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Abstract

The Multi-Level Selection Genetic Algorithm (MLSGA) is shown to increase
the performance of a simple Genetic Algorithm. It is unique among evolu-
tionary algorithms as its sub-populations use separate selection and reproduc-
tion mechanisms to generate offspring sub-populations, called collectives in
this approach, to increase the selection pressure, and uses a split in the fitness
function to maintain the diversity of the search. Currently how these novel
mechanisms interact with different reproduction mechanisms, except for the
one originally tested at the individual level is not known. This paper there-
fore creates three different variants of MLSGA and explores their behaviour, to
see if the diversity and selection pressure benefits are retained with more com-
plex individual selection mechanisms. These hybrid methods are tested using
the CEC09 competition, as it is the widest current benchmark of bi-objective
problems, which is updated to reflect the current state-of-the-art. Guidance is
given on the new mechanisms that are required to link MLSGA with the differ-
ent individual level mechanisms and the hyperparameter tuning which results
in optimal performance. The results show that the hybrid approach increases
the performance of the proposed algorithms across all the problems except for
MOEA/D on unconstrained problems. This shows the generality of the mech-
anisms across a range of Genetic Algorithms, which leads to a performance
increase from the MLSGA collective level mechanism and split in the fitness
function. It is shown that the collective level mechanism changes the behaviour
from the methods selected at the individual level, promoting diversity first in-
stead of convergence, and focuses the search on different regions, making it a
particularly strong choice for problems with discontinuous Pareto fronts. This
results in the best general solver for the updated bi-objective CEC09 problem
sets.
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1. Multi-Level Selection Genetic Algorithm

Multi-level Selection Genetic Algorithm (MLSGA) is a genetic algorithm
incorporating advanced evolutionary concepts. It is inspired by Multi-Level
Selection Theory which is used to describe evolution, with these concepts orig-
inally being based on selection in ant colonies [1]. Multi-Level Selection The-
ory states that evolutionary selection can be considered at more than one level,
for example the probability of survival for a wolf is determined as dependent
on its own abilities but also that of its pack. Based on these ideas, MLSGA
introduces a collective level that groups individuals, which has similarities
to sub-populations in other algorithms. However, separate reproduction and
elimination mechanisms are introduced at the collective level, which provide
additional selection pressure, in contrast to typical sub-population approaches
that use reproduction mechanisms only at the individual level. Multi-level
selection theory defines two ways in which the fitness can be defined at the
collective level: MLS1, where the fitness of the collectives is simply the ag-
gregate of the individuals, and MLS2, where the collective fitness is based on
a separate, emergent, property rather than the summation of the fitnesses of
the individuals inside of it. MLS2 therefore has different reproduction mech-
anisms operating on different parts of the fitness function; the behaviours of
these variants are explored in [2]. Inside each collective individuals are treated
in the same manner as the populations in the standard Genetic Algorithm and
there is no ability to share the information between the sub-groups. The al-
gorithm provides additional evolutionary pressure through the increase in the
number of reproduction mechanisms, one at collective level and one at indi-
vidual level, but unlike in other algorithms where multiple mechanisms are
utilised [3], diversity is not lost due to the separation of the fitness functions.

MLSGA has previously been tested by incorporating a simple GA mech-
anism at the individual level which is based on the original Holland GA but
includes elitism [4]. The previous studies show interesting behaviour includ-
ing an increase in overall evolutionary pressure and in diversity through the
dispersion of the search, achieved through specialization of the collectives each
to different regions of the objective space. This emerges naturally rather than
being forced by decomposition or other mechanisms that require heavy tun-
ing for each new problem. However, the previous implementation lacks lead-
ing performance on the test functions which are taken from the 2009 Congress
of Evolutionary Computation (CEC09) [5]. Based on the previous results it
is proposed that MLSGAs performance may be improved by implementation
of stronger mechanisms at the individual level. Combinations of different
methodologies and hybrid approaches have already been shown to be effective
when dealing with complicated MOPs at least in part, because they can main-
tain the advantages of both approaches [6]. However, it is also possible that



the stronger individual level mechanisms will dominate, making the collective
level reproduction mechanisms redundant, or that the introduced mechanisms
will not be compatible and decrease the performance. This is considered to be
likely as more recent Genetic Algorithm mechanisms are further from the evo-
lutionary roots of the original algorithm and more complex than the one used
previously in [4]. In addition, some modifications to the original method are
necessary in order to incorporate stronger mechanisms at the individual level
and it is important to see how these modifications affect the performance of the
algorithm. In addition, MLSGA utilises a diversity first, convergence second
approach, which is uncommon for GAs, and it is proposed that it can be used
with other algorithms to retain the diversity of their searches, but this needs
investigating.

In this paper the individual selection mechanism in MLSGA is replaced by
current state-of-the-art algorithms: NSGA-II [7], MTS [8] or MOEA /D [9], se-
lected as the leading Genetic Algorithm mechanisms and representing three
different types of mechanism: niching, distributed search and hierarchical.
Three hybrid variants are developed and benchmarked on an updated version
of the CEC 09 comparison which provides complex bi-objective test instances
on a range of different evolutionary algorithms. Bi-objective problems are se-
lected to reduce the complexity allowing easier visualisation of the behaviour
of the algorithms. Additional mechanisms are developed in order to make
the selected individual mechanisms compatible with MLSGA and a compre-
hensive hyper-parameter tuning is performed in order to adjust the existing
collective-level mechanisms to the state-of-the-art algorithms, with guidance
provided for the optimal parameters.

This paper is organised as follows: section 2 presents a literature review
of GAs utilising sub-populations; section 3 introduces MLSGA mechanisms
in detail and the principles of the conducted benchmark; section 4 benchmarks
the MLSGA hybrids against the updated CEC 09 competition; section 5 presents
a discussion of experimental results and observed behaviours, followed by
conclusions in section 6.

2. Current sub-population mechanisms

Reviewing the current literature, a number of genetic algorithm methodolo-
gies show similarities to the idea of a collective; for examples those that utilise
sub-population mechanisms including niching, hierarchical, co-evolution and
island algorithms [6], in addition to some previous approaches inspired by
multi-level selection.

