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ABSTRACT: The numerical modelling of the interactions between water waves and 

floating structures is significant for different areas of the marine sector, especially 

seakeeping and prediction of wave-induced loads. Seakeeping analysis involving severe 

flow fluctuations is still quite challenging even for the conventional RANS method. 

Particle method has been viewed as alternative for such analysis especially those involving 

deformable boundary, wave breaking and fluid fragmentation around hull shapes. In this 

paper, the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH), a fully 

Lagrangian particle method, is applied to simulate the symmetric radiation problem for a 

stationary barge treated as a flexible body. This is carried out by imposing prescribed 

forced simple harmonic oscillations in heave, pitch and the 2- and 3-node distortion modes. 

The resultant, radiation force predictions, namely added mass and fluid damping 

coefficients, are compared with results from 3-D potential flow boundary element method 

and 3-D RANS CFD predictions, in order to verify the adopted modelling techniques for 

WCSPH. WCSPH were found to be in agreement with most results and could predict the 

fluid actions equally well in most cases. 

KEY WORDS:  weakly compressible; fluid structure interaction; SPH; seakeeping; 

hydroelasticity; radiation. 

1. INTRODUCTION 

During fluid-structure interaction (FSI) fluid forces acting on the structure result in the 

structure moving and deforming, which in turn affects the flow boundary conditions, hence 

fluid motion. This interaction, also known as two-way coupling, has been studied in marine, 

offshore, civil and coastal engineering. The majority of approaches used are based on 

potential flow where nonlinear effects are either ignored or allowed for through various 

assumptions on the body and free surface boundary conditions, leading to a range of partly 

to fully nonlinear methods (ISSC, 2012). However, numerical models based on potential 

flow theory are unable to deal with extreme free surface deformations, as well as FSI 

problems where the effects of viscosity, turbulence and compressibility are significant. In 

order to address such shortcomings, there have been several attempts to solve nonlinear rigid 

body FSI and benefitting from rapid progress in RANS code development, using either the 

finite difference method or the finite volume method (FVM) (Weymouth et al., 2005; 

Wilson et al., 2006; Castiglione et al., 2011; Hochkirch & Mallol, 2013; Tezdogan et al., 

2015). However, most of these methods are Eulerian and, by and large, ineffective in the 

case of extreme events of wave breaking and water spray. Therefore, Lagrangian meshless 
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methods are viewed as alternatives in providing accurate numerical solutions to improve 

inadequacy of mesh-based discretization.  

Smoothed Particle Hydrodynamics (SPH) is a mesh-free, Lagrangian method whereby 

the computational domain is represented by a set of interpolation points called particles 

where the fluid medium is discretised by the interaction between particles rather than grid 

cells (Shadloo et al., 2012; Chen et al., 2013). Each particle carries an individual mass, 

velocity, position and any other requisite physical characteristics, which evolve over time 

through the governing equations. All particles have a kernel function to define their range 

of interaction, while the hydrodynamic variables are defined by integral approximations.  

There are limited number of studies performing seakeeping analysis using particle 

methods, mainly focusing on extreme events such as slamming and green water. For 

example, Shibata et al., (2009) used the Moving Particle Semi-implicit (MPS) method to 

simulate shipping water on a moving ship and validate the impact force on the deck. 

Slamming events were also modelled where accurate slamming pressures can be estimated 

using the SPH algorithm (Veen, 2010; Veen & Gourlay, 2012). More recently Kawamura 

et al., (2016) predicts 6-DoF ship motions in severe conditions using a GPU-accelerated 

SPH simulation. 

There have been quite a few recent investigations accounting for structural deformations 

and two-way coupling using conventional mesh-based RANS methods. For example, El 

Moctar et al performed two-way coupling between RANS code and Timoshenko beam 

model and investigated the effects of springing and whipping (El Moctar et al., 2011), 

Lakshmynarayanana investigated a containership in regular head waves coupling STAR-

CCM+ with the ABAQUS finite element software (Lakshmynarayanana et al., 2015).  

The work presented in this paper is the first step in extending the application of WCSPH 

(weakly compressible SPH) to simulate two-way coupling in FSI. Forced oscillation tests 

are performed on a uniform flexible barge using WCSPH for the 3D radiation problem. 

