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1 Introduction

Threshold regression (TR) is an important statistical model that has been in�uential in many �elds. There

are extensive applications in economics and Hansen (2011) provides a summary of the empirical literature.

The typical setup has the following form

y =

(
x0�1 + u1;

x0�2 + u2;

q � 
;
q > 
;

(1)

where u` satis�es E [u`jx; q] = 0 and may be conditionally heteroskedastic over the two regimes ` = 1; 2,1

the variable q governs the threshold trigger 
 that splits the sample and q has density fq (�) and distribution
Fq (�), the regressor x 2 Rk may include q as a covariate, and � := (�01; �02)0 2 R2k is the coe¢ cient vector
covering the two regimes. The setup is similar to simple linear regression except that the slope coe¢ cients

depend on whether the threshold variable q crosses the threshold point 
. The parameter 
 is often of

primary interest in applications.

Under the conditional mean independence assumption E [u`jx; q] = 0, the threshold parameter 
 can be
estimated by nonlinear least squares regression giving the least squares estimator (LSE)

b
 = argmin

2�

Mn (
) ;

where � is the parameter space of 
; which is assumed to be a proper subset of the support of q, the criterion

function is

Mn (
) := min
�1;�2

nX
i=1

(yi � x0i�11(qi � 
)� x0i�21(qi > 
))
2 ,

and 1(�) is the indicator function. Optimization of Mn (
) typically leads to an interval estimate of 
.

Common practice in the literature on threshold regression employs the left-endpoint LSE (LLSE) to resolve

this uncertainty, although Yu (2012, 2015) has recently shown that the middle-point LSE (MLSE) is more

e¢ cient in most cases. The precise de�nition of the argmin
 operation or the particular choice (LLSE or

MLSE) of practical implementation of the regression estimator b
 do not a¤ect any of the results in this
paper.

Two approaches have been proposed for inference about 
 in the TR model (1). The �rst is the �xed-

threshold-e¤ect framework of Chan (1993) where the break di¤erential �0 := �10 � �20 is taken as �xed and
where we use the zero subscript to indicate true value. In this framework, b
 is n-consistent, and

n (b
 � 
0) d�! argmin
v
D (v) ; (2)

where

D (v) =

8>><>>:
N1(jvj)P
i=1

z1i, if v � 0;
N2(v)P
i=1

z2i, if v > 0;
(3)

z`i has an absolutely continuous distribution, N` (�) is a Poisson process with intensity fq(
0), and fz1i; z2igi�1,
1The symbol ` is used to indicate the two regimes in (1) and, to simplify notation in what follows, the explicit values

"` = 1; 2" are often omitted.
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N1(�) and N2(�) are independent of each other. De�ne the variables

z1i : = 2x0i�0u1i + �
0
0xix

0
i�0;

z2i : = �2x0i�0u2i + �00xix0i�0;

where z1i represents the e¤ect on Mn (
)�Mn (
0) when 
 is displaced on the left of 
0, and z2i represents

the converse case. Then z1i = lim�"0 z1i1 f
0 +� < qi � 
0g is the limiting conditional value of z1i given

0 + � < qi � 
0, � < 0 with � " 0, and z2i = lim�#0 z2i1 f
0 < qi � 
0 +�g is the limiting conditional
value of z2i given 
0 < qi � 
0 + �, � > 0 with � # 0. It follows that the density of the quantity

z`i is fz`;q(z`; 
0)=fq(
0), the conditional density of z` given q = 
0. In this framework, the asymptotic

distribution of b
 is given as the argmin of the compound Poisson process D (v) in (3).
The second approach is the shrinking-threshold-e¤ect framework of Hansen (2000) which is borrowed

from the structural change literature such as Picard (1985) and Bai (1997), where the break di¤erential �0
shrinks to zero as n!1 and is therefore denoted by �n. As long as k�nk ! 0 and

p
n k�nk ! 1 (i.e., �n

does not fall in a contiguous neighborhood of the unidenti�ed case �n = 0, or in other words, there is su¢ cient

identi�cation information asymptotically in the sample data), then b
 is consistent with the convergence rate
an := n k�nk2, and

an (b
 � 
0) d�! argmin
v
C (v) ; (4)

where

C(v) =

(
2
p
fq(
0)
1W1(jvj) + fq(
0)Q jvj ;

