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1 Introduction and summary

Understanding the strong-coupling dynamics of gauge theories requires detailed knowledge

of their nonperturbative structure. In many cases, however, the nonperturbative sector

may be very complicated and the study of physical observables must mainly rely upon

perturbation theory. This may apparently amount to further complications as often per-

turbative expansions are asymptotic, with their coefficients displaying factorial growth.

However, this divergence of perturbation theory is precisely related to the nature of the

nonperturbative effects in the gauge theory under scrutiny, materialized as singularities in

the complex Borel plane and in most cases associated with instantons (see, e.g., [1]) and

renormalons (see, e.g., [2]). This essentially implies that there is more to perturbation

theory than what first meets the eye.

Due to the aforementioned relation between the asymptotic nature of the perturbative

expansion and the nature of nonperturbative effects in a given gauge theory, one may

wonder to what extent is the nonperturbative information of the theory already encoded in

the original asymptotic perturbative series. The precise mathematical technique to carry

through this extraction of nonperturbative information out of perturbative data goes under

the name of resurgence (see, e.g., [3–6] for introductory mathematical reviews). Recently,

resurgence has also been steadily applied to diverse physical problems with many interesting
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results, e.g., covering from quantum mechanics [7–19] to quantum field theory [20–24], from

gauge theories and random matrices [25–34] to string theory [25, 26, 30, 31, 34–40]. Our

focus in this paper is to pursue the programme of developing resurgence within gauge

theories with the long-term goal of unraveling generic strong-coupling dynamics out of

perturbative data. We begin this research within the simplest settings, supersymmetric

gauge theories in three and four dimensions, focusing upon observables which localize into

matrix models [41]. We shall explore the singular structure in the complex Borel plane,

and its relation to nonperturbative effects and the large-order behavior of the perturbative

series (in this regard also following older work such as [42–45]).

Let us consider an asymptotic perturbative expansion of the form

F (g) '
+∞∑
n=0

gnFn, (1.1)

where F is some observable, g is the (small) perturbative parameter, and Fn are the co-

efficients which grow factorially fast at large order n, as Fn ∼ n!. The standard way to

make sense out of such an expansion relies upon resummation methods such as Borel re-

summation (see, e.g., the discussions in [31, 46] for quick reviews). This procedure starts

by removing the factorial growth out of the coefficients Fn in order to construct the Borel

transform, B[F ], which essentially focuses upon the subleading growth of the original coef-

ficients (as B[gn](s) = sn−1

(n−1)!). Then, the Borel resummation SθF involves a Laplace-type

integration of the Borel transform, which may be applied along all complex directions θ

of the perturbative parameter except, of course, for those which meet singularities in the

Borel plane and the integration is thus ill-defined (these are known as Stokes lines). This

fact is at the root of Stokes phenomena — exponentially small contributions which might

be absent before crossing a Stokes line, and invisible to the perturbative expansion, can-

not be disregarded afterwards as they may grow and take dominance — and as such all

exponentially suppressed contributions associated with nonperturbative sectors need to be

taken into account in order to get a correct physical result along any direction. That this

must be so may be understood precisely at these Stokes directions, where only lateral Borel

resummations may be defined.1 In this case the resummation is ambiguous as there is a

difference between the two lateral resummations given by an exponentially small contri-

bution. In order to obtain an unambiguous, sensible, physical result, we need to include

all nonperturbative sectors of the theory in a very particular way, using resurgent analysis

and transseries (see the original physical motivation in [7, 8, 47, 48] and, e.g., the recent

general framework on the median resummation in [46]). Indeed, instead of just the familiar

perturbative series, one ought to consider a transseries solution in order to fully describe

the system, in which one performs a formal expansion not only in powers of the perturba-

tive parameter, but also in nonanalytical functions of this parameter such as logarithmic

and exponentially suppressed terms. In other words, the transseries takes into account all

1To be a bit more precise, the Borel resummation SθF is a Laplace transform whose integration contour is

taken along the direction θ. If this direction is a Stokes line, one can then define lateral Borel resummations,

Sθ±F , whose integration contour goes just to the left or just to the right of the Stokes line. The lateral

Borel resummations avoid the singularities along the Stokes lines and are thus well-defined.
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nonperturbative components of the problem at hand. The intimate connection between

perturbative and nonperturbative sectors is then very precisely defined by resurgent anal-

ysis. Further, relations between all different sectors (perturbative and nonperturbative

alike) can be studied exactly. We refer the reader to [49] for an overview of these methods.

Four-dimensional Yang-Mills theory exhibits both ultraviolet and infrared renormalon

singularities, dominant as compared to the instanton singularities, and generically hard to

deal with — in fact, already when it comes to producing perturbative large-order data (see,

e.g., [2]). Turning on supersymmetry makes for milder settings, as first discussed in [21]

concerning the interplay between resurgence and different numbers of supersymmetries.

Renormalon singularities must be absent in superconformal field theories — in the complex

Borel plane they would be located at ∼ − 1
β0
→ −∞ at conformality (here β0 is the

first coefficient of the beta function). For non-conformal theories, infrared renormalon

singularities (located on the positive real axis in the complex Borel plane) are expected to

be absent in N = 2 theories on a four-sphere, while ultraviolet renormalon singularities

(located on the negative real axis) should in principle be present for non-BPS observables.

One thus expects that, at least on what concerns asymptotic expansions in the gauge

coupling, BPS observables will have simpler resurgent structures.

Expecting milder Borel singular structures due to supersymmetry, one next asks for

classes of observables where large-order data can be produced to very high orders. In non-

supersymmetric nonabelian gauge theories, perturbative expansions in the gauge coupling

are only feasible to the first few orders. On the other hand, in supersymmetric gauge the-

ories exact results to all orders in the coupling can be obtained by localization techniques.

These techniques have been applied for the study of the partition function and Wilson

loops in certain (supersymmetric) gauge theories in three [50, 51] and four dimensions [41],

and they lead to simple expressions for supersymmetric observables expressed in terms

of finite-dimensional matrix-model integrals. This thus opens the possibility of obtaining

exact results for the coefficients of the asymptotic expansions associated with these observ-

ables. As we shall see throughout this paper, this immediately allows for exact resurgent

and Borel analyses in supersymmetric gauge theories.

The matrix model formulation of localizable observables usually depends upon two

parameters: the rank of the gauge group, N , and the gauge coupling2 of the theory, g.

Perturbative analyses may be either at large N or at small coupling — and to each one

may analyze convergence properties of the respective expansions and consequently develop

their resurgent analysis. Naturally, in the familiar case of a double expansion in 1/N and

’t Hooft parameter, a complete transseries representation of the aforementioned observables

will have to include nonperturbative effects associated with all parameters. This is a highly

nontrivial problem, although steady progress has been recently achieved for the particular

case of the ABJM partition function (see [39] and references therein). In the present work,

we shall follow along these steps and develop the ideas originally laid down in [52], but

now augmented via the use of resurgent analysis. We shall either focus on the large N

2The coupling constant will differ for each theory. In three dimensions the Chern-Simons coupling gs
is related to the level, k, by gs = 2πi/k; while in four dimensions the Yang-Mills coupling is generically

denoted by gYM.
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expansion at fixed ’t Hooft coupling, whenever exact results are known for the respective

coefficients; or otherwise on a small coupling expansion at fixed rank of the gauge group.

We shall assume the reader is at least familiar with the resurgent basics outlined in [49],

in the sense that we shall not review any of these essentials but rather directly use the

techniques described in the aforementioned references in what follows.

This paper is organized as follows. We start in section 2 with the analysis of the

resurgence properties of three-dimensional gauge theoretic observables. In subsection 2.1

we present a warm-up (simpler) example, addressing the free energy of Chern-Simons gauge

theory on lens spaces, L(p, 1), from the standpoint of the large N expansion. The associated

Borel transform is shown to be a meromorphic function with double-poles falling upon an

infinite (countable) number of distinct Stokes lines. Resurgent analysis further allows us

to determine the discontinuities across these singular lines, and to obtain complete large-

order formulae recovering the exact free energy coefficients. A slightly different approach is

followed in subsection 2.2, where we perform a perturbative analysis of U(2)×U(2) ABJM

gauge theory localized on S3, at large Chern-Simons level k. This time around there are

only two Stokes lines, positive and negative imaginary axes. Again, resurgent analysis

precisely determines their associated discontinuities and, once again, we can recover the

precise perturbative coefficients out of an exact large-order analysis. In section 3 we then

turn to the resurgent analysis of four-dimensional gauge theoretic observables, within the

context of supersymmetric Yang-Mills (SYM) theories. We first give a brief overview of

the known asymptotic properties of the partition function and supersymmetric Wilson

loops of N = 4 SYM theory localized on S4, for both large N and small coupling gYM

cases, in subsection 3.1. This is a particularly simple case, and resurgent analysis is quite

straightforward. Things become more intricate as we turn to the analysis of the partition

function of N = 2 superconformal SU(2) SYM theory on S4 (with four massless multiplets)

at small gauge coupling, which we do in subsection 3.2. Herein we again find that the

Borel transform is a meromorphic function but this time around with poles lying along a

single Stokes direction: the negative real axis. However, unlike in earlier examples, these

singularities are poles of higher and higher degree the further one moves away from the

origin. Albeit being more intricate, resurgent analysis still allows for a determination of

the Stokes discontinuities, which are verified by matching against the perturbative large-

order behavior. Finally, in subsection 3.3, we outline the same analysis for the case of the

N = 2∗ SYM theory on S4, with gauge group SU(2). This theory introduces an extra

parameter, M , representing the mass of the hypermultiplet, and the singularities in the

Borel plane will depend on it. In particular, at fixed finite M , we find a countable infinity

of Stokes lines, each with a single pole. The limiting cases of M → 0 and M → +∞ are

also of great interest as they interpolate between superconformal N = 4 and pure N = 2

SYM theories. We end our analysis in section 4, where we discuss the (semiclassical)

physical interpretation of the many Borel singularities found in our previous resurgent

analyses. We discuss which physical effects give rise to the (asymptotic) factorial growth

of the perturbative expansions (thus being responsible for the resurgent properties of the

considered observables). In particular, the Borel singularities coincide with resonances that

arise when zero modes appear in the Coulomb branch of the gauge theory moduli space.