Niching algorithms such as NSGA-II [7] and U-NSGA-III [10] utilise sort-
ing mechanisms, which rank the whole population, depending on the non-
dominance level or other indicators such as IBEA [11]. However, different sub-
groups are not allowed to cooperate or compete as in MLSGA, and no sepa-
rate mechanisms are applied to these groups. The Island model mechanism
proposed by [12] separates the population into sub-groups and cooperation



is introduced by allowing migration of the individuals between neighbour-
ing groups but only in a single direction; only one level of selection is used
between sub-groups with no competition between them. In hierarchical algo-
rithms such as MOEA /D [9], MOEA /D-M2M [13]], CS-NSGA-II [14] DMOEA-
DD [15] and LiuLi [16] sub-groups operate separately on different sub-regions
of the search space, but with no additional selection mechanisms between sub-
groups. These decomposition mechanisms implement a number of additional
parameters, which are far from trivial to determine, but the effects on the per-
formance of the algorithm are substantial. Therefore, these methods usually
require a priori knowledge about the objective space and an additional issue
is that they cannot usually find points in negative regions. Additionally, in
discontinuous problems, large regions can exist without feasible solutions and
the use of standard decomposition methods leads to a waste of computational
power resulting in poorer final solutions. In MLSGA, the sub-regional search is
created using different fitness definitions, instead of decomposition, therefore
all individuals operate on the same region. Furthermore, fewer parameters are
used, making it simpler to use and requiring less tuning to a specific problem.

Despite many of the hierarchical algorithms showing poor performance on
constrained problems DMOEA-DD [15] and LiuLi [16] stand out as they show
top performance on these problems in the CEC09 benchmarking. It was hoped
to incorporate these algorithms in this study but the authors find that the liter-
ature does not give sufficient information to replicate these codes to a standard
that provides the results documented in CEC09 [17] and the codes provided
online do not compile, making their integration with MLSGA impossible.

In the co-evolution mechanisms the population is divided into groups with
different operations performed on each sub-population, which is inspired by
the idea that two or more species in nature can have a reciprocal evolutionary
relationship which increases the rate of evolution; two of the more successful
examples are BCE [18] and HEIA [19]. In these algorithms the groups are al-
lowed to exchange individuals and cooperation between groups is introduced.
However, the selection process occurs only at the individual level without ad-
ditional mechanisms or competition at the group level, unlike in MLSGA. In
addition, in MLSGA the same mechanisms are applied to each group and each
individual, and only the fitness function definitions change in the process.

In addition to the sub-population based mechanisms there are already ap-
proaches inspired by Multi-Level Selection Theory but they ignore key aspects
of the theory and do not demonstrate an improvement over current methods.
[20] were the first to use multi-level selection by studying a biological model
and altruism. It shows the importance of variation between groups as selection
at group level occurs only when there is enough variation. However, in this
approach, the groups are destroyed and recreated after each generation where
the best individuals are strongly preferred in this process, resulting in limited
diversity. MLSGA removes collectives much less regularly, retaining a wider
diversity of search. Furthermore, no fitness split is introduced and the selec-
tion of individuals is based on interactions between individuals and groups as
opposed to their fitness. [21], [22] looked at multi-level selection including se-



Table 1: Fitness functions assignment for different MLS types.

Fitness definition type | MLS2 | MLS2R MLS1
Collective level f2(x) filx) | filx) + fa(x)
Individual level both f1(x) and f2(x)

lection at different levels and three additional cooperative mechanisms are in-
troduced. Importantly the collective fitness definition and additional selection
levels are implemented in a manner that strongly favours the best solutions
and therefore leads to the loss of many good solutions and a reduction in the
overall gene pool. Finally, [23] focus on selection using a hierarchical model. In
the proposed mechanisms selection at one level influences the selection at the
adjacent levels and a single selection process is used at different levels without
the distinct separation of the fitness values. Therefore, no separate units of se-
lection are introduced at all levels, which is a basic concept of the multi-level
selection theory.

In summary, the authors feel that these efforts miss the key aspects of multi-
level selection in that they are orientated around complex prescriptive mech-
anisms, forcing the selection to occur rather than letting it emerge as part of
the process. None of the multi-level selection algorithms demonstrates an in-
crease in performance through the incorporation of the additional level and fail
to mimic key concepts in the multi-level selection theory. The traditional GAs
utilising sub-populations have only one level of selection and no split in the
fitness functions, lacking separate reproduction mechanisms at each level that
makes MLSGA unique.

3. Methodology

Outlined is a brief review of the MLSGA mechanisms inspired by the con-
cept of multi-level selection, the methodology to integrate different GAs for the
so-called hybrid forms and an outline of the benchmarking procedure.

3.1. MLSGA-hybrid

In this work three different genetic algorithms are chosen for testing at the
individual level resulting in three distinct hybrids: MLSGA-NSGA-II, MLSGA-
MOEA /D and MLSGA-MTS, selected for the following reasons:

1. NSGA-II [7] as a general solver and most commonly utilised algorithm
with better performance on bi-objective problems than NSGA-III [24];

2. MOEA/D [9] as the best GA for unconstrained problems according to the
CECO09 comparison [17];

3. MTS [8] as the best available algorithm for constrained problems and rep-
resenting distributed search algorithms.



The resulting algorithm works as follows with a more detailed description
of the MLSGA mechanisms specific for hybridisation below:
Inputs:

e Multi-objective problem;

Np: Population size;

Nc: Number of collectives;

MLSGA specific parameters;

e NSGA-II, MTS or MOEA/D specific parameters;
e Stopping criterion;

Output: External Population (EP)

Step 1) Initialisation:

Step 1.1) Set EP = NULL.

Step 1.2) Randomly generate an initial population P of Np individuals,
Xjyon o, XNp.

Step 2) Classification:

Step 2.1) Classify the individuals in the initial population P into Nc col-
lectives, Ci,...,CNc, so that each contains a separate population P,..., PNc.
Classification is based on the decision variable space using a Sup-
port Vector Machine (SVM).

Step 2.2) Assign the fitness definitions from types {MLS1, MLS2, MLS2R
- explained in detail below} to each collective so that there is a uni-
form spread of collectives using each type.

Step 2.3) In the case of the MOEA /D hybrid: Assign the nearest weight
vectors \i to each individual in each corresponding collective.

