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Statement of Significance (149 words) 
Despite cisplatin-based neoadjuvant chemotherapy (NAC) 60% of patients with muscle-invasive 
bladder cancer still have residual invasive disease at radical cystectomy (RC). The NAC-
induced biological alterations in these cisplatin-resistant tumors remain largely unstudied.  We 
analyzed gene expression from 116 matched pairs pre- and post-NAC.  H&E and 
immunohistochemistry were used to confirm tissue sampling and gene expression analysis.  
Established molecular subtyping models proved to be inconsistent in their classification of the 
post-NAC samples. Unsupervised consensus clustering revealed four distinct consensus 
clusters (CC).  The CC1-Basal and CC2-Luminal subtypes expressed genes consistent with a 
basal-like and a luminal-like phenotype, respectively.  The CC3-Immune subtype had the 
highest immune activity, including T-cell infiltration and checkpoint molecule expression, but 
lacked both basal and luminal markers.  The CC4-Scar-like subtype expressed genes 
associated with wound-healing/ scarring and was associated with favorable prognosis.  Further 
evaluation is necessary to determine if this subtyping could impact the selection of second-line 
treatment. 
 
 
 
 
 
 
 
 
ABSTRACT (244 words) 

 
Purpose: After cisplatin-based neoadjuvant chemotherapy (NAC) 60% of patients with muscle-
invasive bladder cancer still have residual invasive disease at radical cystectomy (RC). The 
NAC-induced biological alterations in these cisplatin-resistant tumors remain largely unstudied.   
Experimental Design: RC samples were available for gene expression analysis from 133 
patients with residual invasive disease after cisplatin-based NAC, of whom 116 had matched 
pre-NAC samples. Unsupervised consensus clustering (CC) was performed and the CC were 
investigated for their biological and clinical characteristics. H&E and immunohistochemistry on 
tissue microarrays were used to confirm tissue sampling and gene expression analysis. 
Results: Established molecular subtyping models proved to be inconsistent in their 
classification of the post-NAC samples. Unsupervised consensus clustering revealed four 
distinct consensus clusters (CC).  The CC1-Basal and CC2-Luminal subtypes expressed genes 
consistent with a basal and a luminal phenotype, respectively, and were similar to the 
corresponding established pre-treatment molecular subtypes.  The CC3-Immune subtype had 
the highest immune activity, including T-cell infiltration and checkpoint molecule expression, but 
lacked both basal and luminal markers.  The CC4-Scar-like subtype expressed genes 
associated with wound-healing/ scarring, although the proportion of tumor cell content in this 
subtype did not differ from the other subtypes. Patients with CC4-Scar-like tumors had the most 
favorable prognosis.   
Conclusion: This study expands our knowledge on muscle-invasive bladder cancer not 
responding to cisplatin by suggesting molecular subtypes to understand the biology of these 
tumors. Although these molecular subtypes imply consequences for adjuvant treatments, this 
ultimately needs to be tested in clinical trials. 
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INTRODUCTION 

 
Muscle-invasive bladder cancer (MIBC) is an aggressive malignancy associated with a 50% 
mortality rate at 5 years (1, 2). Optimal treatment consists of neoadjuvant cisplatin-based 
chemotherapy (NAC) followed by radical cystectomy (RC). While NAC has been shown to 
improve the overall survival rate by 5-7%, in the real-world setting only ~40% of patients 
experience a major response, as defined by having no residual MIBC in the RC specimen (3). 
Persistent invasive bladder cancer after NAC is considered chemoresistant (3), and patients 
with residual cancer at RC are at a high risk for disease progression (4). 
 
Gene expression-based molecular subtyping of chemotherapy-naïve MIBC has advanced our 
understanding of this heterogeneous disease (5-10).  Response to NAC or immunotherapy, 
especially checkpoint blockade, has been shown to correlate with molecular subtype (8, 11-14). 
However, platinum-based chemotherapy and immunotherapy are highly likely to shift the 
biological and clinical behavior of a tumor, which would be expected to impact molecular 
subtyping. 
 
Molecular alterations induced by chemotherapy are poorly characterized, but early evidence 
suggests that significant alterations occur at the level of both the genome and transcriptome. 
For example, chemotherapy has been shown to affect the clonal evolution of an individual 
patient’s tumor (15). An early study on molecular subtypes suggested that NAC may induce 
subtype switching (8), indicating that NAC induces phenotypical changes on the transcriptome 
level, or selects one subtype over another in a mixed, heterogeneous tumor.  
 