– 4 –



J
H
E
P
0
3
(
2
0
1
5
)
1
7
2

The paper closes in section 5, with some conclusions and a brief outline of some open

problems for future research. An appendix collects some technical results needed for the

analysis carried through in the main body of the text.

2 Resurgence in Chern-Simons gauge theories

This section focuses on three-dimensional gauge theories, namely, Chern-Simons gauge

theory on lens spaces (and in their limiting case, S3), and ABJM gauge theory on the

sphere, S3. The matrix model description of the partition function of these theories is

typically of the form [51, 53]

Z ∝
∫
g

[dλ] e−Scl(λ) Z1-loop(λ). (2.1)

The integration is over the Lie algebra g associated with the gauge group G, and Scl(λ)

comes from the classical action on S3, with λ ∈ g. The factor Z1-loop (λ) comes from one-

loop determinant in the localization procedure, and is typically given in terms of hyperbolic

functions, sinh and cosh. Our main interest is to analyze the resurgent properties of the

above partition function for the aforementioned theories. They depend on the Chern-

Simons level, k, and the rank of the gauge group, N , and the asymptotic properties that

we shall analyze will be obtained by fixing one of these parameters and taking the other

to be large. Resurgence in these cases will turn out to be somewhat simple, and as such

these examples will also provide for an introduction to the upcoming less trivial cases of

four-dimensional gauge theories.

2.1 Chern-Simons gauge theory on lens spaces

The partition function for Chern-Simons gauge theory, with gauge group G and on a generic

three-manifold M , is defined as (see, e.g., [54])

ZCS(M) =

∫
[dA] eiSCS(A), (2.2)

where the Chern-Simons action is given by

SCS(A) =
k

4π

∫
M

Tr

(
A ∧A+

2

3
A ∧A ∧A

)
. (2.3)

In the above expressions k ∈ Z is the Chern-Simons coupling constant and A is a Lie

algebra g-valued gauge connection. It has been known for quite a while that this partition

function may be explicitly written as a matrix integral [53, 55], via the use of localization

techniques (see, e.g., [56] for a review). For the cases of interest in this section we shall

consider G = U(N).

While the simplest possible example deals with Chern-Simons on the three-sphere, we

shall consider the slightly more general example of lens spaces M = L(p, 1) ' S3/Zp (which

reverts back to the three-sphere when p = 1). In this case, it was shown in [53, 55, 57, 58]

that the Chern-Simons partition function may be written as a multi-cuts matrix integral.
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One finds p sets of eigenvalues (corresponding to their distribution over p cuts), labeled by

an index I ∈ {0, . . . , p− 1}. The measure factor is a product of a self-interacting factor,

D1 (λ), with a term involving interactions between different sets of eigenvalues, D2 (λ).

These are given by

D1 (λ) =

p−1∏
I=0

∏
1≤i<j≤NI

(
2 sinh

(
λIi − λIj

2

))2

, (2.4)

D2 (λ) =
∏

0≤I<J≤p−1

NI∏
i=1

NJ∏
j=1

(
2 sinh

(
λIi − λJj + dIJ

2

))2

, (2.5)

where dIJ = 2πi
p (I − J). The potential term is given by

V (λ) = p

p−1∑
I=0

NI∑
i=1

(
λIi
)2
, (2.6)

and the partition function is finally written as

ZCS (L(p, 1)) =
i−

1
2(
∑p−1
I=0 N

2
I )∏p−1

I=0NI !

∫ p−1∏
I=0

NI∏
i=1

dλIi
2π

D1 (λ)D2 (λ) e
− 1

2gs
V (λ)

, gs ≡
2πi

k
. (2.7)

Do notice that the partition function explicitly depends upon the {NI}, which are the

number of eigenvalues in each cut I. The (partial) ’t Hooft parameters are tI = gsNI ,

depending on the number of eigenvalues in each cut, and t = gsN the total ’t Hooft coupling.

From the standpoint of the original Chern-Simons gauge theory, this split of eigenvalues

across multiple cuts should be understood as an expansion of the gauge theoretic partition

function around a non-trivial flat connection, with the following symmetry-breaking pattern

of the original gauge group:

U (N)→ U (N0)× · · · ×U (Np−1) . (2.8)

Let us briefly note that it is possible to find an hermitian formulation of the above

lens space matrix integral, generalizing to arbitrary p a result which is well-known for the

conifold. Changing variables as

zIi := exp

(
λIi +

t

p
+

2πi

p
I

)
, (2.9)

the integration contours for the eigenvalues get shifted from (0,+∞) onto (0, e
2πi
p
I∞), and

one obtains

ZCS (L(p, 1)) = N
∫ p−1∏

I=0

NI∏
i=1

dzIi
2π

∆2
1 (z) ∆2

2 (z) e
− p

2gs

∑p−1
I=0

∑NI
i=1

(
log zIi−

2πi
p
I
)2
. (2.10)

In this expression we already find the usual form of the Vandermonde determinants; one has:

∆2
1 (z) =

p−1∏
I=0

∏
1≤i<j≤NI

(
zIi − zIj

)2
, ∆2

2 (z) =
∏

0≤I<J≤p−1

NI∏
i=1

NJ∏
j=1

(
zIi − zJj

)2
, (2.11)

N :=
i−

1
2(
∑p−1
I=0 N

2
I ) e
− 1

2p
gsN3

e
− 2πi

p
N
∑p−1
I=0 I NI∏p−1

I=0NI !
. (2.12)
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It is now clear that the two Vandermonde determinants combine into a single determinant,

and that the 2πi
p factor in the potential can be conveniently absorbed into the logarithm

to yield the partition function

ZCS (L(p, 1)) = N
∫ N∏

i=1

dzi
2π

∆2 (z) e
− 1

2pgs

∑N
i=1(log zpi )

2

. (2.13)

In this expression, there is no longer any explicit reference to the p cuts. The Chern-Simons

partition function on L(p, 1), with gauge group G =U(N), thus has an hermitian matrix

model representation of the type

Z =
1

vol (U(N))

∫
dM e

− 1
gs

Tr 1
2p

(logMp)2
. (2.14)

Notice that the critical points of the potential are precisely the pth roots of identity, as

expected.

The large-order and Borel analysis of the partition function of Chern-Simons theory

on a three-sphere was addressed in [31, 36], albeit closer in spirit to the topological string

Gopakumar-Vafa integral representation [59] (the coefficients in the genus expansion of its

large N free energy F = logZ are known exactly, see, e.g., [36, 60]). Here, we shall follow

a purely resurgence viewpoint within the gauge theory, focusing on the general case of

Chern-Simons gauge theory on lens spaces L(p, 1). Also in this case an explicit formula

for the coefficients in the (topological) genus expansion of its large N free energy is known

exactly, for the one-cut/trivial flat-connection solution [61] (but see also [53, 59, 62]). With

’t Hooft coupling t = gsN , this is3

Fg(t) =
B2g B2g−2

2g (2g − 2) (2g − 2)!
+

B2g

2g (2g − 2)!
p2−2g Li3−2g

(
e
− t
p

)
, g ≥ 2, (2.15)

with Lin(z) the index n polylogarithm. The first term is associated with the so-called

constant map contribution [63, 64], fully discussed in [36], and we shall drop it in the

following. What remains is the second term, the “true” free energy of the Chern-Simons

gauge theory on L(p, 1) (and which we shall denote by F̂g(t) in the following). This

contribution grows factorially fast,

B2g ∼ (2g)!

lim
|t|→0

Li3−2g

(
e
− t
p

)
∼ Γ (2g − 2)

(
t

p

)2−2g

 ⇒ F̂g ∼ (2g − 2)!

(
1 +

1

2g − 2

)
t2−2g,

(2.16)

thus rendering the perturbative genus expansion asymptotic.