Step 3) Individual level operations:

Fori=1,....Ncdo

Step 3.1) Individual level GAs operations: Perform the reproduction,
improvement and update steps from NSGA-II [7], MTS [8] or MOEA /D
[9], subject to the hybrid variant, over the collectives entire popula-
tion Pi, documented in the corresponding literature.,

Step 3.2) Update External Population:
Forj=1,..—Pi—do
Remove from the EP all solutions dominated by xij (the individual j,

from population 7). Add individual xij to EP if no solutions from EP
dominate xij.



Step 4) Collective level operations:

Step 4.1) Calculate collective fitness:

Fori=1,...Ncdo
Calculate the fitness of the collective Ci as the average of the fitnesses
of populationPi based on the fitness definition assigned to that col-
lective.

Step 4.2) Collective elimination:

Find the collective Ci with the worst fitness value, and store the index of
that collective, z.

Store the size of the eliminated collective —P-— as the variable s.

In the case of the MOEA /D hybrid: Store the weight vectors of pop-
ulation {\j,..., Asize(P2)} Pz as the matrix Az.

Erase the collective C: with population P-.
Step 4.3) Collective reproduction:
Fori=1,...Ncdo
if(il=z)
Copy the best s/(Nc - 1) individuals, according to the fitness defini-
tion of the eliminated collective Cz, from population Pi to P:.

then

In the case of the MOEA /D hybrid: assign the weight vector Az ran-
domly to population P-.

Step 5) Termination: If the stopping criteria is met, stop and give EP as out-
put. Otherwise, return to Step 3).

A key element to retaining diversity is the split in the fitness function intro-
duced in Step 4, where separate fitness values for the collectives are calculated
and utilised. Three types of collectives are introduced, replicating the MLS1
and MLS2 definitions from Multi Level Selection Theory [25] as shown in Table
where MLS2R is the reverse of MLS2. In MLS2, the collective fitness function
is based on the first objective of the function, fi(x), and is calculated as the av-
erage of the first objective function of the individuals inside; MLS2R is based
on the average of the second objective f2(x) and in MLSI it is the sum of both
objectives. A strategy where each collective has a different fitness function def-
inition, called MLS-U, is also introduced in [2] and is shown to greatly increase
the diversity of the search and is the mechanism used within this research as
it shows the best performance. As MLSI is an aggregation of both objectives
normalization has to be utilised in cases where the objectives are disparately
scaled, to increase the solution uniformness. Due to the nature of the selected
benchmarking functions, no objective normalization is necessary and is there-
fore not implemented. However, for cases where it is required the objective
normalization strategy taken from [9]] defined in eq. [1} is recommended:
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the search space, and m is the number of objectives, assuming a minimisation
problem.

In the Classification Step a supervised learning classification method, SVM,
is used to assign collective labels to each individual in the initial population,
based on the distances between them in the decision variable space. In this
paper the multi-class classification SVM with C parameter, called C-SVC, and
linear function is used. The utilised code has been taken from LIBSVM open
library [26] and the original SVM-train parameters have been used. The user
predefines the number of label types, and thus the number of collectives. How-
ever, the number of individuals in each collective depends only on the classi-
fication method and the distribution of the initial population, and therefore is
different in each collective. Only the minimum of 10 individuals and maxi-
mum half of the overall population size, is predefined in order to avoid empty,
small or big collectives as it has been shown in pre-benchmarks to decrease the
overall performance. Organising the collectives with the most similar individ-
uals has been shown to be beneficial over random initiation after testing using
three different classification variants: SVM, k-means clustering and random
assignment. Clustering and SVM exhibit similar performances but the SVM is
chosen due to its lower calculation time and higher robustness.

In the case of the MLSGA-MOEA /D hybrid a set of weight vectors of the
size of the population is randomly generated. These weight vectors are ran-
domly assigned to the individuals in increasing order, starting from the vector
with the smallest value for the first objective. The individuals in the first col-
lective are assigned first, followed by the next collectives until every individ-
ual in all the collectives have values assigned to them. In development of the
hybrid algorithms it is shown that maintaining the closest neighbourhoods of
weight vectors inside of each collective has been shown to be beneficial over
a completely random assignment. Calculation and pre-assignment of the best
weight vectors to each individual, despite demonstrating the lowest starting
fitness, has been shown to have no statistically significant impact on the final
performance, while increasing the calculation cost.

Inside each collective NSGA-II, MOEA /D or MTS specific operations are
applied to the individuals at each generation, in the same manner as in the
original documentation with no further modifications. NSGA-II, MOEA/D
and MTS are multi-objective GAs, and require both objective functions to work.
In the hybrid approach both f1 and f2 objective functions are utilised at the in-
dividual level. Therefore, no fitness function separation is introduced at this
level, unlike in the original MLSGA [4].

For the collective elimination, in Step 4.2, the collective with the worst col-
lective fitness value is eliminated and all of the individuals inside are erased.



This collective is repopulated in Step 4.3 by copying the best individuals, ac-
cording to the eliminated collective fitness definition, from all of the remaining
collectives. This is done in order to maximise the fitness of the offspring collec-
tive. Importantly some information is inherited from the eliminated collective:
the size of the population in the collective, in order to maintain constant pop-
ulation size; the collective type; and in the case of MOEA /D the weight vector
of the eliminated population. Therefore, no randomness or variation is intro-
duced in these steps.

MLSGA is not a cooperative based GA, rather competitive based one, as
there is no direct information transfer between the levels of selection or be-
tween sub-groups, such as migration, colonization or regrouping [22}[18]. There
is only one step in which different sub-groups are able to communicate with
each other, Step 4.3, where the best individuals are selected in order to recreate
the eliminated collectives, however there is no effect on the parent collectives.
In between the different levels of selection the only information passed is the
fitness of the individuals, necessary to calculate the collective fitness in Step
4.1.

3.2. Computational complexity and constraint handling

The computational cost of the MLSGA-hybrids is determined by two oper-
ations: individual reproduction, taken from the embedded algorithms, and the
MLSGA collective operations. In this case the individual reproduction has the
same complexity as the embedded algorithm, denoted as C, and the collective
operations requires O(mN?) comparisons at most as detailed in [2]. Therefore,
the overall computational complexity of one generation of the MLSGA-hybrids
is bounded by O(mN?) or C whichever is larger.

In this work the complexity of the utilised algorithms is O(mN?) in the case
of NSGA-II, O(mNT) in case of MOEA /D, where T is number of solutions in
the neighbourhood and is typically 0.2V, or O(mN?) in case of MTS. Therefore,
the complexity of all proposed hybrids is O(mN2), which is the same or not
significantly higher when compared to the original algorithms and the similar
computational times exhibited by the algorithms support this.

