cooled the phase space reduces in size. C) Tz = 6
K The phase space continues to decrease in equal proportion in the momentum and

positional dimensions, as the amount of cooling is increased.

diameter silica nanoparticle can be seen in figure 7.14. For more details on the effect

parametric feedback cooling has on the motion of the particle more detail has been

provided previously in chapter 6.

7.7.3 Effect of parametric feedback cooling on the decay rate of λ

To see how parametric feedback effects the the squeezed states rate of decay, the mod-

ulation depth and hence the strength of parametric feedback cooling was varied, while

keeping the squeezing pulse constant, and the squeezing parameter measured. Figure

7.15 A shows the values of squeezing obtained at time 46 µs after the pulse for a variety

of modulation depths. Figure 7.15 B, shows the corresponding centre of mass temper-

ature for each squeezing factor measured4. It can be seen that as the strength of the

parametric feedback cooling is increased, the measured value of the squeezing factor at

time 46 µs after the pulse is reduced. The feedback force acts in such a way as to reduce

the energy of the levitated particle and hence bring the particle back into a thermal

state. Increasing the strength of parametric feedback cooling reduces the decay time of

the squeezed state, resulting in the measured squeezing for a particular pulse appearing

reduced in effectiveness. To measure the true squeezing factor achieved from a squeezing

pulse the particle motion would have to be measured immediately as the pulse finishes.

The ability to do this is not currently built into the experimental system due to data

analysis limitations (see section 7.4.1).

4It is worth noting that parametric feedback is on both during and after the pulse.
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Figure 7.15: The effect of parametric feedback cooling on the measured λ.
The data shown is taken at a time tafter = 46 µs after the application of a single
squeezing pulse to an optically levitated 60 ± 3 nm silica nanoparticle at 5 × 10−2

mbar. A) The effect of modulation depth on the measured λ. It can be seen
that as the modulation depth is increased, the measured value of λ decreases, before
flattening out. Similar to figure 6.9 B) The measured λ for a squeezed particle at
different temperatures. The measured squeezing factor decreases with decreasing

temperature.

7.7.4 Application of multiple pulses to a parametrically cooled levi-

tated particle

The effect of increasing the number of squeezing pulses on a nanoparticle was investigated

on a 64± 2 nm diameter particle. The pulses applied to the particle each had ω1/ω2 =

1.9±0.2. The results can be seen in figure 7.16. It can be seen that upon the application

of a second pulse (See figure 7.16 C), the phase space becomes more oval as expected,

from the combined effect of two squeezing pulses. However, upon application of the

3rd pulse, the phase space distribution starts to extend into the nonlinear region of the

trap (see section 2.3.6). The phase space of particle motion starts to curl at the edges

(see figure 7.16 D). As the number of pulses applied to the system increases, the curling

effect becomes more pronounced, until the phase space has fully curled back on itself

(See 7.16 D-F). The application of the 6th pulse to the levitated particle resulted in it

being lost from the trap. The current working theory for the 6th pulse resulting in a

particle becoming lost from the trap is, that during the duration of the 6 pulses being

applied to the system, the laser power is not sufficient for the particle to remain trapped.

This theory however, needs further testing, similarly to the uncooled case.
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Figure 7.16: The effect on the phase space of a parametrically feedback
cooled levitated particle, after applying different numbers of squeezing
pulses. The blue dashed lines show the distance from the centre of the trap, where
the linear spring approximation starts to break down. The data shown is for a 64 ± 2
nm diameter particle trapped at 3 × 10−2 mbar, parametrically cooled in all 3 axes
with Tz = 114 K in the dimension of interest. The phase spaces are shown for a time
tafter = 70 µs after the applied pulses have finished. A) N=0 The phase space of the
parametrically cooled particle in a thermal state. B) N=1 C) N=2 D) N=3 The
particles phase space starts to curl back on itself. E) N=4 The phase space starts to
resemble a figure of eight. F) N=5 The phase space wraps back onto itself resembling

a figure of eight.

7.7.5 Evolution of the phase space after the application of squeezing

pulses to a parametrically cooled levitated particle

The phase space of a particle after 5 squeezing pulses, at various times after the pulse,

is shown in figure 7.17. It can be seen that the phase space decays differently to the

equivalent number of pulses for an uncooled system 7.11 due to the difference in the

initial phase space after squeezing. No curls develop as the phase space rotates, but

instead, the outer region of the phase space becomes circular, while the central part still

resembles that of a squeezed state.

7.7.6 Squeezing parameter vs number of squeezing pulses applied to a

parametrically cooled particle

In figure 7.18, it can be seen that the relationship in equation 7.31 is not observed exactly

as expected. While the squeezing factor does increase with each successive pulse, the

increment is reduced slightly each time and at a greater rate than that observed in figure

7.12, for the uncooled case. There are number of possible reasons why this may be the
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Figure 7.17: Decay of the squeezed state after the application of 5 squeezing
pulses to a parametrically cooled levitated nanoparticle. The blue dashed lines
shows the distance from the centre of the trap where the linear spring approximation
starts to break down. The data shown is for a 64± 2 nm diameter particle trapped at
3 × 10−2 mbar, parametrically cooled in all 3 axes with Tz = 114 K in the dimension
of interest. A) tafter = 46 µs The initial phase space measured resembles that of a
figure of 8. B) tafter = 206 µs As the system rotates the phase space becomes more
spherical and the size of the holes in the phase space decreases. C) tafter = 446 µs
The holes in the phase space disappear and the distribution at the centre of the phase
space still shows some signs of squeezing. D) tafter = 646 µs The phase space begins
to resemble that of a thermal state. E) tafter = 946 µs The system resembles that
of a heated thermal state. F) tafter = 1946 µs The phase space starts to decrease in

extent, towards that of its original state.

