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Highlights

• Four slip boundary conditions are presented for liquid flow.

• The proposed schemes surmount the barrier of limited slip length.

• The proposed schemes are specified by the slip length.

• Two slip boundary conditions are suitable for curved walls.5
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Abstract

The phenomenon of liquid slip has been studied by many researchers using
the lattice Boltzmann method. However, boundary conditions for the lattice15

Boltzmann simulation of liquid flow are far from perfect and how to specify
the boundary conditions for liquid flow with slip accurately is still a chal-
lenge. In this work, we introduce four widely used slip boundary conditions
in gaseous flow into the simulation of liquid flow, two half-way schemes and
two modified schemes. Theoretical analysis shows that all half-way schemes20

are equivalent in principle, so are the modified schemes. According to the
equivalence of these schemes, these slip boundary conditions are improved
by expanding the range of the combination parameters from [0,1] to [0,2]
to surmount the barrier of limited simulated slip length. And the relations
between the combination parameters and the slip length are deduced strictly25

in theory. The specified combination parameter is decided by the given slip
length and the relaxation time. The discrete effects of these slip boundary
conditions are analysed. If the grid is fine enough, the discrete effects can be
ignorable and the local flow at the wall can be approximated as flow with lin-
ear velocity gradient. The accuracy and reliability of our method have been30

verified by the simulations of the Couette flow, the Poiseuille flow and the
unsteady Womersley flow. The cylindrical Couette flow is also implemented
to explore the possibility of simulating liquid flows with curved boundary.
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1. Introduction

Friction reduction has always been a hot topic for naval architecture and
marine engineering. With the rapid development of micro-nano-technology,
liquid flow at micro-scale has attracted increasing attention [1, 2]. Smaller
friction force is beneficial to micro devices. One of ways to reduce friction40

is to make use of superhydrophobic surfaces [3, 4, 5]. The development of
the chemical science engineering makes it possible to obtain superhydropho-
bic surfaces with special chemical properties and microstructures [6, 7, 8, 9].
Superhydrophobic surfaces possess numerous micro-grooves, which entrap
air when the surfaces are fully submerged in liquid [10, 11]. So the physical45

boundary of a liquid flow is composed of liquid-solid and liquid-air interfaces.
Appreciable apparent liquid slip will emerge with suitable liquid-air inter-
faces [12, 13]. To quantify the boundary slip, Navier proposed the concept of
’slip length’ [14], which is commonly accepted by researchers nowadays [15].
With the assumption of the linear slip model, slip length is defined as the ratio50

of the slip velocity to the absolute value of the velocity gradient in the normal
direction of the wall. The non-dimensional form of the Navier’s slip model is
also presented in the following researches [16]. To study the phenomenon of
boundary slip, many experiments were carried out with surface force appara-
tus, atomic force microscopy, particle image velocimetry, and Quartz crystal55

resonators techniques [17]. These instruments are still not accurate enough
at micro-nano-scale. Numerical methods show their potential to make up
for the deficiency of experiments. Karimipour et al. simulated the water-
Cu nanofluid considering the influences of the nanofluid Richardson number
and the nanoparticles volume fraction [18]. Besides, simulation is necessary60

to explore the mechanism about the slip length. By numerical simulations,
Esfandiary et al. studied the Brownian motion and thermophoresis effect
to explore the mechanisms of slip velocity [19]. The conclusion will inspire
researchers to obtain the desired slip length and utilize the slip phenomenon.

The lattice Boltzmann method (LBM) is a promising tool to simulate mi-65

cro liquid flow with boundary slip. The lattice Boltzmann equation is derived
from the Boltzmann equation without the continuum assumption and needs
less computing time than the molecular dynamics simulation because of its
kinetic particle nature, local calculation and natural parallelism [20, 21]. In
recent years, researchers have done many work in the slip boundary condi-70

tions of the LBM. Nie et al. employed the bounce-back boundary condition
of LBM to simulate fluid flow in Micro-electro-mechanical systems and cap-
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tured the behavior of velocity slip [1]. But later researchers found that it is
because of the discrete effect of the bounce-back scheme [22]. Lim et al. used
the specular reflection boundary condition to simulate microchannel flows [2].75

The slip velocity they obtained differs from some analytical results. Then
Succi proposed a combination of bounce-back and specular (BSR) scheme to
capture velocity slip on solid walls [23]. As shown in his work, the degree
of slip is highly dependent on the combination parameter r (0 ≤ r ≤ 1).
In order to investigate the gravity effect, Karimipour et al. included a force80

part into the BSR scheme to simulate the slip velocity accurately [24]. Tang
et al. developed a more general diffuse boundary condition which is the com-
bination of the discrete full diffusive and specular reflection(DSR) boundary
condition [25, 26]. Researchers found that slip velocity predicted by the
DSR scheme is bigger than physical results in some cases [27]. Recently,85

Chai et al. and Verhaeghe et al. put forward a new scheme which is the
combination of the discrete full diffusive and bounce-back (DBB) boundary
condition [28, 29]. What should be mentioned is, analysis indicates that the
BSR scheme can simulate a wider range of slip velocity than the DSR scheme
and the DBB scheme [20, 28].90

Researchers have found a way to obtain the specified accurate combina-
tion parameter for microscale gas flow [20, 28, 30]. But for liquid micro-flow,
the Knudesn number is so small that the strategy used in gas flow to choose
the combination parameter can not work again. As a matter of fact, the
boundary slip of liquid flow can be quantified by the slip length. With95

given slip length, it is reasonable to obtain a specified liquid micro-flow.
Karimipour et al. simulated the nanofluid in a microchannel in slip flow
regime [31, 32]. The combination parameter was chose from 0.005 to 0.05.
Wang et al. studied the boundary slip phenomenon on the liquid-solid surface
with the half-way BSR scheme and the formula of adhesion force [33]. The100

combination parameter was given by trial and error. Ahmmed et al. found
that the slip length (b) can be related to the combination parameter by the
power law. The prefactor and the exponent were determined by numerical
fitting [34]. Švec et al. also obtained an approximate equation relating the
combination parameter with the slip length [35]. In fact, Ahmmed et al.105

adopted the modified BSR scheme while Švec et al. used the half-way BSR
scheme. They all ignored the discrete effect of the BSR scheme. An accu-
rate relationship between the combination parameter and the slip length are
essential and needs to be deduced strictly in theory. Recently, Wang et al.
studied the BSR scheme for the simulation of slip in liquid flow and they110
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related the slip length and the relaxation factor to the combined parame-
ter based on the Couette flow and the Navier’s slip model [36]. But it is
challenging to apply the BSR scheme to curved walls. So the BSR scheme
is not enough for the simulation of liquid flow. The DBB scheme has more
potential in the simulation of fluid flows with complex geometries for the115

nature of its local calculations [37, 38]. However, few simulations employed
the DSR and DBB schemes for liquid flow. The main obstacle is that the
DSR scheme assumes that the two extreme cases of the interaction between
molecules and walls are the full diffusive and specular reflection boundary
conditions and the DBB scheme assumes the two extreme cases are the full120

diffusive and bounce back boundary conditions [26, 28]. So the combination
parameter can only vary from zero to one. As a result, both of the DSR and
DBB schemes can only realize a limited range of slip length.

