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ABSTRACT Infrastructures enabling experimental assessment of Internet of Things (IoT) solutions are 
scarce. Moreover, such infrastructures are typically bound to a specific application domain, thus, not 
facilitating the testing of solutions with a horizontal approach. This paper presents a platform that supports 
Experimentation as s Service (EaaS) over a federation of IoT testbeds. This platform brings two major 
advances. Firstly, it leverages semantic web technologies to enable interoperability so that testbed agnostic 
access to the underlying facilities is allowed. Secondly, a set of tools ease both the experimentation workflow 
and the federation of other IoT deployments, independently of their domain of interest. Apart from the 
platform specification, the paper presents how this design has been actually instantiated into a cloud-based 
EaaS platform that has been used for supporting a wide variety of novel experiments targeting different 
research and innovation challenges. In this respect, the paper summarizes some of the experiences from these 
experiments and the key performance metrics that this instance of the platform has exhibited during the 
experimentation. 

INDEX TERMS Experimentation; Internet of Things; Interoperability; Semantics; Testbeds 

I. INTRODUCTION 
Experimentation is one of the basis for technological 

advances [1]. Being able to test and assess the behaviour and 
the performance of any piece of technology (i.e. protocol, 
algorithm, application, service, etc.) under real-world 
circumstances is of utmost importance to increase the 
acceptance and reduce the time to market of these innovative 
developments. 

The Internet of Things (IoT) is unanimously identified as 
one of the main technology enablers for the development of 
future intelligent environments. It is driving the digital 
transformation of many different domains (e.g. mobility, 
environment, industry, healthcare, etc.) of our everyday life. 

This is happening by realizing the paradigm of more 
instrumented, interconnected and intelligent scenarios. 
Instrumented through low-cost smart sensors and mobile 
devices that turn the workings of the physical world into 
massive amounts of data points that can be measured. 
Interconnected so that different parts of a core system, like 
networks, applications and data centres, are joined and 
“speak” to each other, turning data into information. And 
intelligent with information being transformed into real-time 
actionable insights at massive scale through the application 
of advanced analytics. 

The IoT concept has attracted a lot of attention from the 
research and innovation community for a number of years 
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already [2]–[5]. One of the key drivers for this hype towards 
the IoT is its applicability to a plethora of different 
application domains [6], like smart cities [7], [8], e-health 
[9], [10], smart-environment [11], smart-home [12] or 
Industry 4.0 [13]. 

Despite the advances that have been accomplished, there 
is still enormous scope to develop novel and innovative IoT-
based solutions that aim at transforming our everyday life. In 
this respect, real-life experimentation should play a major 
role in these developments. Interestingly, there are initiatives 
that, in order to improve these solutions’ maturation and 
significant rollout, try to support the evaluation of IoT 
solutions under realistic conditions in real world 
experimental deployments [14], [15]. However, still they 
tend to lack the necessary scale or they fail to fulfil some key 
indicators [14], [16]. Nonetheless, large-scale infrastructures 
enabling the assessment of developed solutions under real-
world circumstances are scarce and are not always available 
for those willing to test their innovations. Moreover, such 
infrastructures are typically bound to a specific application 
domain, thus, not facilitating the testing of solutions with a 
horizontal approach (i.e. fulfilling requirements from 
different application domains). 

Thus, it is deemed necessary to set-up IoT 
experimentation infrastructures that have the appropriate 
scale, experimentation realism, heterogeneity, 
interoperability and openness to facilitate the development 
of innovative solutions that can actually realize this 
paradigm of instrumented, interconnected and intelligent 
scenarios. 

This paper presents a platform that has been implemented 
for enabling Experimentation as a Service (EaaS) over 
multiple IoT testbeds. In this sense, the key advance with 
respect to the state of the art brought by the IoT EaaS 
Platform, which this paper is describing, is twofold. On the 
one hand, the tools and services underpinning the EaaS 
concept across federated IoT data sources that reduce the 
effort to build and run experiments. Experimenters assessing 
their research on top of this IoT Platform are able to get data 
from any of the underlying testbeds using a unique set of 
tools and Application Programming Interfaces (APIs). On 
the other hand, the interfaces and models provide IoT testbed 
semantic alignment and interoperability so that the resulting 
platform increases scale, heterogeneity, experimentation 
realism and cross-domain innovation. These testbeds 
federate through the semantic web platform allowing the 
interoperability and seamless testbed-agnostic access to the 
services and data that they provide. The paper describes the 
overall system architecture as well as the tools implemented 
to support the EaaS paradigm. 

In addition to the description of the design principles and 
the specification of the different building blocks, another 
contribution of the paper is the validation and evaluation of 

                                                 
1 http://fiesta-iot.eu/ 

the instantiation of the platform design that has been created 
within the H2020 FIESTA-IoT project1.The implementation 
of this instance of the proposed interoperable IoT EaaS 
Platform does not only imply the development of the 
different components integrated within, but also the 
specification of the semantic information models (i.e. 
ontologies and taxonomies [17]) that constitutes the baseline 
of the semantic web-based solutions adopted. This 
evaluation and validation is based on the performance of the 
implemented instance during the realization of several 
experiments on top of it. Additionally, it is also based on the 
feedback received from the experimenters that actually run 
the abovementioned experiments. 

The structure of the remaining of the paper is as follows. 
Section II briefly reviews existing infrastructures supporting 
the EaaS concept (with emphasis on IoT-related ones). The 
integrated IoT EaaS Platform low-level architecture and the 
different components that are part of it are presented in 
Section III. In Section IV the workflow for federating IoT 
testbeds and making their resources available through the 
Platform is described. Section V summarizes the tools and 
procedures that experimenters have at hand to access the 
underlying testbeds datasets in a testbed-agnostic manner 
and, thus, carry out their experiments. In Section VI, the 
results of the validation and evaluation of the Platform 
instantiation are presented. Finally, Section VII contains 
some concluding remarks and discussion on the scenarios 
enabled. 

 
II. RELATED WORK 

A.  EXPERIMENTAL INFRASTRUCTURES 
The need for IoT experimentation facilities is driven by the 
effort and expense required to create realistic environments to 
test new IoT technologies. This has led to the creation of 
experimental testbeds. Wisebed [18], FIT IoT-Lab [19], 
Fed4FIRE [20], and GENI [21] are all testbeds that support 
wireless sensor network experimentation allowing the testing 
of new communication and application protocols that 
underpin the IoT domain (in particular looking at improving 
the properties of reliability, power consumption, performance, 
etc. in IoT networking environments). Such environments are 
technology specific and do not support experimentation of 
new IoT applications and services. In response, 
SmartSantander [15] provides a large-scale, geographically 
distributed range of real-world sensors to test new innovative 
IoT services; LiveLab [22] offers a facility to evaluate human-
usage of the technologies; and [23] presents a Mobile Sensing 
testbed of smart phones to support field-testing of new crowd-
sourcing applications. While enormously useful in their own 
right, these higher-layer testbeds are either domain specific (a 
particular type of experiment or technology domain) or do not 
consider key IoT development concerns– namely achieving 

http://fiesta-iot.eu/


This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

 

VOLUME XX, 2017 9 

interoperability across domain silos and heterogeneous 
technologies. The IoT EaaS Platform proposed in this paper is 
technology and domain agnostic (federating multiple smart 
city, smart home, crowd-sensing testbeds) to allow 
experiments that demonstrate IoT interoperability across 
highly heterogeneous IoT environments. 

B. SEMANTIC INTEROPERABILITY 
The use of semantic web technologies to query and manage 

information within federated cyber-infrastructures [24], [25] 
is being explored as a promising approach to support the 
necessary coherence among heterogeneous experimental 
infrastructures. However, most of them make a top-down 
approach defining only the framework and assessing the meta-
directory service using their own ontologies [26], [27], or 
extensions of established ontologies such as the W3C 
Semantic Sensor Network (SSN) ontology [28]. They do not 
take into account the necessities from already deployed 
infrastructures, and neither define the procedures for them to 
join their federations. Moreover, some of them are still only 
design proposals [29] that have not been implemented nor 
assessed. Finally, those that present some kind of assessment 
of their solutions’ implementation, while supporting the 
potential of the solution, exhibit a lack of exposure to real-life 
situations and actual heterogeneous testbeds, including large-
scale IoT experimental infrastructures, which would show the 
true scalability and flexibility of the solutions. At the time of 
writing, the FIESTA-IoT Platform has already integrated eight 
different testbeds from heterogeneous application domains 
(e.g. smart cities, maritime, smart building, crowdsensing, 

smart grid, etc.) with over 5,000 IoT devices overall which 
produce millions of observations per day. 

III.  FIESTA-IOT PLATFORM KEY CONSIDERATIONS 
AND ARCHITECTURE 

A.  KEY DESIGN CONSIDERATIONS 
The main aim of the Platform described in this paper is to 
enable an EaaS paradigm for IoT experiments. However, 
instead of deploying yet another physical IoT infrastructure it 
enables experimenters to use a single EaaS API for executing 
experiments over multiple existing IoT testbeds that are 
federated in a testbed agnostic way. Testbed agnostic implies 
in this case the ability to expose a single testbed that virtualizes 
the access to the underlying physical IoT testbeds. 
Experimenters learn once and accordingly use the EaaS API 
to access data from any of the underlying testbeds.  
To this end, the testbeds that aim to participate in the 
federation have to implement common standardized semantics 
and the interfaces that have been defined. This enables the 
meta-platform to access the data that their devices produce as 
well as the descriptions of their devices and the services that 
these devices might expose. 
As it can be seen in Fig. 1, the central component of the IoT 
EaaS meta-platform is a directory service (so-called meta-
directory), where sensors and IoT resources from multiple 
testbeds are registered. In the same way, the observations 
produced by these resources are also stored. This directory 
enables the dynamic discovery and use of IoT resources (e.g., 
sensors, actuators, services, etc.) from all the interconnected 
testbeds. 

 

FIGURE 1.  Abstract IoT EaaS Platform and testbed federation concepts overview 
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The key concept behind the federation of IoT testbeds is the 
specification of a common Testbed API that defines the 
interfaces to carry out the registration of the testbed resources 
as well as pushing of the observations to the meta-platform. 
Besides the actual technologies used for implementing these 
interfaces, the main feature that underlies the Testbed API is 
the fact that the information is exchanged in a semantically 
annotated format.  
In this sense, the first main design decision is the use of 
semantic technologies to support the interoperability between 
heterogeneous IoT platforms and testbeds. Using a common 
ontology makes it possible to seamlessly deal with data from 
different sources. Federated testbeds have to implement their 
own Semantic Annotators to transform the data they handle 
internally to the common semantic ontology defined by 
FIESTA-IoT. Different RDF representation formats (e.g. 
RDF/XML, JSON-LD, Turtle, etc.) are supported as long as 
the common ontology is used. 
The second major design decision is to take as reference the 
IoT ARM as defined in the IoT-A project [30]. This decision 
has brought out, within the IoT EaaS Platform context, the 
need to comply with the Domain and Information Models 
defined in the ARM. Thus, the architecture focus on defining 
a canonical set of concepts which all IoT platforms, which can 
be part of the federated IoT EaaS Platform can easily adopt. 
The adoption of these essential concepts only require from 
underlaying testbeds a straightforward tuning of the models 
that they handle internally. In this sense, independently of 
which internal model the testbeds uses, whether it is 
proprietary or based on existing standards [31], [32], they 
should be able to find in a straightforward manner how to map 
the internal modelling to the canonical concepts managed 
within the IoT-related ontology used as a basis for the 
Platform. The aforementioned tuning of models basically 
consist on mapping the internal structure of information to the 
one that uses the ontology as a basis. The less number of 
concepts to map and the more fundamental these concepts are, 
the less the chances to have existing IoT platforms that are 
unable to perform the mapping between their internal data 
model and the IoT-related ontology that is employed to enable 
interoperability among the federated IoT infrastructures. 
The foremost aspect that these choices imply is that the 
ontology that is used to regulate the semantic annotation of the 
testbeds’ resources is only bound by the core concepts that 
compose the aforementioned ARM Domain and Information 
Models. These core concepts are: 
• A Resource is a “Computational element that gives access 

to information about or actuation capabilities on a Physical 
Entity” [30]. 

• An IoT service is a “Software component enabling 
interaction with IoT resources through a well-defined 
interface.” [30]. 

                                                 
2 Observation description from Semantic Sensor Network (SSN) 

Ontology. https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Observation 

These concepts conform the baseline for representing the 
devices and overall IoT infrastructure. However, there is still 
a major concept that is not tackled within the ARM models. 
This concept relates to the actual data that is gathered by the 
devices and offered through the services that expose them. It 
is the Observation concept: 
• An Observation is a “piece of information obtained after a 

sensing method has been used to estimate or calculate a 
value of a physical property related to a Physical Entity”2. 

The fact that the IoT EaaS Platform is not bound to any 
ontology makes it design fundamentally re-usable and 
extendable. 

B.  FIESTA-IOT PLATFORM FUNCTIONAL 
ARCHITECTURE 
The IoT EaaS Platform has been designed and implemented 
having all these considerations in mind, both in terms of 
enabling EaaS and allowing IoT testbeds federation. Fig. 2 
shows the Platform functional architecture. 

FIGURE 2.  IoT EaaS Platform detailed functional architecture 
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underlying testbeds IoT devices and the observations that they 
generate. Moreover, it exposes the interfaces necessary to 
access this data. 
On top of the IoT-Registry, the architecture consists of the 
additional set of tools and APIs underpinning the EaaS 
concept. They allow experimenters assessing their research on 
top of the IoT EaaS Platform to get data in a testbed-agnostic 
manner. Moreover, several experiment management 
components, namely Experiment Execution Engine (EEE), 
Experiment Registry Module (ERM), Experiment 
Management Console (EMC) and Experiment Result Storage 
(ERS) ease the experiment creation and management and the 
result extraction. They allow the experimenter to define an 
experiment in an XML-based document, schedule its 
execution in an unattended manner and store the results for 
later retrieval. ERM and EMC are available via the Platform 
Portal, a web-based UI open to the experimenters and testbed 
providers (represented in Fig. 2 with browser icons). 
In addition to these components, added-value services are also 
provided as part of the Platform experimentation tools 
portfolio. Through the Analytics and Reasoning modules 
experimenters can easily get added-value data without the 
need to implement the algorithms themselves. These modules 
can be used within the workflow of the experiment to get the 
raw data from the IoT-Registry and generate already 
processed data that fits with the experimenter needs. 
Below the IoT-Registry the IoT EaaS Platform is focused on 
the interfaces and models supporting IoT testbed semantic 
alignment and interoperability so that the resulting platform 
has increased scale, heterogeneity, experimentation realism 
and cross-domain innovation. Still at the testbed side, two 
components must be implemented. The Semantic Annotator 
and the Testbed Provider Services (TPS) respectively 
transforms the data model used internally at the testbed into 
semantically annotated data (based on the IoT-related 
ontology defined for the specific instance of the IoT EaaS 
Platform) and exposes the interfaces for the Platform to access 
that data. The TPS interacts with the Data Management 
Services (DMS) already at the Platform side of the 
architecture. The DMS proxies the observations that arrives at 
the IoT EaaS Platform towards the IoT-Registry, where they 
are stored indefinitely. Since the Platform does not only 
manage information related to observations generated by 
underlying testbeds only but also the descriptions of the actual 
IoT devices (i.e. sensors, actuators and tags), the Testbed and 
Resource Registration (TRR) module exposes the necessary 
interfaces to register the descriptions of the testbeds’ 
resources. This registration is done either via the Platform 
Portal or through the TRR API. Before any RDF document is 
stored in the IoT-Registry, its compliance with the IoT-related 
ontology employed as baseline for interoperability has to be 
validated. Otherwise, the data inserted into the repository 
could be flawed and cause issues while querying afterwards. 
The Semantic Validator is in charge of this assessment both 
for the observations and the resource descriptions. 

Finally, all the interfaces exposed by the IoT EaaS Platform 
are secured using HTTPS and the corresponding 
authentication and authorization filters. Every query received 
has to pass through a Policy Enforcement Point (PEP) which 
checks if it contains a valid security token and if that token 
actually belongs to a user authorized to make such query. 

C.  IOT-REGISTRY 
IoT-Registry’s main function is to store all the (semantic) 
resource descriptions and observations that the underlying 
testbeds provide. On top of this “collector” behaviour, it 
implements a fully-fledged REST API that allows the 
interplay between users and the stored information. Fig. 3 
shows the internal architecture of the IoT-Registry. 
At the core of the IoT-Registry is the Triplestore Database 
(TDB) that provides the storage capacity for aggregating the 
Resource Descriptions from the devices belonging to the 
federated testbeds as well as the Observations that these 
devices are constantly producing. In this sense, the TDB 
internal structure follows the canonical concepts defined by 
the ARM information model. By using these concepts as a 
basis for its internal structure, it is able to adapt to different 
IoT-related ontologies. 

