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Abstract

Computational fluid dynamics has become the method of choice for aerodynamic

shape optimisation of complex engineering problems. However, the sensitivity

of the final aerodynamic shape to numerical parameters has been largely under-

estimated to date. The purpose of this work is to investigate the influence that

numerical parameters have on the optimisation results for two aerofoil prob-

lems (NACA 0012 and RAE 2822) in transonic flow, and to provide compact

guidelines for best practice. Numerical parameters include: a) two parameter-

isation methods, Hicks–Henne bump functions and free–form deformation; b)

numerical settings related to the tuning of each parameterisation method; and

c) closure coefficients of Spalart–Allmaras (SA) turbulence model. All optimi-

sations were performed using the open–source software tool SU2, and gradients

were computed using the continuous adjoint method. It was found that: a)

the optimisation result of NACA 0012 aerofoil exhibits strong dependence on

all numerical parameters investigated, whereas the optimal design of RAE 2822

aerofoil is insensitive to those numerical settings; b) the degree of sensitivity

reflects the difference in the design space, particularly of the local curvature on

the optimised shape; c) the closure coefficients of SA model affect the final opti-

misation performance, raising the need for a good calibration of the turbulence

model.
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gradient–based optimisation, Hicks–Henne bump function, free–form

deformation

Nomenclature

M Mach number

ndv Number of design variables

Cd Drag coefficient

Cl Lift coefficient

Cm Pitching moment coefficient

Cp Pressure coefficient

Re Reynolds number

α Angle of Attack

Abbreviations

2D Two–Dimensional

3D Three–Dimensional

ADODG Aerodynamic Design Optimisation Discussion Group

ASO Aerodynamic Shape Optimisation

CFD Computational Fluid Dynamics

FFD Free–Form Deformation

HHBF Hicks–Henne Bump Function

KKT Karush–Kuhn–Tucker

RANS Reynolds–Averaged Navier–Stokes

SA Spalart–Allmaras

SLSQP Sequential Least SQuares Programming

1. Introduction

The issue of aviation carbon emissions has raised public concern increasingly

over the years. To achieve fuel burn reduction, aircraft manufacturers have made5
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much efforts on developing new technologies. In particular, one key aspect is im-

proving aerodynamic performance through drag minimisation. With the rapid

development of Computational Fluid Dynamics (CFD), numerical optimisation

has shown the potential to be a powerful tool in fulfilling the aforementioned

task. By integrating a CFD solver with an optimisation algorithm, geometry10

parameterisation and mesh deformation techniques, designers are enabled to

perform Aerodynamic Shape Optimisation (ASO) with ease.

A number of ASO frameworks have been developed in the research com-

munity over the past few years. Various approaches and tools have been used

for each component of an ASO framework. For example, methods of choice15

for geometry parameterisation were Free–Form Deformation (FFD) [1, 2], B–

splines [2, 3], Radial Basis Functions (RBFs) [4, 5], CAD shape [6], PARSEC [7]

and Singular Value Decomposition (SVD) [8], among others. For benchmark-

ing purpose, the AIAA Aerodynamic Design Optimisation Discussion Group

(ADODG) has established a set of aerodynamic optimisation problems with20

increasing complexity, ranging from single–point aerofoil optimisation to multi–

point wing–body–tail optimisation. A number of research groups have presented

their results and highlighted their own contributions. Reference [9] selected six

shape parameterisation techniques and investigated their impact on the opti-

misation results for ADODG benchmark Case 1. Reference [1] investigated the25

influence of optimisation algorithm and initial design on the optimal solution

of a wing problem. Besides, Ref. [10] compared the optimised geometries ob-

tained from several institutions using one CFD solver (i.e. Onera elsA software),

whereas in Ref. [11], a comparison was carried out with respect to different op-

timisation results obtained from four well–validated CFD codes.30

In this paper, the open–source suite SU2 [12, 13] is taken to perform gradient–

based ASO for two aerofoil benchmark problems. The first case (i.e. ADODG

Case 1) is the drag minimisation of the NACA 0012 aerofoil in transonic, invis-

cid flow, with a minimum thickness constraint. The second case (i.e. ADODG

Case 2) is the drag minimisation of the RAE 2822 aerofoil in transonic, vis-35

cous flow, subject to lift, pitching moment and area constraints. Hicks–Henne
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Bump Functions (HHBFs) and FFD are employed as geometry parameterisation

method. The continuous adjoint method is used to compute the gradients.

It should be noted that the available methods for each constituent of an ASO

framework have their own merits and drawbacks. Thus, the most appropriate40

set of methods for a specific optimisation case may not be suitable for another

case. More importantly, for a given ASO framework, there are a number of pa-

rameters that affect the final optimisation result. It would require fine–tuning

of those parameters in order to achieve the best optimisation performance for a

specific case. To date, however, many parameters have been largely neglected45

in practice, and their effects on the optimal solution are therefore unknown. In

this study, several key parameters are carefully selected, particularly in geom-

etry parameterisation, which formulates the design space and provides design

variables as input for optimisation. Instead of using the default (or common)

value, a range of settings are specified and applied. Additionally, two sets of50

parameter values in turbulence modelling are used in the viscous optimisation

case.