2
p
fq(
0)
2W2(jvj) + fq(
0)Q jvj ;

if v � 0;
if v > 0;

(5)

with Q = lim
n!1

�0nE[xx
0jq=
0]�n
�0n�n

, 
` = lim
n!1

�0nE[xxu
2
` jq=
0]�n

�0n�n
, and the pair fW`(v); ` = 1; 2g being two indepen-

dent standard Brownian motions de�ned on [0;1). In this framework, the asymptotic distribution of b
 is
given as the argmin of the drifted two-sided Brownian motion C(v) in (5) with di¤erent scale parameters in

the two directions.

An interesting question that emerges from these two di¤erent asymptotic distributions of b
 is how they
are related, given that they both arise from the same statistical problem. In particular, why and how does

the argmin of a compound Poisson process transition to the argmin of a two-sided Brownian motion as the

parameter �0 changes from being treated as ��xed�to one that �shrinks to zero�. The goal of the present

paper is to provide the connection between the two limit theories.

2 Two Asymptotic Distributions and Their Connection

This section provides some background on the two di¤erent limit forms D(�) and C(�) and some intuition on
how they determine the asymptotic distributions of b
 and in�uence the di¤erent convergence rates. From
Yu (2014), we have the �nite sample formulation

n (b
 � 
0) = argmin
v
Dn (v) + op(1); (6)

where

Dn (v) =
nX
i=1

z1i1
�

0 +

v

n
< qi � 
0

�
+

nX
i=1

z2i1
�

0 < qi � 
0 +

v

n

�
:

2



From Hansen (2000), we have the alternate formulation

an (b
 � 
0) = argmin
v
Cn (v) + op(1); (7)

where

Cn (v) =
nX
i=1

z1i1

 

0 +

v

n k�nk2
< qi � 
0

!
+

nX
i=1

z2i1

 

0 < qi � 
0 +

v

n k�nk2

!
:

Note from these criteria that in estimating 
, we may e¤ectively assume that the parameter vector � is

known. The reason is that estimation of 
 involves only local information around the threshold value 
0
while estimation of � involves global information and these two components of the information set are

independent �see Yu (2012, 2015).

The di¤erence between the criteria Dn (�) and Cn (�) is that the localizing parameter v in Dn (�) is
standardized to v= k�nk2 in Cn (�) ; taking account of the shrinking di¤erential �n. As a result, we may write
(7) as argmin Cn (v) = k�nk2 argmin Dn (v) : This restandardization relating the criteria explains why the
convergence rate of b
 changes from n to an = n k�nk2 in moving from (6) to (7).

To understand the limit theory in which Dn (�) converges to D (�), we may rewrite Dn (�) as

Dn (v) =

8>><>>:
N1n(jvj)P
i=1

z1i, if v � 0;
N2n(v)P
i=1

z2i, if v > 0;

where N1n(jvj) =
Pn

i=1 1
�

0 +

v
n < qi � 
0

�
and N2n(v) =

Pn
i=1 1

�

0 < qi � 
0 + v

n

�
. Note that N`n(�) is

a binomial process. For example, for any given v > 0,

N2n(v) � Bin (n; pn (v)) ;

with pn (v) = Fq
�

0 +

v
n

�
�Fq (
0), and for any v2 > v1 > 0, the increment N2n(v2)�N2n(v1) is independent

of N2n(v1). It is well known that a binomial process will converge to a Poisson process if npn (v) converges

to a �nite number for any v. In our case, npn (v) ! fq (
0) v, where fq (�) is assumed to be continuous,
positive and �nite in a neighborhood of 
0.

2 This explains why Dn (�) D (�), where we use  to indicate

weak convergence of a stochastic process on the associated probability space.