case. Firstly, due to the methods of data analysis close to the time of the pulse, edge

effects come into play due to the filtering of the data and the phase space cannot be

calculated until roughly 46 µs after the pulses have ended. In this time the phase space

will have had time to evolve and in the cases of high pulse numbers nonlinear effects

have developed, distorting the phase space from its expected phase space immediately

after the pulse. The effect of parametric cooling seems to amplify this effect. In addition

to this, the phase noise and non-ideal pulse shapes will reduce the effectiveness of the

squeezing pulses implemented. The maximum amount of squeezing measured after the

application of 5 pulses is characterized by the squeezing factor as λ = 8.4± 0.1 dB.

7.7.7 Possibility of generating quantum states

To generate a quantum state, the particle motion needs to be squeezed into or below

its ground state. We can write an expression to calculate the strength of the squeezing

required, to squeeze the motion of the particle equal to that of its ground state.
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Figure 7.18: The squeezing parameter as a function of pulse number for a
cooled nanoparticle. The dashed line is the expected λ calculated using equation
7.31. The data shown is for a 64± 2 nm diameter particle trapped at 2× 10−2 mbar.

λground = 10log10

(
∆z

∆zground

)
(7.32)

where ∆z =
√
kbTz/mω2

z and ∆zground =
√
~/2mωz, allowing us to write,

λground = 10log10

(√
kbTz
~ωz

)
(7.33)

This equation is plotted in figure 7.19 for a range of temperatures. It can be seen that for

a nanoparticle with a temperature Tz = 5 mK, a squeezing factor of λground = 15.1 dB

would be needed to squeeze one quadrature of the particles phase space into a quantum

state.

The measurement scheme implemented here relies on a continuous monitoring of the

particles position. At first this might appear to be undesirable, when considering the

prospect of approaching the quantum regime, due to the well known disturbance in-

duced by the quantum measurement process. However, it has been recently shown that,

if correctly accounted for, continuous monitoring may in fact improve the achievable

mechanical squeezing [24].
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Figure 7.19: The squeezing parameter required to squeeze one of the parti-
cles phase space quadratures into a quantum state as a function of temper-
ature. The solid line is equation 7.33 plotted for a particle oscillating at ωz = 2π×100
kHz. The dashed line shows the squeezing factor needed (λground = 15.1 dB) to squeeze
the motion of a nanoparticle, with a centre of mass temperature Tz = 5 mK, such that

one of its quadratures is in the ground state.

7.8 Conclusion

In conclusion, a quadrature squeezing method has been demonstrated on optically

levitated nanoparticles. The pulsed squeezing scheme implemented operates via non-

adiabatic shifts in the trap frequency. The squeezing pulses implemented consist of a

rapid drop in the trap frequency, followed by brief period in time where the system is

allowed to evolve, before the trapping frequency is rapidly brought up to its original

value.

Initial investigations were carried out using a single pulse. It was found that the greatest

amount of squeezing was achieved when the duration of pulse was at multiples of a

quarter of the trap period (2π/ω2). The smallest amount of squeezing occurred at

multiples of half the trap period during the pulse (2π/ω2). The amount of squeezing

was characterized and the maximum value was found to be λ = 3.2± 0.2 dB.

To further increase the amount of squeezing applied to the levitated nanoparticle, a

multiple pulse scheme was implemented. The effect of varying the time between pulses

was investigated and the optimal time was found to be at multiples of a quarter of the
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trap period (2π/ω1). The minimum amount of squeezing occured at multiples of half the

trap period during the pulse (2π/ω1). The amount of squeezing applied to the system

was also characterized after application of multiple pulses and it was found that after 5

pulses a squeezing factor of λ = 9.4± 0.1 dB was achieved.

The multiple pulse scheme was then applied to parametrically feedback cooled nanopar-

ticles. The effect of the phase space and decay of the phase space after the application

of squeezing pulses was characterized. The amount of squeezing applied to the system

was also characterized after application of multiple pulses and it was found that after 5

pulses a squeezing factor of λ = 8.4± 0.1 dB was achieved.

The squeezing demonstrated here is classical in nature, however it may be possible to pre-

pare an optically levitated nanoparticle in a quantum state. To create a quantum state

in the experimental system described in this chapter, an optically levitated nanoparticle

would need to be cooled to the lowest achievable temperature, and multiple squeezing

pulses applied until one of the quadratures has been sufficiently suppressed. To achieve

this for a nanopartilce at 5 mK, a squeezing factor of λground = 15.1 dB would be needed.

The techniques demonstrated in this chapter could be used for many applications, in-

cluding enhanced sensing and metrology based on levitated optomechanics, such as for

force sensing applications [210] and non-equilibrium dynamics studies [100]. It has even

been suggested that by using a squeezed particle motion in a nano heat engine, it may

be possible to beat the Carnot limit [211]. Finally, as discussed in this chapter it may be

possible to achieve quantum squeezing by pre-cooling the motional state [13, 100, 119].

