Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes

Michael A. Jinks, ${ }^{\ddagger}$ Alberto de Juan, ${ }^{\ddagger}$ Mathieu Denis, Catherine J. Fletcher, Marzia Galli, Ellen M. G. Jamieson, Florian Modicom, Zhihui Zhang, and Stephen M. Goldup*

Abstract

Chiral interlocked molecules in which the mechanical bond provides the sole stereogenic unit are typically produced with no control over mechanical stereochemistry. Here we report a stereoselective approach to mechanically planar chiral rotaxanes in up to 98: 2 d.r. using a readily available α-amino acid-derived azide. Symmetrization of the covalent stereocenter yields a rotaxane in which the mechanical bond provides the only stereogenic element.

Chiral molecules occupy a central role in chemistry due to their applications across a range of areas and thus the development of efficient, stereoselective syntheses of these targets is a central challenge for synthetic chemists. ${ }^{[1,2]}$ In contrast, although mechanically interlocked molecules (MIMs) ${ }^{[3]}$ have long been known ${ }^{[4,5]}$ to display stereogenic units ${ }^{[6]}$ as a result of the fixed relative orientation of achiral interlocked components, ${ }^{[7,8]}$ or the topology of the mechanical bond itself, ${ }^{[9,10]}$ the stereoselective synthesis of rotaxanes and catenanes exhibiting such stereochemistry remains largely unexplored, ${ }^{[11]}$ with the vast majority reported as racemic mixtures or separated using preparative chiral stationary phase HPLC (PCSP-HPLC). ${ }^{[12]}$

The development of stereoselective syntheses of mechanically planar chiral (MPC) rotaxanes, the stereogenic unit of which arises when a rotationally oriented macrocycle encircles a non-centrosymmetric axle, has proved challenging. Takata, Okamoto and co-workers reported an enantioselective synthesis of an MPC rotaxane by dynamic kinetic resolution in $\sim 4 \%$ e.e. ${ }^{[7 \mathrm{e}]}$ Lacour and co-workers reported the diastereoselective formation of a pseudorotaxane possessing a covalent and an MPC stereogenic element in $\sim 8 \%$ d.e. ${ }^{[13]}$ Indeed, the only highly stereoselective syntheses of MPC rotaxanes are not widely recognized as such; ${ }^{[5 c]}$ the threading of a cyclodextrin (CD) ring onto a non-centrosymmetric axle produces an MPC stereogenic element. Thus, the selective formation of the different threading orientations corresponding to the stereoselective synthesis of MPC/covalent diastereomers. ${ }^{[14]}$ Unfortunately, the dense array of covalent stereogenic centers of the glucose-derived CD macrocycle obscures the role of the MPC stereogenic element in the properties of these products.

Despite the lack of a general stereoselective approach to MPC rotaxanes, limited intriguing reports of the properties and potential applications of the MPC stereogenic unit have been disclosed. ${ }^{[15]}$ Vögtle, Okamoto and co-workers demonstrated that MPC rotaxanes display large Cotton effects, suggestive of a well-expressed chiral environment. ${ }^{[7 a-c]}$ More recently, Takata and co-workers demonstrated that side chains containing MPC rotaxane units can direct the handedness of a helical polymer, ${ }^{[7 f]}$

[^0]and Hirose and co-workers reported an MPC rotaxane that acts as a selective receptor for chiral analytes. ${ }^{[7 \mathrm{~g}, 16]}$

In 2014 we reported that, by including a covalent point stereogenic unit in the axle of a crowded rotaxane, the mechanical epimers of the product could be separated using flash chromatography. ${ }^{[17]}$ The separated diastereomers were then converted to enantiopure MPC rotaxanes by removing the covalent stereogenic unit. However, although this approach allows the scalable synthesis of MPC enantiomers, its efficiency was reduced by a lack of stereoselectivity (d.r. $=1: 1$) in the mechanical bond forming step.