In this study, we assembled a large dataset of residual invasive bladder cancer after NAC and 
investigated these tumors using transcriptome-wide gene expression and 
immunohistochemistry for the molecular characterization of cisplatin-resistant bladder cancer. 
  



 4 

MATERIALS AND METHODS 

 
Patients 

A consecutive cohort of MIBC patients from seven institutions was enrolled. All patients were 
treated with curative intent. After initial diagnosis of MIBC by transurethral bladder tumor 
resection (TURBT), each patient received at least three cycles of cisplatin-based NAC followed 
by RC. After completion of consensus clustering it was recognized that one patient had been 
treated with carboplatin-based NAC. Although, this patient was included for consensus 
clustering, it was removed for all subsequent analysis. Briefly, this cohort included 295 TURBT 
and 144 RC specimens. After quality control filtering (see below) 134 patients with post-NAC 
gene expression profiles were available for analysis (Table S1), for subsequent analysis, 133 
patients were included after removal of the case treated with carboplatin.  In addition, a total of 
21 non-neoplastic scar tissue samples were collected from the tumor-bed of RC specimens with 
a complete pathological response (pT0N0). 
The human ethics board of each institution approved this study and all patients consented to 
analysis of their tumor tissues. Protocol numbers: Bern, Switzerland KEK-Be 219/2015; 
Vancouver, BC, Canada H09-01628; Southampton, UK, 10/H0405/99; Seattle, Washington, 
USA, FHCRC: #7116; Amsterdam, the Netherlands, CFMPB-104; UC Davis, Sacramento, USA, 
438935-6; Rotterdam, the Netherlands, MEC-2014-642. This research was carried out in 
accordance with the approved guidelines. 
 
 
Tissue sampling and gene expression profiling 

Whole transcriptome analysis was performed on formalin-fixed, paraffin-embedded tumor tissue 
with GeneChip® Human Exon 1.0 ST Array (Affymetrix) in a Clinical Laboratory Improvement 
Amendments (CLIA)-certified laboratory (16). 134/144 post-NAC samples and 21/21 scar 
samples passed quality control, respectively. Microarray data from the corresponding pre-NAC 
samples were taken from our previously published dataset (14). For subsequent analysis, the 
patient treated with carboplatin was excluded and only 133 samples were used. Microarray data 
surpassing all quality measures were available for matched pairs of pre- and post-NAC samples 
from 116 patients, all of whom received cisplatin-based NAC. Microarray data were normalized 
and genes summarized using single-channel array normalization (17). 
 
 
Unsupervised consensus clustering 

Unsupervised consensus clustering was performed using the ConsensusClusterPlus (18) 
package in R (R Core Team (2014). Low-varying genes were filtered out by selecting the 2000 
genes with the highest median absolute deviation. Bootstrap clustering was performed with 
10000 iterations, using Pearson correlation as the similarity metric, and Ward’s algorithm for 
clustering. We focused on two, three and four cluster solutions that showed a sequential 
separation of each group. 
 
 
Gene set expression analysis 

GSEA software from the public domain (http://www.broad.mit.edu/gsea/) (19) generated 
enrichment plots and calculated significance of gene signatures. Genes were ranked with 
Signal2Noise and a weighted enrichment statistic was used to calculate Normalized Enrichment 
Scores, p-values and false detection rate. 
 

http://www.broad.mit.edu/gsea/)
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Immunophenotype scoring 
The immunophenotyped model was originally developed by Charoentong et al, 2017 (20).  
Using machine learning and the published lists of immune genes, we created a weighted 
average signature based on the authors published model.  This model was then applied to our 
cohort to generate the immunophenotype scores. 
 
 
Quantification of tumor for tissue sampling 

Tumor content was assessed by two expert investigators (RS, HO) using H&E sections taken 
from the same tissue blocks sampled for gene expression analysis.  Both investigators were 
blinded to the consensus clusters.  For each sample, the percentage of tumor area in relation to 
the total area of tissue on the section was estimated.  The largest coherent tumor focus on the 
section was measured and within this focus, the percentage of cancer cells in relation to all cells 
was estimated.  For all quantifications, no differences were observed between the estimates of 
both pathologists (p>0.05). 
 
Tumor regression grading 

A subset of post-NAC tumors from three centers were classified according to previously 
published methods into tumor regression grades (TRG; (21)). The TRG were determined 
previously for a different project and therefore, investigators were blinded to the consensus 
clusters. TRG was defined by histologic estimation of the size of the residual viable tumor 
relative to the size of the original tumor bed, which was indicated by zones of fibrosis. TRG 3 
and TRG 2 were defined as having ≤50% and >50% tumor regression, respectively. The 21 scar 
samples were equivalent to TRG 1 (complete tumor regression).  
 