FIGURE 3.  IoT-Registry internal architecture 
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The remaining two components, namely the Resource 
Manager (RM) and the Resource Broker (RB), transform the 
IoT-Registry from a regular Semantic Datastore into an 
enabler of the Web of Things paradigm. The key idea is that 
the services exposing the underlying IoT devices (i.e. sensors 
and/or actuators) are accessed using a truly web-oriented style. 
Both, the testbed-agnostic nature of the IoT EaaS platform and 
the service-oriented character of the IoT ARM [30], which 
underlies all the Platform architecture, are behind this 
behaviour. Firstly, the IoT-Registry hides the underlying 
resources by exporting a homogenized URI under a common 
domain namespace for each of the federated testbeds. It then 
provides a brokering mechanism that enables unified and 
proxied access to the underlying resources and the service 
endpoints that are used to expose them. 
1)  STORAGE STRUCTURE OF THE TDB 
As a result of the semantic modelling that underlies the design 
of the Platform, the information that is stored at the IoT-
Registry relates to two different, but tightly bound, realms. On 
the one hand, the descriptions of the resources that form the 
underlying testbeds and, on the other hand, the observations 
made by them. The internal structure of the TDB follows a 
similar approach. The implementation of the Jena-based query 
engine has two different graphs that are virtually merged into 
a global one, as can be seen in Fig. 4. The resources and 
observations graphs store the resource descriptions of the IoT 
devices and the observations that they generate, respectively.  
The linked graphs that the instances of each of these items 
form are mostly independent and, indeed, can be queried 
individually if the experimenter is interested only on 
information related to one of them. For example, the 
experimenter can look for the Service that is exposing any of 
the IoT devices using the typical what (i.e. physical 
phenomenon observed) and where (i.e. location) discovery 
criteria. For this search, only the resources graph should be 
explored by the query engine optimizing this way the 
discovery and access performance. Similarly, if the 
experimenter is interested on the data contained on the actual 
measurements collected by the sensors as they are also self-
contained in terms of geo-location, timestamp and 
phenomenon observed. 

FIGURE 4.  IoT-Registry TDB internal structure 
 
However, in the cases where the experimenter is looking for 
extra information about the IoT device that has produced an 
observation (e.g. accuracy, sensing procedure or other 

metadata), this information can only be obtained from the 
resources graph. If the two graphs weren’t virtually bound, the 
experimenter would have to execute two different queries. 
One over each of the two graphs. The solution adopted caters 
for the flexibility of allowing optimized queries when they 
target only one of the graphs but at the same time allows more 
complex queries looking for information that is stored on both 
of them. 
2)  DATA ENDPOINT 
SPARQL is known to be the most common and widely used 
RDF query language. Therefore, it is sensible to offer a fully-
fledged SPARQL interface, as part of the IoT Registry module 
that enables the support for this kind of semantic queries. The 
Data Endpoint (DE) module implements this functionally by 
enabling a direct SPARQL endpoint. 
The DE is a conformant SPARQL protocol service as defined 
in the SPARQL Protocol for RDF (SPROT) [33]. It allows 
users to query a knowledge base via the SPARQL language. 
Results are returned in any of the common data representation 
formats, namely JSON, XML, CSV, etc. The default endpoint 
runs the query on the “global” graph. However, it is also 
possible to limit the scope of the query to just the Resources 
or the Observations graph.  
Moreover, it also offers a system for the storage of queries so 
that its execution can be programmed without having to 
include the complete SPARQL sentence at every request. This 
additional functionality would make it easier to share 
knowledge between experimenters or testbeds and smooth the 
learning curve when it comes to cope with the specific features 
of the IoT-related ontology that is employed. 
Finally, an additional functionality has been added to the DE 
so that the stored SPARQL queries can be dynamically 
adapted and used as templates rather than as static queries. To 
achieve such a feature, the REST API wrapping the DE allows 
some variables to be replaced with input parameters in the 
GET/POST requests based on a set of pre-defined 
conventions. This feature has been added with a twofold 
objective. On the one hand, it promotes sharing queries, thus 
giving rise to a sort of “crowd-sourced” catalogue. Moreover, 
it enables the creation of optimized queries resolving recurrent 
demands from experimenters. This way it is possible to create 
a “best-practices” catalogue open to experimenters. On the 
other hand, this option reduces the overhead and eases the 
action of executing multiple times the same SPARQL 
sentence as caching can be used to enhance the query engine 
performance. 
3)  RESOURCE MANAGER 
The Resource Manager (RM) exposes the single-entry point 
for all the testbeds to register their IoT Resources’ 
descriptions. Its main role is to homogenize the descriptions 
received from the different testbeds. After syntactically 
checking the annotated descriptions and guaranteeing that they 
are compliant with the specific IoT-related ontology selected 
for that instance of the IoT EaaS Platform, the RM transforms 
the URI for all the resource descriptions in order to make them 
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belong to the common namespace. This process basically 
consists of overwriting the bindings that points to the original 
testbeds’ domains included in the annotated resource 
descriptions. These bindings are transformed to the common 
meta-platform domain so that every entity identifier and/or 
IoT Service endpoint, independently of which testbed they 
belong to, are exposed as if they belonged to a unique graph, 
namely the federation graph. For example, the resulting 
transformed URI for one of the testbeds original URI: 
http://api.smartsantander.eu#SmartSantande
rTestbed 

becomes:  
https://platform.fiesta-iot.eu/iot-
registry/api/testbeds/a1yp9GcKEPw37Bx5rslg
RI4QLSNCwEwBatCIOe_W0dHZCmzj2WmkExz3qoNuvW
g1pueAXn1Li0JrNjvBiQwV3Q== 

Therefore, all the semantically annotated descriptions 
generated by the testbeds are stored in the Triplestore 
Database following the testbed-agnostic paradigm adopted for 
the design of the IoT EaaS Platform. Once the necessary 
adaptations to the resource descriptions have been done and 
internally recorded for future use by the RB, the RM stores 
them into the TDB.  
While the communication interface between the RM and the 
TDB is based on semantic requests, the interface with the 
testbeds is based on standard HTTP encapsulating semantic 
documents. 
4)  RESOURCE BROKER 
Apart from the extraction of data from the TDB by executing 
SPARQL queries, the Platform supports the access to the 
services that directly expose the underlying IoT devices [34]. 
The Resource Broker is the component in charge of enabling 
the access to IoT devices’ services while keeping the testbed 
agnostic nature of FIESTA-IoT and homogenizing the way of 
accessing them for the experimenter. 
Graph’s nodes URIs are transformed for them to belong to the 
unified Platform namespace. This transformation makes the 
service endpoint to target the IoT EaaS Platform namespace 
and more specifically the IoT-Registry. The RB intercepts the 
requests made to the transformed URIs and forwards it to the 
corresponding testbed endpoint. This process is carried out 
internally at the RB so that for the experimenter it is 
completely transparent and it gets the service result without 
having to care about the specific testbed requirements. The RB 
manages any and all specific requirements (e.g. authentication 
method, etc.) imposed by each of the underlying testbeds. 

