
	
1	

On the time evolution of climate sensitivity and future warming 
 2	

Philip Goodwin1 

 4	
1 Ocean and Earth Sciences, University of Southampton, Southampton, UK 

 6	

P. Goodwin, ORCID ID:  https://orcid.org/0000-0002-2575-8948 

 8	

Manuscript re-submitted to Earth’s Future  

16th July 2018 10	

 

Accepted for publication in Earth’s Future  12	

6th September 2018 

 14	

This is the Author Accepted Manuscript 

  16	



	
2	

 

Abstract 18	

 

The Earth’s climate sensitivity to radiative forcing remains a key source of uncertainty in 20	
future warming projections. There is a growing realisation in recent literature that research 
must go beyond an equilibrium and CO2-only viewpoint, towards considering how climate 22	
sensitivity will evolve over time in response to anthropogenic and natural radiative forcing 
from multiple sources. Here, the transient behaviour of climate sensitivity is explored using a 24	
modified energy balance model, in which multiple climate feedbacks evolve independently 
over time to multiple sources of radiative forcing, combined with constraints from 26	
observations and from the Climate Model Intercomparison Project phase 5 (CMIP5). First, a 
large initial ensemble of 107 simulations is generated, with a distribution of climate feedback 28	
strengths from sub-annual to 102 year timescales constrained by the CMIP5 ensemble; 
including the Planck feedback, the combined water-vapour lapse-rate feedback, snow and 30	
sea-ice albedo feedback, fast cloud feedbacks, and the cloud response to SST-adjustment 
feedback. These 107 simulations are then tested against observational metrics representing 32	
decadal trends in warming, heat and carbon uptake, leaving only 4.6×103 history-matched 
simulations consistent with both the CMIP5 ensemble and historical observations. The results 34	
reveal an annual-timescale climate sensitivity of 2.1 °C (ranging from 1.6 to 2.8 °C at 95% 
uncertainty), rising to 2.9 °C (from 1.9 to 4.6 °C) on century timescales. These findings 36	
provide a link between lower estimates of climate sensitivity, based on the current transient 
state of the climate system, and higher estimates based on long-term behaviour of complex 38	
models and palaeoclimate evidence. 
 40	
 
1. Introduction 42	
There is currently significant uncertainty in the sensitivity of Earth’s climate to radiative 
forcing, with the IPCC Assessment Report 5 (IPCC, 2013) estimating that the Equilibrium 44	
Climate Sensitivity (ECS, measuring the surface temperature response in °C to a sustained 
doubling of CO2) ranges from 1.5 °C to 4.5 °C (Fig. 1a, black). This 1.5 to 4.5 °C range from 46	
IPCC (2013) incorporates many separate estimates of the ECS that have been made from 
multiple lines of evidence (e.g. see Knutti et al., 2017 see Figure 2 therein). Now consider a 48	
small selection of estimates chosen to reflect evidence from current energy budgets, complex 
Earth system models, and modern and geological observations. Estimates from energy 50	
balance considerations of the current transient climate system (Otto et al., 2013; Lewis and 
Curry et al., 2014) imply a best estimate ECS towards the lower end of the IPCC range (Fig. 52	
1a, dark gray) of circa 1.6 to 2 °C. In contrast, analysis of the century timescale ECS from 
observation-constrained climate models (Cox et al., 2018), or from a combination of 54	
observational and geological constraints (Goodwin et al., 2018), suggests best estimate values 
from the middle of the IPCC range (Fig. 1a, light grey) of circa 3 °C. Together with this 56	
uncertainty in the value of the ECS is a growing acknowledgement that the Earth’s climate 
sensitivity is likely to evolve through time, both due to time-evolving processes included 58	
within climate models (Armour et al., 2013; Knutti and Rugenstein, 2017; Williams et al., 
2008; Andrews et al., 2015; Caldwell et al., 2016; Figure 2a), and over longer geological 60	
timescales (Zeebe, 2013; Rohling et al, 2018). 
 62	
In a simple 1-dimensional energy balance model, the global mean surface warming at time t, 
ΔT(t) in °C, is empirically linked to the difference between total radiative forcing, Rtotal (t)  in 64	



	
3	

Wm-2, and the Earth’s net energy imbalance, N(t) in Wm-2, via an effective climate feedback 
parameter, λ in Wm-2K-1, via 66	
 
λΔT (t) = Rtotal (t)− N (t) ,      (1) 68	
 
where, the total radiative forcing is a sum from i independent sources, Rtotal (t) = Ri (t)

i
∑ , and 70	

the effective climate feedback parameter is defined such that λΔT(t) represents the total 
aggregated outgoing radiative response in Wm-2 to the surface warming accounting for all 72	
feedback processes. Note that the word ‘effective’ is used here to suggest that the value of the 
climate feedback may represent an aggregated response, composed of different climate 74	
feedback values relating to different sources of radiative forcing, that may be changing 
through time. 76	
 
However, there are a number of important deficiencies in this approach, which have been 78	
illustrated by applying this equation to the output of complex climate models. Firstly, the 
effective climate feedback parameter, λ, is not expected to remain constant in time, but 80	
instead display transient behaviour as different climate feedbacks respond to the imposed 
forcing over different timescales (e.g. Andrews and Webb, 2018; Caldwell et al. 2016; Knutti 82	
& Rugenstein, 2017; Zeebe, 2013; PALAEOSENS, 2012; Rohling et al., 2018; Senior and 
Mitchell, 2000; Gregory et al., 2004; Williams et al., 2008; Armour et al., 2013; Paynter et 84	
al., 2018; see Figure 2a). Secondly, λ may be different for different sources of radiative 
forcing, potentially arising due to the different spatial patterns of radiative forcing from 86	
different agents (Hansen et al. 2005; Marvel et al., 2016; Gregory and Andrews, 2016). 
Thirdly, in some models the ocean heat uptake (the dominant component of N), can have a 88	
larger effect on warming during transient climate change than an equivalent magnitude of 
radiative forcing, R, (e.g. Winton et al., 2010; Geoffroy et al., 2013; Frölicher et al., 2014).  90	
 