Hydrodynamic coefficients, namely added mass and damping coefficients, are obtained for 

the rigid body motions of heave and pitch, and the 2-node (2VB) and 3-node (3VB) 

symmetric distortion mode shapes, including coupling terms. These are compared with 

potential flow (using 3D hydroelasticity) and RANS (using STAR-CCM+) predictions. 

Domain size, particle numbers and damping zones are modified based on different 

frequencies of oscillation, allowing the free surface to be well captured by WCSPH. 

  

2. METHODOLOGY 

2.1. SPH interpolation 

In the basic formulation of SPH, the entire domain is discretized with particles. These 

particles hold individual mass, position, velocity, density and any other physical quantity 

which evolves over time. The approximate integral form of a function at any given position 

vector of a particle is 

( ) ( ') ( ', )f f h


 x x x x                                                                                              (1) 

where x’ is another arbitrary position vector in the domain of integration Ω, (x-x’,h) is a 

smoothing function (Wendland, 2006; Liu, 2010),  and h is the smoothing length. The 

integral representation in Eq. (1) can be written in the form of particle approximation, 

namely 
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where N is the total number of particles and xj is the position vector of particle j within the 

support domain of x defined by the smoothing function. 

For a particle i, Eq. (2) takes the form 

1
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                                                                                                (3) 

where mj and ρj are the mass and density of particle j ,respectively, within the support 

domain of particle i, ij=(xi-xj,h). The derivative of a function for particle i can be written 

as 

1
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where the equation follows similar integral representation and particle approximation. In 

this equation 
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                                                                                                          (5) 

and rij is the distance between particle i and j. Using Eq. (3) and Eq. (4), the continuity and 

pressure contribution to the momentum conservation equations can be written as 
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where P is the pressure and F is the acceleration due to gravity. In this paper a Wendland 

quantic kernel is used for all WCSPH interpolations (Crespo et al., 2013; 2015). A 

smoothing length of h=1.3dx is used, where dx is the initial particle spacing. There are two 

methods of applying incompressibility in flow simulations. The first method, namely 

incompressible SPH (ISPH), enforced true incompressibility by solving the Poisson’s 

equation for the pressure field. However, due to the complexity of solving the two-step semi-

implicit solution process in 3-D, incompressible fluid with a small compressibility, namely 

WCSPH, is preferred for simpler implementation in flow applications. In WCSPH, the 

pressure is solved with a state equation which follows the expression, 

0

1P B







  
   

   

.                    (8) 

The parameter 𝐵 is a constant related to the bulk modulus of elasticity of the fluid, 𝜌0 is the 

reference density, usually taken as the density of the fluid at the free surface, and 𝛾 is the 

polytrophic constant, usually between 1 and 7. The 2nd term in Eq. (8), the minus one term, 

is in order to obtain zero pressure at a surface (Chen et al., 2013). In this paper, 𝛾 = 7, 𝐵 =
𝑐0

2𝜌0/𝛾, with 𝑐0 being the speed of sound at the reference density and 𝑐0 = 𝑐(𝜌0) =

√𝜕𝑃 𝜕𝜌⁄ .  
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2.2. Implementation 

The wall modelled by particles must be treated with care in order to prevent any penetration 

from inner particles. Two types of boundary conditions were considered in this work; using 

boundary force particles that repel those in fluid and having layers of fixed wall around the 

boundaries known as Dynamic Boundary Condition (DBC) (Colagrossi and Landrini, 2003; 

Crespo et al., 2007). In the repulsive boundary condition, the force can take various forms 

such as Lennard-Jones force, or an empirical function with a singularity so that the force 

increases as the particle moves nearer to the boundaries. Following this approach, the force 

can be calculated by 

1 2

0 0

2
( )

r
f r D

r r

r r r

 


    

    
    

                       (9) 

where 5D gH and
1
 and 

2
 are set as 4 and 2 respectively according to Monaghan (1994); 

𝑟0 is the cut-off distance normally selected to be the initial particle spacing. The value of 

( )f r is set to be zero when 
0

r r so that the force is purely repulsive. In the DBC method, 

boundary particles are forced to have the same properties as corresponding fluid particles. 

Thus they follow the same momentum and continuity equation, as well as the equation of 

state. Their density and pressure are updated but their positions and velocities remained 

unchanged during the numerical test. They remain fixed in position or move according to 

an externally imposed position i.e. wave maker or imposed velocity (Sun et al., 2016). 

