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Biometric recognition is an advanced technology that employs physical 

features (such as fingerprint, iris and face capture) and behavioural features 

(such as gait, signature and voice) to identify people. Biometric features are 

reliable and valid ways to describe the unique properties of individuals, but 

there are often rigorous requirements on the position and characteristics of 

devices used for data acquisition. Since biometric features can be difficult to 

capture at a distance, soft biometric features, such as height, weight, skin 

colour and gender, have received much attention. Although the uniqueness of 

soft biometric features is not as intuitively obvious as traditional biometric 

features, numerous experiments have demonstrated that the desired 

recognition accuracy can be achieved by using different soft biometric features. 

This thesis will propose state-of-the-art multimodal biometric fusion 

techniques to improve recognition performance of soft biometrics.  

The first contribution of this thesis is to estimate fusion performance based 

on three types of soft biometrics - face, body and clothing. Feature level and 

score level fusion strategies will be employed to measure and analyse the 

influence of fusion on soft biometric recognition.  

The second key contribution of this research is that the analysis of the 

influence of distance on soft biometric traits and an exploration of the potency 



 

 

of recognition using fusion at varying distances have been performed. A new 

soft biometric database, containing images of the human face, body and 

clothing taken at three different distances, was created and used to obtain face, 

body and clothing attributes. First, this new database was constructed to 

explore the suitability of each modality at a distance: intuitively, the face is 

suitable for near field identification, and the body becomes optimal when the 

subject is further away. The new dataset is used to explore the potential of 

face, body and clothing for human recognition using fusion. In this section, 

some novel fusion techniques on different levels (feature, score and rank level) 

are proposed to improve soft biometric recognition performance. 

A Supervised Generalised Canonical Correlation (SG-CCA) methodology is 

proposed to fuse the soft biometric features. The proposed SG-CCA is 

numerically validated to be the best fusion method compared with other multi-

modal fusion methods. An SVM-weighted Likelihood Ratio Test (SVM-LRT) 

method is proposed for score level fusion. The experimental results 

demonstrate that SVM-LRT-based fusion significantly outperforms the single-

mode recognition. A novel joint density distribution-based rank-score fusion 

is also proposed to combine rank and score information. Analysis using the 

new soft biometric database demonstrates that recognition performance is 

significantly improved by using the new methods over single modalities at 

different distances. 
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 Context and Contributions 

 

1.1 Context 

Soft biometric recognition is a technique that uses semantic descriptions as 

features to identify subjects [1]. Soft biometric attributes include height, 

weight, gender and skin colour, which can be used to identify a person in 

practical applications [2]. In contrast, traditional biometrics overwhelmingly 

rely on sophisticated data collection devices. For example, facial recognition 

generally requires high image quality; however, image quality dramatically 

decreases as distance increases. Soft facial features, such as skin colour and 

face size, are relatively straightforward to perceive, even at a long distance. In 

comparison with traditional biometrics, soft biometric attributes are more 

easily understood. 

Recognition performance using individual soft biometric datasets has been 

studied in previous research. A model using the human semantic description 

of soft biometrics to identify subjects was proposed in [3], where soft 

biometric features were used to enrich the recognition method. 19 body 

features were investigated in [4], and the results demonstrated that shoulder 

shape and arm length can aid recognition. 24 soft facial attributes are 

discussed in [5], and their performance is measured through analysis of 

variance, entropy and mutual information. Skin colour, eyebrow length and 

face length were demonstrated to be more reliable for use in recognition. In 

addition, 21 clothing features were reported in [6], demonstrating that 

clothing features can also be used for recognition (though clothing is innately 

short term as clothes can easily be changed). Furthermore, it was also 

demonstrated that head coverage, lower body clothing category and belt 

presence can greatly improve recognition. 
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Most traditional biometric features distinguish people by using their unique 

features, such as DNA and fingerprints, whilst soft biometric features are not 

so discriminative by their nature. Nonetheless, accurate recognition can be 

achieved by using multi-modal soft biometrics. Despite the research into multi-

modal soft biometric recognition being at an early stage, some articles have 

reported results using the most advanced methods. A method proposed in [7] 

used soft biometric attributes to improve recognition performance of 

traditional biometrics. Prior work on soft biometrics at a distance is reported 

in [8], which demonstrated that the fusion of soft biometrics and traditional 

facial features could improve the performance of recognition based on a 

sparse representation. A fusion method proposed in [9] used soft biometrics 

(body, clothing and face) for identification at a distance. The results 

demonstrated that Bayesian fusion can greatly improve recognition 

performance. 

In order to achieve more accurate recognition, recognition systems frequently 

employ multi-modal fusion. Fusion approaches are conventionally divided into 

five different levels: sensor, feature, score, rank and decision level [10]. Figure 

1.1 and Figure 1.2 show block diagrams of recognition processes using single-

mode and multi-modal biometrics. 

 

 

Figure 1.1 Single-mode biometric system. 

 

 

Figure 1.2 Multi-modal biometric system. 
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Feature level fusion based on feature extraction from multiple data sources is 

intended to create a new feature set to represent a subject. Therefore, the key 

requirement of the technology is to effectively describe feature information, in 

order to achieve the most accurate recognition. The general idea is to minimise 

the distance of feature information between intra-class samples, and maximise 

the distance between inter-class samples. Another important research field in 

the area of feature fusion focused on how to extract effective information by 

removing redundancy. Among a number of potential techniques used for 

feature extraction, linear feature extraction methods are widely used to reduce 

the dimensionality of the feature set. For example, a feature fusion method 

based on canonical correlation analysis (CCA) is introduced in [11]]. Another 

feature level fusion technique, discriminant correlation analysis (DCA) [12], 

develops CCA by incorporating the class information into the correlation 

analysis of the feature sets. A multi-modal method, based on sparse 

representation, is proposed by Sumit, which significantly improved robustness 

and accuracy [13]. 

Score level fusion uses a combination of match scores from different biometric 

matchers, and then derives a new score from this information. Some simple 

methods, such as product rule, sum rule, max, medium and min rules, were 

introduced [14]. These methods can be readily implemented, since they do not 

require statistical information. Some score level fusion methods are based on 

the match score density distribution. A combinational method, using the 

Bayesian approach, was proposed in [14]. It estimated the genuine and 

impostor matching scores for each component modality. A support vector 

machine (SVM) based score level fusion was introduced and validated in [15]. 

The weighted score level fusion achieved a higher accuracy with the lower 

equal error rate (EER), compared with individual modalities [16]. 

1.2 Contributions 

The main contributions of this research are: 

1. To investigate human identification and verification performance by 

fusing different soft biometrics, provided by existing Southampton 

databases. 
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2. Creation of a new dataset of images, with controlled lighting and 

background at differing distances. A consistent set of labels for body, 

face and clothing at three distances is collected, and then used to 

investigate feature performance. The significance, stability and 

discriminative power of soft biometrics at different distances are 

analysed. Additionally, the contributions of attributes toward 

identification and verification are assessed. 

3. An extended supervised generalised canonical correlation analysis 

(SG-CCA) method for soft biometric fusion is validated by three soft 

biometric datasets: body, face and clothing. The new dataset is first 

used for biometric fusion. The proposed method is not confined to 

biometrics, but generalised to use in pattern recognition. 

4. An extended SVM-weighted likelihood ratio method for score level 

fusion. Results demonstrate the superiority of the fusion method in 

human recognition, when compared with single-modality. 

5. A new rank and score level fusion method based on joint density 

distribution. Since rank is a linear description (i.e. 1, 2, 3, …), it can 

be used to indicate the order of enrolled samples, but fails to 

describe the variations between adjacent samples. Thus, a novel 

technique is proposed to combine the effective information in rank 

and similarity scores, namely joint density-based rank-score fusion 

to consolidate the recognition result. The fusion effects over soft 

biometric characteristics and over distances are also analysed. 

1.3 Thesis outline 

This thesis is divided into two parts, corresponding to its two major 

contributions.  

Part I focuses on the soft biometric fusion and validates the performance of 

soft biometric fusion using a Southampton dataset. The soft biometric 

database, including three datasets based on face, body and clothing, is 

introduced in Chapter 2. Each dataset is represented by categorical and 

comparative descriptions. It introduces the matching and recognition 

algorithms, and analyses recognition performance of different datasets. In 

Chapter 3, two fusion level methods (feature and score) are tested to 
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demonstrate the improvement of recognition performance using only soft 

biometrics. 

Part 2 focuses on the new soft biometric dataset at different distances, and 

analyses the fusion preference at different distances. Chapter 4 introduces a 

new database of soft biometrics based on imagery collected using the 

University of Southampton Gait Tunnel. The images in the new database were 

synthesised in order to appear to be captured in an outdoor environment, and 

then labelled via human operators using the CrowdFlower system. The 

dataset’s description, feature analysis, and the influence of the distance on 

soft biometric traits are all discussed in this chapter. Chapter 5 reviews the 

state-of-the-art techniques in feature-level fusion, and proposes a supervised 

generalised canonical correlation method to fuse soft biometric features. 

Chapter 6 introduces score level and rank level techniques, and the 

experiments are performed using a new soft biometric database. Chapter 7 

presents a novel joint density distribution-based rank-score fusion strategy 

that combines rank and score information. 

Finally, Chapter 8 summarises the results obtained so far and outlines the 

possible directions for future research. 

1.4  Publications 

1. Mark S. Nixon, Bingchen H. Guo, Sarah V. Stevenage, Emad S. Jaha, 

Nawaf Almudhahka, and Daniel Martinho-Corbishley. Towards 

automated eyewitness descriptions: describing the face, body and 

clothing for recognition. Visual Cognition, pages 1-15, 2016 

2. Bingchen H. Guo, Mark S. Nixon, John N. Carter. Supervised generalized 

canonical correlation analysis of soft biometric fusion for recognition at 

a distance. Proc. 8th International Conference on Imaging for Crime 

Prevention and Detection, 2017 

3. Bingchen H. Guo, Mark S. Nixon, John N. Carter. Fusion analysis of soft 

biometrics for recognition at a distance. Proc. Identity, Security and 

Behaviour Analysis (ISBA), 2018 IEEE International Conference on, IEEE, 

2018 

4. Bingchen H. Guo, Mark S. Nixon, John N. Carter. A Joint Density Based 

Rank-Score Fusion for Soft Biometric Recognition at a Distance, 
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Accepted for 2018 International Conference on Pattern Recognition 

(ICPR). IAPR/IEEE  

5. Bingchen H. Guo, Mark S. Nixon, John N. Carter. Soft Biometric Fusion 

for Recognition at a Distance, IEEE Trans on Biometrics, Behaviour and 

Identity Science (to be submitted) 



 

 Soft Biometrics 

Soft biometrics use physical traits and behaviour characteristics that can be 

described using normal vocabulary. Soft biometric features include height, 

weight, hair length, arm length, skin colour, gender, race, and more. 

Compared with traditional biometrics, such as DNA, fingerprints and the iris, 

the features of soft biometrics are not unique. Nonetheless, when multiple 

features of soft biometrics are used for recognition at the same time, an 

accurate result can be obtained. In practical applications, the camera 

resolution significantly influences the performance of traditional biometric 

recognition, as CCTV may not provide detailed facial information. However, it 

remains straightforward to detect skin colour, gender and other soft biometric 

features [17]. Soft biometric traits have a clear advantage - that they are 

features that humans are more likely to use to describe another person. There 

is a gap between machines and people in identifying a person, and the features 

obtained from a computer algorithm are difficult to understand. However, soft 

biometrics bridge this gap [18]. 

This chapter introduces the database and the soft biometric features used in 

the experiments. The dataset includes categorical and comparative features 

for body, face and clothing datasets. 

2.1 Existing soft biometrics datasets 

2.1.1 Categorical dataset  

Body categorical dataset 

 

The body categorical dataset was originally collected by Samangooei [17]. The 

principles of trait selection are to choose features used in normal life. These 
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descriptions are relatively immutable, such as skin colour (except in rare cases, 

for example, if someone has had plastic surgery). Although it may be possible 

to change skin colour through a suntan, we are using skin colour to judge race. 

The chosen traits are easy to be collected and judged, especially from a remote 

distance, and the final traits used are listed in Table 2.1 

 

Table 2.1 Categorical body attributes and corresponding categorical labels. 

Body  Global 

Trait  Term  Trait  Term 

0. Arm Length (0.1) Very Short 12. Weight (12.1) Very Thin 

(0.2) Short (12.2) Thin 

(0.3) Average (12.3) Average 

(0.4) Long (12.4) Big 

(0.5) Very Long (12.5) Very Big 

1. Arm Thickness (1.1) Very Thin 13. Age (13.1) Infant 

(1.2) Thin (13.2) Pre Adolescence 

(1.3) Average (13.3) Adolescence 

(1.4) Thick (13.4) Young Adult 

(1.5) Very Thick (13.5) Adult 

2. Chest (2.1) Very Slim (13.6) Middle Aged 

(2.2) Slim (13.7) Senior 

(2.3) Average 14. Ethnicity (14.1) European 

(2.4) Large (14.2) Middle Eastern 

(2.5) Very Large (14.3) Indian/Pakistan 

3. Figure (3.1) Very Small (14.4) Far Eastern 

(3.2) Small (14.5) Black 

(3.3) Average (14.6) Mixed 

(3.4) Large (14.7) Other 

(3.5) Very Large 15. Gender (15.1) Female 

4. Height (4.1) Very Short (15.2) Male 

(4.2) Short Head 

(4.3) Average Trait Term 

(4.4) Tall 16. Skin Colour (16.1) White 

(4.5) Very Tall (16.2) Tanned 

5. Hips (5.1) Very Narrow (16.3) Oriental 

(5.2) Narrow (16.4) Black 

(5.3) Average 17. Facial Hair Colour (17.1) None 

(5.4) Broad (17.2) Black 
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(5.5) Very Broad (17.3) Brown 

6. Leg Length (6.1) Very Short (17.4) Red 

(6.2) Short (17.5) Blond 

(6.3) Average (17.6) Grey 

(6.4) Long 18. Facial Hair Length (18.1) None 

(6.5) Very Long (18.2) Stubble 

7. Leg Direction (7.1) Very Bowed (18.3) Moustache 

(7.2) Bowed (18.4) Goatee 

(7.3) Straight (18.5) Full Beard 

(7.4) Knock Kneed 19. Hair Colour (19.1) Black 

(7.5) Very Knock 

Kneed 

(19.2) Brown 

8 Leg Thickness (8.1) Very Thin (19.3) Red 

(8.2) Thin (19.4) Blond 

(8.3) Average (19.5) Grey 

(8.4) Thick (19.6) Dyed 

(8.5) Very Thick 20. Hair Length (20.1) None 

9. Muscle Build (9.1) Very Lean (20.2) Shaven 

(9.2) Lean (20.3) Short 

(9.3) Average (20.4) Medium 

(9.4) Muscly (20.5) Long 

(9.5) Very Muscly 21. Neck Length (21.1) Very Short 

10. Proportions (10.1) Average (21.1) Short 

(10.2) Unusual (21.3) Average 

11. Shoulder Shape (11.1) Very Rounded (21.4) Long 

(11.2) Rounded (21.5) Very Long 

(11.3) Average 22. Neck Thickness (22.1) Very Thin 

(11.4) Square (22.2) Thin 

(11.5) Very Square (22.3) Average 

 (22.4) Thick 

(22.5) Very Thick 

 

The body categorical dataset (Cat-body) describes 115 separate subjects. A 

Gait Annotation System (GAnn) [19] was used to make semantic annotations 

to each subject. Figure 2.1 shows an interface of GAnn. 
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Figure 2.1 User gait annotation system interface [19]. 

 

Face categorical dataset 

 

Table 2.2 Categorical face attributes and corresponding categorical labels. 

Trait Low Label high label 
 

Trait Low Label high label 

Face Short Long 
 

Eyebrows Close Together Far Apart 

Face Narrow Wide 
 

Eyebrows Straight Arched 

Face Bony Fleshy 
 

Eyes Small Large 

Skin Light Dark 
 

Eyes Slanted Round 

Skin Smooth Wrinkled 
 

Ears Small Large 

Skin Clear Pimpled 
 

Ears Close to head Sticking out 

Hair Short Long 
 

Ears Hidden Evident 

Hair Straight Curly 
 

Nose Flat Protruding 

Hair Thin Thick 
 

Nose Short Long 

Forehead Small Large 
 

Nose Narrow Wide 

Forehead Straight Hairline 
 

Nose Upturned Hooked 

Eyebrows Thin Bushy 
 

Lips Lips Thin Thick Thick 

Eyebrows Low High 
 

Chin and Jaw Angular Round 

   
 

Chin and Jaw Receding Protruding 
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The same approach was used to choose facial and clothing features. However, 

more details are used for the facial features, including the shape of the 

eyebrows, the length of the face, and more. Table 2.2 provides a full list of the 

facial features used.  

 

Clothing categorical dataset 

 

All subjects used for the face and clothing dataset (Cat-face and Cat-clothes) 

are the same as those for the body dataset. Each of the 115 individuals was 

described and labelled by multiple users [20]. The clothing features are listed 

in Table 2.3. The user interface developed to view attributes and obtain 

clothing labels is shown in Figure 2.2. 

 

  

Figure 2.2 User interface of clothing label collection system 
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Table 2.3 Categorical clothing attributes and corresponding categorical labels 

Body zone Semantic Attribute Categorical Labels 

 

Head 

1. Head clothing category [None, Hat, Scarf, Mask, Cap] 

2. Head coverage [None, Slight, Fair, Most, All] 

3. Face covered [Yes, No, Don't know] 

4. Hat [Yes, No, Don't know] 

 

Upper body 

5. Upper body clothing category [Jacket, Jumper, T-shirt, Shirt, Blouse, Sweater, 

Coat, Other] 

6. Neckline shape [Strapless, V-shape, Round, Shirt collar, Don`t 

know] 

7. Neckline size [Very Small, Small, Medium, Large, Very 

Large] 

8. Sleeve length [Very Short, Short, Medium, Long, Very Long] 

 

Lower body 

9. Lower body clothing category [Trouser, Skirt, Dress] 

10. Shape [Straight, Skinny, Wide, Tight, Loose 

11. Leg length (of lower clothing) [Very Short, Short, Medium, Long, Very Long] 

12. Belt presence [Yes, No, Don't know] 

Foot 13. Shoes category [Heels, Flip ops, Boot, Trainer, Shoe] 

14. Heel level [Flat/low, Medium, High, Very high] 

Attached to 

body 

15. Attached object category [None, Bag, Gun, Object in hand, gloves] 

16. Bag (size) [None, Side-bag, Cross-bag, Handbag, 

Backpack, Satchel] 

17. Gun [Yes, No, Don't know] 

18. Object in hand [Yes, No, Don't know] 

19. Gloves [Yes, No, Don't know] 

General style 20. Style category [Well-dressed, Business, Sporty, Fashionable, 

Casual, Nerd, Hippy, Religious, Tramp, Other] 

Permanent 21. Tattoos [Yes, No, Don't know] 
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2.1.2 Comparative dataset 

Another type of the features is labelled by comparing two objects using human 

descriptions. For example, it is easy to tell that one person is taller than 

another by observation, as it is easy to make a rough guess of height, but hard 

to estimate someone’s exact height. The comparative dataset is used to study 

a more reliable description. 

