Manipulation of random telegraph signals in a silicon nanowire transistor with a triple gate

To cite this article: Fayong Liu *et al* 2018 *Nanotechnology* 29 475201

View the article online for updates and enhancements.
Manipulation of random telegraph signals in a silicon nanowire transistor with a triple gate

Fayong Liu, Kouta Ibukuro, Muhammad Khaled Husain, Zuo Li, Joseph Hillier, Isao Tomita, Yoshishige Tsuchiya, Harvey Rutt and Shinichi Saito

1 Sustainable Electronic Technologies, Electronics and Computer Science, Faculty of Physical Science and Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom
2 Smart Electronic Materials and Systems, Electronics and Computer Science, Faculty of Physical Science and Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom

E-mail: S.Saito@soton.ac.uk

Received 25 June 2018, revised 22 August 2018
Accepted for publication 7 September 2018
Published 25 September 2018

Abstract
Manipulation of carrier densities at the single electron level is inevitable in modern silicon based transistors to ensure reliable circuit operation with sufficiently low threshold-voltage variations. However, previous methods required statistical analysis to identify devices which exhibit random telegraph signals (RTSs), caused by trapping and de-trapping of a single electron. Here, we show that we can deliberately introduce an RTS in a silicon nanowire transistor, with its probability distribution perfectly controlled by a triple gate. A quantum dot (QD) was electrically defined in a silicon nanowire transistor with a triple gate, and an RTS was observed when two barrier gates were negatively biased to form potential barriers, while the entire nanowire channel was weakly inverted by the top gate. We could successfully derive the energy levels in the QD from the quantum mechanical probability distributions and the average lifetimes of RTSs. This study reveals that we can manipulate individual electrons electrically, even at room temperature, and paves the way to use a charged state for quantum technologies in the future.

Keywords: random telegraph signal, silicon nanowire, quantum dot, MOSFET

1. Introduction

A random telegraph signal (RTS) [1–5] is a phenomenon whereby a single carrier is randomly trapped and detrapped in a charge trap so that the output signal of electronic devices, such as metal-oxide-semiconductor field-effect-transistors (MOSFETs) or complementary metal-oxide-semiconductor (CMOS) image sensors, show undesirable discrete features over time. In MOSFETs, for example, drain current (I_d) shows two discrete levels at a given voltage condition [3–5]. These variations over time impose significant constrains on circuit designs, especially for static random access memory [6, 7] and flash memories [4, 8–12], since an RTS induces threshold-voltage (V_{th}) shifts and it directly affects bit error rates for the read/write cycles. Floating gate multilevel flash memory will be the first digital devices to be significantly affected by RTSs in the 45 nm node and beyond [13]. In CMOS circuits beyond the 14 nm technology node, variations in performance are considered to be dominated by RTSs over the random dopant fluctuation [14, 15]. RTSs are believed to be the dominant source of the noise over shot noise [16] up to a clock speed of 100 GHz [17].
Conventional, the main method of studying RTSs is to statistically investigate a large number of devices in order to find a device which shows typical RTS behaviours [6, 7, 11, 13–15, 18]. Analysing the microscopic mechanism of RTSs for trapping and de-trapping leads to the possibility of giving feedback on how to improve the fabrication process, so as to avoid RTSs [18]. Recently, we reported a systematic method to find RTSs without relying on statistical analysis [19]. By measuring single electron transistor characteristics at low temperatures, the bias conditions to observe RTSs in CMOS transistors [19] can be identified, which allows the nature of the trap to be investigated. However, the positions of traps are randomly distributed over the device, making it difficult to control the occupancy of the quantum energy level to show RTSs [19].

Here, we have fabricated a silicon (Si) nanowire transistor to investigate the nature of RTSs in more detail by manipulating the quantum level and the barrier height, which are highly tunable by the triple gates surrounding the nanowire. The device was measured at room temperature and an RTS was observed at certain bias conditions, where the two bottom gates formed potential barriers to create an artificial quantum dot (QD) at the centre of the device. By tuning the quantum level using the top gate (TG), we successfully controlled the occupancy and the lifetimes of the trapped single electron. This means that we can electrically control RTSs, which will be useful to understand the mechanism of single electron trapping and de-trapping to enhance the reliability of nano-electronic devices.