D.  EXPERIMENT DEVELOPMENT, DEPLOYMENT AND 
MANAGEMENT 
An experiment is defined as “a test under controlled 
conditions that is made to demonstrate a known truth, examine 
the validity of a hypothesis, or determine the efficacy of 

                                                 
3 A. H. Soukhanov, K. Ellis, and M. Severynse, The American Heritage 

Dictionary of the English Language. Boston: Houghton Mifflin, 1992. 

something previously untried”3. Nevertheless, our EaaS 
Platform focus on data-oriented experimentation where 
experimenation can be performed on the stored IoT data. The 
modules that address all the steps in the execution of an 
experiment (i.e. development, deployment and management) 
are shown in Fig. 2. 
The core of the experimentation support subsystem is the 
Experiment Execution Engine (EEE). This module essentially 
schedules or deploys the experiment based on the provided 
experiment specifications. The EEE exposes APIs that are 
broadly divided into 5 categories: scheduling, polling, 
subscription, monitoring and accounting. Scheduling API 
enable creating a recurrent job that executes the query 
included as part of the experiment specification. It also 
provides information (general description and status) about the 
created job, API to change the execution status of the job (start, 
stop, and resume job), change schedule parameters, and API 
to delete the job. The polling API provides a way to execute 
the experiment once and not to schedule it. The subscription 
API let experimenter subscribe or unsubscribe the public 
experiments. On the other hand, the accounting and 
monitoring APIs provides log information and status 
information about the execution of the experiments. 
EEE fetches from the Experiment Registry Module (ERM) the 
information about the experiments that is to be executed. ERM 
basically stores the experiments’ specifications and provides 
the interfaces to handle the storage process (e.g. saving, 
deleting, sharing, etc.). EEE is accompanied by an experiment 
controlling and management user interface (Experiment 
Management Console or EMC) that enables experimenters to 
view an execution summary and control the execution of their 
experiment. Once an experiment is executed by the EEE, the 
results are sent to experimenters. The experimenters need to 
enable a Receiver on their side to receive the results. In case 
the results are not delivered to the experimenter, the results are 
stored in an Experiment Result Storage (ERS) repository 
where experimenters can download the results at will.  
Dedicated APIs, which can be used by experimenters to 
develop their own experiment workflow, complement the 
above tools. In the case where experimenters do not want to 
use the graphical interfaces of these tools, they can use the 
APIs of these modules or perform querying directly on IoT-
Registry using the public IoT-Registry APIs.  
Another set of added-value services (described in Section 
III.F) are provided to help experimenters with the IoT data 
stored within IoT EaaS Platform. 

E.  TESTBED PROVIDER INTERFACE 
The Testbed Provider Interface (TPI) specification considers 
the main functionalities and properties that should be exposed 
by IoT testbeds in order to enable their integration within the 
EaaS Platform for the purposes of testbed-agnostic 
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experimentation. The TPI is a set of RESTful web services 
whose definition has been driven by various requirements, 
including flexibility and ease in the integration of testbeds, 
support of mainstream IoT standards for data and services 
representation and compatibility with existing IoT testbeds. 
The TPI spans across two different realms (cf. Fig. 2). The first 
is the EaaS Platform side with the TPI Configuration & 
Management layer that controls the functionality of the TPI by 
utilizing the offered user interface for the User (Testbed 
provider). The second is the testbed side with the Testbed 
Provider Services (TPS) API where the Testbed Provider (TP) 
has to implement a set of services that enables the 
management and manipulation of the offered data. 
A testbed may expose internally various standard and/or 
proprietary interfaces in order to interact with the sensor data. 
Thus, a list of core services (TPS) that should be exposed by a 
testbed in order to enable different connection methods to the 
EaaS Platform have been specified.  
The behaviour of these methods is controlled from a set of 
services, provided by platform itself (so-called TPI Data 
Management Services – DMS). They enable the TPs to 
consume and control the TPS services that their testbeds 
expose either by identifying a specific schedule or by enabling 
a data stream connection.  
In Fig. 5 we can see a simplified diagram of the different 
service interaction between the DMS services and the TPS 
ones for applying the different DMS functionalities described 
below. These services are grouped into two types according to 
the relation established between the testbed and the EaaS 
Platform, namely get-based and push-based. The TP can 
choose to either control the schedule of when to push the data 
(TPS Push Observations towards DMS) or let the platform 
control the schedule (DMS Get Observations from TPS). 
In the Push case, the TP triggers the TPS once in order to start 
pushing. The observations are then sent to the EaaS Platform 
as they are produced, or based on a scheduled controlled 
within the testbed itself. In the Get case, the TP specifies a 
schedule so that the testbed is polled at the configured 
frequency in order to retrieve the observations. 

FIGURE 5.  DMS-TPS service interactions 
 
In order to be able to initiate this configuration and set up 
process, the TPs need to register first the metadata of their 
testbeds and resources. This is done by utilizing the services 
that are exposed by the Testbed & Resource Registration 

(TRR) (cf. Fig. 2). The TPI Configurator, which is a User 
Interface component, enables the TP to discover the available 
resources, and manage the data retrieval process. It utilizes the 
IoT-Registry, TRR and TPI DMS services for that. 
1)  TESTBED PROVIDER SERVICES (TPS) 
As it has been described, in order to enable the “plugability” 
of the testbed to the EaaS Platform, it has to implement and 
expose at least one (get or push) of the TPS services. 
For the Get case, the getLastObservations and the 
getObservations services responds with the latest 
observations from a list of sensors, and with the observations 
from list of sensors for a specific time-period, respectively. 
The list of sensors from whom the observations are retrieved 
is the input parameter for both services. 
For the Push case, the pushLastObservations and the 
pushSingleObservation services correspondingly initiate 
a stream at the testbed side that pushes the observations from 
a list of sensors or from a specific sensor towards a specific 
endpoint at the TPI DMS. Both the list of sensors or the 
specific sensor from whom the observations must be pushed 
are the input parameters for each service. The 
stopPushOfObservations service stops the pushing of 
observations initiated by the said services and must be 
implemented in combination with them. 
2)  DATA MANAGEMENT SERVICES (TPI DMS) 
Regarding the TPI DMS services, which enable the TP to 
manage the services exposed by the testbeds’ TPS, for the Get 
case, the subscribeToObservations service queries the 
corresponding get-based TPS service based on a specific 
execution schedule and pushes the observations in the 
response to a specific endpoint. The 
unsubscribeFromObservation service stops the periodic 
polling initiated before. 
For the Push case, the subscribeToObservationStream 
service instructs the testbed’s TPS to push the observations 
from a specific sensors’ list to a specific endpoint 
(pushObservationsStreamProxy) as soon as they are 
generated. The said pushObservationsStreamProxy 
service is used in combination with the previous onw. It 
essentially creates a “proxy” between the TPS and the 
Message Bus (MB) for the testbeds to push their annotated 
observations measurements. Alternatively, the 
subscribeToObservationStreamWithTopic service 
triggers a similar behaviour on the TPS, which, in this case, 
starts pushing the observations directly to the MB using the 
identifier of the sensor that produced the observation as queue 
topic. Finally, the streams initiated by the previous two 
services are stopped using the 
unsubscribeFromObservationStream service. 

E.  ADDED-VALUE SERVICES 
1)  SEMANTIC ANNOTATION VALIDATION 
In order to guarantee the validity and the consistency of the 
data stored in the IoT-Registry, all the input semantic 
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annotation of resources and observations are validated before 
the storage.  
The validation can be configured to use any ontology as the 
reference ontology. In the current FIESTA-IoT use case, the 
FIESTA-IoT ontology is set as the reference ontology [17]. 
The Semantic and Syntactic Validator (cf. Fig. 2) performs the 
validation at several levels: 
1. Lexical check. It consists of verifying the correctness of 

RDF serialization regarding to the declared type (e.g. 
checking the XML format if the annotation is declared to 
be in XML). 

2. Syntactic checks. The syntactic check consists of verifying 
the correctness of the “syntax” of the RDF triples 
represented by the underlined serialization format, more 
specifically: 
a. Un-typed resources and literals. Here resource refers 

to instances of a class, and literal refers to a textual or 
numerical value. The type of resource or literal is the 
link of an annotation back to the ontology that enables 
the semantic capabilities. Any un-typed element 
presented in an annotation is problematic towards the 
semantic interoperability. 

b. Ill-formed URIs. They are checked against RFC39864 
that defines the syntax of URI. 

c. Problematic prefix and namespaces. Namespaces play 
the role of linking the annotation to the reference 
ontologies and vocabularies. A one-to-one mapping 
between the prefix and namespace is essential and shall 
be checked to ensure correct referencing. 

d. Unknown classes and properties. A prerequisite of 
semantic interoperability is that all the resources use an 
agreed vocabulary. As consequence, if any resource 
uses in its annotation a class or property that is not 
defined in the reference ontology, other resources 
would have no way to understand it, so that the 
semantic interoperability is impossible. 

3. Semantic checks. Following a successful syntactic 
validation, the semantic check consists of verifying the 
consistence of the semantic annotation regarding to the 
reference ontology: 
a. Problematic relationship or inheritance. Checks 

whether there is a model of Ontology (i.e. whether 
there exists a (relational) structure that satisfies all 
axioms in this ontology. 

b. Consistency of A with respect to B: determine if 
individuals in A do not violate descriptions and axioms 
described by B. 

