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ABSTRACT
A differential algebra-based importance sampling method for uncertainty propagation and
impact probability computation on the first resonant returns of near-Earth objects is pre-
sented in this paper. Starting from the results of an orbit determination process, we use
a differential algebra-based automatic domain pruning to estimate resonances and auto-
matically propagate in time the regions of the initial uncertainty set that include the res-
onant return of interest. The result is a list of polynomial state vectors, each mapping
specific regions of the uncertainty set from the observation epoch to the resonant return.
Then, we employ a Monte Carlo importance sampling technique on the generated sub-
sets for impact probability computation. We assess the performance of the proposed ap-
proach on the case of asteroid (99942) Apophis. A sensitivity analysis on the main param-
eters of the technique is carried out, providing guidelines for their selection. We finally
compare the results of the proposed method to standard and advanced orbital sampling
techniques.

Key words: methods: statistical – celestial mechanics – minor planets, asteroids: individual:
(99942) Apophis.

1 IN T RO D U C T I O N

Over the last 30 yr, significant efforts have been devoted to develop
new tools for detection and prediction of planetary encounters and
potential impacts by near-Earth objects (NEOs). The task intro-
duces relevant challenges due to the imperative of early detection
and accurate estimation and propagation of their state and associ-
ated uncertainty set (Chesley 2005). The problem is made more
complicated by the fact that the dynamics describing the motion of
these objects is highly non-linear, especially during close encoun-
ters with major bodies. Non-linearities of the orbital dynamics tend
to significantly stretch the initial uncertainty sets during the time
propagation. Non-linearities are not confined to object dynamics
only: even simple conversions between coordinate systems intro-
duce non-linearities, thus affecting the accuracy of classical propa-
gation techniques (Wittig et al. 2015). Present day approaches for
robust detection and prediction of planetary encounters and poten-
tial impacts by NEO mainly refer to linearized models or full non-
linear orbital sampling (Farnocchia et al. 2015). The impact proba-
bility computation by means of linear methods in the impact plane
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was introduced by Chodas (1993), whereas the introduction of the
Monte Carlo technique to this problem was developed by Yeomans
& Chodas (1994) and Chodas & Yeomans (1999), who suggested to
apply the method to sample the linear 6D confidence region at the
observation epoch and then numerically integrate over the time in-
terval of investigation using fully non-linear equations (Milani et al.
2002). Milani, Chesley & Valsecchi (1999), Milani (1999), Milani,
Chesley & Valsecchi (2000a) and Milani et al. (2000b) applied the
multiple solutions approach to sample the central line of variations
(LOV) of the non-linear confidence region at the initial epoch and
then numerically integrate over the time span of interest in a similar
way. Within the framework of the impact probability computation
of resonant returns, a well-known approach relies on the concept
of keyholes, small regions of the impact plane of a specific close
encounter such that, if an asteroid passes through one of them, it
will hit the Earth on subsequent return (Gronchi & Milani 2001;
Milani et al. 2002; Valsecchi et al. 2003).

The preferred approach to detecting potential impacts depends on
the uncertainty in the estimated orbit, the investigated time window
and the dynamics between the observation epoch and the epoch
of the expected impact (Farnocchia et al. 2015). Linear methods
are preferred when linear approximations are reliable for both the
orbit determination and uncertainty propagation. When these as-
sumptions are not valid, one must resort to more computationally
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intensive techniques: among these, Monte Carlo methods are the
most accurate but also the most computationally intensive, whereas
the LOV method guarantees compute times 3-4 orders of magni-
tude lower than those required in MC simulations, though the LOV
analysis may grow quite complex after it has been stretched and
folded by multiple close planetary encounters, leaving open the
possibility of missing some pathological cases (Farnocchia et al.
2015).

Alternative approaches rely on the use of differential algebra
(DA). DA supplies the tools to compute the derivatives of functions
within a computer environment, i.e. it provides the Taylor expansion
of the flow of ordinary differential equations (ODEs) by carrying
out all the operations of any explicit integration scheme in the
DA framework (Berz 1999; Wittig et al. 2015). DA has already
proven its efficiency in the non-linear propagation of uncertainties
(Armellin et al. 2010b; Valli et al. 2013). Nonetheless, the accuracy
of the method drastically decreases in highly non-linear dynamics.
The propagation of asteroids motion after a close encounter with a
major body is a typical case.

A DA-based automatic domain splitting algorithm was presented
by the authors in the past to overcome the limitations of simple
DA propagation (Wittig et al. 2015). The method can accurately
propagate large sets of uncertainties in highly non-linear dynamics
and long-term time spans. The propagation algorithm automatically
splits the initial uncertainty domain into subsets when the polyno-
mial expansions representing the current state do not meet pre-
defined accuracy requirements. The performance of the algorithm
was assessed on the case of asteroid (99942) Apophis, providing
a description of the evolution of the uncertainty set to the epoch
of predicted close encounters with Earth in 2036 and 2037 (Wit-
tig et al. 2015). Though representing a significant improvement
with respect to simple DA propagation, the approach required a
not negligible computational effort in propagating the whole set of
generated subdomains. Moreover, no information about the impact
probability for asteroid Apophis was provided, as the propagation
of the uncertainty set was stopped before the close encounters.

We present in this paper an evolution of the automatic domain
splitting algorithm. The method, referred to as automatic domain
pruning, automatically identifies possible resonances after a close
encounter with a major body. Then, assuming no intervening close
approaches with other celestial bodies in between, it optimizes the
propagation to the first resonant returns, by limiting the propagation
of the uncertainty set to the regions that generate a close encounter
with that celestial body at the investigated epoch. The result is a list
of polynomial state vectors, each mapping only specific subsets of
the initial domain to the resonant return epoch. Taking advantage of
the availability of the polynomial maps, a DA-based Monte Carlo
importance sampling technique is then used to generate samples in
the propagated subsets and provide an estimate for the impact prob-
ability at the epoch of the selected resonant return. The proposed
approach does not apply any simplification step on the uncertainty
domain associated with the orbit determination process. Thus, the
method is proposed as an alternative approach with respect to equiv-
alent techniques, such as a full Monte Carlo simulation or other 6D-
based orbital sampling techniques, which will represent the main
term of comparison for our analysis.

The paper is organized as follows. First, we present a description
of the automatic domain pruning and importance sampling tech-
niques, showing the application to the case of the first resonant
return. Then, we apply the method to the critical case of asteroid
(99942) Apophis, providing an estimate of the impact probability
for the resonant return in 2036. Finally, we carry out a sensitivity

Figure 1. Analogy between the FP representation of real numbers in com-
puter environment (left) and the algebra of Taylor polynomials in DA frame-
work (right) (Di Lizia 2008).

analysis on the main parameters of the method, presenting a com-
parison with standard and advanced orbital sampling techniques.

2 D I FFERENTI AL A LGEBRA AND
AU TO MATI C DOMAI N SPLI TTI NG

Differential algebra provides the tools to compute the derivatives of
functions within a computer environment (Ritt 1932, 1948; Risch
1969, 1970; Kolchin 1973; Berz 1999). Historically, the treatment of
functions in numerics has been based on the treatment of numbers,
and the classical numerical algorithms are based on the evaluation
of functions at specific points. The basic idea of DA is to bring the
treatment of functions and the operations on them to the computer
environment in a similar way as the treatment of real numbers
(Berz 1999). Real numbers, indeed, are approximated by floating
point (FP) numbers with a finite number of digits. With reference
to Fig. 1, let us consider two real numbers a and b, and their FP
counterpart ā and b̄, respectively: given any operation × in the set
of real numbers, an adjoint operation ⊗ is defined in the set of FP
numbers so that the diagram in figure commutes. Consequently,
transforming the real numbers a and b in their FP representation
and operating on them in the set of FP numbers returns the same
result as carrying out the operation in the set of real numbers and
then transforming the achieved result in its FP representation. In
a similar way, suppose two sufficiently regular functions f and g

are given. In the framework of DA, these functions are converted
into their Taylor series expansions, F and G, respectively. In this
way, the transformation of real numbers in their FP representation
is now substituted by the extraction of the Taylor expansions of f

and g (see Fig. 1, right). For each operation in the function space,
an adjoint operation in the space of Taylor polynomials is defined
such that the corresponding diagram commutes.