Symplectic time integration algorithms are time reversible in the absence of friction or 

viscous effects. This is also often known as the kick-drift-kick scheme, where the kick is the 

velocity changing according to the force and drift is the coordinate changing with the initial 

velocity. Symplectic methods preserve geometric features, such as the energy time-reversal 

symmetry, which are present in Eq. (4), leading to improved resolution of long term solution 

behaviour. First, the values of acceleration and density are calculated at the middle of the 

time step as 
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where the superscript denotes time step and 𝑡 = 𝑛𝛿𝑡. In the second stage  
1

2D D
n

i i i
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where =D D
i i

V tr  gives the velocity and, hence, position of the particles at the end of the 

time step, namely 

     ( 1) ( ) ( 1)
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At the end of the time step ( 1)D Dn

i
t   is calculated using the updated values of ( 1)n

i


v  and 

( 1)n

i


r for computational cost (Shao and Lo, 2003). A variable time step is employed according 

to (Monaghan, 2005) 
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   min
f i

i

h
t

f
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where  𝛿𝑡𝑐𝑣 is the combination of Courant and the viscous time-step controls and 𝑓𝑖 is the 

internal or external force. The values of times step that meet these two criteria are computed 

and the smallest one is used for the time step value. 

 

2.3. Force around fixed and floating bodies 

Boundary particles, similar to fluid particles, can also be used for simulating rigid body 

in fluid-structure interaction problems (Colagrossi and Landrini, 2003; Adami et al., 2012). 

The body might drift freely on the free surface with given initial velocity or it might have a 

constrained movement along the fluid domain. All boundary particles have similar 

properties with fluid particles. However, according to dynamic boundary conditions (DBC) 

(Crespo et al., 2007), a boundary particle is bound to repel approaching fluid particles using 

repulsive force to prevent any penetration from the fluid particle. Within the same kernel, 

the force on each boundary particle is computed by adding up the contribution from all the 

surrounding fluid particles (Lee et al., 2008; Monaghan and Kajtar, 2009). Hence, boundary 

particles experience a force per unit mass given by 

k ka
a FPs

 f f                     (15) 

where FPs denotes fluid particles and 𝐟𝑘𝑎 is the force per unit mass exerted by fluid particle 

a on boundary particle k. The force exerted by a fluid particle on each boundary particle 

follows the principle of equal and opposite action and reaction which is, 

k ka a ak
m m f f                    (16) 

In the simulations, the repulsive force (DBC), 𝐟𝑎𝑘 , exerted by the boundary particle k on 

fluid particle a is the only force computed and from Eq. (16), the force exerted by fluid 

particle a on the moving body can be calculated. By integrating Eq. (16) in time, the position 

of each boundary particle can be determined and moved accordingly. It can be shown that 

this technique conserves both linear and angular momentum (Monaghan et al., 2003; Tafuni, 

2016).  

2.4. Computational setup 

Using the boundary and fluid geometry as described by Kim et al., (2014), a uniform 

rectangular barge is modelled with main particulars presented in Table 1. Both boundary 

and fluid domains are discretized using particles whose size and number depend on the 

initial particle spacing. For the boundary, 2 layers of boundary particles are adopted to 

model the conditions of a Numerical Wave Tank (NWT). The domain is modelled in three 

dimensions where y axis is in the athwarthships and x and z axes are along the barge and in 

the vertical direction, respectively. Unlike FVM model, the WCSPH code in DualSPHysics 

(Crespo et al., 2015) does not have the option to model only half of the barge about its 

longitudinal axis to reduce the computational cost (Chen et al., 2013). Therefore, due to the 

large dimension, several considerations, such as domain size and requisite computational 

power, need to be made in determining the appropriate particle spacing and particle number. 

Among them is the number of particles needed particularly in the vicinity of the barge and 

flow field near the free surface at high frequencies of oscillation. Furthermore, the 

sensitivity analysis for particle size carried out by Ramli et al (2015) was also taken into 
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consideration. Particle spacing of 1.0 m with particle numbers shown in Table 2 is 

considered adequate in capturing details of forces along the oscillating barge. Fig. 1 shows 

all the domain with red denoting the barge comprising of 2 layers of boundary particles 

while cross sections of the domain are presented in Fig. 2. All simulations are carried out 

for a range of forced oscillation frequencies shown in Table 2 with each wavelength, λ and 

oscillation frequency. The size of the numerical domain varies with each wavelength.  

The NWT is extended either side of the barge in x and y directions that includes two 

zones, namely wave zone and damping zone. Wave zone allows time for the radiated wave 

from the oscillating barge to travel before being slowly damped by the beach at the end of 

the domain. Ideally, the lengths of both these zones should be set equal to the wavelength 

of the radiated wave. However, considering the number of particles used, wave zone and 

damping zone for all frequencies are first determined based on the characteristics of the 

wave with a frequency of 1.0 rad/s. In this case the wave zone is set double the 

corresponding wavelength and damping zone is nearly equal to the wavelength. The water 

depth is kept large enough to avoid shallow water influence to the radiated wave for each 

individual frequency. However, for the case 𝜔 ≤ 1.0 rad/s, the dimension in the longitudinal 

and athwartships directions could not extend to double the length of the corresponding 

wavelengths due to the large particle numbers involved. Therefore, the domain sizes are 

reduced for ω = 0.2 rad/s and ω = 0.4 rad/s. The reductions are based on some preliminary 

simulations and these domain sizes are believed to be adequate in providing accurate results 

and to avoid precision problems (Ramli et al., 2015).The excitation amplitude, 𝑧𝑎 is set to 

H/2=1 m for frequencies 𝜔 ≤ 1.0 rad/s and 0.2 m for frequencies 𝜔 > 1.0 rad/s. This large 

value of amplitude is assigned to lower frequencies case to ensure that the dynamic force 

components are not too small compared to the static components.  

 

Fig. 1: Overall size (m) of NWT including wave zones and damping zones, profile 

view. 
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Fig. 2: (a) Longitudinal and (b) athwartship cross sections of the numerical domain  

 

Table 1: Main particulars of the barge 

Main particulars Barge 

Length, L 120 m 

Breadth, B 14 m 

Depth, D 11.15 m 

Draft 5.575 m 

 

Table 2: Simulation conditions at dx = 1.0 m 

ω 

(rad/s) 

λ 

(m) 

𝑧𝑎  
(m) 

Wave zone at 

long. and ath. 

direction (m) 

Total domain, 

a x b (m2) 

Domain 

Depth, d 

(m) 

Particles 

number 

0.2 1540.9 1.0 132.1 504.2 x 398.2 61.64 7.8 M 

0.4 384.24 1.0 132.1 504.2 x 398.2 61.64 7.8 M 

0.6 171.22 1.0 123.3 486.6 x 380.6 61.64 7.8 M 

0.8 96.309 1.0 123.3 486.6 x 380.6 30.69 3.9 M 

1.0 61.638 1.0 123.3 486.6 x 380.6 30.69 3.9 M 

1.2 42.804 0.2 123.3 486.6 x 380.6 30.69 3.9 M 

1.4 31.448 0.2 123.3 486.6 x 380.6 30.69 3.9 M 

1.6 24.077 0.2 123.3 486.6 x 380.6 30.69 3.9 M 

1.8 19.024 0.2 123.3 486.6 x 380.6 30.69 3.9 M 

2.0 15.410 0.2 123.3 486.6 x 380.6 30.69 3.9 M 

 

2.5. Computational parameters 

Simulations are carried out with damping beaches set in both the longitudinal and 

athwartships directions as shown in Fig. 2. The delta-SPH (δ) term is set to 0.1. The 

Wendland kernel is chosen for the interaction between neighbouring particles, as mentioned 
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before, while the symplectic scheme is used for the step algorithm. Particles are then 

initialised on a regular grid of particle spacing. The initial SPH smoothing length is then set 

at h = 1.3dx. WCSPH in DualSPHysics provides for a prescribed motion to be assigned to 

a body using <mvrectsinu> option for sinusoidal rectilinear movement. However, this 

prescribed motion can only be applied to heave motion to estimate the value of generalised 

force along the oscillating barge. In order to implement the flexible mode model, 

modifications of motions for pitch, vertical 2- and 3- node of distortion modes are applied 

directly to the velocity in the source code (Crespo et al., 2015). Following the velocity of a 

body undergoing a simple harmonic motion, 

cos
a

z z t                    (17) 

where 𝑧̇ is the velocity, 𝜔 is the oscillation frequency (rad/s), 𝑧𝑎 is the amplitude of motion 

and 𝑡 is the time (s). The velocity of each barge particle is imposed as a vector by multiplying 

the velocity with the eigenvector for individual rigid body motions or distortions.  

For this uniform barge the eigenvectors for the distortion modes are calculated using Euler 

beam theory with free-free end conditions and the corresponding analytical mode shapes. 