 
Assignment to subtypes using additional models 

Assignment of the pre- and post-NAC samples to the molecular subtypes was performed as 
previously described (14).  Briefly, we used five established subtyping models including the 
Genomic Subtyping Classifier (GSC) (14).  The four other models included the University of 
North Carolina (UNC) (7, 9), The Cancer Genome Atlas (TCGA) (6), Lund University (Lund 
2012) (5), and MD Anderson (MDA) (8). 
 
 
Construction of tissue microarrays and immunohistochemistry 

The tissue microarrays (TMA) were prepared for immunohistochemical (IHC) analysis by taking 
a maximum of 4 samples per patient. Two were harvested from the primary tumor before NAC 
(TURBT) and, if still present, two from the residual tumor after NAC (RC).  The freshly cut tissue 
sections/TMAs were used to determine the protein expression of targets of interest. 
 
In brief, the TMAs were incubated in buffer (Tris-EDTA (cell conditioning 1: CC1) at 95°C for 60 
minutes, followed by incubation with primary antibody at 37°C for 60 minutes. The following 
antibodies were used: PPARy (anti-rabbit, clone #2435, Cell Signaling Technology, 1:100 
dilution (22)), CD8 (anti-mouse, NCL-L-CD8-4B11, Leica, 1:100 dilution (22)), KRT5/6 (anti-
mouse, clone #D5/16B, Millipore, 1:400 dilution), GATA3 (anti-mouse, clone #L50-823, Cell 
Marque, 1:1600 dilution), Ki67 (anti-mouse, clone #M7240, Dako, 1:100 dilution), and CD44 
(anti-rabbit, clone #EPR1013Y, Abcam, 1:100 dilution (23)). The TMAs were washed and 
incubated with Ventana universal secondary antibody at 37°C for 32 min before being visualized 
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using Ventana DAB Map detection kit.  All IHC staining was performed using the Ventana 
Discovery Ultra autostainer. 
 
When assessing the staining intensity, the nuclear (GATA3, Ki67), cytoplasmic (KRT5/6) and 
membranous/cytoplasmic (PPARy, CD8, CD44) subcellular localization was taken into 
consideration.  The scoring for GATA3, KRT5/6, PPARy and CD44 was determined using a 
4-point scale system as well as percentage of stained cancer cells. Score 0 represents no 
staining or absence of any tumor cells, score 1 represents a weak stain, score 2 represents a 
moderate intensity stain and score 3 is a strong stain. The overall protein expression was 
determined by multiplying the intensity score by the percentage. For Ki67, the percentage of 
stained cancer cells in relation to all cancer cells was considered. For CD8, the number of CD8 
positive tumor infiltrating cells were counted in each tissue core. For all staining, the average of 
two cores was used for further analysis. 
 
 
Statistical analyses 
All statistical analyses were conducted using R version 3.3.3.  All tests of significance were two-
sided at 0.05 level. 
 
In order to measure concordance between subtyping models, we compared the GSC to four 
published classification methods: UNC, MDA, The Cancer Genome Atlas (TCGA), and Lund 
University (Lund).  The subtypes in each model were given a basal or luminal call as follows. 
Luminal included UNC Luminal; TCGA Cluster I and II; MDA Luminal; Lund Genomically 
Unstable and UroA; and GSC Luminal and Luminal Infiltrated. Basal included: UNC Basal and 
Claudin-low; TCGA Cluster III and IV; MDA Basal; Lund SCC-like and UroB; and GSC Basal 
and Claudin-low.  The Lund Infiltrated and MDA p53-like subtypes were considered neutral.  
Concordance (agreement) was then calculated as the absolute value of difference between the 
number of Luminal votes and the number of Basal votes. If there was a tie between Luminal and 
Basal, the concordance was given assigned a 0. 
 