When constraints are present the constraint-domination principle is adopted
for all the MLSGA-hybrid algorithms, taken from NSGA-II [7] and NSGA-III
[27], and defined as:

an individual z; is said to dominate another individual x», if: 1) x; is feasi-
ble and x5 is infeasible or, 2) both x; and x5 are infeasible, and x; has a smaller
constraint violation (CV) value or, 3) both x; and x5 are feasible, and x; domi-
nates x5 with the standard fitness domination principle.

This applies whenever two individuals are compared. However, no direct
constraint handling is introduced on the collective-level and therefore, the fit-
ness of the collective is not affected by the infeasibility of individuals inside
of it. By implementing the constraint violation penalty at only one level, the
individual-level, the diversity of the search can to be maintained avoiding pre-
mature convergence of the collectives.



3.3. Benchmarking

Bi-objective problems are selected as a first step as they allow a problem
where the behaviour is simple to interpret and study while providing enough
complexity to replicate a number of real world problems. The CEC09 [5] bench-
marking test set is selected to illustrate the results due to the number of algo-
rithms compared and range of different problem types, including a substantial
set of constrained problems. The unconstrained results are updated to include
HEIA and BCE to ensure the results reflect more recent developments and to
compare the proposed methodology with similar approaches. NSGA-II has
also been improved since the CEC09 competition, therefore the new results
have been run and the tables have been updated to reflect this. NSGA-II is
preferred over NSGA-III [24] or U-NSGA-III [10] in this comparison as it has
been shown to exhibit better performance on bi-objective problems. Results
for MOEA/D on the constrained problems are not included in the original
CEC09 benchmark and so it is benchmarked on these problems and the ta-
bles are updated. The newer variants of MOEA /D, such as MOEA /D-M2M
[13], MOEA/D-DD [28], MOEA /D-PSF or MSF [29], MOEA / D-2TCHMEFI [30],
MOEA /D-MTCH [24] are not included as on average these algorithms do not
show a higher performance than MOEA /D for the selected bi-objective prob-
lems. Similarly, the results of other algorithms from the current state of the art,
such as GrEA [31] and HypE [32], are not added to the comparison as these
algorithms have been shown to be outperformed by MOEA /D and NSGA-II
on two-objective functions. Tests on the ZDT test set [33], which is highly uni-
modal, and WFG test set [34], which shows a bias towards certain regions of
the objective space, non-separability of the input variables and different modal-
ity, have also been conducted. There are no statistically significant changes in
comparative performance between MTS, NSGAII, MOEA /D and the hybrid al-
gorithms, for the ZDT cases, and high similarity of behaviour in comparison to
the CECO9 test set for the WFG test instances. Therefore, only the CEC09 func-
tions have been included, as they provide a clearer illustration of the compar-
ative performance. The CEC 09 competition [5] used 14 different constrained
and unconstrained functions. The unconstrained functions, UF1-UF7, have 30
variables each and the constrained functions, CF1-CF7, have 10 variables each
with CF1-5 having 1 constraint and CF6-7 having 2 constraints. The tests are
performed following the CEC09 comparison rules [5] where each function is
evaluated over 30 separate runs and the average of these results is compared;
the stopping criterion is 300,000 function evaluations for each run; and the per-
formance is evaluated based on the Inverted Generational Distance (IGD) val-
ues calculated using only the 100 best, evenly-spread, individuals taken from
each run. IGD is the performance measure function of the Pareto Front, which
shows the average distance between all points in the true Pareto Front and the
closest solution from the achieved set and is calculated in eq.

>, dv, A)

IGD(A, P*) = EPT )
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where P* is a set of uniformly distributed points along the true Pareto Front, in
the objective space, A is the approximate set to the Pareto Front being evaluated
and d(v, A) is the minimum Euclidean distance between point v and the points
in A. The IGD metric is the preferred method to calculate the diversity and
accuracy of the Pareto front, as it allows comparison to the results in CEC “09.
The Hyper Volume (HV) metric would provide a more accurate assessment of
diversity but there is less available data for a comparison and so the results are
not included.

Different MLSGA parameters: population size, number of collectives, steps
between collective reproduction and number of eliminated collectives have
been parametrically evaluated. The parameters that give the best performance
across all of the problems are presented in this work. During the development
of the hybrids the optimal number of collectives is shown to be dependent on
the overall population size; with a higher population count more collectives
should be introduced. In the case of 800 or more individuals then 8 collectives
are preferred, and for smaller sizes 6 collectives are implemented. Using too
few collectives limits the spread of the search and therefore the final diversity
of the solutions. When too many collectives are used the same areas of the
search space are re-evaluated by different groups, decreasing the efficiency of
the search. However, minor changes away from the optimal number of col-
lectives do not have a significant effect on the final performance. This results
in six collectives being used with the MTS hybrid, using a lower population
of 225, and two collectives of each type, MLS1, MSL2 and MLS2R. In the case
of eight, used in NSGA-II and MOEA /D which use a high population size of
1800, there are 3 MLS2 collectives, 3 MLS2R collectives and 2 MLS1 collectives.

The overall population sizes are bigger than those commonly used in the
literature as the collectives must maintain a reasonable population size for the
individual level mechanisms to be effective. As MTS utilises multiple local
searches for each individual, and thus requires a significantly higher number
of iterations per generation, a lower population size is used compared to the
MOEA/D and NSGA-II hybrids, and the collective reproduction steps have to
occur more frequently. The number of eliminated collectives, 1, is the optimal
value for all mechanisms and all problems. The number of steps between col-
lective reproduction, 1 every 10 generations for NSGA-II and MOEA /D and
1 every generation for MTS, are shown to be problem independent and these
values are used are the optimal values for all problems. However, the number
of steps between collective reproduction should be balanced in order to max-
imise the added evolutionary pressure by the collective-level and should be
adjusted for different types of mechanism. The NSGA-II and MOEA /D mech-
anisms are dependent on developing and maintaining a uniform Pareto front
so the frequency of the elimination and reproduction step has to be reduced
compared to MTS. Otherwise, the individual-level mechanisms do not have
enough iterations to properly develop the front. This leads to premature elim-
ination of potentially good solutions which significantly reduces the diversity
of the final solutions and the final performance. Parameters used by each hy-
brid are detailed in Table 2land remain constant over all the runs for different
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Table 2: MLSGA hybrid parameters utilised for benchmarking.