Potentially, the discrepancy between climate sensitivity estimates derived from the Earth’s 92	
current transient state energy balance (Otto et al, 2013; Lewis and Curry, 2014) and climate 
sensitivity estimates for century timescales (Cox et al., 2018; Goodwin et al., 2018) may be 94	
linked to the deficiencies in equation (1) (Fig. 1, compare dark and light gray). For example, 
λ may change over time between the current transient state and century timescales, the spatial 96	
pattern of radiative forcing and relative contributions from each agent today may not apply in 
the future, and the large current value of N in the current transient state may reduce as the 98	
system approaches a new steady state.  
 100	
Without explicitly putting a time-dependence on the climate feedback, the simple 1-
dimensional energy balance model (1) has been extended (e.g. Hansen et al., 2005; Winton et 102	
al, 2010; Geoffroy et al., 2013; Frölicher et al., 2014; Marvel et al., 2016; Goodwin et al., 
2015) by considering non-dimensional efficacy weighting on both the contributions to 104	
radiative forcing, εi, and the Earth’s energy imbalance, εN, via,  
 106	
λΔT (t) = Rtotal

weighted (t)−εN N (t)  ,      (2) 
 108	
where the total efficacy weighted radiative forcing at time t is the sum of contributions from i 
independently time-varying sources with each contribution weighted by a non-dimensional 110	
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efficacy term εi, Rtotal
weighted (t) = εiRi (t)

i
∑  (Marvel et al., 2015), and εNN(t) in Wm-2 represents 

the total efficacy-weighted energy imbalance of the Earth system.  112	
 
Goodwin et al. (2018) utilised this extended 1-dimensional energy balance model (2), with 114	
efficacy-weighting but with climate feedback assumed constant in time, to drive an efficient 
Earth system model, generating history-matched projections of future warming and 116	
constraining century-timescale climate sensitivity (Fig. 1a, light gray). Instead of applying 
efficacy weightings (2), this study explores an alternative approach: Here, the energy balance 118	
equation (1) is extended to explicitly include time-varying climate feedbacks from multiple 
processes, that each respond independently to multiple radiative forcing agents. This 120	
extended energy balance equation is then used to constrain the climate sensitivity over 
multiple timescales, and used to show that this may explain the discrepancy between climate 122	
sensitivity estimates from the current transient energy balance and century timescale 
approaches (Fig. 1). 124	
 
Section 2 derives the extended 1-dimensional energy balance model with j climate feedbacks 126	
independently responding over time to i radiative forcing agents. Section 3 then describes 
how the Warming Acidification and Sea level Projector (WASP) model (Goodwin, 2016; 128	
Goodwin et al., 2018) is extended to incorporate this extended energy balance equation and 
used to perform a large ensemble of climate simulations, where the initial distributions for the 130	
climate feedback strengths for the j processes are taken from the range of feedback strengths 
in the CMIP5 model ensemble analysed by Caldwell et al. (2016) and Andrews et al. (2015). 132	
A history matching approach (Williamson et al., 2015) is then applied, after Goodwin et al. 
(2018), to extract combinations of feedback strengths that are consistent with observational 134	
constraints (Table 2) for surface warming (Morice et al., 2012; GISSTEMP, 2018; Hansen et 
al, 2010; Smith et al., 2008; Vose et al., 2012), ocean heat uptake (Levitus et al., 2012; Giese 136	
et al., 2011; Balmeseda et al., 2013; Good et al., 2013; Smith et al., 2015; Cheng et al., 2017; 
Kennedy et al., 2011; Huang et al., 2015) and carbon fluxes (IPCC, 2013 for 90% confidence 138	
bounds, based on original data now summarized in Le Quéré et al., 2018). Section 4 presents 
the history-matched results, evaluating the timescale evolutions of climate feedback, climate 140	
sensitivity and future warming that are consistent with observational and CMIP5 constraints. 
Section 5 discusses the wider implications of this study. 142	
 
2. Time-evolving climate feedbacks 144	
Consider a climate system where there are i independently time-varying sources of radiative 
forcing, Ri(t) in Wm-2, such that the total radiative forcing is written, 146	
 
Rtotal (t) = Ri (t)

i
∑ .        (3)  148	

 
 150	
The i different sources of radiative forcing include radiative forcing from atmospheric CO2, 
other well-mixed greenhouse gases such as methane and nitrous oxide, solar forcing, and 152	
spatially localised forcing such as tropospheric aerosols and volcanic stratospheric aerosols 
(Figure 3).  154	
 
In response to each of the i source of radiative forcing there are j independently time-156	
evolving climate feedback processes, λi,j(t) in Wm-2 K-1, such that the total climate feedback 
due to radiative forcing agent i is written 158	
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λi (t) = λPlanck + λi , j (t)

j
∑ ,       (4)  160	

 
where λPlanck is the Planck sensitivity, equal to around 3.15 Wm-2 K-1 (Caldwell et al., 2016) 162	
and λi,j(t) is the climate feedback from process j in response to forcing agent i. The j climate 
feedback processes include the combined water vapour – lapse rate feedback, fast cloud 164	
feedbacks, snow and sea-ice albedo feedbacks, and the slow cloud feedback occurring as the 
spatial pattern of SSTs change in response to warming over many decades (Figure 2a). These 166	
feedbacks from the j processes operate over a range of different timescales. For example, it 
takes order 10 days for water vapour to respond to surface warming, but due to the presence 168	
of multi-year sea ice it may take years for the snow + sea-ice albedo to respond to an imposed 
forcing, while it may take many decades for SST warming patterns to adjust towards an 170	
equilibrium state, thereby altering cloud feedback (Andrews et al., 2015).  
 172	
The aim is to derive a modified energy balance equation that solves for the global mean 
surface temperature anomaly over time, ΔT(t), explicitly accounting for the independence of 174	
the j climate feedback responses to each of the i sources of radiative forcing. First, the 
general 1-D energy balance equation, (1), is re-arranged to solve for warming in terms of the 176	
ratio of the total radiative forcing Rtotal(t) (Figure 3b) to the overall effective climate feedback 
λ(t),  178	
 

ΔT (t) = 1− N (t)
Rtotal (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
Rtotal (t)
λ(t)

⎛

⎝
⎜

⎞

⎠
⎟ .      (5) 180	

 
 182	
Next, we notice from (5) that the total radiative forcing divided by the overall effective 
climate feedback parameter at time t, Rtotal(t)/λ(t), represents the overall warming that would 184	
be achieved from all sources of radiative forcing if the global climate system were in energy 
balance, N(t) = 0, via 186	
 

ΔT
N (t )=0

(t) = Rtotal (t)
λ(t)

⎛

⎝
⎜

⎞

⎠
⎟ .       (6) 188	

 
We now state, by definition, that the radiative forcing from the ith agent divided by the 190	
climate feedback parameter for the ith agent at time t, Ri(t)/λi(t), similarly represents the 
warming that would be achieved from radiative forcing by the ith agent if the global energy 192	
system were brought into balance, N(t) = 0, via 
 194	

ΔTi N (t )=0 (t) =
Ri (t)
λi (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .        (7) 

 196	
Now, it is assumed that the radiative forcing from all i sources is separable. This is 
reasonable if either the i sources of radiative forcing affect the absorption of different 198	
radiation wavelengths, or the absorption of radiation at a given wavelength by one agent is 
independent of the absorption at the same wavelength by another. Note that while the 200	
radiative forcing from CH4 and N2O do have a dependence upon one another (Myhre et al, 
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2013), for the WASP experiments here these terms are combined into a single source of 202	
radiative forcing representing all greenhouse gases other than CO2 (Figure 3, blue), which 
can be considered separable from the other agents.  204	
 
Under the separable radiative forcing assumption for the i agents, the total warming from all 206	
sources of radiative forcing if the system is brought into energy balance must be equal to the 
sum of warming contributions from all i sources of radiative forcing at energy balance, 208	

ΔTi N (t )=0 (t)
i
∑ = ΔT

N (t )=0
(t) . This allows us to write from (6) and (7), 

 210	
 

Ri (t)
λi (t)

⎡

⎣
⎢

⎤

⎦
⎥

i
∑ =

Rtotal (t)
λ(t) .        (8) 212	

 
Substituting (8) into (5) gives an expression for global mean surface warming at time t as a 214	
function of the separate radiative forcing and climate feedback parameters for the i forcing 
agents,  216	
 

ΔT (t) = 1− N (t)
Rtotal (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ri (t)
λi (t)

⎡

⎣
⎢

⎤

⎦
⎥

i
∑ ,      (9) 218	

 
The total modified energy balance equation for global mean surface warming from j climate 220	
feedback processes, which each evolve independently in response to i radiative forcing 
agents, is found by substituting (4) into (9) to reveal, 222	
 

ΔT (t) = 1− N (t)
Rtotal (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ri (t)
λPlanck + λi , j (t)

j
∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥i

∑ .     (10) 224	

 
Note that the total warming from the i different forcing agents when N≠0 is not equal to the 226	
sum of warming if each of the i agents acted alone in this energy balance equation, (10). This 
is because the ratio N(t)/Rtotal(t) in equation (10) evolves according to the combined history of 228	
radiative forcing from all forcing agents, and would be different for the individual forcing 
agents acting alone (Figure 3).  230	
 
The next section applies this energy balance equation (10), with independently time-varying 232	
forcing and feedbacks, to drive the efficient WASP Earth system model (Goodwin, 2016; 
Goodwin et al., 2018).  234	
 
3. Numerical Earth system model with modified energy balance equation 236	
WASP (Goodwin, 2016; Goodwin et al., 2018) is an efficient Earth system model that solves 
for global mean surface warming for carbon emissions scenarios using an energy balance 238	
equation with coupled carbon cycle terms (Goodwin et al., 2015). The WASP configuration 
of Goodwin et al. (2018) assumed a constant value for the effective climate feedback over 240	
time, λ, and applied non-dimensional efficacy weightings to heat uptake, N, and to the 
radiative forcing from aerosols, Raerosol, equation (2). Here, we modify the WASP model by 242	
solving for global mean surface warming using equation (10), allowing climate feedback to 
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vary over time independently for each forcing agent, and removing the non-dimensional 244	
efficacy weightings for heat imbalance and the different sources of radiative forcing. 
 246	
3.1 Time dependent climate feedbacks in WASP 
This section, and Appendix A, present the alterations made to the WASP model configuration 248	
of Goodwin et al. (2018) to enable warming to be calculated via equation (10). The full code 
for this version of the WASP model is available in Supplementary Information. 250	
 
Consider a step function in the radiative forcing from agent i at time t=t0, Ri(t≥t0)≠0, where 252	
Ri(t<t0)=0. Initially, at time t=t0 the climate feedback to agent i is given by the Planck 
feedback, λi(t=t0) = λPlanck. Here, we assume that the climate feedback contributions from the 254	
j climate processes then evolve towards their equilibrium values, λi,j

equil, with e-folding 
timescales for each process, τj. Thus, the overall climate feedback parameter, following a 256	
step-function for the ith source of radiative forcing, from all j processes at time t0+Δt, 
λi(t0+Δt), becomes, 258	
 

λi (t0 +Δt) = λi , j
equil 1− exp −Δt

τ j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

j
∑ .     (11) 260	

 
In the general case radiative forcing from each agent does not increase via a step function, but 262	
instead by pathways that can increase or decrease over time (Figure 3a). This is achieved in 
WASP by using two time-stepping equations (see Appendix): one equation adjusting the 264	
climate feedbacks to the existing radiative forcing to the ith source at the previous time-step, 
and a second equation adjusting the climate feedback to the additional radiative forcing from 266	
the ith source since the previous time-step, to account for the feedback to any additional 
radiative forcing being the Planck feedback initially. Full details are given in the Appendix.  268	
 