The reason why the variable z`i changes to z`i is because only those qi that are local to 
0 are involved

in Dn (�). In Dn (�), N`n(�) and z`i are correlated through the correlation between qi and z`i. But for
two random variables (X;Y ), their joint density f (X;Y ) = f (Y jX) f(X) factors so that Y given X is

statistically independent of X although f (Y jX) may still be functionally dependent on X �see footnote

10 of Heckman (1997). This explains why z`i, as a conditional random variable given qi, is independent of

N`(�).
In contrast to the case of Dn (�), observe that n

�
Fq

�

0 +

v
nk�nk2

�
� Fq (
0)

�
t fq (
0) v

k�nk2
! 1, as

k�nk ! 0; so that in�nitely many qi�s are involved asymptotically in the local neighborhood of 
0 for any

given v > 0. As a result, a central limit theorem can be applied for a given v to the sums involved in Cn (�)
and under tightness a functional law gives rise to (5). It is not hard to show the following moment limits

E [Cn (v)] = nE

"
�0nxix

0
i�n � 1

 

0 < qi � 
0 +

v

n k�nk2

!#
! Q � fq (
0) v;

2See Yu and Zhao (2013) for cases where the density fq(�) need not be continuous at 
0 and need not be bounded below by
zero and bounded above by a positive constant in a neighborhood of 
0.
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and

V (Cn (v)) t nV

 
�2x0i�nu2i � 1

 

0 < qi � 
0 +

v

n k�nk2

!!
! 4
2 � fq (
0) v:

Then, because Cn (�) is an independent increments process, it follows by standard empirical process methods
that Cn (�) converges to the process C (�) in (5).

3 Sequential Asymptotics

Given the di¤erent limits described above, the question studied in the present paper is the mechanism by

which the convergence n (b
 � 
0) = argminvDn (v)+op(1) d�! argminvD (v) changes to n k�nk2 (b
 � 
0) =
argminv Cn (v) + op(1)

d�! argminv C (v) when k�nk ! 0. Note that Cn(v) = Dn
�

v
k�nk2

�
, so the second

limit distribution follows by a joint asymptotic argument in which both n!1 and k�nk ! 0. On the other

hand, the �rst limit distribution is obtained by letting n!1 with �0 �xed. Given that argminvD
�

v
k�0k2

�
=

k�0k2 argminvD (v) it follows that n k�0k2 (b
 � 
0) is approximately argminvD � v
k�0k2

�
in the �rst frame-

work. We therefore seek to explain why argminvD
�

v
k�0k2

�
d�! argminv C (v) as k�0k ! 0. In other

words, the question involves explaining the mechanism by which sequential asymptotics generates the same

asymptotic distribution as joint asymptotics, viz., why letting n ! 1 and k�nk ! 0 jointly generates the

same limit distribution of b
 as �rst letting n ! 1 and then letting k�0k ! 0.3 The relevant processes are

simply represented in the following diagram:

Dn (v)
n!1�! D (v)

# v = v
k�nk2

? # v = v
k�0k2

; k�0k ! 0

Cn (v)
n!1�!
k�nk!0

C (v)

Problems of joint and sequential limit theory have been addressed before in weak convergence the-

ory (Billingsley, 1968, Theorem 4.2), in panel data asymptotics (Phillips and Moon, 1999) and in near-

unit root limit theory (Phillips, 1987, Chan and Wei, 1987, Bykhovskaya and Phillips, 2018). The lat-

ter work, which bears some similarity to the present context in terms of taking limits to the boundary

of the domain of de�nition of the parameters, deals with the �rst order autoregression (AR(1)) model

fyt = ayt + ut; t = 1; 2; � � � ; ng with parameter a = ec=n, �1 < c � 0.4 When a is �xed, or c diverges

to negative in�nity at the rate n so that c � c�n for some �xed c� < 0 then the model is a stable, or

asymptotically stable AR(1) model. In this case, we have joint asymptotics where both jcj and n diverge to
1, and the asymptotic distribution of the LSE ba of a is normal. When n!1 and the localizing parameter

c � 0 is �xed, the model has a root that is local to unity since a! 1, and the asymptotic distribution of ba
involves quadratic functionals of a di¤usion process. Theorem 2 of Phillips (1987) shows that the sequential

limit distribution of ba (after normalization and centering) by �rst letting n!1 and then letting c! �1
is the same as the joint limit distribution obtained by letting n!1 and c! �1 at the simultaneous rate

n:

The following theorem provides a rigorous statement of the corresponding asymptotic distributional

equivalence that obtains in the threshold regression model.