The implementation of DA in a computer environment provides
the Taylor coefficients of any function of v variables up to a specific
order n. More specifically, by substituting classical real algebra with
the implementation of a new algebra of Taylor polynomials, any
function f of v variables can be expanded into its Taylor expansion
up to an arbitrary order n, along with the function evaluation, with
a limited amount of effort. The Taylor coefficients of order n for
sum and product of functions, as well as scalar products with real
numbers, can be directly computed from those of summands and
factors. As a consequence, the set of equivalence classes of functions
can be endowed with well-defined operations, leading to the so-
called truncated power series algebra. In addition to basic algebraic
operations, differentiation and integration can be easily introduced
in the algebra, thus finalizing the definition of the differential algebra
structure of DA (Berz 1986, 1987). The DA used in this work is
implemented in the DACE software (Massari, Di Lizia & Rasotto
2017).
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A relevant application of DA is the automatic high-order expan-
sion of the solution of an ODE with respect to the initial condi-
tions (Berz 1999; Di Lizia, Armellin & Lavagna 2008; Massari
et al. 2017). This expansion can be achieved by considering that
any integration scheme, explicit or implicit, is characterized by a
finite number of algebraic operations, involving the evaluation of
the ODE right-hand side (RHS) at several integration points. There-
fore, replacing the operations between real numbers with those on
DA numbers, it yields to the nth order Taylor expansion of the
flow of the ODE, φ(t ; δx0, t0) = Mφ(δx0), at each integration time,
assuming a perturbed initial condition x0 + δx0. Without loss of
generality, consider the scalar initial value problem:

ẋ(t) = f (t, x), x(t0) = x0 (1)

and the associated flow φ(t ; δx0, t0). For simplicity, consider uncer-
tain initial conditions only. Starting from the nth order DA repre-
sentation of the initial condition, [x0] = x0 + δx0, which is an (n +
1)-tuple of Taylor coefficients, and performing all the operations in
the DA framework, we can propagate the Taylor expansion of the
flow in x0 forward in time, up to the final time tf . Consider, for
example, the forward Euler’s scheme:

xi = xi−1 + f (xi−1)�t (2)

and replace the initial value with the DA expression [x0] = x0 +
δx0. The first time step yields

[x1] = [x0] + f ([x0])�t. (3)

If the function f is evaluated in the DA framework, the output
of the first step, [x1] is the nth order Taylor expansion of the flow
φ(t ; δx0, t0) in x0 for t = t1. Note that, as a result of the DA evalua-
tion of f ([x0]), the (n + 1)-tuple [x1] may include several non-zero
coefficients corresponding to high-order terms in δx0. The previous
procedure can be repeated for the subsequent steps. The result at
the final step is the nth order Taylor expansion of φ(t ; δx0, t0) in x0

at the final time tf . Thus, the flow of a dynamical system is approx-
imated, at each time step ti , with its nth order Taylor expansion in a
fixed amount of effort. Any explicit ODE integration scheme can be
rewritten as a DA scheme. For the numerical integrations presented
in this paper, a DA version of a 7/8 Dormand Prince (8th order
solution for propagation, 7th order solution for step size control)
Runge Kutta scheme is used.

The main advantage of the DA-based approach is that there is
no need to write and integrate variational equations to obtain high-
order expansions of the flow. It is therefore independent on the
RHS of the ODE and it is computationally efficient. Unfortunately,
DA fails to accurately describe, with a single polynomial map, the
evolution in time of an uncertainty set in case of highly non-linear
dynamics or long term propagation. The approximation error is
strictly related to the size of the domain the polynomial is defined
in (Wittig et al. 2015). The approximation error between an n +
1 times differentiable function f ∈ Cn+1 and its Taylor expansion
Pf of order n, without loss of generality taken around the origin, is
given by Taylor’s theorem:

|f (δx) − Pf (δx)| � C · δxn+1 (4)

for some constant C > 0. Consider now the maximum error er of
Pf on a domain Br of radius r > 0 around the expansion point.
Considering equation (4), we obtain:

|f (δx) − Pf (δx)| � C · δxn+1 � C · rn+1 = er . (5)

Figure 2. ADS algorithm schematic illustration (Wittig et al. 2015).

If the domain of Pf is reduced from Br to Br/2 of radius r/2, the
maximum error of Pf over Br/2 will decrease by a factor 1/2n+1:

|f (δx) − Pf (δx)| � C · δxn+1 � C ·
( r

2

)n+1
= er

2n+1
. (6)

By subdividing the initial domain into smaller domains and com-
puting the Taylor expansion around the centre points of the new
domains, the error greatly reduces, whereas the expansions still
cover the entire initial set. Starting from these considerations, au-
tomatic domain splitting (ADS) employs an automatic algorithm to
determine at which time ti the flow expansion over the set of initial
conditions is no longer able to describe the dynamics with enough
accuracy (Wittig et al. 2015). Once this case has been detected, the
domain of the original polynomial expansion is divided along one of
the expansion variables into two domains of half their original size.
By re-expanding the polynomials around the new centre points, two
separate polynomial expansions are obtained. By defining with xi

the splitting direction, both generated polynomial expansions P1

and P2 have terms of order n in xi smaller by a factor of 2n with
respect to the original polynomial expansion P . Thus, the splitting
procedure guarantees a more accurate description of the whole un-
certainty set at the current time epoch ti . After such a split occurs,
the integration process is resumed on both generated subsets, until
new splits are required. A representation of the ADS procedure is
shown in Fig. 2.

The decision on the splitting epoch and, in case of multivariate
polynomials, the splitting direction relies on estimating the size of
the (n + 1)th order terms of the polynomial using an exponential
fit of the size of all the known non-zero terms up to order n. If the
size of the truncated order becomes too large, we decide to split the
polynomial. This method allows us to consider all the information
available in the polynomial expansion and to obtain an accurate esti-
mate of the size of the (n + 1)th order term, the first discarded order.
The exponential fit is chosen because, after reducing the domain
with a sufficient number of splits, the coefficients of the resulting
polynomial expansion decay exponentially as a direct consequence
of Taylor’s theorem. A mathematical description is offered hereafter
and follows the scheme presented in Wittig et al. (2015). Consider
a polynomial P of order n of the form

P (x) =
∑

α

aα xα (7)

written using multi-index notation, the size Si of the terms of order
i is computed as the sum of the absolute values of all coefficients
of exact order i:

Si =
∑
|α|=i

|aα|. (8)
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Figure 3. Truncation error estimation for the Taylor expansion of
√

1 + x/2
via exponential fitting. Terms of order up to 9 are used for the fitting (Wittig
et al. 2015).

We denote by I the set of indices i for which Si is non-zero. A least
squares fit of the exponential function

f (i) = AeBi (9)

is used to determine the coefficients A and B such that f (i) =
Si, i ∈ I , is approximated optimally in least squares sense. Then,
the value of f (n + 1) is used to estimate the size Sn+1 of the trun-
cated order n + 1 of P . An example of the application of the method
is shown in Fig. 3, where the polynomial is the Taylor expansion of√

1 + x/2 up to order 9. The size Si of each order is shown as bars,
whereas the resulting fitted function f is shown as a line.

In the case of multivariate polynomials P (x) =
P (x1, x2, . . . , xv), the split is performed in one component
xi . We determine the splitting direction using a method similar to
the one adopted for the splitting decision. For each j = 1, . . . , v

we begin by factoring the known coefficients of P of order up to n

with respect to xj , i.e.

P (x1, x2, . . . , xv)=
n∑

m=0

xm
j · qj,m(x1, . . . , xj−1, xj+1, . . . , xv), (10)

where the polynomials qj,m do not depend on xj . The size Sj,m of
the polynomials qj,m is estimated by the sum of the absolute values
of their coefficients. Then, the exponential fitting routine is applied
to estimate the size Sj,n+1 of the truncated terms of order n + 1
in xj . Finally, the splitting direction i is chosen as the component
xj with the largest truncation error Sj,n+1. In this way, all splits
are performed in the direction of the variable that currently has the
largest estimated contribution to the total truncation error of the
polynomial P .

The main parameters of the algorithm are the tolerance for the
splitting procedure and the maximum number of allowed splits
Nmax. The first parameter is selected according to the required pre-
cision of the polynomial expansions and determines the splitting
epochs: when the estimated truncation error exceeds the imposed
tolerance, the current domain is split. As a direct consequence of the
ADS procedure, the maximum error over the obtained set of poly-
nomials decreases with the selected splitting precision. However,
the maximum error is always larger than the selected integration
precision. This difference is actually expected, as the splitting tol-
erance plays a similar role as the one-step error set in the automatic
step size control of the integration scheme (Wittig et al. 2015). It
is the maximum error that can accumulate at any time before the
integrator takes action to reduce further error accumulation. How-
ever, the accumulated error at the time of the splitting cannot be
undone as the splitting only re-expands the polynomial to prevent

exponential growth in future integration steps. The ideal tolerance
depends on both the dynamics and the integration time, and it has
to be chosen heuristically to ensure that the final result satisfies the
accuracy requirements of the application. A numerical example is
shown in Section 7.1.

The second parameter plays the role of limiting the number of
generated subdomains by imposing a minimum size for the gener-
ated subsets: domain splitting is disabled on any set whose volume
is less than 2−Nmax times that of the initial domain. That is, any set
is split at most Nmax times. Then, instead of splitting a set further,
integration is stopped at the attempt to perform the (Nmax + 1)th split
and the resulting polynomial expansion is saved as incomplete. In-
complete polynomials are later treated separately in the analysis of
the results (Wittig et al. 2015).

When each generated subset reaches either the final simulation
time or the minimum box size, the ADS propagation terminates,
and the result is a list of polynomial expansions, each covering a
specific subset of the domain of initial conditions. A more detailed
description of the ADS algorithm can be found in Wittig et al.
(2015).

3 AUTOMATI C DOMAI N PRUNI NG

As described in Section 2, automatic domain splitting provides an
accurate description of the evolution in time of a given uncertainty
set by splitting the domain in subsets when required. Unfortunately,
this method may entail a not negligible computation effort, as all
generated subsets are propagated to the final simulation time or till
the minimum box size is reached. While this approach is unavoid-
able when the behaviour of the whole uncertainty set is analysed,
it becomes a strong limitation when only a portion of the initial
set is to be investigated. This is the case when the first resonant
return of an NEO is studied. Resonant returns occur when, during a
close encounter, an asteroid is perturbed into an orbit with a period
T ′ ∼ k/h yr. Thus, after h revolutions of the asteroid and k rev-
olutions of the Earth, both celestial bodies are in the same region
of the first close encounter and a second one may occur. Given the
initial uncertainty set, only a portion of it may lead to the resonant
return. It would be therefore interesting to limit the propagation to
this region only.