Ste Parameter Value
b MLSGA- | MLSGA-NSGA-II MLSGA-
MTS MEOAD
1 Type Random
Ir.litialisation Encoding Real values
Pop. Size 225 [ 1800
Method SVM
2. No
Classification Collectives 6 8
Collective min 10 individuals and max 1/6 of overall population
size limits size
3. Individual level operations
Both f1 and 2
Fitness based on
. Type Both f1 and f2 Chebycheff
Evaluation ..
Scalarizing
Function[9]
Binary tournament with
Selection Type n/a crowding distance and Tournament
non-dominated ranking
C Differential
rossover Real variable SBX evolution
type n/a
. crossover
Mating
Crossover 1
rate
Mutation 3 local Polynomial
type search
Mutation
rate methods 0.08
4. Collective level operations
Fitness . .
. Type MLS1, MLS2, MLS2R, depending on the collective
evaluation
Number of 1 ever
Elimination elim. enerati}:) n 1 every 10 generations
collectives g
5 .. Criterion 300000 function evaluations
Termination

functions. The parameters at the individual level are retained from the origi-
nal sources but some small performance gains might be possible by adjusting
these values.

4. Performance benchmarking

The constrained function results are simulated for the hybrid algorithms
and the Pareto Fronts are compared to those generated by running the individ-
ual level algorithms separately. These are illustrated for the CF2 with NSGA-II
in Figure [I) MOEA/D in Figure [2] and MTS in Figure 8] and for the CF5 il-
lustrated in Figure [, Figure [5|and Figure [f] for NSGA-II, MOEA /D and MTS
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Figure 1: Pareto Front of NSGA-II and MLSGA-NSGA-II on the CF2.

respectively. CF2 and CF5 are chosen as they provide results representative of
the worst and the best cases for hybrid algorithms on the constrained problem
set. The Pareto Fronts for the figures have been randomly chosen from the 5
runs with the lowest IGD value.

For the CF2 the resulting Pareto Fronts are close to the best possible for all
of the hybrids, with an even spread of points. The MLSGA-MOEA /D hybrid
shows higher diversity and accuracy of points compared to MOEA /D which
is not able to reach the front. In the case of NSGA-II and MTS, the MLSGA
hybrids show similar performance to the individual level algorithms where
the resulting points cover the entire length of the Pareto Front and it is difficult
to visually determine which has the better performance.

In the worst-case scenario, CF5, both MLSGA-MTS and MLSGA-NSGA-
II hybrids have a similar performance to the original algorithms in terms of
accuracy but with a more even spread of points. For MOEA /D the points are
concentrated mostly on one region of the Pareto Front and the hybrid shows
a wider diversity, covering the entire length of the Pareto Front. However, the
accuracy of these points is poor with fewer of the hybrid points lying on the
true Pareto Front.

The process is repeated for the unconstrained problems, UF1-7. UF2 is
shown in Figure 7] for NSGA-II, Figure 8| for MOEA /D and Figure [9] for MTS,
and UF5 is shown in Figure[10} Figure and Figure[12]for NSGA-II, MOEA /D
and MTS respectively. These figures are chosen as they illustrate the worst and
the best results for the unconstrained test set, similarly to the previous cases.
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For the unconstrained problems, the results vary more between the differ-
ent hybrids and the individual level algorithms. The MLSGA-NSGA-II hy-
brid has similar performance to NSGA-II, and it is hard to distinguish visually
which variant is better for both presented functions. For MLSGA-MTS and
MTS algorithms, similar results are obtained on UF2 function but MTS exhibits
better performance on UF5 in terms of diversity and accuracy. The MLSGA-
MOEA /D is outperformed by MOEA /D in both presented cases.

The results of the three hybrids, MLSGA-NSGA-II, MLSGA-MOEA /D and
MLSGA-MTS are also compared to the original algorithms based on the aver-
age IGD values and presented for constrained test cases in Table 3| for CF1-7,
and for UF1-7, in Table[d In both tables the better results between the hybrid
and the individual level algorithm are highlighted in blue and are in bold font.
The minimum, maximum and standard deviation over 30 runs are given in the
brackets for each MLSGA variant. Additionally, the Wilcoxons rank sum test
was conducted to assess the statistical significance of the differences between
the results obtained by MLSGA hybrids and the original algorithms with a sig-
nificance level of « = 0.05. Results for the original algorithms are taken from
the CEC09 benchmarking [17]. As MLSGA-NSGA-II is based on an updated
version of NSGA-II, not on the version from the CEC09 ranking, the updated
results for this algorithm are included in Table 3| and Table ] As the results
for MOEA /D on the constrained functions have not been presented in CEC09,
these are simulated and included in Table[3l
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Table 3: Comparison of MLSGA hybrids and original algorithms on CEC 09 two-objective con-
strained problems CF1-7.

Average IGD (min; max; std)
CF1 [ CFP2 | CFP3 | CF4 | CF5 | CF6 | CF7

NSGA-II 0.01480 0.01249 0.24428 0.04946 0.13595 0.03309 0.13749

Algorithm

0.02429 | 0.00692 | 0.11619 | 0.01924 | 0.05513 | 0.02231 | 0.06110

MLSGA- (0.02074; | (0.00402; | (0.07265; | (0.01289; | (0.03812; | (0.01191; | (0.03247;

NSGA-II 0.02842; | 0.01252; | 0.15936; | 0.03344; | 0.11002; | 0.04561; | 0.17206;

0.001883)| 0.002491)| 0.027561)| 0.004994)| 0.015264)| 0.007163)| 0.031170)
[-] [+] [+] [+] [+] [+] [+]

MOEA/D 0.0204 0.06324 0.543 0.1503 0.223 0.1392 1.192

0.00401 | 0.00550 | 0.27730 | 0.03404 | 0.20834 | 0.03710 | 0.15495
MLSGA- (0.00255; | (0.00366; | (0.14522; | (0.02203; | (0.10708; | (0.02475; | (0.08564;
MOEA/D 0.00700; | 0.01266; | 0.37486; | 0.05054; | 0.37707; | 0.05598; | 0.31225;
0.001151) | 0.001814)| 0.051974)| 0.005912)| 0.068027)| 0.008044)| 0.056544)
[+] [+] [+] [+] [+] [+] [+]

MTS 0.01918 0.02677 0.10446 0.01109 0.02077 0.01616 0.02469

0.01825 | 0.00285 | 0.10195 | 0.00822 | 0.02876 | 0.00747 | 0.02405
MLSGA- (0.01267; | (0.0026; | (0.07297;| (0.00729; | (0.02183;| (0.00662; | (0.01969;
MTS 0.02396; | 0.00306; | 0.13768; | 0.00932; | 0.03499; | 0.0094; | 0.02927;
0.002441) | 0.000111)| 0.014918)| 0.000524)| 0.003313)| 0.000707)| 0.002662)
[+] [+] [~] [+] [-] [+] [~]

[+], [-], and [~] indicate that the results of MLSGA hybrid are significantly better, worse or
similar to the original algorithm using Wilcoxon’s rank sum test.