In order to break the limit of applying the DSR and DBB schemes into the
simulation of liquid flow, we theoretically analyse these boundary conditions125

in the case of unidirectional liquid flow. According to the analysis, the DSR,
DBB schemes are improved by expanding the range of the combination pa-
rameter from [0,1] to [0,2]. Then to specify the boundary condition, the rela-
tions between the combination parameter and slip length are deduced strictly
in theory. The discrete effects of boundary conditions existing in nonlinear130

flow are discussed. Finally, simulations of Couette flow and Poiseuille flow
are conducted to verify the accuracy and reliability of our method. We also
apply the DBB schemes to the unsteady Womersley flow and the cylindrical
Couette flow. Numerical results are very close to the analytical solutions.

The rest of this paper is organized as follows: in Section.2, we study135

the boundary conditions with adjustable slip length for LBM in theory. In
Section.3, we present the numerical validation and the discussion of results.
Finally, in Section.4, we get the conclusions and propose some directions for
future work.

2. Numerical methods140

The lattice Boltzmann method is a discrete approximation of the contin-
uous Boltzmann equation. It has been recognized as an effective way for the
simulation of micro-flow [39]. In this section, the lattice Boltzmann method is
simply introduced and slip boundary conditions for liquid flows are proposed
and analysed.145
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2.1. The lattice Boltzmann method

The evolution equation of the lattice Botlzmann method is [39]:

fi(~x+ ~ei∆t, t+ ∆t)− fi(~x, t) = −1

τ
[fi(~x, t)− f eqi (~x, t)] + ∆tFi (1)

where fi(~x, t) is the particle distribution function with velocity ~ei at position
~x and time t, ∆t is the time step, τ is the relaxation time, and Fi is a forcing
term accounting for the acceleration ~a. Fi is determined by [39]150

Fi = ωiρ(1− 1

2τ
)[
~ei − ~u
c2
s

+
(~ei · ~u)~ei

c4
s

]~a (2)

Eq.(1) can also be divided into colliding step Eq.(3) and streaming step
Eq.(4):

f̄i(~x, t)=fi(~x, t)−
1

τ
[fi(~x, t)−f eqi (~x, t)]+∆tFi (3)

fi(~x+ ~ei∆t, t+ ∆t) = f̄i(~x, t) (4)

where f̄i represents the post-collision distribution function.
Without losing generality, we simply choose the standard D2Q9 model

for our two-dimensional simulation. The equilibrium distribution f eqi of the155

D2Q9 is expressed as [22]

f eqi (~x, t) = ωiρ[1 +
~ei · ~u
c2
s

+
(~ei · ~u)2

2c4
s

− ~u2

2c2
s

] (5)

Here cs is calculated by cs = c√
3
, where c = ∆x

∆t
( ∆x : lattice spacing). We

set ∆x = ∆t = 1 in this paper. Besides, ωi represents the model-dependent
weight coefficients expressed as

ωi =





4/9, i = 0.
1/9, i = 1, 2, 3, 4.
1/36, i = 5, 6, 7, 8.

The discrete velocities of the D2Q9 model are given by160

~ei =





(0, 0), i = 0.

(cos (i−1)π
2

, sin (i−1)π
2

)c, i = 1, 2, 3, 4.√
2(cos (2i−1)π

4
, sin (2i−1)π

4
)c, i = 5, 6, 7, 8.
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The macroscopic variables, density ρ and velocity ~u in the simulation of
LBM are calculated by

ρ =
∑

i

fi, ρ~u =
∑

i

~eifi +
∆t · ~a

2
(6)

In order to simulate liquid microflows, τ is determined by liquid viscosity
ν with the following relation

τ =
ν

c2
s∆t

+
1

2
(7)

2.2. Slip boundary conditions for LBM in gaseous flow165

Firstly, we describe three half-way slip boundary conditions, the combi-
nation of half-way bounce back and specular reflection (HBSR) scheme, the
combination of discrete full diffusive and half-way specular reflection (HDSR)
scheme, and the combination of discrete full diffusive and half-way bounce
back (HDBB) scheme.170

As shown in Fig.1, boundaries of these half-way schemes locate at j = 0.5
which means the boundary are placed at the half-way of the nodes. After
colliding step Eq.(3), the moving step is conducted. The particle distribu-
tion functions moving from the inner flow are obtained. But the particle
distribution functions moving from the wall are unknown and they need to175

be processed with the boundary conditions.
To fulfill boundary conditions, we need to obtain the unknown distribu-

tion functions f2, f5, f6.
As described below, r, r̄, s, s̄, q, q̄ are the combination parameters and

they vary from 0 to 1 in gaseous flow.180

For the HBSR scheme, f2, f5, f6 are treated as




f2 = f̄4

f5 = rf̄7 + (1− r)f̄8

f6 = rf̄8 + (1− r)f̄7

(8)

where the particle distribution functions f̄4, f̄7, f̄8 are given by colliding step
Eq.(3).

For the HDSR scheme, f2, f5, f6 are expressed




f2 = qf eq2 + (1− q)f̄4

f5 = qf eq5 + (1− q)f̄8

f6 = qf eq6 + (1− q)f̄7

(9)
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Figure 1: Lattice and boundary arrangement in the D2Q9 model for the half-way schemes
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Figure 2: Lattice and boundary arrangement in the D2Q9 model for the modified schemes
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For the HDBB scheme, f2, f5, f6 are constructed as185





f2 = sf eq2 + (1− s)f̄4

f5 = sf eq5 + (1− s)f̄7

f6 = sf eq6 + (1− s)f̄8

(10)

Then, we describe three modified slip boundary conditions, the combi-
nation of modified bounce back and specular reflection (MBSR) scheme, the
combination of discrete full diffusive and modified specular refection (MDSR)
scheme, and the combination of discrete full diffusive and modified bounce
back (MDBB) scheme.190

As shown in Fig.2, boundary nodes of the modified schemes locate at
boundaries. The same as the half-way schemes, these modified schemes also
need to treat the unknown distribution functions f2, f5, f6.