Here we report a diastereoselective synthesis of MPC rotaxanes using a simple covalent stereodirecting moiety. Furthermore, by symmetrization of the covalent stereocenter, we demonstrate the first stereoselective synthesis of an MPC rotaxane where the mechanical bond provides the only stereogenic unit.

We previously reported that an active template ${ }^{[18]}$ Cumediated alkyne-azide cycloaddition ${ }^{[19]}(\text { AT-CuAAC })^{[20]}$ reaction between small bipyridine macrocycle 1, ${ }^{[21]}$ alkyne 2a and chiral azide (D)-3a gave the rotaxane product as an equimolar mixture of mechanical epimers (Table 1, entry 1) and that variation of reaction conditions failed to impart diastereoselectivity. ${ }^{[17,22]}$ We hypothesized that placing the stereochemical information on the alkyne component might lead to selectivity in the formation of diastereomeric Cu^{\prime}-acetylide/macrocycle complexes in a biased pre-equilibrium. ${ }^{[23,24]}$ Unfortunately, the reaction of alkyne (D)-2b with azide $\mathbf{3 b}$ also produced an equimolar mixture of diastereomers (entry 2).

Moving the stereogenic unit closer to the reaction center improved the outcome; when α-chiral acetylene (R / S)-2c was employed, a $65: 35$ d.r. was observed (entry 3). More promising still, when azide (S)-3c was employed a 85 : 15 d.r. was obtained (entry 4). Focusing on the readily available amino acidderived azide motif, ${ }^{[25,26]}$ ester (S)-3d led to an excellent $96: 4$ d.r. (entry 5). Finally, simple ${ }^{i} \operatorname{Pr}$ ester-azide (S)-3e provided the corresponding [2]rotaxane in an excellent $98: 2$ d.r. and 88% isolated yield (entry 6). ${ }^{[27]}$ Single crystal x-ray diffraction analysis of the interlocked product of macrocycle 1, alkyne 2a and azide $(S)-3 e$ allowed the major product to be unambiguously assigned as $\left(S, S_{\mathrm{mp}}\right)-4$ (Figure 1, Scheme 1). ${ }^{[28]}$

Preliminary molecular modelling (PM6, gas phase; see ESI for a detailed discussion) suggests that the observed stereoselectivity is due to steric clash between the macrocycle and the Bn group of the azide component, with the favored isomer minimizing the interaction between the Bn and arylpyridine units. The observed stereoselectivity is predicted to be due both to biasing of the equilibrium between diastereomeric macrocycle-bound Cu'-acetylide/azide complexes, and the different rates of the cycloaddition process that captures the interlocked structure from these diastereomeric intermediates.

Having identified (S)-3e as able to direct the diastereoselective formation of MPC rotaxanes, we investigated the generality of the reaction with respect to the alkyne. Benzylic acetylene $2 \mathbf{d}$ coupled with $(S)-3 e$ in the presence of 1 to give the

Table 1. Diastereoselectivity in the AT-CuAAC reaction of macrocycle 1 with alkynes 2 and azides 3 . ${ }^{\text {a }}$
9
${ }^{a}$ Reagents and conditions: 1, 1.5 equiv. each 2 and 3, 0.96 equiv $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6},{ }^{[29]} \mathrm{N}^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction product. ${ }^{c}$ Isolated yield. ${ }^{[30]}$
corresponding rotaxane in $86: 14$ d.r. (entry 7). The reactions of (S)-3e with alkynes $2 \mathrm{e}-\mathrm{g}$, which provide decreased steric demand near the reaction centre, all produced the corresponding rotaxanes in a low but synthetically useful $\sim 3: 1$ d.r. (entries $8-10$). These results suggest that AT-CuAAC
reactions of azide (S)-3e with macrocycle 1 have an inherent diastereoselectivity that is enhanced by steric crowding provided by the alkyne component. Consistent with this, extended aryl alkyne $\mathbf{2 h}$ gave an improved 84 : 16 d.r. (entry 11).