Starting from these considerations, the automatic domain pruning
(ADP) we present in this paper combines the ADS algorithm with a
pruning technique with the aim of limiting the number of propagated
subsets. We make here the assumption of no close approaches with
other celestial bodies between the first close encounter and the
selected resonant return. This assumption is easily checked right
before the ADP propagation, as later explained in Section 7.2.

The first phase of the algorithm consists in propagating the whole
uncertainty set by means of ADS propagation up to the epoch of the
first close encounter. The availability of the polynomial expansion
of the state vector of the object with respect to the initial uncertainty
provides the polynomial expansion of the orbital period of the object
after the close encounter. By using a polynomial bounder, we can
estimate the range of all possible values of the orbital period after
the close encounter and, thus, retrieve all possible resonances with
the planet, i.e. all orbital periods included in the computed orbital
period range leading to a resonant return with the planet.

Once all resonances are computed, the analysis focuses on a sin-
gle resonance, and the propagation is resumed. Every time a new
subset is generated, the method automatically identifies if the set
may lead to the investigated resonant return or not. By exploiting
the knowledge of the DA state vector at the epoch of the first close
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Figure 4. ADP algorithm illustration. Pruning is performed by comparing
the estimated subset orbital period range �Tsub with the reference range
�Tref.

encounter, indeed, we can assign a given orbital period range to
each generated subset. This range, defined as �Tsub, is compared
to a reference range �Tref, centred in the resonance period T ′ with
a semi-amplitude ε, �Tref = [(1 − ε)T ′, (1 + ε)T ′]. We select the
reference range in order to consider small dynamical perturbations
between the first close encounter and the resonant return. If �Tsub

is at least partially included in the reference range, then the cur-
rent subset is retained, and its propagation is continued. If �Tsub

is not included in the reference range, then the initial conditions
included in the current subset do not lead to a resonant return at the
investigated epoch, and so the subset is discarded. This way, subsets
are dynamically pruned during the ADS propagation. An illustration
of the ADP algorithm is shown in Fig. 4.

The ADP algorithm, therefore, does not alter the sequence of
generated subdomains, but limits the propagation in time to those
subsets that are involved in the investigated resonant return. This
pruning action has a positive impact on the overall computational
burden, since the computational effort required by the propagation
of all the discarded subsets is saved. As only subsets with close
approaches to the Earth at the epoch of the investigated resonant
return are maintained, the result at the end is a set of subdomains
whose propagation stops slightly before the epoch of the investi-
gated resonant return for having reached their minimum box size.

4 IM P O RTA N C E S A M P L I N G ME T H O D

The output of the ADP propagation is a list of subsets at epochs
close to the investigated resonant return. Still, no value for the im-
pact probability is available. We obtain an estimate for the impact
probability by sampling the generated subsets and propagating the
samples till they reach their minimum geocentric distance. Among
all possible sampling technique, we employ the Importance Sam-
pling (IS) method (Zio 2013).

The IS method amounts to replacing the original probability den-
sity function (pdf) qx(x) with an importance sampling distribution
(ISD) q̃x(x) arbitrarily chosen by the analyst so as to generate a
large number of samples in the importance region of the phase
space F , the region of initial conditions leading to an impact with
Earth at the epoch of the resonant return. In the case under study, we
select the auxiliary distribution in order to limit as much as possible
the generation of the samples to the subsets that get through the
dynamic pruning. The IS algorithm is the following:

(i) Identify a proper q̃x(x).

(ii) Express the impact probability p(F ) as a function of q̃x(x).

p(F ) =
∫

IF(x)qx(x)dx =
∫

IF(x)qx(x)

q̃x(x)
q̃x(x)dx, (11)

where IF(x) : IRv → {0, 1} is an indicator function such that
IF(x) = 1 if x ∈ F , 0 otherwise.

(iii) Draw NT samples {xk : k = 1, 2, . . . , NT} from the impor-
tance sampling distribution q̃x(x). If a good choice for the auxiliary
pdf is made, the generated samples concentrate in the region F .

(iv) Compute the estimate p̂(F ) for the impact probability p(F )
by resorting to equation (11):

p̂(F ) = 1

NT

NT∑
k=1

IF(xk)qx(xk)

q̃x(xk)
. (12)

(v) Compute the variance of the estimator p̂(F ) as:

σ 2(p̂) = 1

NT

(∫
I 2

F (x)q2
x(x)

q̃2
x(x)

q̃x(x)dx − p2(F )

)
(13)

≈ 1

NT

(
̂p2(F ) − p̂2(F )

)
.

The selection of the ISD represents the most critical point for the
method. Several techniques have been developed in order to find
the one giving small variance for the estimator (Zio 2013). In this
paper, we shape the ISD according to the result of the ADP prop-
agation. As described in Section 3, the ADP propagation provides
a list of subsets whose propagation is stopped slightly before the
resonant return. All subsets are identified as potentially hazardous
subdomains (PHSs), but no probability ranking is provided by the
ADP propagation. Starting from these considerations, we define the
ISD as a uniform probability density function including all the gen-
erated subsets over the whole domain. This selection allows us to
increase the number of samples drawn in the PHSs and, eventually,
in the impact-leading region.

5 AU TO M AT I C D O M A I N P RU N I N G
I M P O RTA N C E S A M P L I N G ME T H O D

The combination of the methods presented in Sections 3 and 4 yields
the ADP importance sampling method (ADP–IS) for uncertainty
propagation and impact probability computation of the first resonant
returns of NEO. The starting point is represented by the output of
an orbit determination process of a given NEO at the observation
epoch t0. This output can be expressed in terms of estimated state
vector and related covariance matrix. Then, the steps of the ADP
propagation phase are the following:

(i) Consider the initial state vector and related pdf and perform an
analysis to identify possible epochs of close encounters and resonant
returns. The analysis is carried out by propagating the uncertainty
set using ADS up to the first close encounter, computing the semi-
major axis dispersion over the set with a polynomial bounder and
identifying the resonant frequencies. The validity of the resonances
is then checked as explained in Section 7.2.

(ii) Select a resonance and identify its epoch tres.
(iii) Perform an ADP propagation till the epoch tres. Every time

a split is required, compare the orbital period range of the current
subset �Tsub with the reference range �Tref:

�Tsub ∩ �Tref

{= 0 discard the current subset
�= 0 include the current subset

(14)

The method provides a set of nPHS PHSs and related DA state
vectors [xi

f ] at the truncation time t i
f , with i = 1, . . . , nPHS. Vector
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Table 1. Apophis equinoctial parameters and related uncertainties on 2009
June 18 00:00:00 (TDB).

Nominal value

a 0.922 438 242 375 914 2.297 75 × 10−8 au
P1 −0.093 144 699 837 425 3.260 33 × 10−8 –
P2 0.166 982 492 089 134 7.051 32 × 10−8 –
Q1 −0.012 032 857 685 451 5.395 28 × 10−8 –
Q2 −0.026 474 053 361 345 1.835 33 × 10−8 –
l 88.315 090 643 349 4 6.390 35 × 10−5 ◦

[xi
f ] is a polynomial state vector, each component being a function

of the initial conditions xi
0.

The IS phase is initialized by setting the value of the estimated
impact probability p̂old and the number of iterations nit equal to
zero. Then, the steps of the algorithm are the following:

(i) Define the ISD function q̃x(x) as a uniform pdf including all
the generated PHSs.

(ii) Set nit = nit + 1 and draw one sample xit
0 from q̃x(x).

(iii) Check if the sample belongs to one of the PHSs: if it is out
of the PHSs, go back to step (ii), otherwise identify the correct PHS
i the sample belongs to.

(iv) Compute the algebraic state vector xit
f corresponding to

the drawn sample xit
0 at the truncation epoch t i

f by performing
a polynomial evaluation of the DA state vector [xi

f ] at xit
0 . That is,

xit
f = [xi

f ](xit
0 ).

(v) Propagate the state vector xit
f from t i

f to the epoch of the
selected resonant return.

(vi) Compute the minimum geocentric distance d|itres and evaluate
the indicator I it

F

I it
F =

{
0 if d|itres > R⊕
1 if d|itres < R⊕

(15)

(vii) If I it
F = 0, go back to step (ii), otherwise evaluate the new

impact probability p̂new. By reformulating equation (12), we obtain:

p̂new = 1

NT

NT∑
k=1

IF(xk)qx(xk)

q̃x(xk)
= 1

nit

(Î + qx(xit
0 ))

1

q̃x(xit
0 )

(16)

where qx(xit
0 ) is the value of the original pdf in xit

0 , q̃x(xit
0 ) is the

value of the auxiliary pdf in xit
0 , whereas the term Î represents the

summation of all terms IF(xk
0)qx(xk

0) of the previous iterations. The
total number of samples considered for the estimation is nit , i.e.
the number of drawn samples when the estimate is computed. Note
that, since the ISD is uniform over the whole set of PHSs, it can be
extracted from the summation.

(viii) Compare p̂old and p̂new: if the relative difference is larger
than an imposed tolerance, go back to step (ii), otherwise stop.

6 NUMER ICAL SIMULATIONS: THE CASE O F
A S T E RO I D (9 9 9 4 2 ) A P O P H I S

In this section, we assess the performance of the ADP–IS method
on the evaluation of the impact probability for the test case of as-
teroid (99942) Apophis. Table 1 shows the nominal initial state and
associated uncertainties σ for Apophis on 2009 June 18 expressed
in terms of equinoctial parameters p = (a, P1, P2, Q1,Q2, l), con-
sidering a diagonal covariance matrix. Data were obtained from the

Near Earth Objects Dynamic Site1 (Chesley & Milani 1999; Milani
et al. 2005) in September 2009.