3As suggested by the referee, in the sequential asymptotics, �0 in D(�) does not depend on n because n has already diverged
to 1, so we maintain the notation �0 in the sequential asymptotics.

4The case where c > 0 and c ! 1 at the upper boundary of the domain of de�nition is also considered in Phillips (1987).
Bykhovskaya and Phillips (2018) consider cases where c(�) = cg(�) is a function and the scale coe¢ cient c! �1:
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Theorem 1 If (i) �0E[xxjq=
0]�0
�00�0

! Q and
�0E[xxu2` jq=
0]�0

�00�0
! 
` as k�0k ! 0, 0 < Q <1 and 0 < 
` <1;

(ii) 0 < f � fq(
0) � f < 1; (iii) the conditional distributions of u`jx;q=
 and xjq=
 are continuous at
q = 
0, E [u`jx; q = 
0] = 0 and E

h
kxk4 jq = 
0

i
<1, then

bv := argmin
v
D

 
v

k�0k2

!
d�! argmin

v
C (v) as k�0k ! 0; (8)

where D(�) and C(�) are de�ned in (3) and (5).

Proof. We apply Theorem 2.7 of Kim and Pollard (1990) to derive this result. We need to check two

conditions for that theorem to apply: (i) bv = Op(1) as k�0k ! 0; and (ii) D
�

v
k�0k2

�
 C (v) 2 Cmin (R)

as k�0k ! 0, where Cmin (R) is de�ned as the subset of continuous functions g(�) 2 Bloc (R) for which (a)
g(t)!1 as jtj ! 1 and (b) g(t) achieves its minimum at a unique point in R, and Bloc(R) is the space of
all locally bounded real functions on R endowed with the uniform metric on compacta. Two lemmas in the

Appendix are used to establish these conditions. The shelling method (see, e.g., Theorem 3.2.5 of van der

Vaart and Wellner (1996)) is used in Lemma 1 of the Appendix to prove condition (i); and we apply Theorem

2.3 of Kim and Pollard in Lemma 2 to prove condition (ii). These two lemmas then give the convergence

result (8) stated in the theorem.

An important and novel feature in the above theorem is that as distinct from usual limiting objective

functions that arise in extremum estimation problems, the limit function D (�) involves a random rather

than deterministic number of summands. It is this feature that is decisive in determining the asymptotic

equivalence in the theorem.

4 Heuristic Arguments and An Illustrative Example

To provide some intuition on the limit result (8) we use the following simple example. Suppose x = 1,

q � U [0; 1], u1 = u2 = u with variance 1, and u is independent of q in (1). In this simple case, k�nk2 = �2n,
fq(
0) = 1, Q = 1, 
` = 1,

z1i = z1i = �
2
0 + 2�0ui and z2i = z2i = �

2
0 � 2�0ui;

so that

E [z`i] = �20 and V (z`i) = 4�
2
0:

Let v > 0 be given. Then

E [D (v)] = E [E [D (v) jN2 (�)]] = E [N2(v)E [z2i]] = E
�
N2(v)�

2
0

�
= �20v;

and, since D (v) =
N2(v)P
i=1

z2i when v > 0, we have

V (D (v)) = E [V (D (v) jN2 (�))] + V (E [D (v) jN2 (�)])
= E [N2 (�)V (z2i)] + V (N2(v)E [z2i])
= E

�
4�20N2(v)