Other alterations to the WASP model, from the configuration of Goodwin et al. (2018), 270	
include: 
(1) the time-step is reduced from 1/12th of a year to 1/48th of a year (Appendix A), and  272	
(2) the equations calculating the heat imbalance, N (see Goodwin, 2016; equations 3 and 4 
therein), are altered to reflect the multiple time-varying climate feedback terms in (10) 274	
(Appendix A).  
 276	
Separate radiative forcing terms from CO2, other Well Mixed Greenhouse Gasses (WMGHG) 
and tropospheric aerosols are retained from the configuration of Goodwin et al. (2018) 278	
(Figure 3a), after Meinshausen et al. (2011), while solar radiative forcing (Meinshausen et al. 
2011) and volcanic radiative forcing (from NASA GISS record, 280	
https://data.giss.nasa.gov/modelforce/strataer/; see Bouassa et al., 2012) are added (Figure 
3a). The volcanic radiative forcing is added using the NASA record of Aerosol Optical Depth 282	
(AOD) since 1850 and applying a multiplier of -19±0.5 Wm-2 per unit AOD (Gregory et al., 
2016), where the uncertainty represents the standard deviation of the multiplier between the 284	
different models in the ensemble. Where the time-resolution of radiative forcing (or 
atmospheric composition) is less than 1/48th of a year, the values are linearly interpolated 286	
between time-steps. 
 288	
3.2 Generating an ensemble constrained by observations and CMIP5 
This section details the construction of the very large initial Monte Carlo model ensemble, 290	
and the subsequent history matching used to extract the smaller final ensemble of constrained 
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model simulations. First, an initial ensemble of 107 simulations is generated with the strength 292	
of climate feedback from different processes taken from analysis of CMIP5 models by 
Caldwell et al. (2016) and Andrews et al. (2015) (Table 1; Figure 2a). All other model 294	
parameters are varied with input distributions after the configuration of Goodwin et al. (2018 
– see Supplementary Table 2 therein).  296	
 
The random-normal input distributions of climate feedback at equilibrium from Planck 298	
feedback, λPlanck, combined Water Vapour Lapse Rate (WVLR), λWVLR, fast cloud adjustment, 
λFastCloud and albedo adjustment, λalbedo, (Table 1) are taken from analysis of these feedbacks 300	
in CMIP5 models by Caldwell et al (2016). The random-normal input distribution of climate 
feedback at equilibrium from the SST warming pattern adjustment-cloud feedback, λSlowCloud, 302	
is taken from the change in cloud feedback over time in CMIP5 models analysed by Andrews 
et al. (2015). These feedbacks are imposed with different input distributions for the 304	
timescales, τj (Table 1), with λPlanck assumed to act instantaneously in all model simulations 
(Table 1).  306	
 
The timescales for water-vapour lapse rate, τWVLR, and fast cloud feedback, τFastCloud, are 308	
varied with random-normal input distributions set to the residence time of water vapour in the 
atmosphere of 8.8±0.4 days (Ent and Tuinenburg, 2017). The global surface albedo feedback 310	
is found by Colman (2013) to have components acting from seasonal up to decadal 
timescales, presumably reflecting fast snow responses up to slower multi-year sea-ice 312	
responses. To simulate this range, the timescale for the snow and sea-ice albedo feedback, 
τalbedo, is varied with a random distribution between 0.5 and 5 years (Table 1). The timescale 314	
for the slow cloud-SST adjustment feedback, τSlowCloud, is varied with a random distribution 
from 20 to 45 years. The lower limit of 20 years is set by the initial time window Andrews et 316	
al. (2015) used to assess the response of CMIP5 models before the λSlowCloud feedback 
applied. The upper limit of 45 years is (1) set to ensure that there are enough e-folding 318	
timescales for the λSlowCloud feedback to take effect in the CMIP5 model simulations analysed 
by Andrews et al. (2015), and (2) set equal to a timescale for the thermocline identified by 320	
Fine et al. (2017), since spatial adjustment of SST warming patterns is likely linked to 
adjustments within the thermocline.  322	
 
The combination of input distributions for feedback strengths, λi,j, and timescales, τj, (Table 324	
1) results in a wide range of climate feedback over time in the initial 107-simulation ensemble 
(Figure 2b, gray).  326	
 
The same values of climate feedback at equilibrium from each process are applied here to 328	
each source of radiative forcing (Table 1), except that the snow and sea-ice albedo feedback 
is reduced to 20% for volcanic stratospheric aerosol forcing compared to the other sources of 330	
radiative forcing (Table 1). This reflects the finding by Gregory et al. (2016) that in a CMIP5 
model volcanic aerosols cause around 1.4 times less warming or cooling than an equivalent 332	
radiative forcing from CO2. Here, this is imposed in the model by reducing the snow and sea 
ice albedo feedback term for volcanic aerosols, because the majority of volcanic forcing 334	
occurs at low latitudes and the majority of snow and sea-ice albedo forcing occurs at high 
latitudes. Note that in general the method applied here allows the strength of each climate 336	
feedback at equilibrium, λi,j

equil, to be independently assigned for each source of radiative 
forcing, (4) and (10), to reflect the different sensitivity of warming to each source of radiative 338	
forcing (e.g. Hansen et al., 2005; Marvel et al., 2016). However, a full exploration of this 
within the WASP model is reserved for future study. 340	
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Following the methodology of Goodwin et al. (2018), each of the 107 initial Monte Carlo 342	
prior simulations is then integrated to year 2017 and tested against observational metrics of 
surface warming, ocean heat uptake and ocean carbon uptake (Table 2). From the initial 107 344	
simulations, 4.6×103 simulations agree with the observational constraints (Table 2) and are 
extracted to form a final posterior history matched (Williamson et al., 2015) ensemble 346	
(Figure 4a).  
 348	
This final history matched ensemble of 4.6×103 simulations has climate feedback strengths 
consistent with the CMIP5 ensemble for multiple processes (Table 1), but shows simulated 350	
warming more tightly constrained by historical observations (Table 2) than for the range 13 
CMIP5 models (Figure 4a, compare blue and beige to black; Appendix).  352	
 