Figure 1. Solid-state structure of [2]rotaxane (S, S_{mp})-4 in a) tube and b) space-filling representaton (O and N atoms in dark grey and blue respectively). Selected distances (\AA) : $\mathrm{H} \cdot \cdots \cdot \mathrm{N}=2.47 ; \mathrm{H} \cdot \cdots \mathrm{N}=2.69$).

Highly enantioenriched mixed covalent/mechanical diastereomers such as ($\mathrm{S}, \mathrm{S}_{\mathrm{mp}}$)-4 are suitable for investigation in areas such as catalysis and sensing. However, in order to unambiguously identify the effect of the MPC stereogenic element it is necessary to produce rotaxanes in which the mechanical bond provides the sole source of stereochemical information. To demonstrate the utility of azide 3 e in the stereoselective synthesis of such enantioenriched "simple" MPC rotaxanes, the covalent stereocentre of rotaxane ($\left(S, S_{m p}\right.$)-4 was symmetrized by treatment with LiHMDS followed by Bnl to yield MPC rotaxane (S_{mp})-5 in excellent yield (77%) and enantiomeric purity (98:2 e.r.) (Scheme 1). Similarly, alkylation of ($R, R_{\text {mp }}$)-4, derived from azide $(R)-3 \mathrm{e}$, gave $\left(R_{m p}\right)-5$ (98: 2 e.r.). ${ }^{[31,32]}$ Analytical CSP-HPLC analysis established the enantiopurity of $\left(S_{m p}\right)-5$ and $\left(R_{m p}\right)-5$ to be $98: 2$ e.r. in keeping with the diastereomeric purity of the starting materials (Figure 2a). Analysis of (S_{mp})-5 and (R_{mp})-5 by circular dichroism (CD) spectroscopy revealed mirror-image Cotton effects (Figure 2b).

Scheme 1. Synthesis of MPC rotaxane $\left(S_{m p}\right)$ - 5 by symmetrization of the covalent stereocenter. ${ }^{\text {R Reagents }}$ and conditions: LiHMDS, THF, $-78^{\circ} \mathrm{C}$, Bnl, $-78^{\circ} \mathrm{C}$ to rt.

Figure 2. a) CSP-HPLC (Chiralpak, $35 \% \mathrm{MeOH}\left(0.2 \% \mathrm{NH}_{3}\right)$ in $\left.\mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}\right)$, of (front to back) $\left(R_{m p} / S_{m p}\right)-5,{ }^{[33]}\left(S_{m p}\right)-5$ and $\left(R_{\mathrm{mp}}\right)-5$. b) CD spectra of (R, R_{mp})-4 (red dashed), $\left(S, S_{\mathrm{mp}}\right)-4$ (blue dashed), $\left(R_{\mathrm{mp}}\right)-5$ (red), $\left(S_{\mathrm{mp}}\right)-5$ (blue).

In conclusion, we have demonstrated that azide $\mathbf{3 e}$ is able to direct a diastereoselective AT-CuAAC reaction to deliver mechanically epimeric rotaxanes in up to $98: 2$ d.r. Furthermore, by symmetrization of the covalent stereocenter, our approach can be extended to give highly enantioenriched MPC rotaxanes in which the mechanical bond is the sole stereogenic element without the need to separate rotaxane stereoisomers. ${ }^{[30]}$ Given the synthetic flexibility of the AT-CuAAC reaction, which allows the expedient synthesis of complex architectures ${ }^{[34]}$ and functional MIMs, ${ }^{[35]}$ we anticipate that this general approach will be useful for the stereoselective synthesis of functional MPC rotaxanes and other MIM stereogenic units.

Acknowledgements

S.M.G thanks the European Research Council (Consolidator Grant Agreement no. 724987), EPSRC (EP/L016621/1) and Leverhulme Trust (ORPG-2733) for funding and the Royal Society for a Research Fellowship. M.D. and M.G. thank the EPSRC for a Doctoral Prize. E.M.G.J. and F.M. thank the EPSRC for financial support (EP/L505067/1). Z.Z. thanks the China Scholarship Council for a Scholarship. The authors thank Reach Separations for assistance with analytical CSP-HPLC.