For the MBSR scheme, f2, f5, f6 are given as





f2 = f4

f5 = r̄f7 + (1− r̄)f8

f6 = r̄f8 + (1− r̄)f7

(11)

where f4, f7, f8 are given by streaming step Eq.(4).195

For the MDSR scheme, f2, f5, f6 are treated as





f2 = q̄f eq2 + (1− q̄)f4

f5 = q̄f eq5 + (1− q̄)f8

f6 = q̄f eq6 + (1− q̄)f7

(12)

For the MDBB scheme, f2, f5, f6 are constructed as





f2 = s̄f eq2 + (1− s̄)f4

f5 = s̄f eq5 + (1− s̄)f7

f6 = s̄f eq6 + (1− s̄)f8

(13)

With these slip boundary conditions at hand, the unknown distributions
from the wall can be given after streaming step.

The specified boundary conditions are decided by the combination pa-200

rameters. The combination parameters for gaseous microflow are decided by
Kn because the gaseous slip should be attributed to the rarefaction effects
(Knudsen number Kn) [20, 28]. However, the liquid slip is mainly controlled
by the characteristic of the wall [10, 11].

9
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There are two obstacles for applying these schemes to simulate liquid205

microflow. One is that the HDSR, HDBB, MDSR, MDBB schemes can
only obtain a limited range of slip length [20, 28]. The other one is that
the combination parameters for liquid slip should be specified with the slip
length but not Kn. We will solve these problems in the next subsection.

2.3. Analysis of slip boundary conditions for simulation of liquid flow210

In this subsection, through theoretical analysis, these slip boundary con-
ditions are introduced from gas flow to simulate liquid slip. We propose a
method to specify the combination parameters with the slip length instead of
the Knudsen number. Researchers have studied the numerical stability of the
slip boundary conditions for gas flow [20, 28]. The numerical stability and215

the accuracy of these boundary conditions for liquid flow are consistent with
gas flow in nature [36]. It can be concluded from the following simulations
that the numerical stability and the accuracy of the improved slip boundary
conditions for liquid flow are not worse than gas flow.

2.3.1. Basic assumptions of unidirectional steady liquid flow220

It is difficult to analyse the slip boundary conditions in complex flows. So
some basic assumptions should be given. Guo et al. [20] and Tao et al. [38]
adopted the unidirectional steady gas flow to obtain the relations between
the combinations parameters and the Knudsen number. Results show that
the relations are accurate and reliable enough to simulate complex gas flows225

with slip boundary condition. Wang [36] used the unidirectional liquid flow
to deduce the relation between the combination parameter of BSR scheme
and the slip length. Simulations demonstrate that the relation is suitable
even for unsteady Womersly flow with liquid slip boundary condition. In the
following analysis, for simplicity, we also consider a unidirectional liquid flow230

as shown in Fig.1 and 2. The assumptions are expressed as:

ρ = const, uy = 0, ay = 0,
∂φ

∂x
= 0,

∂φ

∂t
= 0 (14)

where φ represents an arbitrary flow variable, uy is the y component of the
velocity, ay is the y component of the body force ~a.

According to Eq.(6), the velocities at place j can be calculated by

ρuj = c(f j1 − f j3 + f j5 − f j6 + f j8 − f j7 ) +
∆t

2
ρa (15)

10
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where f ji means the distribution function at place j and velocity ~ei, and a is235

the x component of the acceleration ~a.
The unidirectional property of this flow suggests that

f j1 − f j3 = f̄ j1 − f̄ j3 (16)

Considering the streaming rules Eq.(4) and these above assumptions, we
have

f 2
5 − f 2

6 = f̄ 1
5 − f̄ 1

6 , f 1
8 − f 1

7 = f̄ 2
8 − f̄ 2

7 (17)

2.3.2. Improvement for four of these slip boundary conditions240

With Eqs.(3), (5), (15), (16), (17) at hand and following the procedures
of Guo [20], we can derive the relation between u1 and u2, where uj denotes
the velocity at location j in Fig.1. For the HBSR scheme, we obtain

u2 =
1− 2τ + 2r(τ − 2)

1− 2τ + 2r(τ − 1)
u1 +

6(2τ − 1) + r(8τ 2 − 20τ + 11)

(2τ − 1)[1− 2τ + 2r(τ − 1)]
∆ta (18)

For the HDSR scheme, we get

u2 =
1− 2τ + q(τ − 2)

1− 2τ + q(τ − 1)
u1 +

6(2τ − 1) + 0.5q(8τ 2 − 20τ + 11)

(2τ − 1)[1− 2τ + q(τ − 1)]
∆ta (19)

For the HDBB scheme, we have245

u2 =
1− 2τ + (2− s)(τ − 2)

1− 2τ + (2− s)(τ − 1)
u1+

6(2τ − 1) + 0.5(2− s)(8τ 2 − 20τ + 11)

(2τ − 1)[1− 2τ + (2− s)(τ − 1)]
∆ta

(20)
It is observed that if we set q = 2r, Eqs.(18) and (19) are identical, which

means that the HBSR and HDSR schemes are equivalent. It agrees well with
the conclusion of Guo [20]. Guo [20] also found that if r = 0.5, the HBSR
scheme can realize the discrete full diffuse boundary condition (q = 1), which
means the HBSR scheme with r = 0.5 is equivalent to the discrete full diffuse250

boundary condition.
Similarly, if we set s = 2− 2r, Eqs.(18) and (20) are identical. Following

the procedure of Guo [20], it is also proved that the HBSR scheme with
r = 0.5 is equivalent to the discrete full diffuse boundary condition.

Based on this equivalence, we can have the following derivation:255





f eq2

f eq5

f eq6

⇐⇒





f̄4

0.5f̄7 + 0.5f̄8

0.5f̄8 + 0.5f̄7

11
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So the HDSR scheme can be equivalent to the following relations:





qf eq2 + (1− q)f̄4

qf eq5 + (1− q)f̄8

qf eq6 + (1− q)f̄7

⇐⇒





qf̄4 + (1− q)f̄4

q(0.5f̄7+0.5f̄8)+(1− q)f̄8

q(0.5f̄7+0.5f̄8) +(1− q)f̄7

⇐⇒





f̄4

0.5qf̄7+(1− 0.5q)f̄8

0.5qf̄8+(1− 0.5q)f̄7

The conventional HDSR scheme assumes that the two extreme cases of
the interaction between molecules and walls are the discrete full diffusive and260

the specular reflection boundary conditions [26], and the conventional HDBB
scheme assumes that the two extreme cases are the discrete fully diffusive and
the bounce back boundary conditions [28]. Therefore, for the conventional
HDSR and HDBB schemes, the combination parameters are limited to [0, 1].

