The University of Southampton
University of Southampton Institutional Repository

Localization accuracy in single-molecule microscopy

Localization accuracy in single-molecule microscopy
Localization accuracy in single-molecule microscopy

One of the most basic questions in single-molecule microscopy concerns the accuracy with which the location of a single molecule can be determined. Using the Fisher information matrix it is shown that the limit of the localization accuracy for a single molecule is given by λem/2πn a√γAt, where λem, na, γ, A, and t denote the emission wavelength of the single molecule, the numerical aperture of the objective, the efficiency of the optical system, the emission rate of the single molecule and the acquisition time, respectively. Using Monte Carlo simulations it is shown that estimation algorithms can come close to attaining the limit given in the expression. Explicit quantitative results are also provided to show how the limit of the localization accuracy is reduced by factors such as pixelation of the detector and noise sources in the detection system. The results demonstrate what is achievable by single-molecule microscopy and provide guidelines for experimental design.

0006-3495
1185-1200
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36
Ram, Sripad
559bd560-3817-4e53-8c7a-2f08e4518412
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36
Ram, Sripad
559bd560-3817-4e53-8c7a-2f08e4518412
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc

Ober, Raimund J., Ram, Sripad and Ward, E. Sally (2004) Localization accuracy in single-molecule microscopy. Biophysical Journal, 86 (2), 1185-1200. (doi:10.1016/S0006-3495(04)74193-4).

Record type: Article

Abstract

One of the most basic questions in single-molecule microscopy concerns the accuracy with which the location of a single molecule can be determined. Using the Fisher information matrix it is shown that the limit of the localization accuracy for a single molecule is given by λem/2πn a√γAt, where λem, na, γ, A, and t denote the emission wavelength of the single molecule, the numerical aperture of the objective, the efficiency of the optical system, the emission rate of the single molecule and the acquisition time, respectively. Using Monte Carlo simulations it is shown that estimation algorithms can come close to attaining the limit given in the expression. Explicit quantitative results are also provided to show how the limit of the localization accuracy is reduced by factors such as pixelation of the detector and noise sources in the detection system. The results demonstrate what is achievable by single-molecule microscopy and provide guidelines for experimental design.

This record has no associated files available for download.

More information

Accepted/In Press date: 9 October 2003
Published date: February 2004

Identifiers

Local EPrints ID: 424081
URI: http://eprints.soton.ac.uk/id/eprint/424081
ISSN: 0006-3495
PURE UUID: 10e36e7e-2347-4980-8366-9cd764726069
ORCID for Raimund J. Ober: ORCID iD orcid.org/0000-0002-1290-7430
ORCID for E. Sally Ward: ORCID iD orcid.org/0000-0003-3232-7238

Catalogue record

Date deposited: 04 Oct 2018 16:30
Last modified: 16 Mar 2024 04:37

Export record

Altmetrics

Contributors

Author: Raimund J. Ober ORCID iD
Author: Sripad Ram
Author: E. Sally Ward ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×