We selected a diagonal covariance matrix in order to help dis-
tinguish the contribution of the six orbital parameters and test our
method in a scenario in which the uncertainty volume is maximized.
In general, however, this selection may lead to quite inaccurate re-
sults as uncertainties may be highly correlated. Nevertheless, the
method can be applied in the most general case of full covariance
matrix exactly in the same way, with the only difference that the
DA variables would be placed along the directions of the covariance
eigenvectors to avoid artificially adding extra-volume in the initial
domain definition.

As previously stated, the starting point, not including recent op-
tical and radar observations performed from late 2011 onwards,
was selected in order to test the algorithm against the most crit-
ical scenario. Asteroid Apophis will have a close encounter with
Earth on 2029 April 13 with a nominal distance of 3.8 × 104 km
(Chesley 2005). According to the selected initial conditions, though
an impact in 2029 can be ruled out, the perturbations induced by
the encounter open the door to resonant returns in 2036 and 2037.
The aim is therefore to apply the presented method to provide an
estimate for the impact probability at the epoch of the first resonant
return, in 2036.

The motion of Apophis in the Solar system is modelled accord-
ing to the (N + 1) body problem, including relativistic corrections
to the Newtonian forces (Seidelmann 1992; Wittig et al. 2015).
Specifically, the full equation is

r̈ = G
∑

i

mi(r i − r)

r3
i

{
1 − 2(β + γ )

c2
G
∑

j

mj

rj

− 2β − 1

c2

×G
∑
j �=i

mj

rij

+ γ |ṙ|2
c2

+ (1 + γ )|ṙ i |2
c2

− 2(1 + γ )

c2
ṙ · ṙ i

− 3

2c2

[
(r − r i) · ṙ i

ri

]2

+ 1

2c2
(r i − r) · r̈ i

}

+G
∑

i

mi

c2ri

{
3 + 4γ

2
r̈ i + {[r − r i] · [(2 + 2γ )ṙ

r2
i

− (1 + 2γ )ṙ i]}(ṙ − ṙ i)

r2
i

}
, (17)

where r is the position of Apophis in Solar System barycentric
coordinates, G is the gravitational constant, mi and r i are the mass
and the Solar System barycentric position of Solar System body i,
ri = |r i − r|, c is the speed of light in vacuum, and β and γ are
the parametrized post-Newtonian parameters measuring the non-
linearity in superposition of gravity and space curvature produced by
unit rest mass (Seidelmann 1992). The position and velocity vectors
of all celestial bodies are computed with NASA’s SPICE library2

(Acton et al. 2018). We used the planetary and lunar ephemeris
DE432s. The N bodies include the Sun, the planets, and the Moon.
For planets with moons, with the exception of the Earth, the centre
of mass of the system is considered. The dynamical model is written
in the J2000 ecliptic reference frame.

Fig. 6 shows the geocentric distance profile in time for 1000
samples from the initial Gaussian distribution. As expected, the
uncertainties significantly increase after 2029 and pave the way to
resonant returns in 2036 and 2037.

1http://newton.dm.unipi.it/neodys/
2http://naif.jpl.nasa.gov/naif/toolkit.html
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Figure 5. Projection of the generated subsets onto the a − l plane of the initial conditions (ADS propagation, order 8, tolerance 10−10, Nmax 12, 3σ domain).
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Figure 6. Geocentric distance profile up to 2038 January 21 for 1000 sam-
ples from the initial uncertainty set.

The authors showed an analysis of the performance of the ADS
algorithm for the propagation of the whole uncertainty set up to
the second resonant return in Wittig et al. (2015). The results are
now limited to the first resonant return, and they will be used as a
reference for the assessment of the performance of the ADP.

All the results presented in this section are obtained considering
an expansion order equal to 8, a tolerance for the splitting procedure
equal to 10−10, a value of Nmax equal to 12 and an initial uncertainty
set with 3σ boundaries, i.e. a 6D rectangle with 3σ boundaries.

The initial uncertainty set should be properly selected, as the ne-
glected part of the probability mass, i.e. the integral of the pdf over
the domain outside the considered box, could significantly alter the
estimated impact probability. For the case under study, in which
we are considering a 6D problem with uncorrelated variables, the
selection of a 6D rectangular domain with 3σ boundaries corre-
sponds to considering the 98.4 per cent of the probability mass, and
so the estimated impact probability may result underestimated. The
accuracy of the estimate improves for larger initial uncertainty sets.
A detailed sensitivity analysis on the uncertainty set size and all the
other available parameters is offered in Section 7. All computations
are performed on a single core Intel i7-3770 CPU @3.4 GHz, 16 GB
RAM processor.

The number of subdomains obtained with ADS propagation with-
out pruning is 653, while the computational time is 10 h 6 min. An
analysis of the average number of splits per direction shows that

most splits occur in the semi major axis (a) and true longitude (l)
directions (Wittig et al. 2015). Thus, though the problem is 6D, the
analysis on the dynamics can be focused on the projection onto the
a − l plane of the initial conditions.

Fig. 5 shows the projection of the initial uncertainty box onto the
a − l plane, along with the subdomains generated during the ADS
propagation. Colours refer to the truncation epoch of the related
subset: white regions represent subsets that were able to reach the
final simulation time (2036 May 31, after the expected resonant
return), coloured regions represent subsets whose propagation was
stopped earlier because they reached their minimum box size. Fig. 5
can be exploited to easily identify the regions of the initial set that are
involved in the resonant return in 2036. While all initial conditions
lying within white regions have no risk to impact the Earth, coloured
subdomains represent sets of initial conditions that might lead to
close encounters with Earth at that epoch. That is, coloured regions
represent PHSs. This behaviour is expected, as splits occur when
the non-linearities increase, which happens when trajectories get
closer to Earth. It is evident, however, that a significant portion of
the computational effort required by the ADS propagation is spent
on regions of the initial set that are not involved in the first resonant
return. Thus, the application of a selective pruning technique as the
ADP aims at alleviating this inefficiency.

We now investigate the performance of the ADP method. The
first part of the analysis is represented by the propagation of the
uncertainty set up to the epoch of the first close encounter in 2029.
The DA propagation of the whole uncertainty set up to the close
encounter in 2029 is performed with no splits. Therefore, the whole
set can be described with a single polynomial map at the epoch
of the first close encounter. The availability of the DA state vec-
tor of the asteroid, then, provides the polynomial expansion of its
perturbed orbital period immediately after the close encounter with
the Earth. This polynomial expansion allows us to estimate the as-
teroid orbital period range after the close encounter by means of a
polynomial bounder: for the case under study, this range is equal
to [415.02, 428.91] d. By looking at this range, we can identify the
first resonances: Tres1 = 7/6 T⊕ = 426.12 d (where T⊕ is the Earth
orbital period) is the first resonant orbital period included in the
computed range, and it represents a resonant return in 2036. This
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Figure 7. Projection of the generated subsets onto the a − l plane of the initial conditions (ADP propagation, order 8, tolerance 10−10, Nmax 12, 3σ domain).
In blue, boundaries of the ISD.

value is expected, as shown in Fig. 6. We can also notice that the
expected second resonant return (in 2037, resonance 8:7), is also
included (Tres2 = 417.43 d).

The a priori identification of the resonances and the application
of the ADP–IS method is strictly related to the assumption of no
intervening close encounter with other major bodies in between.
This assumption is checked immediately after the resonances com-
putation, as explained in Section 7.2. For the case under study, the
assumptions are verified. Therefore, we can now concentrate the
analysis on the first resonant return, in 2036. Given a nominal value
T ′ = 7/6 T⊕, �Tref is determined by setting a value of ε equal to
10−3. The value of ε is selected in order to take into account small
perturbations between the close encounter in 2029 and the resonant
return in 2036. An analysis of the impact of ε on the results is carried
out in Section 7.2. The propagation is then resumed as described
in Section 5. Fig. 7 shows the results of the ADP propagation in
terms of subdomains distribution on the a − l plane. A comparison
with Fig. 5 clearly shows how the ADP restricts the propagation of
the generated subdomains to a limited portion of the PHSs. That
is, only subsets that are actually involved in the resonant return in
2036 are propagated till the end of the simulation.

The pattern of subdomains is not altered by the introduction of the
pruning. Simply, a large portion of the initial set is no longer investi-
gated. This action has a strong impact on the number of propagated
subdomains, that is now significantly lower (267). Consequently,
the computational time required by the propagation reduces signif-
icantly (4 h 6 min).

The pattern of generated subdomains represents the starting point
for the second phase, the application of the IS method for the com-
putation of the impact probability in 2036. We initialize the method
by defining a uniform pdf including all the generated PHSs as ISD.
The boundaries of the ISD on the a − l plane are represented in blue
in Fig. 7. Then, samples are drawn from the ISD and each sample
is associated with a PHS if possible. For samples belonging to the
PHSs, the state vector corresponding to the drawn sample at the
truncation epoch of the related PHS is reconstructed, and a point-
wise propagation up to the epoch of minimum geocentric distance
is performed. Fig. 8 shows a detail of the resulting subsets, whereas
Fig. 9 shows the pattern of generated samples projected onto the

Figure 8. Projection of the generated subdomains onto the a − l plane
(detail of Fig. 7).

a − l plane. Samples belonging to the PHSs are represented in blue,
whereas impacting samples are represented in yellow. Black dots
represent discarded samples. Not all samples belong to the PHSs,
due to the shape of the selected ISD. A uniform ISD over a domain
of regular shape enclosing all PHSs represents the easiest choice
and can be applied regardless the complexity of the PHSs pattern.
On the other side, this selection leads to the black dots shown in
Fig. 9. These samples, however, have a minimal impact on the com-
putational effort required by the method, as they are discarded as
soon as they are identified.