For actual liquid flow, velocity slip may range from no slip to nearly full265

slip. Comparing the equivalence form of the HDSR scheme with Eq.(8),
we can find r = 0.5q. For r varies from 0 to 1, we can naturally obtain
that 0 ≤ q ≤ 2. The numerical results below also prove our improvements.
Similarly, the combination parameters of the HDBB, MDSR and MDBB
schemes can be expanded from [0,1] to [0,2]. In the physical sense, these270

schemes are improved based on the equivalence to the BSR scheme, and the
two extreme cases of the interaction between molecules and walls change to
the bounce back and the specular reflection boundary conditions.

Our improvement has three advantages comparing with the conventional
schemes. The first one is that it can realize a wider range of velocity slip. The275

second one is that we make it possible to apply these schemes to simulate
liquid flow. The third one is that the HDBB and MDBB schemes have
the potential to simulate liquid flow with complex geometries for their local
computations.

In order to simulate specified velocity slip of liquid flow, we still need to280

relate the slip length to the combination parameters.

12
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2.3.3. Relating slip length to the combination parameters

For liquid flow, Navier’s slip model has been accepted by many researchers [14],
having the form of

us = b
∂u

∂~n
|wall (21)

where us is the slip velocity at the wall, b is the slip length, and ∂u
∂~n

means285

the velocity gradient in the normal direction of the wall.
The slip length can quantify the velocity slip of liquid flow and can be

measured by experiment [17]. In order to get a specified boundary condition
for liquid micro-flow, we adopt a widely used linear slip model, the Navier’s
slip model, as the base to deduce the relationships between the slip length290

and the combination parameters of the formerly discussed slip boundary
conditions.

Firstly, we analyse three half-way schemes: Eqs.(8), (9) and (10). Wang
et al. [36] adopted the Couette flow with linear velocity gradient to deduce
the relation between the combination parameters of BSR scheme with the295

slip length. Results show that the relations they obtained are accurate and
reliable enough even for unsteady nonlinear flow. So we also take the Couette
flow in the following derivation.

For the Couette flow (linear velocity gradient, a = 0), the equation can
be written as300

u = βy + us (22)

where β is a parameter, y is the distance from bottom wall and us is the slip
velocity at the wall.

Substituting u1 and u2 of the Couette flow into Eqs.(18), (19), (20) respec-
tively, we can get the relations between the slip velocity and the combination
parameters of the half-way schemes:305

us =





β (1−r)(2τ−1)
2r

β
(1− q

2
)(2τ−1)

q

β
s
2

(2τ−1)

2−s

(23)

Based on Eqs.(21) and (23), we can deduce the relations between the slip
length and the combination parameters of the half-way schemes:

b =





(1−r)(2τ−1)
2r

(1− q
2

)(2τ−1)

q
s
2

(2τ−1)

2−s

(24)

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

From Eq.(24), we can obtain the relations between the combination pa-
rameters and the slip length:





r = 1
1+ 2b

2τ−1

q = 2
1+ 2b

2τ−1

s = 2
1+ 2τ−1

2b

(25)

Eq.(24) shows that the slip length is decided by the combination parame-310

ter and relaxation time. It can be seen from Eq.(24) that with a wider range
of q and s ([0, 2]), the range of the slip length that the HDSR and HDBB
schemes can simulate is also larger.

It can be noted from Eq.(25) that there is no discrete lattice effect for
linear flow and the combination parameters can be specified by given slip315

length and the relaxation time.
For more general flow, there may be discrete effects caused by different

lattice numbers. We will analyse the discrete effects of the slip boundary
conditions with the case of the Poiseuille flow below.

For the Poiseuille flow (non-linear velocity gradient, a 6= 0), the equation320

is
u =

a

2ν
y(H − y) + us (26)

where H is the gap between two fixed plates.
Substituting Eq.(26) into Eqs.(18), (19), (20) respectively, we find that

the slip velocity is determined by

us =





aH
2ν

(1−r)(2τ−1)
2r

+ aH
2ν

(2τ−1)2−3/4
3H

aH
2ν

(1− q
2

)(2τ−1)

q
+ aH

2ν
(2τ−1)2−3/4

3H
aH
2ν

s
2

(2τ−1)

2−s + aH
2ν

(2τ−1)2−3/4
3H

(27)

for the Poiseuille flow.325

Combining Eq.(21) and Eq.(27), we can find the slip length is determined
by

b =





(1−r)(2τ−1)
2r

+ (2τ−1)2−3/4
3H

(1− q
2

)(2τ−1)

q
+ (2τ−1)2−3/4

3H
s
2

(2τ−1)

2−s + (2τ−1)2−3/4
3H

(28)

for the Poiseuille flow.
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From Eq.(28), we can obtain the relations between the combination pa-
rameters and the slip length:330





r = 1

1+
2b−2(2τ−1)2/(3H)+1/(2H)

2τ−1

q = 2

1+
2b−2(2τ−1)2/(3H)+1/(2H)

2τ−1

s = 2
1+ 2τ−1

2b−2(2τ−1)2/(3H)+1/(2H)

(29)

for the Poiseuille flow.
For the Poiseuille flow, it is observed from Eq.(28) that the slip length

is influenced by two parts: a physical part depending on the combina-
tion parameter and relaxation time, and a numerical part depending on
the relaxation time and the value of H related to the grid size. If we set335

r = q
2

= 1− s
2

= 1, the half-way scheme equals to the pure half-way bounce-
back scheme. According to Eq.(28), this pure half-way bounce-back scheme
generates a nonzero slip length, due to the discrete effect. Moreover, it
also shows that all of the three half-way schemes can not be applied to the

Poiseuille flow with b < (2τ−1)2−3/4
3H

when 0 ≤ 2r, q, s ≤ 2. The relative error340

of the slip length caused by the discrete effect can be quantified by

Lerror =
(2τ − 1)2 − 3/4

3bH
(30)

In order to obtain an accurate boundary condition for liquid flow, the
discrete effects should be corrected or reduced greatly. For the Poiseuille
flow, the discrete error can be analysed and calculated. So we can consider
the influence of the discrete effect on the slip length when calculating the345

combination parameters, as what has been done in Eq.(29). In this way,
the discrete effects can be corrected and we can simulate the slip length
accurately.

