
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Experimentation as a Service over Semantically
Interoperable Internet of Things Testbeds
Jorge Lanza1, Luis Sánchez1, Juan Ramón Santana1, Rachit Agarwal2, Nikolaos Kefalakis3,
Paul Grace4, Tarek Elsaleh5, Mengxuan Zhao6, Elias Tragos7, Hung Nguyen7, Flavio
Cirillo8,10, Ronald Steinke9, John Soldatos3
1 Network Planning and Mobile Communications Lab. Universidad de Cantabria. Edificio Ingeniería de Telecomunicación. 39005 Santander, Spain.
2 MiMove Team, Inria Paris, France.
3Athens Information Technology, 44 Kifisias Ave., 15125 Marousi, Athens, Greece.
4 IT Innovation Centre, University of Southampton, UK.
5 Institute for Communication Systems, University of Surrey, Guildford, GU2 7XH, United Kingdom.
6 Easy Global Market, Espace Beethoven, 1200 Route des lucioles, 06560 Valbone, France.
7 Insight Centre for Data Analytics, NUI Galway, Ireland.
8 NEC Laboratories Europe, Kurfuersten-Anlage 36, 69115 Heidelberg, Germany
9 Fraunhofer Institute for Open Communication Systems FOKUS. Kaiserin-Augusta-Allee 31. 10589 Berlin, Germany.
10 University of Naples "Federico II", Corso Umberto I, 40, 80138 Napoli NA, Italia

Corresponding author: Luis Sánchez (e-mail: lsanchez@tlmat.unican.es).

This work is partially funded by the European project “Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT)” from the
European Union's Horizon 2020 Programme with the Grant Agreement No. CNECT-ICT-643943.

ABSTRACT Infrastructures enabling experimental assessment of Internet of Things (IoT) solutions are
scarce. Moreover, such infrastructures are typically bound to a specific application domain, thus, not
facilitating the testing of solutions with a horizontal approach. This paper presents a platform that supports
Experimentation as s Service (EaaS) over a federation of IoT testbeds. This platform brings two major
advances. Firstly, it leverages semantic web technologies to enable interoperability so that testbed agnostic
access to the underlying facilities is allowed. Secondly, a set of tools ease both the experimentation workflow
and the federation of other IoT deployments, independently of their domain of interest. Apart from the
platform specification, the paper presents how this design has been actually instantiated into a cloud-based
EaaS platform that has been used for supporting a wide variety of novel experiments targeting different
research and innovation challenges. In this respect, the paper summarizes some of the experiences from these
experiments and the key performance metrics that this instance of the platform has exhibited during the
experimentation.

INDEX TERMS Experimentation; Internet of Things; Interoperability; Semantics; Testbeds

I. INTRODUCTION
Experimentation is one of the basis for technological

advances [1]. Being able to test and assess the behaviour and
the performance of any piece of technology (i.e. protocol,
algorithm, application, service, etc.) under real-world
circumstances is of utmost importance to increase the
acceptance and reduce the time to market of these innovative
developments.

The Internet of Things (IoT) is unanimously identified as
one of the main technology enablers for the development of
future intelligent environments. It is driving the digital
transformation of many different domains (e.g. mobility,
environment, industry, healthcare, etc.) of our everyday life.

This is happening by realizing the paradigm of more
instrumented, interconnected and intelligent scenarios.
Instrumented through low-cost smart sensors and mobile
devices that turn the workings of the physical world into
massive amounts of data points that can be measured.
Interconnected so that different parts of a core system, like
networks, applications and data centres, are joined and
“speak” to each other, turning data into information. And
intelligent with information being transformed into real-time
actionable insights at massive scale through the application
of advanced analytics.

The IoT concept has attracted a lot of attention from the
research and innovation community for a number of years

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

already [2]–[5]. One of the key drivers for this hype towards
the IoT is its applicability to a plethora of different
application domains [6], like smart cities [7], [8], e-health
[9], [10], smart-environment [11], smart-home [12] or
Industry 4.0 [13].

Despite the advances that have been accomplished, there
is still enormous scope to develop novel and innovative IoT-
based solutions that aim at transforming our everyday life. In
this respect, real-life experimentation should play a major
role in these developments. Interestingly, there are initiatives
that, in order to improve these solutions’ maturation and
significant rollout, try to support the evaluation of IoT
solutions under realistic conditions in real world
experimental deployments [14], [15]. However, still they
tend to lack the necessary scale or they fail to fulfil some key
indicators [14], [16]. Nonetheless, large-scale infrastructures
enabling the assessment of developed solutions under real-
world circumstances are scarce and are not always available
for those willing to test their innovations. Moreover, such
infrastructures are typically bound to a specific application
domain, thus, not facilitating the testing of solutions with a
horizontal approach (i.e. fulfilling requirements from
different application domains).

Thus, it is deemed necessary to set-up IoT
experimentation infrastructures that have the appropriate
scale, experimentation realism, heterogeneity,
interoperability and openness to facilitate the development
of innovative solutions that can actually realize this
paradigm of instrumented, interconnected and intelligent
scenarios.

This paper presents a platform that has been implemented
for enabling Experimentation as a Service (EaaS) over
multiple IoT testbeds. In this sense, the key advance with
respect to the state of the art brought by the IoT EaaS
Platform, which this paper is describing, is twofold. On the
one hand, the tools and services underpinning the EaaS
concept across federated IoT data sources that reduce the
effort to build and run experiments. Experimenters assessing
their research on top of this IoT Platform are able to get data
from any of the underlying testbeds using a unique set of
tools and Application Programming Interfaces (APIs). On
the other hand, the interfaces and models provide IoT testbed
semantic alignment and interoperability so that the resulting
platform increases scale, heterogeneity, experimentation
realism and cross-domain innovation. These testbeds
federate through the semantic web platform allowing the
interoperability and seamless testbed-agnostic access to the
services and data that they provide. The paper describes the
overall system architecture as well as the tools implemented
to support the EaaS paradigm.

In addition to the description of the design principles and
the specification of the different building blocks, another
contribution of the paper is the validation and evaluation of

1 http://fiesta-iot.eu/

the instantiation of the platform design that has been created
within the H2020 FIESTA-IoT project1.The implementation
of this instance of the proposed interoperable IoT EaaS
Platform does not only imply the development of the
different components integrated within, but also the
specification of the semantic information models (i.e.
ontologies and taxonomies [17]) that constitutes the baseline
of the semantic web-based solutions adopted. This
evaluation and validation is based on the performance of the
implemented instance during the realization of several
experiments on top of it. Additionally, it is also based on the
feedback received from the experimenters that actually run
the abovementioned experiments.

The structure of the remaining of the paper is as follows.
Section II briefly reviews existing infrastructures supporting
the EaaS concept (with emphasis on IoT-related ones). The
integrated IoT EaaS Platform low-level architecture and the
different components that are part of it are presented in
Section III. In Section IV the workflow for federating IoT
testbeds and making their resources available through the
Platform is described. Section V summarizes the tools and
procedures that experimenters have at hand to access the
underlying testbeds datasets in a testbed-agnostic manner
and, thus, carry out their experiments. In Section VI, the
results of the validation and evaluation of the Platform
instantiation are presented. Finally, Section VII contains
some concluding remarks and discussion on the scenarios
enabled.

II. RELATED WORK

A. EXPERIMENTAL INFRASTRUCTURES
The need for IoT experimentation facilities is driven by the
effort and expense required to create realistic environments to
test new IoT technologies. This has led to the creation of
experimental testbeds. Wisebed [18], FIT IoT-Lab [19],
Fed4FIRE [20], and GENI [21] are all testbeds that support
wireless sensor network experimentation allowing the testing
of new communication and application protocols that
underpin the IoT domain (in particular looking at improving
the properties of reliability, power consumption, performance,
etc. in IoT networking environments). Such environments are
technology specific and do not support experimentation of
new IoT applications and services. In response,
SmartSantander [15] provides a large-scale, geographically
distributed range of real-world sensors to test new innovative
IoT services; LiveLab [22] offers a facility to evaluate human-
usage of the technologies; and [23] presents a Mobile Sensing
testbed of smart phones to support field-testing of new crowd-
sourcing applications. While enormously useful in their own
right, these higher-layer testbeds are either domain specific (a
particular type of experiment or technology domain) or do not
consider key IoT development concerns– namely achieving

http://fiesta-iot.eu/

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

interoperability across domain silos and heterogeneous
technologies. The IoT EaaS Platform proposed in this paper is
technology and domain agnostic (federating multiple smart
city, smart home, crowd-sensing testbeds) to allow
experiments that demonstrate IoT interoperability across
highly heterogeneous IoT environments.

B. SEMANTIC INTEROPERABILITY
The use of semantic web technologies to query and manage

information within federated cyber-infrastructures [24], [25]
is being explored as a promising approach to support the
necessary coherence among heterogeneous experimental
infrastructures. However, most of them make a top-down
approach defining only the framework and assessing the meta-
directory service using their own ontologies [26], [27], or
extensions of established ontologies such as the W3C
Semantic Sensor Network (SSN) ontology [28]. They do not
take into account the necessities from already deployed
infrastructures, and neither define the procedures for them to
join their federations. Moreover, some of them are still only
design proposals [29] that have not been implemented nor
assessed. Finally, those that present some kind of assessment
of their solutions’ implementation, while supporting the
potential of the solution, exhibit a lack of exposure to real-life
situations and actual heterogeneous testbeds, including large-
scale IoT experimental infrastructures, which would show the
true scalability and flexibility of the solutions. At the time of
writing, the FIESTA-IoT Platform has already integrated eight
different testbeds from heterogeneous application domains
(e.g. smart cities, maritime, smart building, crowdsensing,

smart grid, etc.) with over 5,000 IoT devices overall which
produce millions of observations per day.

III. FIESTA-IOT PLATFORM KEY CONSIDERATIONS
AND ARCHITECTURE

A. KEY DESIGN CONSIDERATIONS
The main aim of the Platform described in this paper is to
enable an EaaS paradigm for IoT experiments. However,
instead of deploying yet another physical IoT infrastructure it
enables experimenters to use a single EaaS API for executing
experiments over multiple existing IoT testbeds that are
federated in a testbed agnostic way. Testbed agnostic implies
in this case the ability to expose a single testbed that virtualizes
the access to the underlying physical IoT testbeds.
Experimenters learn once and accordingly use the EaaS API
to access data from any of the underlying testbeds.
To this end, the testbeds that aim to participate in the
federation have to implement common standardized semantics
and the interfaces that have been defined. This enables the
meta-platform to access the data that their devices produce as
well as the descriptions of their devices and the services that
these devices might expose.
As it can be seen in Fig. 1, the central component of the IoT
EaaS meta-platform is a directory service (so-called meta-
directory), where sensors and IoT resources from multiple
testbeds are registered. In the same way, the observations
produced by these resources are also stored. This directory
enables the dynamic discovery and use of IoT resources (e.g.,
sensors, actuators, services, etc.) from all the interconnected
testbeds.