The selection of the IS method as sampling technique allows us to
increase significantly the number of samples lying within the PHSs
with respect to a standard Monte Carlo approach, and this advantage
is made possible by the pruning action of the ADP propagation. The
analysis of the distribution of the impacting samples on the a − l

plane, however, shows that these are confined to a limited region
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Figure 9. Projection of the generated samples onto the a − l plane. In
black, discarded samples. In blue, samples belonging to the PHSs. In yellow,
impacting samples.
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Figure 10. Estimated impact probability for Apophis resonant return 2036
as a function of the number of samples. In yellow, impacting samples. In
grey, estimated Poisson statistics uncertainty (1σ ).

inside the PHSs. That is, not all PHSs actually give a contribution to
the impact probability in 2036. This result is related to the selection
of the amplitude of �Tref: the value was set in order to grant a
conservative pruning action on the subsets. A more detailed analysis
is offered in Section 7.2.

The trend of the estimated impact probability with the number
of drawn samples is represented in Fig. 10. Impacting samples
are represented with yellow circles. The tolerance for the stopping
criterion was set equal to 0.01 per cent. After some initial significant
oscillations, the impact probability asymptotically converges to the
value of 1.17 × 10−5. The estimate is of the same order of magnitude
of the reference value (2.2 × 10−5) obtained with a standard Monte
Carlo analysis, though slightly lower (see Section 8). This difference
can be explained considering the size of the propagated uncertainty
set, as later explained in Section 7.3.

An overview of the main results of the simulation is shown in
Table 2. Results are expressed in terms of number of PHSs nPHS,
computational time required by the ADP propagation tADP, num-
ber of generated samples for the IS method at convergence nsamples,
computational time required by the IS method tIS, overall compu-
tational time tall, estimated impact probability value p̂, and related
Poisson statistics uncertainty σ (p̂).

7 SENSITIVITY A NA LY SIS

The analysis presented in Section 6 was carried out starting from
predefined values of expansion order, tolerance for the splitting rou-
tine, maximum number of splits and size of the uncertainty set. In
this section, we investigate the role of the different parameters and
provide some guidelines for the selection of the most appropriate
set of parameters. The discussion is carried out dividing parameters
mostly affecting the ADP propagation (order, tolerance, minimum
box size, and reference orbital period range) and parameters affect-
ing the estimated impact probability (uncertainty box size).

7.1 Selection of splitting tolerance, expansion order and Nmax

As described in Section 2, the main parameters for the ADS prop-
agation are the tolerance for the splitting procedure, the expansion
order and the maximum number of splits. The selection of the toler-
ance is strictly related to the accuracy required in the description of
the subsets at the end of the simulation. This concept is valid in both
ADS and ADP propagation. Due to error accumulation during the
integration process, indeed, the actual accuracy of the ADP result
tends to decrease with respect to the imposed accuracy. This effect
becomes more significant as the non-linearities of the dynamics in-
crease, so that, in order to grant a specific accuracy, the imposed
tolerance must be in some cases some orders of magnitude lower.

Table 3 shows the average accuracy in position for the subsets
at the epoch of the first resonant return considering an expansion
order equal to 8 and decreasing values of tolerance. We estimated
the accuracy by comparing the results of pointwise propagations and
polynomial evaluations for random samples drawn in the generated
subsets. The error in position shown in Table 3 represents an average
of the computed errors. As expected, there is a difference of around
3 orders of magnitude with respect to the imposed tolerance.

For the case under study, the error is strictly related to the inter-
vening close encounter in 2029. As an example, if we perform an
ADS propagation with order 8 and tolerance 10−10, and we stop the
propagation 3 months before the close encounter in 2029, we obtain
a position error of about 10−11 au. This error expands to 10−8 au
6 months later, i.e. 3 months after the close encounter. That is, the
close encounter yields an increase of about 3 orders of magnitude in
the position error. As the propagation continues, the error accumu-
lates and reaches 5.95 × 10−7 au at the epoch of the first resonant
return. Therefore, the splitting tolerance is a critical parameter and
its selection must account for all the above aspects. For our analysis,
we selected a tolerance capable of granting a maximum error in po-
sition of 100 km. This requirement results into a splitting tolerance
of at least 10−10.

Expansion order and minimum box size, instead, play quite differ-
ent roles in ADS and ADP propagation. During a DA propagation,
a reduction of the expansion order causes a decrease in the accuracy
of the results at a specific integration epoch. This decreased accu-
racy yields an increase in the required number of splits during the
ADS propagation and, overall, a larger number of generated subsets.
The role of the minimum box size, instead, is to limit the number
of splits, so that, overall, both parameters have a strong influence
on the number of generated subdomains and, as a consequence,
on the required computational effort. The role of the expansion
order is twofold, since a decrease in the order causes the number
of subdomains to increase, but reduces the computational time re-
quired to perform a single integration step. Thus, it is reasonable to
imagine that there exists a specific expansion order capable of min-
imizing the computational effort required by the ADS propagation.
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Table 2. Overall results for the ADP–IS method (order 8, tolerance 10−10, Nmax 12, 3σ domain).

nPHS tADP nsamples tIS tall p̂ σ (p̂)

267 4 h 6 min 204 293 26 min 4 h 32 min 1.17 × 10−5 2.93 × 10−6

Table 3. Average error in position as a function of the imposed tolerance
for subsets at the epoch of the first resonant return (ADP propagation, order
8, Nmax 12, 3σ initial uncertainty set).

Tolerance Error

10−8 4.83 × 10−6 au
10−9 1.24 × 10−6 au
10−10 5.95 × 10−7 au

This value, obviously, changes according to the specific case under
study. The role of the minimum box size, instead, is univocal: by
increasing the value of Nmax, the computational effort required by
the ADS propagation increases.

In the case of ADP propagation, the analysis is quite different.
The role of the two parameters for the two phases is reported in
Table 6. More specifically, the ADP propagation aims to select
only subsets whose integration stops before the resonant return of
interest having reached their minimum box size. A change in the
expansion order modifies the splitting history, which could, but not
necessarily would, modify the overall number of splits. This be-
haviour has a direct impact on the required computational time,
though the description of the role of the expansion order is not
immediate. A decrease in the expansion order, indeed, may cause
just earlier splits performed with the same splitting sequence, or a
complete change in the splitting history. In the first case, the role of
the expansion order becomes univocal: a reduction in the expansion
order causes a decrease in the computational effort. In the second
case, the changes in the splitting history and the number of gener-
ated subsets may be so relevant that what is gained in performing
single integration steps may be lost in the longer propagation of the
generated subsets. Overall, the role of the order in not univocal, and
it exists an order that minimizes the computational time required by
the ADP propagation.

The role of the minimum box size, instead, is the same as in
the ADS propagation: a decrease in the value of Nmax causes an
earlier stop of the propagation of the subsets, and a reduction of the
computational effort.

The whole procedure, however, includes both an ADP propaga-
tion and a sampling phase, and the role played by the two parameters
during the sampling phase is different from the ADP phase. The role
of the expansion order is, again, twofold: a reduction of the order
causes longer pointwise propagations, but faster polynomial evalu-
ations. The relative weight of the two effects essentially depends on
the number of required samples. The role of the minimum box size,
instead, is univocal and opposite with respect to the ADP propa-
gation: a reduction of the value of Nmax implies longer pointwise
propagations.

The selection of the best combination of order and minimum box
size, therefore, relies on all these aspects. Starting from these con-
siderations, we performed a sensitivity analysis in order to quan-
tify the impact of the two parameters on the performance of the
ADP–IS method for the case of the first resonant return of asteroid
Apophis.

The results of a sensitivity analysis on the expansion order are
shown in Table 4, considering six different expansion orders. The

comparison is performed by considering the same parameters of
the analysis presented in Section 6. The second column shows
the number of generated subdomains. The value is not affected
by the expansion order till order 4, while for order 3 the value
is more than doubled. This trend can be explained looking at the
splitting history. For orders from 8 to 4, no split occurs before the
close encounter in 2029, and the sequence of splits is exactly the
same, though single splits are performed at different epochs. Things
completely change with order 3, with 4 splits occurring before
the 2029 close encounter. This change has a direct impact on the
number of generated subsets. A difference can be detected also by
looking at the required number of samples or at the estimated impact
probability and related Poisson statistics uncertainty. Assuming not
to alter the sequence of generated samples, values obtained with
orders 8 to 4 are identical, whereas values obtained with order 3 are
slightly different.

The expansion order has a significant impact on the computa-
tional effort required by the ADP and sampling phases (columns
3 and 5). As expected, the trends are not monotonic. Thus, it is
possible to identify order 5 as the expansion order capable of mini-
mizing the overall computational time. Once again, it is interesting
to see what happens with order 3: the early splits at the epoch of
the 2029 close encounter completely change the splitting history,
causing subsets to stop much earlier than what happens with larger
orders. Unlike orders from 8 to 4, where the subsets are stopped
few days before the expected resonant return in 2036, with order 3
the subsets are stopped around 2030, 6 yr earlier. This earlier stop
grants computational time saving for the ADP propagation, but has
a tremendous backlash for the sampling phase, with each sample
propagated for years instead of days. For this reason, the computa-
tional time required for the sampling phase is much larger (column
5). The trend of the computational time for the different orders is
shown in Fig. 11.