The computation of the Borel transform of this asymptotic series follows stan-

dard procedures (herein first discussed right after (1.1), but see as well the discussions

3We are ignoring contributions at genus g = 0, 1; not particularly relevant from a Borel analysis stand-

point.
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in [31, 46, 49]), and in our case is thus given by

B[F̂ ](s) ≡
+∞∑
g=2

F̂g(t)

(2g − 3)!
s2g−3 =

1

s

∑
`∈Z

+∞∑
g=2

B2g

2g (2g − 2)!

(
s

t+ 2πip`

)2g−2

(2.17)

=
1

s

∑
`∈Z

{
− 1

12
+

(
t+ 2πip`

s

)2

− 1

4

(
sinh

(
s

2 (t+ 2πip`)

))−2
}
. (2.18)

Here, we have used the representation of the polylogarithm as a sum over residues (also

extensively used in [36])

Li3−2g

(
e−t
)

= Γ (2g − 2)
∑
`∈Z

(t+ 2πi`)2−2g , g ≥ 2. (2.19)

Understanding the singularity structure of the Borel transform will yield the resurgence

properties of the Chern-Simons free energy on lens spaces. One immediately reads off that

the singularities of B[F̂ ](s) are located at4

ωn` = 2πin (t+ 2πip`) ≡ |n|A`(t), n ∈ Z \ {0}, (2.20)

for all ` ∈ Z. Figure 1 shows a schematic representation of these singularities in the complex

Borel plane. One sees that they arrange themselves along radial directions as multiples of

the “basic” instanton5 actions ±A`(t), ±A†`(t), now with ` = 1, 2, 3, . . .,

|ωn`| = |n|
(

2π
√
t2 + 4π2p2`2

)
≡ |n| |A`(t)| , (2.21)

and with direction argA`(t) defined in each quadrant in the complex plane as follows

Quadrant n, ` argA`(t)

1st n ≥ 1, ` > 0 θ`
2nd n ≥ 1, ` < 0 π − θ`
3rd n ≤ −1, ` > 0 π + θ`
4th n ≤ −1, ` < 0 −θ`

where θ` = arctan
(

t
2πp|`|

)
. Note that ` = 0 corresponds to the directions argA0(t) = ±π/2,

and that for ` 6= 0 the possible directions are bounded by 0 < argA`(t) ≤ arctan
(

t
2πp

)
for

the first quadrant (and correspondingly in the others).

Near each of these many singularities, the Borel transform behaves as

B[F̂ ](s)
∣∣∣
ωn`

= − ωn`

(2πin)2 (s− ωn`)2 +
1

(2πin)2 (s− ωn`)
+ holomorphic, (2.22)

The singularities are thus simple and double poles, and the Borel transform is meromorphic,

i.e., the Borel surface is essentially C rather than a higher genus Riemann surface (as is

4Do notice that there is no singularity at the origin.
5Throughout we shall use the word “instanton” a bit loosely, simply implying nonperturbative exponen-

tial contributions. The physical origin of these nonperturbative effects will be later addressed in section 4.

– 8 –



J
H
E
P
0
3
(
2
0
1
5
)
1
7
2

Figure 1. Singularities in the complex Borel plane for Chern-Simons gauge theory on L(2, 1) with

t = 4π. The singularities in red are associated with the Gaussian or c = 1 string contribution;

see [36] for details.

the case in, for instance, matrix models [31] or string theory [40]). A similar behavior was

already found for Chern-Simons on the sphere [31, 36]. Let us fix ` and thus a Stokes

line (a singular ray in the Borel complex plane), of angle θ` = argA`(t). As mentioned

earlier in this paper, there is a discontinuity between left and right Borel resummations

along such Stokes line. This discontinuity may be computed by considering the difference

between Laplace transforms of the Borel transform B[F̂ ](s) just above and just below each

singular direction θ`. Given that the structure of singularities of the Borel transform is

made up solely of poles (double and single), it is not difficult to see that the discontinuity

across each singular direction θ` will be simply given by a sum over residues at each pole

along the Stokes line. One finds:

Discθ`F̂ (gs) = − 1

2πi gs

+∞∑
n=1

1

n2
(ωn` + gs) e

−ωn`
gs . (2.23)

This is a familiar result [31, 36] with a distinct multi-instanton flavor. Do note that when

addressing the resurgent structure of a 1/N expansion, the variable N is understood as

a continuous variable. Of course that in the present Chern-Simons example it is simple

to see that if N is restricted to be an integer, then the nonperturbative factor is e
−ωn`

gs =

e−2πin(N+kp`) = 1.

In parallel to the above discussion, for all the examples we shall be later addressing

in this paper it will turn out that the structure of Borel singularities will always consist

of poles (of different orders), also implying that the corresponding Borel transforms are
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meromorphic. However, unlike what just happened in our Chern-Simons example, the

Stokes discontinuities associated with these cases will not be as simple to evaluate. In-

stead, one must rely on some basic concepts concerning alien calculus (in this context, see,

e.g., [31, 49] for further details). As such, let us pause our resurgent analysis of Chern-

Simons gauge theory for a moment and obtain this very same result, (2.23), in a slightly

different manner. This consists of finding an alternative “representative” for the Borel

transform, (2.17), where its singular structure will be slightly modified (but in a controlled

manner) from (2.22) into a so-called “simple” resurgent form, where the subsequent resur-

gent and discontinuity analyses follow systematically (see, e.g., [31]). Details will become

clear as we proceed in the following.

In (2.17) we determined the Borel transform of the asymptotic expansion F̂ (gs) fol-

lowing its definition and effectively removing a factorial growth of (2g − 3)!. But what if

we were to remove a slightly different growth, say (2g − 2)! or similar? It is simple to see

that this would lead us instead to

B[gsF̂ ](s) =
∑
`∈Z

(
− 1

12
log

(
s

t+ 2πip`

)
− 1

2

(
t+ 2πip`

s

)2

− 1

4

∫ s
t+2πip`

0

dx

x sinh2
(
x
2

)) . (2.24)

This Borel transform is related to the original free energy (without the constant map

contribution) by a multiplication by gs. Further, both Borel transforms (2.17) and (2.24)

are simply related6

B[F̂ ](s) =
d

ds
B[gsF̂ ](s). (2.25)

Next, notice that while the Borel transform of gsF̂ still has singular points at (2.20), just

as before, its behavior close to these singularities is now seemingly distinct

B[gsF̂ ](s)
∣∣∣
ωn`

=
ωn`

(2πin)2 (s− ωn`)
+
B[G](s)

(2πin)2 log (s− ωn`) + holomorphic, (2.26)

where B[G](s) —the Borel transform of G(gs) = gs — is just a convenient way to write 1.

The Borel singularities are now simple poles and logarithmic branch cuts. At first this

could lead us to believe that the Borel transform associated with this problem was not

meromorphic, which we already know not to be the case. But this fact is noticeable in

this version of the Borel transform7 as there is no resurgent mixing of multi-instanton

nonperturbative sectors, given that the Borel transform associated with the logarithmic

branch-cut is always the same (constant and entire).

The reason to consider this rewriting is solely to simplify some calculations ahead. As

discussed earlier, there is a discontinuity between left and right Borel resummations along

Stokes lines; in the present case along the directions θ` ≡ argA`(t). These discontinuities

are generically measured by the so-called Stokes automorphism which itself is computed via

6These relations of Borel transforms are thoroughly studied in [49].
7Note that, as presented, this result is the primitive of the results in [31, 36]. One could in fact further

find either higher primitives, or instead find derivatives, of those results by simply changing the additive

factor in the denominator appearing in the definition of the Borel transform (2.17) [49]. As explained, our

choice in here is just to reproduce formulae for simple resurgent functions.
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alien calculus. While in general this automorphism (and subsequent discontinuities) may

be hard to evaluate, things turn out to be a bit simpler when dealing with simple resurgent

functions, which precisely have the singularity structure (2.26) (again, see, e.g., [31, 46, 49]

for details on alien calculus within the present contexts). Very briefly and schematically,

simple resurgent functions are characterized by Borel transforms which, near singularities

ω` along some Stokes direction θ, behave as

B[F ](s)|ω` =
α

2πi (s− ω`)
+ B[G`](s− ω`)

log (s− ω`)
2πi

+ holomorphic. (2.27)

One can then immediately obtain the discontinuity across the Stokes singular direction via

Discθ F (gs) = F (gs)− exp

(∑
`

e−ω`/gs∆ω`

)
F (gs), (2.28)

where ∆ω`F (gs) = G`(gs) + α is the so-called alien derivative. In other words, the end

result essentially states that the discontinuity we are looking for may be read off directly

from the singular structure of the above Borel transform (2.26). Taking into account that

in this case ∆2
ω`
F = ∆ω` G = 0, we obtain

Discθ`F̂ (gs) = − 1

2πi gs

+∞∑
n=1

1

n2
(ωn` + gs) e

−ωn`
gs . (2.29)

Of course this is precisely the same result as the one we retrieved earlier in (2.23). Again,

let us stress that the sole reason to consider this detour is to simplify some calculations

ahead. One could of course do the full resurgent analysis without this change of Borel

“representative”, only that the calculations would be longer and a bit more intricate. In

fact, while in this particular case of Chern-Simons gauge theory the alien calculus detour

was clearly redundant, in the examples which will later follow this will not be the case: the

alien calculus approach via simple resurgent functions will allow us to calculate the Stokes

discontinuities in a simple and fast manner.