RTSs will also be important for quantum technology in the future [20–34], since the manipulation of a single electron will be beneficial for quantum information processing [35, 36] using charge and spin qubits [37–40]. For quantum metrologies, single electron pumps are thought to be candidates to realise a new definition of the Ampere based on fundamental physical constants such as elementary charge [20–34]. It has already been reported that an interface trap level could be used as a QD for a single electron pump to allow stable current operation [29, 33]. In order to guarantee the high precision required to realise the new definition of the unit, RTSs must be avoided and the mechanism for trapping and de-trapping must be well understood. Our analysis shows that there exists certain bias conditions to avoid RTSs, so that the optimisation of waveforms will improve the future performance of the single electron pumps [25].

2. Device fabrication

A Si nanowire was patterned by electron beam (E-beam) lithography on a silicon-on-insulator (SOI) wafer with 145 nm thick buried oxide (BOX) (figure 1). The SOI layer was originally 100 nm in thickness and through oxidation was reduced to be 24 nm. The width of the nanowire (W) was 30 nm (figure 1(b)). Anisotropic wet etching was employed to realise an atomically flat interface with Si (111) surfaces to avoid line edge roughness. A 17.6 nm thick thermal oxide (t_{ox}) was grown on top of the Si nanowire, resulting in the thickness of the SOI to be 14 nm. Then, an oxide window was opened to raise the source and drain regions (figures 1(a) and (b)) by depositing 100 nm thick polycrystalline-Si (poly-Si) layer using low-pressure-chemical- vapour-deposition. The poly-Si was heavily doped with phosphorus (P) using spin-on-dopant, which was activated at 950 °C by rapid-thermal annealing. The same poly-Si layer was also used to pattern the first gate (FG) to create the potential barriers in the Si nanowire (figure 1(d)). E-beam lithography and inductively-coupled-plasma etching were employed for the FG patterning (figure 1(c)). Then, the surface of the poly-Si FG was successively oxidised to form 9 nm thick thermal oxide, and the second poly-Si layer was deposited and doped to from the TG in the same way as to form the FG. The gate length of FG (L_{FG}) was 75 nm, and the gate lengths of TG (L_{TG}) were 125 nm. The passivation oxide layer was formed and an aluminium (Al) layer was used for the final metallisation. H_2 sintering was used to terminate the interface traps.

3. Characterisation

All measurements were carried out at room temperature using a Keysight B1500A and a Cascade M150 probe station. Our device has three gates (two FGs and one TG), leading to many biasing conditions to be explored when compared with a standard MOSFET. In order to focus on a limited parameter space, we applied the same voltage (V_{FG}) between the left and the right FGs (figure 1). Throughout our experiments, we also applied the same voltage between source and drain ($V_d = 50 \, mV$). The substrate and the source electrode were grounded, and the gate-leakage currents were always below 200 fA, which was below the detection limit in our measurement.