Comparative descriptions use features that are easily understood and 

annotated. The information for identification needs multiple comparisons 

between objects. Comparative descriptions can deliver more accurate 

descriptions. 

The human categorical description was acquired based on subjective 

measurements, and varies with different people due to various standards. 

These standards are dictated by personal opinion, and are usually based on 

the understanding of the commentator of the population average value and 

the population difference, with this variation leading to diverse annotations. 

Comparative descriptions are generalised based on visual comparisons 

between two subjects, which makes the labels more consistent. 

Each comparison describes the difference of each feature between two 

subjects, such as height, weight and the length of the arm. The comparison 

for each feature is labelled using three classes: shorter, the same or taller, 

based on the observation that a scale of 3 could lead to positive discrimination 

[5]. Each level is denoted by a signed integer, for example, when comparing 

height between two subjects, -1 means shorter, 0 represents the same and +1 

means taller. 

 

Body comparisons 

 

Body and global features have the highest occurrence in the description of 

witnesses, including height, weight, race and gender. These features are 

obvious and easy to remember. In this study, the features were mainly based 
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on the work of Macleod [21], which provided the best physical features for the 

human description. 

Some traits, such as the shape of the legs, have been removed because they 

are difficult to observe from a side view image. Some head features that can 

be only extracted from a minority of subjects were removed [4]. 16 out of 19 

characteristics are compared, with every feature being labelled with three tags. 

Three characteristics are used as the absolute markers of gender, race and 

skin colour, since these three special traits are not suitable for comparisons, 

or lack a suitable standard to compare. However, these features provide useful 

information, so will not be removed. All the features used to describe the body 

are shown in Table 2.4. 

 

Table 2.4 Comparative body attributes and corresponding labels. 

Trait Type Labels 

Arm Length Comparative Shorter, Same, Longer 

Arm Thickness Comparative Thinner, Same, Thicker 

Chest Comparative Smaller, Same, Bigger 

Figure Comparative Smaller, Same, Larger 

Height Comparative Shorter, Same, Taller 

Hips Comparative Shorter, Same, Taller 

Leg Length Comparative Shorter, Same, Longer 

Leg Thickness Comparative Thinner, Same, Thicker 

Muscle Build Comparative Leaner, Same, More Muscular 

Shoulder Shape Comparative More Square, Same, More Rounded 

Weight Comparative Thinner, Same, Fatter 

Age Comparative Younger, Same, Older 

Ethnicity Absolute European, Middle Eastern, Indian/Pakistan, Black, 

Mixed, Other 

Gender Absolute Female, Male 

Skin Colour Absolute White, Tanned, Oriental, Black 

Hair Colour Comparative Lighter, Same, Darker 
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Hair Length Comparative Shorter, Same, Longer 

Neck Length Comparative Shorter, Same, Longer 

Neck Thickness Comparative Thinner, Same, Thicker 

 

 

Figure 2.3 Interface bodily comparative label collection system. 

 

Figure 2.3 shows the interface of the comparative label collection system for 

body traits. There are 572 sets of comparisons in the database. The 

comparisons are made using 80 sub-subjects and 20 targets. This meant 2 

subjects’ responses could be compared using the same target. In these 

circumstances, a new comparison can be inferred from those two comparisons. 

 

Facial comparisons 

 

Research in the field of psychology demonstrates that detailed descriptions of 

facial features by people are often wrong, and they are rarely used in the 

description of suspects, because people’s vocabulary for facial features is 

deficient [22], and facial features are difficult to remember [23]. 
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The comparing vision allows comparative labels to be used to describe facial 

features in a natural way. It needs meaningful words to describe the features 

and to avoid subjective labels [4]. This can improve the accuracy of the 

description. Although facial features described by witnesses are not used as 

often as body features, they play an important role in many criminal 

investigations. 

Figure 2.4 provides an overview of the interface of facial comparative label 

collection. There are 292 sets of comparisons in the database. The following 

comparisons use 40 subjects and 10 targets. 

 

 

Figure 2.4 Interface of facial comparative label collection system 

 

The facial comparison was performed using 27 features, listed in Table 2.5. Each 

feature was labelled by one of three grades. The descriptions of each feature are 

listed in Table 2.5. 

 

Table 2.5 Facial features used to compare subjects 

Feature Labels 

Face Shorter, Same,  Longer 

Face Narrower, Same, Wider 

Face More Bony, Same, More Fleshy 
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Skin Lighter, Same, Darker 

Skin Smoother, Same, More Wrinkles 

Skin Clearer, Same, More Pimples 

Hair Shorter, Same, Longer 

Hair Straighter, Same, Curlier 

Hair Thinner, Same, Thicker 

Forehead Smaller, Same, Larger 

Forehead Straighter Hairline, Same,  More Receded Hairline 

Eyebrows Thinner, Same, Bushier 

Eyebrows Lower, Same, Higher 

Eyebrows Closer Together, Same, Further Apart 

Eyebrows Straighter, Same, More Arched 

Eyes Smaller, Same, Larger 

Eyes More Slanted, Same, Rounder 

Ears Smaller, Same, Larger 

Ears Close to Head, Same, Further from Head 

Ears More Hidden, Same, More Evident 

Nose Flatter, Same, More Protruding 

Nose Shorter, Same, Longer 

Nose Narrower, Same, Wider 

Nose More Upturned, Same, More Hooked 

Lips Thinner, Same, Thicker 

Chin and Jaw More Angular, Same, More Round 

Chin and Jaw More Receding, Same, More Protruding 

 

Clothing comparisons 

 

Clothing comparison was made using 7 traits, as listed in Table 2.6. Each 

feature is divided into three grades. Figure 2.5 shows the interface of the 

clothing comparative label collection system. There were 317 sets of 

comparisons in the database. 
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Table 2.6 Clothing features used to compare subjects. 

Body zone Semantic Attribute Labels 

Head Head coverage Less, Same, More 

Face covered Less, Same, More 

Upper body Neckline size Smaller, Same, Larger 

Sleeve length Shorter, Same, Longer 

Lower body Leg length Shorter, Same, Longer 

Foot Heel level Lower, Same, Higher 

Attached to body Bag (size) Smaller, Same, Larger 

 

Figure 2.5 Interface of clothing comparative label collection system. 

 

2.2 Ranking inference 

The comparison between two subjects was introduced as a more robust 

method for description. It was then considered to apply to the identification 

applications. Each subject was described using another subject as a 

benchmark. Comparative annotations need to be transformed to convey 

meaningful subject invariant information. The resulting value is defined as a 
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relative measurement. It can be used as a biometric feature for recognition. In 

essence, the rating method provides a relative measurement by comparison. 

2.2.1 Elo rating system 

The Elo rating system provides a ranking method based on Thurstone’s case 

for comparative descriptions [24]. The Elo system was initially invented to 

quantify chess players’ skill. Each chess player’s capability cannot be measured 

directly, but is usually judged during chess games against other players. 

Playing chess is much like comparative labels. Relative measurements are 

made by comparing features, which is the same as comparing the skill of two 

chess players. 

In the Elo rating system, the game was originally defined as a comparison 

between two players, 𝐴 and 𝐵 for chess games. For biometric identification, it 

is a visual comparison instead. The result of the comparison is the sample that 

indicates the difference between two players. The result is used to adjust the 

player’s level. 

 𝑄𝐴 = 10𝑅𝐴/𝑈  (2.1) 

 𝑄𝐵 = 10𝑅𝐵/𝑈  (2.2) 

 𝐸𝐴 =
𝑄𝐴

𝑄𝐴+𝑄𝐵
  (2.3) 

 𝐸𝐵 =
𝑄𝐵

𝑄𝐴+𝑄𝐵
  (2.4) 

 𝑅𝐴
′ = 𝑅𝐴 + 𝐾(𝑆𝐴 − 𝐸𝐴)  (2.5) 

 𝑅𝐵
′ = 𝑅𝐵 + 𝐾(𝑆𝐵 − 𝐸𝐵)  (2.6) 

This system uses the result 𝑆 of the game to adjust the player’s level.  𝑆𝐴 is a 

compared result between 𝐴  and 𝐵 , 𝑆𝐵  is the inverse of 𝑆𝐴 . Different game 

results will update a player’s level. When 𝑆 equals 1, it means winning the 

game, 0.5 for a draw and 0 for losing. 𝐸 is the mathematical expectation of the 

game’s result, which can be calculated based on the player’s level using Eq.(2.3) 

and (2.4). The adjusted difference is controlled by 𝐾 , and 𝐾  defines the 

maximum adjusted level value. A constant 𝑈 reflects how the player’s level 
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impacts the expectation, of which the value is chosen by experience; and set 

to 400. 

2.2.2 Bradley–Terry ranking model 

Bradley-Terry [25] [26] is a widely used ranking method. Supposing there is a 

competition between two players 𝑖 and 𝑗, (𝑖, 𝑗 ∈ {1, … , 𝐾}), the probability that 𝑖 

defeats 𝑗 is 

 𝑃(𝑖 𝑏𝑒𝑎𝑡𝑠 𝑗) =
𝑝𝑖

𝑝𝑖+𝑝𝑗
  (2.7) 

where 𝑝𝑖 and 𝑝𝑗 can be thought of as the ‘ability’ of each player. 𝑝𝑖 and 𝑝𝑗 are 

positive-valued parameters. There is a ‘contest’ between 𝑖 and 𝑗, and ‘contests’ 

are comparisons. All ‘contests’ are independent. The parameters can be 

estimated by maximum likelihood.  

Denoting 𝜏𝑖𝑗  as the number of times that 𝑖  beats 𝑗 , then the negative log-

likelihood takes the form 

 𝑙(𝑝) = − ∑ (𝜏𝑖𝑗𝑙𝑜𝑔
𝑝𝑖

𝑝𝑖+𝑝𝑗
+ 𝜏𝑗𝑖𝑙𝑜𝑔

𝑝𝑗

𝑝𝑖+𝑝𝑗
)𝑖<𝐽   (2.8) 

𝑙(𝑝) is scale-invariant and 𝑙(𝑝) = 𝑙(𝛼𝑝) for any 𝛼 > 0.  It is convenient to assume 

∑ 𝑝𝑖 = 1𝐾
𝑖=1 , and then 𝑝𝑖 is estimated by  

 

𝑝 = argmin 𝑙(𝒑)

𝑠. 𝑡.    0 ≤ 𝑝𝑗 , 𝑗 = 1, … , 𝐾,   ∑ 𝑝𝑗 = 1𝐾
𝑖=1  

  (2.9) 

2.2.3 Results of comparisons 

The principle of Kendall Tau rank distance [27] is to count the number of 

pairwise conformities between two ranking lists. The larger the distance is 

between them, the less similar the two ranks are. 

Assuming that there are two rank lists, 𝜏1 and 𝜏2, 𝑖 is the element in 𝜏1 and 𝜏2. 

 𝐷(𝜏1, 𝜏2) =
|{(𝑖,𝑗):𝑖<𝑗,(𝜏1(𝑖)<𝜏1(𝑗)∧𝜏2(𝑖)>𝜏2(𝑗))∨(𝜏1(𝑖)>𝜏1(𝑗)∧𝜏2(𝑖)<𝜏2(𝑗))}|

𝑛(𝑛−1)/2
  (2.10) 
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Eq.(2.10) is normalised by 
𝑛(𝑛−1)

2
 . 𝐷(𝜏1, 𝜏2)  is equal to 0 if two ranks are 

identical, or equal to 1 if they are inverse to each other. 

Supposing a group of five people are ranked by their marks of physics and 

mathematics examinations, respectively. Person A has highest mark in physics 

and the third highest mark in mathematics. 

 

Table 2.7 Two rank list comparison (an example of Kendall tau distance 

calculation). 

Person A B C D E 

Rank by physics 1 2 3 4 5 

Rank by mathematics 3 1 4 2 5 

 

In order to calculate the Kendall Tau distance, each person is compared with 

each other person, counting the number of pairwise in rank 1 that is 

opposite to rank 2. 

 

Table 2.8 Difference between two rank lists (an example of Kendall Tau distance 

calculation). 

Pair (A,B) (A,C) (A,D) (A,E) (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) 

Physics 1<2 1<3 1<4 1<5 2<3 2<4 2<5 3<4 3<5 4<5 

Math 3>1 3<4 3>2 3<5 1<4 1<2 1<5 4>2 4<5 2<5 

Count ×  ×     ×   

 

The normalised Kendall Tau distance is: 

 𝐷 =
3

5(5−1)/2
= 0.3  (2.11) 

The Elo rating system and Bradley-Terry ranking model were used to rate the 

comparative datasets, and Kendall tau distance is used to measure the distance 

of feature ranking results between ranks in the Elo rating system and Bradley-

Terry ranking model. The maximum distance is 0.23, so the rank results of 

those two methods are similar. As such, the Elo system will be used in the 

remainder of this thesis. 
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2.3 Analysis of single-mode recognition 

2.3.1 Identification using the categorical datasets 

A Leave-one-Out validation (LoO) approach was used to validate the 

classification ability of categorical data. Each test included a group of LoO 

classifications, and each of the datasets (Cat-body, Cat-face and Cat-clothes) 

was independently used for human identification. In the test, k-nearest 

neighbours (kNN) was used for matching the target with 𝑘 =  1. The EER for 

each test was calculated through a ROC curve. 

 

 

Figure 2.6 Classification accuracy (up to rank 80) of soft categorical data when 

three modalities are used alone. Classification uses kNN (with k=1) and 

LoO for categorical body (Cat-body) categorical face (Cat-face) and 

categorical clothes (Cat-clothes). 
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Figure 2.7 ROC performance of soft categorical traits. EER is calculated by 

investigating an equal number of False Positives and False Negatives, 

Categorical body (Cat-body) categorical face (Cat-face) and categorical 

clothes (Cat-clothes). 

 

Figure 2.6 and Figure 2.7 show the classification accuracy and ROC curve 

results for the three categorical datasets. The different traits vary in each 

performance curve. It shows that the accuracy of recognition increases 

gradually with the growth of the rank, and that the face appears the most 

potent for identification. 

2.3.2 Identification using the comparative datasets 

The comparative data cannot be used directly. The Elo rating system was 

therefore used to calculate a relative score for each subject. The feature vector 

used to make classifications was based on the Elo score. 

The recognition experiment is intended to retrieve the subject from the 40 

existing subjects in the database. All comparative features were considered 

here. kNN was used to match subjects, where k=1 and the LoO mode was used 

to conduct tests. The results, in terms of recognition accuracy, vary with the 

number of comparative features, which are shown in Figure 2.8. In addition, 

the comparative facial dataset achieves a smooth curve first, which means 
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fewer comparative factors are needed to achieve higher classification accuracy. 

The comparative clothing only reaches 35% when in Figure 2.6 it can reach 

100%. This is similar to the performance observed by Jaha [28], where the 

accuracy using categorical traits is much better than comparative traits. 

 

 

Figure 2.8 Recognition accuracy of each comparative dataset using Elo obtained 

from different numbers of comparisons. Accuracy was calculated using 

kNN and LoO for comparative body (Com-body) comparative face 

(Com-face) and comparative clothes (Com-clothes) 

 

When analysing the comparative data, 5 comparisons are randomly selected 

for each subject. ROC curve was then calculated for each dataset. Figure 2.9 

shows the ROC curve results from the three datasets. In the three single-mode 

biometric features (body, face and clothes), the facial verification performance 

is the highest on both categorical and comparative labels. 
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Figure 2.9 ROC performance of soft comparative traits. EER was calculated by 

investigating an equal number of False Positives and False Negatives, 

comparative body (Com-body) comparative face (Com-face) and 

comparative clothes (Com-clothes) 

 

2.4 Conclusions 

This chapter provided an overview of soft biometrics and highlighted their 

important role in subject recognition. These modalities were first analysed 

together. Previous analyses of the soft biometric datasets were implemented 

by different researchers, and using different ranking approaches and 

classifiers. Here, the same ranking method and classification was applied 

across all datasets. 

First, it introduced the definition of soft biometrics, and outlined several sets 

of soft biometric databases. Soft biometric features are physical traits and 

human behaviour characteristics, which are labelled using normal vocabulary. 

The definition and selection of semantic features was then specified. The 

categorical datasets based on the body, face and clothes were introduced and 

then analysed. The recognition results demonstrated that categorical features 

have acceptable recognition capabilities. In order to improve the accuracy of 

recognition, another type of soft biometric feature, the comparative feature, 
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was introduced. The accuracy was improved when comparative features were 

used in recognition. The recognition accuracy based on the face was highest 

on both categorical and comparative labels. 

The analysis showed differing performance for the approaches when used in 

isolation and in a consistent way. It seems prudent to investigate the fusion of 

the data, so that differing properties of the features might be taken advantage 

of in different scenarios. 

 



 Soft Biometric Fusion 

 

Fusion approaches are conventionally divided into five different levels: sensor, 

feature, score, rank and decision level [10]. 

Sensor layer fusion has a large volume of raw data from sensors, which are 

sensitive to the data transmission environment. The sensor-level data is always 

acquired with poor stability, and gives rise to unsatisfactory performance [29]. 

The soft biometrics dataset described in the previous chapter was labelled by 

humans (sensor), but the sensor level fusion cannot be performed here. The 

feature layer needs to be fused in the stage of feature extraction. Extracting 

useful information from different biometric models is a basic idea of feature 

level fusion. Feature layer fusion is designed to achieve better recognition 

results by maximising the discriminative performance of various features [29] 

[30] [31]. The fundamental goal of both match score level and decision level 

fusion is to fuse the results (match score or identify results) of different 

biometric modes. Calculating weights for different modes is a popular method. 

This chapter will test recognition performance of soft biometric fusion at the 

feature and the score level. 

3.1 Fusion at feature level 

Features were extracted from the raw data acquired by sensors, and were then 

subject to comprehensive analysis for pre-processing. Feature layer fusion was 

proposed to fuse features after their extraction. This fusion belongs to the 

middle level, implementing objective compression of information, which is 

advantageous to the real-time processing. The extracted features are directly 

related to the labels of objects. The feature fusion results can, therefore, give 

the most feature information needed by classification analysis, and, in theory, 

this will achieve the best level of recognition [30] [32].  
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Figure 3.1 shows the block diagram of a feature level fusion. At present, the 

main methods of feature layer fusion are serial strategy [33], parallel strategy 

[31] and weighted stack [34]. 