Keywords: rotaxane • supramolecular • stereoselective • chirality • CuAAC
[1] 1,126 of 11,712 articles published in J. Am. Chem. Soc., Angew. Chem., Chem. Sci., Chem. Commun. or Chem. -Eur. J. in 2017 referred to "*chiral* OR enantio*" (title, abstract or keywords; source: Scopus)
[2] a) K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2024. b) R. Noyori, Angew. Chem. Int. Ed. 2002, 41, 2008. c) W. S. Knowles, Angew. Chem. Int. Ed. 2002, 41, 1998. d) Y. Gnas, F. Glorius, Synthesis 2006, 1899. e) I. Ojima, Ed. , Catalytic Asymmetric Synthesis, Wiley-Blackwell, 2010.
[3] a) J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 2011, 50, 9260. b) S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081. c) C. J. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond: From Molecules to Machines, Wiley, 2016. d) J. E. M. Lewis, P. D. Beer, S. J. Loeb, S. M. Goldup, Chem. Soc. Rev. 2017, 46, 2577.
[4] a) E. Wasserman, H. L. Frisch, J. Am. Chem. Soc. 1961, 83, 3789. b) G Schill, Catenanes, Rotaxanes and Knots, Academic Press, New York, 1971.
[5] Selected recent reviews: a) N. Pairault, J. Niemeyer, Synlett 2018, 29 689. b) N. H. Evans, Chem. - A Eur. J. 2018, 24, 3101. c) E. M. G Jamieson, F. Modicom, S. M. Goldup, Chem. Soc. Rev. 2018, 47, 5266.
[6] Selected functional MIMs with covalent stereogenic units: a) Y . Tachibana, N. Kihara, T. Takata, J. Am. Chem. Soc. 2004, 126, 3438. b) F. Ishiwari, K. Fukasawa, T. Sato, K. Nakazono, Y. Koyama, T. Takata, Chem. - A Eur. J. 2011, 17, 12067. c) V. Blanco, D. A. Leigh, V Marcos, J. A. Morales-Serna, A. L. Nussbaumer, J. Am. Chem. Soc 2014, 136, 4905. d) S. Hoekman, M. O. Kitching, D. A. Leigh, M. Papmeyer, D. Roke, J. Am. Chem. Soc. 2015, 137, 7656. e) K. Xu, K. Nakazono, T. Takata, Chem. Lett. 2016, 45, 1274. f) R. Mitra, M. Thiele, F. Octa-Smolin, M. C. Letzel, J. Niemeyer, Chem. Commun. 2016, 52, 5977. g) J. Y. C. Lim, I. Marques, V. Félix, P. D. Beer, J. Am. Chem. Soc. 2017, 139, 12228. i) Z. Yan, Q. Huang, W. Liang, X. Yu, D. Zhou, W. Wu, J. J. Chruma, C. Yang, Org. Lett. 2017, 19, 898. j) R. Mitra, H Zhu, S. Grimme, J. Niemeyer, Angew. Chem. Int. Ed. 2017, 56, 11456 k) J. Y. C. C. Lim, I. Marques, V. Félix, P. D. Beer, Angew. Chem. Int. Ed. 2018, 57, 584. I) G. De Bo, M. A. Y. Y. Gall, S. Kuschel, J. De Winter, P. Gerbaux, D. A. Leigh, Nat. Nanotechnol. 2018, 13, 381.
[7] a) C. Yamamoto, Y. Okamoto, T. Schmidt, R. Jäger, F. Vögtle, J. Am.