An annotation is considered “valid” only if all the above 
aspects are checked without errors. If any error occurs, the 
annotation is not pushed to the IoT-Registry for storage, and 
the data-provider receives a response from the validator 
containing a test report indicating what is wrong in the 

                                                 
4 Uniform Resource Identifier (URI): Generic Syntax. 

https://tools.ietf.org/html/rfc3986  

submitted data. If the annotation is valid, it is pushed to the 
IoT Registry, and a response containing the URI of the 
registered annotation in the IoT-Registry is returned. 
2) ANALYTICS TOOL 
To maximise the added value of the data being extracted from 
the federated testbeds for the experimenter, it is important to 
provide data analysis tools. As a result, a Data Analytics web 
service (DAaaS) based on the Knowledge Acquisition Toolkit 
(KAT) [35] has been developed for the EaaS Platform to 
provide open access data analysis tools for data consumers as 
a web service. Such a tool provides the following benefits: for 
novice/beginner data consumer, the tools that would enable 
them to analyse and obtain useful information. While for the 
more advanced/experienced user providing the most effective 
tools for a given data set. 
The methods implemented as part of the Analytics tool are 
mainly based on data pre-processing techniques and machine 
learning techniques. For pre-processing, they involve the 
removal of corrupted or noisy data points from the original raw 
time series data. For machine learning, unsupervised machine 
learning techniques enable the experimenter to discover 
patterns of interest in the data set being analysed. Supervised 
learning techniques are included to aid an experimenter either 
to determine a relationship between a set of input and output 
data points, or to obtain an estimate of the output data points 
given the input data points.  

FIGURE 6.  Analytics Service Interaction 
 
There are also other methods that provide spectral analysis and 
data dependency estimation for the experimenter. Spectral 
estimation tools are particularly useful for designing digital 
filters for removing noise, while data dependency estimation 
tools are particularly useful for linear regression. 
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As it is shown in Fig. 6, to invoke the Analytics service, a 
HTTP POST request must be made. The body of the request 
contains a JSON object that encapsulates the list of methods 
and the corresponding parameters to be applied, the SPARQL 
query of which the retuned dataset will be based on, and the 
SPARQL endpoint where the dataset can be queried and 
obtained. 
3) REASONING TOOLS 
Apart from their capacity to enable interoperability, the key 
feature of semantics is enabling the extraction of knowledge 
out of information. This happens through “reasoning” engines 
that are mainly software components that allow the inference 
of logical consequences from a set of rules. A key part of the 
reasoning engines is the set of “rules”. They are normally 
specified by the end user (when they are linked with 
applications) or they are following the ontologies of the 
system. 

Reasoning 
Engine

Rule Creation API

Rule Registration API

Rule Execution API

Web 
Application UI

REST APIs

IoT Registry

MySQL DB

User

User

FIGURE 7.  Reasoning engine architecture 
 
In this sense, the EaaS includes a reasoning module that eases 
the process to extract knowledge out of the measurements 
generated by the integrated testbeds to the experimenters. The 
reasoning engine within the module is a rule-based engine that 
is able to infer logical consequences from the testbed 
measurements, simplifying the creation of rules. The 
reasoning engine is developed based on the Apache Jena open 
source framework5. The reasoning module allows the 
experimenters to define rules in the form of expressions “if 
(condition) then (result)” as below: 

• If (temperature) > (25degrees) then (notify_hot) 
• If (temperature) < (19degrees) and (humidity) > (60%) 

then (notify_unhealthy). 
The architecture of the reasoning module is shown in Fig. 7. It 
provides three APIs for creating a rule template, registering a 
new rule for a sensor or a set of sensors and executing the rule. 
The rules are stored in a MySQL database. The engine is 
connected to the IoT-Registry for getting the sensors’ 
descriptions and observations. The end users (experimenters) 
can access the reasoning module’s functionalities either 
through a simplified graphical interface or through the APIs, 
which facilitates the way they can integrate the reasoning 
engine in their applications. 
4) ANNOTATOR AS A SERVICE 
Data arriving to the EaaS Platform from the testbeds has to be 
semantically annotated using a reference ontology. Thus, it is 

                                                 
5 Apache Jena Open Source framework. 

https://jena.apache.org/index.html  

necessary to map the data format managed internally by the 
testbed to RDF documents complying with the selected 
reference ontology. The Annotator as a Service (AaaS) 
module lowers the burden for the TPs as they do not have to 
implement this mapping completely but just take, from their 
information models, the pieces of information that map into 
the desired reference ontology’s classes. AaaS receives as 
input a JSON object with that pieces of information (organized 
using a pre-defined JSON Schema) and generates the 
corresponding RDF document. This way, the integration effort 
for the TP is significantly reduced. 
5) TESTBED AND PLATFORM MONITORING 
In order to give a fast overview of the existing data and the 
overall situation of the resources, the Testbed Monitoring 
component is integrated. It helps the experimenters to check 
in advance the situation of testbeds or resources involved in 
their experiments. It also helps testbed owners to know if their 
data is still inserted correctly into the Platform. The user of the 
Testbed Monitoring can see at the overview page the status of 
the connected testbeds by showing how many sensors have 
send an observation within the last day and the total number 
of registered sensors. A detailed view per testbed is available 
which lists all sensors of the testbed. Per sensor the meta data 
like unit and the latest observation can be seen. Per sensor a 
graph of the last observations can be shown. 
Besides of these graphical features, the Testbed Monitoring 
provides an API that serves the data used in the GUI in JSON-
format. Moreover, a notification system is provided so that 
users can configure the module to send a notification to them 
when the configured threshold is reached. This can be used, 
for example, to inform testbed owners that no more data is 
inserted into the platform anymore. Background tasks will 
analyse the provided data in order to find anomalies in the data 
streams that could help to find sensors that do not behave 
correctly. 

F.  DATA SECURITY: AUTHENTICATION AND ACCESS 
CONTROL 
The EaaS Platform provides access to IoT data originating 
from multiple IoT testbed sources (including sensor data that 
may or may not contain personal information about people). 
Here, there are a number of challenges that must be addressed 
in order to create a secure infrastructure, which protects the 
IoT data resources, the users of the EaaS Platform, and the 
privacy of any observed persons. 
The proposed architecture is secure-by-design and its 
implementation puts in place access control solutions (using 
OpenAM6 security software) at all critical points in the 
architecture. This is a PEP (Policy Enforcement Point) and 
PDP (Policy Decision Point) pattern. That is, where IoT data 
is either requested or published to the Platform – the 
authorization of the user performing this action is evaluated 

6 ForgeRock Identity Platform: Access Management. 
https://www.forgerock.com/platform/access management/  

https://jena.apache.org/index.html
https://www.forgerock.com/platform/access%20management/
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against defined security policies and the access decision is 
enforced. 
This framework then provides the following key elements of 
a secure IoT infrastructure: 
1. Data authentication: Data retrieved by experimenters 

must originate from authentic IoT testbed sources. 
Federated testbeds must authenticate themselves and send 
data via a secure encrypted channel. Only authorized IoT 
sources can publish data to be available to experimenters. 

2. Experimenter access control: The Platform controls 
access to data to experimenters. By default all data is 
protected to be only available to experimenters. However, 
IoT data providers (testbeds) can also set up policies to 
control which experimenters (or groups of experimenters) 
can access to their data. 

3. Subject privacy: observed persons must provide their 
consent for these observations to be used by 
experimenters. Where they do not provide consent, then 
the data is not included (or made available) in the platform. 
The Platform requires and checks that individual testbeds 
enforce this policy. 

In summary, the whole EaaS process is secured by fine-
grained access control that can ensure that data is accessed 
securely and in line with existing privacy regulations. 