The constrained results show that implementation of collective level mech-
anisms improves the performance of GAs in general, for NSGA-II improve-
ments are shown on 6 out of 7 cases. The MLSGA-MTS also shows improve-
ments over the original algorithm on 6 out of 7 cases but with statistical sig-
nificance on 4 of the functions. For MOEA /D the MLSGA mechanisms leads
to improvements in the performance in all cases. For the unconstrained cases
better results can be observed for MLSGA-NSGA-II in comparison to NSGA-II
for all the presented functions, with statistical significance for 5 out of 7. In
the case of MLSGA-MTS hybrid the improvement has been shown on all the
functions except for UF4 and UF5, though this is not statistically significant
for the UF6. Implementation of the MLSGA mechanisms decreases the perfor-
mance of MOEA /D on all problems of this type. This is most likely caused by
the collective-level operations which are not adjusted for the MOEA /D spe-
cific mechanisms, such as the weight vectors and neighbourhoods of solutions.
In this case the weight vectors of the eliminated solutions are not taken into
account during the collective reproduction step when the offspring collective
is created. Therefore, the weights are randomly assigned to the new solutions,
which results in lower overall fitness at the individual-level. The mechanisms
were not fully adjusted as the assignment of the best individuals to each weight
vector during every collective reproduction would require a significant num-
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ber of comparisons and therefore would result in drastically higher computa-
tional costs over the original algorithm.

To highlight the performance of the MLSGA approach the MLSGA-MTS
variant is compared to the updated CEC09 competition rankings. This is de-
spite the fact that it is not the strongest performing hybrid on every problem
and a priori knowledge of the problem could lead to stronger performance
by matching the MLSGA hybrid to a given problem. These are presented for
constrained test cases in Table [5| for CF1-7, and for unconstrained functions,
UF1-7, in Table[p] In the tables, the results of the hybrid are in bold and high-
lighted in light blue colour and the results for the original MTS are highlighted
in dark blue. Additionally, the results for the two other hybrid methods the
MOEA /D+TCH variant of BCE [18] and HEIA [19] are included in bold, as
they are hybrid methodologies that show leading performance.

In the updated CECO09, rankings the MLSGA-MTS hybrid would be placed
in the top 3 algorithms for constrained functions for 6 out of 7 cases, showing
the best performance for CF6. For the unconstrained problems, the presented
hybrid would be in the top 3 algorithm for 5 out of 7 cases, and the best per-
forming for two problems, UF1 and UF2. Interestingly, for the UF7 function,
the MLSGA-MTS hybrid is outperformed by most of the updated CEC 09 com-
petitors. In this case, the performance of the hybrid is strongly affected by

Table 4: Comparison of MLSGA hybrids and original algorithms on CEC '09 two-objective uncon-
strained problems UF1-7.

Average IGD (min; max; std)
UFl | UF2 | UF3 | UM | UF5 | UF6 | UF7

NSGA-IL 0.048182 | 0.01671 0.15966 0.04798 0.22088 0.302 0.02751

Algorithm

0.01407 | 0.01532 | 0.15700 | 0.04663 | 0.18373 | 0.25145 | 0.01175

MLSGA- | (0.01079; | (0.01404; | (0.13171; | (0.04549; | (0.11668; | (0.22234;| (0.00962;

NSGA-II 0.02067; 0.01814; 0.19965 0.04775; | 0.26350; | 0.29777; | 0.01688;

0.00239) | 0.000945)| 0.016248)| 0.000640)| 0.032948)| 0.016909)| 0.001641)
[+] [+] [~] [~] [+] [+] [+]

MOEA/D 0.00435 0.00679 0.00742 0.06385 0.18071 0.00587 0.00587

0.04281 | 0.02321 | 0.09862 | 0.07288 | 0.82728 | 0.36551 | 0.02279
MLSGA- | (0.02609; | (0.01804; | (0.05775;| (0.06169; | (0.55343;| (0.32494; | (0.01613;
MOEA/D | 0-07431; | 0.02995; | 0.14859; | 0.08331; | 1.21254; | 0.39631; | 0.03927;
0.010244)| 0.002626)| 0.023678)| 0.004818)| 0.161068)| 0.020352)| 0.005208)

[ [ [ [ [ [ [

MTS 0.00646 0.00615 0.0531 0.02356 0.01489 0.05917 0.04079

0.0041 0.00411 0.03632 0.02724 0.06154 0.0579 0.03714
MLSGA- (0.00398; | (0.00400; | (0.0279; | (0.02628; | (0.04357; | (0.04937; | (0.01664;

MTS 0.00427; | 0.00427; | 0.04397; | 0.02889; | 0.07368; | 0.06716; | 0.07475;
0.000071) | 0.000068)| 0.003525)| 0.000602)| 0.006264)| 0.00482) | 0.01714)
[+] [+] [+] [-] [-] [~] [+]

[+], [-], and [~] indicate that the results of MLSGA hybrid are significantly better, worse or
similar to the original algorithm using Wilcoxon's rank sum test.
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poor performance of the original MTS algorithm. The proposed methodology
would have been placed 2"dover the constrained test sets, and 2" place on the
unconstrained functions, leading to the best general performance.

5. Understanding MLSGA mechanisms and limitations

It is shown that the MLSGA hybrids perform better than the individual
level algorithms; NSGA-II and MTS in all cases and MOEA/D for the con-
strained problems. The results demonstrate a capability to improve the perfor-
mance of a wider range of GAs than that shown in [4] and that the split in the
fitness function is robust to the selection of a number of GAs at the individual
level. However, it is also shown for the first time that the performance of all
algorithms is not improved across all problem types.