Kaplan-Meier curves were used to show overall survival stratified by subtype according to each 
classification scheme (GSC model, UNC, TCGA, MDA, Lund and the unsupervised consensus 
clusters). Log-rank tests were used to compare event rates between the subtyping groups, while 
Cox proportional models were used to evaluate the importance of consensus clustering for 
prediction of overall survival. Subtyping calls before and after NAC were compared using a chi-
squared test. For statistical tests comparing pre- and post-NAC samples, we used 116 patients.  
For statistical tests focused exclusively on the post-NAC setting, 133 patients who received RC 
after cisplatin-based NAC were used. For all the analyses associated with survival time, two 
patients were excluded because of missing data. 
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RESULTS 

 
Patient characteristics 

The clinical and pathological features of the patient cohort are described in Table S1. The 
median age of the 134 patients (38 females, 96 males) at surgery was 61 years. During a 
median follow-up of 35.4 months, 62 and 56 patients had cancer recurrence and died, 
respectively. Because patients in this retrospective cohort were treated before the immune 
checkpoint era, none of the patients in this cohort received immune checkpoint blockade. A 
variety of agents were used in different combinations as second-line treatments which was most 
often initiated after cancer recurrence. There was no difference in the use of second-line 
treatments or chemotherapy regimens between different post-NAC subtypes. 
 
 
Molecular subtyping of bladder cancer after cisplatin-based neoadjuvant chemotherapy 

Subtype calls were generated for a matched (pre-/post-NAC) MIBC patient cohort (n=116) by 
applying our single-sample genomic subtyping classifier (GSC) (14) (Figure 1) and other 
published subtyping models to these data (5-9) (Figure S1). Survival analysis showed that only 
the GSC model was prognostic in this cohort (Figure 1A). We found patients with basal or 
luminal tumors had a favorable prognosis compared to patients with claudin-low or luminal-
infiltrated tumors, when analyzed before (TURBT) and after (RC) NAC (p<0.05; Figure 1A & 
1B). Notably, the MD Anderson (MDA) p53-like and Lund Infiltrated subtypes both showed a 
shift towards a favorable prognosis in post-NAC RC samples (Figure S2D & S2H).  
 
We also observed a marked shift in the distribution of subtypes after NAC (Figure 1C & Figure 
S1), with the post-NAC subtype varying frequently from the pre-NAC subtype. When comparing 
the subtype calls for all models, we found a general agreement between pre-NAC subtype calls 
in TURBT samples consistent with our previous report (14) (Figure 1D, left panel). However, in 
the post-NAC RC setting we observed fewer luminal subtype calls and an enrichment of basal, 
p53-like and infiltrated subtypes (Figure 1D, right panel). We observed a loss of concordance 
with respect to the basal/luminal axis, with higher model agreement in pre-NAC samples (Fleiss’ 
Kappa 0.49) than in post-NAC samples (Fleiss’ Kappa 0.30, p<0.001; Figure 1E). 
 
Taken together, these results highlight that molecular subtyping can provide prognostic 
information both before and after chemotherapy, but the classification of MIBC using these 
models will change after exposure to NAC. 
 
 
Cisplatin-resistant bladder cancer can be classified into four distinct biological subtypes 

Current evidence suggests cisplatin-based therapies can drive the evolution of bladder tumors 
by inducing genomic alterations and / or by selecting for cisplatin-resistant clones within a 
molecularly heterogeneous tumor (8, 15). We therefore hypothesized that the relative shift in the 
distribution of subtypes in the post-NAC setting was a consequence of cisplatin-induced or 
cisplatin-selected changes in the biological and genomic characteristics of the cisplatin-resistant 

tumors (defined as ypT  2 or ypN  1). 
 
To test this hypothesis, we employed unsupervised consensus clustering (CC) with a subset of 
highly variant genes and identified a robust 4-cluster solution (Figure S3). Importantly, CC using 
different input gene sets identified essentially the same classes (Table S2, Figure S3). An 
investigation of the biological characteristics of the individual clusters revealed that CC1 and 
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CC2 were consistent with established basal and luminal MIBC molecular subtypes (Figure 2). 
The CC1 tumors tended to have higher expression of basal-associated genes (i.e. KRT5, 
KRT14, CD44; Figure 2A & 2B), while the CC2 tumors had higher expression luminal-
associated genes (i.e. KRT20, PPARG, GATA3; Figure 2A & 2C). 
 
To confirm the cluster assignment on the basal and luminal axis, tissue microarrays (TMAs) 

were stained with basal (KRT5/6 and CD44) and luminal (GATA3 and PPAR) markers (Figure 
2D-F). Importantly, two different areas of each tumor correlated strongly between matched 
cores (R=0.91, Figure S4). As expected, tumors in CC1 showed higher protein expression of 

KRT5/6 and CD44 (Figure 2E), whereas the protein expression of GATA3 and PPAR (Figure 
2F) was low. The opposite pattern was observed for tumors in CC2, which showed high protein 

expression for GATA3 and PPAR (Figure 2F) and low expression of basal markers (Figure 
2E).  Given these data, we named these subtypes CC1-Basal and CC2-Luminal. 
 