But for general flow without known equations, it is difficult to obtain
the equation of discrete effect part. So we can not consider the influence350

of the discrete effect on the slip length when calculating the combination
parameters. Even though we cannot eliminate the discrete effect completely,
we still have other ways to reduce the discrete effects. The discrete effect
is controlled by the relaxation time and the lattice numbers H. One way
is to adjust the relaxation time. If a suitable τ is given, the relative error355

can be reduced greatly. But a fixed τ will bring much inconvenience to the
choice of the grid size and the characteristic velocity in the lattice Boltzmann
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simulation. The other way is to refine lattice. Increasing H will greatly
reduce the error. Moreover, in order to ensure 0 ≤ 2r, q, s ≤ 2, b should

be no smaller than (2τ−1)2−3/4
3H

for the half-way schemes. If H is big enough,360

the range of the simulated slip length will be expanded and Eq.(28) will
recover to Eq.(24). So refining lattice is necessary and effective to reduce
the discrete effects for the lattice Boltzmann simulation of liquid slip flow.
With refining grids, Eq.(29) for the Poiseuille flow will recover to Eq.(25) for
the Couette flow and the general flow can be simulated with Eq.(25) of the365

half-way schemes.
Similarly to the analysis of the half-way schemes, the slip length in the

modified schemes is decided by

b =





τ(1−r̄)
r̄

τ(2−q̄)
q̄

τ s̄
2−s̄

(31)

for the linear liquid flow, and

b =





τ(1−r̄)
r̄

+ 8τ2−2τ−1
6H

τ(2−q̄)
q̄

+ 8τ2−2τ−1
6H

τs̄
2−s̄ + 8τ2−2τ−1

6H

(32)

for the Poiseuille flow.370

The combination parameters for the modified schemes are given by





r̄ = 1
1+ b

τ

q̄ = 2
1+ b

τ

s̄ = 2
1+ τ

b

(33)

for the linear liquid flow, and





r̄ = 1

1+
b−(8τ2−2τ−1)/(6H)

τ

q̄ = 2

1+
b−(8τ2−2τ−1)/(6H)

τ

s̄ = 2
1+ τ

b−(8τ2−2τ−1)/(6H)

(34)

for the Poiseuille flow.
For the Poiseuille flow, with 0 ≤ 2r̄, q̄, s̄ ≤ 2, the smallest simulated

slip length is 8τ2−2τ−1
6H

. The modified schemes with Eq.(34) are incapable375
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of simulating the Poiseuille flow with b < 8τ2−2τ−1
6H

when 0 ≤ 2r̄, q̄, s̄ ≤ 2.
But increasing H can help expand the simulated slip length and reduce the
discrete effects. If H is large enough, Eq.(32) for the Poiseuille flow will
recover to Eq.(31) for the linear flow and Eq.(34) for the Poiseuille flow will
recover to Eq.(33) for the linear flow. So it is reasonable to simulate more380

general flows with Eq.(33) of the modified schemes.
For more general cases, it is difficult to deduce the exact functions between

the combination parameters and the slip length. Some researchers used the
Poiseuille flow to approximate the actual flow near the wall [37, 38, 40, 41].
In fact, if the grid is fine enough, the discrete effects can be ignorable and385

the local flow at the wall can be approximated as flow with linear velocity
gradient [36]. It is also proved by the numerical results below. The Eq.(25)
of the half-way schemes and Eq.(33) of the modified schemes are deduced
based on the flow with linear velocity gradient.

With Eq.(25) of the half-way schemes, we have390





f2 = f̄4

f5 = 1
1+ 2b

2τ−1

f̄7 + (1− 1
1+ 2b

2τ−1

)f̄8

f6 = 1
1+ 2b

2τ−1

f̄8 + (1− 1
1+ 2b

2τ−1

)f̄7

(35)

for the HBSR scheme;




f2 = 2
1+ 2b

2τ−1

f eq2 + (1− 2
1+ 2b

2τ−1

)f̄4

f5 = 2
1+ 2b

2τ−1

f eq5 + (1− 2
1+ 2b

2τ−1

)f̄8

f6 = 2
1+ 2b

2τ−1

f eq6 + (1− 2
1+ 2b

2τ−1

)f̄7

(36)

for the HDSR scheme;




f2 = 2
1+ 2τ−1

2b

f eq2 + (1− 2
1+ 2τ−1

2b

)f̄4

f5 = 2
1+ 2τ−1

2b

f eq5 + (1− 2
1+ 2τ−1

2b

)f̄7

f6 = 2
1+ 2τ−1

2b

f eq6 + (1− 2
1+ 2τ−1

2b

)f̄8

(37)

for the HDBB scheme.
With Eq.(33) of the modified schemes, we obtain





f2 = f4

f5 = 1
1+ b

τ

f7 + (1− 1
1+ b

τ

)f8

f6 = 1
1+ b

τ

f8 + (1− 1
1+ b

τ

)f7

(38)
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for the MBSR scheme;395





f2 = 2
1+ b

τ

f eq2 + (1− 2
1+ b

τ

)f4

f5 = 2
1+ b

τ

f eq5 + (1− 2
1+ b

τ

)f8

f6 = 2
1+ b

τ

f eq6 + (1− 2
1+ b

τ

)f7

(39)

for the MDSR scheme;





f2 = 2
1+ τ

b
f eq2 + (1− 2

1+ τ
b
)f4

f5 = 2
1+ τ

b
f eq5 + (1− 2

1+ τ
b
)f7

f6 = 2
1+ τ

b
f eq6 + (1− 2

1+ τ
b
)f8

(40)

for the MDBB scheme.
The slip boundary conditions (Eq.(35) to (40)) are designed to simulate

the general liquid flow with slip velocity. The above analysis shows that
the Eq.(29) of the half-way schemes and the Eq.(34) of the modified schemes400

depend on the model of the Poiseuille flow. For the Eq.(29), the smallest sim-

ulated slip length is (2τ−1)2−3/4
3H

. For the Eq.(34), the smallest simulated slip

length is 8τ2−2τ−1
6H

. For the slip boundary conditions (Eq.(35) to (40)), with
refining grids, the discrete effects are ignorable and the simulated smallest
slip length is extremely close to zero. Among these slip boundary conditions,405

the specular reflection parts of the HBSR, MBSR, HDSR and MDSR are
not computed locally, making it difficult to use these four schemes for curved
boundaries [38]. On the contrary, the HDBB Scheme Eq.(37) and the MDBB
scheme Eq.(40) are suitable for the simulation of liquid flows with complex
geometries for the nature of their local computations.410

3. Numerical validation and discussion

In the above section, the slip boundary conditions are introduced for
liquid micro-flow. The combination parameters of the HDSR, MDSR, HDBB,
and MDBB schemes are expanded from [0,1] to [0,2]. The relations between
the combination parameters and the slip length are deduced theoretically.415

In this section, the proposed slip boundary conditions are tested care-
fully through these cases: the plane Couette flow, the Poiseuille flow, the
unsteady Womersley flow, the channel flow with constant inlet velocity and
the cylindrical Couette flow.
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Figure 3: Schematic of the 2D Couette flow
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Figure 4: Dependence of the combination parameter on b and τ for the half-way schemes
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Figure 5: Dependence of the combination parameter on b and τ for the modified schemes