We limited the analysis in Table 4 to order 3 as the minimum
order, as early splits that appear with this order magnify with order
2, leading to 53 subsets generated before the 2029 close encounter.
This behaviour exacerbates the limitations previously pointed out
for low orders. Moreover, the error estimation procedure described
in Section 2 does not work with linear approximation and tends to
provide inaccurate estimates with order 2.

We performed a similar analysis by considering the effect of the
minimum box size on the required computational effort and esti-
mated impact probability. Table 5 shows the results of the analysis
considering the optimal expansion order identified in Table 4 and
the same values of tolerance and uncertainty box size of the previ-
ous simulations. As described before, the role of the minimum box
size is univocal in the two phases, though opposite, and this trend
is confirmed by the analysis: a decrease in the value of Nmax causes
a reduced computational effort required by the ADP propagation
but longer pointwise propagations for all samples. For the case
under study, Nmax equal to 10 allows us to minimize the required
computational effort.

As in the previous case, a change in the value of Nmax does not al-
ter the estimated impact probability, though the pattern of generated
subsets is now modified. This trend can be explained considering
the fact that, a reduction of the value of Nmax generates larger
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Table 4. Performance of the ADP–IS method for different expansion orders (tolerance 10−10, Nmax 12, 3σ initial uncertainty set).

Order nPHS tADP nsamples tIS tall p̂ σ (p̂)

8 267 4 h 6 min 204 293 26 min 4 h 32 min 1.17 × 10−5 2.93 × 10−6

7 267 1 h 53 min 204 293 24 min 2 h 17 min 1.17 × 10−5 2.93 × 10−6

6 267 49 min 204 293 23 min 1 h 12 min 1.17 × 10−5 2.93 × 10−6

5 267 24 min 204 293 23 min 47 min 1.17 × 10−5 2.93 × 10−6

4 267 28 min 204 293 25 min 53 min 1.17 × 10−5 2.93 × 10−6

3 589 8 min 273 035 9 h 47 min 9 h 55 min 8.60 × 10−6 2.20 × 10−6

Table 5. Performance of the ADP–IS method for different values of Nmax (order 5, tolerance 10−10, 3σ initial uncertainty set).

Nmax nPHS tADP nsamples tIS tall p̂ σ (p̂)

12 267 24 min 204 293 23 min 47 min 1.17 × 10−5 2.93 × 10−6

11 148 17 min 204 293 26 min 43 min 1.17 × 10−5 2.93 × 10−6

10 84 12 min 204 293 29 min 41 min 1.17 × 10−5 2.93 × 10−6

9 47 9 min 204 293 34 min 43 min 1.17 × 10−5 2.93 × 10−6

Table 6. Trend of the computational times tADP and tIS for increasing (↑)
values of the expansion order and minimum box size.

ADP IS

Order ↑ tADP↑↓ tIS↑↓
Nmax ↑ tADP↑ tIS↓

3 4 5 6 7 8Order
0

2

4

6

8

10

Figure 11. Computational time versus expansion order (ADP–IS method,
tolerance 10−10, Nmax 12, 3σ uncertainty domain). Grey bars and white
bars represent computational times required by the ADP propagation and IS
phase, respectively.

subsets at earlier truncation epochs, but with the same accuracy.
Thus, if the drawn samples are fixed, their mapping to the epoch of
the first resonant return is essentially the same. That is, the pattern
of impacting samples is not altered.

As described in the presented analysis, both expansion order and
minimum box size influence the performance of the method. In
particular, the expansion order plays a key role in the definition of
the computational effort required by the method, while the minimum
box size has a lower influence. As the method is composed by two
phases, we can say that the selection of the order must be done in
order to minimize the computational effort required by the heaviest
one. In our method, the ADP propagation plays this role, so that, in
order to decrease its impact on the overall computational time, the
most effective way is to reduce the expansion order, still limiting as
much as possible the number of generated subsets before the first
close encounter.

7.2 Definition of �Tref

As described in Section 3, the reference orbital period range �Tref

represents the key parameter for the ADP propagation. The range,
centred in the selected resonant return period T ′, is defined to ac-
count both inaccuracies in the estimation of the orbital period range
of the subdomains and small dynamical perturbations between the
first close encounter and the predicted resonant return. The semi-
amplitude of this range, ε, plays therefore a key role as it influences
both the accuracy of the probability estimates and the required com-
putational time.

Table 7 shows the performance of the ADP–IS method for dif-
ferent values of the reference range semi-amplitude ε. With respect
to the previous analyses, two additional parameters are shown: the
number of generated subdomains nD and the number of subdomains
that include impacting samples nimp. These two parameters provide,
along with the number of PHSs nPHS, a clear picture of the pruning
action performed during the ADP propagation. We performed the
analysis considering four values of ε. In particular, it is interesting
to analyse what happens considering the two limiting cases: ε = 0
and ε = 1.

In the first case, the reference orbital period range collapses to the
value of T ′, i.e. subsets are maintained throughout the simulation
only if their estimated orbital period range includes T ′. In this case,
the number of PHSs is lower than the one obtained with ε = 10−3,
but the value of impact probability is exactly the same. This result
can be explained considering that the pattern of impacting samples
is not altered, as confirmed by the parameter nimp. That is, for the
case under study, a less conservative selection of the parameter ε

would allow us to obtain the same results, though no evident savings
in computational time would be obtained. The selection of ε = 0
corresponds to considering a Keplerian motion between the two
encounters. As described in Valsecchi et al. (2003), this assumption
may provide quite accurate results for the timing, and for the case
under study, where no significant perturbations between the two
encounters exist, it can be considered acceptable.

Let us now analyse the second limit case. If ε is set to 1, we
are essentially selecting a very large reference range for the orbital
period. That is, the ADP propagation becomes an ADS propaga-
tion, i.e. no pruning is performed and all subsets are propagated
until the final simulation time or the maximum number of splits is
reached. The sampling phase, instead, is not significantly altered:
the ISD is defined including subsets whose propagation stops before
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Table 7. Performance of the ADP–IS method for different values of ε (order 5, tolerance 10−10, Nmax 10, 3σ initial uncertainty set).

nD nPHS nimp tADP nsamples tIS tall p̂ σ (p̂)

0 71 71 43 11 min 204 293 29 min 40 min 1.17 × 10−5 2.93 × 10−6

10−5 71 71 43 11 min 204 293 29 min 40 min 1.17 × 10−5 2.93 × 10−6

10−3 84 84 43 12 min 204 293 29 min 41 min 1.17 × 10−5 2.93 × 10−6

1 (ADS) 470 121 41 1 h 31 min 216 299 31 min 2 h 02 min 1.11 × 10−5 2.25 × 10−6

the expected resonant return. Results are reported in the last row
of Table 7. The value of impact probability is similar to the one
obtained with the pruning action, but the number of generated sub-
sets is much larger, which affects in turn the required computational
time. That is, a very conservative selection of ε would yield a factor
3 increase in computational time.

The selection of the parameter ε is therefore crucial. Within the
assumptions of our method, i.e. small perturbations between the
two encounters, we can define an upper threshold for the ε value as

hεT ′v⊕ < 0.05 au, (18)

where h is the number of revolutions of the asteroid between the
encounters, whereas v⊕ is the Earth heliocentric velocity. The ex-
pression on the left-hand side of the inequality represents the he-
liocentric arc covered by the Earth in the time range hεT ′. When
we define the reference range �Tref and we compare it with �Tsub

of a given subset, therefore, we are verifying that the uncertainty
in the position of the current subset with respect to the Earth posi-
tion is lower than 0.05 au, i.e. the current subset can be labelled as
potentially hazardous. For the case under study, this value is about
10−3, the value selected for the analysis presented in the previous
sections.

As previously stated in the paper, the application of the ADP–
IS method is strictly related to the assumption of no intervening
close approaches with other major bodies in the investigated time
window. In case of expected close approaches, indeed, the situation
drastically changes as the resonances estimated at the epoch of the
first close encounter may lose their validity. In such cases, one
must rely on the more conservative approach of ADS propagation
for investigating a selected propagation window, obtaining accurate
results with unavoidable drawbacks in efficiency.

The decision whether to perform an ADP propagation or disable
pruning is made based on a preliminary analysis of the possible
trajectories of the asteroid between the two encounters. For the case
under study, the availability of the dispersion of Apophis’ orbital
parameters after the first close encounter allows us to estimate the
minimum orbit intersection distance (MOID) dispersion between
the asteroid and the other main bodies of the Solar System (see
Armellin et al. 2010a). This fast survey provides us with an overview
of possible close approaches between the two encounters and drives
our decision on the propagation method. For the case under study,
the analysis required less than 1 min and allowed us to exclude any
significant encounter with other planets in between.

7.3 Effect of the size of the uncertainty domain

The analysis presented in the previous sections was done consider-
ing different values of expansion order, tolerance for the splitting
procedure and minimum box size, whereas we considered only one
size for the initial uncertainty set, that is a 3σ 6D rectangle. This
selection, in a 6D problem with uncorrelated variables, consists in
considering the 98.4 per cent of the probability mass. In the follow-
ing paragraphs, we present the impact of the size of the uncertainty

set on the results of the ADP–IS method. It is worth noting that, as
previously mentioned in Section 6, in case of full covariance matrix,
the initial uncertainty box would be defined in the eigenvector space
in order to avoid wrapping effect and including very low probability
solutions, so all the analyses and values presented in this section
hold for the more general case of correlated variables.

The ADP propagation and the IS phase are strongly influenced
by the selection of the size of the initial uncertainty set. The ADP
propagation, indeed, limits the generation of the subsets within
the boundaries of the considered uncertainty set, and this aspect
influences also the shape of the ISD for the impact probability
computation phase. Samples, indeed, are confined within the ini-
tial uncertainty set, impacting samples are found only within these
limits and possible impacting samples, that lie out of the initial un-
certainty set, are discarded. This aspect distinguishes our sampling
approach from a standard Monte Carlo method, where samples are
drawn directly from the original probability density function, and
the probability of drawing samples is determined by the pdf itself.
In principle, samples could lie anywhere in the uncertainty region.

Starting from these considerations, it is therefore interesting to
study how the estimate for the impact probability changes with an
increasing size of the initial uncertainty set. We initially performed
the analysis by considering a size for the initial uncertainty set of
3σ (i.e. what was previously presented), 4σ , and 5σ .

Fig. 12(a) shows the results for the ADP propagation considering
order 5, tolerance 10−10, Nmax equal to 10 and an initial uncertainty
set size of 4σ . The ISD boundaries on the a − l plane are represented
in light blue. On the same plot, the 3σ boundaries are represented
with black dashed lines, whereas the ISD boundaries for the 3σ

case are represented with dashed blue lines. The plot allows us
to compare the sample regions in the two cases. In particular, a
portion of the PHSs generated during the 4σ ADP propagation is
not considered during the 3σ case. The 5σ case is shown in Fig.
12(b), representing the 5σ ISD in cyan.

Fig. 13 shows a comparison of the results of the sampling phase
for the 3σ , 4σ , and 5σ cases. Blue points represent drawn samples
belonging to the 3σ case, with impacting samples represented as
yellow dots. Light blue points represent drawn samples belonging
to the 4σ case, with impacting samples represented as black dots.
Finally, cyan points represent accepted samples for the 5σ case,
with impacting samples represented with red dots. The analysis of
the plot offers a clear picture of how the sampling region changes
in the three cases. Moreover, it is possible to see how the increasing
size of the initial uncertainty set allows us to include impacting
samples out of the 3σ domain. While a 3σ domain appears as a too
narrow selection, the 4σ and 5σ domains offer a better description
of the impact region. Figs 14(a) and (b) show the distribution of the
impacting samples for the three different simulations, with colours
showing the contribution to the overall impact probability.

Table 8 shows the results of the analysis, including the 6σ case.
With reference to the previous analyses, we added the parameter
pout, which represents the probability mass outside the selected un-
certainty set, i.e. the complementary to 1 of the integral of the pdf
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Figure 12. Comparison between 4σ (a) and 5σ (b) cases. The figure box and the dashed black lines represent the selected boundaries [4σ in (a) and 5σ in
(b)] and the 3σ boundaries, respectively. In light blue and cyan, the ISD boundaries for the 4σ and 5σ , respectively. In dashed blue, the 3σ ISD boundaries.

Figure 13. Comparison of the samples distribution for the 3σ , 4σ , and 5σ cases. In blue, light blue, and cyan, drawn samples for the 3σ , 4σ , and 5σ case,
respectively. In yellow, black, and red, impacting samples for the 3σ , 4σ , and 5σ case, respectively.

Figure 14. Impacting samples distribution for 4σ (a) and 5σ (b) cases. Colours are referred to the associated contribution to the impact probability.
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Table 8. Performance of the ADP–IS method for different values of initial uncertainty domain size (order 5, tolerance 10−10, Nmax equal to 10).

Domain pout nPHS tADP nsamples tIS tall p̂ σ (p̂)

3σ 1.61 × 10−2 84 12 min 204 293 29 min 41 min 1.17 × 10−5 2.93 × 10−6

4σ 3.80 × 10−4 107 21 min 300 643 39 min 1 h 1.61 × 10−5 5.70 × 10−6

5σ 3.44 × 10−6 104 29 min 341 804 41 min 1 h 10 min 1.90 × 10−5 6.81 × 10−6

6σ 1.18 × 10−8 107 46 min 353 056 42 min 1 h 28 min 2.09 × 10−5 7.00 × 10−6

over the considered domain. We remark that, because we use rect-
angular uncertainty sets, the values of pout shown in Table 8 are
significantly smaller than those corresponding to the more com-
monly used ellipsoidal uncertainty regions, for which pout is equal
to 0.17, 1.38 × 10−2, 3.41 × 10−4, and 2.76 × 10−6 for the 3σ , 4σ ,
5σ , and 6σ cases, respectively.

By increasing the size of the initial uncertainty set, the computa-
tional time required by the ADP propagation increases. This trend
is essentially due to the larger computational effort required by a
single integration step and the larger number of subsets. An increase
in the number of generated PHSs can be detected passing from 3σ

to 4σ , whereas this value remains essentially the same in the 5σ

and 6σ cases.
The analysis of the sampling phase shows some interesting re-

sults. As expected, an increase in the initial uncertainty size causes
an increase in the estimated impact probability value. Essentially,
regions of the uncertainty set that were not studied during the ADP
propagation for the 3σ case are now considered, and impacting sam-
ples can be found also in these regions. As a result, the estimated
impact probability values for the 5σ and 6σ cases become very close
to the reference value. The enlargement of the investigated region
causes also an increase in the Poisson statistics uncertainty of the
estimate. This result is expected too, as the variance is proportional
to the sample region volume (see equation (13)). The analysis of the
required number of samples at convergence shows that this value
increases for larger initial uncertainty sets, and this trend reflects
back on the computational time required by the sampling phase.

The size of the uncertainty set should be selected to achieve
the desired resolution on the impact probability, which is directly
expressed by the parameter pout. For the case under study, with an
estimated impact probability of the order of 10−5, we selected a 6σ

domain, which excludes only 1.18 × 10−8 of the probability mass.

8 C O M PA R I S O N W I T H S TA N DA R D A N D
ADVANCED O RBITAL SAMPLING
T E C H N I QU E S

The analysis presented in the previous sections showed how the
ADP–IS method represents a valuable tool for uncertainty propaga-
tion and impact probability computation for the first resonant return
of a NEO. In order to assess the efficiency of the method with re-
spect to other impact probability computation tools, we present in
this section a comparison with standard and advanced orbital sam-
pling techniques. In the first part, we compare our approach with
Monte Carlo sampling techniques based on sample generation on
the whole uncertainty set. Finally, we present a general comparison
with the most used technique for impact probability calculation, the
LOV method.

A first comparison can be done considering a standard Monte
Carlo approach, where samples are drawn from the covariance ma-
trix directly at the initial epoch (2009 June 18). This method is
probably the most straightforward approach but also the most ex-
pensive one, as the sampling is performed on the whole domain,

and the propagation of each sample starts from the observation
epoch. By performing the propagation of one million samples, the
estimated impact probability results into 2.2 × 10−5, whereas the
Poisson statistics uncertainty is equal to 4.71 × 10−6. We selected
the number of samples in order to detect a non null value of impact
probability (Farnocchia et al. 2015).

Unfortunately, if the Monte Carlo simulation is performed con-
sidering the same conditions of our method (i.e same dynamics,
single core), the required computational time is much larger. The
average computational time required to perform a single pointwise
propagation from the initial epoch to the epoch of the first res-
onant return is ≈1.2 s. As a result, within the computation time
required by the ADP–IS method for the 6σ case (see Table 8),
about 4400 samples could be propagated, which is not enough to
estimate the expected impact probability. All this would lead to an
estimated computational time of around 2 weeks for propagating
one million samples on a single core. This value is of course not
realistic, as typically Monte Carlo analyses can be easily set up
in a multithread environment, thus granting significant savings in
computational time. It is interesting, however, to highlight the sig-
nificant savings that our approach grants with respect to standard
MC approach in the same conditions. The ADP–IS method, indeed,
employs a lower number of samples, as samples are drawn just in
a subset of the uncertainty set. Moreover, the propagation of all
samples starts immediately before the resonant return, while in a
standard Monte Carlo approach each sample is propagated starting
from 2009 June 18. Therefore, the computational effort required by
the ADP propagation is largely repaid later by shorter pointwise
propagations and a reduced number of samples.

We show now a comparison with an advanced Monte Carlo tech-
nique called subset simulation (SS). The basic idea of SS is to com-
pute small failure probabilities as the product of larger conditional
probabilities (Au & Beck 2001; Cadini et al. 2012; Zuev et al. 2012).
Given a target failure event F, let F1 ⊃ F2 ⊃ ... ⊃ Fn = F be a se-
quence of intermediate failure events, so that Fk = ⋂k

i=1 Fi, k =
1, 2, ..., n. Considering a sequence of conditional probabilities, then
the failure probability becomes:

p(F ) = p(F1)
n−1∏
i=1

p(Fi+1|Fi), (19)

where P (Fi+1|Fi) represents the probability of Fi+1 conditional to
Fi . A detailed description of the algorithm can be found in Au &
Beck (2001). In the problem under study, the failure F represents
an impact with Earth, i.e. a geocentric distance smaller than the
Earth radius. The method is initialized using standard MC to gener-
ate samples at the so-called conditional level (CL) 0 starting from
the available nominal state vector and related uncertainty of the in-
vestigated object at the observation epoch. The number of samples
generated at this level is maintained for each generated conditional
level and it is referred to as N . Once the failure region F1 is iden-
tified, a Monte Carlo Markov Chain (MCMC) Metropolis Hastings
algorithm is used to generate conditional samples in the identified
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intermediate failure region. Another intermediate failure region is
then located, and other samples are generated by means of MCMC.
The procedure is repeated until the target failure region is identified.
An illustration of the method is shown in Fig. 15.