A particularly nice feature of these Borel meromorphic examples is that one may go

past large-order analysis and actually recover the full, exact free energy out of the Stokes

discontinuities. This was first noticed in [36] for Chern-Simons on the sphere. On what

concerns Chern-Simons on lens spaces, assuming that the large N free energy has no Borel

singularities at infinite coupling (a common yet generically unproved assumption), one may

use the Cauchy theorem in order to write a dispersion relation equating the free energy to

its Stokes discontinuities,

F̂ (gs) =
1

2πi

∑
`∈ all quadrants

∫ eiθ` ·∞

0
dw

Discθ` F̂ (w)

w − gs
. (2.30)

Inserting the full set of discontinuities (2.29) back in (2.30) above, one recovers the Chern-

Simons free energy (2.15) (naturally, without the constant map contribution). It is im-

portant to notice that the symmetry between upper and lower-half Borel planes, i.e., the
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presence of instanton actions A`(t) and A†`(t), is responsible for the reality of the original

series; while the symmetry between singular directions ±iθ`, i.e., the presence of instanton

actions ±A`(t), implements back the topological genus expansion. To see this explicitly,

let us expand the integrand in powers of gs and use the discontinuities determined above.

We obtain

F̂ (gs) '
1

4π2

∑
`∈all quads

+∞∑
g=1

(
gs e−iθ`

)g−1
+∞∑
n=1

1

n2

∫ +∞

0
dw (n |A`(t)|+ w)

e−
n|A`(t)|

w

wg+1
(2.31)

=
1

4π2

∑
`∈all quads

+∞∑
g=1

+∞∑
n=1

(
gs e−iθ`

)g−1 g Γ(g − 1)

n2 (n |A`(t)|)g−1 . (2.32)

We can rewrite the sum over all singular directions as∑
`∈all quads

(
|A`(t)| eiθ`

)1−g
=
(

1 + (−1)g−1
){+∞∑

`=1

eiθ`(g−1) + e−iθ`(g−1)

|A`(t)|g−1 +
ei(g−1)π

2

(2πpt)g−1

}
.

(2.33)

In this result, summing over the left and right quadrants originated the factor (1+(−1)g−1),

resulting in the familiar topological genus expansion (as only odd g survive, implying g−1

is even). The sum over the two angles ±θ` gives rise to a real expansion, as one obtains

eiθ`α + e−iθ`α =

(
2π

|A`(t)|

)α (
(2πp`+ it)α + (2πp`− it)α

)
. (2.34)

Substituting these results into the previous expansion for F̂ (gs), one finally obtains

F̂ (gs) ' 2

+∞∑
g=1

g2g−2
s (−1)1−g (2g − 1)

ζ (2g)

(2π)2g Γ (2g − 2)
∑
`∈Z

(t+ 2πip`)2−2g

'
+∞∑
g=2

g2g−2
s

B2g

2g (2g − 2)!
p2−2g Li3−2g

(
e
− t
p

)
, (2.35)

where we have used the representation of the polylogarithm given in (2.19), valid once we

remove the g = 1 term, and also made use of the relation between the zeta function and

the Bernoulli numbers,

(−1)g+1 (2g − 1)
ζ (2g)

(2π)2g =
1

2

B2g

2g (2g − 2)!
. (2.36)

We have thus rederived the original free energies (without the constant map contribution),

given in (2.15), from the nonperturbative discontinuities. The results obtained are exact

results, instead of the typical large-order results usually achieved through these methods

(see a few examples in, e.g., [31]), and this is due to the meromorphicity of the Borel

transform.

Having presented a resurgent analysis of the nonperturbative structure of the large N

free energies of Chern-Simons gauge theory localized on lens spaces, we shall next focus on

another example: ABJM gauge theory localized on the sphere S3. This time, instead of

studying the 1/N expansion, we shall fix N = 2, take the level k to be large and study the

standard gauge-theory perturbation series.
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2.2 ABJM gauge theory on the sphere

ABJM gauge theory [65] is a superconformal Chern-Simons gauge theory in three di-

mensions, coupled to matter. It has N = 6 supersymmetry and gauge group G =

U(N)k×U(N)−k, with the corresponding actions having Chern-Simons couplings k and

−k. One may also consider an extension of this theory by generalizing the gauge group

to be G = U(N1)k×U(N2)−k [66]. These theories have been studied via localization tech-

niques (see, e.g., [56]), and in [51] their partition functions on M = S3 were given matrix

integral representations.

The matrix model representing the partition function of ABJM gauge theory on M =

S3, with general gauge group G = U(N1)k×U(N2)−k, may be also obtained from Chern-

Simons gauge theory on the lens space L(2, 1) (which we discussed earlier) via a supergroup

extension [67]. One can further rewrite such matrix model representation using the Fermi

gas approach studied in [68]. In this way, using the Cauchy identity (see, e.g., [56]), the

ABJM partition function may be finally written as [69]

ZABJM

(
S3
)

[N, k] =
1

N !

∑
σ∈SN

(−1)ε(σ)
∫ N∏

i=1

dxi
2πk

1∏
i 2 cosh

(
xi
2

)
2 cosh

(
xi−xσ(i)

2k

) . (2.37)

The large N behaviour of the free energy F = logZ has been analyzed in [70], where it

was shown that its perturbative series can be determined recursively even though a closed

form for the coefficients is not known at present. In the current work, we will instead fix

the rank of the gauge group to be N = 2, and analyze the resurgent properties of the

perturbative series obtained when one takes the level k to be large, i.e., considering an

asymptotic expansion in 1/k. Setting N = 2 the partition function can be taken to the

form [52, 71]

ZABJM

(
S3
)

[2, k] =
1

8

∫ +∞

0
du

u

sinhπuk
tanh2(π u). (2.38)

This integral may be computed exactly via residues, giving rise to an expression involving

a sum over k different terms [71]. However, we are interested in the explicit analytic

expression for the complete weak-coupling perturbative series in 1/k (which is the same

perturbation series that one would obtain by standard Feynman diagram calculations). In

this case, using the series expansion for tan2 πx when |x| < 1
2 ,

tan2 πx =
2

π2

+∞∑
m=2

(2m− 1)
(
22m − 1

)
ζ(2m)x2m−2, (2.39)

one then finds

ZABJM

(
S3
)

[2, k] '
+∞∑
n=2

Zn
k2n

, (2.40)

where the perturbative coefficients are given by

Zn = (−1)n
2

(2π)2n+2 (2n− 1) (2n− 1)!
(
22n − 1

)2
ζ(2n)2. (2.41)
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It is now possible to check the asymptotic behavior of the coefficients Zn. For large n, we

can easily see that

|Zn| ∼
(

2

π

)2n

(2n)!, n� 1, (2.42)

which means the coefficients grow as ∼ (2n)!, and which agrees with the results found

in [52]. A closer examination of the coefficients (2.41) reveals that they are built out of

different components, with distinct subleading exponential behavior. In fact, we can write

the Zn coefficients as a sum of three separate terms of the form

Zn = Z(1)
n − 2Z(2)

n + Z(3)
n , where Z(i)

n =
(−1)n

2π2
(2n− 1) (2n− 1)! ζ(2n)2 1

A2n
i

, (2.43)

where the corresponding “instanton” actions are A3 = A2/2 = A1/4 = π
2 . The asymptotic

behavior of each of these separate terms is then the familiar

Z(i)
n ∼

(2n)!

A2n
i

, n� 1. (2.44)

With this split in mind, also the perturbative series for the partition function, (2.40), may

be naturally divided into three parts, as

ZABJM

(
S3
)

[2, k] = Z(1)(k)− 2Z(2)(k) + Z(3)(k), where Z(i)(k) '
+∞∑
n=2

Z
(i)
n

k2n
. (2.45)

In order to uncover the resurgent structure of the partition function, we shall next

analyze each of the above asymptotic expansions separately. They all have the same type

of leading factorial growth, ∼ (2n)!, and in this case the Borel transform would act on

the asymptotic series by changing k−2n → s2n−1/(2n− 1)!. As we discussed earlier, in the

example of Chern-Simons gauge theory on lens spaces, an easier and faster way to obtain

the Stokes discontinuities associated with the partition-function asymptotic expansion is

by addressing instead the series k−1Z(i)(k) (whose Borel transform will be associated with

a simple resurgent function, for which discontinuity formulae are directly available and

applicable [49]). We shall return to the precise Borel transform below. For the moment let

us thus consider instead

B[k−1Z(i)](s) ≡
+∞∑
n=2

Z
(i)
n

(2n)!
s2n =

+∞∑
n=2

(−1)n

2π2

2n− 1

2n
ζ(2n)2

(
s

Ai

)2n

(2.46)

=

+∞∑
`=1

{
1

24

(
s

`Ai

)2

+
1

4π2
log

(
sinh

(
πs

`Ai

))
− s

4π`Ai
coth

(
πs

`Ai

)
+ (2.47)

+
`2

4π2

(
1− log

(
s

Ai

))}
, (2.48)

where we made use of the definition of the zeta function and interchanged orders of sum-

mation. The terms in the last line (2.48) will cancel against each other once we consider
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the Borel transform for the full partition function, B[k−1ZABJM

(
S3
)
](s), corresponding to

the sum in (2.45). One thus obtains:

B[k−1ZABJM

(
S3
)
](s) =

s2

64
+

1

4π2

+∞∑
`=0

{
log

(
cosh

(
s

2`+ 1

))
− s

2`+ 1
tanh

(
s

2`+ 1

)}
.