3.1. Plane Couette flow with slip boundary420

A plane Couette flow model is used to validate the slip boundary con-
ditions for linear flow. The sketch of this liquid flow is shown in Fig.3.
Simulations are performed with a gap H = 32. The upper plate is given a
constant speed U = 0.01 with no-slip boundary condition. Slip boundary
condition is employed for the still bottom plate. The combination parame-425

ters of the slip boundary conditions are determined by predefined slip length
through Eq.(25) and Eq.(33). The periodic boundary conditions are applied
to the inlet and outlet. Grid independence has been verified by cases with
different length of plate. For the following simulations, the length of plate
L = 32 is adopted. All variables are in lattice units if there is no special430

mention. With these given boundary conditions and the linear slip model,
Eq.(22) of the Couette flow can rewritten as

u =
y

H + b
U +

b

H + b
U (41)

At first, we examine the relative error between the predefined slip length
and the slip length produced by each slip condition when simulating this
plane Couette liquid flow. Without losing generality, τ is set from 0.6 to 2435

and the predefined slip length varies from 0 to 25. Fig.4 and Fig.5 depict the
combination parameters as a function of the given slip length and the relax-
ation time for the half-way schemes and the modified schemes respectively.
Since the three half-way schemes are equivalent and produce nearly the same
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Figure 6: Velocity distribution of the Couette flow for q = 2 − s =2, 0.04, 0.02, 0.008,
0.004, 0.002, 0.00002 (from the leftmost line to the rightmost line).

results here, we only display one set of data in Fig.4. For the same reason,440

we also do this for the modified schemes in Fig.5. Totally 1152 individual
simulations are conducted to test the slip boundary conditions. Results show
that the relative errors between input slip lengths and corresponding output
slip lengths are nearly zero.

Then, we test the performance of the combination parameters of the445

HDSR, MDSR, HDBB and MDBB schemes within the range of [0, 2]. τ = 0.6
is used here. Besides, we set q = 2−s = 2, 0.04, 0.02, 0.008, 0.004, 0.002, 0.00002,
and q̄ = 2 − s̄ = 2, 0.2, 0.08, 0.04, 0.02, 0.008, 0.00002. The simulated veloc-
ities for different combination parameters are shown in Fig.6 for the HDSR
and HDBB schemes, and Fig.7 for the MDSR and MDBB schemes. Nu-450

merical results are in excellent agreement with the analytical results given
by Eq.(41). Fig.6 and Fig.7 also show that slip lengths change slowly with
0.2 < q, q̄, 2− s, 2− s̄ ≤ 2 but rapidly with 0 < q, q̄, 2− s, 2− s̄ < 0.2. It is
consistent with the conclusion obtained from Fig.4 and Fig.5.

In addition, discrete effects in the slip boundary conditions are examined455

in linear liquid flow. Simulations are carried out with H=32, 8, 4, respec-
tively. τ is set as 0.6. The simulated velocities obtained by three half-way
schemes are almost exactly the same for the same case. So we use one set of
data named ’Half-way’ in Fig.8 to represent the results of all three half-way
schemes. Similarly, the results of three modified schemes are shown as one460

set of data named ’Modified’. As shown in Fig.8, the numerical results are in
excellent agreement with the analytical results given by Eq.(41) for b/H=0,
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Figure 7: Velocity distribution of the Couette flow for q̄ = 2− s̄ =2, 0.2, 0.08, 0.04, 0.02,
0.008, 0.00002 (from the leftmost line to the rightmost line)
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Figure 8: Velocity distribution of the Couette flow for b/H =0, 0.4, 1, 3 (from the leftmost
line to the rightmost line).
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Figure 9: Slip velocity of the Couette flow for different dimensionless slip length.
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y=0

Figure 10: Model of the Poiseuille flow (a: a constant acceleration)

0.4, 1 and 3. It is noticed that the simulated velocities are still accurate
enough even in cases with only four lattices. There is nearly no discrete
effect in the proposed slip boundary conditions for linear liquid flow. This465

agrees well with Eqs.(24) and (31). The dimensionless slip velocities of the
Couette flow for b/H=0, 0.4, 1 and 3 are depicted in Fig.9. Excellent agree-
ment can be found between the numerical results and the analytical solutions
given by Eq.(41).

3.2. Poiseuille flow with slip boundary470

Poiseuille flow is simulated to test the slip boundary conditions for non-
linear liquid flow. As shown in Fig.10, the gap between two still plates is
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Figure 11: Velocity profiles of the Poiseuille flow for q = 2− s =2, 0.4, 0.2, 0.1, 0.06, 0.03,
0.02, 0.013 (from the leftmost curve to the rightmost curve).

H = 32. The flow is driven by a constant body force a = 10−5. The inlet and
outlet of the channel employ the periodic boundary conditions. The length of
the channel is set as 32. Combining Eqs.(21) and (26), the analytical velocity475

profiles of the Poiseuille flow can be expressed as

u(y) = − a

2ν
y2 +

aH

2ν
y +

aH

2ν
b

With the characteristic speed uc = aH2/8ν, the above equation can be
rewritten as

U(y) =
u(y)

uc
= 4

y

H
(1− y

H
) + 4

b

H
(42)

We examine the improved HDSR, HDBB, MDSR and MDBB schemes for
the Poiseuille flow with τ = 0.6 (ν = 1/30). Here, we set q = 2− s = 2, 0.4,480

0.2, 0.1, 0.06, 0.03, 0.02, 0.013, and q̄ = 2− s̄ = 2, 1.2, 0.6, 0.4, 0.2, 0.15, 0.10,
0.07, 0.05. The simulated velocities are depicted in Fig.11 for the half-way
schemes and Fig.12 for the modified schemes. Clearly, these four improved
schemes can ensure the accuracy and reliability of the lattice Boltzmann
simulation of the Poiseuille flow with slip boundary. It is noted that the485

distances between two adjacent velocity profiles along the horizontal direction
in Fig.11 and Fig.12 are the same. This phenomenon can be explained by
Eq.(42). For the same a, H, ν and y, the first part of Eq.(42) is constant,
and the second part is only decided by b. Fig.11 and Fig.12 also indicate
that the slip velocities at two still plates become larger when q, 2− s, q̄, 2− s̄490
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Figure 12: Velocities profiles of the Poiseuille flow for q̄ = 2− s̄ =2, 1.2, 0.6, 0.4, 0.2, 0.15,
0.10, 0.07, 0.05 (from the leftmost curve to the rightmost curve).

become smaller. It is consistent with the analytical results of Eqs.(28) and
(32).