The primary aim of this paper is to establish the sensitivity of the optimal

solution to a number of model parameters and to gain the ”best practice” from

the sensitivity assessment, which can provide suggestions of parameter settings55

for future aerodynamic design and optimisation. The work is built around four

technical objectives. First, two parameterisation methods are used to manipu-

late geometry changes, and their impact on the results is investigated for two

aerofoil problems. The second objective is to establish the robustness of the

optimal results (from Objective 1) to changes on numerical settings used in the60

parameterisation methods. The third objective is to investigate the sensitivity

of optimisation result to turbulence model closure coefficients in the RAE 2822

case. The last objective revisits the optimal solution with respect to design

variable dimensionality, and this is carried out for both aerofoil cases.

The paper continues in Section 2 with a description of the methods and65

algorithms employed in this work. Then, Section 4 discusses the two ADODG

benchmark problems and presents the optimisation results. Finally, conclusions
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are summarised in Section 5.

2. Methodology

2.1. Optimisation Framework70

The open–source suite SU2 [12, 13] has the capability to perform analysis

of optimisation problems in various engineering areas. A typical design process

for aerodynamic optimisation is illustrated in Figure 1. A baseline geometry

and mesh are taken as input to the design cycle, along with a chosen objec-

tive function, J , to evaluate optimisation performance and a vector of design75

variables, �x, to parameterise the shape. When the gradient of the objective

function, ∇ J , is obtained using adjoint method, a gradient–based optimiser

is then initiated to drive the design cycle and guide the search for optimum.

In this work, the Sequential Least SQuares Programming (SLSQP) optimiser is

used. The optimisation process is terminated when the convergence criteria, the80

Karush–Kuhn–Tucker (KKT) conditions [14, 15], are satisfied or the number of

design iterations exceeds a maximum number.

Figure 1: Flow chart for gradient–based shape optimisation within SU2.

2.2. Flow and Adjoint Solver

In this study, the flows around aerodynamic bodies are governed by com-

pressible Euler and Reynolds–Averaged Navier–Stokes (RANS) equations. SU285
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is a finite volume based CFD solver, where the Jameson–Schmidt–Turkel (JST) [16]

scheme is used for spatial discretisation and the implicit Euler scheme for time

marching. For RANS simulations, the Spalart–Allmaras (SA) [17] one–equation

turbulence model is used to close the RANS equations. For the adjoint solver,

the continuous adjoint approach is employed in this work.90

2.3. Geometry Parameterisation

Two commonly–used geometry parameterisation methods are implemented

in SU2, which correspond to HHBF and FFD. Both approaches are employed

in this work and are discussed as follows.

2.3.1. Hicks–Henne Bump Functions95

Hicks and Henne [18] introduced an analytical approach that takes a base-

line geometry and adds a linear combination of bump functions to create a

new shape. For two–dimensional (2D) problems, the parameterised geometry

function can be expressed by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y = ybaseline +

n∑
i=1

bi (x)

bi (x) = ai

[
sin

(
π x

log 0.5
log hi

)]ti
, 0 ≤ x ≤ 1

(1)

where n is the number of bump functions, bi (x) is the bump function (or basis

function) proposed by Hicks and Henne, ai represents the bump amplitude and

acts as the weighting coefficient, hi locates the maximum point of the bump,

and ti controls the width of the bump. By setting all of the coefficients ai to

zero, the baseline geometry is recovered.100

By inspecting Eq. (1), it is apparent that the bump function, bi (x), is defined

by three parameters (i.e. ai, hi, and ti). The bump amplitude coefficients, ai,

are treated as design variables and can be varied during optimisation, while the

other two parameters, hi and ti, are predetermined and fixed in optimisation.

With respect to the locations of bump peak, hi, two distribution approaches

are employed in this study: a) uniform distribution along the aerofoil chord–

wise direction; and b) uneven distribution described by a ”one–minus–cosine”
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function:

hi =
1

2

[
1 − cos

(
i π

n + 1

)]
, i = 1, . . . , n. (2)

A comparison of these two distribution approaches is illustrated in Figure 2,105

where a set of bump functions are imposed on the NACA 0012 aerofoil. It is

worth noting that the ”one–minus–cosine” distribution provides a better clus-

tering of design variables at the leading and trailing–edge of the aerofoil when

compared with the uniform distribution.

(a) Uniform distribution (b) ”One–minus–cosine” distribution

Figure 2: Illustration of two distribution approaches for HHBFs (n = 10) on the NACA 0012

aerofoil. Red dashed lines indicate locations of bump peak.

Regarding the bump width control parameter, ti, a constant value is specified110

for all bump functions within SU2. In this study, in addition to the default

setting t = 3, a range of integer values are defined, and their impact on the

optimisation result is investigated. Figure 3 shows three sets of HHBFs with

different settings of t. It is observed that the bump width narrows down as t

increases, which suggests that a relatively smaller value of t can provide more115

global shape control whereas a relatively larger value of t generates more local

shape control.