(2.49)

The Borel singularities of the ABJM partition function are located at

ω±`m = ± iπ

2
(2`+ 1) (2m+ 1) = (2m+ 1)A±` , m, ` ∈ Z+

0 . (2.50)

This implies that there are only two singular directions, i.e., ω±`m = |ω`m| e±iπ
2 , with

|ω`m| =
π

2
(2`+ 1) (2m+ 1) ≡ (2m+ 1) |A`| , m, ` ∈ Z+

0 . (2.51)

Similarly to what happened with Chern-Simons gauge theory in the previous subsection,

in this case one finds singularities at odd multiples of a basic “instanton” action, A±` , and

these singularities align themselves along the directions θ± = argA±` = ±iπ2 corresponding

to the imaginary axis. Figure 2 shows a schematic representation of these singularities.

Near each of these singularities, the Borel transform (2.49) behaves as

B[k−1ZABJM

(
S3
)
](s)
∣∣
ω`m

=
ω`m

(2πi)2 (s− ω`m)
+

1

4π2
B[G](s) log (s− ω`m) + holomorphic,

(2.52)

where once again B[G](s) = 1 is the Borel transform ofG(k) = k−1. In parallel to our earlier

discussion, one should not rush into conclusions based on this singularity structure. The

Borel transform of the ABJM partition function itself, ZABJM

(
S3
)
, is indeed meromorphic

as one may check immediately. One finds

B[ZABJM

(
S3
)
](s) =

d

ds
B[k−1ZABJM

(
S3
)
](s) =

s

32
− s

4π2

+∞∑
`=0

{
1

(2`+1)2 sech2

(
s

2`+1

)}
,

(2.53)

which has the exact same singular points (2.50), but which now correspond to double and

simple poles, rendering the Borel transform of the ABJM partition function as a meromor-

phic function. Nonetheless, as explained, we proceed with the “representative” (2.52) for

computational reasons.

From the singular behavior (2.52) follow the Stokes discontinuities of the partition func-

tion along the Stokes directions θ± = ±π
2 (this is done via alien calculus; see, e.g., [31, 49]

for details, and footnote 7 on page 10). These are simply

Discθ±ZABJM

(
S3
)

(k) =
k

2πi

+∞∑
`=0

+∞∑
m=0

(
1

k
− ω±`m

)
e−ω

±
`mk. (2.54)

Having these discontinuities at hand one may proceed to the exact large-order analysis

we have done before, recovering the full ABJM partition function out of the above Stokes

discontinuities. Under the usual assumption that there are no discontinuities at zero level,
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` = 0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

Figure 2. Singularities in the complex Borel plane for ABJM gauge theory on S3 (at large level k,

and with rank of the gauge group N = 2). Every vertical line in this figure should be seen as the

very same imaginary axis, i.e., all singularities are along the same line (they are shown separately

just to make manifest the existence of different “instanton” actions A`, for ` = 1, 2, 3, 4, 5).

the familiar Cauchy dispersion relation (2.30) holds. Note that our small coupling is now

λ ≡ 1
k (which replaces the gs coupling back in (2.30)). Next, expanding the integrand

for small λ and using the discontinuities derived above (in the variable w = k−1), we can

easily find8

ZABJM

(
S3
)

(λ = k−1) ' 1

2πi

∑
±

+∞∑
n=1

λn−1

∫ ±i∞

0
dww−n Discθ±ZABJM

(
S3
)

(w) (2.55)

=
1

4π2

+∞∑
n=2

λn−1
∑
±

e−iθ±(n−1)
+∞∑
`=0

+∞∑
m=0

(n− 2) Γ (n− 1)

|ω`m|n−1 . (2.56)

The sum over the two Stokes directions
∑
± e−iθ±(n−1) = 2 cos

(
(n− 1) π2

)
is zero if n is

even, and is 2 (−1)
n−1
2 if n is odd. This will allow us to recover the squared power of k

in the perturbative expansion of the partition function, (2.40). Making use of the precise

values for the Borel singularities, (2.50), one finally obtains9

ZABJM

(
S3
)

(k) '
+∞∑
n=1

(−1)n
2

(2π)2n+2 (2n− 1) Γ (2n)
(
22n − 1

)2
ζ(2n)2 k−2n, (2.57)

which agrees with the original asymptotic expansion, (2.40) and (2.41), once we discard

the first term n = 1 (which is removed once we take into account the s2

64 term in (2.49)).

8In this calculation we consider n ≥ 2, discarding n = 1 (this term is not important for the asymptotic

analysis).
9Recall that from the definition of the zeta function one has

∑+∞
m=0 (2m+ 1)−2g = 2−2g

(
22g − 1

)
ζ(2g).
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Note that this derivation is exact (and not just an approximation at large perturbative

order) due to our complete knowledge of the singular structure of the (meromorphic) Borel

transform.

Having obtained these results, one could address other localizable observables in both

Chern-Simons and ABJM gauge theories, such as supersymmetric Wilson loops. But as

it turns out, the resurgent properties of these observables are similar to the ones of the

partition function.

3 Resurgence in supersymmetric Yang-Mills theories

We shall now turn to four dimensions, and address the partition function of N = 2 su-

persymmetric gauge theories on the sphere S4, using the results of supersymmetric local-

ization [41, 72–74]. The simplest gauge theory in four dimensions is maximally supersym-

metric N = 4 Yang-Mills theory. This case, however, turns out to be quite simple from

a resurgence point-of-view; in order to find new resurgent structures — as compared to

the previous three-dimensional examples — one needs to consider gauge theories with less

supersymmetry. Herein, we shall mainly focus upon N = 2 superconformal Yang-Mills the-

ory and in the N = 2∗ SU(2) gauge theory (which is obtained via mass deformation of the

N = 4 case). Both theories will show a rich structure of singularities in their corresponding

Borel transforms.

In four dimensions, the (localized) partition function is of the form [41]

Z ∝
∫
g

[da] e−Scl(a) Z1-loop(ia)
∣∣Zinst

(
ia, g2

)∣∣2 . (3.1)

The structure is similar to (2.1). The integration is over the Lie algebra g of the gauge

group G, and Scl(a) is the classical kinetic action given by Scl(a) = 1
2g Tr (a · a). The factor

Z1-loop (ia) comes from the gauge-fixing determinant in the localization procedure, and is

given by an infinite-dimensional product typically written in terms of Barnes G-functions.

An addition compared to (2.1) is that there are now gauge-theory instanton contributions

represented by the factor Zinst

(
ia, g2

s

)
, given by the Nekrasov partition function [74, 75].

If one considers other observables, say Wilson loops in some representation R, one needs

to insert extra factors TrR
(
e2πia

)
. Both factors Z1-loop and Zinst show nontrivial behavior

and need to be addressed in detail.

3.1 N = 4 supersymmetric Yang-Mills theory

The partition function of N = 4 SU(N) SYM theory on a unit sphere S4 localizes in the

usual form, (3.1) [41]. However, in this case both one-loop and higher-instanton contri-

butions to the partition function have a trivial role to play as Z1-loop = 1, Zinst = 1 [76].

Consequently, the localized partition function is exactly given by a Gaussian matrix model.

Considering gauge group U(N), this matrix model is simply

Z4SYM

(
S4
)

=
1

vol (U(N))

∫
dM e

− 1

g2
YM

TrM2

. (3.2)
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Besides the partition function, the localization techniques developed in [41] further provided

for a proof of the formulae in [72, 73] concerning the vev of a 1
2BPS circular Wilson loop.