�
+ V

�
N2(v)�

2
0

�
= 4�20v + �

4
0v = �

2
0v
�
4 + �20

�
: (9)
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By Example 3(i) of Robbins (1948), we have the following CLT for a random number of summands

D (v)� E [D(v)]
V (D(v))

=

PN2(v)
i=1 z2i � �20vq
�20v

�
4 + �20

� v!1 N (0; 1) :

That is, as v !1, XN2(v)

i=1
z2i �d �20v +

q
�20v

�
4 + �20

�
N (0; 1) ;

where the symbol �d is read as �approximately distributed as�. Making the change-of-variables v 7�! v=�20,

we have XN2(v=�
2
0)

i=1
z2i �d v +

q
v
�
4 + �20

�
N (0; 1) (10)

�d v + 2
p
vN (0; 1) =fdd C(v); (11)

as �0 ! 0; giving the �nite dimensional distribution (represented as �=fdd�in (11)) for given v of C(v) in

(5) in the present example.

In the �nal line of approximation above, the quantity �40v, which is present in the variance of
PN2(v)

i=1 z2i

in (9) and which appears after the transformation v 7�! v=�20 as �
2
0v in (10), is negligible when �0 ! 0: Since

this term �40v arises from the randomness of the number of summands N2 (�), it follows from (11) that it can

be neglected asymptotically if �0 ! 0 as it is of smaller order. In other words, if N2 (�) is replaced by its mean
or if the random number of summands is changed to a deterministic summation, the �nal approximation is

unchanged. In e¤ect, upon rescaling so that v 7�! v=�20 ! 1 as �0 ! 0; the random sum CLT argument

leads directly to the �nite dimensional distribution of C(v):

While the CLT of Robbins (1948, Theorem 1) cannot strictly be applied as it stands in the present exam-

ple, it provides a powerful measure of intuition.5 Moreover, because D
�
v=�20

�
is an independent increments

process, we naturally expect tightness to hold and then, in view of (11), we have weak convergence of the

random sum process
PN2(v=�

2
0)

i=1 z2i  v + 2W (v) as a stochastic process on [0;1). In sum, these heuristics
deliver the sequence of approximations

n�20 (b
 � 
0) � d �
2
0 argmin

v

XN2(v)

i=1
z2i

= argmin
v

XN2(v=�
2
0)

i=1
z2i

� d argmin
v
fv + 2W (v)g

= argmin
v

C(v);

which are rigorously justi�ed in the general setting by Theorem 1 above.

5The key point is that as �0 ! 0, the mean E
�
z22i
�
= �20

�
4 + �20

�
depends on �20 in the present case and is not �xed as in

Robbins (1948). If we check the condition (10) in Robbins (1948), we note that � = v=�20 !1, �2 = V ar
�PN2(v=�

2
0)

i=1 z2i

�
=

v
�
4 + �20

�
does not diverge to in�nity, and 
 =

q
V ar

�
N2(v=�

2
0)
�
=
q
v=�20 6= o

�
�2
�
. In other words, the Robbins (1948)

theorems and corollaries cannot be strictly applied in the present case but are nonetheless highly intuitive in the illustrative
example.
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Appendix: Lemmas

Throughout the appendix, t means higher order terms are neglected, C refers to a positive constant which
may not be the same at each occurrence, and  signi�es the weak convergence of a stochastic process on

the relevant probability space.

Lemma 1 bv = Op(1) as k�0k ! 0.

Proof. Take v � 0 for illustration and v < 0 can be similarly proved. Partition R+ := fvjv � 0g into the
"shells" Sj =

�
v : 2j�1 < v � 2j

	
with j ranging over the integers. Given an integer J ,

P
�bv > 2J� �X

j�J
P

 
inf
v2Sj

 
D

 
v

k�0k2

!!
� D(0) = 0

!
:

Now,

P

�
inf
v2Sj

�
D
�

v
k�0k2

��
� 0
�

� P
�
inf
v2Sj

�
E
h
D
�

v
k�0k2

�i
�
���D � v

k�0k2

�
� E

h
D
�

v
k�0k2

�i���� � 0�
� P

 
sup
v2Sj

���D � v
k�0k2

�
� E

h
D
�

v
k�0k2

�i��� � inf
v2Sj

E
h
D
�

v
k�0k2

�i!

