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ABSTRACT 

The growing demand for fast, reliable and low power interconnect systems requires the development of efficient and 
scalable CMOS compatible photonic devices, in particular optical modulators. In this paper, we demonstrate an 
innovative electro absorption modulator (EAM) developed on an 800 nm SOI platform; the device is integrated in a rib 
waveguide with dimensions of a 1.5 µm x 40 µm, etched on a selectively grown GeSi cavity. High speed measurements 
at 1566 nm show an eye diagram with dynamic ER of 5.2 dB at 56 Gbps with a power consumption of 44 fJ/bit. 

1. INTRODUCTION 
The modern communication infrastructure can be divided in two categories, the Long-Haul C-band (LHC) and the Short-
Haul O-band (SHO) mixed electro-optic systems. LHC advantages derive from the use of single mode fibers (SMF) and 
high-quality optic fibers amplifiers that allow transmission over hundreds of kilometers without signal regeneration. 
SHO, on the other end, by implementing cheaper multi-mode fibers (MMF) and optic sources (SLED, VCSEL) is more 
cost effective, hence, it is vastly used in datacenters.  

 
Figure 1 Cisco Annual IP growth Prediction (left) and Data traffic ratios (right)[2]. 

The SHO bandwidth, however, is limited by the MMF’s modal dispersion and represents a bottleneck for aggregate 
multi wavelength systems with data rate from 200 Gb/s and connection distances beyond 500 m (802.3bs standard[1]). To 
emphasize further the future scalability requirement needs, a recent Cisco Report[2] has predicted that by 2021 the annual 
IP traffic will exceed the 20 Zettabyte (left graph of Figure 1), with most of the traffic within the datacenter (right pie 
chart of Figure 1). In a decade datacenters will require, therefore, link speed approaching 800 Gb/s or 1.6 Tb/s, as 
envisioned by the Ethernet Alliance’s Roadmap[3] (Figure 2). 
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Figure 2 Ethernet Alliance’s roadmap for the Terabit Ethernet[3] 

That is why companies are investing in reduction of single mode fibers (SMF) deployment costs[4] and integrating 
Silicon Photonic Circuits (Si-PIC) into transceivers[5] to boost the bandwidth in datacenters. Si-PICs can, indeed, reduce 
the power consumption of transceivers through high-density integration, increase data rate for long short to mid-range 
distance and reduce latency by avoiding conversion from/to electric signals and reduce the use of copper wires. 
Compatible materials for this technology are based on group IV compounds, which exploit the CMOS knowhow and do 
not require the conversion of exiting fabrication facilities, making Silicon Photonics very attractive to the industry. So 
far, integrated silicon and multilayer based systems[6]-[8] including high speed photodetectors[9],[10], wavelength division 
multiplexing (WDM) filters[11] and in particular optical modulators[12]-[13] have been successfully demonstrated.  

In silicon, Plasma Dispersion Effect[14]-[17] based modulators achieve high speed but at the expense of a relatively large 
footprint (~mm2) and power consumption (pJ/bit) and this makes high density integration challenging. To alleviate those 
limitations highly resonant devices have been developed[18],[19]. However, these devices have limited operational optical 
bandwidth and suffer high temperature tolerances due to the high thermo-optic coefficient of silicon (~1.9 X 10-4 K-1)[20] 
and the wavelength selectivity of ring resonators.   

Through the use of Ge and GeSi, Electro Absorption Effect based modulators[21]-[23] (Franz-Keldysh Effect[24],[25] in bulk  
for the C/L-band and the Quantum Confined Stark Effect[26] in quantum well materials for the O to C Band) offer the 
best trade-offs in terms of speed, footprint and power consumption for highly integrated Si-PICs and short/medium-haul 
applications. For bulk FK based modulators, Thermal Anneal[27] (RTA) or Rapid Melt Growth[28],[29] (RMG) techniques 
can be used to integrate arrays of modulators working at different bandgap energy or wavelengths by tuning of the 
material composition. These techniques offer the potential to overcome the limited optical bandwidth (~35 nm) of this 
class of modulators. 

Here, we present an integrated rib waveguide modulator[30] realized on a selectively grown Si/GeSi cavity on 800 nm 
SOI wafer; the active area is a wrap-around PIN hetero-structure with dimension 1.5 µm x 40 µm, which enables electric 
field independency from the rib width and the possibility to tailor the waveguide dimension to provide better optical 
mode confinement and propagation for both polarizations. High speed measurements show a dynamic ER of 5.2 dB at a 
data rate of 56.2 Gbps, power consumption of 44 fJ/bit and modulation bandwidth of 56 GHz. This design, therefore, 
provides a highly customizable and simple platform for compact-high-speed electro absorption modulators. 