The results show that as long as the levels are different there can be more
than one objective per level allowing for some overlap between elements at
each level. For example, in these cases objective 1 can be used as part of the
individual level and the collective level without impairing performance. These
results indicate promise for extension to many-objectives problems as concerns

Table 5: Updated CEC 09 ranking on the two-objective constrained CF1-7 problems including
MLSGA-MTS hybrid.

Rank Name/Average IGD
CFi Cr2 Cr3 CFa CF5 CF6 CF7
i | DMOEA- | DMOFA- | DMOEA- | DMOEA- | MLSGA- | DMOEA-
1 0 (;(1)10815 DD DD DD DD MTS DD
' 00021 | 0056305 | 000699 | 001577 | 0.00747 | 0.01905
NSGA- | MLSGA- | MLSGA- — | MLSGA-
2 ILS MTS MTS 06;0'3]73939 01531;,]91118 MTS
000692 | 0.00285 | 0.10195 : ' 0.02405
NSGAL | LiLi MLSGA- | MLSGA- | DMOEA-
3 1 001480 | 0.0042 M DaLs DD
' : 0.00822 | 0.02876 | 0.01502
. MEGOI\‘/?D' MEGOI\‘/?D' GDE3 GDE3 GDE3
o oo | 01273506 0.06799 0.04169
5 DNIIDODEA' lel%x- LiuLi LiuLi LiuLi lelfé\' LiuLi
oot | oy | 0182905 | 001423 | 010973 | (S| 0.10446
. M;IST%A' NSGA-TI NISI(L;?' NISI(E?' NSGA-IT | NSGA-II | NSGA-II
ouims | 00200 | NS MO ) 013505 | 003309 | 013749
GDE3 | NSGA-I | NSGA-II NISI(L;?' GDE3 NISIS;"
001507 | 024428 | 004946 | o | 006199 | DES
CDE3 MEOAD- | MEOAD- | MEOAD- | DECMO- | DECMO-
8 N GM GM GM SA SA
: 05134 | 00707 | 05446 | 014782 | 0.26049
DECMO- DECMO- | DECMO- | DECMO- | MEOAD- | MEOAD-
9 SA SA SA SA GM GM
0.10773 1000000 | 015265 | 041275 | 02071 0.5356
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Table 6: Updated CEC 09 ranking on the two-objective unconstrained UF1-7 problems including

MLSGA-MTS hybrid.
Rank Name/Average IGD
193} UF2 U3 UFa U5 UF6 UF7
. BCE MII\“,[STGSA' MOEA /D MOEA/D| HEIA
0.00164 | US| 0.00742 0.00587 | 0.00309
X HEIA HEIA BCE GDE3 GDE3 M;[STGSA' MOEA/D
00027 | 000581 | 000957 | 00265 | 003928 | ~OIS | 0.00587
MLSGA- MLSGA- | MLSGA- —
| s [P e s
0.0041 : 0.02724 | 0.06154 :
MOEA/D | MOEAD- [ " I "'DECMO- |, o= ™| DMOEA- | MOEAD-
41 000435 GM 0.01497 | SASQP | 00405 DD GM
' 0.0064 ' 0.03392 ' 0.06673 | 0.0076
5 GDE3 BCE DN]IDOSA' HEIA LiuLi OMSEA' DN]I)%EA'
000534 | 000656 | 0 | 00377 | oieiss | Too| OV
MOEAD- | DMOEA- | MLSGA- DECMO- | Clustering
6 GM DD MTS ggﬁé SA-SQP | MOEA ogleiz
00062 | 000679 | 0.03632 : 0.16713 | 0.0871 :
MOEA/D | MOEAD- | DMOEA- | OMOEA- | /oo™ [ oo
0.00679 GM DD 11 0.1031 0.0197
: 0.049 0.04268 | 01692 : :
LiuLi OWMOS- MOEP MOEA/D DECMO- | NSGA-
8 | 000785 aDE 00427 | oasoz1 | SASQP | LIS
' 0.0081 : ' 012604 | 0.02132
DMOEA- GDE3 Clustering LiuLi HEIA AMGA Clustering
9 DD 001195 | MOEA 10435 0.205 012042 | MOEA
0.01038 : 0.0549 : : : 0.0223
NSGA- 1 Luwti | amca | OMOEA | Nsganr | mena | RECMO-
10 I-LS 00123 | 0.06998 1T 0.22088 0152 | SASQP
0.01153 : : 0.04624 ’ : 0.02416
OWMOS- | NSGA- | DECMO- | MOEAD- | o .y CDE3
1 aDE LS 1 SA-SQP GM 02245 | 017555 | 0.02522
00122 | 001237 | 00935 0.0476 : : :
Clustering AMGA MOEP NSGA-TI Clustering| OWMOS- NSCA-TI
121 MOEA | 1003 0.099 0.04798 | MOEA aDE 0.02751
0.0299 : : : 0.2473 0.1918 :
A | NSGAL | OWMOS- | OWMOS- | DMOEA- | -~ | OMOEA-
131 03588 | 001671 abE aDE bD 0.25091 1
‘ : 0.103 00513 | 031454 : 0.03354
NSGA-I | MOEP | NoGA- | NSGA- | gep | Nggaar | MESCA-
141 goag182 | 0.0189 LS I-LS 0.40341 0.302 s
: : 0.10603 | 0.0584 : ' 0.03714
Clustering Clustering| OWMOS- | NSGA-
15 1(\)/100555 MOEA 061]82339 MOEA aDE 1-1S
: 0.0228 ‘ 0.0585 04303 | 031032
DECMO-| DECMO- 1 Nsga-m | BcE | NO4 | BcE | Amca
16 SA-SQP SA-SQP 0.15966 0.06063 LS 0.425 0.05707
007702 | 0.02834 ' - 0.5657 : '

that each objective would require its own level is dismissed. This concern
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would have led to a large number of levels, potentially one per objective, and
an extensive tree of corresponding collectives of collectives. Expansion in the
number of collectives required would necessitate an exponential increase in in-
dividual population sizes to allow for a large enough number of higher level
collectives. However, additional investigations will be required into how best
to adjust the fitness function at each level for these problems.