� E

"
sup
v2Sj

���D � v
k�0k2

�
� E

h
D
�

v
k�0k2

�i���2#, inf
v2Sj

E
h
D
�

v
k�0k2

�i2
;

where the �rst equality is because

D
�

v
k�0k2

�
� E

h
D
�

v
k�0k2

�i
� �

���D � v
k�0k2

�
� E

h
D
�

v
k�0k2

�i���
which implies E

h
D
�

v
k�0k2

�i
�
���D � v

k�0k2

�
� E

h
D
�

v
k�0k2

�i��� � D � v
k�0k2

�
, the second equality is because

inf
v2Sj

�
E
h
D
�

v
k�0k2

�i
�
���D � v

k�0k2

�
� E

h
D
�

v
k�0k2

�i���� � inf
v2Sj

E
h
D
�

v
k�0k2

�i
� sup
v2Sj

���D � v
k�0k2

�
� E

h
D
�

v
k�0k2

�i��� ;
and the last equality is from Markov�s inequality. Note that the demeaned process eD (v) := D

�
v

k�0k2

�
�

E
h
D
�

v
k�0k2

�i
satis�es for any s � t,

E
� eD (t)��� n eD (�)o

��s

�
= E

� eD (t)� eD (s)��� n eD (�)o
��s

�
+ E

� eD (s)��� n eD (�)o
��s

�
= E

� eD (s)��� n eD (�)o
��s

�
= eD (s) ;

where the second to last equality is because eD (v) is an independent increments process with mean zero such
that eD (t) � eD (s) is independent of n eD (�)o

��s
and has mean zero. So eD (v) is a continuous martingale

indexed by v and
��� eD (v)��� is a submartingale. To calculate E" sup

v2Sj

��� eD (v)���2#, we apply Doob�s martingale
inequality (see, e.g., Theorem 20 of Protter (2004)). First, by Assumption (iii),

E [z2i] = E [�2x0i�0u2i + �0xix0i�0jqi = 
0+] = �0E [xxjq = 
0] �0 =: k�0k
2
Q�;
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and

V (z2i) = V (�2x0i�0u2i + �0xix0i�0jqi = 
0+)
= E [V (�2x0i�0u2i + �0xix0i�0jxi; qi = 
0+) jqi = 
0+] + V (E [�2x0i�0u2i + �0xix0i�0jxi; qi = 
0+] jqi = 
0+)
= E

h
(�2x0i�0u2i)

2 jqi = 
0
i
+ V (�0xix0i�0jqi = 
0)

= 4�0E
�
xxu22jq = 
0

�
�0 +O

�
k�0k4

�
=: 4 k�0k2 
2�;

where Q� =
�0E[xxjq=
0]�0

�00�0
! Q and 
2� =

�0E[xxu22jq=
0]�0
�00�0

+O
�
k�0k2

�
! 
2 as k�0k ! 0 from Assumption

(i). Now, by Doob�s martingale inequality,

E

24 sup
v2Sj

�����D
 

v

k�0k2

!
� E

"
D

 
v

k�0k2

!#�����
2
35 � 4E

24�����D
 

2j

k�0k2

!
� E

"
D

 
2j

k�0k2

!#�����
2
35

= 16fq (
0) 2
j
2 + o(1);

where the equality is because

V
�
D
�

v
k�0k2

��
= E

h
V
�
D
�

v
k�0k2

����N2 (�)�i+ V�E hD � v
k�0k2

����N2 (�)i�
= E

h
N2

�
v

k�0k2

�
V (z2i)

i
+ V

�
N2

�
v

k�0k2

�
E [z2i]