IV.  TESTBED FEDERATION 
Integrating a testbed within the EaaS Platform can be achieved 
by completing a set of steps 1) Develop your annotator and 
TPS; 2) Get certified by the platform owner; 3) Register your 
testbed and resources; and 4) Configure your resources. 
As it has been already described, data arriving to the Platform 
from the testbeds has to be semantically annotated using the 
selected reference ontology that is used as a basis for 
guaranteeing interoperability. So, for the first step TPs can 
either develop the annotator themselves or use the Annotator 
as a Service API (cf. Section 3.F.3). 
After successfully generating the testbed’s annotator the TP 
should decide on how the captured observations are going to 
be provided, this means if the “Get” or the “Push” 
methodology is going to be used, and develop the TPS 
accordingly (see Section 3.E above). In order to facilitate the 
TP with the TPS development a skeleton component 
implementing all the required services can be easily provided 
which would only require the testbed’s internal data access 
and annotator integration. 
After successfully completing the TPS implementation the 
next step would be to validate the implemented TPS and 
annotator. In order to go over this step, the EaaS Platform 
includes a Certification Portal that can be used by the TP to 
get certified. 
The next step would be to register the available testbeds and 
resources to the IoT EaaS Platform. The TP can make use of 
the tools at the Platform Portal UI for this process. 
Finally, the TP should instantiate and schedule the data 
pushing (testbed controls the scheduling) or retrieval (platform 

controls the scheduling) whether using the TPI configurator 
tool or directly calling the DMS services (cf. Section 3.E). 

V.  EXPERIMENT AS A SERVICE WORKFLOW 
In order to utilize the provided experimentation tools, the 
experimenter has to create an Experiment Description 
Specification, so-called EDSpec, which serves as a Domain 
Specific Language (DSL) for the experimentation tools to 
know which the experimentation workflow to be followed is. 
EDSpec is an XML document that contains Experiment 
Model Objects (EMO). An EMO contains the description and 
domain of interest of the experiment, and Experiment Service 
Model Objects (ESMOs). ESMO is the main entity that 
enables EEE to perform experiment related task. Note that we 
interchangeably call an ESMO as a job when referring to an 
ESMO in the context of EEE. This is because EEE creates a 
recurring job based on the specified parameters. Essentially, 
an ESMO contains a job description (such as scheduling tag 
parameters, query to execute, tags notifying where the 
experiment output should be sent, if result set is empty 
whether to report to the experimenter or not, list of dynamic 
attribute tags used within the query) for the EEE to schedule 
and execute it accordingly.  
An EDSpec can be created mainly in two ways: (i) using an 
experiment editor which provides a graphical user interface to 
ease the process, or (ii) using any XML editor tool. If the 
EDSpec is created using an experiment editor, it is directly 
stored in the ERM when the experimenter saves the EDSpec. 
However, if an XML editor is used, the experimenters are 
required to store the EDSpec using ERM client. Using ERM 
client experimenters are able to review existing EDSpecs, save 
new EDSpecs, and delete existing experiments. In addition to 
the user interface, the ERM client also exposes an ERM API 
that can be used to programmatically manage the 
experimenters’ EDSpecs (i.e. as the experiment editor does). 
Once the experiment is saved using either of the two methods 
described above, it is essential that the experiment is enabled 
for the execution using EEE. As described in Section 3.D, the 
EMC (a client for EEE) is used to perform such an activity. 
Within EMC, experimenters first need to select a particular 
experiment object (EMO) whose service (ESMO) they want 
to enable then use the interface to view information about the 
ESMO, start/stop the schedule (enable it for execution), view 
execution log graphs that include run time and data received 
information views or clear the execution history. In addition 
to the above functionality, experimenters can subscribe to 
already existing service models that have been stored and 
made publicly available within the EaaS Platform. Such 
feature enables the experimenters to leverage from already 
defined services. Once subscribed, experimenters can also 
unsubscribe the experiment using the EMC. EMC internally 
uses the EEE APIs (cf. Section 3.D) upon request from the 
experimenters’ actions over the graphical user interface 
available through the Platform Portal.  
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The execution of the query is managed in two ways according 
to the given parameters. If within ESMO, the “widget” tag is 
specified the EEE executes analytics API. The analytics API 
then executes the query in the ESMO in two phases: first, it 
executes the query on the IoT-Registry and retrieves the 
results and then analysing the results based on the attributes 
set in the widget. On the other hand, if the “widget” tag is not 
specified the query is executed directly on the IoT Registry 
DE. As the scope of the query can span both the resource and 
observation graphs, the EEE executes the queries using the 
global graph (c.f. Fig. 4). 
Once the ESMO is executed using either the analytics tool or 
IoT-Registry directly, it is essential to transfer the obtained 
result set to the experimenter. If EEE executed the query on 
the IoT-Registry directly, after obtaining the result set, it sends 
the results to the experimenters using the endpoint that they 
have to specify before running their experiments. Note that, 
this endpoint is provided in the ESMO. The result-set is sent 
as a multi-part file to enable large results to be transferred 
successfully. If the sending fails due to any reason (network 
failure or service location unavailable), the EEE stores the 
results into the ERS. The experimenters can then use the ERS 
API to download the results that were not sent to them. To 
facilitate the experimenters, the EMC also displays relevant 
information to the experimenters so that they can use the 
information to call the ERS APIs. This information mainly 
includes the JOBID and the EMOID. The analytics tool, 
however due to its asynchronous behaviour, stores the results 
in the ERS directly and experimenters are advised to 
frequently check back if the results are available in the ERS or 
not. ERS mainly has a POST and a GET API that enables the 
EEE or the analytics tool to send the result set to the ERS 
internal repository and experimenters to retrieve the result 
sets. The GET API of the ERS is only made public. Once the 
experimenters download the result sets, this GET API also 
deletes the result sets from the repository. It should also be 
noted that the EaaS Platform Portal is a one stop shop that 
integrates all the UIs relating to the experiment development, 
deployment and management services for easy access. 
In order to successfully execute the EDSpec, experimenters 
should follow best practices that enable error free execution of 
the experiment. These best practices include: correctly 
specifying text tags, setting scheduling parameters such that it 
does not overload the system (i.e. not specifying execution to 
happen every second, writing queries that are not generic, or 
writing queries that result in huge datasets), providing the 
correct location where the data should be sent, and respecting 
the ontology structure in the SPARQL query. 
The above-described workflow is one way of executing the 
experiments using the tools provided by the EaaS Platform. 
However, an experimenter can create their own EEE like tool 
using the APIs of the EEE, ERM, ERS and Analytics tool and 
execute that component on their side. Nonetheless, if an 

                                                 
7 https://www.graylog.org/ 

experimenter does not want to use the related APIs, they can 
create their own tools to call the IoT-Registry API and retrieve 
IoT data. As experimenters then can define their own 
workflow, describing them is out of the scope of this paper. 

VI. FIESTA-IOT EXPERIMENTATION VALIDATION AND 
EVALUATION 
In this section we present the validation and evaluation of the 
instantiation of the platform design that has been created 
within the H2020 FIESTA-IoT project1. The instantiation of 
the IoT EaaS Platform in the so called FIESTA-IoT Platform, 
and the appealing results of its evaluation implicitly validates 
the adequacy of the design principles and the specification of 
the different building blocks that have been presented in the 
previous sections of the paper. 
We carried out both qualitative and quantitative evaluation of 
the FIESTA-IoT platform in order to demonstrate that the 
hypotheses of this paper are correct. In particular, the 
evaluation focuses on the following three contributions: 

1. We carry out a case-study based evaluation to show that 
the FIESTA-IoT platform supports semantically 
interoperable and testbed agnostic access to IoT data in 
order to allow cross-domain experimentation.  

2. We performed a user-study, where external researchers 
and developers with access to the FIESTA-IoT platform 
performed experiments. Qualitative data from a 
questionnaire considers the extent to which the platform 
provides a usable and valuable tool in the development 
lifecycle. 

3. Finally we carry out a performance evaluation of the 
platform. The quantitative data demonstrates that the 
platform is performant to users’ needs and scales to 
increasing number of experimenters.  

A.  EXPERIMENTAL SETUP 
The following documents the instantiation of the FIESTA-IoT 
platform.  The following core components and tools of 
FIESTA-IoT were deployed and secured on three virtual 
machines with the following characteristics:  

• Core VM (32GB RAM, 12 vCPU cores and 1615GB 
disk space, Ubuntu v14.04): hosts the central IoT-
Registry, the security components and all FIESTA-IoT 
tools and services (highlighted in Figure 2). 

• Monitoring VM (16GB RAM, 8 vCPU cores and 160GB 
disk space, Ubuntu v14.04): hosts a Graylog server7 for 
monitoring and analysing the FIESTA-IoT platform. 

• Certification VM (8GB RAM, 4 vCPU cores and 80GB 
disk space, Ubuntu v14.04): hosts the FIESTA-IoT 
certification portal8 with the tools used by new testbeds 
to test they are ready to join the platform. 