FIGURE 1. Abstract IoT EaaS Platform and testbed federation concepts overview

IoT testbed #1 IoT testbed #N

EaaS API

Testbed API

IoT EaaS Meta-Platform
(Cloud-based)

...

Experimenters / Service Providers

Meta-Directory

EaaS Tools/Enablers

Semantic
Annotator

• EaaS API
• Access Observations and Resources from different testbeds
• Tesbed-agnostic experimentation (portability across multiple testbeds)

• Semantic-based interoperability
• Federation common Testbed API

Semantic Resource
Directory

Semantic Observations
Directory

Resource
Directory

Resource
Directory

Semantic
Annotator

Semantic IoT Resource’s and IoT Services’ descriptions
Semantic Observations

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

The key concept behind the federation of IoT testbeds is the
specification of a common Testbed API that defines the
interfaces to carry out the registration of the testbed resources
as well as pushing of the observations to the meta-platform.
Besides the actual technologies used for implementing these
interfaces, the main feature that underlies the Testbed API is
the fact that the information is exchanged in a semantically
annotated format.
In this sense, the first main design decision is the use of
semantic technologies to support the interoperability between
heterogeneous IoT platforms and testbeds. Using a common
ontology makes it possible to seamlessly deal with data from
different sources. Federated testbeds have to implement their
own Semantic Annotators to transform the data they handle
internally to the common semantic ontology defined by
FIESTA-IoT. Different RDF representation formats (e.g.
RDF/XML, JSON-LD, Turtle, etc.) are supported as long as
the common ontology is used.
The second major design decision is to take as reference the
IoT ARM as defined in the IoT-A project [30]. This decision
has brought out, within the IoT EaaS Platform context, the
need to comply with the Domain and Information Models
defined in the ARM. Thus, the architecture focus on defining
a canonical set of concepts which all IoT platforms, which can
be part of the federated IoT EaaS Platform can easily adopt.
The adoption of these essential concepts only require from
underlaying testbeds a straightforward tuning of the models
that they handle internally. In this sense, independently of
which internal model the testbeds uses, whether it is
proprietary or based on existing standards [31], [32], they
should be able to find in a straightforward manner how to map
the internal modelling to the canonical concepts managed
within the IoT-related ontology used as a basis for the
Platform. The aforementioned tuning of models basically
consist on mapping the internal structure of information to the
one that uses the ontology as a basis. The less number of
concepts to map and the more fundamental these concepts are,
the less the chances to have existing IoT platforms that are
unable to perform the mapping between their internal data
model and the IoT-related ontology that is employed to enable
interoperability among the federated IoT infrastructures.
The foremost aspect that these choices imply is that the
ontology that is used to regulate the semantic annotation of the
testbeds’ resources is only bound by the core concepts that
compose the aforementioned ARM Domain and Information
Models. These core concepts are:
• A Resource is a “Computational element that gives access

to information about or actuation capabilities on a Physical
Entity” [30].

• An IoT service is a “Software component enabling
interaction with IoT resources through a well-defined
interface.” [30].

2 Observation description from Semantic Sensor Network (SSN)

Ontology. https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Observation

These concepts conform the baseline for representing the
devices and overall IoT infrastructure. However, there is still
a major concept that is not tackled within the ARM models.
This concept relates to the actual data that is gathered by the
devices and offered through the services that expose them. It
is the Observation concept:
• An Observation is a “piece of information obtained after a

sensing method has been used to estimate or calculate a
value of a physical property related to a Physical Entity”2.

The fact that the IoT EaaS Platform is not bound to any
ontology makes it design fundamentally re-usable and
extendable.

B. FIESTA-IOT PLATFORM FUNCTIONAL
ARCHITECTURE
The IoT EaaS Platform has been designed and implemented
having all these considerations in mind, both in terms of
enabling EaaS and allowing IoT testbeds federation. Fig. 2
shows the Platform functional architecture.

FIGURE 2. IoT EaaS Platform detailed functional architecture

At the core of this architecture, the IoT-Registry is its key
component. It stores all the semantic information related to

Io
T

Ea
aS

 P
la

tf
or

m

Testbed
administrator

Experimenter

Testbed

S. Annotator

TPS

Io
T

Se
rv

ic
e

En
dp

oi
nt

Experiment
Definition
(FEDSpec)

Experiment
Configuration

Ac
ce

ss
 to

 d
at

a
th

ro
ug

h
re

so
ur

ce
s’

 Io
T

Se
rv

ic
e

en
dp

oi
nt

s

Get observations

Push observations

Testbed &
Resource

Registration

Testbed
Configuration &

Management

Message
Bus (MB)

iot-registry

TRR
Testbed

Repo
TPI DMSTPI

Configurator

Resource
discovery

Semantic & Syntactic
Validator

MB
Dispatcher

Schedule

EMC

Experiment
 execution

Raw data
retrieval

Io
T-

Re
gi

st
ry

 A
PI

 d
ire

ct
 in

te
ra

ct
io

n

EEE

 ERM
Exp.
Repo

 ERS
Exp.

Results
Repo

FAT

Reasoning
Rules
Repo

Rules definition
and execution

Monitoring
Stats
Repo

Semantic
Triplestore

 ERS
Exp.

Results
Repo

DAaaS

Reasoning
Rules
Repo

Rules definition
and execution

Monitoring
Stats
Repo

Statistics and resources
availability monitoring

Testbed status
monitoring

Semantic
Triplestore

Raw data
retrieval

Raw data
retrieval

Analytics
data

retrieval Experiment
 execution

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Observation

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

underlying testbeds IoT devices and the observations that they
generate. Moreover, it exposes the interfaces necessary to
access this data.
On top of the IoT-Registry, the architecture consists of the
additional set of tools and APIs underpinning the EaaS
concept. They allow experimenters assessing their research on
top of the IoT EaaS Platform to get data in a testbed-agnostic
manner. Moreover, several experiment management
components, namely Experiment Execution Engine (EEE),
Experiment Registry Module (ERM), Experiment
Management Console (EMC) and Experiment Result Storage
(ERS) ease the experiment creation and management and the
result extraction. They allow the experimenter to define an
experiment in an XML-based document, schedule its
execution in an unattended manner and store the results for
later retrieval. ERM and EMC are available via the Platform
Portal, a web-based UI open to the experimenters and testbed
providers (represented in Fig. 2 with browser icons).
In addition to these components, added-value services are also
provided as part of the Platform experimentation tools
portfolio. Through the Analytics and Reasoning modules
experimenters can easily get added-value data without the
need to implement the algorithms themselves. These modules
can be used within the workflow of the experiment to get the
raw data from the IoT-Registry and generate already
processed data that fits with the experimenter needs.
Below the IoT-Registry the IoT EaaS Platform is focused on
the interfaces and models supporting IoT testbed semantic
alignment and interoperability so that the resulting platform
has increased scale, heterogeneity, experimentation realism
and cross-domain innovation. Still at the testbed side, two
components must be implemented. The Semantic Annotator
and the Testbed Provider Services (TPS) respectively
transforms the data model used internally at the testbed into
semantically annotated data (based on the IoT-related
ontology defined for the specific instance of the IoT EaaS
Platform) and exposes the interfaces for the Platform to access
that data. The TPS interacts with the Data Management
Services (DMS) already at the Platform side of the
architecture. The DMS proxies the observations that arrives at
the IoT EaaS Platform towards the IoT-Registry, where they
are stored indefinitely. Since the Platform does not only
manage information related to observations generated by
underlying testbeds only but also the descriptions of the actual
IoT devices (i.e. sensors, actuators and tags), the Testbed and
Resource Registration (TRR) module exposes the necessary
interfaces to register the descriptions of the testbeds’
resources. This registration is done either via the Platform
Portal or through the TRR API. Before any RDF document is
stored in the IoT-Registry, its compliance with the IoT-related
ontology employed as baseline for interoperability has to be
validated. Otherwise, the data inserted into the repository
could be flawed and cause issues while querying afterwards.
The Semantic Validator is in charge of this assessment both
for the observations and the resource descriptions.

Finally, all the interfaces exposed by the IoT EaaS Platform
are secured using HTTPS and the corresponding
authentication and authorization filters. Every query received
has to pass through a Policy Enforcement Point (PEP) which
checks if it contains a valid security token and if that token
actually belongs to a user authorized to make such query.

C. IOT-REGISTRY
IoT-Registry’s main function is to store all the (semantic)
resource descriptions and observations that the underlying
testbeds provide. On top of this “collector” behaviour, it
implements a fully-fledged REST API that allows the
interplay between users and the stored information. Fig. 3
shows the internal architecture of the IoT-Registry.
At the core of the IoT-Registry is the Triplestore Database
(TDB) that provides the storage capacity for aggregating the
Resource Descriptions from the devices belonging to the
federated testbeds as well as the Observations that these
devices are constantly producing. In this sense, the TDB
internal structure follows the canonical concepts defined by
the ARM information model. By using these concepts as a
basis for its internal structure, it is able to adapt to different
IoT-related ontologies.

FIGURE 3. IoT-Registry internal architecture

However, this is only the storage part of the component and
the actual functionality of the module is implemented via other
sub-systems. The first of these functional modules is the Data
Endpoint that is responsible for exporting the SPARQL
endpoint of the TDB’s query engine into a web-based API. It
mainly acts as a proxy getting the SPARQL queries that are
carried in the body of the HTTP requests, injecting them into
the native SPARQL endpoint of the TDB and getting back the
corresponding response within the HTTP response packet.

Triplestore Database
(TDB)

Data endpoint

Resource Manager

Resource Broker

Experimenters

IoT testbed #NIoT testbed #1

...