 
Immune signaling defines the biology of one group of cisplatin-resistant tumors 

Higher expression of immune-associated genes (i.e. CTLA4, MPEG1 and CD27) was noted in 
both the CC1-Basal and CC3, with lower expression in CC4 and little in the CC2-Luminal 
(Figure 2A & Figure S5). However, CC3 lacked robust expression of basal or luminal markers 
which defined CC1-Basal and CC2-Luminal, respectively. 
 
To explore the immunological activity of CC3, we applied two different immune signatures to the 
four clusters.  First, we found that the expression patterns of genes from the Pan Cancer 
Immune Profiling Panel (24), were significantly higher in CC3 compared to the other clusters 
(Figure 3A, p=0.01, NES=1.88). A second immune signature (immune 190 (22)) showed low 
scores for the CC2-Luminal subtype, with higher scores associated with the CC3 and the CC1-
Basal subtype (Figure 3B). 
 
As T-cell infiltration can significantly impact the tumor microenvironment, we hypothesized the 
higher immune scores may be related in part to T-cell activity.  Consistent with this hypothesis, 
we found higher T-cell and T-helper cell signature scores in the immune infiltrated clusters, with 
the highest scores in CC3 and the lowest in CC2-Luminal (Figure 3C & 3D).  These findings 
were confirmed with IHC, where particularly high T-cell infiltration was observed in CC3 and 
almost none in CC2-Luminal (Figure 3E & 3F). 
 

Interestingly, high PPAR expression (Figure 2) and lower immune activity observed in the 
CC2-Luminal subtype provide supporting evidence that PPARG activity can create an immune-
deficient tumor environment in MIBC, even in the post-NAC setting (22). Moreover, CC1-Basal 
and CC3 not only had higher immune signature scores, but also showed higher expression of 
the immune suppressor genes PD-L1, PD-L2 and CTLA4, suggesting an immune-suppressive 
microenvironment (Figure S5).  
 
Finally, we also determined that the enrichment of immune activity observed for CC3 was not 
exclusively driven by T-cells, as this cluster also robustly expressed many chemokines and 
cytokines (Figure 3G, p=0.018, NES=1.77). Collectively, due to the lack of basal or luminal 
marker expression and the higher level of immune cell infiltration and signaling, we named this 
subtype CC3-Immune. 
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Wound-healing and scar-like characteristics define the biology of a group of cisplatin-
resistant tumors 

Many of the highly-expressed genes in CC4 were associated with the p53-like signature 
described in the MDA classifier (8, 25) (Figure 2A). We also found higher expression of genes 
that were consistent with wound healing/scarring (MYH11, CNN1, DES) or with epithelial-to-
mesenchymal transition (EMT; i.e. ZEB1, ZEB2, VIM), suggesting these patients had response 
to therapy (Figure 2A, Figure S6). 
 
Histological examination of these patient tumors revealed significant tumor content, confirming 
these patients were in fact pathological non-responders (Figure 4A, Figure S7).  The CC1-
Basal tumors had the largest tumor diameter (Figure S7A, S7B), however the median 
percentage of tumor cells in the sampled tumor area was above 60% in all four clusters (Figure 
S7C). The presence of tumor cells was also confirmed with KI67 IHC, where marked staining 
was observed in samples from all four clusters (Figure 4B & 4C). Interestingly, a cell cycle gene 
signature showed lower proliferation for CC4 tumors, suggesting these tumors may be more 
quiescent (Figure 4D). The area of tumor sampled contained a similar proportion of stromal 
elements between all four CC (Figure S7), nonetheless we found additional gene signatures 
that supported a scar-like phenotype (Figure 4E). 
 
When we compared the CC4 tumors to tissue sampled from the tumor bed (non-neoplastic scar 
tissue in RC sample) of patient who had a complete response to NAC (i.e. pT0N0), we found 
highly consistent gene expression signatures (Figure 4F).  Using principle component analysis 
(PCA), we found CC4 tended to separate with true scar tissues and away from CC1-CC3 
tumors on PC1, but grouped with the tumor samples on PC2 (Figure 4G, left panel). On PC3 
we observed a distinct separation of the CC1-Basal and CC2-Luminal tumors, with minimal 
separation of CC3 and CC4 (Figure 4G, right panel). Collectively, the three PCs tended to 
separate the CC1-CC3 tumors from the CC4 and scar tissues, which clustered together (Figure 
S8, Table S3). These data indicate that the CC4 and scar tissues share similar genomic 
profiles. 
 