With the platform deployed, the next step was to integrate 
cross-domain testbeds to provide the actual platform data to be 
used by experiments. In the first phase, four testbeds were 

8 http://certificate.fiesta-iot.eu/ 

http://certificate.fiesta-iot.eu/
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integrated. This was followed by the integration of six further 
testbeds. The four initial testbeds are: i) SmartSantander, a 
large‐scale Smart City deployment containing >3000 fixed 
and mobile sensors for environment, traffic, and crowd-
sensing; ii) SmartICS, a Smart Building Environment, with 
>600 indoor sensors, iii) SoundCity, a large-scale crowd-
sensing testbed with sensors on phones measuring noise, 
proximity, speed, location; and iv) CABIN, an indoor and 
outdoor smart building Smart Environment deployment with 
~200 sensors. 
In order to enlarge the value of the offer and also to proof the 
adequacy of the solutions designed to enable interoperability 
among heterogeneous IoT platforms, two open calls for 
testbed integration were conducted. As a result of these Calls, 
seven more testbeds were selected. 
The main aim of federating more IoT testbeds and not 
restricting it to the original four ones is to challenge the 
platform design. This way tuning of that design can be made 
by following the lessons learnt and best practices that can only 
be elicited from actual implementation. Moreover, addition of 
more application domains also brings further challenges that 
were not initially considered as they were not present in the 
initial set of testbeds. This selection was based on the 
following criteria: (1) Usefulness; (2) Complementarity; (3) 
Sustainability; (4) Technical competence; and (5) Feedback. 
From a technical standpoint, each testbed implemented the 
testbed TPS component based upon the skeleton9 to align with 
core ontology underpinning the semantic interoperability of 
the platform; in this case, we used the FIESTA-IoT ontology 
[17]. 
The complete description of the FIESTA-IoT ontology is out 
of the scope of this paper. A complete specification of the 
FIESTA-IoT ontology is defined in [17]. It is important to 
emphasize that this ontology is the baseline for the 
interoperability of the heterogeneous testbeds and IoT 
platforms that are federated in the FIESTA-IoT Platform. The 
different testbeds have to converge for participating in the 
federation and they use this ontology as the reference for this 
convergence. Precisely this is the main reason why the 
ontology has been kept simple as a design decision.  
Yet another important design consideration has been the re-
use, as much as possible, of already well-established concepts 
in the ontology. In this sense, for the core ARM concepts, the 
FIESTA IoT ontology has taken the IoT-lite ontology [36], a 
lighter version of the IoT-A ontology [37]. For the 
observations aspect, which is not correctly captured by IoT-
Lite, the SSN ontology has been used. This ontology is 
specially chartered to describe sensors and observations, and 
related concepts. Finally, the phenomena and units of 
measurement related concepts have been incorporated to the 
FIESTA-IoT ontology through the M3-Lite taxonomy. This 
taxonomy has been created by integrating and aligning already 
existing ontologies in order to homogenize the existing 

                                                 
9 https://github.com/fiesta-iot/testbed.tpi 

scattered environment in which a quite large number of similar 
ontologies define the same concepts in an overlapping manner. 

B.  CASE STUDY EVALUATION 
To evaluate the FIESTA-IoT platform, we use a case-study 
based methodology. That is, we consider particular use cases 
where FIESTA-IoT has been applied and observe the extent to 
which these cases show the following hypotheses. 

1. The FIESTA-IoT platform can be used to perform IoT 
experiments atop semantically interoperable data; thus 
facilitating the testing of solutions with a horizontal 
approach 

2. The FIESTA-IoT platform supports both 
experimentation and technology maturation under 
realistic conditions in real world experimental 
deployments as part of the innovation lifecycle. 

1) ENMONITOR CASE STUDY 
In this case study we carried out an experiment to develop a 
tool (named EnMonitor) to leverage cross-domain IoT data 
from multiple IoT testbeds as defined in the FIESTA-IoT 
platform previously described. The purpose of EnMonitor is 
to display in an intuitive manner near real-time information 
about the environment based upon data from all around the 
globe.  

 
FIGURE 8.  EnMonitor Interactions with FIESTA-IoT platform (Source 
[38]) 
 
EnMonitor provides an easy-to-use web-based graphical 
interface where users can pinpoint to concrete regions on a 
map, select among different environmental phenomena and 
view different metrics (e.g. heatmap). To be specific, 

https://github.com/fiesta-iot/testbed.tpi
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EnMonitor uses the data available to enable the users to do IoT 
resource discovery, perform observation harvesting, view 
different statistics and view aggregated environmental 
condition information.  
The application is meant to be a proof-of-concept for the key 
added-value of the IoT EaaS Platform, which is to allow to 
access in a common way to multiple platforms that offer 
different IoT services targeted for different applications. Thus, 
when developing the EnMonitor application (as any developer 
would do with her application) the EaaS API has been used 
instead of having to learn and adapt the application to each of 
the APIs from the underlying IoT platforms. Examples of 
experiments and applications that have actually leveraged this 
ability from the FIESTA-IoT Platform can be found at 
http://fiesta-iot.eu/index.php/fiesta-experiments/. 
EnMonitor and its interactions with the FIESTA-IoT platform 
is shown in Fig. 8. Thus the purpose of the experiment is 
twofold: i) to evaluate if the tool successfully interoperates 
with multiple heterogeneous data sources and is performant in 
terms of real-time data provision and responsiveness; and ii) 
real-world conditions support technology maturation to 
improve the tool towards offering citizens a holistic view of 
the environment around them and enabling policymakers to 
take advantage of federated data to complement their legacy 
decision tools. 
EnMonitor was developed to use the APIs of the IoT-registry 
tool. Based on the user interactions from the GUI it queries the 
IoT-registry to obtain the results from the federated testbeds. 
Analysis. EnMonitor successfully developed a performant 
tool using heterogeneous IoT data from real-world deployed 
sensors. The FIESTA-IoT platform provided a simple method 
to integrate these semantically interoperable data in a 
transparent way; as such the tool is also easily extensible to 
consider new environmental phenomena as and when new 
testbeds and sensor data are integrated into the FIESTA-IoT 
platform. Hence, this shows the benefits the EaaS approach 
atop semantically interoperable data provides. The access to 
real-world sensor data also supported the quick maturation of 
the tool (as opposed to working with simulated data)—that is, 
the tool could be validated in the real environment with real 
data. 
2) EXTERNAL EXPERIMENTERS CASE STUDY 
In this case study we made the FIESTA-IoT platform available 
to use by external experimenters. These were recruited using 
an open call funding competition for 24 experiments from 
academic researchers and/or commercial organisations. 
External parties submitted experiment proposals that were 
independently evaluated, and the winners obtained money to 
carry out their proposed experiment over 6 months.  That is 
the funding to implement any technology and perform 
experiments or technology validation. All 23 experiments 
were successfully developed and deployed using the FIESTA-
IoT platform; the following summarizes the key outcomes: 

• The experiments covered multiple IoT domains: 6 smart 
city experiments, 4 smart energy, 2 smart agriculture, 6 

data science, 1 data representation, 3 IoT platform, and 2 
IoT Networking experiments. 

• The experiments leveraged data from multiple testbeds. 
10 experiments used 2 testbeds, 4 experiments used 3 
testbeds, and there were 3 experiments that used 4, 5 and 
6 testbeds respectively. 

• The experiments covered different stages in the 
innovation lifecycle: 11 carried out scientific research, 
and 13 technology innovation and validation 
experiments (prior to market). 

Analysis. The results of these external experiments 
demonstrate that the results achieved in the EnMonitor 
experiment case study have been replicated by third party 
users of FIESTA-IoT; that is, these experiments have also 
benefited from testbed-agnostic access to semantically 
interoperable data from real-world IoT sensor deployments.  
Note, further user-based evaluation of the platform (in terms 
of their experience with ease-of-use and value obtained) is 
described in Section VI.C. 