�
=

fq(
0)v

k�0k2
V (z2i) + fq(
0)v

k�0k2
E [z2i]2 = fq(
0)v

k�0k2
E
�
z22i
�

= fq (
0) v
�
4
2� + k�0k2Q2�

�
= 4fq (
0) v
2 + o(1);

with the last equality from Assumption (i) and k�0k ! 0. Since

E

"
D

 
v

k�0k2

!#
= E

"
E

"
D

 
v

k�0k2

!�����N2 (�)
##
= E

"
N2

 
v

k�0k2

!
E [z2i]

#

= fq (
0) v
E [z2i]
k�0k2

= fq (
0) vQ� = fq (
0) vQ+ o(1);

we have

P

 
inf
v2Sj

 
D

 
v

k�0k2

!!
� 0
!
� 16fq (
0) 2

j
2

(2j�1fq (
0)Q)
2 =

C

2j�1
;

where C = 32
2=fq (
0)Q
2 is a positive constant. As a result,

P
�bv > 2J� �X

j�J

C

2j�1
! 0

as J !1 and the proof is complete.

Lemma 2 D
�

v
k�0k2

�
 C (v) 2 Cmin (R) as k�0k ! 0.

Proof. As in Lemma 1, take v > 0. De�ne

Z� (v) =
D
�

v
k�0k2

�
� E

h
D
�

v
k�0k2

�i
r
V
�
D
�

v
k�0k2

��.
v

=
D
�

v
k�0k2

�
� ��v

��
;
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where �� = fq (
0)Q� and �
2
� = fq (
0)

�
4
2� + k�0k2Q2�

�
. Since �� ! fq (
0)Q and �2� ! 4fq (
0)
2, by

Slutsky�s theorem, we need only show that Z� (v) W2 (v). We check the two conditions in Theorem 2.3 of

Kim and Pollard. Speci�cally, (i) �di-convergence: for any v2 > v1 > 0 and t1; t2 2 R,

E
�
exp

�p
�1 [t1Z� (v1) + t2Z� (v2)]

	�
�! exp

(
�1
2
(t1; t2)

 
v1 v1

v1 v2

! 
t1

t2

!)
;

and (ii) stochastic equicontinuity: for any � > 0; � > 0, there exist a � > 0 such that

lim
n!1

P

 
sup

jv2�v1j<�
jZ� (v2)� Z� (v1)j > �

!
< �:

To prove (i), note that

E
�
exp

�p
�1 [t1Z� (v1) + t2Z� (v2)]

	�
= E

�
E
�
exp

�p
�1 [t1Z� (v1) + t2Z� (v2)]

	��N2 (�)��
= exp

np
�1
h
�t1 ��v1��

� t2 ��v2��

io
� E

24exp
8<:p�1

24t1PN2

�
v1

k�0k2

�
i=1 z2i

��
+ t2

PN2

�
v2

k�0k2

�
i=1 z2i

��

359=;
35

= exp
np
�1
h
�t1 ��v1��

� t2 ��v2��

io
� E
"
E

"QN2

�
v1

k�0k2

�
i=1 E

h
exp

np
�1 (t1 + t2) z2i��

oi�����N2 (�)
##

� E
"
E

"QN2

�
v2

k�0k2

�
i=N2

�
v1

k�0k2

�
+1
E
h
exp

np
�1t2 z2i��

oi�����N2 (�)
##

= exp
np
�1
h
�t1 ��v1��

� t2 ��v2��

io
�
1P
k=0

(
e�fq(
0)v1=k�0k

2
�
fq(
0)

v1
k�0k2

�k
k!

Qk
i=1 E

h
exp

np
�1 (t1 + t2) z2i��

oi)

�
1P
k=0

(
e�fq(
0)(v2�v1)=k�0k

2
�
fq(
0)

v2�v1
k�0k2

�k
k!