To determine whether there was an association between the CC and prognosis, we performed a 
survival analysis. This revealed that CC4 has a favorable prognosis compared to CC1-CC3 in 
the Kaplan Meier plot (Figure 4H) but was not associated with lower tumor stages at RC 
(Figure S9). In a univariable analysis, the relative risk in CC4-Scar-like was 2.8 times less than 
CC2-Luminal (HR=0.36, p=0.038), and 3 times less than CC3-Infiltrated (HR=0.33, p=0.018) for 
predicting overall survival (Table S4). In a multivariable analysis adjusting for age, stage and 
nodal status, CC4 had significantly better survival compared to CC3 (HR=0.36, p=0.038) and 
CC2 (HR=0.38, p=0.071).  
 
We have previously reported on histologically determined tumor regression grades (TRG) after 
NAC in bladder cancer, and established criteria that define partial responders (TRG 2) within the 
cohort of patients with residual MIBC after NAC (21). We showed that these partial responders 
had in improved overall survival compared to non-responders (TRG 3). Here we hypothesized 
the Scar-like subtype may reflect a gene expression correlate of TRG 2. Analysis of a subset of 
the patient cohort confirmed that TRG 2 was enriched amongst the Scar-like tumors (Table S5, 
p=0.026). 
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Matched comparisons: NAC leads to diverse alterations in MIBC 

Pair-wise comparison of tumors before and after NAC revealed that approximately 42% 
(49/116) of tumors remained static with respect to subtype after chemotherapy (Figure 5). 
These tumors were basal (11) / claudin-low (16) or luminal (18) / luminal-infiltrated (4) at TURBT 
and clustered with the CC1-Basal or CC2-Luminal subtypes, respectively, at RC (Figure 5). 
 
The next most conspicuous change after NAC was a loss of luminal and basal marker 
expression combined with an enrichment for immune infiltration (CC3-Immune), which occurred 
in 34% (39/116) of cases. Of the pre-NAC luminal tumors, which lacked immune infiltration, 32% 
(13/41) became immune infiltrated post-NAC. We did not observe the CC3-Immune subtype 
arising out of any one of the pre-NAC subtypes more than another, which may imply that this is 
a more generalized immune response associated with chemotherapy-induced cell death (26, 
27). In contrast, we found luminal tumors were more likely than basal tumors to become CC4-
Scar-like after NAC (12/55 vs. 2/61, p=0.006). In all cases, we observed similar patterns for the 
other subtyping models used in this study (Figure S8).  
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DISCUSSION 

 
Until recently, the treatment of MIBC has remained static for years, despite high mortality rates 
and optimal treatment (1, 2). The era of targeted therapies has up to now bypassed bladder 
cancer, and cisplatin-based chemotherapy remains a critical component of MIBC therapy. 
Recent studies have begun to detail NAC responses at a higher resolution, where basal tumors 
have been shown to benefit the most with respect to overall survival after NAC (14, 28). Specific 
mutations in ERCC2 and other DNA repair genes also predict for excellent outcomes after NAC 
(29, 30). In the metastatic setting, immunotherapy has had a major impact on cisplatin-resistant 
MIBC, with approximately 20% of patients achieving a durable objective response to checkpoint 
blockade (11, 13). However, alternative second-line treatment options for the other 80% of non-
responding patients are lacking (11, 13, 31, 32). Therefore, an improved understanding of 
cisplatin-resistant MIBC genomics could help identify patients who may benefit from existing or 
emerging second-line treatments. 
 
In this study, we investigated a large cohort of matched pre- and post-NAC MIBC samples and 
developed a novel subtyping scheme to define the genomics of cisplatin-resistant MIBC. In the 
post-NAC setting we identified four distinct subtypes which we named CC1-Basal, CC2-
Luminal, CC3-Immune and CC4-Scar-like (Figure 6). Notably, the CC1-Basal and CC2-Luminal 
subtypes were highly consistent with the established chemo-naïve basal and luminal subtypes, 
respectively. Although cluster assignments using different parameters resulted in similar 
clustering-solutions, the silhouette widths for CC3-Immune and CC4-Scar-like were wide, 
suggesting instability, similar to the previous descriptions of treatment-naïve MIBC as “p53-like” 
or “infiltrated” (5, 8). 
 