First, the current–voltage characteristics was measured by sweeping the TG voltage (V_{TG}) under a fixed applied V_{FG} and V_d (figure 2(a)). Sweeping the gate voltage is known to be useful as a fast ramped voltage characterisation method [18, 41] to capture the overall features to see RTSs. Standard transfer characteristics of I_d was observed from subthreshold to linear regions by increasing V_{FG}. The drain current was reduced upon decreasing V_{FG}, as expected, since such V_{FG} limits current flow by creating potential barriers (figure 2(a)). Moreover, we observed unstable I_d fluctuations (figure 2(b)), which corresponds to a shift of V_{th} (ΔV_{th}) of around 5 mV. This is consistent with ΔV_{th} estimated from single electron charging of the QD, given by $C_{DG} = \epsilon / \Delta V_{th}$, where ϵ is the elementary charge, $C_{DG} = \epsilon_0 \kappa_{Si} S / \Delta V_{th}$ is the capacitance of QD, ϵ_0 is dielectric constant of vacuum and $\kappa_{Si} = 3.9$ is the relative dielectric constant of the oxides and S is the area of the QD. S is estimated to be 65 nm in width and 125 nm in length. The width of the nanowire includes the top surface of the nanowire (30 nm wide) as well as its two sidewalls, each of which has 17.5 nm width. Using these values, ΔV_{th} is calculated as 10 mV, which is in a reasonable agreement with the measurement data considering the uncertainty associated with the physical dimension of the device and the electrical measurement. Also, positive charges in the poly-Si could
Figure 1. Our silicon nanowire transistor with a triple gate. (a) A birds-eye view of the device. TG is not shown. Oxide covering the nanowire is omitted to clarify the structure. (b) Device cross sectional view. (c) A SEM image of a similar device after FG patterning by ICP etching. The actual width of the nanowire is narrower than displayed, as the oxide covers the nanowire in this image. The width of the nanowire (W) is estimated to be 30 nm and the width of the FG (L_{FG}) is 75 nm with the spacing between two FGs (L_{TG}) being 125 nm. (d) Schematic of the energy diagram in the QD, which is discussed in Discussion section. (e) The effective circuit model of the nanowire FET system.

Figure 2. Current–voltage characteristic of the silicon nanowire transistor. (a) The transfer characteristic of TG with $V_{D} = 50$ mV and different V_{FG} values in log scale. (b) Close-up view of the area in the dotted circle in linear scale, with $V_{FG} = 0$ V. (c) The transfer characteristic of FG1 with $V_{D} = 50$ mV and $V_{TG} = V_{FG2} = 0$ mV. (d) The transfer characteristic of FG2 with $V_{D} = 50$ mV and $V_{TG} = V_{FG1} = 0$ mV.
screen the charge of a trapped electron, leading to the smaller effective charge and hence small ΔV_{th}. Therefore, we believe the observed noise is coming from single electron trapping and de-trapping in a QD, created by the triple gate. To confirm the symmetry of the two FGs, I_d-V_{FG1} and I_d-V_{FG2} characteristic were measured and shown in figures 2(c) and (d). Both of the transistors worked almost identically. Process variations such as misalignment in E-beam lithography and poor patterning may have degraded them or induced asymmetry between two FGS. However, the V_{th} did not shift significantly and the ON current were in the same order of magnitude. Therefore, we believe the system is symmetry and any asymmetry present in the system is negligible for FG to work as a barrier.

Next, we performed time-domain measurements. All parameters were measured with a time step (Δt) of 88 ms with constant $V_{FG} = 0$ V and V_{TG} (figure 3). We obtained RTSs at several V_{TG} values, from 0.15 to 0.4 V with a 0.05 V step, allowing the nature of ΔV_{th} to be identified as an RTS (figures 3(a)–(f)). Using this data, histograms of I_d were made, corresponding to the probability distribution as a function of I_d, $P = P(I_d) = |\psi_{QD}|^2$, where ψ_{QD} is the wavefunction [19] of the QD (figures 3(g)–(i)). At each bias condition (e.g., figure 3(c)), two peaks were clearly visible in the probability distributions (e.g., figure 3(i)), and we assigned high and low states for the peaks, corresponding to high and low I_d states. At $V_{TG} = 0.4$ V, the low state is dominant (figure 3(g)), while the high state becomes dominant as $V_{TG} = 0.15$ V (figure 3(d)), meaning that the distribution of the two current states is controlled by V_{TG}. At a higher voltage of $V_{TG} = 0.4$ V, the energy level of the QD should be well below the Fermi energy of source, E_s, meaning that the energy level must be predominantly occupied. Then, we expect positive ΔV_{th}, which results in the reduction of I_d under the constant V_{TG}, and therefore, the low state dominated. On the other hand, at lower voltage of $V_{TG} = 0.15$ V, the energy level of the QD is well above E_s, so that the QD cannot be occupied. From this, we expect no ΔV_{th}, so that the I_d is higher than the state with trapped electron in the QD (figure 3(f)). This argument is discussed in more detail in Discussion section. We confirmed the systematic trend of the change of the occupancy in the QD, controlled by V_{TG} (figure 3(m)). The occupancy of the high state and the low states are given by