The authors suggest that the increase in performance is due a combination
of the use of novel reproduction mechanisms between sub-populations, col-
lectives, and the split in the fitness function. In MLSGA, the individual-level
operations lead to exploration and exploitation of both objective and variable
spaces, in a similar manner to the original algorithms. The collective-level cre-
ates artificial boundaries, by strongly penalizing solutions in certain regions
and pushing the individuals in to the preferred ones. Splitting the population,
either in the form of separate fronts [7], decomposition [9] or direct subpopula-
tion approaches [15], has been shown to be beneficial in other algorithms. This
is because it decreases the chances of premature convergence for the whole
population at a local optima and leads to an increase in the overall diversity
of the final solutions. The MLSGA mechanisms enhance the ability to explore
different parts of the objective space even further, by introducing an additional
selection pressure. The hybrid algorithms demonstrate an increase in perfor-
mance over the original variants on the constrained problems as the diversity
is more crucial on this type of problem. The split in fitness function and in-
dependence of collectives allows them to more easily move around gaps in
the objective space created by the constraints; for the unconstrained problems
this diversity is less essential. This claim is supported by the high gains in
performance of the MLSGA-MOEA /D hybrid on constrained problems, as the
original MOEA /D struggled to operate in non-continuous search spaces as the
weights are defined in straight lines which may pass through these regions,
leading to an inefficient search.

In the hybrid approach, the addition of MLS-U, defining different fitnesses
from MLS1, MLS2 and MLS2R in each collective, leads to a specialisation of
collectives, where each collective type creates a selection pressure into a differ-
ent direction, and thus leads to exploration of different regions of the objective
space. This is illustrated in Figure [13] where the different collective types are
shown to be exploring different parts of the Pareto Front. MLS1 focuses on
the middle regions of the Pareto Front, as individuals with the lowest value
of the average of both fitness functions are promoted, due to its fitness def-
inition. MLS2 and MLS2R exploit the peripheral regions of the Pareto Front
and in these cases the collective reproduction mechanisms promote extreme
solutions, as only one fitness function is considered. Furthermore, the pro-
posed methodology is able to search negative regions of the objective space,
unlike decomposition methods, as it can avoid the regions without feasible so-
lutions where the decomposition methods has been proven ineffective, such
as in discontinuous problems. This is exhibited by high performance on the
constrained problems, and non-continuous functions such as UF5 and UF6.

The MSLGA mechanisms do not increase the performance for all of the al-
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gorithms on all cases. In the unconstrained functions, the MOEA /D hybrid
performs worse than the original. The authors suggest that this reduction in
performance is caused by the collective reproduction mechanisms, which do
not properly maintain a number of the parameters that the original MOEA /D
utilises, such as the weight vectors and neighbourhood of solutions. It might
also be that such a specialist solvers performance is also degraded by the ad-
dition of the MLSGA mechanism, which improves the generality of the algo-
rithm; there is no free lunch after all. In the MLSGA-MOEA /D hybrid the
newly created collective inherits the weight vector of the eliminated collective
during the collective reproduction step. However, the solutions copied from
the remaining collectives are not subject to this weight vector as the specific
weights are assigned to the individuals randomly. This means that the best
weight vector is not assigned to each new solution. The neighbourhood of solu-
tions in the hybrid approach is recreated in the offspring collective, based only
on the weight values. Therefore, the new neighbourhood does not reflect the
relationship between the two neighbour solutions in both the objective and de-
cision variable spaces. This lowers the overall fitness of the individuals in the
new collective and thus decreases the performance compared to the original
MOEA/D. In addition, the NSGA-II and MOEA /D algorithms rely on a con-
stant front to generate the optimal results, which the current simple collective
reproduction mechanisms do not account for. Development of improvements
to the collective level mechanisms, bespoke to the algorithm used at the indi-
vidual level, may provide a further increase in performance. For NSGA-II and
MOEA/D, this will promote the constant front generation and will consider
the original algorithms specific mechanisms, such as weight and neighbour-
hoods in MOEA /D.

MLSGA-MTS provides strong performance across all of the problem sets,
providing the best general performance. Its only poor performance, 12th in
the updated CEC09 rankings, is on UF7. It is difficult to determine the reasons
for the poor performance but UF7 is a continuous linear non-uniform prob-
lem with a strong bias towards the right side of the Pareto Front. MTS and
MLSGA do not have as strong diversity preservation metrics as other leading
algorithms, and this potentially causes problems in regions where there is such
a strong bias towards points in one area, a limitation to the MLSGA-MTS ap-
proach. In comparison to the other hybrid approaches, BCE [18] and HEIA
[19], the MLSGA-MTS exhibits better performance in 4 out of 7 functions. Un-
fortunately, the algorithms cannot be compared on the constrained functions
due to lack of benchmarks of BCE and HEIA on these problems.

The authors believe that MLSGA mechanisms can be successfully utilised
on various GAs to improve the performance, not only those presented in this
work. Guidance is provided on how to tune the algorithm for these different
hybrids, and the result is that many of the new parameters require little adjust-
ing.
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Figure 13: Pareto Front of MLS1, MLS2 and MLS2R fitness definition types from MLSGA-NSGA-II
algorithm on the CF1 problem.

6. Conclusions

This paper investigates the performance of implementing different mecha-
nisms at the individual level of Multi-Level Selection Genetic Algorithm (MLSGA).
This leads to a better understanding of how the split in the fitness function and
collective level reproduction mechanisms interact with a range of individual
level mechanisms. Utilisation of MLSGA to create hybrid algorithms is shown
to be beneficial in a number of cases. Hyperparameter tuning is performed
which shows that the results are relatively insensitive to the new parameters,
or that these parameters are easy to select. The MLSGA mechanisms improve
the overall performance and provide a different behaviour to the typical con-
vergence first, diversity second approach, which leads to the hybrids demon-
strating particularly strong performance on discontinuous problems. The hy-
brid genetic algorithms, MLSGA-MTS and MLSGA-NSGA-II, show increased
performance on the CEC09 constrained and unconstrained problems over their
original implementations but MLSGA-MOEA /D only exhibits this improve-
ment on the constrained problems. The best hybrid is MLSGA-MTS, which
performs the best on a number of the CEC 09 benchmarking test problems and
on the updated rankings places 2" on the constrained test sets and 2"¢ on the
unconstrained functions, leading to the best general performance across all the
problems.
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