After chemotherapy, it is assumed that even cisplatin-resistant tumors will undergo some 
degree of apoptosis, resulting in chemokine release and immune cell recruitment to the tumor 
site (33). In both the CC1-Basal and CC3-Immune, we observed an enrichment of immune 
infiltration and chemokine / cytokine activity consistent with this occurrence. However, these 
tumor-infiltrating immune cells are likely in a quiescent state given the lack of tumor clearing and 
higher expression of immunosuppressive genes including checkpoint markers in both the CC1-
Basal and CC3-Immune. Patients in the CC3-Immune cluster had the worst prognosis, which 
indicates both the greatest need and simultaneously the greatest potential benefit from second-
line treatments, such as checkpoint inhibition. 
 
The CC4-Scar-like transcriptome profile was highly similar to non-neoplastic scar tissue. This 
subtype lacked basal or luminal marker expression, but robustly expressed fibrosis and ECM 
markers, consistent with the wound-healing response which leads to scarring (34). CC4-Scar-
like tumors share similarities with the previously described p53-like subtype(8). However, this 
postNAC stromal / p53-like signature was found to be distinct from preNAC p53-like tumors (8). 
Work in kidney has shown that damaged epithelial cells can be induced to a partial EMT state, 
which coincides with a loss of epithelial markers and an arrest of cell cycle activity (35). Given 
the tumor content in these samples, we hypothesize the gene expression patterns driving this 
cluster were not only derived from infiltrating fibroblasts, but also from tumor cells that are 
shifting to a transcriptional program consistent with fibrosis. Dvorak et al. offered the compelling 
idea that these “scar cancers”, referring to tumors that did not arise in a previously healed 
wound site (scar), but rather were responsible for generating the desmoplastic stroma in which 
they are embedded (36). This may be most consistent with our CC4-Scar-like cluster, as these 
samples still have significant tumor content, but a concurrent robust desmoplastic stromal (p53-
like) signature. Alternatively, it is possible that the tumor cells themselves have become 
quiescent in response to chemotherapy, facilitating the infiltration of fibroblasts and subsequent 
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‘wound healing’ signature observed in these samples. In truth, it may be something closer to the 
intersection of these two ideas. Biologically, this may be interpreted as a partial response to 
NAC and, indeed, the patients in this group seem to have improved prognosis. Finally, these 
findings also corroborate previously reported histologic tumor regression grades (21). 
 
While an obvious pattern for the shift of subtypes before and after NAC did not emerge, we still 
made several important observations. We characterized one subtype based on a loss of luminal 
and basal marker expression with concomitant persistence or gain of marked immune infiltrate 
after chemotherapy, leaving the immune infiltration as the defining feature of this subtype. 
Immune infiltration is not unique to this subtype, since the pre-NAC GSC luminal-infiltrated 
tumors are also defined in part by immune-infiltration, and both basal and claudin-low subtypes 
also have significant immune infiltration. In the future, a more granular analysis of pre- and post-
NAC immune characteristics could focus on qualitative differences in the nature of immune 
infiltration related to therapy. 
 
We hypothesize that the shift in subtypes after NAC is due to tumor plasticity. However, we 
acknowledge that some of the shift in subtypes may reflect inherent tumor heterogeneity. 
Furthermore, it is possible that NAC selects for one subtype over another so that a minor 
subtype in the TURBT sample becomes the predominant subtype in the RC sample.  Thomsen 
et al. recently reported on intratumoral heterogeneity in 4 patients with MIBC. Both basal and 
luminal clones were present in two cases with multifocal disease (one patient had both MIBC 
and non-MIBC), but the subtyping was uniform in the other two cases with unifocal MIBC (37).  
Other reports have suggested that multiple MIBC clones have highly consistent gene 
expression profiles (38). In the current analyses, there was close correlation in IHC staining 
between different tumor areas. Furthermore, the shift of approximately 40% of cases to two 
different subtypes (CC3 and CC4) that were not observed in the pre-NAC setting would imply 
that the changes are due at least in large part to real changes in biology and not necessarily 
tumor heterogeneity.  
 
We acknowledge several other potential confounders in our analysis. First, this study is limited 
by its retrospective nature and the limited sample size of our dataset. In addition, there is a 
potential for gene expression profiles to vary between TURBT and RC samples (39). It is 
possible that some differences in gene expression are not only due to NAC but may reflect a 
wound-healing reaction in response to TURBT.  Finally, although the majority of patients in this 
study had a single tumor, we cannot exclude that multifocality was present in a small number of 
cases, and that different tumor sites were sampled at TURBT and RC in some cases. 
 