As only the radiation problem is of interest, the structural properties of the barge (i.e. mass 

and 2nd moment of area) have no effect on the mode shapes. The normalised mode shapes 

are approximated using polynomials to facilitate their input into WCSPH 

(Lakshmynarayanana et al., 2015). It should also be noted that for the distortion related 

hydrodynamic coefficients the mode shape is oscillated at the selected frequency of 

oscillation and not the natural frequency. Implementing Euler beam in this simulation 

ensures that the displacements changes in the z direction. Displacement of each barge 

particle is updated with new velocity at the end of every time step. These steps can be 

simplified as follows; 

1st step:  cos eigenvector
a

z z t    

2nd step: 0

y

z

u R

z v

w T

   
   

 
   
   
   

 

where ,0,
y z

R T   is equal to  0,0,1 in heave and  1 60,0,( 60) / 60x  in pitch. Here 

Ry and Tz are the rotational and translational vectors, respectively and u, v, w the 3 velocity 

components. 

Time step size for all simulations is kept to 1.0e-4 s, following the highest frequencies 

tested in Table 2. Time duration of simulation varies depending on individual wavelengths 

i.e. 15s for 2 rad/s and 60s for 0.2 rad/s with similar output files of every 0.05 seconds. 

2.6. Hydrodynamic coefficients 

The computation of the hydrodynamic force, F(t) is carried out using the recorded 

information on the particle properties at each time step.. The force is determined by first 

computing the acceleration vector of each fluid particle in the vicinity of the oscillating 

barge and, making use of Newton’s second law, by multiplying this value with the mass of 

each fluid particle. Referring back to Eq. (16), the resulting vector is assumed as the force 

exerted by the fluid on the barge with opposite sign. Since changes in x and y directions are 
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negligible, only the z component of the acceleration is considered in obtaining the total 

hydrodynamic force, 𝐹(𝑡).  

However, in order to compute the dynamic force, the static force has to be subtracted 

from the total hydrodynamic force. This is similar to the procedure followed by Kim et al 

(2014) when using STAR-CCM+. The static forces on the body for rigid body motions and 

distortions are computed on the mean free surface. In order to obtain the generalised 

force,𝐹𝑟𝑠(𝑡), the dynamic force for each particle is multiplied with the 𝑠𝑡ℎ eigenvector where 

𝑟 denotes the index of the motion, including both the rigid body motions and distortions. 

Using this relation, one can also extract generalised forces for the cross-coupling motion i.e. 

diagonal terms of Heave-2VB, 2VB-Heave, Pitch-3VB and 3VB-Pitch. For example, 

considering the case of forced pitch motion, 

1
60

( ) 0 0

( 60)
60

y

Pitch
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z
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F t ma ma F

T x

 
   
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              (18) 
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3.3021 ......

y

Pitch VB

rs rs

z

R e x

F t ma ma F

T e x






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  .           (19) 

Instantaneous values of the hydrodynamic coefficient are obtained by Fourier analysis of 

time history of the generalised force 𝐹𝑟𝑠(𝑡) using discrete windows approach for one period, 

𝑇 = 2𝜋 𝜔⁄ , of oscillation, namely 

 

/2

2 /2

2
( )sin( )d

t T

rs rst T
A F t t t

T







                  (20) 

/2

2 /2

2
( )cos( )d

t T

rs rst T
B F t t t

T







                   (21) 

 

3. RESULTS AND DISCUSSION 

This section presents results for the stationary uniform barge oscillating on the free surface 

at different mode shapes, namely heave, pitch and 2-node and 3-node vertical bending 

modes. The predictions from WCSPH are compared to those obtained from 3-D predictions 

using STAR-CCM+ and 3-D (hydroelasticity) potential flow using the Green’s function for 

pulsating source (Bishop et al., 1986). Kim et al., (2014), in STAR-CCM+, imposed a 

boundary that oscillates simply harmonically in the shape of the selected modes. Both 

STAR-CCM+ and WCSPH simulations use inviscid flow, but account for nonlinearities. 

Each eigenvector relevant to the motion of the barge is determined by approximating the 

Euler beam solution by a polynomial. It is worthwhile mentioning that results from STAR-

CCM+ used for the comparisons can be categorised into two sets. The first set is the initial 

setup of the numerical model, with mesh size ranging between 1.1M to 4.4M (lowest 

frequency), while the second set is obtained by refinement of the mesh around the body and 



Journal of Marine Science and Application Zahir Ramli 

 

10 

the free surface, resulting in quadrupling the size of the mesh. It should be noted that these 

refinements were only used for a few low frequencies of oscillation.  