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

The remaining two components, namely the Resource
Manager (RM) and the Resource Broker (RB), transform the
IoT-Registry from a regular Semantic Datastore into an
enabler of the Web of Things paradigm. The key idea is that
the services exposing the underlying IoT devices (i.e. sensors
and/or actuators) are accessed using a truly web-oriented style.
Both, the testbed-agnostic nature of the IoT EaaS platform and
the service-oriented character of the IoT ARM [30], which
underlies all the Platform architecture, are behind this
behaviour. Firstly, the IoT-Registry hides the underlying
resources by exporting a homogenized URI under a common
domain namespace for each of the federated testbeds. It then
provides a brokering mechanism that enables unified and
proxied access to the underlying resources and the service
endpoints that are used to expose them.
1) STORAGE STRUCTURE OF THE TDB
As a result of the semantic modelling that underlies the design
of the Platform, the information that is stored at the IoT-
Registry relates to two different, but tightly bound, realms. On
the one hand, the descriptions of the resources that form the
underlying testbeds and, on the other hand, the observations
made by them. The internal structure of the TDB follows a
similar approach. The implementation of the Jena-based query
engine has two different graphs that are virtually merged into
a global one, as can be seen in Fig. 4. The resources and
observations graphs store the resource descriptions of the IoT
devices and the observations that they generate, respectively.
The linked graphs that the instances of each of these items
form are mostly independent and, indeed, can be queried
individually if the experimenter is interested only on
information related to one of them. For example, the
experimenter can look for the Service that is exposing any of
the IoT devices using the typical what (i.e. physical
phenomenon observed) and where (i.e. location) discovery
criteria. For this search, only the resources graph should be
explored by the query engine optimizing this way the
discovery and access performance. Similarly, if the
experimenter is interested on the data contained on the actual
measurements collected by the sensors as they are also self-
contained in terms of geo-location, timestamp and
phenomenon observed.

FIGURE 4. IoT-Registry TDB internal structure

However, in the cases where the experimenter is looking for
extra information about the IoT device that has produced an
observation (e.g. accuracy, sensing procedure or other

metadata), this information can only be obtained from the
resources graph. If the two graphs weren’t virtually bound, the
experimenter would have to execute two different queries.
One over each of the two graphs. The solution adopted caters
for the flexibility of allowing optimized queries when they
target only one of the graphs but at the same time allows more
complex queries looking for information that is stored on both
of them.
2) DATA ENDPOINT
SPARQL is known to be the most common and widely used
RDF query language. Therefore, it is sensible to offer a fully-
fledged SPARQL interface, as part of the IoT Registry module
that enables the support for this kind of semantic queries. The
Data Endpoint (DE) module implements this functionally by
enabling a direct SPARQL endpoint.
The DE is a conformant SPARQL protocol service as defined
in the SPARQL Protocol for RDF (SPROT) [33]. It allows
users to query a knowledge base via the SPARQL language.
Results are returned in any of the common data representation
formats, namely JSON, XML, CSV, etc. The default endpoint
runs the query on the “global” graph. However, it is also
possible to limit the scope of the query to just the Resources
or the Observations graph.
Moreover, it also offers a system for the storage of queries so
that its execution can be programmed without having to
include the complete SPARQL sentence at every request. This
additional functionality would make it easier to share
knowledge between experimenters or testbeds and smooth the
learning curve when it comes to cope with the specific features
of the IoT-related ontology that is employed.
Finally, an additional functionality has been added to the DE
so that the stored SPARQL queries can be dynamically
adapted and used as templates rather than as static queries. To
achieve such a feature, the REST API wrapping the DE allows
some variables to be replaced with input parameters in the
GET/POST requests based on a set of pre-defined
conventions. This feature has been added with a twofold
objective. On the one hand, it promotes sharing queries, thus
giving rise to a sort of “crowd-sourced” catalogue. Moreover,
it enables the creation of optimized queries resolving recurrent
demands from experimenters. This way it is possible to create
a “best-practices” catalogue open to experimenters. On the
other hand, this option reduces the overhead and eases the
action of executing multiple times the same SPARQL
sentence as caching can be used to enhance the query engine
performance.
3) RESOURCE MANAGER
The Resource Manager (RM) exposes the single-entry point
for all the testbeds to register their IoT Resources’
descriptions. Its main role is to homogenize the descriptions
received from the different testbeds. After syntactically
checking the annotated descriptions and guaranteeing that they
are compliant with the specific IoT-related ontology selected
for that instance of the IoT EaaS Platform, the RM transforms
the URI for all the resource descriptions in order to make them

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

belong to the common namespace. This process basically
consists of overwriting the bindings that points to the original
testbeds’ domains included in the annotated resource
descriptions. These bindings are transformed to the common
meta-platform domain so that every entity identifier and/or
IoT Service endpoint, independently of which testbed they
belong to, are exposed as if they belonged to a unique graph,
namely the federation graph. For example, the resulting
transformed URI for one of the testbeds original URI:
http://api.smartsantander.eu#SmartSantande
rTestbed

becomes:
https://platform.fiesta-iot.eu/iot-
registry/api/testbeds/a1yp9GcKEPw37Bx5rslg
RI4QLSNCwEwBatCIOe_W0dHZCmzj2WmkExz3qoNuvW
g1pueAXn1Li0JrNjvBiQwV3Q==

Therefore, all the semantically annotated descriptions
generated by the testbeds are stored in the Triplestore
Database following the testbed-agnostic paradigm adopted for
the design of the IoT EaaS Platform. Once the necessary
adaptations to the resource descriptions have been done and
internally recorded for future use by the RB, the RM stores
them into the TDB.
While the communication interface between the RM and the
TDB is based on semantic requests, the interface with the
testbeds is based on standard HTTP encapsulating semantic
documents.
4) RESOURCE BROKER
Apart from the extraction of data from the TDB by executing
SPARQL queries, the Platform supports the access to the
services that directly expose the underlying IoT devices [34].
The Resource Broker is the component in charge of enabling
the access to IoT devices’ services while keeping the testbed
agnostic nature of FIESTA-IoT and homogenizing the way of
accessing them for the experimenter.
Graph’s nodes URIs are transformed for them to belong to the
unified Platform namespace. This transformation makes the
service endpoint to target the IoT EaaS Platform namespace
and more specifically the IoT-Registry. The RB intercepts the
requests made to the transformed URIs and forwards it to the
corresponding testbed endpoint. This process is carried out
internally at the RB so that for the experimenter it is
completely transparent and it gets the service result without
having to care about the specific testbed requirements. The RB
manages any and all specific requirements (e.g. authentication
method, etc.) imposed by each of the underlying testbeds.

D. EXPERIMENT DEVELOPMENT, DEPLOYMENT AND
MANAGEMENT
An experiment is defined as “a test under controlled
conditions that is made to demonstrate a known truth, examine
the validity of a hypothesis, or determine the efficacy of

3 A. H. Soukhanov, K. Ellis, and M. Severynse, The American Heritage

Dictionary of the English Language. Boston: Houghton Mifflin, 1992.

something previously untried”3. Nevertheless, our EaaS
Platform focus on data-oriented experimentation where
experimenation can be performed on the stored IoT data. The
modules that address all the steps in the execution of an
experiment (i.e. development, deployment and management)
are shown in Fig. 2.
The core of the experimentation support subsystem is the
Experiment Execution Engine (EEE). This module essentially
schedules or deploys the experiment based on the provided
experiment specifications. The EEE exposes APIs that are
broadly divided into 5 categories: scheduling, polling,
subscription, monitoring and accounting. Scheduling API
enable creating a recurrent job that executes the query
included as part of the experiment specification. It also
provides information (general description and status) about the
created job, API to change the execution status of the job (start,
stop, and resume job), change schedule parameters, and API
to delete the job. The polling API provides a way to execute
the experiment once and not to schedule it. The subscription
API let experimenter subscribe or unsubscribe the public
experiments. On the other hand, the accounting and
monitoring APIs provides log information and status
information about the execution of the experiments.
EEE fetches from the Experiment Registry Module (ERM) the
information about the experiments that is to be executed. ERM
basically stores the experiments’ specifications and provides
the interfaces to handle the storage process (e.g. saving,
deleting, sharing, etc.). EEE is accompanied by an experiment
controlling and management user interface (Experiment
Management Console or EMC) that enables experimenters to
view an execution summary and control the execution of their
experiment. Once an experiment is executed by the EEE, the
results are sent to experimenters. The experimenters need to
enable a Receiver on their side to receive the results. In case
the results are not delivered to the experimenter, the results are
stored in an Experiment Result Storage (ERS) repository
where experimenters can download the results at will.
Dedicated APIs, which can be used by experimenters to
develop their own experiment workflow, complement the
above tools. In the case where experimenters do not want to
use the graphical interfaces of these tools, they can use the
APIs of these modules or perform querying directly on IoT-
Registry using the public IoT-Registry APIs.
Another set of added-value services (described in Section
III.F) are provided to help experimenters with the IoT data
stored within IoT EaaS Platform.

E. TESTBED PROVIDER INTERFACE
The Testbed Provider Interface (TPI) specification considers
the main functionalities and properties that should be exposed
by IoT testbeds in order to enable their integration within the
EaaS Platform for the purposes of testbed-agnostic

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

experimentation. The TPI is a set of RESTful web services
whose definition has been driven by various requirements,
including flexibility and ease in the integration of testbeds,
support of mainstream IoT standards for data and services
representation and compatibility with existing IoT testbeds.
The TPI spans across two different realms (cf. Fig. 2). The first
is the EaaS Platform side with the TPI Configuration &
Management layer that controls the functionality of the TPI by
utilizing the offered user interface for the User (Testbed
provider). The second is the testbed side with the Testbed
Provider Services (TPS) API where the Testbed Provider (TP)
has to implement a set of services that enables the
management and manipulation of the offered data.
A testbed may expose internally various standard and/or
proprietary interfaces in order to interact with the sensor data.
Thus, a list of core services (TPS) that should be exposed by a
testbed in order to enable different connection methods to the
EaaS Platform have been specified.
The behaviour of these methods is controlled from a set of
services, provided by platform itself (so-called TPI Data
Management Services – DMS). They enable the TPs to
consume and control the TPS services that their testbeds
expose either by identifying a specific schedule or by enabling
a data stream connection.
In Fig. 5 we can see a simplified diagram of the different
service interaction between the DMS services and the TPS
ones for applying the different DMS functionalities described
below. These services are grouped into two types according to
the relation established between the testbed and the EaaS
Platform, namely get-based and push-based. The TP can
choose to either control the schedule of when to push the data
(TPS Push Observations towards DMS) or let the platform
control the schedule (DMS Get Observations from TPS).
In the Push case, the TP triggers the TPS once in order to start
pushing. The observations are then sent to the EaaS Platform
as they are produced, or based on a scheduled controlled
within the testbed itself. In the Get case, the TP specifies a
schedule so that the testbed is polled at the configured
frequency in order to retrieve the observations.