2.3.2. Free–Form Deformation

Free–Form Deformation (FFD), initially proposed by Sederberg and Parry [19],

is used as the second parameterisation method in this work. The basic FFD120

concept can be visualised as embedding a flexible object inside a flexible vol-

ume and deforming both of them simultaneously by perturbing the lattice of
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(a) t = 1 (b) t = 3 (default) (c) t = 10

Figure 3: Three sets of HHBFs (n = 5, ai = 1, and uniformly distributed in the range of

hi ∈ [0.1, 0.9]) with different value settings of bump width control parameter.

the volume. The FFD control volume (or FFD box) usually has a topology of

a cube when deforming three–dimensional (3D) objects or a rectangle for 2D

geometries, and thus can be parameterised as either a trivariate volume or a125

bivariate surface. In this study, Bézier curve is used as the FFD blending func-

tion. Figure 4 illustrates the FFD box encapsulating a rectangular wing and

the RAE 2822 aerofoil, where a lattice of control points are uniformly spaced

on the surface of FFD box.

(a) 3D rectangular wing (b) 2D RAE 2822 aerofoil

Figure 4: View of FFD box enclosing the embedded object, including the control points shown

as red spheres.

The parameterised Bézier volume can be described using the following equa-

tion:

X (ξ, η, ζ) =
l∑

i=0

m∑
j =0

n∑
k=0

Pi,j,k B
l
i (ξ) B

m
j (η) Bn

k (ζ) (3)
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where l, m, n are the degrees of FFD blending function; ξ, η, ζ ∈ [0, 1] are the

parametric coordinates; Pi,j,k are the Cartesian coordinates of the control point

(i, j, k); X are the corresponding Cartesian coordinates (x, y, z) for a given

(ξ, η, ζ) in the Bézier volume; Bl
i (ξ), Bm

j (η), and Bn
k (ζ) are the Bernstein

polynomials, which are expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bl
i (ξ) =

l!

i! (l − i)!
ξi (1 − ξ)l−i

Bm
j (η) =

m!

j! (m − j)!
ηj (1 − η)m−j

Bn
k (ζ) =

n!

k! (n − k)!
ζk (1 − ζ)n−k

(4)

The control points of the FFD box are defined as the design variables, the num-130

ber of which depends on the degree of the chosen Bernstein polynomials. It

should be noted that these control points are uniformly spaced in the FFD do-

main otherwise the initial geometry of the embedded object can not be recovered

with the original positions of the control points.

FFD is numerically executed in three steps. Firstly, for the embedded object,135

a mapping is performed from the physical space to the parametric space of

the FFD box. The parametric coordinates (ξ, η, ζ) of each surface mesh node

are determined and remain unchanged during optimisation. Note that this

mapping is evaluated only once. Secondly, the FFD control points are perturbed,

which leads to the deformation of the FFD box as well as the embedded object.140

Thirdly, once the FFD box is deformed, the new Cartesian coordinates (x, y, z)

of the embedded object in the physical space are algebraically computed using

Eq. (3).

Because the position settings of the FFD box are subject to the users’ choice

and may affect the final optimisation result, the impact of FFD box position on145

the optimisation performance is thus investigated in this study.

2.4. Mesh Deformation

Once the geometry is perturbed with a chosen parameterisation, the sur-

rounding volume mesh needs to be deformed. The technique employed in SU2
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models the computational mesh as an elastic solid using the equations of lin-150

ear elasticity [20]. In this study, the modulus of elasticity for each mesh cell is

treated to be inversely proportional to the cell volume, which can preserve the

mesh quality in boundary layers and regions of high resolution.

2.5. Gradient Evaluation

The gradient evaluation within SU2 framework can be formulated as the

following equation:

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f
∂x1

∂f
∂x2

...

∂f
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Gradients

=

⎡
⎢⎢⎢⎣

∂s1
∂x1

· · · ∂sm
∂x1

...
. . .

...

∂s1
∂xn

· · · ∂sm
∂xn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Geometric Sensitivities

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f
∂s1

∂f
∂s2
...

∂f
∂sm

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Surface Sensitivities

(5)

where n and m are the number of design variables and surface mesh nodes,155

respectively; f represents the function of interest, being the objective or con-

straint function; xi (i = 1, 2, . . . , n) are the design variables; the variables sj

(j = 1, 2, . . . , m) represent the local surface normal displacements for each

discrete mesh node on the geometry surface.

The term ∂f/∂s is called surface sensitivities, which represent the variation160

of the function of interest with respect to infinitesimal perturbations of the ge-

ometry shape in local surface normal direction. The surface sensitivities at each

mesh node are computed by solving only once the adjoint equations, of which

the computational cost is similar to that of one flow solution. The Jacobian

matrix ∂s/∂x is known as geometric sensitivities, which measure the influence165

of the change of design variables on the positions of surface mesh nodes. The

geometric sensitivities are calculated using finite difference method, of which the

computational cost is negligible as it does not involve the solution of governing

equations. The gradients ∂f/∂x are then computed through a dot product op-

eration between the geometric and surface sensitivities. The computational cost170

of evaluating gradients using the adjoint method is virtually independent of the
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number of design variables, which provides great efficiency for gradient–based

optimisation problems.