Fig. 3 shows the generalised added mass and damping coefficients for the rigid body 

motions of heave and pitch. The variables are plotted as a function of the oscillation 

frequency and are not nondimensionalized. It should be noted that as a result of the 

symmetry the cross coupling coefficients in heave and pitch are zero. Overall, both added 

mass and fluid damping from WCSPH predictions agree well with STAR-CCM+ and 

potential flow theory with small discrepancies below 10% in the added mass of heave 

motion. The potential flow predictions in the vicinity of ω = 1.6 rad/s show the signs of an 

irregular frequency. Damping predictions show an increasing trend for ω < 0.8 rad/s before 

starting to decline gradually for shorter waves. Moreover, added mass by WCSPH, which 

includes up to 8 million particles, is in closer agreement with a refined grid STAR-CCM+ 

at low frequencies in Fig. 3(c) which comprises approximately 10 million cells.  In the case 

of ω = 0.8 rad/s for pitch, small discrepancy is noted compared to the STARCCM+ refined 

grid in Fig. 3(d) which suggests that insufficient amount of force predicted around the 

oscillating barge.  

The generalised added mass and damping for the 2-node (2VB) and 3-node (3VB) 

distortion modes are represented in Fig. 4. For frequencies greater than 0.4 rad/s, 2VB and 

3VB coefficients have good overall agreement with both STAR-CCM+ and potential flow. 

The influence of the irregular frequency can again be observed between ω = 1.6 rad/s and ω 

= 1.8 rad/s. For 2VB, differences between WCSPH and potential flow theory are smaller 

for fluid damping than added mass. Added mass predicted by WCSPH shows a slightly 

higher value for ω = 0.2 rad/s and ω = 0.4 rad/s. Similar trends are noted in 3VB coefficients 

where there is a better agreement for added mass between WCSPH and STAR-CCM+. 

However, at the lowest frequency, the deviation in damping is recorded to be about 10 times 

larger than STAR-CCM+ and potential flow. Primarily, this is due to the complexity of 3VB 

motion and insufficient length for the wave zone for the radiated wave in the NWT. 

Additional calculations are also added at ω = 0.9 rad/s. This is to make sure that the peak in 

fluid damping for 3VB motion is covered. Initially, the size of NWT was planned to be large 

enough to cover at least three period of the radiated wave based on each individual 

wavelength. However, simulating such large domain with uniform particle spacing of 1.0 m 

would lead to total number of fluid particles in excess of 25 million, which is the limitation 

of the current graphic card.  
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Fig. 3 Comparison between generalised added mass and damping coefficients. 

(a) and (b) : Heave motion, (c) and (d) : Pitch motion, − : Predictions from 

potential flow, ○: predictions from STAR-CCM+, □: predictions from STAR-

CCM+_fine and △: predictions from WCSPH. 

 

 

 

Fig. 4 Comparison between generalised added mass and damping coefficients. 

(a) and (b) : 2VB motion, (c) and (d) : 3VB motion. − : Predictions from potential 

flow, ○: predictions from STAR-CCM+, □: predictions from STAR-CCM+_fine 

and △: predictions from WCSPH. 

 

The comparisons of hydrodynamic coefficients for the cross-coupling terms with the 

2VB distortion modes are shown in Fig. 5. Apart from the predictions at lower frequencies, 

Heave-2VB and 2VB-Heave terms show a consistent trend with each other, agreeing well 

with both STAR-CCM+ and potential flow results. In heave-2VB, the first, relatively small, 

discrepancy is observed at ω = 0.4 rad/s in added mass and the errors continue to increase 

for ω = 0.2 rad/s. The error bound recorded is nearly 20% when compared to the potential 

flow results. While for the 2VB-Heave term, large discrepancies are observed at ω = 0.2 

rad/s, overpredicting the added mass similar to STAR-CCM+. In this frequency range, the 

agreement with potential flow results is better for damping compared to STAR-CCM+. 
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Results with a refined grid using STAR-CCM+ are only available for ω = 0.4 rad/s, due to 

the fact that higher computational power is needed as mentioned before at ω = 0.2 rad/s for 

both WCSPH and STAR-CCM+, showing that this is an issue of grid refinement. As shown 

in Eq. (10), it is possible that the contribution of forces exerted by fluid particles onto 

boundary particles are not accurately computed when the body is oscillating at relatively 

low frequencies.  