C.  USER EVALUATION of EaaS 
In this section we provide a more detailed evaluation of the 
usefulness of the FIESTA-IoT platform. 
Methodology. As independent users of the FIESTA-IoT 
platform, the 23 selected external experimenters were asked, 
at the end of their 6 months experience, to fill a questionnaire 
and a KPIs evaluation form. The purpose of the questions were 
to evaluate the users’ opinions about both the functions 
provided by the platform and also the quality and performance 
they observed. The 23 experimenters did not use the FIESTA-
IoT platform over the same time (or conditions). There were 
two usage waves 6 months apart: the 1st wave consisted of 6 
experimenters, considered as alpha testers, whilst 17 
experimenters, seen as beta testers, participated to the 2nd 
wave.  
Results. The questionnaires used a Likert scale to obtain the 
experimenters attitude to questions about their usage of the 
FIESTA-IoT platform; feedback was returned in form of score 
between 1 and 5—in this scale, 1 stands for “very poor” and 5 
“excellent”. As shown in Fig. 9 the experience generally 
improved from the 1st to the 2nd wave. The stability and 
usability of the platform reached a high level of satisfaction 
(around 4) whilst the general performances, reaching a steady 
3.5, might be considered for improvement. The performance 
and availability of the portal, used for designing experiment, 
have significantly improved between the two waves to reach 
grades of circa 4.5.  
The process of integrating and deploying their experiments 
using the tools available have been considered satisfactory 
with a grade of almost 4. The questionnaire considered the 
effort required by the external experiments. Here, the results 
reported that an initial exploration of the platform needs less 
than 15 days whilst for a full implementation and integration 
of the experiment between 30 and 60 days development is 
needed.  

http://fiesta-iot.eu/index.php/fiesta-experiments/
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FIGURE 9.  Experience and satisfaction with FIESTA-IoT 
 
Also the tools offered by FIESTA-IoT have been assessed 
quite satisfactory going over the 3.5. As explained in the 
previous sections, users had the possibility to implement the 
experiment either as direct calls to the APIs exposing the data 
and the resources, or via a textual definition of the 
experiment, both of the two approaches expect the creation 
of SPARQL queries. As reported in Fig. 9 the process of 
creating the SPARQL query is considered “very good”, 
enhancing substantially between the 1st and 2nd wave.  
Whilst the assessment of the APIs is improved, the process 
and the tools for the creation of the experiment within the 
portal have not been always satisfactory. We believe that this 
is not due to the particular deficiency of the tools but rather 
to a higher familiarity with the APIs approach. As a matter 
of fact the number of users preferring the APIs approach is 
16, the users that preferred the experiment description 
approach is 5 and only 2 users have expressed no preference 
among them.  
The experimenters were also asked also about the market 
appeal of the offered platform and the results are shown in Fig. 
10. As it can be seen, 55.5 % of the users would pay for the 
service with different formulas: pay-per-use, return of activity, 
one off charge, subscription basis. A user, instead, would 
consider paying if the return of investment is attractive for 
their business. Finally among the 33.3% not willing to pay, 
most of the users consider that such asset should be maintained 
by public institutions, whereas only one user would consider 
payment as option only after improvements of the platform. 

Such results highlight that the experimenters identify the 
importance of the capabilities provided by the platform. 
The weakest point of the platform seems to be the quality and 
the quantity of the data. This point is not directly affected by 
the platform concept and functionalities but rather by the 
quality of testbed deployment integrated.  

FIGURE 10.  Market appeal of FIESTA-IoT 
 
Finally, considering the questions concerning overall 
satisfaction with the FIESTA-IoT platform, 15 of the 
experimenters responded with a “full satisfaction”, 8 with “a 
partial satisfaction” and none of them responded with 
complete negative feedback. We believe that enhancing the 
integrated testbeds, by the number or by the quality, would 
address the main roots of dissatisfactions. In any case, all of 
the users stated they would recommend the FIESTA-IoT 
platform to other experimenters. 

D.  PERFORMANCE EVALUATION 
In the previous section we have analyzed the functional 
evaluation of the platform, mainly based on the experience 
reported and gathered from experimenters. However, in order 
to complete the evaluation of the FIESTA-IoT Platform 
considering the technical aspects, we have also performed a 
performance assessment through the analysis of the time that 
the Platform, more specifically the IoT-Registry component, 
took to reply to the queries that it received while the 
experiments were conducted. Moreover, the analysis also 
presents the demand that the FIESTA-IoT Platform was 
handling in terms of requests per unit of time. 
The analysis focuses on the SPARQL query response time 
because of two main reasons. On the one hand, this is the most 
time consuming procedure. When the experimenter is using 
the functionalities of the Resource Broker (i.e. the other 
alternative to retrieve data from the underlying resources), the 
IoT-Registry basically acts as a proxy, thus, introducing only 
some milliseconds of processing delay. On the other hand, 
most of the experimenters used the SPARQL endpoint of the 
IoT-Registry to retrieve data. 
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The analysis was carried out between 6th February 2018 and 
15th March 2018. Fig. 11 shows the amount of queries that the 
IoT-Registry received each day. It is important to highlight 
that the IoT-Registry is not only serving the experimenters’ 
demands but, at the same, it has to keep storing the 
observations that are constantly coming from the underlying 
testbeds. In average the FIESTA-IoT Platform received 
13,000 queries per day, which is equivalent to 9 queries per 
minute.  

FIGURE 11.  Number of queries received by IoT-Registry. 
 
Fig. 11 shows that the overall workload that the Platform had 
to handle was quite steady, except for 17th and 18th February, 
when there is an abrupt reduction on the number of queries. 
Maintenance and updates tasks were scheduled those days and 
only the internal testing queries were received.  
As it can be seen in Fig. 12, 90% of the queries are handled in 
less than 3.23 seconds while the amount of queries taking 
more than 10 seconds is negligible. Moreover, it is interesting 
to highlight that more than half of the queries were responded 
in less than 100 milliseconds. In this respect, it has to be noted 
that when the SPARQL query was wrongly formatted (e.g. 
because of experimenter mistake) the processing delay was 0 
as the Data Endpoint of the IoT-Registry immediately detected 
the syntactic errors.  

FIGURE 12.  Cumulative Distribution Function of SPARQL queries 
processing times 
 

Whereas these wrongly formatted queries accounted for 
around 10% of the total, as it can be seen in Fig. 13 still most 
usual response times are below 40 milliseconds. It is important 
to note that the Probability Density shown in Fig. 13 excludes 
queries solved in 0-time. 

FIGURE 13.  Probability Density Function of SPARQL queries 
processing times 
 
Taking into account these results, we can conclude that the 
FIESTA-IoT Platform, which is a running instance of the IoT 
EaaS Platform described in this paper, is showing a quite good 
performance which should fulfil the needs from any 
experiment or application requesting semantically 
interoperable data from it. 

VII. CONCLUSIONS 
Enabling seamless experimentation over real-world testbeds 
represents a major advantage to underpin research and 
innovation aimed at having direct and fast impact in our 
everyday lives. This paper has presented the design 
considerations of an IoT EaaS Platform and the specification 
of its building blocks. This platform has been instantiated in a 
cloud-based environment and it is currently integrating 11 
different IoT testbeds with over 2,500 sensors in total. These 
testbeds have different application domains, from smart cities 
to maritime environmental monitoring, but a common 
denominator, all of them are deployed in real-world 
environments.  
The IoT EaaS Platform exposes a unique set of tools and APIs 
aimed at reducing the experimenters’ effort to build and run 
experiments that might expand across federated IoT 
deployments. Throughout the paper, the experimentation 
workflow is described together with the platform’s 
components that enables it. In this sense, the EaaS paradigm 
enabled by the IoT EaaS Platform described in the paper 
ranges from plain access to raw data and/or services offered 
by any of the underlying testbeds to autonomous scheduling 
and execution of experiments involving added-value analytics 
and/or reasoning techniques. 
Taking advantage of the actual instantiation of the Platform 
design and the integration of real IoT testbeds, the design has 
been refined together with the interfaces and models 
supporting IoT testbeds semantic alignment and 
interoperability. The resulting platform increases scale, 
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heterogeneity, experimentation realism and cross-domain 
innovation as more testbeds are joining the federation.  
In order to proof the validity and appropriateness of the 
proposed design, the instance of the IoT EaaS Platform that 
have been developed in the framework of the EU H2020 
FIESTA-IoT project has been subject of both qualitative and 
quantitative evaluation. This evaluation has been done in the 
framework of actual experimental-based research and 
innovation made over the instantiated IoT EaaS Platform. The 
results have shown that the proposed design have fulfilled 
experimentation requirements demonstrating excellent 
performance even under heavy duty. 
Future work includes the continuous extension of this instance 
of the Platform through the addition of more testbeds as well 
as the support for publish-subscribe interactions with the 
platform so that experimenters can be notified upon 
occurrence of an event in which they are interested. Currently, 
the experimenter can only retrieve data upon direct request. 
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