It may be likewise written in a Gaussian matrix model formulation. In a representation R,

this is given by the expectation value

〈WR〉4SYM =
〈
TrReM

〉
. (3.3)

In the fundamental representation R = , (3.3) reduces to a sum of simple Gaussian

integrals, which can be easily evaluated to [73] (herein we only present the planar result,

see [73] for the complete all-orders ’t Hooft expansion)

〈W 〉4SYM =
2√
t
I1

(√
t
)

+O
(

1

N2

)
, (3.4)

where I1(x) is a modified Bessel function, for which to all orders in the planar expansion

its perturbative series has infinite radius of convergence. The reason for this convergence

is a massive cancellation of planar Feynman diagrams. Indeed, it has been shown that

only rainbow graphs without internal vertices contribute [72]. On the other hand [73],

expanding in large ’t Hooft coupling the resulting series is indeed asymptotic with its

resurgence properties resembling some of the examples appearing in [49] (and see also [77]

for the context of large N duality). It would be very interesting to carefully analyze all

these different limits and expansions from a resurgence viewpoint, where complete and

exact results should be simple to obtain.

The 1/N expansion also exhibits an interesting structure: for the free energy it is

asymptotic; while for Wilson loops it is a convergent series. As mentioned, the free energy

precisely localizes to a Gaussian matrix model, and the resurgent properties of this Gaussian

matrix model were studied in great detail in [36]. They turn out to be essentially very

similar to the case of Chern-Simons gauge theory on lens spaces we addressed earlier; in

fact the Borel singularities of the Gaussian matrix model reduce to the red singularities

illustrated in figure 1. Using the results in [36] alongside our earlier Chern-Simons analysis,

it should be a simple exercise for the reader to work out the complete set of details.

More intricate perturbation series with asymptotic n! large-order behavior arise in

theories with less supersymmetry, and in this regard some asymptotic properties of Wilson

loops in N = 2 theories were already addressed in [52]. We shall next turn to this class of

theories, focusing upon their partition functions (the perturbation series for the vev of the
1
2BPS circular Wilson loop has similar asymptotic behavior as the partition function, and

in fact the same Borel singularities, so here we shall omit an explicit discussion).

3.2 N = 2 superconformal Yang-Mills theory

We shall now focus uponN = 2 superconformal Yang-Mills theory with gauge group SU(2),

which we shall analyze at small gauge coupling, gYM. Due to superconformality, there will

be no renormalon contributions to the nonperturbative structure, and one can expect all

singular Borel behavior to have its origins in semiclassical effects, as we will discuss later in

section 4. As we shall see, the resurgence properties arising from perturbative expansions
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in this theory, as well as those originating in each instanton sector Zinst, will be quite

different than one might naively have expected for, based on usual instanton analysis.

Nonetheless, due to the meromorphicity of the Borel transform we shall soon unveil, it will

still be the case that one can find closed form expressions describing all these resurgent

nonperturbative properties.

N = 2 superconformal Yang-Mills theory is given by standard N = 2 supersymmetric

Yang-Mills theory with gauge group SU(Nc) and Nf = 2Nc massless multiplets. Its par-

tition function localized on S4 was first computed in [41] and from these results one can

write down its (diagonal) matrix model representation as

Z2SYM ∝ g−(N2
c−1)

YM

∫
dNc−1λ

∏
1≤i<j≤Nc

(λi − λj)2 e
− 2

g2
YM

∑Nc
i=1 λ

2
i
Z1-loop(λ)

∣∣Zinst(λ, g
2
YM)

∣∣2 ,
(3.5)

where
∑Nc

i=1 λi = 0, and where

Z1-loop(λ) =

∏
1≤i<j≤Nc

H2 (λi − λj)∏Nc
i=1H

2Nc (λi)
, H(x) =

+∞∏
n=1

(
1 +

x2

n2

)n
e−

x2

n . (3.6)

Note that the function H(x) is related to the Barnes G-function, G(x), by

H(x) = e−(1+γ)x2 G (1 + ix)G (1− ix) , (3.7)

with γ the Euler constant. We shall focus on the case of Nc = 2, and perform an analysis

for small Yang-Mills coupling gYM. This analysis was initiated in [52], where it was shown

that the perturbative series in gYM is asymptotic with its coefficients growing factorially

fast. In here we shall study this factorial growth in full detail, in particular addressing the

(nonperturbative) Borel singular structure which gives rise to this behavior. Following [52],

we find that for Nc = 2 the partition function reduces to

ZSU(2)
2SYM (gYM) =

128π5/2

g3
YM

∫ +∞

−∞
da a2 e

− 16π2

g2
YM

a2
+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + a2

n2

)8n

∣∣∣ZSU(2)
inst

∣∣∣2 , (3.8)

where the overall numerical constant was fixed in order for the partition function to be

normalized to 1 in the limit gYM → 0. The infinite product in the integrand arises from

the Z1-loop factor, and may also be written as a product of Barnes G-functions,

+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + a2

n2

)8n =

(
G (1 + 2ia) G (1− 2ia)

)2

(
G (1 + ia) G (1− ia)

)8 . (3.9)

As for the instanton factor, Zinst (ia), determined in [74] (but see also [78]), it is given

schematically by

Zinst(ia) = 1 +

+∞∑
k=1

e2πikτ Zk(ia). (3.10)
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In this expression, τ = 4πi
g2YM

+ θ
2π is the complexified gauge coupling, with θ the topolog-

ical charge, and Zk(a) is the k-instanton partition function (Z0(a) ≡ 1). Expanding the

integrand component |Zinst(ia)|2 in both topological charge and instanton number it follows

|Zinst(ia)|2 =

+∞∑
k′=0

∑
±

e
±iθk′− 8π2

g2
YM

k′

Ẑθk′,± (ia) , (3.11)

Ẑθk′,± (ia) ≡
+∞∑
k=0

e
− 16π2

g2
YM

k {
Z
k+

(1±1)
2

k′
(ia)Z

k+
(1∓1)

2
k′

(−ia)
}
. (3.12)

It is important to note that each distinct topological sector should be addressed separately,

as the resurgent structure of different topological sectors does not mix. Consider some

arbitrary theory whose effective coupling has a topological charge, and for which the study

of some given observables around each topological and instanton sectors returns an asymp-

totic series. In this case, general resurgence properties such as ambiguity cancelations will

occur independently, within each separate topological sector. This lead to the construc-

tion of the resurgence triangle in [21] (but see also the final discussion in [46] on general

ambiguity cancelation). As we shall see next, in the present case extended supersymmetry

will simplify the resurgence triangle even further, in such a way that resurgence properties

will occur within each topological charge sector and each gauge-theoretic instanton sector.

Furthermore, it will be the localization procedure itself which will be responsible for the

tower of Borel singularities which lead to resurgence within each of these sectors (see the

discussion in section 4).

To begin with, let us focus upon the zero topological charge sector, corresponding to

taking k′ = 0 in the above expansion. Setting the instanton action to be A = 8π2, this

results in

Ẑθ0(ia) =

+∞∑
k=0

e
− 2A

g2
YM

k
|Zk(ia)|2 . (3.13)

This sector includes the perturbative10 series with no instanton corrections, corresponding

to k = 0, Z0(ia) ≡ 1. The resurgent analysis which now follows can be likewise done for

any other topological sector, and the results will be analogous to the ones presented below.

Substituting the Zinst factor by the above zero topological charge sector, in the integrand

of the partition function (3.8), we get

Zθ=0
2SYM (gYM) =

+∞∑
k=0

e
− 2A

g2
YM

k
Zθ=0
k (gYM) , (3.14)

with

Zθ=0
k (gYM) ≡ 128π5/2

g3
YM

∫ +∞

−∞
da a2 e

− 2A

g2
YM

a2
+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + a2

n2

)8n |Zk(ia)|2 . (3.15)

10Note that any other topological sector will not only have a distinct topological charge, e±iθk′ , but it will

also be exponentially suppressed by at least a factor of exp
(
− A
g2YM

k′
)

, with respect to this perturbative

series.
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Above we introduced the k-instanton partition function, Zθ=0
k , in the zero topological

charge sector. Next, within this sector, we may separately analyze the many instanton

contributions. Let us first address the perturbative series, k = 0,

Zθ=0
0 (gYM) =

128π5/2

g3
YM

∫ +∞

−∞
da a2 e

− 2A

g2
YM

a2
+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + a2

n2

)8n (3.16)

≡ 2√
π

∫ +∞

−∞
dã e−V (ã,gYM), (3.17)

where we changed variables as ã =
√

2A
gYM

a. Using (3.9) we find that the effective potential

can be easily determined to be

V (ã, gYM) = ã2 − 2 log (ã)− log


(
G
(

1 + 2iã gYM√
2A

)
G
(

1− 2iã gYM√
2A

))2

(
G
(

1 + iã gYM√
2A

)
G
(

1− iã gYM√
2A

))8

 . (3.18)

The perturbative series can be obtained by taking gYM � 1, and in fact its first few

terms were already determined analytically in [52]. However, in order to examine the large-

order behavior we need to generate higher order terms. In this sense, let us first note that

this perturbative series is of the generic form

Zθ=0
0 (gYM) '

+∞∑
g=0

g2g
YM Z(0)

g . (3.19)

Next, performing a numerical calculation of the coefficients Z
(0)
g in this series by straight-

forward perturbative evaluation of the integral (3.16), we find a large-order factorial growth

of the type Z
(0)
g ∼ C−g Γ(g + β)

(
c0 + c1g

−1 + c2g
−2 + · · ·

)
, for some C, β, ck. In fact we

can simply analyze the ratio of these coefficients, which for large g will obey

C

g

Z
(0)
g+1

Z
(0)
g

∼ 1 +
β

g
− c1

c0 g2
+ · · · . (3.20)

The value of these unknown coefficients may now be determined numerically (in fact further

increasing the speed of convergence through the use of Richardson transforms; see, e.g., [25]

for a simple introduction in the present large-order context). The left plot of figure 3

shows the convergence of the above ratio to its leading value, 1, after making the choice

of C = −2A = −(4π)2. The right plot shows the convergence of the same ratio, minus its

leading value of 1, in order to find the value β = 9
2 to very high numerical accuracy. These

results imply that the leading singularities in the complex Borel plane are expected to be

instanton-like, albeit located at s = −2A, i.e., in the negative real axis, and with value of

twice the instanton action of the four-dimensional gauge theory. We also conclude that the

factorial growth of the perturbative series goes as Z
(0)
g ∼ Γ(g + 9/2).