Either by using parametric feedback cooling as demonstrated in this thesis (see chapter

6) and by others [27, 99], or by using alternative methods such as quantum measurement

techniques [207, 212], which have been successfully applied to membrane and cantilever

optomechanical devices [213, 214].



Chapter 8

Conclusion

In brief, the work undertaken during my doctoral research project involved the design

and creation of a novel setup, in which the optical levitation of single nanoparticles could

be achieved. The properties of each particle levitated within the trap were calculated

from experimental data, and the setup’s sensitivity to nanoparticle motion was deter-

mined. The effects of varying the trapping laser intensity, as well as the pressure in

the vacuum chamber, on the internal temperature of a levitated particle was measured.

Parametric feedback cooling and squeezing pulses were used, both in isolation and in

conjunction, in order to manipulate the centre of mass motion of the optically levitated

nanoparticles. This chapter will provide a summary of the key experimental results and

will also discuss the potential applications of the techniques developed. In addition,

possible improvements to the experimental systems developed will be suggested.

8.1 Experimental methods and setup for optical trapping

of nanoparticles

The experimental set up described in this thesis was formed using a paraboloidal mirror

(NA∼ 0.995) to create a diffraction limited gradient force trap for nanoparticles, the

movement of which was detected using a single photodiode. The advantages of using

a paraboloidal mirror over a lens based system include achromatic focusing, alongside

high numerical apertures. The particular paraboloidal mirrors used in this set up had

an uncoated aluminium body, a further benefit which resulted in ultra high vacuum

compatibility. The detection system was aligned using a Poisson spot and the inherent

homodyne detection system was produced by the interference of Rayleigh scatter from

the particle and the diverging focused beam. The best signal to noise ratio was found

to occur when the two fields were of equal magnitude.

129
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8.1.1 Future outlook

Increasing the versatility of what particles can be loaded into the trap, both in terms of

their material and shape, as well as the loading pressure at which they can be transferred

into the trap, will allow for future experiments currently not possible. Additionally, as

the optical trap is the basis of all the experiments outlined in this thesis, improving it

will improve the overall measurement sensitivity as well as the quality of the trap.

Improved nanoparticle source: One of the underlying experimental issues concerns

how particles should be fed into the trap. Despite the nebuliser providing a workable

solution, there is still much room for improvement. Several possible options exist to

improve upon the nebuliser method, including:

• Nitrogen immersed nebulizer: One of the downsides of the nebuliser used in

the current system is that particles sprayed into the vacuum chamber come into

contact with oxygen and, dependent on material, can become oxidised. For the

silica particles which were used in this experiment, this was not an issue. However,

for particles such as nanodiamonds and carbon nanotubes, it could be. To counter

this, a technique was developed, whereby the nebuliser is placed inside a separate

chamber, which is connected to the main chamber, but which can be sealed off

using a gate valve. This chamber, along with the main vacuum chamber, is back-

filled with nitrogen gas in order to prevent the nanoparticle from coming into

contact with oxygen. This system, however, is limited to near atmospheric loading

pressures.

• Hollow core optical fibre feed through: A novel method has recently been

demonstrated, where a standing wave optical trap is used to transport a single

nanoparticle through a hollow core fibre between two chambers, one at low pressure

and the other at high pressure [122]. Such a transport system could be adapted

for our paraboloidal mirror geometry, to efficiently feed nanoparticles into the trap

at a variety of pressures.

• Particle juggling: Finally, for applications in which having a single particle

would be beneficial, such as nanoparticle matter-wave interferometry [44], it may

be possible to recycle the same particle over and over again. This would reduce

the need to transfer multiple particles into a high vacuum environment. To recycle

the particle, it would need to be ejected from the optical trap, allowed to undergo

a parabolic trajectory, before finally being caught in the same optical trap. This

could potentially be achieved by turning off the laser light used to create the optical

trap when the particle has the correct velocity, engineered by a combination of

parametric feedback and squeezing pulses.
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Improving the optical trap: The quality of the optical trap was of paramount im-

portance in ensuring the accuracy of the aforementioned experiments. The quality of

an optical trap can be improved by generating a tighter, more uniform laser focus. As

discussed in section 3.5, the experimental setup described here used a Poisson spot in

order to align the detection arm of the experimental system. However, when conducting

the experiment itself, an iris was used in order to remove the Poisson spot, improving

the signal to noise ratio. It was noticed however, that the system had a slight asym-

metric geometry, which is now believed to have been due to the iris, which introduces

artifacts in the beam, due to misalignment that arises over time. It would be possible

to resolve these issues by removing the Poisson spot via another means, hence removing

the need for the iris. For example, the Poisson spot could be removed by scratching

the aluminium surface around the mirror, to create a rough surface. It should be noted

however that whilst useful, the detection arm of the experiment can still be aligned

without the Possion spot.