 

 

Figure 3.1 Feature level fusion. 

 

The method used in the experiments was named as serial strategy, which 

means to install the features of the body, face and clothes in a series of 

separate feature matrices. Some features have only a small influence on the 

classification result; therefore, a robust feature selection process should be 

applied to select the most relevant features for classification, so as to achieve 

the approximate or a better result of the classification task before feature 

selection [29]. 

 

Figure 3.2 Feature level fusion flowchart. 
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Figure 3.2 shows the flowchart of feature level fusion in the experiment. 

Feature selection techniques can be divided into three classes: filter methods, 

which are only based on properties of features but ignore learning, like the 

Mutual Information; wrappers, which score a set of features using classifiers, 

for example, decision-tree-based wrapper genetic [35]; embedded methods, 

which inject the selection process into the learning of the classifier, as 

Minimum Redundancy Maximum Relevance (mRMR) describes in [36]. A 

feature will be chosen if it can maximise the mutual Information between the 

feature and the subject’s label while the mutual Information between the 

selected feature and the subset of the selected features is minimal. Here there 

are five methods of feature selection: analysis of variance (ANOVA), Pearson's 

r, mutual Information, mRMR and infinite feature selection [37]. Those five 

methods are involved in filter, wrappers and embedded classes. 

3.1.1 Feature level fusion method 

3.1.1.1 ANOVA 

In statistics, it is necessary to define the importance of different factors. One 

way to achieve this is the ANOVA, which is a type of method that can measure 

the importance of the single variable [38]. It can also be used to calculate the 

𝐹 ratio as: 

 
𝐹 =

𝐵

𝑊
 =  

∑ 𝑛𝑖(𝑥𝑖̅−𝑥̅)2/(𝐾−1)𝑖

∑ (𝑥𝑖𝑗−𝑥𝑖̅)
2

/(𝑁−𝐾)𝑖𝐽

   
        

  (3.1) 

where 𝐵  and 𝑊  are total between-group variance and total within-group 

variance, respectively. 𝑥𝑖𝑗 represents the 𝑗𝑡ℎ
 sample in the 𝑖𝑡ℎ

 group. Similarly, 

𝑥𝑖̅ represents the mean value of samples in the 𝑖𝑡ℎ
 group. 𝑥̅  represents the 

mean value of all samples. 𝐾 refers to the number of groups, and 𝑁 refers to 

the total number of samples. Therefore, the 𝐹 ratio is the ratio of intra-class 

variance to inter-class variance. Degrees of freedom 𝐾 − 1 and 𝑁 − 𝐾 are used 

to weight the calculations. In order to separate different factors, the intra-class 

variance is as small as possible, whilst the inter-class variance is as large as 

possible. F-ratio increases when the inter-class variance is bigger than the 

intra-class variance. It was identified by calculating the F-ratio of each feature. 
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The features are more important (as measured using ANOVA) when the 𝐹 ratio 

increases. 

When we use ANOVA to select features, the 𝐹  value of each feature was 

calculated and the results were sorted in descending order. A feature is 

selected first if it has the maximum 𝐹 . Table 3.1 shows first five features 

selected by ANOVA. It is demonstrated that the face features have superior 

performance in both the categorical and the comparative datasets. 

 

Table 3.1 Feature selected results by ANOVA. 

a) Categorical database 

 Feature (example labels) Dataset  

1 Hair (short/long) Face 

2 Face (bony/fleshy) Face 

3 Face (narrow/wide) Face 

4 Chin and Jaw (angular/round) Face 

5 Nose (flat/protruding) Face 

b) Comparative database 

 Feature (example labels) Dataset 

1 Hair (shorter/longer) Face 

2 Ear (smaller/larger) Face 

3 Forehead (smaller/larger) Face 

4 Ear (more hidden/more evident) Face 

5 Eyebrows (closer together/further apart) Face 

 

3.1.1.2 Pearson's r 

Eq. (3.2) shows the Pearson`s r correlation. 

 𝑟 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
=

∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛
𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

  (3.2) 

𝑋 and 𝑌 represent two sets of features. 𝑥𝑖 and 𝑦𝑖 are 𝑖𝑡ℎ
 annotations in these 

two feature sets. Each group of features has 𝑛  annotations. 𝜎𝑋𝑌  is the 



Chapter 3 Soft Biometric Fusion 

31 

covariance of two variables 𝑋 and 𝑌, 𝜎𝑋 and 𝜎𝑌 are, respectively, the standard 

deviations of those two variables. 

In computation of correlation, the annotators of each object are randomly 

assigned to two groups, whose descriptions are averaged. Each object will 

produce two sets of descriptions. They produce 100 random allocations. This 

can be used to interpret the most correlated features by calculating the 

correlation coefficient of each semantic feature given by these random groups, 

to determine the most relevant one. After calculating the Pearson value of each 

feature, they are sorted in descending order, and the feature will be selected 

first that has the highest correlation. 

Table 3.2 shows the first five features selected by Pearson's r. Compared with 

the first five results of ANOVA, there are two clothing features in the 

categorical labels, and one body feature in the comparative labels for 

Pearson`s r correlation. However, compared with the whole order of effective 

features, their results are very similar. 

 

Table 3.2 Feature selected results by Pearson's r, 

a) Categorical database 

 Feature (example labels) Dataset  

1 Hair (short/long) Face 

2 Face (narrow/wide) Face 

3 Head cover (slight/all) Clothing 

4 Face (bony/fleshy) Face 

5 Sleeve length (Short/long) Clothing 

b) Comparative database 

 Feature (example labels) Dataset  

1 Hair (shorter/longer) Face 

2 Height (shorter/taller) Body 

3 Ear (smaller/larger) Face 

4 Ears (more hidden/more evident) Face 

5 Forehead(smaller/larger) Face 
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3.1.1.3 Mutual Information 

Feature selection based on mutual information is described in [39]. Assuming 

that there are two discrete random variables 𝑋 and 𝑌 with marginal probability 

distribution functions 𝑝(𝑥), 𝑝(𝑦) and the joint probability distribution function 

of 𝑝(𝑥, 𝑦), the mutual Information of 𝑋 and 𝑌 is calculated by Eq.(3.3): 

 𝐼(𝑥, 𝑦) = ∑ 𝑝(𝑥𝑖, 𝑦𝑖) log
𝑝(𝑥𝑖,𝑦𝑖)

𝑝(𝑥𝑖)𝑝(𝑦𝑖)
 𝑖,𝑗   (3.3) 

Mutual information can describe the relationship of the selected features and 

the output labels. The features with the most contribution to classification can 

be selected by calculating the mutual information with subjects’ labels. The 

feature that has the maximum mutual information for a subject’s labels will be 

selected first and will be added to the selected feature subset.  

 

Table 3.3 Feature selected results by mutual Information. 

a) Categorical database 

 Feature (example labels) Dataset 

1 Hair (short/long) Face 

2 Face (short/long) Face 

3 Eyebrows (close together/far apart) Face 

4 Head cover (slight/all) Clothing 

5 Lower body clothing category 

(trouser, skirt, dress) 

Clothing 

b) Comparative database 

 Feature (example labels) Dataset 

1 Hair (shorter/longer) Face 

2 Ear (smaller/larger) Face 

3 Forehead (smaller/larger) Face 

4 Ear(more hidden/more evident) Face 

5 Eyebrows (closer together/further 

apart) 

Face 
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Table 3.3 shows the first five features selected by mutual Information. Those 

three methods provided the same result on hair (short/long), making it the 

feature that has the best recognition performance. The capability of the face 

is better than body and clothing, because there is more detail in facial features. 

3.1.1.4 Minimal Redundancy Maximal Relevance 

The above three feature selection algorithms only consider the degree of 

relevance between the features and categories, but do not consider the 

redundancy between the features. Minimal Redundancy Maximal Relevance 

(mRMR) combines the feature relevance with redundancy [40]. The feature 

subsets are the optimal feature subsets for filtering the redundant information. 

In the analysis of feature relevance and redundancy, the selected measurement 

tool for relevance is very important for mRMR. In this experiment, mutual 

information is employed as the relevance measurement factor, and the mutual 

information can be calculated through Eq.(3.3): 

Using the maximum relevance to measure the relationship between features 

and subjects’ labels requires maximum correlations between them, specifically, 

the maximum mutual information of the features and the targets [36]. 

Minimum redundancy is a description of the dependent relationship of the 

features, which requires the minimum relevance of each feature attribute. The 

minimum redundancy is achieved by minimising mutual information among 

the features. The key concept of the mRMR algorithm is to combine the 

selection criteria of the maximum relevance between the features, and 

categorise these with the selection criteria of the minimum redundancy among 

the features. 

In mRMR, the first important feature can be selected with maximum mutual 

information, because it can further reduce the uncertainty of other features in 

the feature sets. In other words, the feature providing the most information to 

the recognition system is selected first. The later features can be selected 

according to the formula Eq. (3.4). 

 𝑓𝑚+1 = arg max {𝐼(𝑓𝑖, 𝑐) −
1

𝑚
∑ 𝐼(𝑓𝑖, 𝑓𝑡)𝑓𝑡∈𝑆 } (3.4) 
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where 𝐶 is the subjects’ label information and 𝑆 is the selected feature subset. 

𝑓𝑡 is the feature existed in 𝑆, 𝑓𝑖 is the remaining feature. 

Table 3.4 shows first five features selected by mRMR. Facial features still have 

the highest descriptive power. For comparative datasets, the features of body 

and face are better than clothing. As the results show in Chapter 2, the 

recognition result provided by comparative clothing datasets is not as good as 

that of the face and body. 

 

Table 3.4 Feature selected results by mRMR. 

a) Categorical database 

 Feature (example labels) Dataset 

1 Hair (short/long) Face 

2 Head cover (slight/all) Clothing 

3 Chin and Jaw (angular/round) Face 

4 Nose (short/long) Face 

5 Face (bony/eshy) Face 

b) Comparative database 

 Feature (example labels) Dataset 

1 Ears (smaller/larger) Face 

2 Weight (thinner/fatter) Body 

3 Hair Colour (lighter/darker) Body 

4 Hair (shorter/longer) Face 

5 Skin (clearer/more pimples) Face 

 

3.1.1.5 Infinite feature selection  

In paper [37], a filter-based feature selection algorithm, called infinite feature 

selection (IFS) is proposed. It performs the feature sorting in an unsupervised 

method, and selects the best 𝑚 features using a cross-validation strategy. This 

algorithm assumes that each feature is a node in the graph, and weights are 

given by the mixture of Spearman’s rank correlation coefficients and standard 

deviations between feature distributions. A path over the graph is seen as a 

possible feature selection. An integral path process is then applied.  For the 

result, it evaluates a single feature energy score for each feature while 
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considering all the possible subsets of features as paths on a graph. The higher 

the final score is, the more important the feature is. 

Table 3.5 shows the first five features selected by IFS. For the categorical 

database, hair length is still the most stable feature, and a body feature first 

occurs in the categorical database. 

 

Table 3.5 Feature selected results by IFS. 

a) Categorical database 

 Feature (example labels) Dataset 

1 Hair (short/long) Face 

2 Skin (clear/pimpled) Face 

3 Ethnicity (European/far eastern) Face 

4 Belt presence (yes/no/don`t know) Clothing 

5 Arm length (short/long) Body 

b) Comparative database 

 Feature (example labels) Dataset 

1 Ears (smaller/larger) Face 

2 Height (shorter/taller) Body 

3 Chest (smaller/larger) Body 

4 Forehead (straighter hairline/more 

receded hairline) 

Face 

5 Face (narrower/wider) Face 

 

3.1.2 Feature level fusion experiments result 

The method used in the experiments is a serial strategy, which intends to 

concatenate the features of the body, face and clothes in a single feature 

matrix. Tests were conducted using five methods (ANOVA, Pearson's r, mutual 

Information, mRMR and IFS) on the categorical and comparative datasets. 

3.1.2.1 Fusion on categorical dataset result 

For the categorical dataset, there are 22 features in the body dataset, 27 

features in the face dataset and 21 features in the clothing dataset. After 

concatenation, the most effective features are chosen from the 80 features 
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using five methods. A test is conducted with classification to compare the 

performance of the five feature selection methods. 

Figure 3.3 shows that the classification accuracy increases gradually with the 

growth of the feature subset size, and levels off at the end. 

 

 

Figure 3.3 Comparison of recognition accuracy of five feature fusion methods 

(categorical dataset). Accuracy calculated using kNN (with k=1) and LoO 

classification tests. 

 

Table 3.6 Accuracies and sizes of five fusion methods (categorical dataset). 

Method Accuracy exceeding 80% 

(number of features) 

Feature Number= Min EER 

5 15 30 

ANOVA 30 12.57% 63.32% 77.83% 0.10 

Pearson's r 29 11.90% 58.27% 80.02% 0.09 

MI 25 39.04% 69.82% 80.62% 0.06 

mRMR 23 40.97% 70.34% 81.12% 0.06 

IFS 17 45.13% 77.15% 81.57% 0.03 
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Figure 3.3 shows the classification accuracy gained by the five feature selection 

algorithms varying with the feature subset dimensions. Different selection 

algorithms lead to different performances. Figure 3.3 also demonstrates that, 

with the expansion of feature subsets, the classification accuracy becomes 

more stable. When 15 features were selected from the feature subsets, the 

classification accuracies using mRMR, ANOVA and IFS algorithms were 70.34%, 

63.32% and 77.15% respectively. 

In addition, Figure 3.3 shows that the IFS algorithm achieved stability first. In 

other words, it achieves higher classification accuracy with smaller feature 

subsets. By analysing the data in Table 3.6, the number of features (when 

accuracy>80%) indicates the minimum number of features for each feature 

selection algorithm needed to obtain stable and desirable classification 

performance. The ratio shows the number of the selected feature subsets and 

the sum of the sizes of the original feature sets. It is clear that IFS consistently 

obtains the best performance, the EER is minimised and the accuracy is over 

80%, when using 17 features. Compared with ANOVA and Pearson's r, the 

advantages of IFS are more pronounced when only using 5 features. 

3.1.2.2 Fusion on comparative dataset 

In the feature fusion tests, there were 16, 27 and 7 features for the body, face 

and clothing respectively. After feature fusion, there were 50 features in total. 

 

Table 3.7 Accuracies and sizes of five feature selected methods (comparative 

dataset). 

Method Accuracy exceeding 80% 

(number of features) 

Feature Number= Min EER 

5 15 30 

ANOVA 32 40.99% 83.46% 98.14% 0.04 

Pearson's r 32 39.44% 78.14% 98.36% 0.04 

MI 27 56.58% 91.85% 100% 0.02 

mRMR 26 64.53% 95.89% 100% 0.016 

IFS 16 79.81% 98.69% 100% 0.008 

 

In Table 3.6 and Table 3.7 the feature subsets selected by the IFS algorithm 

appear to offer the best performance. Five feature selection algorithms all 
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perform well, and can achieve a high classification accuracy. The IFS algorithm 

can obtain the best classification accuracy through the minimum number of 

feature subsets. The classification accuracies of mRMR and mutual Information 

algorithm are higher than ANOVA and Pearson's r. 

 

 

Figure 3.4 Accuracy comparison of five feature selection methods (comparative 

dataset). Accuracy calculated using kNN (with k=1). 

 

ANOVA and Pearson's r feature selection approaches both measure the 

relationship between each feature and label independently. Pearson's r is 

sensitive to linearity, which means that if it is a non-linear relationship, even if 

the two variables are in one-to-one corresponding relations, Pearson's r 

correlation result might be close to 0. If it is only judged according to the 

values of ANOVA or Pearson's r, the results could be misleading. It would 

achieve a good effect if the features and labels are all in a linear relationship 

and the features are independent. However, with respect to the data, it is clear 

that the features are in close correlation. There are multiple correlated features 

in the data, and some features are redundant. Meanwhile, the features are not 

completely in linear correlation with labels. mutual Information is used to 

measure the nonlinear relationship of two variables. mRMR not only considers 
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the correlation between features and labels, but also takes the relationship 

between features into consideration, which is more suitable for analysis of the 

data. IFS can obtain the best results. 

3.2 Fusion at score level 

Score level fusion is a combination of match scores from different biometric 

matchers, which then derives a new score. Each biometric sample calculates 

the match score independently, and score level fusion combines all match 

scores into a single score through an algorithm. Figure 3.5 shows a block 

diagram of a feature level fusion. 

 

 

Figure 3.5 Score level fusion. 

 

3.2.1 Similarity score calculation and normalization 

For a biometric matcher, the outputs of the classifier are always comprised of 

a match score list and a rank list. Match score describes a distance or a 

similarity between the testing subject with registered subjects. The distance is 

normally calculated by Euclidean distance, Mahalanobis Distance or other 

algorithms. The similarity score can be then computed by Eq.(3.8). 

 𝑠𝑖𝑚(𝑥, 𝑦) =
1

1+𝐷(𝑥,𝑦)
 (3.5) 

where 𝐷(𝑥, 𝑦)  is the distance between two samples. A distance of 0 

corresponds to a similarity of 1 (the largest possible value); a distance of 

infinity corresponds to a similarity of 0 (the smallest possible value). The rank 

list is obtained by the decreasing order of similarity scores. 
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The range of match scores for individual matchers may not be homogeneous, 

and the scores may follow different statistical distributions. Score 

normalisation is a necessary step before the combination scheme, as it is 

designed to scale the range of individual match scores and transfer them into 

a common range. 

A widely used technique is Z-score normalisation. This method requires the 

mathematic mean and standard deviation of a given score list. The 

normalisation is conducted: 

 𝑠𝑘
′ =

𝑠𝑘−𝜇

𝜎
  (3.6) 

where 𝑠𝑘
′
 is an updated score, 𝜇 is the arithmetic mean and 𝜎 is the standard 

deviation.  

In order to improve the estimation ability of the marginal distribution of 

similarity scores [41], the following order preserving transformation was 

recommended: 

 𝑇(𝑠𝑘) = log
𝑠𝑘−𝑎

𝑏−𝑠𝑘
 (3.7) 

Where 𝑠𝑘 is similarity score and it is bound between 𝑎 and 𝑏.  

3.2.2 Score-level fusion method 

3.2.2.1 Simple average score fusion 

Match score fusion is implemented by calculating the average value of each 

matching parameter. Figure 3.6 shows an example of simple average score 

fusion. 

 𝑦𝑖 =
1

𝑀
∑ 𝑠𝑖

𝑗𝑀
𝑗=1 ,     ∀𝐼  (3.8) 

In Eq. (3.8), M is the number of the multimode biometric matchers for fusion. 

It denotes M matchers in a given multimode biometric system. Each matcher 

is a single mode biometric system and labelled by numerical indicator 𝑗 ∈

1,2 … 𝑀 and 𝑠𝑖
𝑗
 is the i

th

 match score of the j
th

 matcher. Figure 3.6 shows an 

example of simple average score fusion, for 𝑀 = 2 and 𝑖 = 1, 2, 3, 4. 
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Figure 3.6 An example of simple average score fusion. Note that the match scores 

generated by the face and fingerprint matcher are similarity 

measurements. The range of match score is assumed to be [0,1]. 

 

3.2.2.2 Max-Score fusion 

The fusion function of Max-Score (MAS) is presented in Eq. (3.9): 

 𝑦𝑖 = 𝑚𝑎𝑥(𝑠𝑖
1, 𝑠𝑖

2, … , 𝑠𝑖
𝑗
, … , 𝑠𝑖

𝑀),   ∀𝑖   (3.9) 

𝑗 is the serial number of matchers for fusion.𝑀 is the number of multimode 

biometric matchers. 𝑠𝑖
𝑗
 is the score of matching with 𝑖𝑡ℎ  subject using 𝑗𝑡ℎ 

matcher. The output of the maximum score method fusion is the maximum of 

the match scores of 𝑀 matchers. Figure 3.7 shows an example of Max-Score 

fusion. 
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Figure 3.7  An example of max-score fusion. Note that the match scores generated 

by the face and fingerprint matcher are similarity measurements. The 

range of match score is assumed to be [0,1]. 

 

3.2.2.3 Density-based score fusion using Bayesian theory 

3.2.2.3.1 Estimation of similarity score densities 

The method of Parzen Window is used in this analysis to estimate the 

probability density of the match score [42] [43] [44]. It is a nonparametric 

method to estimate Probability Density Functions (PDF). In order to smooth the 

estimation result, the Gaussian Kernel function will be applied. For Parzen 

Window estimation, the bandwidth (window size) is fixed, while the size of 

bandwidth has great influence on estimations. If the bandwidth is excessively 

large, the estimation result would be over-smoothed, which loses data 

characteristics. However, if bandwidth is too small, the estimation would be 

excessively limited to observation data, and many incorrect peak values are 

likely to appear. Therefore, the bandwidth needs to be selected according to 

the size of the dataset. One method of selecting bandwidth is to use the 

Asymptotic Mean Integrated Squared Error (AMISE), which selects the 

bandwidth that can best minimise AMISE [45].  
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There are three databases for human body, face and clothing, and the Parzen 

Window is used to estimate the PDF of each of them. In Eq.(3.14), a Gaussian 

Kernel function is used to smooth the estimation result. 

 𝑝(𝑥) =
1

𝑛
∑

1

√2𝜋𝜎
(−

(𝑥𝑖−𝑥)2

2𝜎2
)𝑛

𝑖=1  (3.10) 

where 𝑥1, … , 𝑥𝑛  are 𝑛 data samples and 𝑥  is the centre point, σ needs to be 

selected. This is the average of these Gaussian functions, with each data point 

as a centre point. 

By taking the match scores of intra-class and inter-class as the inputs of a 

Parzen window, one can estimate two pmfs; the pmf for intra-class, and the 

pmf for inter-class. Figure 3.8 is an example of prediction results of probability 

densities of the comparative face and categorical body datasets, which are the 

best and the worst single identification mode, by using a Parzen window. In 

Figure 3.8, "Inter-class" and "intra-class" are the results obtained according to 

the histogram; "PW-inter" and "PW-intra" are the results using Parzen window. 

 

 

(a) Categorical body dataset 
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(b) Comparative face dataset 

 

Figure 3.8 Probability densities of comparative face and categorical body 

(estimated by a Parzen window), "Inter-class" and "intra-class": obtained 

according to the histogram; "PW-inter" and "PW-intra": estimated by a 

Parzen window. 

 

3.2.2.3.2 Score fusion using Bayesian theory 

Three independent databases include the human body, face and clothing. Each 

has 2 sets of features: comparative and categorical. First, the match score of 

each database is calculated to estimate its probability mass function (pmf) and 

fuse the match scores according to Bayes' theorem. 

In probability theory, Bayes' theorem is a way of understanding the probability 

that an event is affected by another piece of evidence [46]. Bayes' theorem is 

given in Eq. (3.11). 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
  (3.11) 

where 𝑃(𝐴)and 𝑃(𝐵) are the probabilities of observing 𝐴 and 𝐵 without regard 

to each other. 𝑃(𝐴|𝐵), a conditional probability, is the probability of observing 
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event 𝐴 given that 𝐵 is true. While 𝑃(𝐵|𝐴) is the probability of observing event 

𝐵 given that 𝐴 is true. 

The verification problem can be viewed as a two-class classification issue. If 

the users are correctly identified, they are genuine; if the users are mistakenly 

identified, they are impostors. 

There are 40 subjects in three databases. Taking the body database as an 

example, the 27 samples of each person are different observers' descriptions 

of this person. The samples of each subject are assigned into two groups 

randomly, among which half of the samples in one group are for training, while 

the remaining are for testing. When testing, matching one sample to any one 

of the 40 templates results in a match score; the probability of this match 

score in intra-class and inter-class can be obtained based on the two pmfs 

obtained from the training sample. Taking this probability as the prior 

probability, the probability of this matching fraction in intra-class and inter-

class can be estimated according to the Bayesian Theory. 𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑠) is the 

probability that the label of the test sample is the same as the label of the 

template. The formula represented in Eq.(3.12), 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟|𝑠) is considered as 

the probability of inter-class, which means the probability that the label of the 

test sample is different from the label of the template. The formula is 

presented Eq.(3.13). 

 𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑠) =
𝑃(𝑠|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒)

𝑝(𝑠)
  (3.12) 

 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟|𝑠) =
𝑃(𝑠|𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟)𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟)

𝑝(𝑠)
  (3.13) 

 𝑝(𝑠) = 𝑃(𝑠|𝑔𝑒𝑛𝑢𝑖𝑛𝑒)𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒) + 𝑃(𝑠|𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟)𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟) (3.14)  

The same calculation is performed on all three databases. 

Because the three databases are completely independent, in Eq.(3.15) and 

(3.16), 𝑀 is the number of sample matchers (face matcher, body matcher, 

clothing matcher); in this case, 𝑀 = 3. 

 𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑆1, … , 𝑆𝑀) = ∏ 𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑆𝑗)𝑀
𝑗=1  (3.15) 

 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟|𝑆1, … , 𝑆𝑀) = ∏ 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟|𝑆𝑗)𝑀
𝑗=1  (3.16) 
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In the final judgment, 𝐷 in Eq.(3.17) is used to obtain the decision based on 

the Bayesian decision rule. If the output is 1, it indicates that the match score 

belongs to a genuine user. In other words, the label of the test sample is the 

same as the label of the template. If the output is 0, the score belongs to an 

impostor. The label of the test sample is different from the label of the 

template. 

 𝐷 = {
1   𝑃(𝑔𝑒𝑛𝑢𝑖𝑛𝑒|𝑆1, … , 𝑆𝑁) ≥ 𝑃(𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟|𝑆1, … , 𝑆𝑁) 
0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             

 (3.17) 

3.2.3 Score-level fusion experiment results 

3.2.3.1 Simple average score fusion 

In the three single-mode biometric features, body, face and clothing, the 

recognition performance based on the face is highest, while the fusion 

performance outperforms the facial recognition. Furthermore, the feature-

fusion recognition experiments of body, face and clothing are based on the 

simple average fusion method. ROC curves are shown in Figure 3.9. It can be 

observed that there is no significant reduction of ERR for both datasets. The 

purpose of the multimodal biometric recognition is to improve the reliability 

of the identification SA (Simple Average) fusion algorithm, and can significantly 

improve the accuracy of the recognition system. 

 

Table 3.8 Accuracy comparison of simple average fusion 

Mode Accuracy ( rank=1) 

Categorical dataset comparative dataset 

Body 45.32% 97.09% 

Face 76.03% 84.09% 

Clothing 63.09% 48.42% 

Simple Average Fusion 81.02% 98.23% 
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Figure 3.9 Simple average fusion results. EER is calculated by investigating an 

equal number of False Positives and False Negatives, categorical face 

(Cat-face), comparative face (Com-face), simple average score fusion on 

categorical (Cat-Average Fusion) and comparative (Cat-Average Fusion). 

 

3.2.3.2 Max-Score fusion 

The ROC recognition curves before and after MAS fusion are shown in Figure 

3.10. It shows that there is no significant reduction of the MAS fusion 

recognition. However, False Negative Rate (FNR) reduces whilst False Positive 

Rate (FPR) rises for MAS fusion recognition. 

The output result of max-score fusion is the maximum value of a group of 

matching scores. The mathematical expectation of match score after fusion 

shall be greater than each individual matcher. Thus, under the condition of 

obtaining the same threshold, the FPR will increase while FNR will decrease 

after fusion [47]. 
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Figure 3.10 Max score fusion results. EER calculated by finding an equal number 

of False Positives and False Negatives, categorical face (Cat-face), 

comparative face (Com-face), max-score fusion on categorical (Cat-max 

Fusion) and comparative (Com-max Fusion). 

 

3.2.3.3 Score fusion using Bayesian theory 

The verification tests of the samples of 40 users for comparative data were 

conducted with the Bayesian fusion algorithm to calculate the ROC curve, as 

shown in Figure 3.11. The verification performance is improved with fusion. In 

order to analyse the comparative data, 5 comparisons were chosen randomly 

for each subject, and then the ROC curve was calculated for each case. When 

5 comparisons were used, the classification accuracy of facial data was 96.2% 

(EER was 0.040). The accuracy of body data was 84.9% (EER was 0.79), and that 

of the clothing dataset was 31.9% (EER was 0.159). The results were improved 

by 6.1% from Samangooei [17], 1.9 % from Reid [4] and 31.4% from Jaha [20]. 

Compared with these studies, the number of subjects is different, but the 

features are the same. The slight increase is likely to be due to the potential 
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differences in a smaller population derived from the same dataset. After 

Bayesian fusion, verification accuracy is 99.42% and the EER is 0.14%. 

 

 

Figure 3.11 Bayesian fusion result, EER calculated by finding an equal number of 

False Positives and False Negatives, Bayesian score fusion on 

categorical (Cat-Bayes) and comparative (Com-Bayes) 

 

The laboratory data was derived using moderate lighting, and the labels had 

high descriptive power. Since the data was derived in laboratory conditions 

(rather than surveillance video), good verification performance was achieved, 

and the results suggest that fusion would further improve performance. 

Another important reason that Bayesian fusion can achieve such a good result 

is that the determination is based not only on the information of the test 

samples, but also on prior probabilities after the Bayesian estimation. The prior 

probability distribution represents a powerful mechanism to combine 

information with previous match scores. The capacity to consider uncertainty 

is a major strength of Bayesian fusion. 
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3.3 Conclusions 

This chapter introduced the basic theory and function of the feature fusion 

algorithm, and the basic algorithms of feature selection. ANOVA and 

Pearson's r are two simple feature selection approaches with smaller 

computational load, though they have limitations. For example, Pearson's r can 

calculate correct linearity, but it is sensitive to noise. In addition, this chapter 

introduced three feature selection approaches based on information theory. 

First, it introduced the basic concepts of the information measurement 

standard in information theory, such as information entropy and mutual 

information. Then it described three algorithms: MI, mRMR and IFS. The 

experiments demonstrated that feature selection based on information theory 

obtains better results, because the features are relevant. It also proved that IFS 

obtains the feature subset with the best classification performance. 

The last part of this chapter explored identification by the fusion of face, body, 

and clothing features, based on several fusion theories at match score level. It 

analysed the fusion algorithm of two classic matching levels: sample average 

score fusion and max-score fusion, and it then implemented experimental 

analysis. In order to improve the recognition performance of multi-biometric 

methods, a fusion algorithm based on Bayesian theory was proposed. 

According to the experiment, the EER of fusion based on Bayesian theory was 

0.0014 for comparative data and 0.0036 for categorical data. This result is 

much better than the recognition performance based on the face, which 

obtained high recognition performance using single-mode. 

The results suggest that fusion is a suitable approach, since it can exploit 

properties of different features and in different scenarios. However, the data 

were not designed to be consistent across the three modalities of face, body 

and clothing. This suggests that the next stage of the investigation into soft 

biometric fusion is to collect a consistent set of data, so that the properties of 

fusion can be better explored. 



 

 

 Soft Biometric Dataset at 

Different Distances 

 

 

For soft biometric recognition, there is no standardised dataset to evaluate 

recognition performance, and this is especially problematic in the research 

area of soft biometrics at different distances. One significant advantage of soft 

biometrics is that it does not have rigorous requirements on the resolution of 

images collected by cameras. The label of soft biometrics can be therefore 

collected at a distance. The research into the influence of distance on feature 

annotation can give more useful information about features to be used at far 

or close distances. A new soft biometric database, based on different distances, 

must be built. In order to approach the identification in real life, the images in 

this database were simulated in an outdoor environment. Compared with the 

background controlled in a laboratory, there are more objects, such as 

buildings and cars, in the outdoor background, which can be used as points 

of reference when the soft traits are labelled. The accuracy of feature 

annotation can be improved with the help of reference objects. 

4.1 Soft biometric dataset 

4.1.1 Synthesising images  

The new database, comprising of 131 male and 69 female subjects, was built 

and labelled with face, body and clothing traits. The original images were 

collected from the University of Southampton Gait Tunnel [48], and then 
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synthesised with an outdoor environment. There were 12 cameras deployed in 

different positions in the gait laboratory. The resolution of cameras is 640 ×

480 and the capture rate is 30 frames per second. The viewpoint, at which the 

images collected provide the maximum face and body information of subjects 

was selected, as shown in Figure 4.1. The length of the gait laboratory is 7 

meters. The minimum distance for the whole-body observation is 2 meters 

away from the camera. The image acquisition is therefore conducted between 

2 and 7 meters. Three points (2, 4.5 and 7 meters away from the camera) are 

marked as close, medium and far respectively. Three images in which the 

subjects are stood in those three positions are selected, and then simulated in 

an outdoor environment. 

 

 

Figure 4.1 Diagram of data acquisition environment. 

 

In order to bridge the gap between laboratory and outdoor images, the 

illumination and shadows need to be controlled. A cloudy day was chosen to 

eliminate shadows in the outdoor environment. Moreover, the brightness and 

contrast of laboratory images were improved to resemble outdoor conditions. 

The laboratory images after pre-processing are shown in Figure 4.2, in which 

subjects are located at far, medium and close distances respectively. 
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(a)  Far                              

  

(b) Medium 

 

(c) Close 

Figure 4.2 Laboratory images after pre-processing. 
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Taking a set of pictures of the outdoor environment is the first step towards 

synthesising images for the new dataset. The position of the camera in the 

outdoor environment should be the same as that used in the laboratory. Three 

points at the close, medium and far distance were marked in advance. The 

outdoor background image is shown in Figure 4.3.  

 

 

Figure 4.3 Image of the outdoor environment. 

 

      

(a) Laboratory – close                                (b) Subject extraction 

      

(c)  Outdoor background                            (d)  Synthetic – close 

Figure 4.4 Synthesising images with outdoor environment 



Chapter 4 Soft Biometric Dataset at Different Distances 

55 

The next step is to segment subjects from laboratory images and to place them 

at appropriate locations in the outdoor background image. First, the subject’s 

image is extracted from the laboratory image (Figure 4.4 (a), (b)) and then 

added to the background (Figure 4.4 (c)) where the imaging geometry was the 

same as in the view in the laboratory. In this way, the controlled laboratory 

background is replaced with a consistent outdoor background. A synthesised 

image is shown in Figure 4.4 (d). This process is applied to laboratory images 

acquired at the close, medium or far distances from the camera. A few of 

examples of synthesising images are shown in Figure 4.5. 

    

(a) Far distance 

    

(b) Medium distance 

    

(c) Close distance 

Figure 4.5 Examples of synthesising images at different distances. 

 

4.1.2 Soft biometric attributes and labels 

The next step was to select soft biometric features for the body, face and the 

clothes that could be observed and described precisely and conventionally at 

different distances (i.e. skin colour and height). The facial features (i.e. the 

shape of the eyebrows and the length of the face) have strong discriminating 

power, while body and clothing traits such as gender and the majority colour 

of clothes, are more straightforward to observe. The earlier research studied 
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recognition capability, and this part will utilise that work. It would be possible 

to prune the feature set according to their recognition capabilities.  

19 body attributes were analysed in [4]. The recognition performance of 12 

body attributes was investigated in [49]. Considering the results in those two 

articles, 10 effective attributes were selected as the body attributes for the new 

dataset. The attributes and labels are listed in Table 4.1. 

 

Table 4.1 Body traits and labels used to compare subjects 

Body traits Labels 

Gender More feminine, Same, More masculine 

Age Older, Same, Younger 

Height Taller, Same, Shorter 

Weight Fatter, Same, Thinner 

Shoulder shape More square, Same, Rounder 

Hair colour Lighter, Same, Darker 

Hair length Shorter, Same, Longer 

Neck length Shorter, Same, Longer 

Humpback More straight, Same, More curved 

Arm length Longer, Same, Shorter 

 

24 facial attributes were compared in [5]. ANOVA, Entropy and mutual 

information were employed to analyse the recognition performance of the 

attributes. The results demonstrated that Skin Colour，Eyebrow Length，Lip 

Thickness，and Face Length have better recognition performance and are the 

most consistent. The facial traits were selected based on [5]. In this paper, the 

face images were collected at a close distance with high-quality images. Some 

features which cannot be observed from far away, such as Eye-to-Eyebrow 

Distance and Inter Eyebrow Distance, are modified in the new dataset. For 

example, Eyebrow Thickness and Eyebrow Length are replaced with Eyebrow 

Shape. The attributes and labels are listed in Table 4.2.  
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Table 4.2 Face attributes and corresponding categorical labels 

Face traits Labels 

Eyebrow shape More straight, Same, More curved 

Nose shape More flatter, Same, More protruding 

Forehead Straighter hairline, Same, More receded hairline 

Eyes Smaller, Same, Larger 

Ears More hidden, Same, More evident 

Skin colour Lighter, Same, Darker 

Face size Shorter, Same, Longer 

Face More bony, Same, Fleshier 

Lips Thinner, Same, Thicker 

Chin and jaw More angular, Same, Rounder 

 

In [6], 21 categorical traits and 7 comparative traits of clothing are analysed. 

The results demonstrated that clothing attributes can achieve good results 

when they are used for recognition. Furthermore, the accuracy using 

categorical traits is better than comparative traits. ANOVA was used to analyse 

the performance of different traits, and the results show that head coverage，

lower body clothing category and belt presence are better identifiers than 

other traits. Thus, categorical traits are used for the new clothing dataset. 7 

features are investigated in [6], which have good recognition performance and 

are straightforward to observe at different distances, plus 3 new attributes: 

the majority colour of upper body and of lower body, and the presence of 

glasses, constitute the new clothing feature set. The attributes and labels for 

clothing are listed in Table 4.3.  

 

Table 4.3 Clothing attributes and corresponding categorical labels 

Clothing traits Labels 

Upper body clothing 

category 

Jumper, T-shirt, Shirt, Blouse, Sweater, 

Coat, Hoodie, Other 

Lower body clothing 

category 

Trousers, Skirt, Dress 

Any attached object 

category 

None, Bag, Gloves, Hat, Scarf, Necktie, 

Other 
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Clothing style Well-dressed, Business, Sporty, 

Fashionable, Casual, Other 

The majority colour 

of upper body 

Grey, Black, White, Jeans blue, Others 

The majority colour 

of lower body 

Grey, Black, White, Jeans blue, Others 

Face coverage Yes, No 

head coverage Yes, No 

Presence of belt Yes, No, Unsure 

Wear glasses Yes, No 

 

4.1.3 Data acquisition via Crowdsourcing 

The soft features were labelled by human operators. In order to increase 

efficiency and to obtain high-quality results, the features were collected 

through crowdsourcing. A crowdsourcing task needed to be built for the large 

collection of high-quality comparative annotations. The CrowdFlower platform 

was used to build and run the crowdsourced annotation task. CrowdFlower 

provides comprehensive data analysis and quality control tools, allowing 

acceptance of a range of responses, whilst rejecting non-genuine answers. 

Each of the new images was labelled with all 30 soft biometric traits. In data 

collection, categorical descriptions of clothing and comparative descriptions 

of the face and body traits were used. It was demonstrated that the clothing 

traits could be used for recognition, and it is properly described using 

categorical labels [28]. In terms of face and body traits, comparative 

descriptions can convey more accurate descriptions, since observers can easily 

perceive differences between two subjects, for example, one person being 

taller than the other [4] [17], This eliminates known psychological effects, such 

as owner variables and confirmation bias. 

Each comparison describes the difference of each feature between two 

subjects, such as height, weight and the length of an arm. The comparison for 

each feature is labelled using three classes: shorter, the same or higher, 

following the observation that a scale of 3 could lead to better discriminative 

capability [5]. Each level is denoted by a signed integer, for example, when 

comparing the height of two subjects, -1 means shorter, 0 represents the same 
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and +1 means taller. The labels for the new database based on the traits were 

collected using CrowdFlower. The interface for the collection system is shown 

Figure 4.6. Each of the 200 individuals was labelled by 20 people for the 

categorical clothing labels. The face and body were labelled by the comparison 

between each of the 200 subjects and 20 randomly chosen subjects. The total 

number of comparisons is 4000, each one labelled by 20 people. 

 

 

(a) Body labels 

 

 

(b) Clothing labels 

Figure 4.6 Interface of label collection system 
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4.2 Attributes Analysis 

4.2.1 Ranking inference 

Elo was used to rank the comparative data. It is necessary to ensure the Elo 

rating results are trustworthy. Pixel height is used to estimate the actual height 

of a subject in an image. Meanwhile, an Elo ranking result, in terms of human 

height, represents a systematic judgement of height according to the 

comparative description. The positive correlation of pixel height and Elo rating 

results can validate the accuracy of Elo rating results, as shown in Figure 4.7.  

 

 

Figure 4.7 Relationship between estimated and measured height 

The Pearson’s correlation coefficient is 0.93 using this method, and 

outperforms the result 0.87 obtained previously [50]. This is likely due to the 

fixed geometry used from an outdoor environment, which allows labellers to 

pay more attention to the comparison of height. 

4.2.2 Correlation analysis 

The correlation coefficient (Pearson’s) of each semantic feature in three groups 

(close and medium, close and far, medium and far) was employed to measure 

the stability of the ranking system. Theoretically, a larger coefficient indicates 

that a particular trait is less sensitive to distance.  
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Figure 4.8 Pearson’s correlation coefficient for each trait in three groups (close 

and medium, close and far, medium and far) 

The correlation coefficient of each trait in three groups is depicted in Figure 

4.8. It shows that the stability of most of the clothing traits, and some of the 

body traits, is relatively high, whilst the stability of face traits varies 

substantially at different distances. For example, in the body feature set, 

humpback and neck length are the most sensitive traits. Hair colour is good 

between close and medium distance, but worse at close-far and medium-far. 

The result demonstrated that the hair colour is less stable at a far distance. In 

the facial feature set, the ear is weak at all three groups, which means it is a 

sensitive feature, whilst face size has the highest stability in the face trait set. 

In clothing traits, face coverage and head coverage are equal to one at all three 
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groups. In other words, these two features are the most straightforward to be 

observed.   

4.2.3 Mutual information 

Mutual information was introduced to measure the intensity of the correlation 

between two variables. Given two random variables, X and Y, whose marginal 

probability distribution functions are 𝑝(𝑥) and 𝑝(𝑦) respectively, the mutual 

information 𝐼(𝑋; 𝑌) was given in Eq.(3.3).  

Here mutual information is used to measure the relevance between each trait 

and subject ID. Since subject ID presents the explicit differences of each 

subject, larger mutual information demonstrates the stronger discriminating 

capacity of the trait. Moreover, small differences of mutual information for 

each trait at three distances reflect superior reliability. 

Figure 4.9 shows that age and upper body clothing category have the highest 

discriminatory differentiating power on body and clothing trait sets, 

respectively. 

 

 

(a) Body traits 
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(b) Face traits 

 

(c) Clothing traits 

Figure 4.9 Mutual information of three datasets at three distances. 

 

Despite skin colour showing the highest discriminatory power at close and 

medium distance, it is relatively weak at a far distance. It can be concluded 
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that body traits have the highest discriminating power at different distances, 

whilst the clothing traits are more stable across all distances. It appears that 

clothing traits are more easily observed in comparison with the other two types 

of traits. However, they have less uniqueness in recognition, which reduces 

discriminatory power. Further, clothing is an innately short-term biometric, 

since clothing can easily be changed. Moreover, since body traits have more 

detail than clothing traits, they have stronger differentiating power. It is known 

that the resolution of the face varies greatly with distance. Thus, the 

discriminatory power of facial traits decreases sharply at far distances. 

Furthermore, the trait stability evaluated by mutual information is in 

accordance with the results given by correlation analysis. The clothing traits 

appear to be the most stable traits for recognition. 

4.3 Single-modal recognition 

The purpose of the identification experiment is to assess the effectiveness of 

the proposed attributes (listed in Table 4.1, Table 4.2 and Table 4.3) for 

identification using the new dataset, and show the applicability of single-modal 

soft biometrics. The experiments simulate a realistic scenario that aims to 

retrieve the identity of an unknown subject (or probe) from a soft biometric 

database using verbal descriptions for the probe (i.e. eyewitness statement). 

The experiments used LoO cross-validation, and were implemented using 200 

subjects, in which 100 subjects were randomly chosen as training samples, 

and the remaining samples were used for testing.  

The identification of unknown subjects was performed by calculating the 

Euclidean distance, 𝑑, between the biometric signature of the probe and the 

biometric signature of each subject in the gallery as follows: 

 𝑑 = √∑ (𝑋(𝑖) − 𝑌(𝑖))2𝑇
𝑖=1  (4.1) 

where 𝑋 is a vector that represents the biometric signature of one subject. For 

example, the unknown subject, 𝑌, is a vector that represents the biometric 

signature of another subject (the subject in the gallery that is compared with 

the unknown subject), and 𝑇 =  10 is the number of soft biometric attributes 
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composing the biometric signatures. The nearest neighbour was used here for 

classification: subjects were sorted in ascending order according to their 

distances from the probe, and the rank of the correct match was used to report 

the identification performance.  

For face and body, the comparative labels are used. The recognition accuracy 

(rank=1) over varying numbers of probe comparisons (𝑛) is shown in Figure 

4.10 and Figure 4.11. . It is easy to obtain that with increase in the numbers of 

comparisons; the recognition accuracy is improved accordingly. The similarity 

of Figure 4.10 and Figure 4.11 demonstrated that the number of comparisons 

directly influenced the recognition performance. 

 

 

Figure 4.10 Body recognition accuracy obtained from different numbers of 

comparisons. 

 

Figure 4.10 shows body recognition accuracy obtained from different numbers 

of comparisons. The Police and Criminal Evidence Act [51] explains that a good 

identity system should consist of 8 to 12 compared people. In this case, 9 

comparisons are required for recognition. The recognition accuracy only used 

one comparison to construct the accuracy, of roughly 10% at all three distances.  

The recognition performance continues to increase over the range. At close 
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distance, the accuracy improvement is noticeable when the number of people 

compared is lower than 12 and achieves ~98% with 18 comparisons. For 

medium and far distances, it is achieving a ~85% correct recognition rate with 

18 comparisons. 

In comparison with [49], the database is comprised of 100 subjects and 12 

body traits represented by comparative distributions. Their identification rate 

with 10 comparisons is ~97%, which is higher than that of the new method 

(~85%). Nevertheless, the dataset used in this chapter is twice as large as the 

dataset in [49] and employs less features. This study concentrates on the 

fusion approaches and on whether fusion itself can be used for recognition as 

well as its properties, whilst assuming that all single mode approaches can be 

improved independently. 

 

 

Figure 4.11 Face recognition accuracy obtained from different numbers of 

comparisons. 

 

The facial recognition accuracy over different numbers of comparisons is 

shown in Figure 4.11. It shows that, at close distances, the accuracy of facial 
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descriptions greatly outperforms that of body descriptions. The facial 

description achieves an ~80% identification accuracy with 7 comparisons, 

whilst body only achieves ~60%. The recognition performance at a close 

distance is much better than that at medium and far distances. A ~97% 

recognition accuracy is obtained with ten comparisons, obtaining a maximum 

of a 100% accuracy at 18 comparisons. The recognition performance is limited 

at a far distance, with the accuracy rate achieving only ~19% when using 18 

comparisons. This suggests that distance is more important than the number 

of comparisons when using the face for recognition. 

By comparing the identification performance at close distance obtained from 

[5], which achieved an accuracy of 100% with 10 comparisons by using 24 

attributes with 4038 subjects, the accuracy of the proposed method using 10 

comparisons is ~97%, which demonstrates that 10 traits used here include 

enough information for classification. 

 

 

Figure 4.12 Cumulative match characteristic curves for the individual modalities 

 

The cumulative match characteristic curves (CMC) for single-modal soft 

biometric feature sets are depicted in Figure 4.12. At a close distance, the 

recognition accuracy of facial traits is ~96% % (for rank 1 identification), but it 
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falls sharply to ~63% at a medium distance and ~13% for a far distance. The 

recognition by clothing is the most consistent, with accuracies of ~83% ~69% 

and ~67% at the three distances respectively. 

For facial traits, the recognition accuracy at close distance is 99.2% (rank=2) 

and 100% (rank=6). At medium and far distances, the recognition accuracy is 

99.03% (rank=10) and 49.3% (rank=10) respectively. In terms of recognition 

using clothing traits, the accuracy at medium (95.8%) and far (95.9%) distances 

is very similar. It performs higher at a close distance (98.5%). For the body 

traits, the recognition accuracy is 99.3% (rank=4) at a close distance and 

decreases slightly to 98.4% and 96.6% (rank=10) at medium and far distances. 

In summary, at a close distance, the facial traits, as well as body and clothing 

traits, show high performance. At medium distance, three feature sets obtain 

similar accuracy, but at a far distance, the accuracy of clothing and body traits 

significantly outperforms that of the face. 

 

 

Figure 4.13 Accuracy of single-modal recognition (rank=1). 
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The process is repeated 20 times, and the boxplot of recognition results is 

shown Figure 4.13. It shows the extent of the accuracy over 9 single-modal 

methods. It shows that the recognition performance of clothing and body traits 

is relatively stable, whilst the performance of facial traits varies substantially 

at different distances. As we know, the resolution of face images is greatly 

influenced by distance. Thus, the recognition accuracy of facial traits 

decreases sharply at far distances. 

The average recognition rates at three distances for each feature set are 

illustrated in Table 4.4. Recognition accuracy and equal error rate (EER) are 

employed to evaluate the performance of different biometric modals. 

 

Table 4.4: Identification performance for single-modal methods 

   Close  Medium  Far 

   Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

Face   95.7 0.45  62.7% 3.89  13.1% 22.76 

Body   85.4 1.77  57.4% 3.96  55.5% 4.33 

Clothing   82.6 2.76  69.4% 4.00  67.1% 3.59 

 

4.4 Conclusions 

This chapter introduces a new database for soft biometrics based on imagery 

collected from the University of Southampton Gait Tunnel, synthesised so as 

to appear to be from an outdoor environment, and then labelled using 

CrowdFlower. The influence of distance on soft biometric traits was firstly 

analysed. In terms of single-modal recognition, facial traits achieve the best 

result at close distance but are not stable, they fall sharply with an increase in 

distance. Compared with facial traits, as clothing and body traits have less 

uniqueness, the accuracies of the two trait sets are lower than that of facial 

traits at close distances, whereas the stability of body and clothing is much 

better than stability for the face. They can achieve good recognition results, 

even at a far distance. 
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The following chapters further analyse soft biometric features through 

application of fusion. This research will evaluate the capability of the soft 

biometric traits in multi-modal recognition at different distances. 

 



 

 Feature Level Fusion at Different 

Distances 

 

In order to improve biometric system performance, information fusion is a key 

technique in multi-modal biometric systems. Multi-modal biometric fusion is 

conventionally divided into five levels: sensor, feature, score, rank and 

decision levels. In this chapter, we will conduct an analysis of the recognition 

performance with different statistical feature fusion methods. 

Feature level fusion is based on the feature sets extracted from multiple data 

sources to create a new feature set that represents a subject. Therefore, the 

core goal is to describe the most effective feature information, so as to achieve 

superior recognition performance. The general idea is to minimise the distance 

of feature information for intra-class samples and maximise the distance of 

inter-class. Another important research area of feature fusion is how to extract 

effective information by minimising or removing redundancy.  

Among a number of techniques implemented for feature level fusion, linear 

feature extraction methods are widely used to reduce the dimensionality of the 

feature set. Principal Component Analysis (PCA) is one of the most popular 

methods, used mainly for dimensionality reduction in compression and 

recognition problems [52] [53]. One method for feature level fusion, based on 

PCA [10], is to combine hand and face features. Another powerful 

dimensionality reduction technique is the Linear Discriminant Analysis (LDA) 

[54] [55]. A feature fusion method based on CCA is introduced in [11]. Another 

feature level fusion technique, DCA [12] , improved CCA by incorporating class 

information into the correlation analysis of the feature sets. A multi-modal 

method based on sparse representation was proposed by Sumit, which 

significantly improved the robustness and accuracy [13]. 
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This chapter will propose a supervised generalised canonical correlation (SG-

CCA) method to fuse soft biometric features. The experiments were performed 

using the new soft biometric database, which contains the human face, body 

and clothing traits at three different distances. Furthermore, will explore the 

potential of face, body and clothing for human recognition using SG-CCA 

fusion compared with other linear dimensionality reduction fusion methods. 

The results will demonstrate the superiority of soft biometric fusion using SG-

CCA method for human recognition. 

5.1 Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA), proposed by Hotelling in 1936 [56], is a 

general method for studying the correlating linear relationship between two 

sets of random variables. The pairwise variables are employed together to 

investigate projections from two feature spaces that maximise the correlation 

between the projected representations [57]. By using CCA for feature fusion, 

the two datasets are regarded as two sets of variables. 

Given two datasets 𝑋1 and 𝑋2, each has n samples as 𝑋1 = [𝑥1
1, 𝑥1

2, … , 𝑥1
𝑛, ] and 

𝑋2 = [𝑥2
1, 𝑥2

2, … , 𝑥2
𝑛, ], where  𝑥𝑗

𝑖
 notes the 𝑖𝑡ℎ

 sample in the 𝑗𝑡ℎ
 set, 𝑗 = 1 𝑜𝑟 2. We 

intend to map two datasets along two directions 𝜔1 and 𝜔2 that can maximise 

the correlation, project 𝑥1 onto directions 𝜔1 can be described as:  

 𝑥1 → 〈𝜔1, 𝑥1〉 (5.1) 

 𝑋1, 𝜔1 = (〈𝜔1, 𝑥1
1 〉, … , 〈𝜔1, 𝑥1

𝑛 〉 ) (5.2) 

and the corresponding value of 𝑥2 is 

 𝑋2, 𝜔2 = (〈𝜔2, 𝑥2
1 〉, … , 〈𝜔2, 𝑥2

𝑛 〉 ) (5.3) 

The function that maximises the correlation between the two vectors is 

described as: 

 

𝐽(𝜔1, 𝜔2) = max
𝜔1𝜔2,

𝑐𝑜𝑟𝑟(𝑋1 𝜔1, 𝑋2 𝜔2)

               = max
𝜔1𝜔2,

𝜔1
𝑇𝐶12𝜔2

√𝜔1
𝑇𝐶11𝜔1×𝜔2

𝑇𝐶22𝜔2

  (5.4) 
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where 𝐶 is the covariance matrix, specified as 𝐶11 = 𝑋1
𝑇𝑋1, 𝐶22 = 𝑋2

𝑇𝑋2 and 𝐶12 =

𝑋1
𝑇𝑋2 = 𝐶21

𝑇
.  

Since the optimisation of the objective function in Eq.(5.4) is invariant with 

respect to the scaling of 𝜔1  and 𝜔2  (𝐽(𝜔1, 𝜔2) = 𝐽(𝛼𝜔1, 𝛽𝜔2))  [57], 

assuming 𝜔1
𝑇𝐶11𝜔1 = 𝜔2

𝑇𝐶22𝜔2 = 1, the maximum of Eq.(5.4) can be computed 

by the following equations: 

 
𝜔1𝜔2 = argmax 𝜔1

𝑇𝐶12𝜔2          

𝑠. 𝑡.   𝜔1
𝑇𝐶11𝜔1 = 𝜔2

𝑇𝐶22𝜔2 = 1
   (5.5) 

By using the Lagrange multiplier method, Eq.(5.5) can be written as.   

 𝐿(𝜆, 𝜔1, 𝜔2) = 𝜔1
𝑇𝐶12𝜔2 −

𝜆1

2
( 𝜔1

𝑇𝐶11𝜔1 − 1) −
𝜆2

2
( 𝜔2

𝑇𝐶22𝜔2 − 1) (5.6) 

Taking derivatives in respect to 𝜔1 and 𝜔2, 

 
𝜕𝐿

𝜕𝜔1
= 𝐶12𝜔2 − 𝜆1𝐶11𝜔1 = 0 (5.7) 

 
𝜕𝐿

𝜕𝜔2
= 𝐶21𝜔1 − 𝜆2𝐶22𝜔2 = 0 (5.8) 

Let 𝜆 = 𝜆1 = 𝜆2 

 [
0 𝐶12

𝐶21 0
] [

𝜔1

𝜔2
] = 𝜆 [

𝐶11 0
0 𝐶22

] [
𝜔1

𝜔2
]  (5.9) 

where 𝜆 is a Lagrange multiplier, which is equal to the correlation coefficient 

of 𝜔1
𝑇𝑥1 and 𝜔2

𝑇𝑥2. This is a standard eigenvalue problem and 𝜔1 and 𝜔2  can 

be determined by the eigenvector corresponding to the largest eigenvalue in 

Eq.(5.9). 