$$n_{High} = \frac{1}{I_T} \int_{I_{d,m}}^\infty P(I_d) dI_d,$$

$$n_{Low} = \frac{1}{I_T} \int_{-\infty}^{I_{d,m}} P(I_d) dI_d,$$

where $I_{d,m}$ is the local minimum of the probability distribution function between the two peaks, which was accurately calculated by an average of the I_d values that give the maxima of the high state ($I_{d,h}$) and the low state ($I_{d,l}$) ($I_{d,m} = (I_{d,h} + I_{d,l})/2$), and $I_T = \int_{-\infty}^{\infty} P(I_d) dI_d$ is the normalising factor. In other words, we are observing the single electron states of the QD, through measuring I_d, and the state is highly tunable electrically.

Lastly, in order to investigate how the occupancy of QD depends on V_{FG}, V_{TG} is fixed to 50 mV and V_{FG} was swept from -1.6 to 0.4 V with a 0.2 V step. The result is shown in

Figure 3. Random telegraph signals of the silicon nanowire transistor controlled by the energy level of the QD, V_{TG}. (a)–(f) Results of time-domain measurement, under application of $V_{FG} = 0$ V and $V_{TG} = 0.40$ V (a) to 0.15 V (f) with a 50 mV step. x-axis is time (t) and y-axis is I_d in unit of nA. The total measurement time was 480 s and the first 100 s are shown. The sampling interval was 88 ms. (g)–(l) The probability distributions of the corresponding time domain characteristic, displaying the probability to find I_d to be at a certain value. In each graph, $I_{d,m}$ is defined as the local minimum of the distribution function. (m) The occupation of two current states, high and low. (n)–(p) Schematics of the energy diagram. (n) Corresponds to $V_{TG} = 0.35$ and 0.40 V, (o) is for $V_{TG} = 0.25$ and 0.30 V and (p) is for $V_{TG} = 0.15$ and 0.20 V.
figure 6(a) and it can be seen that at $V_{FG} = -1.6, -1.4, -1.2, -1.0 \text{V}$, an RTS with a long lifetime of around 20 s was observed (RTS1). However, at $V_{FG} = -0.8 \text{V}$, RTSs were not observed and at $V_{FG} = -0.6, -0.4, -0.2, 0 \text{V}$ another RTS with shorter lifetime appeared, which is similar to the one observed when V_{TG} was swept (RTS2). Figures 6(b)–(e) show the probability distributions at $V_{TG} = -1.4, -0.8, -0.4, 0.4 \text{V}$. At $V_{FG} = -1.4 \text{V}$ due to RTS1 the distribution has two peaks (figure 6(e)), and after V_{FG} was increased up to -0.8V (figure 6(d)), it shows only a single peak since no RTS was observed. However, the distribution shows two peaks again when V_{FG} was increased to -0.4V (figure 6(c)) due to RTS2, and disappeared at $V_{FG} = 0.4 \text{V}$. We can attribute this appearance and disappearance of multiple RTSs to the presence of multiple energy level in the QD.

The reason why we observed RTSs while V_{FG} was swept is considered to be a weak coupling of FG to the QD, although the capacitance between TG and the QD is the dominant capacitance in the equivalent circuit of our device. An equivalent circuit model of our system is shown in figure 1(e). Two FGs are modelled as transistors with coupling capacitances to the QD (C_{FG1} and C_{FG2}), and TG is simply modelled as a capacitance coupled to the dot (C_{QD}). The main role of TG is assumed to change the energy level in the QD, while FG is presumed to govern the potential profile. There should also be an accompanying coupling from TG to the potential profile and one from FG to the energy level in the QD. The strength of the capacitive coupling can be evaluated from the width of the voltage window to observe the transition from appearance of the RTS to disappearance of the RTS. In figure 3, the RTS starts to appear at $V_{FG} = 0.15 \text{V}$ and almost disappears at $V_{TG} = 0.40 \text{V}$, meaning that the voltage window to observe one energy level in the QD is 0.25 V. However, in figure 6(a), the RTS starts to appear at $V_{FG} = -0.4 \text{V}$ and almost disappears at $V_{FG} = 0.40 \text{V}$, meaning that the voltage window to observe one energy level in the QD is 0.8 V. This means that the coupling between FG and QD is weak compared to TG and QD. Therefore, it is safe to say that C_{QD} plays the dominant role in the circuit among the other capacitive components.