One can proceed along this line and extend the numerical analysis to higher orders,

thus determining several of the subsequent coefficients. However, a much more interesting
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Figure 3. Numerical analysis of the leading (left plot) and subleading (right plot) behavior of the

ratio Z
(0)
g+1/Z

(0)
g , at large order g. In each case we plot the values of the ratio (the red line) and two

of its corresponding Richardson transforms (of orders 2 and 6, shown in blue). The convergence

towards the predicted values (the horizontal lines) is clearly very precise.

approach is the direct analytical analysis of the Borel transform associated with this per-

turbative series. Notice that this cannot be done directly from the coefficients of the series

itself, at least not in any simple way, as the coefficients of this series are not easy to ob-

tain analytically. Nonetheless, there is another approach we shall now discuss which leads

to an analytic expression for the Borel transform, thus including its complete singularity

structure. Looking back at the integral in (3.16), we can change variables as 2Aa2 = s

to obtain

(
g2

YM

)3/2Zθ=0
0 (gYM) =

2√
π

∫ +∞

0
ds e

− s

g2
YM
√
s

(
G
(
1 + 2i

√
s

2A

)
G
(
1− 2i

√
s

2A

) )2

(
G
(
1 + i

√
s

2A

)
G
(
1− i

√
s

2A

) )8 . (3.21)

From this expression we can directly read off the Borel transform corresponding to the

function
(
g2

YM

)3/2Zθ=0
0 (gYM). Do note that the partition function is a function of the

variable λ ≡ g2
YM, thus this is the correct variable appearing in the exponential of the Borel

integrand. As such, what we are interested in analyzing is the singularity structure of

B[λ3/2Zθ=0
0 ](s) ≡ 2

√
s√
π

(
G
(
1 + 2i

√
s

2A

)
G
(
1− 2i

√
s

2A

) )2

(
G
(
1 + i

√
s

2A

)
G
(
1− i

√
s

2A

) )8 . (3.22)

To do so just recall that we have been frequently interchanging between products of Barnes

G-functions and infinite products, and we can do so once again to obtain(
G (1 + 2ia)G (1− 2ia)

)2

(
G (1 + ia)G (1− ia)

)8 =

+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + a2

n2

)8n =

+∞∏
n=1

(
1 + 4a2

(2n+1)2

)4n+2

(
1 + a2

n2

)4n . (3.23)

Using the infinite-product representation it is now much simpler to identify all the singu-

larities of this function as consisting of poles, located at the points a2 = −n2, and where
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Figure 4. Singularities in the complex Borel plane for N = 2 superconformal Yang-Mills theory on

S4, when considering small coupling gYM and rank of the gauge group N = 2. All singularities lie

along the negative real direction, giving rise to the corresponding single Stokes line of this example.

each pole is of order 4n in the variable a2. Applying the same reasoning to the Borel

transform, we find that this Borel transform is a meromorphic function (as was the case

for the three-dimensional examples studied in the previous section), with poles located at

sn = −2An2 ≡ − (4π)2 n2, n ∈ N, (3.24)

with each pole at s = sn being of order 4n. In figure 4 we illustrate the singularity

structure of this Borel transform. We can then conclude that all the singularities of the

Borel transform lie in the negative real axis, implying there is a single Stokes line along

θ = π.

The question that naturally follows is how to determine the discontinuity across the

aforementioned Stokes line. To do so, let us first analyze the behavior of the Borel transform

around each pole,

B[λ3/2Zθ=0
0 ](s)

∣∣∣
sn

=
1

(s− sn)4n

+∞∑
`=0

f
(n)
`

`!
(s− sn)` . (3.25)

In this expression, the Taylor series around sn with coefficients f
(n)
` is obtained by expand-

ing the product of B[λ3/2Zθ=0
0 ](s) with (s− sn)4n. For each distinct pole sn, one obtains

a different Taylor expansion. Given our discussions in section 2, we already know that

the Stokes discontinuity is computed via alien calculus, and that there are certain “Borel

representatives” which may make this calculation easier (even immediate!). In our present

example, the above form of the Borel transform around each of its poles, (3.25), is not

of this simplest form from an alien calculus standpoint. Instead, we would like to rewrite

in the form of a simple pole alongside a logarithmic branch-cut, in the same manner as

discussed at length in the previous section (but see also [31, 49] for further details). To do

this, we first note that taking 4n− 1 primitives of our result leads us to the intended form

of the Borel transform. Furthermore, recall from last section that there is a simple relation

between integrations (or differentiations) of Borel transforms, and an overall power of λ in

the original function. This said, we can immediately write

B[λ3/2Zθ=0
0 ](s) =

d4n−1

ds4n−1
B[λ3/2λ4n−1Zθ=0

0 ](s), (3.26)
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where we now find the representative we were looking for as

B[λ4n+1/2Zθ=0
0 ](s)

∣∣∣
sn

=
f

(n)
0

(−1)4n−1 (4n− 1)!

1

s− sn
+
B[ψn] (s− sn)

2πi
log (s− sn) + regular.

(3.27)

Here, the Borel transform B[ψn] is given by

B[ψn](s) =

4n−1∑
`=1

2πi f
(n)
`

(−1)4n−`−1 Γ(4n− `) Γ(`) `!
s`−1, (3.28)

and the corresponding function ψn is then given by

ψn(λ) =

4n−1∑
`=1

2πi f
(n)
`

(−1)4n−`−1 Γ(4n− `) `!
λ`. (3.29)

Note that this function is not resurgent nor even asymptotic; it is simply a polynomial. It

is now this fact which is signaling back the original meromorphicity of the Borel transform.

We can next determine the discontinuity of the perturbative partition function across the

singular direction θ = π, by following a similar procedure to what we have already done

twice before. In more technical terms, one would write11

Discπ Zθ=0
0 (λ) = −

+∞∑
n=1

e−
sn
λ ∆snZθ=0

0 (λ) (3.30)

= −
+∞∑
n=1

e−
sn
λ λ−4n− 1

2 ∆sn

(
λ4n+ 1

2Zθ=0
0 (λ)

)
, (3.31)

where the alien derivative ∆sn

(
λ4n+1/2Zθ=0

0 (λ)
)

can be read off directly from (3.27)

and (3.29) as

∆sn

(
λ4n+ 1

2Zθ=0
0 (λ)

)
=

4n−1∑
`=0

2πi f
(n)
`

(−1)4n−`−1 Γ(4n− `) `!
λ`. (3.32)

With these results in hand, we can finally determine the discontinuity across the Stokes

line as

Discπ Zθ=0
0 (λ) = −

+∞∑
n=1

e−
sn
λ

4n−1∑
`=0

2πi f
(n)
`

(−1)4n−`−1 Γ(4n− `) `!
λ`−4n− 1

2 . (3.33)

By now, the reader should already be familiar with the resurgence set-up, where

this discontinuity in fact encodes the complete information behind the asymptotic se-

ries Zθ=0
0 (λ). In particular, we can use it to determine the large-order behavior of the

coefficients Z
(0)
g in (3.19), making use of the standard Cauchy dispersion relation

Zθ=0
0 (λ) =

1

2πi

∫ −∞
0

dw
Discπ Zθ=0

0 (w)

w − λ
, (3.34)

11This is only true because the function ψn(λ) is not asymptotic, and thus many expressions simplify as

the alien derivative acting on ψn returns zero.
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and expanding the integrand for small λ. Substituting into the above expression the exact

result for the discontinuity, (3.33), evaluating the integral, and comparing with (3.19),

we find

Z(0)
g '

+∞∑
n=1

Γ
(
g + 4n+ 1

2

)
(−2An2)g+4n+ 1

2

4n−1∑
`=0

(−1)4n−` Γ
(
g + 4n+ 1

2 − `
)

Γ
(
g + 4n+ 1

2

)
Γ (4n− `) `!

f
(n)
`

(
−2An2

)`
.

