How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?
How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?
Single molecule fluorescence microscopy is a relatively novel technique that is used, for example, to study the behavior of individual biomolecules in cells. Since a single molecule can move in all three dimensions in a cellular environment, the three dimensional tracking of single molecules can provide valuable insights into cellular processes. It is therefore of importance to know the accuracy with which the location of a single molecule can be determined with a fluorescence microscope. We study this performance limit of a fluorescence microscope from a statistical point of view by deriving the Fisher information matrix for the estimation problem of the location of the single molecule. In this way we obtain a lower bound on the standard deviation of any reasonable (unbiased) estimation method of the location parameters. This lower bound provides a fundamental limit on the accuracy with which a single molecule can be localized using a fluorescence microscope and is given in terms of such quantities as the photon detection rate of the single molecule, the acquisition time, the numerical aperture of the objective lens etc. We also present results that show how factors such as noise sources, detector size and pixelation deteriorate the fundamental limit of the localization accuracy. The present results can be used to evaluate and optimize experimental setups in order to carry out three dimensional single molecule tracking experiments and provide guidelines for experimental design.
3D single molecule tracking, Fisher information matrix, Parameter estimation theory, Point spread function, Single molecule microscopy
426-435
Ram, Sripad
559bd560-3817-4e53-8c7a-2f08e4518412
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36
2005
Ram, Sripad
559bd560-3817-4e53-8c7a-2f08e4518412
Ward, E. Sally
b31c0877-8abe-485f-b800-244a9d3cd6cc
Ober, Raimund J.
31f4d47f-fb49-44f5-8ff6-87fc4aff3d36
Ram, Sripad, Ward, E. Sally and Ober, Raimund J.
(2005)
How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?
In Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III.
vol. 5699,
SPIE.
.
(doi:10.1117/12.587878).
Record type:
Conference or Workshop Item
(Paper)
Abstract
Single molecule fluorescence microscopy is a relatively novel technique that is used, for example, to study the behavior of individual biomolecules in cells. Since a single molecule can move in all three dimensions in a cellular environment, the three dimensional tracking of single molecules can provide valuable insights into cellular processes. It is therefore of importance to know the accuracy with which the location of a single molecule can be determined with a fluorescence microscope. We study this performance limit of a fluorescence microscope from a statistical point of view by deriving the Fisher information matrix for the estimation problem of the location of the single molecule. In this way we obtain a lower bound on the standard deviation of any reasonable (unbiased) estimation method of the location parameters. This lower bound provides a fundamental limit on the accuracy with which a single molecule can be localized using a fluorescence microscope and is given in terms of such quantities as the photon detection rate of the single molecule, the acquisition time, the numerical aperture of the objective lens etc. We also present results that show how factors such as noise sources, detector size and pixelation deteriorate the fundamental limit of the localization accuracy. The present results can be used to evaluate and optimize experimental setups in order to carry out three dimensional single molecule tracking experiments and provide guidelines for experimental design.
This record has no associated files available for download.
More information
Published date: 2005
Keywords:
3D single molecule tracking, Fisher information matrix, Parameter estimation theory, Point spread function, Single molecule microscopy
Identifiers
Local EPrints ID: 424088
URI: http://eprints.soton.ac.uk/id/eprint/424088
PURE UUID: 3bd6e5f9-96f8-431d-ac4b-998bdbe1c8b9
Catalogue record
Date deposited: 04 Oct 2018 16:30
Last modified: 06 Jun 2024 02:04
Export record
Altmetrics
Contributors
Author:
Sripad Ram
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics