The University of Southampton
University of Southampton Institutional Repository

Chapter 4 Multitasking by exploitation of intracellular transport functions. The many faces of FcRn

Chapter 4 Multitasking by exploitation of intracellular transport functions. The many faces of FcRn
Chapter 4 Multitasking by exploitation of intracellular transport functions. The many faces of FcRn

The MHC Class I-related receptor, FcRn, transports antibodies of the immunoglobulin G (IgG) class within and across a diverse array of different cell types. Through this transport, FcRn serves multiple roles throughout adult life that extend well beyond its earlier defined function of transcytosing IgGs from mother to offspring. These roles include the maintenance of IgG levels and the delivery of antigen in the form of immune complexes to degradative compartments within cells. Recent studies have led to significant advances in knowledge of the intracellular trafficking of FcRn and (engineered) IgGs at both the molecular and cellular levels. The engineering of FcRn-IgG (or Fc) interactions to generate antibodies of increased longevity represents an area of active interest, particularly in the light of the expanding use of antibodies in therapy. The strict pH dependence of FcRn-IgG interactions, with binding at pH 6 that becomes essentially undetectable as near neutral pH is approached, is essential for efficient transport. The requirement for retention of low affinity at near neutral pH increases the complexity of engineering antibodies for increased half-life. Conversely, engineered IgGs that have gained significant binding for FcRn at this pH can be potent inhibitors of FcRn that lower endogenous IgG levels and have multiple potential uses as therapeutics. In addition, molecular studies of FcRn-IgG interactions indicate that mice have limitations as preclinical models for FcRn function, primarily due to cross-species differences in FcRn-binding specificity.

antibody engineering, FcRn, immunoglobulin G, intracellular trafficking
0065-2776
77-115
Elsevier
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36

Ward, E. Sally and Ober, Raimund J. (2009) Chapter 4 Multitasking by exploitation of intracellular transport functions. The many faces of FcRn. In, Advances in Immunology. (Advances in Immunology, 103) Elsevier, pp. 77-115. (doi:10.1016/S0065-2776(09)03004-1).

Record type: Book Section

Abstract

The MHC Class I-related receptor, FcRn, transports antibodies of the immunoglobulin G (IgG) class within and across a diverse array of different cell types. Through this transport, FcRn serves multiple roles throughout adult life that extend well beyond its earlier defined function of transcytosing IgGs from mother to offspring. These roles include the maintenance of IgG levels and the delivery of antigen in the form of immune complexes to degradative compartments within cells. Recent studies have led to significant advances in knowledge of the intracellular trafficking of FcRn and (engineered) IgGs at both the molecular and cellular levels. The engineering of FcRn-IgG (or Fc) interactions to generate antibodies of increased longevity represents an area of active interest, particularly in the light of the expanding use of antibodies in therapy. The strict pH dependence of FcRn-IgG interactions, with binding at pH 6 that becomes essentially undetectable as near neutral pH is approached, is essential for efficient transport. The requirement for retention of low affinity at near neutral pH increases the complexity of engineering antibodies for increased half-life. Conversely, engineered IgGs that have gained significant binding for FcRn at this pH can be potent inhibitors of FcRn that lower endogenous IgG levels and have multiple potential uses as therapeutics. In addition, molecular studies of FcRn-IgG interactions indicate that mice have limitations as preclinical models for FcRn function, primarily due to cross-species differences in FcRn-binding specificity.

This record has no associated files available for download.

More information

e-pub ahead of print date: 13 September 2009
Published date: 2009
Keywords: antibody engineering, FcRn, immunoglobulin G, intracellular trafficking

Identifiers

Local EPrints ID: 423614
URI: http://eprints.soton.ac.uk/id/eprint/423614
ISSN: 0065-2776
PURE UUID: 4f20053e-0149-48d6-be2d-3b65978f8bcd
ORCID for E. Sally Ward: ORCID iD orcid.org/0000-0003-3232-7238
ORCID for Raimund J. Ober: ORCID iD orcid.org/0000-0002-1290-7430

Catalogue record

Date deposited: 27 Sep 2018 16:30
Last modified: 18 Mar 2024 03:48

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×