2.6. Summary

A summary of the computational methods and numerical settings used in175

this study is given in Table 1.

Table 1: Computational methods and numerical settings for the ADODG benchmark cases.

ADODG Case 1: NACA 0012 Case 2: RAE 2822

Geometry parameterisation HHBF/FFD HHBF/FFD

Mesh deformation Linear elasticity equations Linear elasticity equations

Flow governing equations Euler RANS

Turbulence model – SA

Spatial discretisation JST JST

Time discretisation Euler implicit Euler implicit

Optimiser SLSQP SLSQP

Gradient evaluation Continuous adjoint Continuous adjoint

Maximum number of iterations 100 100

Tolerance of KKT conditions 1 · 10−6 1 · 10−6

3. Test Cases Description

Two aerofoil optimisation cases defined by ADODG were selected for inves-

tigation. This section contains the case description, problem formulation as well

as computational mesh.180

3.1. ADODG Case 1

3.1.1. Problem Description

The optimisation problem is the drag minimisation of a modified NACA 0012

aerofoil in inviscid, transonic flow. The freestream Mach number, M , is 0.85,

and the angle of attack, α, is fixed at 0 degree. The thickness is constrained to
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be greater than or equal to that of the initial aerofoil along the entire chord.

The optimisation problem is written as

Minimise: Cd

Subject to: y (x) ≥ ybaseline (x), ∀x ∈ [0, 1]

where Cd is the drag coefficient, x is the coordinate along the aerofoil chord,

and y is the coordinate describing the thickness of the symmetric aerofoil.

3.1.2. Computational Mesh185

As the flow is symmetric around the aerofoil at the prescribed flow condi-

tions, only the upper aerofoil surface is modelled unless otherwise stated. The

structured O–grid is used for this case and is shown in Figure 5. A preliminary

grid convergence study was performed, and the coarse mesh was found adequate,

which has 129 points in the circumferential direction and 65 in the normal di-190

rection. An inviscid flow analysis was carried out on the baseline aerofoil and

the drag coefficient was evaluated at 468.02 counts (1 count = 10−4).

(a) Far view (b) Near view

Figure 5: Case 1: computational domain and coarse mesh (129 × 65) for the NACA 0012

aerofoil.

3.2. ADODG Case 2

3.2.1. Problem Description

The second optimisation problem is the drag minimisation of the RAE 2822

aerofoil in viscous, transonic flow. The freestream Mach number is 0.734, and
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the Reynolds number, Re, is 6.5 · 106. The lift coefficient is constrained to

0.824, the pitching moment coefficient (evaluated at the quarter–chord) must

be no less than −0.092, and the aerofoil area must be greater than or equal

to the initial aerofoil area during the optimisation process. The optimisation

problem is written as

Minimise: Cd

Subject to: Cl = 0.824

Cm ≥ −0.092

S ≥ S0

where Cd, Cl and Cm are the drag, lift, and pitching moment coefficients, respec-195

tively; and S and S0 are the optimised and initial aerofoil areas, respectively. In

order to satisfy the lift constraint, the angle of attack is set up as an additional

design variable in this optimisation case.

3.2.2. Computational Mesh

As shown in Figure 6, the structured C–grid is used for the RAE 2822 case.200

The coarse mesh consists of 385× 65 grid points in the wrap–around and normal

directions respectively, where 257 points are distributed along the aerofoil and

65 points in the grid cut. The first grid line of the wall was placed at 1 · 10−5

(for a chord of 1) to ensure that the y+ is below 1. From preliminary study, the

coarse mesh was found adequate to guarantee mesh independent solutions and205

was thus used for this case.

For the initial aerofoil, the compressible RANS simulation was carried out

using the standard single–equation SA turbulence model. Note that the angle

of attack was iteratively updated during the flow analysis in order to meet

the lift target. It was found that Cd = 241.24 counts, S0 = 0.07787, and210

Cm = −0.089.
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(a) Far view (b) Near view

Figure 6: Case 2: computational domain and coarse mesh (385 × 65) for the RAE 2822

aerofoil.

4. Results

This section contains optimisation results obtained from two benchmark

problems. This work particularly focuses on investigating the sensitivity of the

optimal solution to a series of model parameters, with the purpose of finding a215

suite of parameter values that can produce the best optimisation result.

Prior to optimisation, a number of parameter values need to be determined,

particularly in geometry parameterisation. The HHBF has two coefficients that

need to be specified. For locations of bump peak, hi, two distribution approaches

are employed. For bump width control coefficient, t, a range of integer values220

are used. In terms of FFD, various settings of FFD box position are defined.

Additionally, the number of design variables, ndv, is varied within a reasonable

range to perform the dimensionality study. For the RAE 2822 case, two sets

of closure coefficients of SA turbulence model are used. The main numerical

parameters used in the test cases are summarised in Table 2.225
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Table 2: Numerical parameters for the ADODG benchmark cases; the values in square brackets

indicate the range for specific parameter.