FIGURE 5. DMS-TPS service interactions

In order to be able to initiate this configuration and set up
process, the TPs need to register first the metadata of their
testbeds and resources. This is done by utilizing the services
that are exposed by the Testbed & Resource Registration

(TRR) (cf. Fig. 2). The TPI Configurator, which is a User
Interface component, enables the TP to discover the available
resources, and manage the data retrieval process. It utilizes the
IoT-Registry, TRR and TPI DMS services for that.
1) TESTBED PROVIDER SERVICES (TPS)
As it has been described, in order to enable the “plugability”
of the testbed to the EaaS Platform, it has to implement and
expose at least one (get or push) of the TPS services.
For the Get case, the getLastObservations and the
getObservations services responds with the latest
observations from a list of sensors, and with the observations
from list of sensors for a specific time-period, respectively.
The list of sensors from whom the observations are retrieved
is the input parameter for both services.
For the Push case, the pushLastObservations and the
pushSingleObservation services correspondingly initiate
a stream at the testbed side that pushes the observations from
a list of sensors or from a specific sensor towards a specific
endpoint at the TPI DMS. Both the list of sensors or the
specific sensor from whom the observations must be pushed
are the input parameters for each service. The
stopPushOfObservations service stops the pushing of
observations initiated by the said services and must be
implemented in combination with them.
2) DATA MANAGEMENT SERVICES (TPI DMS)
Regarding the TPI DMS services, which enable the TP to
manage the services exposed by the testbeds’ TPS, for the Get
case, the subscribeToObservations service queries the
corresponding get-based TPS service based on a specific
execution schedule and pushes the observations in the
response to a specific endpoint. The
unsubscribeFromObservation service stops the periodic
polling initiated before.
For the Push case, the subscribeToObservationStream
service instructs the testbed’s TPS to push the observations
from a specific sensors’ list to a specific endpoint
(pushObservationsStreamProxy) as soon as they are
generated. The said pushObservationsStreamProxy
service is used in combination with the previous onw. It
essentially creates a “proxy” between the TPS and the
Message Bus (MB) for the testbeds to push their annotated
observations measurements. Alternatively, the
subscribeToObservationStreamWithTopic service
triggers a similar behaviour on the TPS, which, in this case,
starts pushing the observations directly to the MB using the
identifier of the sensor that produced the observation as queue
topic. Finally, the streams initiated by the previous two
services are stopped using the
unsubscribeFromObservationStream service.

E. ADDED-VALUE SERVICES
1) SEMANTIC ANNOTATION VALIDATION
In order to guarantee the validity and the consistency of the
data stored in the IoT-Registry, all the input semantic

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

annotation of resources and observations are validated before
the storage.
The validation can be configured to use any ontology as the
reference ontology. In the current FIESTA-IoT use case, the
FIESTA-IoT ontology is set as the reference ontology [17].
The Semantic and Syntactic Validator (cf. Fig. 2) performs the
validation at several levels:
1. Lexical check. It consists of verifying the correctness of

RDF serialization regarding to the declared type (e.g.
checking the XML format if the annotation is declared to
be in XML).

2. Syntactic checks. The syntactic check consists of verifying
the correctness of the “syntax” of the RDF triples
represented by the underlined serialization format, more
specifically:
a. Un-typed resources and literals. Here resource refers

to instances of a class, and literal refers to a textual or
numerical value. The type of resource or literal is the
link of an annotation back to the ontology that enables
the semantic capabilities. Any un-typed element
presented in an annotation is problematic towards the
semantic interoperability.

b. Ill-formed URIs. They are checked against RFC39864
that defines the syntax of URI.

c. Problematic prefix and namespaces. Namespaces play
the role of linking the annotation to the reference
ontologies and vocabularies. A one-to-one mapping
between the prefix and namespace is essential and shall
be checked to ensure correct referencing.

d. Unknown classes and properties. A prerequisite of
semantic interoperability is that all the resources use an
agreed vocabulary. As consequence, if any resource
uses in its annotation a class or property that is not
defined in the reference ontology, other resources
would have no way to understand it, so that the
semantic interoperability is impossible.

3. Semantic checks. Following a successful syntactic
validation, the semantic check consists of verifying the
consistence of the semantic annotation regarding to the
reference ontology:
a. Problematic relationship or inheritance. Checks

whether there is a model of Ontology (i.e. whether
there exists a (relational) structure that satisfies all
axioms in this ontology.

b. Consistency of A with respect to B: determine if
individuals in A do not violate descriptions and axioms
described by B.

An annotation is considered “valid” only if all the above
aspects are checked without errors. If any error occurs, the
annotation is not pushed to the IoT-Registry for storage, and
the data-provider receives a response from the validator
containing a test report indicating what is wrong in the

4 Uniform Resource Identifier (URI): Generic Syntax.

https://tools.ietf.org/html/rfc3986

submitted data. If the annotation is valid, it is pushed to the
IoT Registry, and a response containing the URI of the
registered annotation in the IoT-Registry is returned.
2) ANALYTICS TOOL
To maximise the added value of the data being extracted from
the federated testbeds for the experimenter, it is important to
provide data analysis tools. As a result, a Data Analytics web
service (DAaaS) based on the Knowledge Acquisition Toolkit
(KAT) [35] has been developed for the EaaS Platform to
provide open access data analysis tools for data consumers as
a web service. Such a tool provides the following benefits: for
novice/beginner data consumer, the tools that would enable
them to analyse and obtain useful information. While for the
more advanced/experienced user providing the most effective
tools for a given data set.
The methods implemented as part of the Analytics tool are
mainly based on data pre-processing techniques and machine
learning techniques. For pre-processing, they involve the
removal of corrupted or noisy data points from the original raw
time series data. For machine learning, unsupervised machine
learning techniques enable the experimenter to discover
patterns of interest in the data set being analysed. Supervised
learning techniques are included to aid an experimenter either
to determine a relationship between a set of input and output
data points, or to obtain an estimate of the output data points
given the input data points.

FIGURE 6. Analytics Service Interaction

There are also other methods that provide spectral analysis and
data dependency estimation for the experimenter. Spectral
estimation tools are particularly useful for designing digital
filters for removing noise, while data dependency estimation
tools are particularly useful for linear regression.

Data Analytics Service (DAaaS)

Testbed 1 Testbed 2 Testbed n

IoT Registry
(Observations)

Experiment
Result
Store

Experiment
Executer

Service Endpoint

IoT Registry Client

Core

Supervised
Learning

Unsupervised
Learning

Other methods
e.g. CorrelationPre-processing

Analysed Result (CSV)

SPARQL Result (CSV)

SPARQL Query
DA methods

https://tools.ietf.org/html/rfc3986

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

As it is shown in Fig. 6, to invoke the Analytics service, a
HTTP POST request must be made. The body of the request
contains a JSON object that encapsulates the list of methods
and the corresponding parameters to be applied, the SPARQL
query of which the retuned dataset will be based on, and the
SPARQL endpoint where the dataset can be queried and
obtained.
3) REASONING TOOLS
Apart from their capacity to enable interoperability, the key
feature of semantics is enabling the extraction of knowledge
out of information. This happens through “reasoning” engines
that are mainly software components that allow the inference
of logical consequences from a set of rules. A key part of the
reasoning engines is the set of “rules”. They are normally
specified by the end user (when they are linked with
applications) or they are following the ontologies of the
system.

Reasoning
Engine

Rule Creation API

Rule Registration API

Rule Execution API

Web
Application UI

REST APIs

IoT Registry

MySQL DB

User

User

FIGURE 7. Reasoning engine architecture

In this sense, the EaaS includes a reasoning module that eases
the process to extract knowledge out of the measurements
generated by the integrated testbeds to the experimenters. The
reasoning engine within the module is a rule-based engine that
is able to infer logical consequences from the testbed
measurements, simplifying the creation of rules. The
reasoning engine is developed based on the Apache Jena open
source framework5. The reasoning module allows the
experimenters to define rules in the form of expressions “if
(condition) then (result)” as below:

• If (temperature) > (25degrees) then (notify_hot)
• If (temperature) < (19degrees) and (humidity) > (60%)

then (notify_unhealthy).
The architecture of the reasoning module is shown in Fig. 7. It
provides three APIs for creating a rule template, registering a
new rule for a sensor or a set of sensors and executing the rule.
The rules are stored in a MySQL database. The engine is
connected to the IoT-Registry for getting the sensors’
descriptions and observations. The end users (experimenters)
can access the reasoning module’s functionalities either
through a simplified graphical interface or through the APIs,
which facilitates the way they can integrate the reasoning
engine in their applications.
4) ANNOTATOR AS A SERVICE
Data arriving to the EaaS Platform from the testbeds has to be
semantically annotated using a reference ontology. Thus, it is

5 Apache Jena Open Source framework.

https://jena.apache.org/index.html

necessary to map the data format managed internally by the
testbed to RDF documents complying with the selected
reference ontology. The Annotator as a Service (AaaS)
module lowers the burden for the TPs as they do not have to
implement this mapping completely but just take, from their
information models, the pieces of information that map into
the desired reference ontology’s classes. AaaS receives as
input a JSON object with that pieces of information (organized
using a pre-defined JSON Schema) and generates the
corresponding RDF document. This way, the integration effort
for the TP is significantly reduced.
5) TESTBED AND PLATFORM MONITORING
In order to give a fast overview of the existing data and the
overall situation of the resources, the Testbed Monitoring
component is integrated. It helps the experimenters to check
in advance the situation of testbeds or resources involved in
their experiments. It also helps testbed owners to know if their
data is still inserted correctly into the Platform. The user of the
Testbed Monitoring can see at the overview page the status of
the connected testbeds by showing how many sensors have
send an observation within the last day and the total number
of registered sensors. A detailed view per testbed is available
which lists all sensors of the testbed. Per sensor the meta data
like unit and the latest observation can be seen. Per sensor a
graph of the last observations can be shown.
Besides of these graphical features, the Testbed Monitoring
provides an API that serves the data used in the GUI in JSON-
format. Moreover, a notification system is provided so that
users can configure the module to send a notification to them
when the configured threshold is reached. This can be used,
for example, to inform testbed owners that no more data is
inserted into the platform anymore. Background tasks will
analyse the provided data in order to find anomalies in the data
streams that could help to find sensors that do not behave
correctly.