Discrete effects of the slip boundaries for the Poiseuille flow are also stud-
ied. Considering the discrete effects, the combination parameters are calcu-
lated by predefined slip length according to Eqs.(29) and (34). Simulations495

will diverge if the predefined slip length is smaller than a specific value. It
can be explained by Eqs.(29) and (34). We define these specific values as the
smallest simulated slip lengths (bs). If b < bs, the combination parameters
will be out of the range of [0,2] and these slip boundary conditions are not
effective any more. bs ∗ H as a function of τ are depicted in Fig.13. It is500

observed from Fig.13 that the smallest simulated slip lengths of the half-way
schemes are smaller than the modified schemes for cases with the same H
and τ . So if H and τ are given, the half-way schemes can simulate a wider
range of slip length than the modified schemes. If τ ≤

√
3

4
+ 1

2
, the half-way

schemes can be applied to liquid flow with slip length from zero to infinite. In505

this sense, the half-way schemes are better choices than the modified schemes
for the Poiseuille flow. Fig.13 also shows that larger H is beneficial to obtain
a wider range of simulated slip length with the same τ .

Discrete effects have influence not only on the application scope of the slip
boundary conditions, but also on the accuracy and reliability of simulations.510

To examine the discrete effects of the slip boundary conditions, simulations
are carried out with τ = 2, b/H = 0.5 and H =4, 8 and 64. The combina-
tion parameters are calculated by Eqs.(25) and (33). It is because that the
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Figure 13: Smallest simulated slip length varies with the relaxation time for the Poiseuille
flow.
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Figure 14: Velocity profiles of the Poiseuille flow with b/H=0.5.

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

b/H

u s/u
c

 

 

Analytical
Half−way schemes
Modified schemes

Figure 15: Slip velocity of the Poiseuille flow for different dimensionless slip length.

parts with H in Eq.(29) and Eq.(34) can be neglected if H is large enough.
Then Eq.(29) will recover to Eq.(25) and Eq.(34) will recover to (33). The515

simulation results are depicted in Fig.14. It is clear that the discrete effects
have great influence on slip velocities if the lattice number is not enough.
The velocity profiles simulated with Eqs.(25) and (33) are closer to the an-
alytical solution with larger H. When H = 64, the numerical results are
almost the same as the analytical solution. So grid refinement is meaningful520

and effective for decreasing discrete effects. Besides, for the same H, velocity
distributions simulated with Eq.(25) (Half-way schemes) are closer to the
analytical results than Eq.(33) (modified schemes) in Fig.14. The discrete
effects have less influence on the results of the half-way schemes than that
of the modified schemes. From this point, the half-way schemes have more525

advantage than the modified schemes. We also conduct the simulations of
Poiseuille flow with b/H =0.1, 0.2, 0.3, 0.4. H is set as 64. The slip velocities
at the wall of the Poiseuille flow are depicted as the function of dimensionless
slip length in Fig.15. It can be observed that the numerical results obtained
by the half-way schemes Eq.(25) and the modified schemes Eq.(33) are in530

good agreement with the analytical solutions predicted by Eq.(42).
The results obtained by Eq.(25) and Eq.(33) also indicate the possibility

of simulating complex flows with fine enough grid. We will explore this
direction in the next subsection.
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Figure 16: Velocity profiles of the Womersley flow ( B =0, 0.03 and 0.05 respectively from
the top to the bottom ).
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3.3. Unsteady Womersley flow with slip boundary535

Although the improved slip boundary conditions are validated by the
simulation of the Couette flow and the Poiseuille flow in the above subsec-
tions, the generality of our improved slip boundary conditions for simulating
complex flow still needs to be verified. In this subsection, we simulate the
Womersley flow, which is unsteady and strongly nonlinear. And the direc-540

tion of the velocity may be different at different time. The model of the
Womersley flow is similar to the Poiseuille flow in Fig.10, except that the
constant acceleration a is replaced by a periodic one a(t). In this simulation,
we set a(t) = amcos(ωt), where am is the amplitude and ω is the frequency.
The frequency is related to the period of the acceleration by ω = 2π

T
. The545

analytical solution of the Womersley flow with slip boundary condition can
be expressed as [36]

u(y) = Real[i
am
ω

(1− cos(2λY − λ)

cosλ− 2Bλsinλ
)eiωt] (43)

where i is the symbol of imaginary number and Real is the real part. Besides,
Y is the dimensionless form of y with Y = y/H and B is the dimensionless
form of the slip length b with B = b/H. The parameter λ is defined as550

λ2 = −iW 2
0 ,W

2
0 =

ωH2

4ν
(44)

where W0 is the Womersley number.
In this simulation, we take the improved DBB schemes to simulate the

liquid slip at the wall. Wang et al. [36] tested the BSR schemes with H = 100
in the simulation of the unsteady Womersley flow, and found that H=100 is
find enough for this problem to obtain accurate and reliable results. So we555

also use H = 100. The kinematic viscosity is set as 0.001 and the Womersley
number is set as 2.0. The Reynolds number is defined as Re = umH/ν, where
um is calculated by um = amH2

8ν
. We simulate the case with Re = 10000 to

test the improved DBB schemes. The combination parameters are given
according to Eq.(25) and Eq.(33) for B =0, 0.03, 0.05. The velocity profiles560

of one period are presented in Fig.16. The numerical results obtained by the
HDBB and MDBB schemes are in excellent agreements with the analytical
solutions given by Eq.(43). It can be observed that the velocity profiles at
T , T/4, T/2 and 3T/4 are different, varying periodically with time. When
the time difference is half a period, any two velocity profiles have the same565

amplitudes but inverse directions.
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Figure 17: Slip velocity of the Womersley flow at different time.

As shown in Fig.16, the slip length has great effect on the velocity profiles.
In Fig.17, the slip velocities of the Womersley flow are depicted as functions
of time in tenth period. It can be observed that the slip velocities are zero
at any time for B =0, while the slip velocities for B =0.03 and 0.05 vary570

with time. This phenomenon can be explained by the Navier’s slip model
Eq.(21). If the slip length is bigger than zero, the slip velocity varies with
the velocity gradient at the normal direction of the wall. For the unsteady
Womersley flow, the velocity gradient varies with time. So the slip velocities
for B =0.03 and 0.05 vary with time. The analytical solutions of the slip575

velocities at different time are also shown in Fig.17. Excellent agreements
can be observed between the results predicted by the MDBB scheme and the
analytical solutions.

The numerical results of the Womersley flow demonstrate the generality
of our improved DBB schemes. Although the combination parameters are580

deduced based on the linear Couette flow, they are suitable for nonlinear
flows with fine enough grid.