ADODG Case 1: NACA 0012 Case 2: RAE 2822

HHBF

Distribution approach Uniform/One–minus–cosine Uniform/One–minus–cosine

Bump width control parameter [1, 15] [1, 10]

Number of design variables [5, 40] [5, 40]

FFD

FFD box: upper/lower [±0.0601, ±0.3] [±0.08, ±0.4]

FFD box: left [-0.01, -0.0001] [-0.01, -0.0001]

FFD box: right [1.0001, 1.01] [1.0001, 1.01]

Number of design variables [5, 40] [5, 40]

Turbulence model – Standard SA/Calibrated SA

4.1. ADODG Case 1

4.1.1. Impact of Parameter Settings in Hicks–Henne Bump Functions

The design variables (i.e. bump amplitude coefficients ai) are restricted to

have non–negative values in this case. Consequently, the deformed aerofoil is

guaranteed to have a larger thickness along the chord than the initial aerofoil.230

Therefore, the constrained optimisation problem is transformed to an uncon-

strained one by satisfying the thickness constraint implicitly. Optimisations

were carried out using the parameter settings in Table 2. A 3D carpet plot

of drag coefficient versus ndv and t for both uniform and ”one–minus–cosine”

distributions can be obtained. Some sections are extracted from the 3D plot,235

and the corresponding optimisation results are shown and discussed as follows.

By applying two HHBF distribution approaches, the final drag results are

plotted versus the number of design variables in Figure 7(a). Note that the pre-

sented results correspond to the setting of t = 8. With respect to other values

of t, the results show a similar pattern and are not reported herein for brevity. It240

is apparent that the ”one–minus–cosine” distribution outperforms the uniform
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distribution by producing significantly lower drag values, suggesting a large de-

pendence of the optimal solution on the distribution of the bump functions.

As shown later, the geometry shape deformations are mainly concentrated in

the fore and aft section of the aerofoil, indicating that the ”one–minus–cosine”245

distribution is preferably used in the NACA 0012 optimisation case.

The exception only occurs at ndv = 5, where the uniform distribution

method performs better. It was found that the optimised geometry exhibits

a flatter aft section when using the uniform distribution and a weaker shock is

generated. Nonetheless, the number of design variables in this case is too small250

to fully cover the design space. This exception is thus not representative of the

overall trend.

As the number of design variables is increased, the drag coefficient exhibits

a convergence feature, especially for ”one–minus–cosine” distribution, which

suggests the design space is gradually explored. Moreover, the gap between these255

two groups of drag values becomes smaller when using more design variables.

The drag difference is 39.1 counts for the case of ndv = 40, and the difference

is further decreased to 21.6 counts as ndv is doubled from 40 to 80. In the

context hereafter, the ”one–minus–cosine” distribution approach is used for the

NACA 0012 aerofoil optimisation case.260

(a) Bump function distribution (t = 8) (b) Bump width control parameter

Figure 7: Case 1: influence of HHBF parameters on drag coefficient (M = 0.85, α = 0 deg).
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With respect to ndv = 20 and ndv = 30, Figure 7(b) shows the final

drag results plotted versus the bump width control parameter. An evident

observation is that the drag value drops sharply when t is increased from 3 to

5. Regarding the optimisation performance, the results obtained from t = 3

and t = 6 correspond to the two ends of the spectrum (shown as error bars in265

Figure 7(a)), where the drag difference for ndv = 30 is over 100 counts. This

indicates that the bump width control parameter also has a large impact on the

optimal solution in this optimisation case.

To find out the cause for this fact, three representative groups of optimisa-

tion results are compared in Figure 8. An evident distinction is observed in the270

leading edge area of the optimised aerofoil shape: a significantly blunt leading

edge is generated with setting of t = 6 or t = 10, whereas the surface pertur-

bation is trivial for the setting of t = 3. As mentioned earlier, when the bump

width control parameter t is set up with a larger value, more local shape con-

trol is achieved in geometry parameterisation. This property accounts for the275

fact that the setting of t = 6 or t = 10 effectively deforms the aerofoil in the

narrow region near the leading edge, while the setting of t = 3 did not exhibit

the same behaviour. Consequently, a suction peak in the pressure coefficient

distribution is generated for t = 6 and t = 10, whereas the Cp distribution

for t = 3 remains almost unchanged from the baseline aerofoil near the leading280

edge. Due to the existence of pressure recovery after the suction peak, the two

cases with larger values of t exhibit a weaker shock near the trailing edge and

thus generate a lower wave drag. Since the wave drag contributes most to the

total drag in this optimisation problem, it is not unexpected that the two larger

values of t result in much better optimisation performance than that of t = 3.285

With consideration of the fact that t = 6 produces the lowest drag among all

settings, this value is used hereafter for the NACA 0012 aerofoil optimisation

case.
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(a) Aerofoil shape (b) Pressure coefficient distribution

Figure 8: Case 1: influence of Hicks–Henne bump width control parameter on optimisation

results (ndv = 30, M = 0.85, and α = 0 deg).