F. DATA SECURITY: AUTHENTICATION AND ACCESS
CONTROL
The EaaS Platform provides access to IoT data originating
from multiple IoT testbed sources (including sensor data that
may or may not contain personal information about people).
Here, there are a number of challenges that must be addressed
in order to create a secure infrastructure, which protects the
IoT data resources, the users of the EaaS Platform, and the
privacy of any observed persons.
The proposed architecture is secure-by-design and its
implementation puts in place access control solutions (using
OpenAM6 security software) at all critical points in the
architecture. This is a PEP (Policy Enforcement Point) and
PDP (Policy Decision Point) pattern. That is, where IoT data
is either requested or published to the Platform – the
authorization of the user performing this action is evaluated

6 ForgeRock Identity Platform: Access Management.
https://www.forgerock.com/platform/access management/

https://jena.apache.org/index.html
https://www.forgerock.com/platform/access%20management/

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

against defined security policies and the access decision is
enforced.
This framework then provides the following key elements of
a secure IoT infrastructure:
1. Data authentication: Data retrieved by experimenters

must originate from authentic IoT testbed sources.
Federated testbeds must authenticate themselves and send
data via a secure encrypted channel. Only authorized IoT
sources can publish data to be available to experimenters.

2. Experimenter access control: The Platform controls
access to data to experimenters. By default all data is
protected to be only available to experimenters. However,
IoT data providers (testbeds) can also set up policies to
control which experimenters (or groups of experimenters)
can access to their data.

3. Subject privacy: observed persons must provide their
consent for these observations to be used by
experimenters. Where they do not provide consent, then
the data is not included (or made available) in the platform.
The Platform requires and checks that individual testbeds
enforce this policy.

In summary, the whole EaaS process is secured by fine-
grained access control that can ensure that data is accessed
securely and in line with existing privacy regulations.

IV. TESTBED FEDERATION
Integrating a testbed within the EaaS Platform can be achieved
by completing a set of steps 1) Develop your annotator and
TPS; 2) Get certified by the platform owner; 3) Register your
testbed and resources; and 4) Configure your resources.
As it has been already described, data arriving to the Platform
from the testbeds has to be semantically annotated using the
selected reference ontology that is used as a basis for
guaranteeing interoperability. So, for the first step TPs can
either develop the annotator themselves or use the Annotator
as a Service API (cf. Section 3.F.3).
After successfully generating the testbed’s annotator the TP
should decide on how the captured observations are going to
be provided, this means if the “Get” or the “Push”
methodology is going to be used, and develop the TPS
accordingly (see Section 3.E above). In order to facilitate the
TP with the TPS development a skeleton component
implementing all the required services can be easily provided
which would only require the testbed’s internal data access
and annotator integration.
After successfully completing the TPS implementation the
next step would be to validate the implemented TPS and
annotator. In order to go over this step, the EaaS Platform
includes a Certification Portal that can be used by the TP to
get certified.
The next step would be to register the available testbeds and
resources to the IoT EaaS Platform. The TP can make use of
the tools at the Platform Portal UI for this process.
Finally, the TP should instantiate and schedule the data
pushing (testbed controls the scheduling) or retrieval (platform

controls the scheduling) whether using the TPI configurator
tool or directly calling the DMS services (cf. Section 3.E).

V. EXPERIMENT AS A SERVICE WORKFLOW
In order to utilize the provided experimentation tools, the
experimenter has to create an Experiment Description
Specification, so-called EDSpec, which serves as a Domain
Specific Language (DSL) for the experimentation tools to
know which the experimentation workflow to be followed is.
EDSpec is an XML document that contains Experiment
Model Objects (EMO). An EMO contains the description and
domain of interest of the experiment, and Experiment Service
Model Objects (ESMOs). ESMO is the main entity that
enables EEE to perform experiment related task. Note that we
interchangeably call an ESMO as a job when referring to an
ESMO in the context of EEE. This is because EEE creates a
recurring job based on the specified parameters. Essentially,
an ESMO contains a job description (such as scheduling tag
parameters, query to execute, tags notifying where the
experiment output should be sent, if result set is empty
whether to report to the experimenter or not, list of dynamic
attribute tags used within the query) for the EEE to schedule
and execute it accordingly.
An EDSpec can be created mainly in two ways: (i) using an
experiment editor which provides a graphical user interface to
ease the process, or (ii) using any XML editor tool. If the
EDSpec is created using an experiment editor, it is directly
stored in the ERM when the experimenter saves the EDSpec.
However, if an XML editor is used, the experimenters are
required to store the EDSpec using ERM client. Using ERM
client experimenters are able to review existing EDSpecs, save
new EDSpecs, and delete existing experiments. In addition to
the user interface, the ERM client also exposes an ERM API
that can be used to programmatically manage the
experimenters’ EDSpecs (i.e. as the experiment editor does).
Once the experiment is saved using either of the two methods
described above, it is essential that the experiment is enabled
for the execution using EEE. As described in Section 3.D, the
EMC (a client for EEE) is used to perform such an activity.
Within EMC, experimenters first need to select a particular
experiment object (EMO) whose service (ESMO) they want
to enable then use the interface to view information about the
ESMO, start/stop the schedule (enable it for execution), view
execution log graphs that include run time and data received
information views or clear the execution history. In addition
to the above functionality, experimenters can subscribe to
already existing service models that have been stored and
made publicly available within the EaaS Platform. Such
feature enables the experimenters to leverage from already
defined services. Once subscribed, experimenters can also
unsubscribe the experiment using the EMC. EMC internally
uses the EEE APIs (cf. Section 3.D) upon request from the
experimenters’ actions over the graphical user interface
available through the Platform Portal.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

The execution of the query is managed in two ways according
to the given parameters. If within ESMO, the “widget” tag is
specified the EEE executes analytics API. The analytics API
then executes the query in the ESMO in two phases: first, it
executes the query on the IoT-Registry and retrieves the
results and then analysing the results based on the attributes
set in the widget. On the other hand, if the “widget” tag is not
specified the query is executed directly on the IoT Registry
DE. As the scope of the query can span both the resource and
observation graphs, the EEE executes the queries using the
global graph (c.f. Fig. 4).
Once the ESMO is executed using either the analytics tool or
IoT-Registry directly, it is essential to transfer the obtained
result set to the experimenter. If EEE executed the query on
the IoT-Registry directly, after obtaining the result set, it sends
the results to the experimenters using the endpoint that they
have to specify before running their experiments. Note that,
this endpoint is provided in the ESMO. The result-set is sent
as a multi-part file to enable large results to be transferred
successfully. If the sending fails due to any reason (network
failure or service location unavailable), the EEE stores the
results into the ERS. The experimenters can then use the ERS
API to download the results that were not sent to them. To
facilitate the experimenters, the EMC also displays relevant
information to the experimenters so that they can use the
information to call the ERS APIs. This information mainly
includes the JOBID and the EMOID. The analytics tool,
however due to its asynchronous behaviour, stores the results
in the ERS directly and experimenters are advised to
frequently check back if the results are available in the ERS or
not. ERS mainly has a POST and a GET API that enables the
EEE or the analytics tool to send the result set to the ERS
internal repository and experimenters to retrieve the result
sets. The GET API of the ERS is only made public. Once the
experimenters download the result sets, this GET API also
deletes the result sets from the repository. It should also be
noted that the EaaS Platform Portal is a one stop shop that
integrates all the UIs relating to the experiment development,
deployment and management services for easy access.
In order to successfully execute the EDSpec, experimenters
should follow best practices that enable error free execution of
the experiment. These best practices include: correctly
specifying text tags, setting scheduling parameters such that it
does not overload the system (i.e. not specifying execution to
happen every second, writing queries that are not generic, or
writing queries that result in huge datasets), providing the
correct location where the data should be sent, and respecting
the ontology structure in the SPARQL query.
The above-described workflow is one way of executing the
experiments using the tools provided by the EaaS Platform.
However, an experimenter can create their own EEE like tool
using the APIs of the EEE, ERM, ERS and Analytics tool and
execute that component on their side. Nonetheless, if an

7 https://www.graylog.org/

experimenter does not want to use the related APIs, they can
create their own tools to call the IoT-Registry API and retrieve
IoT data. As experimenters then can define their own
workflow, describing them is out of the scope of this paper.

VI. FIESTA-IOT EXPERIMENTATION VALIDATION AND
EVALUATION
In this section we present the validation and evaluation of the
instantiation of the platform design that has been created
within the H2020 FIESTA-IoT project1. The instantiation of
the IoT EaaS Platform in the so called FIESTA-IoT Platform,
and the appealing results of its evaluation implicitly validates
the adequacy of the design principles and the specification of
the different building blocks that have been presented in the
previous sections of the paper.
We carried out both qualitative and quantitative evaluation of
the FIESTA-IoT platform in order to demonstrate that the
hypotheses of this paper are correct. In particular, the
evaluation focuses on the following three contributions:

1. We carry out a case-study based evaluation to show that
the FIESTA-IoT platform supports semantically
interoperable and testbed agnostic access to IoT data in
order to allow cross-domain experimentation.

2. We performed a user-study, where external researchers
and developers with access to the FIESTA-IoT platform
performed experiments. Qualitative data from a
questionnaire considers the extent to which the platform
provides a usable and valuable tool in the development
lifecycle.

3. Finally we carry out a performance evaluation of the
platform. The quantitative data demonstrates that the
platform is performant to users’ needs and scales to
increasing number of experimenters.

A. EXPERIMENTAL SETUP
The following documents the instantiation of the FIESTA-IoT
platform. The following core components and tools of
FIESTA-IoT were deployed and secured on three virtual
machines with the following characteristics:

• Core VM (32GB RAM, 12 vCPU cores and 1615GB
disk space, Ubuntu v14.04): hosts the central IoT-
Registry, the security components and all FIESTA-IoT
tools and services (highlighted in Figure 2).

• Monitoring VM (16GB RAM, 8 vCPU cores and 160GB
disk space, Ubuntu v14.04): hosts a Graylog server7 for
monitoring and analysing the FIESTA-IoT platform.

• Certification VM (8GB RAM, 4 vCPU cores and 80GB
disk space, Ubuntu v14.04): hosts the FIESTA-IoT
certification portal8 with the tools used by new testbeds
to test they are ready to join the platform.

