The University of Southampton
University of Southampton Institutional Repository

Fluorescent microspheres as point sources: A localization study

Fluorescent microspheres as point sources: A localization study
Fluorescent microspheres as point sources: A localization study

The localization of fluorescent microspheres is often employed for drift correction and image registration in single molecule microscopy, and is commonly carried out by fitting a point spread function to the image of the given microsphere. The mismatch between the point spread function and the image of the microsphere, however, calls into question the suitability of this localization approach. To investigate this issue, we subject both simulated and experimental microsphere image data to a maximum likelihood estimator that localizes a microsphere by fitting an Airy pattern to its image, and assess the suitability of the approach by evaluating the ability of the estimator to recover the true location of the microsphere with the best possible accuracy as determined based on the Cramér-Rao lower bound. Assessing against criteria based on the standard errors of the mean and the variance for an ideal estimator of the microsphere's location, we find that microspheres up to 100 nm in diameter can in general be localized using a fixed width Airy pattern, and that microspheres as large as 1 μm in diameter can in general be localized using a floated width Airy pattern.

1932-6203
Chao, Jerry
550e20b0-8365-42e3-a6fc-1048eb8c2e47
Lee, Taiyoon
763ca47b-a0fd-43e9-9604-ea148726fa6e
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36
Chao, Jerry
550e20b0-8365-42e3-a6fc-1048eb8c2e47
Lee, Taiyoon
763ca47b-a0fd-43e9-9604-ea148726fa6e
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36

Chao, Jerry, Lee, Taiyoon, Ward, E. Sally and Ober, Raimund J. (2015) Fluorescent microspheres as point sources: A localization study. PLoS ONE, 10 (7), [e0134112]. (doi:10.1371/journal.pone.0134112).

Record type: Article

Abstract

The localization of fluorescent microspheres is often employed for drift correction and image registration in single molecule microscopy, and is commonly carried out by fitting a point spread function to the image of the given microsphere. The mismatch between the point spread function and the image of the microsphere, however, calls into question the suitability of this localization approach. To investigate this issue, we subject both simulated and experimental microsphere image data to a maximum likelihood estimator that localizes a microsphere by fitting an Airy pattern to its image, and assess the suitability of the approach by evaluating the ability of the estimator to recover the true location of the microsphere with the best possible accuracy as determined based on the Cramér-Rao lower bound. Assessing against criteria based on the standard errors of the mean and the variance for an ideal estimator of the microsphere's location, we find that microspheres up to 100 nm in diameter can in general be localized using a fixed width Airy pattern, and that microspheres as large as 1 μm in diameter can in general be localized using a floated width Airy pattern.

Other
journal.pone.0134112 - Version of Record
Available under License Creative Commons Attribution.
Download (3MB)

More information

Accepted/In Press date: 6 July 2015
e-pub ahead of print date: 28 July 2015
Published date: 28 July 2015

Identifiers

Local EPrints ID: 423663
URI: http://eprints.soton.ac.uk/id/eprint/423663
ISSN: 1932-6203
PURE UUID: 36b48a93-622e-4cd1-b347-1cb922d46f95
ORCID for E. Sally Ward: ORCID iD orcid.org/0000-0003-3232-7238
ORCID for Raimund J. Ober: ORCID iD orcid.org/0000-0002-1290-7430

Catalogue record

Date deposited: 27 Sep 2018 16:30
Last modified: 16 Mar 2024 04:37

Export record

Altmetrics

Contributors

Author: Jerry Chao
Author: Taiyoon Lee
Author: E. Sally Ward ORCID iD
Author: Raimund J. Ober ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×