Chem. Soc. 1997, 119, 10547. b) C. Reuter, A. Mohry, A. Sobanski, F Vögtle, Chem. - A Eur. J. 2000, 6, 1674. c) C. P. McArdle, S. Van, M. C. Jennings, R. J. Puddephatt, J. Am. Chem. Soc. 2002, 124, 3959. d) A. Theil, C. Mauve, M.-T. Adeline, A. Marinetti, J.-P. Sauvage, Angew. Chem. Int. Ed. 2006, 45, 2104. e) Y. Makita, N. Kihara, N. Nakakoji, T. Takata, S. Inagaki, C. Yamamoto, Y. Okamoto, Chem. Lett. 2007, 36, 162. f) T. Ogoshi, D. Yamafuji, T. Aoki, K. Kitajima, T. Yamagishi, Y. Hayashi, S. Kawauchi, Chem. - A Eur. J. 2012, 18, 7493. g) F. Ishiwari, K. Nakazono, Y. Koyama, T. Takata, Chem. Commun. 2011, 47, 11739. h) K. Hirose, M. Ukimi, S. Ueda, C. Onoda, R. Kano, K. Tsuda, Y. Hinohara, Y. Tobe, Symmetry 2018, 10, 20.
[8] For a recent example of related co-conformational mechanical planar chirality ${ }^{[5 c]}$ see: Y. Mochizuki, K. Ikeyatsu, Y. Mutoh, S. Hosoya, S. Saito, Org. Lett. 2017, 19, 4347.
[9] a) Y. Kaida, Y. Okamoto, J.-C. Chambron, D. K. Mitchell, J.-P. Sauvage, Tetrahedron Lett. 1993, 34, 1019. b) J. F. Nierengarten, C. O. DietrichBuchecker, J. P. Sauvage, J. Am. Chem. Soc. 1994, 116, 375. c) C. P. McArdle, J. J. Vittal, R. J. Puddephatt, Angew. Chem. Int. Ed. 2000, 39, 3819. d) R. T. S. Lam, A. Belenguer, S. L. Roberts, C. Naumann, T. Jarrosson, S. Otto, Jeremy K. M. Sanders, Science 2005, 308, 667. e) C. D. Pentecost, K. S. Chichak, A. J. Peters, G. W. V. Cave, S. J. Cantrill, J. F. Stoddart, Angew. Chem. Int. Ed. 2007, 46, 218. f) M.-K. Chung, P. S. White, S. J. Lee, M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 8683. g) C. Peinador, V. Blanco, J. M. Quintela, J. Am. Chem. Soc. 2009, 131, 920. h) C. Schouwey, J. J. Holstein, R. Scopelliti, K. O. Zhurov, K. O. Nagornov, Y. O. Tsybin, O. S. Smart, G. Bricogne, K. Severin, Angew. Chem. Int. Ed. 2014, 53, 11261. i) R. Zhu, J. Lübben, B. Dittrich, G. H. Clever, Angew. Chem. Int. Ed. 2015, 54, 2796. j) J. E. Beves, J. J. Danon, D. A. Leigh, J.-F. Lemonnier, I. J. Vitorica-Yrezabal, Angew. Chem. Int. Ed. 2015, 54, 7555. k) C. S. Wood, T. K. Ronson, A. M. Belenguer, J. J. Holstein, J. R. Nitschke, Nat. Chem. 2015, 7, 354. I) T. Prakasam, M. Lusi, E. Nauha, J.-C. C. Olsen, M. Sy, C. PlatasIglesias, L. J. Charbonnière, A. Trabolsi, Chem. Commun. 2015, 51, 5840.