With the platform deployed, the next step was to integrate
cross-domain testbeds to provide the actual platform data to be
used by experiments. In the first phase, four testbeds were

8 http://certificate.fiesta-iot.eu/

http://certificate.fiesta-iot.eu/

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

integrated. This was followed by the integration of six further
testbeds. The four initial testbeds are: i) SmartSantander, a
large‐scale Smart City deployment containing >3000 fixed
and mobile sensors for environment, traffic, and crowd-
sensing; ii) SmartICS, a Smart Building Environment, with
>600 indoor sensors, iii) SoundCity, a large-scale crowd-
sensing testbed with sensors on phones measuring noise,
proximity, speed, location; and iv) CABIN, an indoor and
outdoor smart building Smart Environment deployment with
~200 sensors.
In order to enlarge the value of the offer and also to proof the
adequacy of the solutions designed to enable interoperability
among heterogeneous IoT platforms, two open calls for
testbed integration were conducted. As a result of these Calls,
seven more testbeds were selected.
The main aim of federating more IoT testbeds and not
restricting it to the original four ones is to challenge the
platform design. This way tuning of that design can be made
by following the lessons learnt and best practices that can only
be elicited from actual implementation. Moreover, addition of
more application domains also brings further challenges that
were not initially considered as they were not present in the
initial set of testbeds. This selection was based on the
following criteria: (1) Usefulness; (2) Complementarity; (3)
Sustainability; (4) Technical competence; and (5) Feedback.
From a technical standpoint, each testbed implemented the
testbed TPS component based upon the skeleton9 to align with
core ontology underpinning the semantic interoperability of
the platform; in this case, we used the FIESTA-IoT ontology
[17].
The complete description of the FIESTA-IoT ontology is out
of the scope of this paper. A complete specification of the
FIESTA-IoT ontology is defined in [17]. It is important to
emphasize that this ontology is the baseline for the
interoperability of the heterogeneous testbeds and IoT
platforms that are federated in the FIESTA-IoT Platform. The
different testbeds have to converge for participating in the
federation and they use this ontology as the reference for this
convergence. Precisely this is the main reason why the
ontology has been kept simple as a design decision.
Yet another important design consideration has been the re-
use, as much as possible, of already well-established concepts
in the ontology. In this sense, for the core ARM concepts, the
FIESTA IoT ontology has taken the IoT-lite ontology [36], a
lighter version of the IoT-A ontology [37]. For the
observations aspect, which is not correctly captured by IoT-
Lite, the SSN ontology has been used. This ontology is
specially chartered to describe sensors and observations, and
related concepts. Finally, the phenomena and units of
measurement related concepts have been incorporated to the
FIESTA-IoT ontology through the M3-Lite taxonomy. This
taxonomy has been created by integrating and aligning already
existing ontologies in order to homogenize the existing

9 https://github.com/fiesta-iot/testbed.tpi

scattered environment in which a quite large number of similar
ontologies define the same concepts in an overlapping manner.

B. CASE STUDY EVALUATION
To evaluate the FIESTA-IoT platform, we use a case-study
based methodology. That is, we consider particular use cases
where FIESTA-IoT has been applied and observe the extent to
which these cases show the following hypotheses.

1. The FIESTA-IoT platform can be used to perform IoT
experiments atop semantically interoperable data; thus
facilitating the testing of solutions with a horizontal
approach

2. The FIESTA-IoT platform supports both
experimentation and technology maturation under
realistic conditions in real world experimental
deployments as part of the innovation lifecycle.

1) ENMONITOR CASE STUDY
In this case study we carried out an experiment to develop a
tool (named EnMonitor) to leverage cross-domain IoT data
from multiple IoT testbeds as defined in the FIESTA-IoT
platform previously described. The purpose of EnMonitor is
to display in an intuitive manner near real-time information
about the environment based upon data from all around the
globe.

FIGURE 8. EnMonitor Interactions with FIESTA-IoT platform (Source
[38])

EnMonitor provides an easy-to-use web-based graphical
interface where users can pinpoint to concrete regions on a
map, select among different environmental phenomena and
view different metrics (e.g. heatmap). To be specific,

https://github.com/fiesta-iot/testbed.tpi

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

EnMonitor uses the data available to enable the users to do IoT
resource discovery, perform observation harvesting, view
different statistics and view aggregated environmental
condition information.
The application is meant to be a proof-of-concept for the key
added-value of the IoT EaaS Platform, which is to allow to
access in a common way to multiple platforms that offer
different IoT services targeted for different applications. Thus,
when developing the EnMonitor application (as any developer
would do with her application) the EaaS API has been used
instead of having to learn and adapt the application to each of
the APIs from the underlying IoT platforms. Examples of
experiments and applications that have actually leveraged this
ability from the FIESTA-IoT Platform can be found at
http://fiesta-iot.eu/index.php/fiesta-experiments/.
EnMonitor and its interactions with the FIESTA-IoT platform
is shown in Fig. 8. Thus the purpose of the experiment is
twofold: i) to evaluate if the tool successfully interoperates
with multiple heterogeneous data sources and is performant in
terms of real-time data provision and responsiveness; and ii)
real-world conditions support technology maturation to
improve the tool towards offering citizens a holistic view of
the environment around them and enabling policymakers to
take advantage of federated data to complement their legacy
decision tools.
EnMonitor was developed to use the APIs of the IoT-registry
tool. Based on the user interactions from the GUI it queries the
IoT-registry to obtain the results from the federated testbeds.
Analysis. EnMonitor successfully developed a performant
tool using heterogeneous IoT data from real-world deployed
sensors. The FIESTA-IoT platform provided a simple method
to integrate these semantically interoperable data in a
transparent way; as such the tool is also easily extensible to
consider new environmental phenomena as and when new
testbeds and sensor data are integrated into the FIESTA-IoT
platform. Hence, this shows the benefits the EaaS approach
atop semantically interoperable data provides. The access to
real-world sensor data also supported the quick maturation of
the tool (as opposed to working with simulated data)—that is,
the tool could be validated in the real environment with real
data.
2) EXTERNAL EXPERIMENTERS CASE STUDY
In this case study we made the FIESTA-IoT platform available
to use by external experimenters. These were recruited using
an open call funding competition for 24 experiments from
academic researchers and/or commercial organisations.
External parties submitted experiment proposals that were
independently evaluated, and the winners obtained money to
carry out their proposed experiment over 6 months. That is
the funding to implement any technology and perform
experiments or technology validation. All 23 experiments
were successfully developed and deployed using the FIESTA-
IoT platform; the following summarizes the key outcomes:

• The experiments covered multiple IoT domains: 6 smart
city experiments, 4 smart energy, 2 smart agriculture, 6

data science, 1 data representation, 3 IoT platform, and 2
IoT Networking experiments.

• The experiments leveraged data from multiple testbeds.
10 experiments used 2 testbeds, 4 experiments used 3
testbeds, and there were 3 experiments that used 4, 5 and
6 testbeds respectively.

• The experiments covered different stages in the
innovation lifecycle: 11 carried out scientific research,
and 13 technology innovation and validation
experiments (prior to market).

Analysis. The results of these external experiments
demonstrate that the results achieved in the EnMonitor
experiment case study have been replicated by third party
users of FIESTA-IoT; that is, these experiments have also
benefited from testbed-agnostic access to semantically
interoperable data from real-world IoT sensor deployments.
Note, further user-based evaluation of the platform (in terms
of their experience with ease-of-use and value obtained) is
described in Section VI.C.

C. USER EVALUATION of EaaS
In this section we provide a more detailed evaluation of the
usefulness of the FIESTA-IoT platform.
Methodology. As independent users of the FIESTA-IoT
platform, the 23 selected external experimenters were asked,
at the end of their 6 months experience, to fill a questionnaire
and a KPIs evaluation form. The purpose of the questions were
to evaluate the users’ opinions about both the functions
provided by the platform and also the quality and performance
they observed. The 23 experimenters did not use the FIESTA-
IoT platform over the same time (or conditions). There were
two usage waves 6 months apart: the 1st wave consisted of 6
experimenters, considered as alpha testers, whilst 17
experimenters, seen as beta testers, participated to the 2nd
wave.
Results. The questionnaires used a Likert scale to obtain the
experimenters attitude to questions about their usage of the
FIESTA-IoT platform; feedback was returned in form of score
between 1 and 5—in this scale, 1 stands for “very poor” and 5
“excellent”. As shown in Fig. 9 the experience generally
improved from the 1st to the 2nd wave. The stability and
usability of the platform reached a high level of satisfaction
(around 4) whilst the general performances, reaching a steady
3.5, might be considered for improvement. The performance
and availability of the portal, used for designing experiment,
have significantly improved between the two waves to reach
grades of circa 4.5.
The process of integrating and deploying their experiments
using the tools available have been considered satisfactory
with a grade of almost 4. The questionnaire considered the
effort required by the external experiments. Here, the results
reported that an initial exploration of the platform needs less
than 15 days whilst for a full implementation and integration
of the experiment between 30 and 60 days development is
needed.

http://fiesta-iot.eu/index.php/fiesta-experiments/

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

FIGURE 9. Experience and satisfaction with FIESTA-IoT

Also the tools offered by FIESTA-IoT have been assessed
quite satisfactory going over the 3.5. As explained in the
previous sections, users had the possibility to implement the
experiment either as direct calls to the APIs exposing the data
and the resources, or via a textual definition of the
experiment, both of the two approaches expect the creation
of SPARQL queries. As reported in Fig. 9 the process of
creating the SPARQL query is considered “very good”,
enhancing substantially between the 1st and 2nd wave.
Whilst the assessment of the APIs is improved, the process
and the tools for the creation of the experiment within the
portal have not been always satisfactory. We believe that this
is not due to the particular deficiency of the tools but rather
to a higher familiarity with the APIs approach. As a matter
of fact the number of users preferring the APIs approach is
16, the users that preferred the experiment description
approach is 5 and only 2 users have expressed no preference
among them.
The experimenters were also asked also about the market
appeal of the offered platform and the results are shown in Fig.
10. As it can be seen, 55.5 % of the users would pay for the
service with different formulas: pay-per-use, return of activity,
one off charge, subscription basis. A user, instead, would
consider paying if the return of investment is attractive for
their business. Finally among the 33.3% not willing to pay,
most of the users consider that such asset should be maintained
by public institutions, whereas only one user would consider
payment as option only after improvements of the platform.

Such results highlight that the experimenters identify the
importance of the capabilities provided by the platform.
The weakest point of the platform seems to be the quality and
the quantity of the data. This point is not directly affected by
the platform concept and functionalities but rather by the
quality of testbed deployment integrated.

FIGURE 10. Market appeal of FIESTA-IoT

Finally, considering the questions concerning overall
satisfaction with the FIESTA-IoT platform, 15 of the
experimenters responded with a “full satisfaction”, 8 with “a
partial satisfaction” and none of them responded with
complete negative feedback. We believe that enhancing the
integrated testbeds, by the number or by the quality, would
address the main roots of dissatisfactions. In any case, all of
the users stated they would recommend the FIESTA-IoT
platform to other experimenters.