The observational constraints for surface warming compare time-average global temperature 354	
anomalies spanning ten-years or longer (Table 2). Therefore, the observed temperature 
anomaly response to volcanic forcing from months to a few years (e.g. Figure 4b, black) has 356	
not been used to select the final history matched WASP model simulations. The simulated 
response of the history-matched WASP model ensemble to a recent volcanic eruption shows 358	
good agreement to the observed response for the real climate system (Figure 4b, compare 
black to blue), both in terms of the magnitude of cooling and the relative timing from the 360	
AOD perturbation. Although the ensemble simulated cooling is slightly larger than the 
observed cooling (Figure 4b), it should be noted that real system includes both the cooling 362	
effect of the volcanic eruption and the warming effect of the 1991/1992 El Nino event 
(Lehner et al., 2016). Accounting for this El Nino event may further improve the model-364	
observation agreement. It should also be noted that the simulations record significantly 
greater cooling following the Krakatoa eruption in the late 19th century than is observed 366	
(Figure 4a). This is likely due to complexity in the climate system not included within the 
WASP model, with observations reflecting both the simultaneous actions of both volcanic 368	
activity and natural variability, and the complex regional patterns of temperature anomaly. 
For example, observations reflect that the 0 to 30°S and 0 to 30°N latitudinal regions both 370	
saw cooling in the months following the Krakatoa eruption, but the 30 °N to 90 °N region 
saw a warming (Robock and Mau, 1995 - Figure 4 therein). The agreement with observations 372	
of monthly to sub-decadal timescale cooling from a recent volcanic eruption (Figure 4b), 
being over a different timescale than the observational constraints (Table 2), provides an 374	
independent test showing that the time-varying climate feedback approach (10) is functioning 
appropriately in the WASP model.  376	
 
4. Results 378	
This section presents the results for the constrained distributions of climate feedback and 
climate sensitivity over different response timescales, and future warming projections, from 380	
the history matched WASP ensemble. 
 382	
4.1 Constraints on climate feedback and climate sensitivity over time 
The climate feedback to an imposed radiative forcing alters with the response timescale, 384	
depending on the processes that act over the different timescales (Figure 2a). In the 
experiments carried out here, a wide range of initial climate feedback strengths for different 386	
processes are used (Figure 2b, gray; Table 1), based on analysis of climate feedback in the 
CMIP5 models (Caldwell et al, 2016; Andrews et al., 2015).  388	
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Observational constraints are then applied to extract the posterior history matched WASP 390	
ensemble (Table 2), and the range of climate feedback over different response timescales 
narrows (Figure 2b, compare blue to gray; Table 1). Starting at the Planck feedback on very 392	
short timescales, the constrained estimate of climate feedback quickly decreases to 1.9±0.3 
Wm-2 K-1 on a response timescale of 0.1 years (Figure 2b, blue), and then slowly decreases 394	
further to around 1.5±0.3 Wm-2 K-1 and 1.3±0.3 Wm-2 K-1 on response timescales of 10 years 
and 100 years respectively. 396	
 
The climate sensitivity (in °C) is defined as the radiative forcing for a doubling of CO2 (in 398	
Wm-2) divided by the climate feedback (in Wm-2 K-1). Here, this definition is used to convert 
the constrained estimate of the climate feedback (Figure 2b, blue) into a constrained estimate 400	
for the evolution of the climate sensitivity over multiple response timescales (Figure 1; Table 
3). The mean constrained estimate of climate sensitivity increases quickly to around 2 °C 402	
(ranging from 1.5 to 2.8 °C at 95%) on response timescales of 0.1 to 1 year (Figure 1, Table 
3), before slowly increasing further to 2.9 °C (ranging from 1.9 to 4.6 °C at 95 %) over a 404	
response timescale of 100 years. 
 406	
The 1-year response timescale climate sensitivity identified here is in good agreement with 
previous estimates from Earth’s current transient energy balance, in which the anthropogenic 408	
radiative forcing is increasing annually (Figure 1, compare red to dark gray; Lewis and 
Curry, 2014; Otto et al., 2013). The 100-year response timescale climate sensitivity identified 410	
here is in good agreement with previous estimates for the equilibrium sensitivity, either using 
an emergent constraint on CMIP5 models or from combining palaeo-climate and historical 412	
observations (Figure 1, compare blue to light gray; Cox et al., 2018; Goodwin et al., 2018).  
 414	
4.2 Constraints on the future warming response 
The warming projections from the WASP ensemble (Figure 5, blue) are similar to the 416	
projections from a range of 13 CMIP5 models (Figure 5, beige; Appendix) for both RCP8.5 
and RCP4.5 scenarios (Meinshausen et al., 2011). This broad agreement from differing 418	
approaches, one using complex models and another using a more efficient model with history 
matching, provides additional confidence in the future projections (Figure 5, blue and beige). 420	
The WASP projections do show narrower uncertainty range in future warming than the 
CMIP5 models. Possible reasons for this narrowing of future warming in WASP include the 422	
greater inter-annual and inter-decadal variability inherent in the CMIP5 models, and the 
narrower ranges in simulated warming and ocean heat uptake imposed for the present day in 424	
WASP, due to the tighter observational constraints placed for historic warming and ocean 
heat uptake (Table 2; Figure 4). The RCP4.5 scenario does have a reduced chance of 426	
remaining under 2 °C warming for the 21st century (less than 1% likelihood) in the 
observationally constrained WASP projections, compared to CMIP5 models (Figure 5b, 428	
compare blue and beige).  This is in agreement with the observationally constrained future 
warming projections of Goodwin et al. (2018) using a version of the WASP model in which 430	
the climate feedback is assumed constant in time. 
 432	
5. Discussion 
A modified energy balance equation is presented in which there is no single climate feedback 434	
applicable to all sources of radiative forcing at time t, λ(t). Instead, surface warming is 
calculated using separate the climate feedbacks for each of the i sources of radiative forcing 436	
at time t, λi(t), that are independently calculated from a set of j feedback-processes, λi,j(t), via 
 438	
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ΔT (t) = 1− N (t)
Rtotal (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ri (t)
λPlanck + λi , j (t)

j
∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥i

∑ .      (10) 

 440	
Using the ranges of climate feedbacks for different processes analysed for CMIP5 models as 
a starting point (Table 1; see Caldwell et al. 2016; Andrews et al. 2015), a large ensemble of 442	
climate simulations driven by (10) are constructed, and then observational constraints are 
applied to extract a final history matched ensemble after Goodwin et al. (2018): (Table 2; 444	
Figure 4). 
 446	
The final posterior history matched ensemble constrains the climate feedback over multiple 
timescales (Figure 2b) consistent both with climate feedbacks displayed by the CMIP5 448	
models (Table 1) and with observational constraints of historic warming, heat uptake and 
carbon uptake (Table 2, Figure 4). 450	
 