Fig. 6 shows the comparison of hydrodynamic coefficients for the cross-coupling terms 

relating to the 3VB distortion modes. For relatively high frequencies (ω > 0.8 rad/s), pitch-

3VB and 3VB-pitch terms are observed to follow a trend similar to STAR-CCM+ and 

potential flow although small discrepancies can be observed throughout the frequency 

range. The deviation in predictions between WCSPH and potential flow results, particularly 

for added mass in Pitch-3VB and 3VB-Pitch terms become larger towards lower 

frequencies. Overall, WCSPH overestimated added mass value for most frequencies. This 

overestimation may explain the complexity in obtaining the generalised force for 3VB 

motion in comparison to the rigid body motion due to a possibly higher nonlinearity 

involved when the body oscillates. Refined predictions from STAR-CCM+, denoted by 

STAR_CCM+_fine, show the sensitivity to mesh density of the force prediction around the 

oscillating body at relatively low frequencies. The results from the refinement of STAR-

CCM+ at ω = 0.4 rad/s suggests that added mass for both terms can be closer to potential 

flow theory (Kim et al., 2014). Similar improvement may be achieved by WCSPH method 

if smaller particle spacing is used. However, use of double precision is required in order to 

use much smaller particle spacing, an additional limitation to the software in question. 

Furthermore, in Fig. 6(b)(d), both WCSPH and STAR-CCM+ can be seen to underestimate 

the value of damping at ω = 0.8 rad/s. The results from STAR-CCM+_fine suggest that 

refinement would not improve this prediction. The discrepancies computed in 3VB-Pitch is 

observed to be larger than the one computed in Pitch-3VB term. One of the reasons could 

be the difficulty in obtaining generalised force as dynamic components are smaller 

compared to static components; hence, an increased amplitude maybe needed at lower 

frequencies. Overall, WCSPH is able to show consistency of trend in damping for both 

Pitch-3VB and 3VB-Pitch terms. This is because both cross-coupling terms should be the 

same for a stationary symmetrical body, like the barge used in this paper. 
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Fig. 5 Comparison between generalised added mass and damping coefficients. 

(a) and (b) : Heave-2VB motion, (c) and (d) : 2VB-Heave motion. − : Predictions 

from potential flow, ○: predictions from STAR-CCM+, □: predictions from 

STAR-CCM+_fine and △: predictions from WCSPH. 

 

 

 

Fig. 6 Comparison between generalised added mass and damping coefficients. 

(a) and (b) : Pitch-3VB motion, (c) and (d) : 3VB-Pitch motion. − : Predictions 

from potential flow, ○: predictions from STAR-CCM+, □: predictions from 

STAR-CCM+_fine and △: predictions from WCSPH. 

 

Forced motion at different time instants by WCSPH for 2VB and 3VB modes are shown 

in Fig. 7. In Fig. 7, three figures at three different time instants shows one complete cycle 

of the oscillatory forced motion, respectively. Colour scale bar range from 0 to 6 (units in 

Pa) are used to represent pressure distributions along the body. In Fig. 7(a) pressure 

observed to be higher (red colour) where the boundary particles move at their maximum 

displacement (T = 5.0 s) along with the highest dynamic force, 𝐹𝑟𝑠(𝑡). The interaction 

between boundary and fluid particles is very sensitive for the case where the magnitude of 

the dynamic force is small in lower frequencies. Fig. 8(c)(d) depict the contour lines and 

motion of the waves radiated away from the oscillating body for pitch and 3VB respectively 
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at t = 15.0 s. It should be noted that the barge has been excluded from Fig. 8(c)(d) in order 

to better observe the actions exerted by the fluid particles onto boundary particles. 