8.2 Optomechanics of levitated particles

Within this experimental setup, nanoparticles ranging from 18 nm to 312 nm in diameter

were trapped and several of their properties measured. These included the mass, radius,

oscillation amplitude (via the use of a volts-to-meter conversion factor) and the damping

experienced at a given pressure. This was done using two methods. The first, widely

established, method required fitting a power spectral density, derived using the kinetic

theory of gases, to the motion of the particle. The second, novel method, developed

by the author and James Bateman, involved scanning the wavelength of the trapping

laser. Using this method, it was possible to determine the mass of a levitated particle

without assuming the kinetic model and material density. From the wavelength scan,

the sensitivity of the experimental system was measured to be 200 fm/
√
Hz.

The ability to control the trap frequencies of all three motional degrees of freedom,

through varying the power of the trapping laser, was demonstrated. The ability to

independently control and separate the transverse trapping frequencies from one another,

as well as from the z axis, was also shown to be possible, using elliptically polarized light.

The effect of changing the pressure inside the chamber in which a levitated nanoparticle

is trapped is also explored. Trapping of nanoparticles at pressures as low as 10−5 mbar,

without any active feedback, was achieved. The different frequency components found

in the PSD of the signal were shown and their origins explained.
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8.2.1 Future outlook

Increasing system sensitivity: A simple suggestion to improve the signal-to-noise

ratio of the system would be to increase the percentage of photons, scattered by the

particle, that reach the detector. The paraboloidal mirror has an NA of ∼ 0.995 and

therefore collects roughly 50% of the scattered photons. The percentage of photons

collected could be increased by simply increasing the NA of the paraboloidal mirror.

Another way of doing this would be to use a more reflective material, at λ = 1550

nm, for the reflective optics in the experimental system. Using gold, for example, rather

than aluminium, would mean that a larger percentage of the photons would be reflected,

rather than absorbed.

Mass measurement of nonspherical particles: The kinetic model used to describe

the motion of nonspherical particles in an optical trap is significantly more complicated

than that used for spherical particles, and assumptions about the shape of the nanopar-

ticle are needed [112, 131, 132]. By using the method outlined in section 4.5, knowledge

of the nanoparticle shape is not required, allowing for a measurement of the nanoparticle

mass, independent of the kinetic model, to be performed.

8.3 Nanoscale temperature measurements using black body

like radiation from a levitated nanoparticle

To determine the internal temperature of a levitated particle, the spectra of blackbody

radiation emitted from the particle was measured and the Planck equation used to

determine its temperature. The effect of pressure within the vacuum chamber was

investigated by varying the pressure from 1000 mbar to 0.04 mbar. This resulted in

an increase of TBB, from 388 K to 480 K, demonstrating that the temperature of the

nanoparticle increases with decreasing pressure. Additionally, the effect of the trapping

laser intensity on particle temperature was investigated by varying the intensity from

0.21 TW/m2 to 0.4 TW/m2, which resulted in an increase of TBB, from 367 K to 463 K.

This shows that, even though the absorption of silica is low at 1550 nm, the temperature

of the levitated nanoparticle can be raised by increasing the laser intensity. This is owing

to the poor heat transfer to the surrounding gas at low pressures.

8.3.1 Future outlook

Studies of the emitted blackbody radiation from levitated nanoparticles open up many

new avenues for experimental investigations within optical traps. However, before these
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studies can be realised, the levitated nanoparticle system discussed in chapter 3 needs

to be improved.

Improvements to the experimental system: In section 5.7, several improvements

are suggested to increase the range of temperatures at which an optically levitated

nanoparticle could be accurately measured at. This would be achieved by increasing

the range over which the peak of the blackbody spectra can be observed. These im-

provements would allow for measurements between room temperature (∼ 300 K) and

the melting point of silica Tmelt = 1873 K, while also increasing the collection efficiency

of emitted photons. Further improvements to the system could include the addition of

a second laser, with a wavelength more heavily absorbed by the trapped particle, allow-

ing for a greater amount of laser heating to be achieved. Alternatively, the same effect

could be achieved by using a more highly powered trapping laser, or one which emits a

wavelength at which the trapped particle has a higher absorption.

Studies of melting-point depression: It has been observed that as a material is

reduced in size, its melting point is also reduced. This phenomenon is referred to as

melting-point depression and is prominent in nanoscale materials, which melt at tem-

peratures significantly lower than bulk materials [215–219]. Combining the ability to

optically trap single nanoparticles and measure their radius, using the techniques from

chapter 4 holds great promise for studying this phenomenon in greater detail than pre-

viously possible.

Studies into particle loss mechanisms: It became apparent that as the pressure in

the vacuum chamber was reduced, nanoparticles were often lost from the trap. Mea-

suring the nanoparticle’s blackbody spectrum provides the tools with which to test by

which mechanism particles are lost by.

8.4 Parametric feedback cooling of a levitated particle’s

centre of mass motion

To control the centre of mass motion of levitated particles within the optical trap,

parametric feedback cooling was implemented by modulating the trap depth. Using

this technique, the effect different feedback parameters have on particle motion was

explored. The combination of optimizing the feedback parameters, alongside reducing

the pressure, resulted in temperatures of Tz = 14±1 mK, Tx = 5±1 mK and Ty = 7±1

mK. At 10−6 mbar, the Q factors of the system were measured to be on the order of

107. From these measurements it can be predicted that at a pressure of 10−9 mbar,

the observed Q factors would be on the order of 1012. These high Q factors hold great
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promise for ultrasensitive force detection, with the system presented here having a force

sensitivity on the order of 10−20 N/Hz. Theoretical considerations show that, with some

improvements to the experimental system, centre of mass temperatures and thus low

phonon numbers close to the quantum ground state could be achieved.

