The University of Southampton
University of Southampton Institutional Repository

Localization accuracy in single molecule microscopy using electron-multiplying charge-coupled device cameras

Localization accuracy in single molecule microscopy using electron-multiplying charge-coupled device cameras
Localization accuracy in single molecule microscopy using electron-multiplying charge-coupled device cameras

The electron-multiplying charge-coupled device (EMCCD) is a popular technology for imaging under extremely low light conditions. It has become widely used, for example, in single molecule microscopy experiments where few photons can be detected from the individual molecules of interest. Despite its important role in low light microscopy, however, little has been done in the way of determining how accurately parameters of interest (e.g., location of a single molecule) can be estimated from an image that it produces. Here, we develop the theory for calculating the Fisher information matrix, and hence the Cramer-Rao lower bound-based limit of the accuracy, for estimating parameters from an EMCCD image. An EMCCD operates by amplifying a weak signal that would otherwise be drowned out by the detector's readout noise as in the case of a conventional charge-coupled device (CCD). The signal amplification is a stochastic electron multiplication process, and is modeled here as a geometrically multiplied branching process. In developing our theory, we also introduce a "noise coefficient" which enables the comparison of the Fisher information of different data models via a scalar quantity. This coefficient importantly allows the selection of the best detector (e.g., EMCCD or CCD), based on factors such as the signal level, and regardless of the specific estimation problem at hand. We apply our theory to the problem of localizing a single molecule, and compare the calculated limits of the localization accuracy with the standard deviations of maximum likelihood location estimates obtained from simulated images of a single molecule.

Branching process, Cramer-Rao lower bound, electron multiplication, Fisher information matrix, single molecule microscopy
SPIE
Chao, Jerry
550e20b0-8365-42e3-a6fc-1048eb8c2e47
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36
Chao, Jerry
550e20b0-8365-42e3-a6fc-1048eb8c2e47
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36

Chao, Jerry, Ward, E. Sally and Ober, Raimund J. (2012) Localization accuracy in single molecule microscopy using electron-multiplying charge-coupled device cameras. In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIX. vol. 8227, SPIE.. (doi:10.1117/12.908951).

Record type: Conference or Workshop Item (Paper)

Abstract

The electron-multiplying charge-coupled device (EMCCD) is a popular technology for imaging under extremely low light conditions. It has become widely used, for example, in single molecule microscopy experiments where few photons can be detected from the individual molecules of interest. Despite its important role in low light microscopy, however, little has been done in the way of determining how accurately parameters of interest (e.g., location of a single molecule) can be estimated from an image that it produces. Here, we develop the theory for calculating the Fisher information matrix, and hence the Cramer-Rao lower bound-based limit of the accuracy, for estimating parameters from an EMCCD image. An EMCCD operates by amplifying a weak signal that would otherwise be drowned out by the detector's readout noise as in the case of a conventional charge-coupled device (CCD). The signal amplification is a stochastic electron multiplication process, and is modeled here as a geometrically multiplied branching process. In developing our theory, we also introduce a "noise coefficient" which enables the comparison of the Fisher information of different data models via a scalar quantity. This coefficient importantly allows the selection of the best detector (e.g., EMCCD or CCD), based on factors such as the signal level, and regardless of the specific estimation problem at hand. We apply our theory to the problem of localizing a single molecule, and compare the calculated limits of the localization accuracy with the standard deviations of maximum likelihood location estimates obtained from simulated images of a single molecule.

This record has no associated files available for download.

More information

Published date: 12 February 2012
Venue - Dates: Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIX, , San Francisco, CA, United States, 2012-01-24 - 2012-01-26
Keywords: Branching process, Cramer-Rao lower bound, electron multiplication, Fisher information matrix, single molecule microscopy

Identifiers

Local EPrints ID: 423633
URI: http://eprints.soton.ac.uk/id/eprint/423633
PURE UUID: 103bd87d-5733-4f3f-b585-0c88e2189e3e
ORCID for E. Sally Ward: ORCID iD orcid.org/0000-0003-3232-7238
ORCID for Raimund J. Ober: ORCID iD orcid.org/0000-0002-1290-7430

Catalogue record

Date deposited: 27 Sep 2018 16:30
Last modified: 16 Mar 2024 04:37

Export record

Altmetrics

Contributors

Author: Jerry Chao
Author: E. Sally Ward ORCID iD
Author: Raimund J. Ober ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×