This study advances our understanding of the biology of cisplatin-resistant MIBC and allows us 
to speculate about the potential implications for post-chemo treatment options. Critically, we 
have shown that there are two unique immune-infiltrated subtypes (CC1-Basal and CC3-
Immune). It will be important to determine in future studies whether these two subtypes will 
respond differentially to subsequent immunotherapy. The unfavorable outcome of CC2-Luminal 
tumors suggests that targeted therapies may be most important for these tumors (40). On the 
other hand, further treatment may not be necessary in CC4-Scar-like tumors, which showed a 
favorable outcome after NAC and RC, despite a lack of complete pathological response. 
Prospective clinical trials will be necessary to determine the benefit of specific adjuvant or 
salvage treatments in each tumor class in order for this work to gain clinical utility. 
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FIGURE Legends 
 
Figure 1: Molecular subtyping of pre-NAC TURBT and post-NAC RC bladder cancer samples 
using the GSC. (A) Prognosis using the GSC in the pre-NAC setting (n=114); (B) Prognosis 
using the GSC in the post-NAC setting (n=114); (C) Distribution of subtype calls in the pre-NAC 
and post-NAC setting (n=116); (D) Comparison of subtype calls using different models (n=116), 
samples are ordered according to the GSC model in both the pre- and post-NAC settings; (E) 
Concordance of models with respect to the basal / luminal axis (n=116), where complete model 
agreement is the darkest blue (or red) and scored as 5 (see Methods for additional details).  The 
MDA p53-like and Lund Infiltrated subtypes have zero weighted votes.  The grey box indicates a 
tie between the agreement of the models. The Fleiss’ Kappa indicates the concordance across 
the different models and is significantly higher in pre-NAC when compared to the post-NAC 
samples. 
 
Figure 2: Defining novel biological clusters using gene expression profiling in post-NAC bladder 
cancer.  (A) Forced-order heatmap for selected MIBC marker genes (see text for description); 
(B) basal gene signature (14), (C) luminal gene signature (14), (D) IHC with KRT5/6 and GATA3 
antibodies showing higher staining in CC1-Basal and CC2-Luminal tumors, respectively.  (E) 
Summary of IHC staining across the TMA for KRT5/6 and CD44, (F) Summary of IHC staining 

across the TMA for GATA3 and PPAR. 
 
Figure 3:  Enrichment of immune cells and immune signaling pathways in CC3-Immune. (A) 
Pan cancer immune gene enrichment signature (41); (B) A generalized immune signature 
(Immune190) (22);  (C) T-cell gene signature (9); (D) T-helper cell gene signature (9);  (E) IHC 
with anti-CD8 antibodies showing enrichment of T-cells; (F) summary of CD8 IHC across the 
entire TMA; (G) a gene enrichment signature for cytokines / chemokines (42). 
 
Figure 4:  Gene expression similarities between non-neoplastic scar-tissues and the CC4-Scar-
like subtype from RC tumor specimens.  (A) H&E stained sections; (B) IHC with KI67 antibodies; 
(C) summary of KI67 IHC across the entire TMA; (D) Cell cycle gene signature (9); (E) ECM 
gene signature (8); (F) median-fold change comparison of CC4 and scar tissue gene 
expression; (G) PCA on four consensus clusters with scar tissue – left panel / right panel; and 
(H) KM plot for overall survival. 
 
Figure 5: Proposed model to describe plasticity in cisplatin-treated MIBC.  (A) Apoptosis causes 
cytokine release and immune cell recruitment to tumor site; CC3-Immune, (B) Tumor does not 
respond to therapy and maintains subtype, (C) Tumor partially regresses and adopts a scar-like 
phenotype, (D) Tumor cells are mostly cleared but repopulated with a less differentiated cancer 
cell population (previously luminal becomes basal) or with a cell population that is induced down 
a luminal differentiation pathway (if previously basal).  The left arm represents luminal-type 
tumors (shown in dark blue) and the right arm represents basal tumors (shown in red).  The 
right panel shows the GSC subtype pre-NAC and the corresponding consensus cluster post-
NAC.  The CC1-Basal tumors are indicated by red color, CC2-Luminal by dark blue, CC3-
Immune by green and CC4-Scar-like by yellow. 
 
Figure 6: Scheme indicating the classes identified after NAC and their phenotype and biological 
characteristics. 
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