8.4.1 Future outlook

Cooling nanoparticle centre of mass motion to the ground state: As discussed

in section 6.8, the electrical noise floor currently present in the system needs to be

reduced, in order to achieve lower temperatures. It seems that the fundamental reason

for the high electrical noise floor is the ZI lock-in amplifier, which is used to generate

the feedback signal. By producing the feedback signal on an FPGA, which has a lower

noise floor, this limit can be overcome. Parallel to this, the use of thermoelectrically

cooled detectors would provide a far lower NEP, further helping to lower the noise floor

level. It is also anticipated that if the electrical noise floor limits can be overcome, at low

phonon numbers photon recoil will limit the temperature the system can reach. In order

to potentially reach the ground state and overcome the photon recoil limit, parametric

feedback cooling could be combined with other optical cooling methods, such as passive

dynamical back-action cooling [5], by adding an optical cavity into the system [101, 120].

8.5 Classical squeezing of nanoparticle motion of a levi-

tated nanoparticle

Another method to control the center of mass motion of a levitated nanoparticle used

squeezing pulses, to classically squeeze its mechanical motion. This quadrature squeezing

was achieved via non-adiabatic shifts of the nanoparticle’s trap frequency and was carried

out on a number of particles. The squeezing pulses implemented consisted of a rapid

reduction in the trap frequency, followed by brief period in time where the system was

allowed to evolve, before the trapping frequency was rapidly returned to its original

value.

Initial investigations were carried out using a single pulse. The maximum amount of

squeezing produced in the system occurred when the pulse duration was equal to multi-

ples of a quarter of the trap period (2π/ω2). The minimal amount of squeezing resulted

from pulses with a duration equal to multiples of half the trap period during the pulse

(2π/ω2). The maximum amount of squeezing from a single pulse was measured to be

λ = 3.2 ± 0.2 dB. To further increase the amount of squeezing applied to the levitated

nanoparticle, a multiple pulse scheme was implemented. The effect of varying the time
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between pulses was investigated and the optimal time was found to be at multiples of a

quarter of the trap period (2π/ω1). The time between pulses that produced a minimum

amount of squeezing was at multiples of half the trap period (2π/ω1). The amount of

squeezing applied to the system was also measured following the application of multiple

pulses and it was found that after 5 pulses a squeezing factor of λ = 9.4 ± 0.1 dB was

achieved. The multiple pulse scheme was then applied to parametrically feedback cooled

nanoparticles, and the affect that this had on the phase space, along with its rate of

decay, was observed. The amount of squeezing applied to the system was measured after

5 pulses, and a squeezing factor of λ = 8.4± 0.1 dB was achieved.

8.5.1 Future outlook

Squeezing theory/modeling of multiple pulse scheme: The work currently carried

out in sections 7.6 and 7.7 currently has no comprehensive theory to explain it. An

extension to the theory presented in sections 7.2 and 7.5.2, to include additional pulses

and the effect of parametric feedback cooling on the particle motion, is currently being

developed by Tommaso Tufarelli.

Improve quality of optical pulses: As discussed in section 7.3.2, the pulses generated

are not perfectly rectangular in shape as desired. This issue arises due to the fibre AOM

being upstream of the EDFA in the optical system, as the EDFA distorts the optical

pulse. An attempt to circumvent this was made, using a free space AOM after the EDFA.

However, when using the first order output of the AOM, the loss in laser intensity across

the AOM made trapping nanoparticles impractical. Attempts instead to use the zeroth

order output of the AOM meant the amount by which the laser could be modulated was

too small to produce significant squeezing. However, this issue can easily be over come

by using a more powerful EDFA (greater than 1W), thus making a free space AOM a

practical alternative.

Improve detection scheme: Currently, due to the rapid drop in intensity of the laser

beam during a squeezing pulse, the ability to detect the motion of the particle during,

and shortly after, the pulse is not possible. This problem is linked to the fact that

the trapping laser is also used to detect the particle motion. To overcome this issue, a

second, weaker laser beam could be used to separately monitor the motion of the particle

during and after the pulse. This would allow for λ to be determined immediately after

the optical pulse, ensuring a greater degree of accuracy.

Increase the amount of squeezing achieved: The first and most obvious route to

increasing λ, would be to increase the difference between ω1 and ω2, as can be seen

from equation 7.12. To increase the ratio ω1/ω2, the laser power used to create the
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trap needs to be increased (as ω0 ∝
√

laser power) and the light intensity modulated

by a greater amount. The other solution, as demonstrated in chapter 7, is by the use

of multiple pulses. It is believed the reason that the particle currently falls out of the

optical trap after 6 pulses, is because the gradient force is too small, for an extended

period during the squeezing pulses, to keep the particle confined in the trap. Potentially,

this limitation can be overcome by performing a larger number of shallower pulses.

Squeezing particle motion in 3D: Currently squeezing has only been demonstrated

in a single spatial degree of freedom. To achieve three dimensional squeezing, there

are several methods which could be explored. Since the transverse frequencies can be

controlled via the polarisation of the trapping laser light, modulating the polarization

of the laser light using an EOM could be used to squeeze the transverse frequencies,

independent of the z degree of freedom. Alternatively, modulation of the laser’s power

could be used in order to squeeze all three spatial degrees of freedom simultaneously.