D. PERFORMANCE EVALUATION
In the previous section we have analyzed the functional
evaluation of the platform, mainly based on the experience
reported and gathered from experimenters. However, in order
to complete the evaluation of the FIESTA-IoT Platform
considering the technical aspects, we have also performed a
performance assessment through the analysis of the time that
the Platform, more specifically the IoT-Registry component,
took to reply to the queries that it received while the
experiments were conducted. Moreover, the analysis also
presents the demand that the FIESTA-IoT Platform was
handling in terms of requests per unit of time.
The analysis focuses on the SPARQL query response time
because of two main reasons. On the one hand, this is the most
time consuming procedure. When the experimenter is using
the functionalities of the Resource Broker (i.e. the other
alternative to retrieve data from the underlying resources), the
IoT-Registry basically acts as a proxy, thus, introducing only
some milliseconds of processing delay. On the other hand,
most of the experimenters used the SPARQL endpoint of the
IoT-Registry to retrieve data.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

The analysis was carried out between 6th February 2018 and
15th March 2018. Fig. 11 shows the amount of queries that the
IoT-Registry received each day. It is important to highlight
that the IoT-Registry is not only serving the experimenters’
demands but, at the same, it has to keep storing the
observations that are constantly coming from the underlying
testbeds. In average the FIESTA-IoT Platform received
13,000 queries per day, which is equivalent to 9 queries per
minute.

FIGURE 11. Number of queries received by IoT-Registry.

Fig. 11 shows that the overall workload that the Platform had
to handle was quite steady, except for 17th and 18th February,
when there is an abrupt reduction on the number of queries.
Maintenance and updates tasks were scheduled those days and
only the internal testing queries were received.
As it can be seen in Fig. 12, 90% of the queries are handled in
less than 3.23 seconds while the amount of queries taking
more than 10 seconds is negligible. Moreover, it is interesting
to highlight that more than half of the queries were responded
in less than 100 milliseconds. In this respect, it has to be noted
that when the SPARQL query was wrongly formatted (e.g.
because of experimenter mistake) the processing delay was 0
as the Data Endpoint of the IoT-Registry immediately detected
the syntactic errors.

FIGURE 12. Cumulative Distribution Function of SPARQL queries
processing times

Whereas these wrongly formatted queries accounted for
around 10% of the total, as it can be seen in Fig. 13 still most
usual response times are below 40 milliseconds. It is important
to note that the Probability Density shown in Fig. 13 excludes
queries solved in 0-time.

FIGURE 13. Probability Density Function of SPARQL queries
processing times

Taking into account these results, we can conclude that the
FIESTA-IoT Platform, which is a running instance of the IoT
EaaS Platform described in this paper, is showing a quite good
performance which should fulfil the needs from any
experiment or application requesting semantically
interoperable data from it.

VII. CONCLUSIONS
Enabling seamless experimentation over real-world testbeds
represents a major advantage to underpin research and
innovation aimed at having direct and fast impact in our
everyday lives. This paper has presented the design
considerations of an IoT EaaS Platform and the specification
of its building blocks. This platform has been instantiated in a
cloud-based environment and it is currently integrating 11
different IoT testbeds with over 2,500 sensors in total. These
testbeds have different application domains, from smart cities
to maritime environmental monitoring, but a common
denominator, all of them are deployed in real-world
environments.
The IoT EaaS Platform exposes a unique set of tools and APIs
aimed at reducing the experimenters’ effort to build and run
experiments that might expand across federated IoT
deployments. Throughout the paper, the experimentation
workflow is described together with the platform’s
components that enables it. In this sense, the EaaS paradigm
enabled by the IoT EaaS Platform described in the paper
ranges from plain access to raw data and/or services offered
by any of the underlying testbeds to autonomous scheduling
and execution of experiments involving added-value analytics
and/or reasoning techniques.
Taking advantage of the actual instantiation of the Platform
design and the integration of real IoT testbeds, the design has
been refined together with the interfaces and models
supporting IoT testbeds semantic alignment and
interoperability. The resulting platform increases scale,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

heterogeneity, experimentation realism and cross-domain
innovation as more testbeds are joining the federation.
In order to proof the validity and appropriateness of the
proposed design, the instance of the IoT EaaS Platform that
have been developed in the framework of the EU H2020
FIESTA-IoT project has been subject of both qualitative and
quantitative evaluation. This evaluation has been done in the
framework of actual experimental-based research and
innovation made over the instantiated IoT EaaS Platform. The
results have shown that the proposed design have fulfilled
experimentation requirements demonstrating excellent
performance even under heavy duty.
Future work includes the continuous extension of this instance
of the Platform through the addition of more testbeds as well
as the support for publish-subscribe interactions with the
platform so that experimenters can be notified upon
occurrence of an event in which they are interested. Currently,
the experimenter can only retrieve data upon direct request.

ACKNOWLEDGMENT
The authors would also like to thank the FIESTA-IoT
consortium for fruitful discussions.

REFERENCES
[1] S. H. Thomke, Experimentation matters : unlocking the potential of

new technologies for innovation. Harvard Business School Press,
2003.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
survey,” Comput. Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] A. Rachedi, M. H. Rehmani, S. Cherkaoui, and J. J. P. C.
Rodrigues, “IEEE Access Special Section Editorial: The Plethora of
Research in Internet of Things (IoT),” IEEE Access, vol. 4, pp.
9575–9579, 2016.

[4] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung,
“A survey on the ietf protocol suite for the internet of things:
standards, challenges, and opportunities,” IEEE Wirel. Commun.,
vol. 20, no. 6, pp. 91–98, Dec. 2013.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Commun. Surv. Tutorials, vol.
17, no. 4, pp. 2347–2376, 2015.

[6] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, and F.
Scorrano, “Current trends in Smart City initiatives: Some stylised
facts,” Cities, vol. 38, pp. 25–36, 2014.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of Things for Smart Cities,” IEEE Internet Things J., vol.
1, no. 1, pp. 22–32, Feb. 2014.

[8] J. M. Hernández-Muñoz et al., “Smart Cities at the Forefront of the
Future Internet,” Springer, Berlin, Heidelberg, 2011, pp. 447–462.

[9] L. Zhang et al., “A Remote Medical Monitoring System for Heart
Failure Prognosis,” Mob. Inf. Syst., vol. 2015, pp. 1–12, 2015.

[10] S. M. Riazul Islam, Daehan Kwak, M. Humaun Kabir, M. Hossain,
and Kyung-Sup Kwak, “The Internet of Things for Health Care: A
Comprehensive Survey,” IEEE Access, vol. 3, pp. 678–708, 2015.

[11] K. Zheng, S. Zhao, Z. Yang, X. Xiong, and W. Xiang, “Design and
Implementation of LPWA-Based Air Quality Monitoring System,”
IEEE Access, vol. 4, pp. 3238–3245, 2016.

[12] K.-L. Tsai, F.-Y. Leu, and I. You, “Residence Energy Control
System Based on Wireless Smart Socket and IoT,” IEEE Access,
vol. 4, pp. 2885–2894, 2016.

[13] J. Wan, M. Yi, D. Li, C. Zhang, S. Wang, and K. Zhou, “Mobile
Services for Customization Manufacturing Systems: An Example of
Industry 4.0,” IEEE Access, vol. 4, pp. 8977–8986, 2016.

[14] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T.
Razafindralambo, “A survey on facilities for experimental internet

of things research,” IEEE Commun. Mag., vol. 49, no. 11, pp. 58–
67, Nov. 2011.

[15] L. Sanchez et al., “SmartSantander: IoT experimentation over a
smart city testbed,” Comput. Networks, vol. 61, pp. 217–238, 2014.

[16] A.-S. Tonneau, N. Mitton, and J. Vandaele, “A Survey on (mobile)
Wireless Sensor Network Experimentation Testbeds,” in IEEE
International Conference on Distributed Computing in Sensor
Systems, 2014, pp. 263–268.

[17] R. Agarwal et al., “Unified IoT ontology to enable interoperability
and federation of testbeds,” in IEEE 3rd World Forum on Internet
of Things (WF-IoT), 2016, pp. 70–75.

[18] G. Coulson et al., “Flexible experimentation in wireless sensor
networks,” Commun. ACM, vol. 55, no. 1, p. 82, Jan. 2012.

[19] C. Adjih et al., “FIT IoT-LAB: A large scale open experimental IoT
testbed,” in IEEE 2nd World Forum on Internet of Things (WF-IoT),
2015, pp. 459–464.

[20] W. Vandenberghe et al., “Architecture for the heterogeneous
federation of future internet experimentation facilities,” in Future
Network and Mobile Summit, 2013, pp. 1–11.

[21] M. Berman et al., “GENI: A federated testbed for innovative
network experiments,” Comput. Networks, vol. 61, pp. 5–23, Mar.
2014.

[22] A. Misra and R. K. Balan, “LiveLabs,” ACM SIGMOBILE Mob.
Comput. Commun. Rev., vol. 17, no. 4, pp. 47–59, Dec. 2013.

[23] G. Cardone, A. Cirri, A. Corradi, and L. Foschini, “The participact
mobile crowd sensing living lab: The testbed for smart cities,” IEEE
Commun. Mag., vol. 52, no. 10, pp. 78–85, Oct. 2014.

[24] A. Willner, M. Giatili, P. Grosso, C. Papagianni, M. Morsey, and I.
Baldin, “Using Semantic Web Technologies to Query and Manage
Information within Federated Cyber-Infrastructures,” Data, vol. 2,
no. 3, p. 21, Jun. 2017.

[25] M. Avgeris, N. Kalatzis, D. Dechouniotis, I. Roussaki, and S.
Papavassiliou, “Semantic Resource Management of Federated IoT
Testbeds,” Springer, Cham, 2017, pp. 25–38.

[26] I. Tachmazidis et al., “A Hypercat-Enabled Semantic Internet of
Things Data Hub,” Springer, Cham, 2017, pp. 125–137.

[27] A. D ’elia, F. Viola, and P. Azzoni, “Enabling Interoperability in the
Internet of Things: A OSGi Semantic Information Broker
Implementation,” Int. J. Semant. Web Inf. Syst., vol. 13, no. 1.

[28] R. Petrolo, V. Loscrì, and N. Mitton, “Towards a smart city based
on cloud of things, a survey on the smart city vision and
paradigms,” Trans. Emerg. Telecommun. Technol., vol. 28, no. 1, p.
e2931, Jan. 2017.

[29] A. Palavalli, D. Karri, and S. Pasupuleti, “Semantic Internet of
Things,” in IEEE Tenth International Conference on Semantic
Computing (ICSC), 2016, pp. 91–95.

[30] A. Bassi et al., Enabling things to talk. Springer, 2013.
[31] S. Cox, “Observations and measurements,” Open Geospatial

Consort. Best Pract. Doc. Open Geospatial Consort., p. 21, 2006.
[32] “FIWARE Data Models.” [Online]. Available:

https://www.fiware.org/developers/data-models/. [Accessed: 24-
May-2018].