Much previous research has gone into constraining the Equilibrium Climate Sensitivity (ECS, 452	
in °C), representing the temperature change at equilibrium following a sustained doubling of 
CO2 (e.g. IPCC, 2013; Knutti and Rugenstein, 2017). However, in the viewpoint presented 454	
here, equation (10), there is no ECS. Instead, the ECS is replaced by a time-evolving climate 
sensitivity that varies depending on the response timescale (Figure 1; Table 3). The analysis 456	
presented here constrains this time-evolving climate sensitivity from sub-annual response 
timescales up to 102 year timescales (Figure 2). However there are additional processes that 458	
will alter the climate feedback and climate sensitivity further on longer timescales (e.g. 
PALAEOSENS, 2012; Rohling et al. 2018; Zeebe, 2013), for example there is an ice-sheet 460	
albedo feedback potentially lasting tens of thousands of years. Therefore, the constraint on 
climate sensitivity for a 102 year response timescale presented here (Figure 1, Table 3) should 462	
not be considered a final ‘equilibrium’ climate sensitivity, but part of an on-going evolution 
of climate sensitivity over multiple response timescales (Knutti and Rugenstein, 2017). 464	
 
Consider the seeming inconsistency between previous best-estimates of climate sensitivity 466	
(Figure 1), with Earth’s current transient energy balance suggesting a best estimate of around 
1.6 to 2 °C (Lewis and Curry, 2014; Otto et al., 2013) and century timescale analysis 468	
suggesting best-estimates of around 3 °C (Cox et al., 2018; Goodwin et al., 2018). The 
combined constraints from the CMIP5 ensemble (Table 1) and observations (Table 3) placed 470	
here on the climate sensitivity over response timescales from 0.1, 1 and 10 years (Table 3; 
Figure 1) are similar to previous estimates of the ECS evaluated from radiative forcing and 472	
energy budget constraints (Otto et al, 2013; Lewis & Curry 2014). This similarity is 
interpreted here as reflecting the short response timescales that the current energy balance of 474	
the Earth system has to respond to anthropogenic forcing. Thus, the results for the climate 
sensitivity over shorter response timescales presented here are consistent with these previous 476	
findings (Otto et al. 2013; Lewis and Curry, 2014). 
 478	
The constraint placed here on the climate sensitivity on a response timescale of 100 years 
(Table 3; Figure 1) agrees very well with two recent estimates of the ECS considering 480	
century timescales; one based on the century-timescale response of CMIP5 models with 
similar autocorrelation lag-1 temperature anomaly properties to the observed climate system 482	
(Cox et al., 2018), and another based on a similar history matched approach as used here, but 
with climate feedback assumed constant over time and an initial prior distribution based on 484	
paleoclimate evidence rather than the CMIP5 models (Goodwin et al., 2018).  
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 486	
Thus, this study suggests an interpretation whereby these different previous estimates of 
climate sensitivity are not inconsistent, but merely reflect different response timescales of the 488	
system (Figure 1). When planning emission pathways to avoid dangerous climate change 
over the entire 21st century, it is appropriate to consider a century response timescale for 490	
climate sensitivity. For this purpose, a best estimate 100-year response timescale climate 
sensitivity of 2.9 °C, with a 66 % range from 2.3 to 3.6 °C, is found (Table 3; Figure 1). 492	
 
This study has used prescriptive input distributions for climate feedback terms based on the 494	
CMIP5 models (Table 1), and then applied observational constraints (Table 2) to refine the 
distributions and constrain the response-timescale evolutions of climate feedback and climate 496	
sensitivity (Figures 1 and 2). To adapt the method applied here to use less prescriptive input 
distributions, such that the output would be independent of the CMIP5 models and based 498	
solely on observations, the following issues would need to be considered. Firstly, one would 
only be able to have a single feedback term for each order of magnitude in timescale. For 500	
example the λWVLR and λFastCloud feedbacks operate over the same order of magnitude 
timescale and so would need to be combined into a single feedback term. Secondly, one 502	
would require an observational constraint generated using (shorter timescale) monthly 
temperature anomaly data, where the current constraints on surface temperature use a 504	
minimum of a ten-year average (Table 2). Such an observational constraint based on monthly 
temperature anomaly data could possibly be achieved by considering the mean simulated-to-506	
observed difference in the monthly response to a volcanic eruption over a decade (Figure 4b). 
However, these approaches are beyond the scope of this study and are reserved for future 508	
work. 
 510	
Constraining the Earth’s climate sensitivity, and understanding its possible response 
timescale evolution, is critical for reducing uncertainty in future warming projections (e.g. 512	
Knutti and Rugenstein, 2015). The history matching method with the WASP model applied 
in this study not only identifies a probability distribution for climate sensitivity over multiple 514	
response timescales (Fig. 1), but also then produces future warming projections using this 
time-evolving distribution (Fig. 5).  516	
 
Appendix 518	
 
Appendix A: Changes to the WASP model to allow time-evolving climate feedbacks 520	
To allow time-dependent climate feedbacks in the WASP model, the following alterations are 
made from the configuration of Goodwin et al. (2018). First, the time-step in the WASP 522	
model, δt, is reduced from 1/12th of a year in the configuration of Goodwin et al. (2018) to 
1/48th of a year here. 524	
 
The following equation adjusts the climate feedback to the existing radiative forcing from ith 526	
sources from time t to time t+δt, considering the j processes evolve towards their equilibrium 
feedback values according to their equilibrium timescales, τj (Table 1), 528	
 

λi (t +δt) = λPlanck + λi , j
equil −λi , j (t)( ) 1− exp −δt

τ j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥j

∑ .   (A1) 530	

 



	
13	

Any additional radiative forcing at time t+δt relative to t will only operate at the Planck 532	
sensitivity, the other feedback terms from the j processes will be zero in this initial time-step. 
This is expressed by reducing the time-dependent contributions to climate feedback 534	
according to the absolute ratio of previous to new radiative forcing, 
 536	