This could be achieved by optimizing the pulse duration τ for all three axis, although a

draw back of this method would be that maximum squeezing would not be achieved for

any individual degree of freedom.

Squeezing nanoparticle motion into a quantum state:

To generate a quantum state using the squeezing method demonstrated here, both the

temperature of the nanoparticle needs to be reduced, and the amount of squeezing

applied to it increased. It is predicted that for a particle with a temperature of 5 mK, a

squeezing factor of λground = 15.1 dB would be required in order to squeeze the system

into a quantum state.



Appendix A

Derivation of scattering force

dominance condition in optical

traps.

As discussed in section 2.3.2, the scattering force will dominate the gradient force in

cases where particles are larger than a certain size. In this appendix, the condition for

this case will be derived.

A.1 Derivation of the condition for scattering force domi-

nance.

To derive the condition at which the radius of a nanoparticle will become large enough

for the scattering force to dominate the gradient force, we divide equation 2.24, by 2.19,

to get

Fscat

∇Fgrad
=

16π4r3

3λ4

I

∇I

(
m2 − 1

m2 + 2

)
(A.1)

When the ratio of Fscat/∇Fgrad is greater than 1, the scattering force will dominate

the gradient force and a particle will no longer be optically trapped. Instead, it will

be pushed out of the trapping region by the scattering force. This occurs when the

following condition is met
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1 <
16π4r3

3λ4

I

∇I

(
m2 − 1

m2 + 2

)
. (A.2)

Rearranging for r, we find the condition for which a particle will be too large to be

optically trapped is as follows

r > 3

√√√√ 3λ4

16π4

∇I
I

(
m2 + 2

m2 − 1

)
. (A.3)



Appendix B

Nanoparticle Preparation and

Storage

The importance of ensuring the correct preparation and storage of nanoparticles to be

used within optical trapping experiments was one of the earliest experimental realisations

to arise from the aforementioned studies. In this case, correct preparation and storage

can be taken to mean in such a way that the desired properties of the nanoparticle,

present in the commercial solutions used, are still in place when a particle enters the

optical trap. The experiments described in this thesis used a number of commercial

nanoparticle solutions from many different suppliers and manufacturers including micro-

particles GmbH, iolilec nano-materials and Corpuscular.

B.1 Storage of the nanoparticle solution

The shelf life of the commercial nanoparticle solutions was found to be roughly 3-4

months, from experience, after which the nanoparticles where found to aggregate. At this

point, obtaining the desired particles from the solution became harder. Once nanopar-

ticles aggregate, additional effects such as rotation and torsion can be observed. Effects

such as these were not studied as part of this work, owing to time constraints, as it was

not thought that doing so would further the original aims of the project. The shelf life

of the nanoparticle solution can be increased by wrapping Parafim ”M” laboratory film

(made by Bemis Flexible packaging) around the seal of the vial in order to prevent air

from entering, and then storing it in a fridge in order to reduce the particles’ energy and

slow down their rate of interaction, and hence aggregation.
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After loading the nanoparticle suspension into the nebuliser however, the particles were

observed to slowly aggregate at different rates, dependent on the type of nanoparticle

and concentration. Typically, the solution remained useful on the order of a week. It was

found that the aggregation of the particles in the nebuliser could be mostly reversed by

sonicating the particles (37 kHz, for 15 minutes, 300 K). However, better results where

obtained by simply replacing the solution with a fresh batch.

B.2 Preparation of the nanoparticle solution

The method for preparing the nanoparticles and loading them into the particle trap has

been described in section 3.3.2 and so will not be discussed further here. Instead, this

section will focus on some of the finer aspects and outline the protocol concerning pre-

venting contamination of the prepared nanoparticle solution. Preventing contamination

is a key requirement when working with nanoparticles in an optical trap. Contamination

can either result in irreversible aggregation, leading to particles too large to trap, or the

addition of impurities that may cause absorption of the trapping light and lead to in-

ternal heating of the particle. This internal heating could potentially cause the particle

to melt whilst in the optical trap, rendering it useless.

In order to prevent contamination from occurring, Microflex XCEED nitrate gloves

(powder free) were worn whilst preparing or handling any of the equipment used to

create the nanoparticle solutions. When diluting the shop brought solutions, volumes

were measured using Eppendorf research plus micro-pipettes. The tips were only used to

transfer a single measure of solution before being replaced. The nanoparticle solutions

were prepared inside micro centrifuge tubes 1.5 ml with cap, and during the sonication

a custom foam flotation device was used to keep the rim of the cap from coming into

contact with water in the sonicator. In the sonicator, deionised water was used and

changed regularly.

B.3 Cleaning the Nebuliser

Between the uses of nanoparticle solutions the nebuliser head seen in figure 3.2 was

cleaned in an attempt to remove any contaminant which may have built up. To clean the

nebuliser, the head was sonicated in a solution of isoproponal at 37kHz, for 15 minutes

at a temperature of 300 K. This was found to be sufficient to clean the nebuliser head,

and thus prevent aggregation of the nanoparticle solutions stored inside.