Qk
i=1 E

h
exp

np
�1t2 z2i��

oi)
=: T1 � T2 � T3;

where
Q0
i=1 � := 1. Because k�0k ! 0, we take Taylor expansion of

E
�
exp

�p
�1 (t1 + t2)

z2i
��

��
= E

�
exp

�p
�1 (t1 + t2) k�0k

z2i= k�0k
��

��
=: E

�
exp

�p
�1 (t1 + t2) k�0kZ2i

	�
:= g((t1 + t2) k�0k)

about (t1 + t2) k�0k at 0; giving

E
�
exp

�p
�1 (t1 + t2) k�0kZ2i

	�
= 1 +

p
�1 (t1 + t2) k�0kE [Z2i]�

1

2
(t1 + t2)

2 k�0k2 E
�
Z22i
�
+ o

�
(t1 + t2)

2 k�0k2
�

= 1 +
p
�1 (t1 + t2)

E [z2i]
��

� 1
2
(t1 + t2)

2 E
�
z22i
�

�2�
+ o

�
k�0k2

�
;
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where E
�
Z22i
�
= O (1). In consequence,

T2 =
1P
k=0

(
e�fq(
0)v1=k�0k

2
�
fq(
0)

v1
k�0k2

�k
k!

Qk
i=1

�
1 +

p
�1 (t1 + t2) E[z2i]��

� 1
2 (t1 + t2)

2 E[z22i]
�2�

+ o
�
k�0k2

��)

t e�fq(
0)v1=k�0k2
1P
k=0

�
fq(
0)

v1
k�0k2

�k
k!

 
1 +

p
�1 (t1 + t2) k�0k

2Q�

��
� 1

2 (t1 + t2)
2 E[z22i]

fq(
0)

k�0k2
E[z22i]

!k
= e�fq(
0)v1=k�0k

2
1P
k=0

1
k!

�
fq(
0)

v1
k�0k2

+
p
�1 (t1 + t2) fq(
0)Q�v1

��
� 1

2 (t1 + t2)
2
v1

�k
= e�fq(
0)v1=k�0k

2

exp
n
fq(
0)

v1
k�0k2

+
p
�1 (t1 + t2) fq(
0)Q�v1

��
� 1

2 (t1 + t2)
2
v1

o
= exp

np
�1 (t1 + t2) fq(
0)Q�v1

��
� 1

2 (t1 + t2)
2
v1

o
:

Similarly,

T3 t exp
�p

�1t2
fq(
0)Q� (v2 � v1)

��
� 1
2
t22 (v2 � v1)

�
:

In summary,

E
�
exp

�p
�1 [t1Z� (v1) + t2Z� (v2)]

	�
t exp

np
�1
h
�t1 fq(
0)Q�v1

��
� t2 fq(
0)Q�v2

��

io
exp

np
�1 (t1 + t2) fq(
0)Q�v1

��
� 1

2 (t1 + t2)
2
v1

o
� exp

np
�1t2 fq(
0)Q�(v2�v1)

��
� 1

2 t
2
2 (v2 � v1)

o
= exp

n
� 1
2 (t1 + t2)

2
v1 � 1

2 t
2
2 (v2 � v1)

o
= exp

(
� 1
2 (t1; t2)

 
v1 v1

v1 v2

! 
t1

t2

!)
;

giving the required result.

To prove (ii), note that

P

 
sup

jv2�v1j<�
jZ� (v2)� Z� (v1)j > �

!
= P

 
sup

jv2�v1j<�

��� eD(v2)� eD(v1)��

��� > �!

� E

"
sup

jv2�v1j<�

��� eD (v2)� eD (v1)���2#,�2��
2 � 4E

���� eD (v1 +�)� eD (v1)���2���2��
2

=
4�2��

�2��
2 = C

�
�2 ;

where the last inequality is from Doob�s martingale inequality with the submartingale de�ned as
��� eD (s+ v1)� eD (v1)���

indexed by 0 � s � �. So we can choose � arbitrarily small to make the above probability smaller than the

given �.

Finally, we con�rm that C (v) 2 Cmin (R). It is not hard to check that C(v) is continuous, has a unique
minimum (see Lemma 2.6 of Kim and Pollard (1990)), and lim

jvj!1
C(v) = 1 almost surely, which follows

since lim
jvj!1

W` (v) = jvj = 0 almost surely by virtue of the law of the iterated logarithm for Brownian motion.
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