4. Discussion

Clearly, the occupancy of the energy level in the QD is well controlled by the application of TG. While n_{High} and n_{Low} gives a static picture of the single electron state in the QD (how likely one will find I_{d} to be in the high state or the low state in a given amount of time), the stability of each current state (how long one state can persist before transitioning to the other) is also important, because this can give a dynamic picture of the trapping and de-trapping process in the QD. Appropriate parameters to evaluate the stability are the average lifetimes of two current states (see figure 3(a))

$$\tau_{High} = \frac{T_{High}}{N_{High}},$$

where T_{High} is the total time for observing the high state in the total measurement time of T_{total} over the total number of sampling events of N_{total} is the total number of transitions observed from high to low (from low to high). T_{High} and T_{Low} are obtained by

$$T_{High} = n_{High}T_{total},$$

$$T_{Low} = n_{Low}T_{total}.\quad(4)$$

To extract N_{High} and N_{Low}, we need to make differential histograms, which display the difference in I_{d} values ($\Delta I_{d}(t) = I_{d}(t + \Delta t) - I_{d}(t)$) for a given time (t) over the measurement time interval of Δt. To focus on the transition between the high state and the low state only, any $|\Delta I_{d}(t)|$ that is more than $2(I_{d,h} - I_{d,l})$ is neglected in the following analysis.

Figure 4 shows an example of the differential histogram at $V_{FG} = 0 \text{V}$ and $V_{TG} = 0.3 \text{V}$. When the transition from the high state to the low state occurs, ΔI_{d} is negative. When the opposite transition happens, ΔI_{d} is positive. The histogram has three peaks; one main peak at $\Delta I_{d} = 0 \text{nA}$ shows no transition (named as Peak-o), one sub-peak at positive ΔI_{d} corresponds to the transition from the low to the high (Peak-n) and the other sub-peak at negative ΔI_{d} corresponds to the transition from the high to the low (Peak-p). The integration of these sub-peaks gives

$$N_{High} = \frac{N_{total}}{\Delta I_{d}} \int_{-\infty}^{\Delta I_{d,h}} P(\Delta I_{d})d\Delta I_{d},$$

$$N_{Low} = \frac{N_{total}}{\Delta I_{d}} \int_{\Delta I_{d,l}}^{\infty} P(\Delta I_{d})d\Delta I_{d}.\quad(7)$$

Figure 4. Histogram of differential current ΔI_{d} at $V_{TG} = 0.3 \text{V}$. Y-axis is ΔI_{d} in unit of nA, and x-axis is the probability to observe a certain ΔI_{d} value. N_{High} and N_{Low} are evaluated from the width of the voltage window to observe one energy level in the QD.
where $P(\Delta I_d)$ is the probability distribution of ΔI_d, $\Delta I_{d,n} = (I_{d,1} - I_{d,0})/2$ is the positive edge of Peak-n, $\Delta I_{d,p} = (I_{d,0} - I_{d,0})/2$ is the negative edge of Peak-p and $\Delta I = \int_{-\infty}^{\infty} P(\Delta I_d) d\Delta I_d$ is the normalising factor.

We show extracted τ_{High} and τ_{Low} against V_{TG} in figure 5. τ_{Low} corresponds to the lifetime of an electron trapped in the QD. τ_{Low} became larger as V_{TG} was increased (figure 5(a)), which is consistent with the physical picture that the electron is more likely to occupy the quantum level in the QD. On the contrary, τ_{High} corresponds to the time scale for the QD to capture an electron. τ_{High} decreased upon increasing V_{TG} (figure 5(a)), which shows that the quantum level was already occupied by an electron, and Pauli’s exclusion principle prevented another electron occupying it. In figure 5(b), the ratio of the lifetimes $\tau_{\text{High}}/\tau_{\text{Low}}$ is plotted against V_{TG} in log scale, which shows...
a linear dependence on V_{TG}. This suggests that V_{TG} does control the lifetimes of RTSs as well as the statistical properties of RTSs.