λi , j (t +δt) = λi , j (t)
Ri (t)

Ri (t +δt)
 ,      (A2) 

 538	
noting that (A2) is only applied when the radiative forcing is growing in magnitude, 
Ri (t +δt) > Ri (t) . Note, numerically the absolute value is needed in (A2) because of 540	

occasions where Ri changes sign (e.g. solar forcing) – you don’t want to swap the sign of 
lambda for process j, but reduce it to zero. 542	
 
To calculate the heat imbalance at time t in WASP, N(t) in Wm-2, the radiative forcing is 544	
modulated by the fractional distance from equilibrium of the anthropogenic heat of the 
surface mixed layer, Hmix(t) in J, using (Goodwin, 2016), 546	
 

N (t) = Hmix
equil (t)−Hmix (t)
Hmix
equil (t)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ Ri (t)
i
∑ ,     (A3) 548	

 
where Hmix

equil (t)  is the eventual heat uptake at equilibrium for the surface mixed layer in J if 550	
the radiative forcing at time t is held constant into the future. Here, allow the climate 
feedback for each source of radiative forcing to evolve independently in time, the equation 552	
calculating Hmix

equil (t)  is modified from the previous form (Goodwin, 2016, equation 3 therein) 
by summing Ri/λi for each of the i-sources of radiative forcing, 554	
 

Hmix
equil (t) = rSST:SATVmixcP

Ri (t)
λi , j (t)i

∑ ,     (A4) 556	

 
where rSST:SAT is the ratio of warming of sea surface temperature to surface air-temperatures at 558	
equilibrium, Vmix is the volume of the surface mixed layer and cP is the specific heat capacity 
of seawater.  560	
 
Appendix B: Calculating and plotting temperature anomaly. 562	
For the figures displayed the annual mean temperature anomalies are calculated as follows: 
the GISTEMP record is shown relative to the 1880 to 1900 average, the HadCRUT4 and 564	
WASP simulations are shown relative to the 1850 to 1900 average and the CMIP5 
simulations shown relative to the 1861 to 1900 average. 566	
 
The simulated warming ranges of 13 CMIP5 simulations plotted in Figures 4 and 5 include 568	
the CanESM2 (Arora et al., 2011), CESM1-BGC  (Moore et al., 2013), GFDL-ESM2G 
(Dunne et al., 2013), GFDL-ESM2M (Dunne et al., 2013), HadGEM2-CC (Martin et al., 570	
2011), HadGEM2-ES (Jones et al., 2011), IPSL-CM5A-LR (Dufresne et al., 2013), IPSL-
CM5A-MR (Dufresne et al., 2013), IPSL-CM5B-LR (Dufresne et al., 2013), MIROC-ESM-572	
CHEM (Watanabe et al., 2011), MIROC-ESM (Watanabe et al., 2011), MPI-ESM-LR Ref. 
50 (Giorgetta et al., 2013) and NorESM1-ME (Tjiputra et al., 2013) models. The shaded 574	
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regions in Figures 4 and 5 represent the range of annual mean surface warming values from 
the 13 CMIP5 models, using a single realization of each CMIP5 model. The warming is 576	
calculated relative to the 1861-1900 average within each simulation.   
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 784	

 
Figure 1: The constrained evolution of climate sensitivity over multiple response 786	
timescales. (a) Estimates of the climate sensitivity (°C) from multiple studies (black and 
gray) compared to the posterior history matched WASP ensembles in this study evaluated 788	
over multiple response timescales ranging from 10-1 to 102 years (colors). Dots are best 
estimates (using median from distributions for this study), thick solid lines are 66 % ranges 790	
and dotted lines are 95 % ranges. (b) The frequency density distributions of climate 
sensitivity in the posterior history matched WASP ensembles over multiple response 792	
timescales. (c) The climate sensitivity (°C) over multiple response timescales in the posterior 
history matched WASP ensemble (blue, lines and shading show median and uncertainty 794	
ranges). 
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 796	

 
Figure 2: Time evolution of climate feedback over multiple timescales. (a) Schematic of 798	
different climate feedback processes considered in this study, and their characteristic 
response timescales. (b) The climate feedback over different response timescales in the initial 800	
prior model ensemble (grey: shaded area and dotted lines, showing 95% range) and in the 
final posterior history matched ensemble (blue, line is median, dark blue shading is 66% 802	
range, light blue shading is 95 % range). Also shown for comparison is the Planck sensitivity 
(green). 804	
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 806	
Figure 3. Applied radiative forcing over time. (a) Radiative forcing over time from 
multiple sources in the posterior history matched model ensemble, showing median (line) and 808	
95% range (shading). The sources of radiative forcing are: atmospheric CO2 (red), Well 
mixed Greenhouse Gasses (WMGHG) other than CO2 (blue), tropospheric aerosols (orange), 810	
volcanic stratospheric aerosols (purple), and solar forcing (green). (b) The total radiative 
forcing from all sources, Rtotal, over time in the posterior history matched model ensemble 812	
(line is median, shaded area is 95% range). All radiative forcings are annually smoothed with 
the exception of volcanic aerosols, which have a monthly resolution. 814	
 
 816	
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 818	
Figure 4. Observed and simulated temperature anomaly over time. (a) Annual mean 
temperature anomaly from 1861 to 2020. Shown are observations to (black: solid line is 820	
HadCRUT4 from 1861-2017, dotted line is GISTEMP from 1880 to 2017) and simulated 
temperature anomaly from the posterior WASP history matched ensemble of simulations 822	
with modified energy balance (blue, lines and shading as Figure 1b), and from 13 CMIP5 
models (beige shading showing range). All annual temperature anomalies are shown relative 824	
to the pre-1900 average (Appendix B). (b) Monthly temperature anomaly before and after the 
eruption of Mt. Pinatubo from observations (black, as panel a) and the posterior history 826	
matched WASP ensemble simulations (blue, as panel a), and the AOD (red). Both observed 
and simulated monthly temperature anomalies are shown relative to the 2-year average prior 828	
to the eruption of Mt. Pinatubo. 
 830	
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 832	
Figure 5: Warming over the 21st century. Future warming projections from the posterior 
history matched WASP ensemble (blue, line and shading as figure 1b) and a range of 13 834	
CMIP5 Earth system models (beige shading showing range; see Appendix) for (a) RCP8.5 
and (b) RCP4.5 scenarios. Also shown are observed warming from 2000 to 2017 (black lines: 836	
solid is HadCRUT4, dotted is GISTEMP).  
 838	
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Feedback 
process 