Appendix C

Error analysis

In this appendix, the methods used to calculate the error of the values extracted from

experimental data will be given. The majority of values calculated as part of this work

are found by fitting equations to experimental data; Variance in the errors observed in

the main text of this thesis will therefore depend on several factors including: the sample

frequency, the number of points sampled and the quality of the fit.

C.1 Error in particle radius αr

Equation 4.12 is used to calculate the radius of the particle and depends both on the

error in the fitting parameter C0 = Γ0, as shown in equation 4.15, and the accuracy of

the pressure sensor used. The equation for the error in r can be written as

αr = 0.619
9π√

2

ηaird
2

ρkBT0
r

√√√√(αPgas

Pgas

)2

+

(
αΓ0

Γ0

)2

. (C.1)

In the case of these experiments, a Oerlikon Leybold Vacuum, D-50968 Koln, Type:

ITR 90 No: 12094, F-No:1669/2012 pressure sensor was used, yielding an accuracy of

αPgas/Pgas = 0.15 in the pressure readings. This device introduced by far the largest

error when calculating the radius and mass of a particle. It therefore seems clear that

replacing this device with a more precise sensor would, in future, yield more accurate

results.
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C.2 Error in particle mass αm

The mass of a trapped particle was calculated from the particle’s radius, as measured

within the trap. The error can be written as,

αm = 4πρr2αrm. (C.2)

C.3 Error in internal temperature αTBB

The internal temperature was calculated by fitting equation 5.19 to experimental data,

as described in section 5.4, and using TBB = hc/kbBBB. The error for TBB can be

calculated from,

αTBB
=
hc

kb

αBBB

B2
BB

TBB. (C.3)

C.4 Error in Damping αΓ0

The method used to calculate the error in the damping depends on whether or not the

particle has been cooled by parametric feedback. In the case where the particle has not

been cooled by parametric feedback, the error in the damping is equal to the error in the

fit parameter C0, from equation 4.15. However, in the case where parametric feedback

is applied, both extracting the damping rate, and calculating the error in this value, is

more complex. This is shown by equation 6.11. The error in the case where the particle

has been cooled is given by

αΓ0 = Γ0

√√√√(αAfb

Afb

)2

+

(
αC0

C0

)2

+

(
αA0

A0

)2

. (C.4)

C.5 Error in centre of mass temperature αT

The centre of mass temperature of a levitated particle is calculated by fitting equation

4.15 to an uncooled particle and equation 6.8 to a cooled particle. The fit parameters

can then be used to calculate the temperature, using equation 6.10. As αCfb
= αΓ0+δΓ,

the error in temperature measurements can be calculated using
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αT = T0T

√√√√(αCfb

Cfb

)2

+

(
αΓ0

Γ0

)2

. (C.5)

C.6 Error in feedback rate αδΓ

The feedback rate is calculated using equation 6.11, and the error can be calculated as

follows

αδΓ =
√
α2
Cfb

+ α2
Γ0
. (C.6)

C.7 Error in frequency shift introduced by parametric feed-

back αδω

δω is calculated using equation 6.11 and the error in the value is given by

αδω =
√
α2
Bfb

+ α2
B0
. (C.7)

C.8 Error in Q factor αQ

The Q factor is calculated from equation 6.13 and the error can be calculated as follows

αQ = Q

√(
αω0

ω0

)2

+

(
αΓ0

Γ0

)2

, (C.8)

C.9 Error in force sensitivity limit αSth
FF

The force sensitivity limit SthFF is calculated from equation 6.14 and the error can be

calculated as follows

αSth
FF

= SthFF
√

4kbT0

√(
αω0

ω0

)2

+

(
αm
m

)2

+

(
αQ
Q

)2

, (C.9)
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C.10 Error in squeezing factor αλ

As discussed in section 7, equation 7.15 is used to calculate the squeezing factor. The

error in the squeezing factor is calculated using the error of the phase spaces positional

variance, both before squeezing α∆z1 and after α∆z2 . The equation for the error can be

written as

αλ =
10

ln(10)

∆z2

∆z1

√√√√(α∆z1

∆z1

)2

+

(
α∆z2

∆z2

)2

. (C.10)
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[10] Gigan S, Böhm HR, Paternostro M, Blaser F,Langer G, Hertzberg JB, Schwab KC,
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[166] Hänsch TW, Schawlow AL. Cooling of gases by laser radiation. Optics Commu-

nications. 1975 Jan 1;13(1):68–9.

[167] Wineland D, Dehmelt H. Proposed 1014 delta upsilon less than upsilon laser fluo-

rescence spectroscopy on t1+ mono-ion oscillator iii. In: Bulletin of the American

Physical Society. vol. 20; 1975. p. 637.

[168] Wineland DJ, Drullinger RE, Walls FL. Radiation-pressure cooling of bound

resonant absorbers. Physical Review Letters. 1978 Jun 19;40(25):1639.

[169] Wineland DJ, Dalibard J, Cohen-Tannoudji C. Sisyphus cooling of a bound atom.

Journal of the Optical Society of America B. 1992 Jan 1;9(1):32–42.

[170] Metcalf HJ, van der Straten P. Laser Cooling and Trapping. Graduate Texts in

Contemporary Physics. Springer New York; 2001.

[171] Stenholm S. The semiclassical theory of laser cooling. Reviews of Modern Physics.