2. MODULATOR DESIGN 
Simulations were carried to optimize the design and develop the process for integrating a vertical PIN diode in a standard 
rib waveguide. The platform used for simulations is summarized in the graph of Figure 3, upon defining a set of 
parameters such as rib width, doping levels and distances, the cross-section process first and the electric field distribution 
after, are simulated (yellow squares, S1 and S2). By extrapolating the electric field map, the absorption coefficient due to 
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Figure 5 Principal Process Steps 

The SOI wafer used for the fabrication of this device has an 800 nm thick Si overlayer; GeSi epitaxy cavities with a size 
of 50 μm x 40 μm are etched with a depth of 700 nm leaving approximately 100 nm of Si where the P side of the vertical 
PIN structure is realized using Boron implantation with a concentration of ∼1018 cm−3 (Figure 5 a to c). After doping, the 
cavity is filled with GeSi using a two steps selective epitaxial growth; first ~100 nm of Ge buffer layer is deposited in the 
cavity trench, then a uniform GeSi layer of about 600 nm thickness is deposited. Chemical Mechanical Polishing, to 
remove any GeSi excess and planarize the wafer, precedes the waveguide etch step (Figure 5 d, e) that is defined by a 
two etch process. In the first step (f) only the left side of the cavity is etched with a depth of 200 nm, then the waveguide 
is etched to a depth of about 400 nm to realize the rib as shown in Figure 5 g. On the left side of the rib only 100nm of 
Ge is left, whereas on the right side of the rib, a 300 nm thick slab is obtained. The waveguide etch technique adopted is 
self-aligned because the Si and the GeSi waveguides are etched on the same time (Figure 6, picture on the left), reducing 
interface mode mismatch. The simulated interface optical loss is about 0.3 dB per facet. During the waveguide 
definition, coupling gratings at the waveguide extremities and silicon normalization waveguides close to the device 
waveguide are, also, defined. 
High dose ion implantations to define the ohmic contacts, are then performed. On the left side slab, BF2 (P++) with a 
concentration of ∼1020 cm−3 is implanted in the thin Ge layer (Figure 5 h); on the slab on the right (Figure 5 i), the GeSi 
layer is doped with a ∼1019 cm−3 concentration of Phosphorus (N++). The doping to define the N side of the PIN 
junction is realized on the top and right side of rib with an angled implantation (45⁰) using Phosphorus with a 
concentration of ∼1018 cm−3 and an estimated implantation depth of 100 nm (Figure 5 j). Finally, Rapid Thermal Anneal 
is performed to activate the doping. The oxide deposition, VIA definition and metal deposition are shown in Figure 5 (k, 
l); in Figure 6, instead, the top view (left) and the FIB cut (right) of the realized device are shown. 
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Figure 8 IV curve 

The electro-absorption effect, is then tested by measuring optical transmission spectra while applying DC biases. The 
resulting cavity Insertion Loss (IL) and Extinction Ratio (ER) are shown in Figure 9. The IL measures the optical loss 
between the laser input and the detector, hence it comprehends coupling loss, propagation loss, losses at the Si-GeSi 
interfaces and material absorption in the cavity. By using the silicon normalization waveguides and estimating, through 
simulation, the losses at the Si-GeSi interfaces it is possible to retrieve the IL of the cavity, dominated by material 
absorption. For this first prototype the presence of the Ge buffer layer is responsible for a higher IL, due to background 
and undesirable absorption in the wavelength range of interest. Insertion Loss can be improved by using Rapid Thermal 
Anneal[27] before the device is realized to diffuse silicon into the Ge buffer layer to obtain a homogenous GeSi layer, or 
growing GeSi layer with epitaxial techniques that do not require any Ge buffer layer[28],[29]. 

However, the ER, measured by the absorption difference between the high and low states, reaches considerable values 
and shows a secondary peak for wavelength above 1570 nm confirming the effect of the Ge buffer layer. For a reverse 
bias of 1 V the ER is 3 dB at 1540 nm, at higher reverse biases it increases up to 7.5 dB (bias = - 4 V); an incremental 
ER rate of about 1.5 dB/V is found around 1540-1545 nm.  

 
Figure 9 (left) IL and ER, (right) for different reverse biases 
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Figure 12 EAM Equivalent electric circuit 

The device is modelled with six lumped elements, the capacitance due to the metallic pads Cpd, the series resistance RS, 
the resistance RJ and capacitance CJ of the PIN junction, the BOX capacitance Cox and the substrate resistance RSi. The 
fitted values are shown in Table 1. 

Table 1 Equivalent lumped elements fitted with S11 measurements 

Cpd 

(fF) 

RS 

(Ω) 

RJ 

(Ω) 

CJ 

(fF) 

Cox 

(fF) 

RSi 

(Ω) 

5 150 1500 11 30 350 

The power of the EAM is, then, found to be 2
JVpp /4 = 44 fJC /bit  at 56 Gbps, considering the increased Vpp (~4 V) due 

to RF reflections caused by not terminated RF probes. 

5. CONCLUSION 
A high-speed low power consuming and compact footprint (60 μm2) GeSi EAM on an 800 nm SOI platform has been 
designed, fabricated and characterized. The novel vertical PIN diode allowed the realization of an integrated rib 
modulator with a height-to-width ratio of ~2.4, permitting a better optical confinement and tolerant design parameters 
due to the independency of the electric field strength from the rib width. Successfully working at 1566 nm, the 
demonstrated rate speed of 56.2 Gbps with dynamic ER of 5.2 dB is only limited by the setup, in fact an EO bandwidth 
of 56 GHz is calculated. Finally, S11 measurement and fitting revealed a power consumption of about 44 fJ/bit. 
Therefore, this concept demonstrated to be a viable solution to integrate optic switches in a CMOS photonic circuits for 
short reach communication in the C and L bands. 
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