4.1.2. Impact of Parameter Settings in Free–Form Deformation

Two FFD parameterisation approaches embedded in SU2 framework are290

used in the NACA 0012 optimisation case, which are FFD control point and

FFD thickness method. An example of the commonly–used FFD control point

parameterisation is demonstrated in Figure 9(a). The design variables are spec-

ified for the control points on the upper surface of FFD box, whereas the control

points on the lower surface are held fixed during optimisation because only the295

upper half aerofoil geometry is used. Due to the symmetric characteristic of

the flowfield, the FFD thickness approach is also employed for this optimisation

problem, which is illustrated in Figure 9(b). In this approach, the whole aerofoil

geometry as well as corresponding computational mesh are used. The thickness

at specific chord–wise position of the aerofoil can be modified by manipulating300

a pair of control points, which move with the same magnitude but in opposite

directions. For both FFD methods, the thickness constraint in this optimisation

problem can be satisfied implicitly by allowing the control points to move only

in the outward direction as shown in Figure 9.

The FFD box has a rectangular shape in this case and is defined by four305

boundaries. Optimisation can be successfully performed as long as these bound-

aries do not intersect with the embedded geometry and are located not too far

from the aerofoil. Nonetheless, it was found that the drag result for the opti-
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(a) FFD control point method (b) FFD thickness method

Figure 9: Case 1: two FFD parameterisation approaches for the NACA 0012 aerofoil optimi-

sation case. Baseline aerofoil is shown in black colour and deformed aerofoil in red.

mised aerofoil has a dependence on different settings of the FFD box position.

A combination of the four boundary positions that can produce the best op-310

timisation performance are listed in Table 3, and these FFD box settings are

used hereafter for the NACA 0012 aerofoil optimisation case.

Table 3: Case 1: settings of FFD box position with best practice for the NACA 0012 aerofoil

optimisation case.

Parameterisation Method Bupper Blower Bleft Bright

FFD control point y = 0.2000 y = −0.2000 x = −0.0010 x = 1.0010

FFD thickness y = 0.0601 y = −0.0601 x = −0.0001 x = 1.0001

4.1.3. Dimensionality Study

The dimensionality study was conducted using the best practice obtained

from above investigation. Figure 10 plots the aerofoil shapes and Cp distri-315

butions for the optimised designs using HHBF parameterisation approach. As

more design variables are used, the leading edge becomes blunter and the aft

section of the aerofoil gets thicker, indicating that a flatter aerofoil surface is cre-

ated. Correspondingly, a suction peak is generated in the Cp distribution near

the leading edge and becomes steeper as ndv is increased. The shock position320

moves further downstream towards the trailing edge.
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(a) Aerofoil shape (b) Pressure coefficient distribution

Figure 10: Case 1: influence of design variable dimensionality on optimisation results using

HHBF approach (M = 0.85, α = 0 deg).

Figure 11 displays FFD box perturbation and aerofoil deformation using

FFD thickness parameterisation method. As more control points are placed on

the surface of FFD box, the optimiser is provided with more freedom to explore

the design space, and thus better optimisation results are obtained.325

The final drag results of the dimensionality study are shown in Figure 12.

For both FFD methods, the drag coefficient monotonically decreases as more

design variables are added into optimisation; for HHBF approach, however, the

drag value initially drops sharply and then maintains a nearly constant level.

This indicates that around 15 Hicks–Henne design variables are sufficient to330

cover the design space, while more FFD design variables are needed to do so.

This fact is possibly caused by the difference of design variable distribution.

The bump functions are distributed using ”one–minus–cosine” function and are

clustered in the area where the surface sensitivities are relatively large. By

contrast, the control points are placed uniformly on the surface of FFD box,335

which means that more design variables are needed for the optimiser to fully

explore the design space. In terms of optimisation performance, approximately

80% of drag reduction is achieved with the best result for each parameterisation

method. Specifically, FFD control point method produces the lowest drag with

80.5 counts in the optimisation case using 40 design variables, which corresponds340

to 82.8% of drag reduction.
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(a) ndv = 10 (b) ndv = 20

(c) ndv = 30 (d) ndv = 40

Figure 11: Case 1: FFD box perturbation and geometry deformation for dimensionality study

using FFD thickness parameterisation method (original FFD box and aerofoil geometry in

black, deformed FFD box in red and deformed aerofoil geometry in blue).

Figure 12: Case 1: drag coefficient results obtained from dimensionality study using three

parameterisation methods (M = 0.85, α = 0 deg).
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For the case with 40 design variables, the optimised aerofoil shapes and

pressure coefficient distributions are compared in Figure 13 with respect to three

parameterisation methods. It is worth observing that very similar optimisation

results are obtained, reflecting that the parameterisation methods employed in345

this work are equivalently effective for this optimisation problem.

(a) Aerofoil shape (b) Pressure coefficient distribution

Figure 13: Case 1: comparison of optimisation results obtained from using three parameteri-

sation methods (ndv = 40, M = 0.85, and α = 0 deg).

4.1.4. Optimisation Result Analysis

The drag reduction mechanism in this optimisation problem is to minimise

the strength of the shock wave. A representative optimisation case with 30

Hicks–Henne design variables is taken for analysis. Figure 14 displays the Mach350

contours for both the baseline and optimised aerofoil. A rather flat aerofoil

surface is created by the optimiser through thickening the leading edge as well

as the aft section. For the baseline aerofoil, a strong shock exists at about

three quarter–chord position, whereas for the optimised aerofoil, the shock is

substantially weakened and is pushed further downstream, locating at around355

90% chord–wise position. Hence, the total drag is substantially reduced by

minimising the wave drag.
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(a) Baseline aerofoil (b) Optimised aerofoil

Figure 14: Case 1: Mach contours for baseline and optimised NACA 0012 aerofoil using HHBF

parameterisation method (ndv = 30, M = 0.85, and α = 0 deg).