The ratio of the lifetimes can also be used to estimate the energy level with respect to Fermi energy of source $[42]$. According to Boltzmann distribution, the probability for an

Figure 7. Spectroscopy of the quantum dot by means of random telegraph signals. (a) Energy levels in the QD against V_{TG} with fixed $V_{FG} = 0$ V, calculated using equation (12). The dotted line is a linear fit of the measurement data, denoted by a filled circle. (b)–(d) The schematics of the energy levels in the QD. (e) Energy levels in the QD against V_{FG} with fixed $V_{TG} = 50$ mV. The filled circles and squares describe the experimental data for RTS 1 and RTS 2 respectively. The solid, dotted, and broken lines describe calculated energy levels for E_{0}^{h}, E_{1}^{h} and E_{0}^{l} respectively, by the effective mass approximation. (f) The schematic energy diagram in the QD.
electron to surpass the energy barrier, ΔE, is given by

$$ P \propto \exp \left(-\frac{\Delta E}{kT} \right). \tag{9} $$

Therefore, the probabilities for an electron to be trapped/detrapped in the QD are given as follows:

$$ \frac{\Delta t}{\tau_{\text{High}}} \propto \exp \left(-\frac{\Delta E - E_s}{kT} \right), \tag{10} $$

$$ \frac{\Delta t}{\tau_{\text{Low}}} \propto \exp \left(-\frac{\Delta E - E_s - (e - E_s)}{kT} \right), \tag{11} $$

where k is the Boltzmann constant, T is temperature of 300 K, $\Delta E - E_s$ is the energy barrier controlled by V_{FG} and $e - E_s$ is the energy level of the QD, both with respect to the Fermi energy of source, E_s. From these, we reach a formula to calculate the energy level in the QD:

$$ e - E_s = kT \ln \left(\frac{\tau_{\text{High}}}{\tau_{\text{Low}}} \right). \tag{12} $$

This equation means that, if the simple model stated above holds, the energy level of the QD can be evaluated from the ratio of the lifetimes of RTSs. In figure 7(a), $e - E_s$ against V_{FG} is plotted, showing the energy level at certain V_{FG} values. We set $E_s = 0$ meV for simplicity. As can be seen, the energy level linearly decreased as V_{FG} was increased.

Figures 7(b)–(d) show schematics of energy diagram along the nanowire when the energy level is well above, in line with and well below E_s, respectively. When the energy level is higher than E_s, the dot is rarely occupied (figure 7(b)), when the level is lower than E_s, the dot is predominantly occupied (figure 7(c)). When E_s and the level in the QD aligned (figure 7(d)), the RTS shows 50% low-50% high distribution. This implies that the RTS is most active when the energy level is aligned to E_s. Figure 7(a) is essentially the same figure as figure 5(b) with the only difference being the meaning of the y-axis. However, the linear dependence of $\ln(\tau_{\text{High}}/\tau_{\text{Low}})$ against V_{FG} in figure 5(b) is now clear; the energy level in the QD is linearly controlled by V_{FG}. Our discussion so far states that we also successfully controlled the trapping and de-trapping dynamics of a single electron to the QD by V_{FG} and the energy level is controlled linearly by TG [43, 44].

This discussion can naturally be extended to explain RTS1 and RTS2 in figure 6. RTS1 corresponds to the lowest energy level available in the QD, and it starts to be occupied and cause RTS1 (figures 6(e), (i)). After this ground state has been fully occupied, RTS1 disappears because no energy level is available for RTS (figures 6(d), (b)). When V_{FG} was decreased further, another energy level starts to appear and cause RTS2 (figures 6(c), (g)). After this energy level was completely occupied, no energy level is available and no RTS was observed (figures 6(b), (f)). RTS1 and RTS2 can be clearly distinguished by the different lifetimes, with RTS1 having a lifetime of more than 20 s while the other has a lifetime of less than 10 s.