5.2 Generalized Canonical Correlation Analysis 

CCA finds a linear relationship between two views. It cannot be directly applied 

to multi-view data. In practical applications, the number of variables is always 

more than two. Thus, in this section, we will review a possible framework for 

generalising Canonical Correlation Analysis (gCCA), and the number of 

datasets is extended to 𝑚 [58]. gCCA is used to investigate a set of directions 
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that maximise the total correlation. Each correlation is calculated by any two 

sets of variables. 

Given 𝑚 sets of variables in total, each set has 𝑛 samples. The samples in one 

set are 𝑋j = [𝑥j
1, 𝑥j

2, … , 𝑥j
𝑘 , … , 𝑥j

𝑛 ], where 𝑗 is is one of the 𝑚   (𝑗 = 1, … , 𝑚). 𝑥𝑗
𝑖
 is 

𝑖𝑡ℎ
 sample in 𝑗𝑡ℎ

 set of variables. The canonical correlation between 𝑗𝑡ℎ
 and  𝑘𝑡ℎ

 

set of variables can be calculated using Eq.(5.4). gCCA is supposed aimed to 

derive 𝑊 = [𝜔1 , … , 𝜔𝑚]𝑇
 that maximises the sum of correlations. Therefore 

Eq.(5.4) is extended to the following equation. 

 𝜔 = argmax (∑ ∑
𝜔𝑗

𝑇𝐶𝑗𝑘𝜔𝑘

√𝜔𝑗
𝑇𝐶𝑗𝑗𝜔𝑗×𝜔𝑘

𝑇𝐶𝑘𝑘𝜔𝑘

𝑚
𝑘=𝑖+1

𝑚
𝑗=1 )  (5.10) 

Similar to CCA, the optimal value of 𝑊 can be derived by solving the following 

constrained problem: 

 

𝜔 = argmax(∑ ∑ 𝜔𝑗
𝑇𝐶𝑗𝑘𝜔𝑘

𝑚
𝑘=𝑖+1

𝑚
𝑗=1 ) 

𝑠. 𝑡.   𝜔𝑗
𝑇𝐶𝑗𝑗𝜔𝑗 = 1,    ∀𝑖 = 1, … , 𝑚        

 (5.11) 

Given 𝜔𝑗
𝑇𝐶𝑗𝑘𝜔𝑘 = 𝜔𝑘

𝑇𝐶𝑘𝑗𝜔𝑗, we can transform Eq. (5.11) as follows: 

 

 𝑊 =  argmax  𝑊𝑇𝐶̃𝑊               

𝑠. 𝑡.   𝑊𝑇𝐶𝑑𝑊 = 𝐼                      

                  𝜔1
𝑇𝐶11𝜔1 = ⋯ = 𝜔𝑚

𝑇 𝐶𝑚𝑚𝜔𝑚

 (5.12) 

where 𝐼 is an 𝑛 × 𝑛 identity matrix and  

 

𝐶̃ = [
𝐶11 ⋯ 𝐶1𝑚

⋮ ⋱ ⋮
𝐶𝑚1 ⋯ 𝐶𝑚𝑚

] − 𝐶𝑑

𝐶𝑑 = [
𝐶11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐶𝑚𝑚

]           

 (5.13) 

The optimal 𝑊 = [𝜔1 , … , 𝜔𝑚]𝑇
 can be calculated through Eq.(5.12). By using 

Lagrange multipliers, Eq.(5.12) can be written as: 

 𝐶̃ [

𝜔1

⋮
𝜔𝑚

] = 𝜆𝐶𝑑 [

𝜔1

⋮
𝜔𝑚

] (5.14) 
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5.3 Supervised Generalized Canonical Correlation 

Analysis 

As CCA only focuses on the correlations between the pairwise variables from 

different datasets, the class information of the samples is ignored, which 

adversely affects the recognition performance [59]. In order to overcome this 

issue, this chapter proposes a supervised generalised canonical correlation 

analysis (SG-CCA) by incorporating label information of samples into the gCCA 

model. The SG-CCA is a supervised method for multi-view data. It is easier to 

be used in practical applications and the result is theoretically improved 

compared with gCCA. 

SG-CCA is supposed to provide a set of projection directions, 𝑊 =

[𝜔1 , … , 𝜔𝑛]𝑇
, to maximise intra-class correlations between two different 

datasets (as justified in [60], the inter-class correlation is automatically 

minimised when intra-class correlation is maximised). 

Before we derive SG-CCA, supervised CCA is described. Given two sets of 

variables 𝑋1 and 𝑋2, each set has 𝑛 pairs of samples and is labelled as 𝑐 classes. 

We define α  as the number of classes (𝛼 = 1, … , 𝑐) , and each class has 𝑛𝛼 

samples (∑ 𝑛𝛼 = 𝑛𝑛
𝛼=1 ).  The samples are listed as (𝑥1,𝑖

(𝛼)
, 𝑥2,𝑖

(𝛼)
), where 𝑖 =

[1,2, … , 𝑛𝛼] and 𝑥𝑚,𝑖
(𝛼)

denotes 𝑖𝑡ℎ
 sample in 𝛼𝑡ℎ

 class at 𝑚𝑡ℎ
 dataset. Expressing 

𝑋1
(𝛼)

 and 𝑋2
(𝛼)

 as the sample sets of 𝛼𝑡ℎ
 class, and 𝑋1

(𝛼)
= [𝑥1,1

(𝛼)
, … , 𝑥1,𝑛𝛼

(𝛼)
]  and 

𝑋2
(𝛼)

= [𝑥2,1
(𝛼)

, … , 𝑥2,𝑛𝛼

(𝛼)
]. 𝑋1

(𝛼)̂
 and 𝑋2

(𝛼)̂
 are used to represent the variables, 𝑋1

(𝛼)
 and 

𝑋2
(𝛼)

, after projection on to directions 𝜔X and 𝜔Y. The intra-class correlation 

between 𝑋(𝛼)̂
 and 𝑌(𝛼)̂

 can be then defined as: 

 

𝜌(𝛼) =
𝑋1

(𝛼)̂
𝑋2

(𝛼)̂
𝑇

√𝑋1
(𝛼)̂

𝑋1
(𝛼)̂

𝑇

×𝑋2
(𝛼)̂

𝑋2
(𝛼)̂

𝑇
                                   

=
𝜔𝑋1

𝑇 𝑋1
(𝛼)

𝑋2
(𝛼)

𝜔𝑋2

√𝜔𝑋1
𝑇 𝑋1

(𝛼)
𝑋1

(𝛼)𝑇
𝜔𝑋1×𝜔𝑋2

𝑇 𝑋2
(𝛼)

𝑋2
(𝛼)𝑇

𝜔𝑋2

 (5.15) 

𝜔X  and 𝜔Y  can be calculated by maximising the sum of all the intra-class 

correlations which is denoted as: 
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 𝜔𝑋 , 𝜔𝑌 = argmax (∑
𝜔𝑋1

𝑇 𝑋1
(𝛼)

𝑋2
(𝛼)

𝜔𝑋2

√𝜔𝑋1
𝑇 𝑋1

(𝛼)
𝑋1

(𝛼)𝑇
𝜔𝑋1×𝜔𝑋2

𝑇 𝑋2
(𝛼)

𝑋2
(𝛼)𝑇

𝜔𝑋2

𝐶
𝛼=1 ) (5.16) 

Eq.(5.16) is specified as following, 

 

𝜔𝑋 , 𝜔𝑌 =  argmax(𝜔𝑋1

𝑇 ∑ 𝑋1
(𝛼)

𝑋2
(𝛼)𝐶

𝛼=1 𝜔𝑋2
)

𝑠. 𝑡.  𝜔𝑋1

𝑇 𝑋(𝛼)𝑋(𝛼)𝑇𝜔𝑋1

𝑇 = 1                               

         
𝜔𝑋2

𝑇 𝑋2
(𝛼)

𝑋2
(𝛼)𝑇

𝜔𝑋2
= 1

𝑖 = 1, … , 𝑐      
                               

 (5.17) 

Then supervised CCA is extended to the generalised case, namely SG-CCA. 

Given 𝑚 different datasets, each one has 𝑛 samples labelled into 𝑐 classes, 

Given 𝛼 as the number of classes (𝛼 = 1, … , 𝑐) and  𝑛𝛼 denotes the total number 

of training samples in each class (∑ 𝑛𝛼 = 𝑛𝑐
𝛼=1 ). In order to clarify the samples, 

𝑖 is used to denote the number of samples in one class ( 𝑖 = 1, … , 𝑛𝛼). The 

number of dataset is represented by 𝑗, and 𝑗 is in the range of 1 to 𝑚. Those 

samples in 𝛼𝑡ℎ
 class in different dataset are given as 𝑋(𝛼) =

{(𝑋1
(𝛼)

, … , 𝑋j
(𝛼)

, … , 𝑋m
(𝛼)

)},  𝑋𝑖
(𝛼)

= {(𝑥𝑗,1

(𝛼)
, … , 𝑥𝑗,𝑖

(𝛼)
, … , 𝑥𝑗,𝑛𝛼

(𝛼)
)}.  

We combine all the intra-class correlations together and maximise the sum. 

The formulation of SG-CCA is as follows:  

 

𝑊 = argmax(∑ 𝑊𝑇𝐶̃(𝛼)𝐶
𝛼=1 𝑊)

𝑠. 𝑡.   𝑊𝑇𝐶𝑑
(𝛼)

𝑊 = 1                     
 (5.18) 

where 

 𝐶̃(𝛼) = [
𝐶11

(𝛼)
⋯ 𝐶1𝑚

(𝛼)

⋮ ⋱ ⋮

𝐶𝑚1
(𝛼)

⋯ 𝐶𝑚𝑚
(𝛼)

] − [
𝐶1𝑚

(𝛼)
⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝐶𝑚𝑚
(𝛼)

] (5.19) 

 𝐶𝑑
(𝛼)

= [
𝐶11

(𝛼)
⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝐶𝑚𝑚
(𝛼)

] (5.20) 
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5.4 Experiments and analysis 

5.4.1 Feature level fusion using supervised generalized canonical 

correlation analysis 

This section will validate the performance of the proposed SG-CCA algorithm 

with different dimensions. The feature sets used are the same as those 

described in 0. The experiment was implemented using 200 subjects, and each 

subject had 20 samples, in which 10 samples were randomly chosen as testing 

data to train SG-CCA and obtain the transformation matrices. The remaining 

10 samples were regarded as testing data and were employed for evaluation. 

 

Table 5.1: Comparison of recognition results through SG-CCA with different 

numbers of features (𝑑: number of features). 

 close medium far 

SG-CCA(d=5) 95.5% 78.0% 66.6% 

SG-CCA(d=7) 98.4% 86.9% 69.3% 

SG-CCA(d=10) 99.6% 92.3% 75.2% 

 

The recognition accuracies with different numbers of features are shown in 

Table 5.1 and Figure 5.1. The results show that accuracy is proportional to the 

number of features used. When the number of features is 5, the average 

recognition accuracy achieves 95.5% at close distance, which is similar to the 

accuracy of single face modality at close distance, but higher than that of body 

and clothing traits. With increase in dimensions for training, the accuracy at a 

close distance increases to 98.4%, which is higher than all the results of single-

modal methods. Clothing traits achieved the highest recognition rate at 

medium distance, which is increased by 17.5% using SG-CCA. It can be also 

concluded that high dimensional fusion contributes to the distinctive 

recognition accuracies. For example, the accuracy is boosted to 99.6% at a 

close distance when the number of features equals 7. This phenomenon is 

clearly shown in the Figure 5.1. 
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Figure 5.1 Recognition accuracy of the proposed SG-CCA algorithm using 

different number of features. 

 

5.4.2 Comparison with other linear dimensionality reduction method 

for fusion 

As multi-modal methods aim to fuse several single modalities for recognition, 

the weak (face traits at a far distance) and strong (face traits at close distance) 

modalities are normally considered together. However, they are not expected 

to obtain an inferior performance due to weak modalities. The experiments in 

this section will evaluate the robustness of various linear dimensionality 

reduction methods (PCA, LDA, gCCA and SG-CCA). 

The recognition accuracy at three distances using different feature fusion 

methods is listed in Table 5.2. The proposed method clearly outperforms other 

feature level fusion techniques. At a close distance, the recognition accuracy 

of the fusion method is always superior to that of single-modal methods, 

except for the result of PCA, which is the same as that of face traits. At a 

medium distance, all the fusion methods achieve excellent recognition rate, 

compared with the best result given by single-modal method - 69.4%. LDA 



Chapter 5 Feature Level Fusion at Different Distances 

79 

improves the accuracy by 4.4%, while SG-CCA contributes to the highest rate - 

86.9%. At a far distance, the accuracy of PCA and LDA is higher than that of a 

single face or body traits, but lower than that of single clothing features, 

because the accuracy of the face at a far distance is only 13.1%, which lowers 

the fusion results. Alongside this, the fusion results of gCCA are slightly 

improved, and the accuracy of the proposed SG-CCA increases to 69.3%. 

 

Table 5.2 Identification performance using different methods (feature 

number=7). 

  Close  Medium  Far 

  Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

Face  95.7 0.45  62.7 3.89  13.1 22.76 

Body  85.4 1.77  57.4 3.96  55.5 4.33 

Clothing  82.6 2.76  69.4 4.00  67.1 3.59 

PCA  95.8 0.40  74.3 2.77  61.0 4.05 

LDA  96.4 0.51  73.8 2.91  61.6 3.00 

gCCA  97.1 0.39  82.3 2.06  67.9 2.98 

SG-CCA  98.4 0.37  86.9 1.53  69.3 2.79 

 

The development of performance fusion at close and far distances is not 

apparent as medium distance, as single modalities can achieve desirable 

results at a close distance, while facial attributes might reduce the fusion 

performance at a far distance. However, the numerical evidence shows that the 

proposed SG-CCA performs the best at all three distances, especially at close 

and medium distances, and with a slight improvement (over clothing) at the 

far distance. 

5.5 Conclusions 

In this chapter, a novel fusion method named SG-CCA was studied. When using 

SG-CCA for fusion, increasing the number of features helped to achieve higher 

recognition accuracy. The experiments were also implemented with other 

multi-modal fusion methods (PCA, LDA, and gCCA) for comparison. 

Recognition accuracy and EER were employed to evaluate performance. The 

comparisons between multi-modal and the single-modal biometric methods 
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demonstrated that recognition performance can be improved by multi-

biometrics. The proposed SG-CCA was validated numerically and shown to be 

the best fusion method available, especially at close and medium distances. 

In summary, this chapter demonstrated the improved performance at different 

distances using soft biometrics feature level fusion.  A method for score level 

and rank level fusion will be investigated in the next chapter. 



 

 Score Level and Rank Level 

Fusion at Different Distances 

 

In order to achieve high recognition accuracy, multi-modal fusion is frequently 

employed in recognition systems. In this section, we will focus on score and 

rank level. 

Normally, the identification system provides two types of result: the match 

scores of enrolled subjects and the subjects’ ranks. Match scores are used to 

measure the similarity between testing and enrolled subjects. Score level 

fusion is a combination of match scores from different biometric matchers, 

which then derives a new score. Some simple methods, such as product rule, 

sum rule, max, medium and minimum rules, were introduced [14]. These 

methods could be implemented readily, since no statistical information is 

required. Part of score level fusion is based on the match score density 

distribution. A combination method using the likelihood ratio test is proposed 

in [61] which estimates the genuine and impostor matching scores, and then 

calculates likelihood ratios for each component modality. Similarly, the 

Bayesian approach [14] is also widely used for score level fusion. A SVM based 

score level fusion is introduced and validated in [15], which demonstrates that 

the weighted score level fusion can achieve a higher accuracy with lower EER 

compared with individual modalities [16]. 

A rank list of enrolled subjects is another output of a biometric matcher. The 

goal of rank level fusion is to derive a mutually agreed rank for each identity 

through the consolidation of the rank’s output by individual identification 

models. Regarding rank level fusion, a number of techniques have been 

researched recently. A review of different rank level fusion approaches was 

reported in [62] [63]. Highest Rank and Borda Count are frequently employed 
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to fuse ranks, since they do not require training or prior statistical information. 

The Borda Count allocates weight for different matchers based on their 

recognition performances. Another fusion method proposed in [64] 

generalised the Mallows model on permutations. A mixed group ranks method 

is introduced in [65], which is a combination of Borda Count, Logistic 

Regression, and Highest Rank methods. The experiments demonstrate that 

this method can provide superior recognition performance. An effective rank 

fusion scheme for multi-modal biometric is proposed in [66] using Markov 

chain, and it achieved a high performance by fusing the face, ear, and iris. A 

nonlinear method is studied in [67] for ranking combination. An unsupervised 

rank fusion method, Inverse Square Rank fusion, is proposed in [68]. The 

algorithm is based on quadratic decay and logarithmic document frequency 

normalisation. However, it should be noted that rank fusion requires access to 

the whole set of results while score fusion does not, which can be regarded as 

a disadvantage of the approach.  

6.1 Score level fusion 

6.1.1 Estimation of similarity score densities 

There are three databases for human body, face and clothing, and the Parzen 

Window is used to estimate the PDF of each. In Eq. (6.1), a Gaussian kernel 

function is used to smooth the estimation result.  

 𝑝(𝑥) =
1

𝑛
∑

1

√2𝜋𝜎
(−

(𝑥𝑖−𝑥)2

2𝜎2
)𝑛

𝑖=1  (6.1) 

where 𝑥1, … , 𝑥𝑛 are n data samples and 𝑥 is the centre point, σ is variance.  

In our new database, each of the 200 subjects has 20 samples. For each subject, 

the intra-class similarity score can be obtained by comparing 20 samples of 

the same subject, whilst the inter-class similarity score is calculated by 

comparing any two samples from different subjects. By considering the 

similarity scores of intra-class and inter-class as the inputs of a Parzen Window, 

we can estimate two PDFs for intra-class and inter-class. 

Figure 6.1 depicts an example probability density distribution of the face 

datasets at three different distances when using a Parzen Window. The close 
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face density distribution appears to offer best recognition in our dataset - the 

overlap between inter-class and intra-class is small, which is why recognition 

by face at close distances achieves the best result. The face at a far distance is 

the worst since the overlap is much larger than that of the other two. 