[10] Knotted molecules also display topological stereochemistry. For a recent review see: S. D. P. Fielden, D. A. Leigh, S. L. Woltering, Angew. Chem. Int. Ed. 2017, 56, 11166.
[11] Stereoselective transformations of interlocked molecules containing covalent stereogenic units: a) Y. Tachibana, N. Kihara, Y. Ohga, T. Takata, Chem. Lett. 2000, 29, 806. b) K. Hirose, Y. Nakamura, Y. Tobe, Org. Lett. 2009, 11, 145. c) K. Xu, K. Nakazono, T. Takata, Tetrahedron Lett. 2016, 57, 4356. d) A. Martinez-Cuezva, C. Lopez-Leonardo, D. Bautista, M. Alajarin, J. Berna, J. Am. Chem. Soc. 2016, 138, 8726. e) A. Martinez-Cuezva, D. Bautista, M. Alajarin, J. Berna, Angew. Chem. Int. Ed. 2018, 130, 6563
[12] Co-conformationally covalently point chiral rotaxanes (Leigh describes these as "mechanical point" chiral ${ }^{[12]}$ but we prefer to emphasize the dynamic aspect of the stereochemistry) ${ }^{[5 c]}$ can be synthesised using chiral starting materials as the stereogenic unit arises from a prochiral covalent unit that is desymmetrized by the position of a macrocycle, the location of which can be controlled during the synthesis: a) M. AlvarezPérez, S. M. Goldup, D. A. Leigh, A. M. Z. Slawin, J. Am. Chem. Soc. 2008, 130, 1836. b) A. Carlone, S. M. Goldup, N. Lebrasseur, D. A. Leigh, A. Wilson, J. Am. Chem. Soc. 2012, 134, 8321. c) Y. Cakmak, S. Erbas-Cakmak, D. A. Leigh, J. Am. Chem. Soc. 2016, 138, 1749.
[13] P. Mobian, N. Banerji, G. Bernardinelli, J. Lacour, Org. Biomol. Chem. 2006, 4, 224.
[14] MPC diastereomers of CD rotaxanes are usually termed "orientational" isomers and the MPC stereogenic unit overlooked. Examples: a) M. Craig, M. Hutchings, T. Claridge, H. Anderson, Angew. Chem. Int Ed. 2001, 40, 1071. b) J. W. Park, H. J. Song, Org. Lett. 2004, 6, 4869. c) Q.-C. Wang, X. Ma, D.-H. Qu, H. Tian, Chem. - A Eur. J. 2006, 12, 1088. d) C. Casati, P. Franchi, R. Pievo, E. Mezzina, M. Lucarini, J. Am. Chem. Soc. 2012, 134, 19108.
[15] Inouye reported CPL of a related co-conformationally MPC rotaxane: M. Inouye, K. Hayashi, Y. Yonenaga, T. Itou, K. Fujimoto, T. Uchida, M. Iwamura, K. Nozaki, Angew. Chem. Int. Ed. 2014, 53, 14392.
[16] Preliminary data using a racemic MPC rotaxane host: N. Kameta, Y.