Nevertheless, the position of the barge is the same as in Fig. 8(e)(f). Results show that fluid 

particles in WCSPH are radiating away from the oscillating barge in a similar manner 

obtained in STAR_CCM+, shown in Fig. 8(a)(b) respectively. In Fig. 8(e)(f), the colour 

contour are plotted via MATLAB routines with contribution of fluid particles near free 

surfaces where the colours show the pressure distributions of the flow field. The 

distributions are scattered throughout the fluid domain as pressure values on free surface 

particles do fluctuate. Looking at Fig. 8(c)(d), red to yellow colour indicates the moment 

where the barge slams onto the fluid particles, hence creating a high impact of pressure 

shown in Fig. 8(e)(f), also shown in the same colour. Observation on the behaviour of the 

flow field around the oscillating barge are then made by comparing the wave contour 

between pitch motion in Fig. 8(a)(c) and 3VB motion in Fig. 8(b)(d) by WCSPH and STAR-

CCM+_fine (Kim et al., 2014), respectively. In pitch motion, wave contours in WCSPH 

show similar wave pattern with STAR_CCM+_fine, except that fluctuations arise near each 

wall. These fluctuations are the results of computed forces between boundary and fluid 

particles. The effect could be due to the accuracy of the prediction of the dynamic force. For 

the 3VB motion, WCSPH shows significant wave pattern around the oscillating barge. Due 

to the movement in the 3-node distortion mode, radiated waves appear to disperse in the 

vicinity of the barge and mostly cancelling each other before reaching the damping zones. 

The large domain used in the simulation plays a role in the 3-D effect on the flow field 

which also contributes to the increasing number of accumulated precision errors in the 

prediction of the hydrodynamic coefficients (Vacondio et al., 2013; Dominuque et al., 

2014). 
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Fig. 7 Pressure distribution (Pa; scale intervals from 10 Pa (blue) to 60 Pa 

(red)) along the oscillating barge at different time instance for different 

distortion mode shapes at ω = 0.8 rad/s. (a) 2VB and (b) 3VB.  
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Fig. 8 Wave contours for different mode shapes at ω = 0.8 rad/s. (a) pitch and (b) 

3VB motion for STAR-CCM+ (Kim et al 2014), (c) pitch and (d) 3VB motion 

for WCSPH. Pressure contours for (e) pitch and (f) 3VB motion of WCSPH. 

These wave and pressure contours are obtained at time t=15.0 s. 

 

4. CONCLUSION REMARKS  

The accuracy of WCSPH in predicting the hydrodynamic coefficients of a stationary barge 

harmonically oscillating in still water is carried out and verified against predictions using 3-

D potential flow and 3-D RANS CFD predictions. The WCSPH model has been successfully 

applied to the symmetric rigid body motions of heave and pitch and 2-node and 3-node 

distortion modes. The comparisons of the added mass and fluid damping coefficients show 

that WCSPH predictions agrees well with STAR-CCM+ and BEM predictions for the vast 

majority of the cases investigated. It was observed that both STAR-CCM+ and WCSPH 
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display similar features in the predicted hydrodynamic coefficients, including few 

discrepancies in the range of relatively low frequencies of oscillation. The most likely cause 

of the aforementioned discrepancies for WCSPH is the inadequacy of the domain size in the 

longitudinal directions, which requires to be larger (relative to the length of the radiated 

wave), as well as larger damping zones in preventing any wave reflections. Adopting such 

large domains may, however, be constrained by normally available computational power. 

Nevertheless, obtaining accurate predictions at such low frequencies is of academic interest, 

as they correspond to large wave-lengths by comparison to the ship-wave matching region 

of practical interest for motions and wave-induced loads. Extracting the dynamic force from 

the total generalised force in such large time window in the case of low frequencies is likely 

to increase the errors within the calculation of added mass and damping.  

Moreover, poor performance of WCSPH particularly for the cross-coupling 

coefficients of Pitch-3VB modes and vice versa similarly may be related to the insufficient 

particle refinement of the total fluid domain, although it has been shown when using STAR-

CCM+ that extending the domain does not improve significantly the quality of the results 

at all frequencies. It has been noted that the STARCCM+ predictions  show similar, 

sometimes worse, trends in the frequency variation of these hydrodynamic coefficients, e.g. 

in the vicinity of 0.8 rad/s. The pressure distributions and wave contours of the radiated 

waves obtained from WCSPH are comparable to the refined results by STAR-CCM+.  

Simulation of fluid-structure interaction involving a flexible body using the WCSPH 

method employed in this paper has shown that it is a reliable numerical tool in predicting 

added mass and fluid damping coefficients. Although this investigation is limited to the 

radiation problem, the conclusions drawn for this work shows that it is applicable to 

modelling the behaviour of the 3-D ship in waves. Future work should include double 

precision to increase accuracy of neighbouring particle tracking and variable resolution 

technique to improve particle refinement at large domains (32-33).   
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