 

 

(a) Close  

 

(b) Medium 
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(c) Far  

Figure 6.1 Probability density of face match score at three distance, estimated 

using a Parzen window 

 

6.1.2 Score fusion using Bayesian theory 

As one of the most popular biometric recognition methods, score-level fusion, 

has satisfactory performance in traditional biometric recognition, such as 

logistic regression. By combining several match scores given by single-modal 

methods, score-level fusion can significantly improve recognition accuracy.  

It is well known that Bayesian analysis (Eq.(6.2)) is able to enhance the 

posterior probability by means of the prior probability. 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (6.2) 

where 𝑃(𝐴) and 𝑃(𝐵) are the probabilities of 𝐴 and 𝐵 occurring independently 

and 𝑃(𝐴|𝐵) represents the probability of event 𝐴 occurring on condition of the 

fact that 𝐵  is true. Similarly, 𝑃(𝐵|𝐴)  denotes the probability of event 𝐵 

occurring on condition of the fact that 𝐴 is true. 
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The identification of an input sample can be seen as a two-class (genuine or 

impostor user) issue. For any given match score, the probability of this score 

belonging to a genuine or an impostor can be calculated by Eq. (6.3) and (6.4). 

 𝑃(𝑔|𝑆) =
𝑝(𝑆|𝑔)𝑃(𝑔)

𝑝(𝑆)
 (6.3) 

 𝑃(𝑖|𝑆) =
𝑝(𝑆|𝑖)𝑃(𝑖)

𝑝(𝑆)
 (6.4) 

 𝑝(𝑆) = 𝑝(𝑆|𝑔)𝑃(𝑔) + 𝑝(𝑆|𝑖)𝑃(𝑖) (6.5) 

where 𝑔  represents genuine and 𝑖  represents the impostor event, 𝑃(𝑔|𝑆) 

describes the probability that the event 𝑔 is true on condition of the event 𝑆. 

𝑝(𝑆|𝑔) denotes a distribution of event  𝑆 on condition of event 𝑔. 

For multi-biometrics, there are several independent matchers. The probability 

of a score belonging to a genuine or an impostor is denoted in Eq.(6.6), where 

𝑁 is the number of sample matchers 

 𝑃(𝑘|𝑆1, … , 𝑆𝑀) = ∏ 𝑃(𝑘|𝑆𝑗)𝑁
𝑗=1   𝑘 ∈ 𝑔, 𝑖 (6.6) 

The final judgement can be made through Eq.(6.7). An output equalling 1 

indicates that the match score belongs to a genuine user, while the score 

belongs to an impostor user if the output is 0. 

 𝐷 = {
1   𝑃(𝑔|𝑆1, … , 𝑆𝑀) ≥ 𝑃(𝑖|𝑆1, … , 𝑆𝑀) 
0                     otherwise                      

 (6.7) 

6.1.3 Score fusion using Likelihood Ratio Test 

According to Neyman-Pearson theory [69], given a FPR, when the FNR reaches 

the minimum, the Likelihood Ratio Test (LRT) is represented by: 

 𝜆(𝑠) =
𝑓𝑔𝑒𝑛(𝑠)

𝑓𝑖𝑚𝑝(𝑠)
 (6.8) 

where 𝑠 is the input score, 𝑓𝑔𝑒𝑛(𝑠) is the densities of genuine training data and 

𝑓𝑖𝑚𝑝(𝑠) is the impostor. In Eq.(6.9), 𝐷  is the verification result and 𝜂  is the 

classification threshold, which is determined based on a given FAR. 
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 𝐷 = {
  𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑐𝑙𝑎𝑠𝑠   𝑖𝑓  𝜆(𝑠) ≥ 𝜂

𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟 𝑐𝑙𝑎𝑠𝑠  𝑖𝑓  𝜆(𝑠) < 𝜂
 (6.9) 

The vector [𝑠1, … , 𝑠𝑁]  denotes a set of match scores calculated through 𝑁 

different biometric matchers, 

 𝜆(𝑠) =
∏ 𝑓𝑔𝑒𝑛(𝑠𝑖)𝑁

𝑖=1

∏ 𝑓𝑖𝑚𝑝(𝑠𝑖)𝑁
𝑖=1

= ∏ 𝜆(𝑠𝑖)
𝑁
𝑖=1  (6.10) 

6.1.4 Score fusion using SVM-weighted Likelihood Ratio Test 

The logarithm of the likelihood ratio is denoted as: 

 𝜌(𝑠) = log(𝜆) = ∑ 𝜌(𝑠𝑖)
𝑁
𝑖=1  (6.11) 

and the weighted likelihood ratio is defined as: 

 𝜆𝑤(𝑠) = ∏ 𝜆𝑤(𝑠𝑖)
𝑁
𝑖=1 = ∏ (𝜆(𝑠𝑖))

𝑤𝑖𝑁
𝑖=1  (6.12) 

where 𝑤𝑖  is the weight of the 𝑖𝑡ℎ
 matcher and each 𝜆𝑤(𝑠𝑖) is computed by 

(𝜆(𝑠𝑖))
𝑤𝑖

. The logarithm of the weighted likelihood ratio is represented as: 

 
𝜌𝑤(𝑠) = ∑ 𝑤𝑖𝜌(𝑠𝑖) = [𝑤1 , … , 𝑤𝑁] [

𝜌(𝑠1)
⋮

𝜌(𝑠𝑁)
]𝑁

𝑖=1

 = 𝑊𝑇𝛲                                                   

 (6.13) 

Given a threshold 𝜃, the weighted likelihood ratio test can be written as: 

 𝐷 = 𝑊𝑇𝛲 − 𝜃 (6.14) 

If 𝐷 ≥ 0, the result is accepted, otherwise it is rejected. We use a kernel SVM to 

optimise 𝑊 and 𝜃 and then obtain the optimal verification, called the SVM-

weighted likelihood ratio test (SVM-LRT). An SVM was proposed to investigate 

an optimal hyperplane that can accurately classify samples into two classes 

[70]. Given a training set 𝑆 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑚

, with input the vector 𝑥𝑖 ∈ 𝑅𝑛
, and 𝑦𝑖 ∈

{−1, +1}, the hyperplane for a linear case is defined as: 

 𝑔(𝑥) = 𝜔𝑇𝑥 + 𝑏 = 0 (6.15) 

 𝑦𝑖(𝑥𝑖𝜔 + 𝑏) − 1 ≥ 0, ∀𝑖 ∈ [1, … , 𝑚 ] (6.16) 
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A hyperplane with maximum margin (the maximum distance between closest 

samples and hyperplane) can be calculated by solving the optimisation 

problem: 

 

𝜔, 𝑏 = argmax 
2

||𝜔||
                                         

𝑠. 𝑡.  𝑦𝑖(𝑥𝑖𝜔 + 𝑏) − 1 ≥ 0, ∀𝑖 ∈ [1, … , 𝑚 ]
 (6.17) 

max 
𝜔,𝑏

2

||𝜔||
  can be represented as min

𝜔,𝑏

1

2
||𝜔||2

. Using the Lagrange multiplier for it, 

the Lagrange function can be described as: 

 𝐿(𝜔, 𝑏, 𝛼) =
1

2
||𝜔||2 − ∑ 𝛼𝑖[ 𝑦𝑖(𝑥𝑖𝜔 + 𝑏) − 1]𝑚

𝑖=1  (6.18) 

where 𝛼𝑖 is Lagrange variables and 𝛼𝑖 ≥ 0 ∀𝑖 ∈ [1, … , 𝑚 ]. 

This quadratic optimisation problem can be solved by removing the gradient 

of the Lagrange function with respect to the variables 𝜔 and 𝑏. 

 𝛻𝜔𝐿 = 𝜔 − ∑ 𝛼𝑖𝑦𝑖𝑥𝑖 = 0 ⟹ 𝜔 =𝑚
𝑖=1 ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑚
𝑖=1  (6.19) 

 𝛻𝑏𝐿 = − ∑ 𝛼𝑖𝑦𝑖
𝑚
𝑖=1 = 0 ⟹ ∑ 𝛼𝑖𝑦𝑖

𝑚
𝑖=1 = 0 (6.20) 

 
∀𝑖, 𝛼𝑖[ 𝑦𝑖(𝑥𝑖𝜔 + 𝑏) − 1] = 0 ⟹

𝛼𝑖 = 0 ∨  𝑦𝑖(𝑥𝑖𝜔 + 𝑏) − 1 = 0  
 (6.21) 

Then, 𝜔  in Eq.(6.18) can be replaced by Eq.(6.19), Eq.(6.18) is therefore 

rewritten as,  

 

𝛼 = argmax (∑ 𝛼𝑖 −
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙ 𝑥𝑗)𝑚

𝑖,𝑗=1
𝑚
𝑖=1 )

𝑠. 𝑡.  ∑ 𝛼𝑖𝑦𝑖 = 0𝑚
𝑖=1                                                          

𝛼𝑖 ≥ 0, ∀𝑖 ∈ [1, … , 𝑚 ]                               

 (6.22) 

According to Eq.(6.19) and (6.21), the optimal values for 𝜔  and b can be 

calculated by 𝛼, which is the solution of Eq.(6.22).  

Nevertheless, the real data cannot be classified using linear classifier. Thus, a 

non-linear kernel is used to map the data into a high-dimensional space. The 

optimal hyperplane can be therefore obtained by solving Eq. (6.23), which is 

regarded as an extension of Eq.(6.22). 
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𝛼 = argmax (∑ 𝛼𝑖 −
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 ∙ 𝑥𝑗)𝑚

𝑖,𝑗=1
𝑚
𝑖=1 )

𝑠. 𝑡.  ∑ 𝛼𝑖𝑦𝑖 = 0𝑚
𝑖=1                                                             

𝛼𝑖 ≥ 0, ∀𝑖 ∈ [1, … , 𝑚 ]                                  

 (6.23) 

where 𝐾(𝑥𝑖 ∙ 𝑥𝑗) is the kernel function, selected based on the dataset. 

6.1.5 Experiments and discussion 

In the testing dataset, each subject has 20 samples, and half of them are 

randomly chosen as testing data, and the remaining samples are regarded as 

training data. During testing, one sample in the testing dataset is used to 

match any one randomly chosen sample in the training dataset. The probability 

distribution of this similarity score for genuine and impostor can be obtained 

based on the two probability densities obtained from the training sample.  

The results of multi-modal recognition using Bayesian theory, likelihood ratio 

test and SVM-weighted likelihood ratio test are listed in Table 6.1. Recognition 

accuracy, and EER are employed to evaluate the performance of different 

biometric models. 

 

Table 6.1: Identification performance using different methods 

 Close  Medium  Far 

 Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

Face 95.7 0.45  62.7 3.89  13.1 22.76 

Body 85.4 1.77  57.4 3.96  55.4 4.33 

Clothing 82.5 2.76  69.4 4.00  67.0 3.59 

Bayes 96.3 0.38  84.6 1.07  78..1 2.57 

LRT 96.1 1.07  87.7 2.46  76.5 3.02 

SVM-LRT 97.0 0.32  92.5 0.89  80.8 2.08 

 

It is clear that recognition accuracy is improved greatly using three fusion 

algorithms, in comparison with three single-model methods. The advantages 

of the proposed methods are more prominent in the experiments at medium 

and far distances.  
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According to EER, 𝐺𝑎𝑖𝑛 is used to quantify the improvement of EER using fusion 

methods, in comparison with single-model methods. The improvement factor 

𝐺𝑎𝑖𝑛  is defined as Eq.(6.24). 

 𝐺𝑎𝑖𝑛 =
min(𝐸𝐸𝑅1,…,𝐸𝐸𝑅𝑁 )

𝐸𝐸𝑅𝑓
 (6.24) 

where 𝐸𝐸𝑅1, … , 𝐸𝐸𝑅𝑁  are the EER of N single-mode biometric identification 

methods, and 𝐸𝐸𝑅𝑓 is the EER of fusion system. The relevant results are listed 

in Table 6.2. 

 

Table 6.2 𝐺𝑎𝑖𝑛 of different score fusion methods 

 Close Medium Far 

Bayesian 1.18 3.64 1.40 

LRT 0.42 1.58 1.19 

SVM-LRT 1.41 4.37 1.73 

 

In comparison with a fusion based on LRT, the algorithms based on Bayesian 

theory and SVM-LRT both achieve superior results. Bayesian theory not only 

considers the distribution of match score, but also incorporates prior 

probability, both of which contribute to an excellent recognition result. In 

terms of fusion based on SVM-LRT, the optimal threshold and weights for 

various distances can be derived through training sets to improve the 

performance of classification. For example, at a close distance, the weight of 

face is enhanced, while those of body and clothing are reduced. 

In comparison with [9], the database was comprised of 40 subjects and 27 

faces, 19 body and 7 clothing traits, which were represented by comparative 

distributions. The data did not use the concepts of distance from camera 

exposed in this chapter, rather opting to delete the facial traits when they 

cannot be seen. In terms of the result of the fusion recognition, although the 

number of facial and body traits is lower, and the total number of subjects has 

increased to 200, this chapter’s approach performs better than that of [9].  



Chapter 6 

90 

6.2 Rank Level fusion 

6.2.1 Borda count method 

Borda count [71] [72] ] is an unsupervised rank level fusion method with many 

possible applications. Given 𝑚  different matchers, each has 𝑛  enrolled 

samples on training dataset. A vote is given to each rank. For example, the 

rank-one of each matcher is given 𝑁 votes, and rank-two is given 𝑁 − 1. Also, 

the rank-n will be assigned 1 vote. Then the sum of votes of individual 

matchers for one user is used for identification. For example, the final vote for 

user 𝑘 is: 

 𝑠(𝑘) = ∑ 𝑣𝑗,𝑘
𝑚
𝑗=1  (6.25) 

where 𝑣𝑗,𝑘 is the vote for user 𝑘 given by 𝑗𝑡ℎ
 matcher. The winner - the true user 

identity - is determined based on the highest votes. 

The Borda count methods assume that the votes assigned to the user by 

different matchers are independent, and the performance of matchers is the 

same. The training phase is not required. 

6.2.2 Logistic regression method 

The Logistic Regression Method [73] is a generalisation of Borda count where 

the expected performance of different matchers is not the same. It can be 

formulated as the weighted Borda count, i.e. the statistic for user 𝑘 is: 

 𝑠(𝑘) = ∑ 𝜔𝑗𝑣𝑗,𝑘
𝑚
𝑗=1  (6.26) 

The weight, 𝜔𝑗 , for 𝑗𝑡ℎ
 matcher can be calculated using logistic regression, 

empirical values or more sophisticated machine learning approaches. 

Compared with Borda count, a training phase is required for weight calculation. 

6.2.3 Nonlinear weight ranks method 

A nonlinear method to calculate the weights of different matchers is 

investigated in [67]. Three nonlinear combinations are introduced to generate 

the consolidated ranks; the equations are listed as follows, where 𝜔𝑗 is weight 
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for 𝑗𝑡ℎ
 matcher and 𝑟𝑗,𝑘 is the 𝑘𝑡ℎ

 rank given by 𝑗𝑡ℎ
 matcher. The weights reflect 

the significance of different matchers. 

 𝑠(𝑘) = ∑ 𝑡𝑎𝑛ℎ(𝜔𝑗𝑟𝑗,𝑘)𝑚
𝑗=1  (6.27) 

 𝑠(𝑘) = ∑ 𝑒𝑥𝑝(𝜔𝑗𝑟𝑗,𝑘)𝑚
𝑗=1  (6.28) 

 𝑠(𝑘) = ∑ 𝜔𝑗𝑒𝑥𝑝(𝑟𝑗,𝑘)𝑚
𝑗=1  (6.29) 

6.2.4 PAV based rank fusion 

In a new rank fusion method, based on Pool Adjacent Violators (PAV) algorithm 

[74], rank is converted for each matcher to an approximate score using 

Eq.(6.30), 

 𝑠𝑗,𝑘 =
(𝑛𝑡𝑟𝑎𝑖𝑛+1−𝑟𝑗,𝑘)

𝑛𝑡𝑟𝑎𝑖𝑛
 (6.30) 

where  𝑛𝑡𝑟𝑎𝑖𝑛 is the total number of identities in the training dataset and 𝑟𝑗,𝑘 is 

the rank for user k given by 𝑗𝑡ℎ
 matcher. The score after conversion is within 

the range from 
1

𝑛𝑡𝑟𝑎𝑖𝑛
 to 1. The log likelihood ratio was then calculated for each 

score value using the PAV algorithm. 

The sum of a score of individual matches for one user is used for identification. 

For example, the final score for the 𝑘𝑡ℎ
 rank is: 

 𝑠(𝑘) = ∑ 𝑠𝑗,𝑘
𝐿𝑅𝑚

𝑗=1  (6.31) 

where 𝑠𝑗,𝑘
𝐿𝑅

 is the score after computing the log likelihood ratio. The winner’s 

identity is determined based on the highest score. 

6.2.5 Experiments and discussion 

The recognition results at three distances using different score-level fusion 

methods are listed in Table 6.3. The progress is the same as in the rank-level 

fusion test. For each subject, half of 20 samples are randomly chosen to be 

used as testing data, and the remaining samples used as training data. 
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Table 6.3 Identification performance using different rank-fusion methods 

  Close  Medium  Far 

  Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

Face  95.7 0.45  62.7 3.89  13.1 22.76 

Body  85.4 1.77  57.4 3.96  55.5 4.33 

Clothing  82.6 2.76  69.4 4.00  67.1 3.59 

Borda count method [72]  95.8 0.45  76.4 3.64  73.3 4.17 

Logistic regression [73]  96.4 0.39  82.3 3.73  75.5 3.83 

Nonlinear weight ranks [67]  96.9 0.39  86.2 3.48  79.3 3.44 

PAV based [74]  97.0 0.38  86.0 3.01  79.1 3.33 

 

It is clear that the nonlinear weight ranks and PAV based rank fusion 

outperform the other two rank fusion techniques at medium and far distances. 

At a close distance, all the fusion methods achieve excellent recognition rates. 

Compared with the best results given by single-mode methods (95.8%), PAV 

based fusion improves the accuracy by 1.2%. The accuracy improvement is also 

prominent when using Borda count method. At a medium distance, the 

recognition performance of nonlinear weight rank fusion improves 

significantly. The accuracy increases to 86.2%. And the EER achieves 14.1%. At 

a far distance, the accuracy improvement is also satisfactory, especially for 

nonlinear weight ranks and PAV based rank fusion. 