4.2. ADODG Case 2

4.2.1. Impact of Parameter Settings in Geometry Parameterisation

Both the HHBF and FFD control point approach are employed for geome-360

try parameterisation. The impact of parameter settings on optimisation perfor-

mance is firstly investigated. The final drag results are shown in Figure 15. It

is apparent that the same level of optimisation performance is achieved using

different parameter settings, which implies that the optimal solution in this case

is insensitive to the settings of both bump function distribution and bump width365

control parameter. In this study hereafter, the uniform distribution is selected

and the setting of t = 3 is used. With respect to FFD parameterisation, the

optimisation performance also shows independence of FFD box position, and

the results are not reported herein for brevity.

4.2.2. Dimensionality Study370

The effect of dimensionality on the optimal solution is then investigated, and

the final drag results are shown in Figure 16. It is observed that the drag values

vary in a very small range and the optimisation performance does not improve

when using more design variables. The design space is easily explored in this

case as only 5 design variables are required to locate the optimum. Additionally,375
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(a) Bump function distribution (t = 3) (b) Bump width control parameter

Figure 15: Case 2: influence of HHBF parameters on drag coefficient (M = 0.734, Cl = 0.824,

and Re = 6.5 · 106).

HHBF and FFD control point methods are found to be equivalently effective

for this optimisation problem, achieving approximately 38% of drag reduction

in both cases.

Figure 16: Case 2: drag coefficient results obtained from dimensionality study using two

parameterisation methods (M = 0.734, Cl = 0.824, and Re = 6.5 · 106).

4.2.3. Sensitivity of Turbulence Model Closure Coefficients

For the RAE 2822 aerofoil, the solution of the RANS equations employs the380

SA turbulence model, and the closure coefficients are set to standard values.

However, there is no guarantee that standard values are universal for all test
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cases. Da Ronch et al. [21] recently revisited the calibration of the SA closure

coefficients for the RAE 2822 aerofoil in transonic flow. The calibration was

performed with the aid of machine learning and adaptive design of experiment385

techniques by minimising the deviation of numerical Cp results from available

experimental data. Both standard and calibrated values of SA closure coeffi-

cients are listed in Table 4. It is worth noting that the last five parameters (cw2

through ct4) were kept at their nominal values in the case tested as they have

nearly zero influence on the outputs. The reader is referred to Ref. [21] for more390

details about the calibration process.

Table 4: Case 2: standard and calibrated values of SA turbulence model closure coefficients.

[21]

Parameter Standard value Calibrated value

k 0.4100 0.3600

cv1 7.1000 7.5000

σ 0.6667 1.0030

cb1 0.1355 0.1400

cw2 0.3000 0.3000

cb2 0.6220 0.6220

ct3 1.2000 1.2000

cw3 2.0000 2.0000

ct4 0.5000 0.5000

The above two sets of parameter values for SA turbulence model were em-

ployed in the RAE 2822 optimisation case. The HHBF was used as the param-

eterisation approach. Since the design space is easily explored in this case, the

number of Hicks–Henne design variables ranges from 5 to 10 herein. Optimisa-395

tions were then carried out using both standard and calibrated SA models, and

the corresponding drag results are shown in Figure 17.

For the baseline RAE 2822 aerofoil, it is observed from Figure 17(a) that

the drag results obtained from using standard and calibrated SA model differ
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by approximately 15 counts, which is close to the value reported in Ref. [21].400

This is indicative of a certain sensitivity of the RANS solution on the SA turbu-

lence model coefficients. Figure 18 shows the difference in the flowfield solutions

obtained using the standard and calibrated SA model. The differences mainly

exist at the shock region. The reason is attributed to the fact that the Cp distri-

bution with calibrated SA model improves the agreement with the experimental405

data, particularly near the leading edge and at the shock front.

For the optimised RAE 2822 aerofoil, the drag results obtained when using

calibrated SA model are, on average, 12 counts lower than those obtained when

using the standard model. As shown in Figure 17(b), the drag reduction is, on

average, 1.1% higher when replacing standard SA model by calibrated model.410

In the area of aircraft design, a high level of accuracy with respect to drag

prediction is required, and this need is confirmed by Meredith [22], who showed

that one drag count is equal to the weight of one passenger in a long–haul

aircraft. This highlights the importance of turbulence modelling, and the need

for more extensive calibration campaigns to reduce modelling uncertainties. A415

further dependence of the optimal solution would be on the turbulence model,

which is not done in this work, but the reader may have an indication of its

importance by looking at other references [23, 24].