3.4. Cylindrical Couette flow with slip boundary

The above simulations have tested the slip boundary conditions for liquid
flow with simple straight walls. For complex flows with curved walls, there585

are no accurate relations between the combination parameters and the slip
length. Without other better choices, we use the relations deduced based
on the Couette flow to simulate the local flow near complex walls approxi-
mately [37, 38, 40, 41]. Among these slip boundary conditions, the specular
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Figure 18: Schematic of cylindrical Couette flow.

reflection parts of the HBSR, MBSR, HDSR and MDSR are not computed lo-590

cally, making it difficult to use these four schemes for curved boundaries [38].
On the contrary, the HDBB and MDBB schemes have the nature of local cal-
culation. Results of the Poiseuille flow demonstrate that the MDBB scheme
will introduce more discrete effects than the HDBB scheme. Therefore the
HDBB scheme is employed to obtain boundary slip at curved walls in this595

subsection. The HDBB scheme specifies the unknown distribution function
as [37]

fi = sf eqi + (1− s)f̄ī (45)

where ī is the opposite direction of i.
The cylindrical Couette flow is a classical benchmark problem of complex

flows and we take it to test the HDBB scheme for liquid slip at curved walls.600

As shown in Fig.18, two cylinders are concentric. The inner cylinder with
radius R1 rotates at a constant anticlockwise angular velocity ω and the non-
equilibrium extrapolation method is adopted on it. The outer one with R2

keeps stationary and the slip boundary condition is employed on it. The
density at the wall is given following the former’s work [37]. In a cylindrical605

polar coordinate (R, θ), this flow can be expressed as

d2uθ
dR2

+
d(uθ/R)

dR
= 0 (46)

where uθ is the tangential velocity and R is the radius.
With the linear slip boundary condition Eq.(21), the velocity at R = R2
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Figure 19: Tangential velocity of the cylindrical Couette flow ( b/(R2 −R1) =0, 0.03 and
0.05 respectively from the top to the bottom, R2/R1 = 5/3).

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

R/R
2

u θ/ω
R

1

 

 

Analytical
HDBB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

R/R
2

u θ/ω
R

1

 

 

Analytical
HDBB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

R/R
2

u θ/ω
R

1

 

 

Analytical
HDBB

Figure 20: Tangential velocity profiles of the cylindrical Couette flow ( b/(R2 − R1) =0,
0.03 and 0.05 from the top to the bottom, R2/R1 = 5/1).
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can be given as

uθ|R=R2 = −b(duθ
dR
− uθ
R

)|R=R2 (47)

Then, the theoretical velocity profiles can be calculated as610

uθ
ωR1

=
1

(AR1 − 1
R1

)
(AR− 1

R
) (48)

with A = 1
R2

2
(1− 2b

R2
).

In our work, we set R1=30, R2=50, ω = 10−3 and τ=0.6. The combi-
nation parameters are calculated according to Eq.(25). If b/(R2 − R1) is no
more than 0.005, the combination parameters are within [0, 1]. Besides, if
b/(R2 − R1) is larger than 0.005, the combination parameters will fall into615

the range of [1, 2]. Three sets of simulations with b/(R2−R1) =0, 0.03, 0.05
are conducted to test our improved HDBB scheme for curved walls. Fig.19
depicts the numerical velocity profiles and the analytical results given by
Eq.(48). It is noted that the numerical results agree well with the analytical
solutions.620

We notice that the cylinder Couette flow with R1=30 and R2=50 is close
to a linear flow. In order to test our slip boundary condition for flows with
higher non-linearity, we simulate the cylinder Couette flow with R1=30 and
R2=150. The results are shown in Fig.20. It can be observed that the velocity
profiles obtained by the HDBB scheme are consistent with the analytical625

results given by Eq.(48). Fig.19 and Fig.20 also show that the differences
between the numerical results and the analytical solutions become a little
bigger with increased slip length. After all, the local flow around the curved
wall is approximated with the linear flow and some differences can not be
avoided. Fig.19 and Fig.20 suggest that the differences are very small and630

the results can be acceptable. Therefor, we can conclude that the improved
HDBB scheme with Eq.(25) is suitable for the simulation of liquid slip with
curved walls.

4. Conclusion

The slip length defined firstly by the Naviers slip model is a characteristic635

quantity describing the slip property of a specific liquid-solid surface. In this
work, we have introduced two half-way schemes and two modified schemes
with adjustable slip length for the lattice Boltzmann simulation of liquid
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flow. Through theoretical analysis of the simple unidirectional liquid flow, we
discover that the half-way schemes are equivalent and the modified schemes640

are also equivalent. Based on the principle of equivalence, ranges of the
combination parameters of the HDSR, HDBB, MDSR and MDBB schemes
are improved from [0,1] to [0,2]. This improvement is beneficial to obtain
a wider range of slip length. Moreover, relations between the combination
parameters and the slip length are deduced strictly in theory. Among these645

slip boundary conditions, the HDBB and MDBB schemes are suitable for
the simulation of liquid flows with complex geometries for the nature of their
local computations.

The simulations of the Couette flow and the Poiseuille flow show that the
theoretical analyses are reliable and accurate. For linear flow, the combina-650

tion parameter is decided by the relaxation time and the given slip length
without discrete effects. But for non-linear flow, discrete effects exist in all
four slip boundary conditions. The discrete effects influence not only the
range of the simulated slip length but also the accuracy of the numerical
results. If the grid is fine enough, the discrete effects will be significantly655

reduced and even can be ignored. So the combination parameters deduced
based on the linear Couette flow are suitable for nonlinear flow with enough
fine grid.

The generality of our method is verified by the simulation of the Womer-
sley flow, which is unsteady and strongly nonlinear. Simulations show that660

the velocity profiles of the Womersley flow vary with time. And the slip
length has great effect on the velocity profiles. The slip velocities are zero at
any time for B =0, while the slip velocities for B = 0.03 and 0.05 vary with
time. The numerical results are in excellent agreements with the analytical
solutions.665

In addition, the HDBB scheme is applied to simulate the curved walls
of the cylindrical Couette flow for its local calculations and less discrete
effects than the modified schemes. The local flow near the curved wall is
approximated by the Couette flow. The numerical results demonstrate the
accuracy and reliability of the improved HDBB scheme.670

These boundary conditions with adjustable slip length are proposed and
analysed for the two-dimensional simulation with the LBGK model. Fol-
lowing our procedure, present methods can be easily extended to the three-
dimensional simulation and the multiple relaxation time (MRT) model. Be-
sides, the potential of these methods in turbulence modeling needs to be675

explored. We will focus on these problems in the future work.
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