[33] K. G. Clark, K. Grant, and E. Torres, “SPARQL Protocol for RDF,”
W3C Recommendation, 2008. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-protocol/.

[34] J. Lanza, L. Sanchez, D. Gomez, T. Elsaleh, R. Steinke, and F.
Cirillo, “A Proof-of-Concept for Semantically Interoperable
Federation of IoT Experimentation Facilities,” Sensors, vol. 16, no.
7, p. 1006, Jun. 2016.

[35] A. Ahrabian, S. Kolozali, S. Enshaeifar, C. Cheong-Took, and P.
Barnaghi, “Data analysis as a web service: A case study using IoT
sensor data,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2017, pp. 6000–6004.

[36] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-
Lite: A Lightweight Semantic Model for the Internet of Things,” in
Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of
People, and Smart World Congress, 2016, pp. 90–97.

[37] S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling
for the Internet of Things,” in Federated Conference on Computer
Science and Information Systems, 2011, pp. 949–955.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

[38] R. Agarwal, D. Gomez, J. Lanza, L. Sanchez, N. Georgantas, and V.
Issarny, “EnMonitor: Experimentation over Large-scale
Semantically Annotated Federated IoT data environment,” [Online]
Available: https://hal.inria.fr/hal-01579413v2 . [Accessed: 24-May-
2018].

DR. JORGE LANZA (male) is a senior researcher at
the Network Planning and Mobile Communications
Laboratory at the University of Cantabria (UC),
Spain. He received his PhD in telecommunications
engineering from University in 2014. He has
participated in several research projects, national and
international, with both private and public funding.
Currently his research is focused on IoT
infrastructures towards federating deployments in

different locations using semantics technologies. In addition his work has
included combined mobility and security for the wireless Internet.

DR. LUIS SANCHEZ (male) received both the
Telecommunications Engineering and PhD degree
from the University of Cantabria, Spain, in 2002 and
2009 respectively. He is Associate Professor at the
Department of Communications Engineering at the
University of Cantabria. He is active on IoT-enabled
smart cities, meshed networking on heterogeneous
wireless scenarios and optimization of network
performance through cognitive networking

techniques. He has a long research record working on projects belonging to
the 5th, 6th, 7th and H2020 EU Framework Programs. He has authored more
than 60 papers at international journals and conferences and co-authored
several books. Dr. Sanchez often participates in panels and round tables
discussing about innovation supported by IoT in Smart cities. He also acts
as expert for French ANR (Agencie National Recherche) and Italian MIUR
(Ministero dell'Istruzione, dell'Università e della Ricerca) reviewing and
evaluating R&D proposals.

MR. JUAN RAMON SANTANA (male) is a
Telecommunication Engineer graduated in 2010
from the University of Cantabria. He is currently
working as research fellow in the Network
Planning and Mobile Communications
Laboratory, a telecommunication research group
from the same university. Prior to his current
occupation, he did an internship at the
University of Strathclyde (Glasgow) working on

IoT solutions. He has been involved in several projects, such as
SmartSantander, EAR-IT or FESTIVAL, and European collaborative
projects related to the Smart City paradigm and the Internet of Things.
Among his research interests are WSN (Wireless Sensor Networks), M2M
communications and Mobile phone application research.

DR. RACHIT AGARWAL (male) holds a Post-
doc/Researcher Engineer position at Inria-Paris
and is associated to the MiMove research team
within Inria. He obtained his PhD in Computer
Science and Telecommunications at the
University of Pierre and Marie Curie, Paris in
2013 with the lab situated at Telecom SudParis.
His research interests mainly span the areas
related to ICT, especially relating to Internet of

Things (IoT), human mobility aspects, semantic technologies, and network
science. In the past, he has been associated to several projects and has been
the Co-PI of Inria’s Sarathi Associate team. He has won the 2015 semantic
web challenge. He is currently serving as a reviewer to many international
journals and conferences, and has served as a PC Co-chair for the Advanced
and Trusted Internet of Things and Smart City Track in the 12th IEEE
International Conference on Advanced and Trusted Computing (ATC
2015), Beijing, China, 10-14 August, 2015.

MR. NIKOLAOS KEFALAKIS (male) holds a
Diploma degree in Electronic Computing
Systems from the Higher Technological
Educational Institute of Piraeus and an M.Sc
degree in Information Technology and
Telecommunications from the AIT (Athens
Information Technology). Since February 2008,
he has been working in the IoT systems Group
of AIT in the area of Intelligent RFID Systems

and Internet of Things (IoT) where he is a senior researcher. He has been
involved in various EU projects and more specifically in the context of
ASPIRE and OpenIoT FP7 projects he is the manager, system architect and
developer lead of the AspireRFID OS project
(http://wiki.aspire.objectweb.org/) and the the multiple award winning
OpenIoT OS project (https://github.com/OpenIotOrg/openiot). Mr.
Kefalakis main area of technical expertise is IoT systems, Auto-ID
Technologies (RFID, Barcodes…), Semantic Sensor Networks, Multitier
architecture systems, Enterprise Systems, Embedded and Electronics digital
systems.

DR. PAUL GRACE (male) received an MSc
and PhD degrees in distributed systems from
Lancaster University, UK and a BSc in
Computer Science from the University of York,
UK. He is currently a senior researcher in the
School of Electronics and Computer Science at
the University of Southampton. His research
interests are in: secure distributed systems,
privacy engineering, middleware, and software

modelling.

MR. TAREK ELSALEH (male) is a Research
Fellow and Systems Developer at the Institute for
Communication Systems (ICS) at the University of
Surrey. He holds a BEng Honours degree in
Electronic Engineering from Oxford Brookes
University, and an MSc in Communications,
Networks and Software from the University of
Surrey. His previous work experience and degree

projects have revolved around sensors and data management. His
background includes sensor system design and instrumentation,
localization, embedded software development, Web development, media
content adaption, Internet of Things, Web of Things and Linked Open Data.
He has been involved in IoT EU FP7/H2020 and UK research projects
including SENSEI, IoT-A, FIWARE, and currently in FIESTA-IoT, NHS
Testbeds, and ACTIVAGE.

DR. MENGXUAN ZHAO (female) has a PhD in
computer science from University of Grenoble. In her
thesis, she brought the classical discrete control theory
into the new application domain of the IoT using
semantic techniques. She joint Easy Global Market in
June 2015 after 3 years of work of thesis preparation
in Orange Labs in Grenoble. She mainly works on
European research projects including Fiesta-IoT
(semantic interoperability of testbeds), Festival (EU-

JP, interoperability and federation of ICT services and testbeds) and several
5G-related projects (5GinFIRE, 5GTANGO). Her research interests include
IoT, data interoperability and testing methodology. She also participates and
contributes to standardization works, including participation and
organization of plugtest events.

DR. ELIAS TRAGOS (male) is a research
project manager at the Insight Centre for Data
Analytics, UCD, Ireland. Dr. Tragos holds a
PhD in wireless communications and a Master’s
degree in Business Administration (MBA) in
Techno-Economics. He has been actively
involved in many EU and National research
projects as researcher, Technical Manager and
Project Coordinator. His research interests lie in

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2867452, IEEE Access

VOLUME XX, 2017 9

the areas of wireless and mobile communications, internet of things,
cognitive radios, network architectures, fog computing, security, privacy
and recommender systems. Dr. Tragos has published more than 70 peer
reviewed conference and journal papers, receiving more than 1800 citations.

MR. HUNG NGUYEN (male) received the B.S.
degree in information technology from Hue
University of Science, Vietnam, in 2007. He is an
experienced software developer, having worked in
multiple small to large software developing
companies as a Java, .Net and cloud developer. He has
worked as team leader, software architect, scrum
master and software designer. He is currently a
researcher at Insight Centre for Data Analytics,

National University of Ireland, Galway working in several EU funded
projects. His research interests lie in the areas of Internet of Things,
Artificial Intelligence, micro-services, deep learning, security and privacy.

MR. FLAVIO CIRILLO (male) is a Research
Scientist of the IoT research team at NEC
Laboratories Europe, Germany. His research
focus is in the Internet-of-Things Analytics and
Platforms field, especially scalability and
federation aspects and semantics enablement, in
the scenario of Smart Cities. He is currently one
of the main developers and maintainers of the
IoT Backend layer of the IoT Architecture of

FIWARE. He has worked in IoT related European research project such as
FIWARE, FIESTA-IoT, AUTOPILOT, SynchroniCity and others. He has
obtained a Master degree in Computer Engineering at the University of
Naples Federico II in 2014. He is currently part of the Information
Technology and Electrical Engineering PhD programme XXXIII cycle at
the University of Naples Federico II.

MR. RONALD STEINKE (male) was studying
computer engineering at the Technische
Universität Berlin with focusing on network
technologies. From 2009 to 2012 he was working
as a student researcher at TKN institute at the TU
Berlin. There he was working in the area of
Network Coding and Future Internet. In 2012 he
joined the NGNI department at the Fraunhofer
FOKUS institute as a student researcher. At NGNI

he was helping developing the OpenMTC platform and was working in the
area of M2M and IoT. In 2014 he wrote his Diploma Thesis at the NGNI
department with the title "Design and Implementation of an ETSI M2M
compliant control framework for Smart Grids" and graduated as graduate
engineer. In July 2014 he joined the chair Next Generation Networks at the
TU Berlin. In July 2015 he joined again Fraunhofer FOKUS continuing
developing the OpenMTC platform and working in several projects.

DR. JOHN SOLDATOS (male) holds a Phd in
Electrical & Computer Engineering from the
National Technical University of Athens (2000)
and is currently Associate Professor at the Athens
Information Technology (2006-present) and
Honorary Research Fellow at the University of
Glasgow, UK (2014-present). He was also Adjunct
Professor at Carnegie Mellon University (2007-

2010). During the period July 2014 - March 2016 he was also member of
the European Crowdfunding Stakeholders Forum (ECSF), and during 2012-
2015 the coordinator of the working group group "IoT identification,
naming and discovery" of the European Internet-of-Things Research Cluster
(IERC). Dr. Soldatos has had a very active role in many EC co-funded R&D
projects, in the scope of the FP6, FP7 and H2020 programmes, including
several projects in pervasive computing, cloud computing, Internet-of-
Things and BigData. He has also participated in major enterprise consulting
projects as a principal business consultant in the areas of ICT, industry,
energy and healthcare. He is co-founder of the open source platforms
OpenIoT (https://github.com/OpenIotOrg/openiot) and AspireRFID
(http://wiki.aspire.ow2.org). He has published more than 180 articles in
international journals, books and conference proceedings.