 

Table 6.4 𝐺𝑎𝑖𝑛 of different score fusion methods 

  Close Medium Far 

Borda count method  1 1.07 0.86 

Logistic regression [73]  1.15 1.04 0.94 

Nonlinear weight ranks [67]  1.15 1.12 1.04 

PAV based [74]  1.18 1.29 1.09 

 

𝐺𝑎𝑖𝑛 of different score fusion methods are listed in Table 6.4, compare the 

𝐺𝑎𝑖𝑛 of score and rank level fusion, the results of score level fusion methods 

outperform rank fusion techniques. 
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6.3 Conclusions 

Three different fusion methods in rank and score level were introduced, and 

their performance was validated by three sets of soft biometric datasets. 

Results of the comparison between multi-model biometric methods with 

single-model biometric methods showed that recognition performance was 

significantly improved by using multi-model biometrics. The proposed SVM-

LRT was numerically demonstrated to be the best fusion method available, 

with a recognition accuracy of over 98% at all distances. Clearly, the 

performance can be improved by fusion but the current approach requires 

access to all the data. As such it appeared prudent to investigate an approach 

which could deliver the same performance, but without this restriction.





 

 Rank-score Fusion 

 

The results presented in the Chapter 6 demonstrated the effectiveness of 

fusion in rank and score level using soft biometrics for subject identification. 

The aforementioned methods demonstrated that recognition performance can 

be improved by rank or score fusion. In this chapter, an improved fusion 

method based on rank and score level fusion will be proposed. The difference 

between testing samples and enrolled samples can be observed intuitively 

using similarity scores, based on which ranks are sorted. However, the rank 

and similarity score information is different. Since rank is a linear description 

(i.e. 1, 2, 3, …,), it can be used to indicate the order of enrolled samples, but 

does not describe the variation between adjacent samples. A novel technique 

will, therefore, be proposed to combine the effective information in rank and 

similarity scores, namely rank-score fusion, and then to consolidate the 

recognition results. 

7.1 Rank-score distribution 

The outputs of a classifier are always comprised of a match score list or a rank 

list. The match score describes a distance or a similarity between the testing 

subject and the registered subject. The distance between subjects is normally 

calculated by Euclidean distance, Mahalanobis Distance or other metrics. The 

rank list is then obtained by sorting the similarity score in descending order. 

Given 𝑘  samples as registered samples for each matcher, a rank-score 

distribution can be constructed after training. In order to reduce the influence 

of outliers on the experiment and achieve more reliable results, each subject 

is used to match all remaining subjects. During the training process, similarity 

score matrix 𝑠𝑖 = {𝑠𝑖,1, … , 𝑠𝑖,𝑘−1}, and rank matrix 𝑟𝑖 = {𝑟𝑖,1, … , 𝑟𝑖,𝑘−1} are obtained, 
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where 𝑖 is the subject ID in the range of 1 to 𝑘, and 𝑠𝑖,𝑛 is the similarity score 

between 𝑖𝑡ℎ
 subject with 𝑛𝑡ℎ

 remaining subject. The variables in the rank and 

score matrices are in one-to-one correspondence (𝑟𝑖,𝑛 is the rank order of 𝑠𝑖,𝑛). 

For multi-modal biometrics, there are 𝑚 different matchers, each of which 

produces one rank matrix and one score matrix. 𝒮 = {[𝑠𝑖,1
𝑗

, … , 𝑠𝑖,𝑘−1
𝑗

]} and ℛ =

{[𝑟𝑖,1
𝑗

, … , 𝑟𝑖,𝑘−1
𝑗

]}  are used to denote the sets of scores and rank matrices 

separately, where 𝑗 is the number of biometric matcher (𝑗 = 1, … , 𝑚) and 𝑖 =

1, … , 𝑘.  

A two-dimensional density distribution with two corresponding variables in 𝒮 

and ℛ is estimated. The calculation is constructed using a Gaussian Kernel 

function to smooth the result. The density function with rank and score is 

estimated by: 

 𝑝(𝑠, 𝑟) =
1

2𝜋𝜎𝑟𝜎𝑠
𝑒𝑥𝑝 [− (

(𝑟−𝜇𝑟)2

𝜎𝑟
+

(𝑠−𝜇𝑠)2

𝜎𝑠
)] (7.1) 

 

 

Figure 7.1 Overview of the Rank-Score distribution calculation framework. The 

notation 𝑠𝑖𝑚(𝑋1, 𝑆𝑖) is used to denote the similarity score obtained by 

comparing an unknown subject 𝑆𝑖  to the biometric sample 1 of a 

gallery subject in the face dataset. 
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7.2 Normalization 

After 𝑝(𝑠, 𝑟) is obtained, the joint density of a pair of match score and rank, 

𝑝(𝑠𝑚,𝑟𝑚), is calculated and employed as measurement of weights. In order to 

further improve the method, the density is normalised before it is used as a 

weight.  Z-score normalisation has been described previously in Section 3.2.1 

 

Min-max normalisation: Min-max normalisation is suitable for the case that the 

boundaries (minimum and maximum values) of scores are known. After 

normalisation, all the scores are transferred into a common range [0,1]. Given 

a set of match scores 𝑆 = {𝑠1, … , 𝑠𝑘}, the normalisation scores are given by: 

 𝑠𝑘
′ =

𝑠𝑘−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 (7.2) 

 

Medium and median absolute deviation normalisation (MAD): Compared with 

Z-score normalisation, MAD is a robust method, since it is insensitive to 

outliers. The scheme of median and MAD is given by: 

 𝑠𝑘
′ =

𝑠𝑘−𝑚𝑒𝑑

𝑀𝐴𝐷
 (7.3) 

where 𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑠1, … , 𝑠𝑘} and 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛{|𝑠𝑘 − 𝑚𝑒𝑑|}. This technique 

does not retain input distribution and does not transfer scores in a common 

range. 

 

Tanh-estimators: The tanh-estimator proposed in [75] is a robust and efficient 

method. The normalised scores are given by: 

 𝑠𝑘
′ =

1

2
{𝑡𝑎𝑛ℎ (0.01 (

𝑠𝑘−𝜇

𝜎
)) + 1} (7.4) 

where 𝜇 is the arithmetic mean and 𝜎 is standard deviation. 

The recognition performance of the rank-score fusion method using different 

normalised algorithms is shown in Table 7.1. Tanh-estimators is demonstrated 
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to provide the best result across different normalisation techniques. At 

medium and far distances, the results given by tanh-estimators has a distinct 

advantage, and is as good as MAD at a close distance. 

 

Table 7.1 Accuracy rate using different normalisation methods. 

 Close Medium Far 

Non-normalised 96.5% 84.9% 74.0% 

Min-max 96.9% 85.7% 77.0% 

Z-score 96.7% 90.8% 78.8% 

MAD 98.6% 86.9% 74.8% 

Tanh-estimators 98.5% 92.5% 82.6% 

 

7.3 Rank-score fusion 

The parameters of the rank-score distribution specified in Eq.(7.1) are 

calculated from training data before testing. During testing, an unknown user 

is matched with all registered users. For each matcher, one similarity score list 

and one rank list is obtained. Each registered user has a corresponding 

similarity score and a rank order, which are used as the inputs in Eq.(7.1). The 

joint density of similarity score and rank order is calculated. After 

normalisation, it is used as a weight to update the similarity score. The final 

similarity score of an unknown user and the 𝑘𝑡ℎ
 enrolled user can be calculated 

using Eq.(7.5), which is a weighted sum of different matchers. 

 𝑤𝑠𝑠(𝑘) = ∑ 𝑤𝑝𝑗,𝑘
𝑠𝑗,𝑘

𝑚
𝑗=1  (7.5) 

where 𝑠𝑗,𝑘   is the similarity score of enrolled user 𝑘 and 𝑤𝑝𝑗,𝑘
 is normalised joint 

density. The unknown user is labelled as the class that has the maximum 

values of 𝑤𝑠𝑠. 
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7.4 Experiment and discussion 

7.4.1 Evaluation of rank-score fusion at three distances 

In this section, experiments are performed to validate the performance of the 

proposed rank-score fusion algorithm at three distances.  

The feature sets used are the same as those described in Chapter 4. The 

experiments are implemented using 200 subjects. Each subject has 20 

samples, in which 5 samples are randomly chosen to train the joint density 

function and to obtain normalisation weights. The remaining samples are 

used for testing. The experiments were repeated 20 times, and the box-plot 

of recognition results are shown in Figure 7.2. 

 

 

Figure 7.2 Fusion at three distances 

 

It is clear that at the close distance is the most consistent, with an average 

recognition accuracy of 98.5% at close distance. The recognition accuracy at a 

medium distance slightly decreases to 92.5% on average, with the maximum 

95.3% and minimum 89.1%. The accuracy and the uncertainty at a far distance 

are worse than that at close and medium distances. 



Chapter 7 

100 

7.4.2 Compared with single-modal recognition  

Figure 7.3 is a vertical boxplot that shows the extent of the accuracy over 9 

single-modal methods. The recognition results at three distances using single-

modal methods and rank-score fusion method are listed in Table 7.2. At a 

close distance, the recognition accuracy of facial traits is 95.7%, which is the 

best over three signal-modal methods. The average recognition accuracy is 

98.5% after rank-score fusion, which is 2.8% higher than using single facial 

traits. The fusion result at a close distance is the most consistent, and the 

variance is smallest compared with the other two distances. The results 

demonstrate that clothing traits achieve the highest recognition rate at a 

medium distance (69.4%), which is increased by 23.1% using rank-score fusion. 

The stability of fusion results at a far distance is not as good as the other two 

distances, because the accuracy of facial traits at a far distance is only 13.1%, 

which lowers the fusion result. Meanwhile, the fusion results of rank-score 

fusion are slightly improved at a far distance, and the accuracy of the proposed 

rank-score fusion increases to 82.6%. 

 

 

Figure 7.3 Accuracy for individual matcher (rank=1). 
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Table 7.2 Identification performance of signal-modal and rank-score fusion 

recognition 

  Close  Medium  Far 

  Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

Face  95.7 0.45  62.7 3.89  13.1 22.76 

Body  85.4 1.77  57.4 3.96  55.5 4.33 

Clothing  82.6 2.76  69.4 4.00  67.1 3.59 

rank-score fusion  98.5 0.33  92.5 0.69  82.6% 2.42 

 

The comparisons between multi-modal and single-modal biometric methods 

demonstrate that recognition performance can be improved by multi-

biometrics.  The 𝑔𝑎𝑖𝑛 of rank-score fusion at three distances is 1.36, 5.64 and 

1.48, respectively. The fusion performance at close and far distances is not 

improved as apparent as that at medium distance. As we mentioned before, 

the single-mode methods can achieve desirable results at a close distance, 

while facial attributes might reduce the fusion performance at a far distance. 

7.4.3 Comparison with other fusion methods 

The recognition results at three distances using different fusion methods are 

listed in Table 7.3. It is clear that the proposed method outperforms other rank 

and score level fusion techniques. At all three distances, the recognition 

accuracy of the proposed fusion method is always superior to that of other 

methods. At a close distance, all the fusion methods achieve excellent 

recognition rates. Compared with the best results given by other methods 

(97.0%), rank-score fusion improves the accuracy by 1.5%. At a medium 

distance, the recognition performance of rank-score fusion improves 

significantly. The accuracy increases to 92.5%, and the EER achieves 0.69%. 

The improvement of fusion performance at close and far distances is not as 

apparent as at a medium distance, which improves recognition accuracy by 

1.8% (SVM-LRT).  
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Table 7.3: Identification performance using different fusion methods. 

  Close  Medium  Far 

  Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

 Accuracy 

(%) 

EER 

(%) 

Bayesian theory [9]  96.3 0.38  84.6 1.07  78.1 2.57 

Log likelihood ratio [69]  96.1 1.07  87.7 2.46  76.5 3.02 

SVM-LRT  97.0 0.32  92.5 0.89  80.8 2.08 

Borda count method [72]  95.8 0.45  76.4 3.64  73.3 4.17 

Logistic regression [73]  96.4 0.39  82.3 3.73  75.5 3.83 

Nonlinear weight ranks [67]  96.9 0.39  86.2 3.48  79.3 3.44 

PAV based [74]  97.0 0.38  86.0 3.01  79.1 3.33 

Rank-score fusion  98.5 0.33  92.5 0.69  82.6 2.42 

 

The recognition results at three distances using different fusion methods are 

listed in Table 7.3. It is clear that the proposed method outperforms other rank 

and score level fusion techniques. At all three distances, the recognition 

accuracy of the proposed fusion method is always superior to that of other 

methods. At a close distance, all the fusion methods achieve excellent 

recognition rates. Compared with the best results given by other methods 

(97.0%), rank-score fusion improves the accuracy by 1.5%. At a medium 

distance, the recognition performance of rank-score fusion improves 

significantly. The accuracy increases to 92.5%, and the EER achieves 0.69%. 

The improvement in fusion performance at close and far distances is not as 

apparent as at a medium distance, which improves recognition accuracy by 

1.8% (SVM-LRT).  

7.5 Conclusions 

A novel joint density-based rank-score fusion technique to fuse three soft 

biometric methods was proposed in this chapter. The experiments were 

conducted with other multi-modal fusion methods to make comparisons. 

Accuracy and EER were employed to evaluate their performance. The result of 

rank-score fusion demonstrates that at a close distance the soft biometric 

recognition performance is the most consistent. Compared with other fusion 
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methods, the proposed rank-score fusion is numerically demonstrated to be 

able to obtain the best results at all three distances, particularly at a medium 

distance. This leads to more general conclusions on this work. 

 





 

 Conclusions and Future Work  

 

8.1 Conclusions 

The aim of this research is to improve the recognition performance of soft 

biometrics through different fusion techniques. 

The first part of the work validated and justified the recognition performance 

of soft biometric fusion. Forthcoming research on soft biometric fusion 

focuses on the combination of soft biometrics and traditional biometrics. Thus, 

this research intended to test the applicability of fusion methods using soft 

biometric attributes. 

In the research, three datasets were used which were collected from the 

University of Southampton Tunnel Laboratory database. The three datasets 

comprised of face, body and clothing traits, each of which included two types 

of attributes: categorical and comparative. The results of the single-modal 

recognition tests demonstrated that comparative attributes provide better 

results for the face and body. Compared with the label of categorical attributes, 

which are subjective descriptions, the objective descriptions between two 

subjects proved more reliable. For the clothing dataset, the comparative 

attributes were inferior to categorical attributes. 

Two-level (feature and score) fusion methods were used to test the fusion 

capability of soft biometrics. In feature level fusion, several methods were used 

to find the feature which has the maximum effective information. A feature 

selected method, IFS, provided the best results with both categorical and 

comparative datasets. For score level fusion, the excellent performance was 

achieved by using a method based on Bayes theorem. In this section, the 
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improved recognition performance of soft biometrics fusion method was 

confirmed. 

The second part of this thesis analysed the influence of different distances on 

soft biometric attributes, and on fused soft biometrics at different distances. 

The motivation was that the quality of face images decreases sharply when the 

distance between the subject and the camera increases. Face images have lots 

of detail, which cannot be obtained at a far distance. In order to test the 

effectiveness of attributes at different distances on consistent data, a new 

dataset of soft biometrics at different distances was created. The images in 

the new dataset were also collected from University of Southampton Tunnel 

Laboratory, by synthesising with an appropriate outdoor environment. 

Reference objects, such as vehicles, in the actual environment, were employed 

to aid the (calibration of the human) labelling of soft biometric traits. Three 

modalities of features were used, each of them with ten attributes which had 

three descriptions. Based on previous research, comparative attributes are 

best for face and body, and categorical is best for clothing. The labels were 

collected by crowdsourcing task using CrowdFlower. 

Pearson’s correlation coefficient and mutual information were used to analyse 

the stability and discriminating capacity of features at different distances. The 

results highlighted the individual advantages and disadvantages of face, body 

and clothing traits. The uniqueness of facial features leads to a high 

discriminatory power, but the details of facial features cannot be recognised 

when the subject is far away from the camera. It is concluded that the stability 

of face features is insufficient for recognition at distance. Compared with facial 

features, body and clothing features have less uniqueness in recognition, 

which reduces their differentiating power, although their consistency across 

distance is superior.  

Three new fusion methods on the feature, score and rank-score levels were 

proposed, and the experiments were performed using the new soft biometric 

database. For feature level fusion, an SG-CCA method was used to fuse soft 

biometric features, and the results demonstrated the superiority of soft 

biometric fusion using the SG-CCA method for human recognition. For score 

level fusion, the proposed SVM-LRT was numerically demonstrated to be the 

best fusion method, when compared with fusion using Bayesian and LRT. In 
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addition, a novel joint density distribution-based rank-score fusion was studied, 

which overcame the shortcomings of the single-level fusion method, and the 

recognition performance was significantly improved by this method. 

In conclusion, compared with single-mode biometric methods, the 

experimental results demonstrate clearly that the recognition performance of 

multi-modal soft biometrics is significantly improved by using biometric fusion. 

Naturally as recognition at a close distance is generally good, it can be seen 

that fusion largely improves the recognition at medium and far distances. 

There is still much room for improvement at the far distance. It would appear 

that the fusion process selects information that is best for recognition at any 

distance and so the effects are most dramatic when appropriate features are 

weighted more favourably for recognition purposes, 

8.2 Future work  

This section provides a non-exhaustive list of future work related to soft 

biometric recognition. Some of these issues were encountered during the 

research for this thesis, but have yet to be fully addressed. 

8.2.1 Diversity of data collection 

The images in the new dataset were collected from the University of 

Southampton tunnel laboratory. Because of the limitation on laboratory 

cameras, all the images used in the new dataset were taken from a single 

viewpoint. The whole body of the subject can be seen from this viewpoint, 

which helps Crowdflower users to compare subjects. However, in a real-life 

situation, the viewpoint is rarely fixed. The viewpoint has an influence on soft 

biometric feature collection and fusion and this effect should be investigated 

in future.  

In addition, all the subjects used in this thesis were captured when they were 

at pre-marked distances and were compared with subjects at the same distance. 

In practical applications, it is often required to compare two people at the 

different distances from the camera. The locations of subjects will also 

influence soft biometric labels. For example, it is hard to compare the height 
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of two subjects if they are at different distances. It is necessary to perform 

more experiments for the proposed fusion methods. 

8.2.2 Automatic retrieval of biometric signatures 

This thesis demonstrated the effectiveness of soft biometrics for subject 

identification. The labels of the soft biometric database were achieved by 

human comparisons and descriptions. In real life, identification of an unknown 

suspect is always based on verbal descriptions from eyewitnesses. It is 

important to bridge the semantic gap between humans and machines. In order 

to have more practical applications, automatic retrieval of biometric signatures 

is required. Some relevant work has been done in [28] [76]. 

8.2.3 Descriptions from memory 

The comparisons between two subjects were collected by annotators while 

subjects’ images were presented. However, in particular applications, the 

features used for identification are always described by eyewitness based on 

their memory. Some details of soft biometric features could be confused with 

the passage of time. Future research into the influence of memory on 

comparative labels should be conducted. 
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