Nagawa, M. Karikomi, K. Hiratani, Chem. Commun. 2006, 3714.
[17] R. J. Bordoli, S. M. Goldup, J. Am. Chem. Soc. 2014, 136, 4817.
$[18] \quad$ a) J. D. Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh, R. T. McBurney, Chem. Soc. Rev. 2009, 38, 1530. b) S. Saito, J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 437. c) M. Denis, S. M. Goldup, Nat. Rev. Chem. 2017, 1, 0061.
[19] a) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057. b) V. V Rostovtsev, L. G. Green, V. V Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
[20] a) V. Aucagne, K. D. Hänni, D. A. Leigh, P. J. Lusby, D. B. Walker, J. Am. Chem. Soc. 2006, 128, 2186. b) V. Aucagne, J. Berna, J. D. Crowley, S. M. Goldup, K. D. Hänni, D. A. Leigh, P. J. Lusby, V. E. Ronaldson, A. M. Z. Slawin, A. Viterisi, D. B. Walker, J. Am. Chem. Soc. 2007, 129, 11950.
[21] a) H. Lahlali, K. Jobe, M. Watkinson, S. M. Goldup, Angew. Chem. Int. Ed. 2011, 50, 4151. b) J. E. M. Lewis, R. J. Bordoli, M. Denis, C. J. Fletcher, M. Galli, E. A. Neal, E. M. Rochette, S. M. Goldup, Chem. Sci. 2016, 7, 3154.
[22] Examples of stereoselective CuAAC reactions: a) T. Osako, Y. Uozumi, Org. Lett. 2014, 16, 5866. b) T. Osako, Y. Uozumi, Org. Lett. 2014, 16, 5866.G. Stephenson, J. Buttress, D. Deschamps, M. Lancelot, J. Martin, A. Sheldon, C. Alayrac, A.-C. Gaumont, P. Page, Synlett 2013, 24, 2723. c) T. Hashimoto, K. Maruoka, Chem. Rev. 2015, 115, 5366. d) W. D. G. Brittain, B. R. Buckley, J. S. Fossey, Chem. Commun. 2015, 51, 17217. e) T. Osako, Y. Uozumi, Synlett 2015, 26, 1475. f) T. Song, L. Li, W. Zhou, Z.-J. Zheng, Y. Deng, Z. Xu, L.-W. Xu, Chem. - A Eur. J. 2015, 21, 554. g) W. D. G. Brittain, B. R. Buckley, J. S. Fossey, ACS Catal. 2016, 6, 3629. h) M.-Y. Chen, T. Song, Z.-J. Zheng, Z. Xu, Y.-M. Cui, L.-W. Xu, RSC Adv. 2016, 6, 58698.
[23] Selected discussions on the CuAAC mechanism: a) V. O. Rodionov, S. I. Presolski, D. Díaz Díaz, V. V Fokin, M. G. Finn, J. Am. Chem. Soc. 2007, 129, 12705. b) R. Berg, B. F. Straub, Beilstein J. Org. Chem. 2013, 9, 2715. c) B. T. Worrell, J. A. Malik, V. V. Fokin, Science 2013, 340, 457. d) S. Lal, H. S. Rzepa, S. Díez-González, ACS Catal. 2014, 4, 2274. e) L. Jin, D. R. Tolentino, M. Melaimi, G. Bertrand, Sci. Adv. 2015, 1, e1500304. f) Y. Özkılıç, N. Ş. Tüzün, Organometallics 2016, 35, 2589. g) C. Wang, D. Ikhlef, S. Kahlal, J.-Y. Saillard, D. Astruc, Coord. Chem. Rev. 2016, 316, 1. h) C. P. Seath, G. A. Burley, A. J. B. Watson, Angew. Chem. Int. Ed. 2017, 56, 3314.
[24] Selected discussions on the AT-CuAAC mechanism:[20b] a) J. Winn, A. Pinczewska, S. M. Goldup, J. Am. Chem. Soc. 2013, 135, 13318. b) E. A. Neal, S. M. Goldup, Chem. Sci. 2015, 6, 2398. c) E. A. Neal, S. M. Goldup, Angew. Chem. Int. Ed. 2016, 55, 12488. d) Y. Miyazaki, C. Kahlfuss, A. Ogawa, T. Matsumoto, J. A. Wytko, K. Oohora, T. Hayashi, J. Weiss, Chem. - A Eur. J. 2017, 23, 13579.
[25] In our hands, commercially available ADMP ${ }^{[26 d, e, 9]}$ proved most practical.
[26] a) J. Zaloom, D. C. Roberts, J. Org. Chem. 1981, 46, 5173. b) R. Yan, F. Yang, Y. Wu, L. Zhang, X. Ye, Tetrahedron Lett. 2005, 46, 8993. c) E. D. Goddard-Borger, R. V. Stick, Org. Lett. 2007, 9, 3797. d) J. R. Suárez, B. Trastoy, M. E. Pérez-Ojeda, R. Marín-Barrios, J. L. Chiara, Adv. Synth. Catal. 2010, 352, 2515. e) M. Kitamura, S. Kato, M. Yano, N. Tashiro, Y. Shiratake, M. Sando, T. Okauchi, Org. Biomol. Chem. 2014, 12, 4397. f) M. Kitamura, K. Murakami, in Org. Synth., John Wiley \& Sons, Inc., Hoboken, NJ, USA, 2016, pp. 171. g) M. Kitamura, Chem. Rec. 2017, 17, 653.
[27] Whereas no epimerization of the covalent stereocentre was observed in the case of rotaxane 4, the corresponding axle epimerized during the CuAAC reaction. See ESI.
[28] For the assignment of absolute MPC stereochemistry see refs. 5c, 17.
[29] Stoichiomeric Cu' was used as the metal ion does not turn over during the reaction; the Cu'-triazolide formed in the AT-CuAAC reaction is stable and catalytically inactive under the reaction conditions. ${ }^{[24 a]}$
[30] Isolated yields in Table 1 refer to the mixture of diastereomers; the purpose of this report is to identify reactions with high diastereoselectivity and yield to avoid the need for separation of diastereomers. Indeed, diastereomer separation usually results in reduced isolated yield; to demonstrate this (see ESI), diastereomerically pure (R, R_{mp})-4 was isolated in 55% yield (vs 88% for