(a) Drag coefficient values (b) Percentage of drag reduction

Figure 17: Case 2: comparison of drag results obtained from optimisation using two sets of

SA turbulence model closure coefficients (M = 0.734, Cl = 0.824 and Re = 6.5 · 106).
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Figure 18: Case 2: difference of pressure coefficient in baseline RAE 2822 flowfield solutions

obtained using standard and calibrated SA turbulence models (M = 0.734, Cl = 0.824 and

Re = 6.5 · 106).

4.2.4. Optimisation Result Analysis

The optimisation case selected for analysis has 20 Hicks–Henne design vari-420

ables and uses standard SA turbulence model. For both the baseline and op-

timised design, the Mach contour results are shown in Figure 19. The strong

shock wave on the upper surface of the baseline aerofoil is eliminated after op-

timisation. Thus, the total drag is reduced by removing the component of wave

drag. In order to further understand the drag reduction mechanism, the aerofoil425

shapes, Cp distributions as well as surface curvature distributions are plotted in

Figure 20 for comparison. The geometry deformation largely occurs in the fore

section of the aerofoil. On the upper side, the curvature is reduced to create a

relatively flat surface, which alleviates the flow acceleration and hence delays or

eliminates the formulation of shock wave; whereas on the lower side, the aerofoil430

becomes thicker, which is primarily to satisfy the area constraint. Correspond-

ingly, the pressure discontinuity at around 56% chord–wise position is replaced

by a smooth pressure recovery, thus eliminating the shock wave and reducing

the drag. Additionally, the surface curvature near the trailing edge is enlarged

after optimisation, and the local camber is increased accordingly.435

We have further investigated the impact that the optimal shape has on the

aerodynamic derivatives. Results are summarised in Table 5. It was found

that the influence on the drag and pitching moment curve slopes, dCd/dα and

dCm/dα respectively, is minimal but significant on the lift curve slope, dCl/dα.
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(a) Baseline aerofoil (b) Optimised aerofoil

Figure 19: Case 2: Mach contours for baseline and optimised RAE 2822 aerofoil using HHBF

parameterisation method (M = 0.734, Cl = 0.824, Re = 6.5 · 106, and ndv = 20).

(a) Aerofoil shape (b) Pressure coefficient distri-

bution

(c) Surface curvature

Figure 20: Case 2: comparison of optimisation results for the RAE 2822 aerofoil optimisation

using HHBF parameterisation method (M = 0.734, Cl = 0.824, Re = 6.5 · 106, and

ndv = 20).
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This may potentially affect the aerodynamic response to gusts.440

Table 5: Case 2: aerodynamic derivatives of the RAE 2822 aerofoil at the design point

(M = 0.734, Cl = 0.824, Re = 6.5 · 106, and ndv = 20).

dCl/dα dCd/dα dCm/dα

Baseline 0.0806 0.01500 0.0022

Optimal 0.1241 0.01474 0.0021

For this optimisation case, the convergence histories of several constraints

are plotted in Figure 21. Firstly, the lift coefficient initially deviates from the

value of 0.824 because the shape deformation is mainly performed in the first

few design steps. The lift coefficient then gradually recovers to the target value

and finally satisfies the constraint. Secondly, despite an initial decrease of the445

pitching moment coefficient, the optimisation seeks to generate aerofoils with

higher Cm values in the following design cycles, which leaves more margin for

this constraint. Thirdly, the aerofoil area basically remains the same value

throughout the optimisation process, and hence does not violate the area con-

straint. Therefore, the optimisation provides a feasible design that meets the450

requirement of this benchmark problem.

(a) Lift (b) Pitching moment (c) Surface area

Figure 21: Case 2: convergence histories of several constraints in the RAE 2822 optimisation

using HHBF parameterisation method (ndv = 20). Dashed line indicates the desired value

for a specific constraint.
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5. Conclusions

This work focused on investigating the sensitivity of the optimal solution

to numerical parameters which have been neglected to date. The open–source

suite, SU2, was applied to perform gradient–based aerodynamic optimisation455

using continuous adjoint method. Two aerofoil benchmark problems were exer-

cised, and in both transonic cases, the drag was minimised by either weakening

or eliminating the shock.

Several conclusions may be formulated from this study. Firstly, Hicks–Henne

bump functions and free–form deformation were shown to be equivalently effec-460

tive as geometry parameterisation method for both optimisation problems. Sec-

ondly, the optimisation of the NACA 0012 aerofoil exhibits strong dependence

on virtually all numerical parameters investigated. This dependence reflects

the high curvature seen locally on the optimised shape. Fine–tuning of these

parameters is thus required to provide sufficient local shape control. Thirdly, in465

the RAE 2822 case, the insensitivity of optimisation results to numerical param-

eters arises from low to mild curvatures on the final shape. The design space is

easily explored by perturbing moderately the geometry. Lastly, the optimisation

performance is influenced by turbulence modelling as the RANS solution shows

a certain sensitivity to the closure coefficients of Spalart–Allmaras turbulence470

model. A good calibration of the turbulence model is thus needed.

Overall, there is no a priori knowledge that we can use to know the de-

gree of sensitivity of the optimal design to numerical settings. This can only

be estimated a posteriori by running a number of analyses. The sensitivity

study conducted for the two aerofoil cases may provide guidance for complex475

optimisation problems.
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