Equilibrium 
feedback input 

distribution 

e-folding 
adjustment 

timescale input 
distribution 

Posterior climate 
feedback (mean and 
standard deviation) 

Planck 
Feedbacka, λPlanck 

Random-normal: 
µ = 3.15 Wm-2K-1 

σ = 0.04 Wm-2K-1 

 Instantaneous µ = 3.15 Wm-2K-1 

σ = 0.04 Wm-2K-1 

Combined water 
vapour-lapse rate 
feedbacka, λWVLR 

Random-normal: 
µ = -1.15 Wm-2K-1 
σ = 0.09 Wm-2K-1 

Random-normal: 
µ = 8.9 days 
σ = 0.4 days 

µ = -1.13 Wm-2K-1 
σ = 0.09 Wm-2K-1 

Fast cloud 
feedbacka (initial 
transient SST 
patterns), 
λFastClouds 

Random-normal: 
µ = -0.43 Wm-2K-1 
σ = 0.33 Wm-2K-1 

Random-normal: 
µ = 8.9 days 
σ = 0.4 days 

µ = -0.11 Wm-2K-1 
σ = 0.26 Wm-2K-1 

Snow + sea-ice 
albedo climate 
feedbacka, λalbedo 

Random-normal: 
µ = -0.37 Wm-2K-1 
σ = 0.10 Wm-2K-1 

Random: 
Min. = 0.5 years, 
Max. = 5.0 years 

µ = -0.34 Wm-2K-1 
σ = 0.10 Wm-2K-1 

Cloud – spatial 
SST adjustment 
feedbackb, 
λSlowCloud 

Random-normal: 
µ = -0.47 Wm-2K-1 
σ = 0.30 Wm-2K-1 
 

Random: 
Min. = 20 years, 
Max. = 45 year. 

µ = -0.27 Wm-2K-1 
σ = 0.28 Wm-2K-1 
 

Table 1: Time-evolving climate feedbacks in the WASP model. All input distributions are 842	
identical for the different sources of radiative forcing, expect that for volcanic radiative 
forcing the snow + sea-ice albedo feedback is reduced to 20% of the value for other sources. 844	
a Input distribution taken from the CMIP5 models as analyzed by Caldwell et al. (2016). 
b Input distribution taken from the CMIP5 models as analyzed by Andrews et al. (2015). 846	
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Observational 
constraint 

Observation-
consistent range 

Comment/References Posterior 95 % 
range 

Global mean 
temperature anomaly, 
1986-2005 relative to 
1850-1900 

0.55 to 0.67 °C Constraint amended from 
2003-2012 period in 

Goodwin et al. (2018) to 
1986-2005 period here, so 
that the final time-average 

includes a significant 
volcanic eruption. Range 

based on 90% 
observational range from 

IPCC (2013). 

0.55 to 0.67 °C 

Global mean 
temperature anomaly, 
2007-2016 relative to 
1971-1980 

0.56 to 0.69 °C Constraints and ranges as 
used in Goodwin et al. 

(2018). Based on: (Morice 
et al. 2012; GISTEMP, 

2018; Hansen et al., 2010; 
Smith et al., 2008; Vose et 

al., 2012) 

0.57 to 0.69 °C 

Global mean 
temperature anomaly, 
2007-2016 relative to 
1951-1960 

0.54 to 0.78 °C 0.63 to 0.76 °C 

Global mean sea-
surface temperature 
anomaly, 2003-2012 
relative to 1850-1900 

0.56 to 0.68 °C Constraint and range as 
used in Goodwin et al. 

(2018). Based on 
(Kennedy et al., 2011; 

Huang et al., 2015) 

0.56 to 0.68 °C 

Whole ocean heat 
content anomaly, 
2010 relative to 1971 

117 to 332 ZJ Constraints and ranges as 
used in Goodwin et al. 

(2018). Based on (Levitus 
et al., 2012; Giese et al., 
2011; Balmaseda et al., 
2013; Good et al., 2013; 

Smith et al., 2018; Cheng 
et al., 2017) 

152 to 337 ZJ 

Upper 700m ocean 
heat content 
anomaly, 2010 
relative to 1971 

98 to 170 ZJ 103 to 171 ZJ 

Terrestrial carbon 
uptake, 2011 relative 
to preindustrial 

70 to 250 PgC Constraint and range as 
used in Goodwin et al. 
(2018). Based on IPCC 

(2013) 

95 to 253 PgC 

Rate of terrestrial 
carbon uptake, 2000 
to 2009 

1.4 to 3.8 PgC yr-1 Constraint and range as 
used in Goodwin et al. 
(2018). Based on IPCC 

(2013) 

1.3 to 3.6 PgC yr-1 

Ocean carbon uptake, 
2011 relative to 
preindustrial 

125 to 185 PgC Constraint and range as 
used in Goodwin et al. 
(2018). Based on IPCC 

(2013) 

126 to 181 PgC 

Table 2: Observational constraints and posterior simulated ranges. All constraints 848	
represent 90 or 95 % uncertainty ranges in the observed quantities. See Goodwin et al. (2018) 
for details. 850	
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Response timescale, 
τ   

Median Climate 
Sensitivity 

66% range in 
Climate Sensitivity 

95 % range in 
Climate Sensitivity 

0.1 years 1.9 °C 1.7 to 2.2 °C 1.5 to 2.6 °C 
1 years 2.1 °C 1.8 to 2.4 °C 1.6 to 2.8 °C 
10 years 2.4 °C 2.1 to 2.9 °C 1.8 to 3.4 °C 
100 years 2.9 °C 2.3 to 3.5 °C 1.9 to 4.6 °C 

Table 3: Constrained climate sensitivity estimates for multiple response timescales. 
 854	