The approach was originally developed for the identification of
structural failures, but it was also used in different research areas in
reliability such as the definition of failure probabilities of thermo-
hydraulic passive systems. The method was recently applied to the
computation of space debris collisional probabilities by Morselli
et al. (2014).

In the presented approach, the intermediate failure regions are
identified by assuming a fixed value of conditional probability p0 =
p(Fi+1|Fi). The identification of each conditional level, therefore,
is strictly related to this value, and changes accordingly step by step,
as explained in the followings. The resulting SS algorithm follows
the general description presented in Morselli et al. (2014) and goes
through the following steps:

(i) Set i = 0 and generate N samples x0,k
0 , k = 1 , ... , N at

conditional level 0 by standard MC starting from the available state
estimate of the investigated object at the initial epoch t0.

(ii) Propagate each sample up to the epoch of the first resonant
return and compute its minimum geocentric distance. Note that, as
in the ADP–IS method, the resonances can be easily determined
by propagating the uncertainty set up to the epoch of the first close
encounter by means of DA and evaluating the orbital period range.

(iii) Sort the N samples in descending order according to the
associated geocentric distance at the epoch of the first resonant
return.

(iv) Identify an intermediate threshold value Di+1 as the geocen-
tric distance corresponding to the (1 − p0)N th element of the sam-
ple list. Define the (i + 1)th conditional level as Fi+1 = {d < Di+1},
where d represents the geocentric distance. According to the defi-
nition of Di+1, the associated conditional probabilityp(Fi+1|Fi) =
p0.

(v) If Di+1 < R⊕, i.e. the geocentric threshold distance is lower
than the Earth radius, go the the last step, otherwise select the last
samples of the list xi,j

0 , j = 1, . . . , p0N . By definition, these
samples belong to the (i + 1)th conditional level.

(vi) Using MCMC, generate (1 − p0)N additional conditional
samples starting from the previously selected seeds belonging to
Fi+1. A sample is set to belong to Fi+1 according to the following
performance function:

gi+1
x (x0) = d(x0) − Di+1

⎧⎨
⎩

> 0 x0 is out of the (i + 1)th CL
= 0 x0 is at the limit of the CL
< 0 x0 belongs to the (i + 1)th CL

(20)

(vii) Set i = i + 1 and return to step (ii).
(viii) Stop the algorithm.

The total number of generated samples is

NT = N + (n − 1)(1 − p0)N, (21)

where n is the overall number of conditional levels required to reach
the impact region. Since the conditional probability is equal to p0

for each level, the impact probability expressed by equation (19)
becomes:

p(F ) = p(Fn) = p(Fn|Fn−1)pn−1
0 = pn−1

0 Nn/N (22)

where Nn is the number of samples belonging to the last conditional
level whose geocentric distance is lower than the Earth radius.

The main degrees of freedom of the method are the selected fixed
conditional probability p0, the number of samples per conditional

level N and the proposal auxiliary distribution for the MCMC phase,
and they govern the accuracy and efficiency of the method (Zuev
et al. 2012). We used for our analysis 1000 samples per conditional
level and a value of conditional probability equal to 0.1. A normal
distribution with spread equal to the original pdf was selected as
proposal pdf for the MCMC algorithm.

A comparison between the SS technique and the ADP–IS method
is shown in Table 9. The required number of samples, the overall
computational time, the estimated impact probability and related
Poisson statistics uncertainty are shown. Results for the ADP–IS
method are the ones referring to the 6σ case.

SS and ADP–IS have a similar computational burden, though
the required number of samples is very different. This result is ex-
pected, as the propagation windows for the two cases are different.
Fig. 16 shows the distribution on the a − l plane of the generated
conditional samples obtained with SS, along with the thresholds
per conditional level and related colours. Impacting samples at the
last conditional level are represented in black. Conditional samples
progressively move to the left, until impacting samples at condi-
tional level 4 are identified. If compared to Figs 8 and 9, this region
is practically coincident with the PHSs identified during the ADP
propagation. That is, SS and ADP–IS allow us to identify the same
region in two completely independent ways.

The advantage of the ADP–IS method is that, by identifying the
PHSs, the propagation of the samples is drastically reduced in time,
which yields a similar computational burden though the number of
generated samples is significantly larger. Potentially, the ADP–IS
method could take advantage of parallelization both during ADP
propagation and the sampling phase, while the advantages for SS
would be lower, as parallelization could be introduced only for spe-
cific phases of the algorithm. This approach would heighten the dif-
ference in efficiency between the two methods. However, the great
savings granted by the SS could be included in the ADP–IS method
during the sampling phase, by replacing the standard MC performed
in the ISD with an SS limited to the unpruned subsets. This aspect
may represent a future development of the method. Overall, the
combination of ADP propagation and importance sampling allows
us to achieve a computational burden that is competitive with both
standard and advanced Monte Carlo techniques.

Finally, it is worth comparing the performance of the presented
approach with the reference technique in the field of impact prob-
ability computation, the LOV method. The LOV method takes ad-
vantage of the fact that the orbital uncertainty grows with time by
stretching into a long slender ellipsoid in Cartesian space (Farnoc-
chia et al. 2015). The tendency of uncertainty to stretch during
propagation suggests the possibility of a 1D parametrization of the
uncertainty region, i.e. the sampling and the generation of the so-
called virtual asteroids (VAs) is performed along the line of weak-
ness of the orbit determination, and if all orbits are sufficiently close
to the LOV, then significant savings in computational time with re-
spect to a standard Monte Carlo approach are obtained without
sacrificing reliability.

The analysis presented in Milani et al. (2005) offers a first term
of comparison: the generic completion level of 10−7 can be ob-
tained with the propagation of only ∼104 VAs. If compared to a
standard MC approach, it would lead to compute times 3–4 orders
of magnitude below those required for similar completeness with
MC simulations (Farnocchia et al. 2015). The analysis presented
in the previous section showed that the ADP–IS method grants a
reduction in computation burden of around two orders of magnitude
with respect to standard MC. Therefore, the LOV shows better per-
formance than the ADS–IS method in the current implementation.
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Figure 15. Subset Simulation process: (a) initialization by standard MC, (b) CL 1 identification, (c) samples generation by means of MCMC, and (d) new
iterations and impact region identification.

Table 9. Comparison of the performance of ADP–IS method (order 5,
tolerance 10−10, Nmax equal to 10, 6σ uncertainty set) and SS method (N
equal to 1000, p0 equal to 0.1).

nsamples tall p̂ σ (p̂)

ADP–IS 353 056 1 h 28 min 2.09 × 10−5 7.00 × 10−6

SS 4 600 1 h 30 min 2.46 × 10−5 5.04 × 10−6

Nevertheless, there are some cases in which the LOV method
does not guarantee the same level of accuracy of a standard MC
approach. A first case occurs when the observed arc of the inves-
tigated object is very short, i.e. 1 or 2 d (Milani et al. 2005). In
this case, the confidence region is wide in two directions and the
unidimensional sampling may not be suitable. What happens is
that different LOVs, computed with different coordinates, provide
independent sampling and may provide different results. That is,
if some impacting samples lie well of the LOV and are separated
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Figure 16. SS conditional samples projected onto the a − l plane (N equal to 1000, p0 equal to 0.1). In grey, boundaries of the 3σ domain.
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from it by some strong non-linearity, then the VAs selected along
the LOV may fail to indicate some potential threatening encounters
(Milani et al. 2002). In such cases, a standard MC approach would
result more reliable, with unavoidable drawbacks in terms of com-
putational time. As presented in this paper, the ADP–IS method,
though maintaining a 6D sampling, allows us to drastically reduce
the computational effort by limiting the sampling to just specific
regions. For these reasons, the method may be considered as a valu-
able trade-off between the efficiency of the LOV method and the
reliability of standard MC in all those cases in which the former
may result inaccurate. The possibility of improving the efficiency
of the method by means of parallelization in both ADP propagation
and sampling phases represents another step in this direction, as
well as an optimized coding of the dynamics.

9 C O N C L U S I O N S

This paper introduced the combination of automatic domain prun-
ing and importance sampling for uncertainty propagation and im-
pact probability computation for Earth resonant returns of NEOs.
The automatic domain pruning represents an evolution of the DA-
based automatic domain splitting technique, it allows us to estimate
possible resonances after a planetary close encounter and limit the
propagation of an uncertainty set to those subsets that may be in-
volved in the resonant return of interest. During the propagation, the
uncertainty domain is divided into subsets (PHSs) whose propaga-
tion stops just before the epoch of the resonant return. The identifi-
cation of PHSs represents the starting point for the sampling phase.
An importance sampling pdf is defined over these subdomains and
samples are drawn directly from this auxiliary pdf. We tested the
ADP–IS method on the case of asteroid (99942) Apophis, providing
an estimate for the impact probability in 2036. We carried out a sen-
sitivity analysis on the main parameters of the method, providing
general guidelines for their selection. The comparison with a stan-
dard Monte Carlo approach showed how the ADP–IS method can
reduce the computation effort by more than 2 orders of magnitude,
still granting the same accuracy level for the impact probability
estimate. In addition, the current algorithm can be implemented to
make use of parallelization techniques in both the ADP and the IS
phase, thus significantly reduce the required computational time.
All these considerations suggest that the method may be used as
a valuable alternative to standard MC in all those cases in which
the LOV method does not guarantee the required level of accuracy.
Future developments include a more rigorous formulation of the
reference orbital period for subsets pruning allowing us to extend
the pruning algorithm to the more critical case of intervening close
encounters with other celestial bodies between the two encounters,
and the testing to a wider set of cases.
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