Using this method, we can successfully calculate the energy separation between two energy levels that are responsible for RTS1 and RTS2 shown in figure 6(a). Since E_s is always used as the origin to measure the energy level in the QD, if there exists two different RTSs, we can estimate the energy level spacing between two levels that cause those RTSs. We employed the same analysis to the result shown in figure 6, and the energy levels against V_{FG} are shown in figure 7(c).

This energy splitting has been attributed to the quantum confinement along the direction perpendicular to the substrate [45, 46]. The quantum confinement energies in the inversion layers on the Si (100) surface are estimated as

$$ E_n^h = \frac{(n + 1)^2 h^2}{2 m_h} \left(\frac{\pi}{t_{\text{si}}} \right)^2 = E_0^h(n + 1)^2, \tag{13} $$

$$ E_n^l = \frac{(n + 1)^2 h^2}{2 m_l} \left(\frac{\pi}{t_{\text{si}}} \right)^2 = E_0^l(n + 1)^2, \tag{14} $$

where h is the Planck constant divided by 2π, $m_h = 0.980m_0$ and $m_l = 0.198m_0$ are the effective masses for heavy and light electrons in conduction band valleys with the mass of an electron in vacuum m_0, t_{si} is the effective thickness of the inversion layer [45–47] and $n \geq 0$ is an integer to describe the number of nodes in the envelop wavefunction along the depth. We found that the lowest energy level responsible for RTS 1 was E_0^h, and the next energy level responsible for RTS 2 was E_0^l. By assuming linear band bending, we fitted experimental data to obtain $t_{\text{si}} = 1.6 \text{ nm}$ for the energy separation of $E_1^h - E_0^h = 446 \text{ meV}$. The estimated t_{si} is in reasonable agreement with the previous study on quantum confinement [45, 46]. E_0^l was estimated to be 141 meV higher than E_0^l, meaning that the valley with the heavy electron mass was dominated as expected for the inversion layer on the Si (100) interface [45, 46].

The physical mechanism of a trapping and de-trapping of single electron in our device was successfully explained by thermal activation processes [18, 42, 48–50]. We did not observe Coulomb blockades at room temperature however, since the estimated charging energy of 5 meV, given by $E_C = e^2/2C_{\text{QD}}$, is lower than the thermal energy of 26 meV [51]. We can estimate the barrier height to be 150 meV from figures 7(a)–(c). At $V_{\text{FG}} = 0.15 \text{ V}$, the ground state was vaguely formed by TG inverting the channel (figure 7(b)). This means that the bottom of the potential profile is slightly lower than the height of the barrier. At $V_{\text{FG}} = 0.3 \text{ V}$, the ground state was in line with E_s, meaning that the bottom of the potential profile is lower than E_s.

5. Conclusion

In summary, we have investigated RTSs in a silicon nanowire transistor with a triple gate. We obtained the probability distribution functions by analysing drain current fluctuations in the time domain, and demonstrated that we can control the occupancy of the single electron energy level of the electrically defined QD. The transport mechanism of trapping and de-trapping was successfully explained by thermal activation. Furthermore, we showed that RTSs can be a useful spectroscopic technique to investigate the energy structure of a QD.
Our results show that we can control a single electron in a silicon nanowire even at room temperature by field effects. Single electron manipulation will also be important to establish the stable operation of single electron pumps targeting a new definition of the Ampere and it may also pave the way towards quantum computing using silicon based nano-electronics in the future.

Acknowledgments

This work is supported by EPSRC Manufacturing Fellowship (EP/M008975/1), Lloyds Register Foundation International Consortium of Nanotechnology, and the Joint Research Project e-SI-Amp (15SIB08). This work is also supported by the European Metrology Programme for Innovation and Research (EMPIR) co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme. The data from the paper can be obtained from the University of Southampton ePrint research repository: https://doi.org/10.5258/SOTON/D0555.

ORCID iDs

Kouta Ibukuro © https://orcid.org/0000-0002-6546-8873

References

[37] Xiao M, Martin I, Yablonovitch E and Jiang H 2004 Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor Nature 430 435
[40] Maurand R et al 2016 A cmos silicon spin qubit Nat. Commun. 7 13575