1986 Jul 1;58:699–739.

[172] Cohadon PF, Heidmann A, Pinard M. Cooling of a Mirror by Radiation Pressure.

Physical Review Letters. 1999 Oct;83:3174–7.

[173] Thompson JD, Zwickl BM, Jayich AM, Marquardt F, Girvin SM, Harris JGE.

Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane.

Nature. 2008 Mar 6;452(7183):72–5.

[174] Anetsberger G, Arcizet O, Unterreithmeier QP, Rivière, R, Schliesser A, Weig EM,

Kotthaus JP, Kippenberg TJ. Near-field cavity optomechanics with nanomechan-

ical oscillators. Nature Physics. 2009 Dec 1;5(12):909–14.



Bibliography 164

[175] Eichenfield M, Camacho R, Chan J, Vahala KJ, Painter O. A picogram-

and nanometre-scale photonic-crystal optomechanical cavity. Nature. 2009 May

28;459(7246):550–5.

[176] Teufel JD, Donner T, Li D, Harlow JW, Allman MS, Cicak Katarina, Sirois AJ,

Whittaker JD, Lehnert KW, Simmonds RW. Sideband cooling of micromechanical

motion to the quantum ground state. Nature. 2011 Jul 21;475(7356):359–63.

[177] Chan J, Alegre TPM, Safavi-Naeini AH, Hill JT, Krause A, Gröblacher S, As-

pelmeyer M, Painter O. Laser cooling of a nanomechanical oscillator into its quan-

tum ground state. Nature. 2011 Oct 6;478(7367):89–92.

[178] Craighead HG. Nanoelectromechanical systems. Science. 2000 Nov

24;290(5496):1532–5.

[179] Ashkin A, Dziedzic JM. Feedback stabilization of optically levitated particles.

Applied Physics Letters. 1977 Feb 24;30(4):202–4.

[180] Rugar D, Grütter P. Mechanical parametric amplification and thermomechanical

noise squeezing. Physical Review Letters. 1991 Aug 5;67(6):699–702.

[181] Villanueva LG, Karabalin RB, Matheny MH, Kenig E, Cross MC, Roukes ML. A

nanoscale parametric feedback oscillator. arXiv preprint arXiv:12110298. 2012;.

[182] Poot M, Fong KY, Tang HX. Classical non-Gaussian state preparation through

squeezing in an optoelectromechanical resonator. Physical Review A. 2014 Dec

4;90(6):063809.

[183] Harlow JH. Electric Power Transformer Engineering, Second Edition. The Electric

Power Engineering Hbk, Second Edition. CRC Press; 2007.

[184] Reiserer A, Nölleke C, Ritter S, Rempe G. Ground-State Cooling of a Single

Atom at the Center of an Optical Cavity. Physical Review Letters. 2013 May

30;110(22):223003.

[185] Kaufman AM, Lester BJ, Regal CA. Cooling a Single Atom in an Optical Tweezer

to Its Quantum Ground State. Physical Review X. 2012 Nov 29;2(4):041014.

[186] Griffiths DJ. Introduction to Quantum Mechanics. Pearson international edition.

Pearson Prentice Hall; 2005.

[187] Liboff RL. Introductory Quantum Mechanics. Addison-Wesley; 2003.

[188] Fox M. Quantum Optics : An Introduction. Oxford Master Series in Physics.

OUP Oxford; 2006.



Bibliography 165

[189] Andrews DL. Photonics, Fundamentals of Photonics and Physics. 2015;1.

[190] Rugar D, Grütter P. Mechanical parametric amplification and thermomechanical

noise squeezing. Physical Review Letters. 1991 Aug 5;67(6):699.

[191] Szorkovszky A, Doherty AC, Harris GI, Bowen WP. Mechanical squeezing via

parametric amplification and weak measurement. Physical Review Letters. 2011

Nov 15;107(21):213603.

[192] Pontin A, Bonaldi M, Borrielli A, Cataliotti FS, Marino F, Prodi GA, Serra E,

Marin F. Squeezing a thermal mechanical oscillator by stabilized parametric effect

on the optical spring. Physical Review Letters. 2014 Jan 15;112(2):023601.

[193] Farace A, Giovannetti V. Enhancing quantum effects via periodic modulations in

optomechanical systems. Physical Review A. 2012 Jul 16;86(1):013820.

[194] Mari A, Eisert J. Gently modulating optomechanical systems. Physical Review

Letters. 2009 Nov 18;103(21):213603.

[195] Serafini A, Retzker A, Plenio MB. Generation of continuous variable squeezing and

entanglement of trapped ions in time-varying potentials. Quantum Information

Processing. 2009 Dec 1;8(6):619–30.

[196] Woolley MJ, Doherty AC, Milburn GJ, Schwab KC. Nanomechanical squeez-

ing with detection via a microwave cavity. Physical Review A. 2008 Dec

3;78(6):062303.

[197] Genoni MG, Bina M, Olivares S, De Chiara G, Paternostro M. Squeezing of

mechanical motion via qubit-assisted control. New Journal of Physics. 2015 Jan

20;17(1):013034.

[198] Wollman EE, Lei CU, Weinstein AJ, Suh J, Kronwald A, Marquardt F, Clerk AA,

Schwab KC. Quantum squeezing of motion in a mechanical resonator. Science.

2015 Aug 28;349(6251):952–5.
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