98: 2 mixture) and converted to enantiopure (R_{mp})-5.
[31] The stereochemistry of rotaxanes 5 was assigned by considering that alkylation does not allow reorientation of the macrocycle on the axle.
[32] Although the mechanical stereochemistry is not affected in the alkylation step, it is interesting to consider whether the mechanical stereochemistry influences the face of the enolate which interacts with the incoming electrophile. ${ }^{[11]}$ A preliminary experiment replacing Bnl with p-BrBnl in the alkylation step proceeded in $\sim 2: 1$ d.r (see ESI).
[33] $\quad\left(R / S_{m p}\right)-5$ was obtained using (R / S)-3e.
[34] Selected examples: a) S. M. Goldup, D. A. Leigh, T. Long, P. R. McGonigal, M. D. Symes, J. Wu, J. Am. Chem. Soc. 2009, 131, 15924. b) S. M. Goldup, D. A. Leigh, P. R. McGonigal, V. E. Ronaldson, A. M. Z. Slawin, J. Am. Chem. Soc. 2010, 132, 315. c) J. E. M. Lewis, J. Winn, L. Cera, S. M. Goldup, J. Am. Chem. Soc. 2016, 138, 16329. e) J. E. M. Lewis, F. Modicom, S. M. Goldup, J. Am. Chem. Soc. 2018, 140, 4787.
[35] Selected examples: a) A. Noor, S. C. Moratti, J. D. Crowley, Chem. Sci. 2014, 5, 4283. b) R. Barat, T. Legigan, I. Tranoy-Opalinski, B. Renoux, E. Péraudeau, J. Clarhaut, P. Poinot, A. E. Fernandes, V. Aucagne, D. A. Leigh, S. Papot, Chem. Sci. 2015, 6, 2608. c) A. Tron, P. J. Thornton, B. Kauffmann, J. H. R. Tucker, N. D. McClenaghan, Supramol. Chem. 2016, 28, 733. d) J. Y. C. Lim, I. Marques, A. L. Thompson, K. E. Christensen, V. Félix, P. D. Beer, J. Am. Chem. Soc. 2017, 139, 3122. e) M. Denis, J. Pancholi, K. Jobe, M. Watkinson, S. M. Goldup, Angew. Chem. Int. Ed. 2018, 57, 5310. f) M. Denis, L. Qin, P. Turner, K. A. Jolliffe, S. M. Goldup, Angew. Chem. Int. Ed. 2018, 57, 5315.

Entry for the Table of Contents (Please choose one layout)

Layout 1:

COMMUNICATION

Taking (stereo)control of the mechanical bond. We report a novel stereoselective approach to mechanically planar chiral rotaxanes in up to 98: 2 d.r. using a readily available α-amino acid-derived azide. Symmetrization of the covalent stereocenter yields a rotaxane in which the mechanical bond provides the only stereogenic element in excellent enantiopurity.

Michael A. Jinks, \ddagger Alberto de Juan, \ddagger Mathieu Denis, Catherine J. Fletcher, Marzia Galli, Ellen M. G. Jamieson, Florian Modicom, Zhihui Zhang, and Stephen M. Goldup*

Page No. - Page No.
Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes

[^0]: $\ddagger \quad$ These authors contributed equally.
 [a] M. A. Jinks, A. de Juan, M. Denis, C. J. Fletcher, M. Galli, E. M. G. Jamieson, F. Modicom, Z. Zhang, S. M. Goldup
 Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
 E-mail: s.goldup@soton.ac.uk
 Supporting information (synthetic details, NMR, MS) and ORCID number(s) for the authors can be found at http://dx.doi.org/10.1002/anie...