(3.35)

This expression tells us that in order to understand the large-order behavior of the coeffi-

cients Z
(0)
g , at each exponentially suppressed order ∼ n−g, we only need a limited number

of coefficients from the Taylor expansion of the Borel transform around each pole — more

precisely, only up to 4n − 1 of these coefficients for each pole sn. Making the large-order

relation a bit more explicit, one finds:

Z(0)
g '

Γ
(
g + 9

2

)
(−2A)g+

9
2

{
f

(1)
0

6
− Af

(1)
1

g + 7
2

+
2A2 f

(1)
2(

g + 5
2

) (
g + 7

2

) − 4A3 f
(1)
3

3
(
g + 3

2

) (
g + 5

2

) (
g + 7

2

)}+

+
Γ
(
g + 17

2

)
(−8A)g+

17
2

{
f

(2)
0

5040
− Af

(2)
1

90
(
g + 15

2

) +
4A2 f

(2)
2

15
(
g + 13

2

) (
g + 15

2

) + · · · −

− 131072A7 f
(2)
7

315
∏76
k=0

(
g + 15−2k

2

)}+O
(

(−18A)−g−25/2
)
. (3.36)

Recall that the instanton action is here given by A = 8π2. Table 2 in page 48 lists the

coefficients f
(n)
` from (3.25), which we have computed for the first three poles. As can be

seen from that short list, these coefficients are generically transcendental numbers involving

zeta numbers.

Note that we now have a very definite prediction for the resurgent large-order behavior

of our original perturbative series (3.19), given by (3.35), which can be numerically checked

in much the same way as we did for the leading factorial growth of the ratio Z
(0)
g+1/Z

(0)
g . If

we readdress this ratio, its leading behavior is given by a series in 1
g , at large order g, which

is completely determined by the first line (meaning, with n = 1) of (3.36). The predicted

behavior, up to exponential suppressed terms, will then be

− 2A

g

Z
(0)
g+1

Z
(0)
g

' 1 +
9

2g
+

6Af
(1)
1

g2 f
(1)
0

−
3A
(
f

(1)
0 (8Af

(1)
2 + 7 f

(1)
1 )− 12A(f

(1)
1 )2

)
g3 (f

(1)
0 )2

+ · · · , (3.37)

where one can read the coefficients f
(1)
` from table 2. Numerically we can check12 each

coefficient of this expansion in 1
g iteratively, by simply subtracting the previous one and

multiplying by a power of g. To speed up the convergence, we again use the method of

12Take Φ(g) '
∑+∞
n=0 cn g

−n. Plotting the values of Φ(g) for very large g will of course verify the leading

value of this series, c0. To check c1 we just need to plot instead (Φ(g)− c0) g, and to check c2 we would

plot ((Φ(g)− c0) g − c1) g. This procedure may be repeated iteratively for higher and higher cn, as long as

we have enough precision in our numerical calculations and can evaluate the values of Φ(g) for high enough

order g.

– 25 –



J
H
E
P
0
3
(
2
0
1
5
)
1
7
2

Richardson transforms. Define

− 2A

g

Z
(0)
g+1

Z
(0)
g

'
+∞∑
k=0

c
(1)
k g−k +O

(
(−8A)−g

)
. (3.38)

The leading and subleading coefficients, c
(1)
0 = 1 and c

(1)
1 = 9/2, have already been checked,

as shown back in figure 3. But we can now easily go to higher loops. As an example, let us

look at the coefficient13 c
(1)
20 . The difference between the sixth-order Richardson transform

for g = 400, RT6

(
c

(1)
20

)
, and the predicted value, is negligible and very strongly confirms

our results:
RT6

(
c

(1)
20

)
− c(1)

20

c
(1)
20

∣∣∣∣∣∣
g=400

∼ 3.054 . . .× 10−14. (3.39)

Having very accurately checked the polynomial large-order dependence of the coef-

ficients Z
(0)
g , we can proceed to further check their large-order exponentially-suppressed

behavior. This growth is expressed in the second and subsequent lines of (3.36). In order

to see these subleading, exponentially-suppressed terms, one first needs to remove the first

line of (3.36) out of the original coefficients Z
(0)
g . Note that, in general, the (leading) terms

to remove consist of an asymptotic series of their own, and resummation methods are re-

quired to handle this procedure (see, e.g., [31, 40] for examples within these contexts). It

is quite interesting that this is not needed in the present case. In fact, the perturbative

series around each fixed nonperturbative sector,
(
−2An2

)g
, simply amounts to a rational

function — the one already found in (3.35). If we denote the first line in (3.36) by

φ1(g) =
Γ
(
g + 9

2

)
(−2A)g+

9
2

{
f

(1)
0

6
− Af

(1)
1

g + 7
2

+
2A2 f

(1)
2(

g + 5
2

) (
g + 7

2

) − 4A3 f
(1)
3

3
(
g + 3

2

) (
g + 5

2

) (
g + 7

2

)} ,
(3.40)

then, in order to numerically check the (leading) exponentially suppressed behavior of the

Z
(0)
g coefficients, we just need to analyze the ratio

−8A

g

Z
(0)
g+1 − φ1(g + 1)

Z
(0)
g − φ1(g)

' 1 +
17

2g
+

56Af
(2)
1

g2 f
(2)
0

−

−
28A

(
3f

(2)
0 (32Af

(2)
2 + 5 f

(2)
1 )− 112A(f

(2)
1 )2

)
g3(f

(2)
0 )2

+ · · · =

≡
+∞∑
k=0

c
(2)
k g−k +O

(
(−18A)−g

)
. (3.41)

13The predicted value for this coefficient is

c
(1)
20

∣∣∣
predicted

= 532998144ζ(3)6 − 326343370176ζ(3)5 + 17512240669776ζ(3)4 − 3364351634340225ζ(3)3

16
+

+
409926727472490567ζ(3)2

512
− 17984987670868446465ζ(3)

16384
+

62525365950697533681

131072
.
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Figure 5. Numerical analysis of the coefficients multiplying the “monomial” g−10, for two differ-

ent exponentially-suppressed orders: the coefficient c
(2)
10 associated with (−8A)

−g
(left plot; corre-

sponding to the pole at s2 = −8A) and the coefficient c
(3)
10 associated with (−18A)

−g
(right plot;

corresponding to the pole at s3 = −18A). For each plot we present the values of the corresponding

ratio as explained in the main text (in red) and of two of its corresponding Richardson transforms

(of orders 2 and 6, in blue).

The left plot of figure 5 shows a numerical check for the coefficient c
(2)
10 . The difference

between the sixth-order Richardson transform for g = 400, RT6

(
c

(2)
20

)
, and the predicted

value14 is again very strongly validating our results,

RT6

(
c

(2)
10

)
− c(2)

10

c
(2)
10

∣∣∣∣∣∣
g=400

∼ 1.089 . . .× 10−7. (3.42)

Taking this analysis one step further, to the “third instanton” level, let us define the

second exponentially-suppressed contribution in (3.36) as

φ2(g)=
Γ
(
g + 17

2

)
(−8A)g+

17
2

{
f

(2)
0

5040
− Af

(2)
1

90
(
g+ 15

2

)+
4A2 f

(2)
2

15
(
g+ 13

2

)(
g+ 15

2

)+· · ·− 131072A7 f
(2)
7

315
∏76
k=0

(
g+ 15−2k

2

)} .
(3.43)

If we now analyze the ratio

− 18A

g

Z
(0)
g+1 − φ1(g + 1)− φ2(g + 1)

Z
(0)
g − φ1(g)− φ2(g)

'
+∞∑
k=0

c
(3)
k g−k +O

((
−25A

)−g)
, (3.44)

we can check the terms which were previously exponentially suppressed by
(
−322A

)−g
.

The right plot of figure 5 shows a numerical check for the coefficient c
(3)
10 , whose difference

14The predicted value for this coefficient is

c
(2)
10

∣∣∣
predicted

= −754325913600ζ(3)3 + 65551480350720ζ(3)2 +
791986054060042631783

1259712
+

+
175

27
ζ(3) (295092854784ζ(5)− 63615374797129)−117253785600ζ(7)−25558423343600ζ(5).
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to the predicted value15 in its sixth Richardson transform at g = 400 is

RT6

(
c

(3)
10

)
− c(3)

10

c
(3)
10

∣∣∣∣∣∣
g=400

∼ 5.098 . . .× 10−4. (3.45)

In summary, the (numerical) checks we have performed above provide ample and

very strong evidence that indeed the resurgent structure of the perturbative series (i.e.,

without any Nekrasov instanton corrections) associated with the zero topological-sector

partition-function for N = 2 superconformal Yang-Mills theory, explicitly given by the

formulae (3.16) and (3.19), is correctly and fully described by the exact resurgence re-

sult (3.35).

The next natural step is to check if the same resurgent structure holds in the gauge

instanton sectors of the theory. Let us consider the sector of zero topological charge (the

generalization to other sectors is straightforward). Recall (3.14) where the k-instanton

sector was defined to be

Zθ=0
k (gYM) =

128π5/2

g3
YM

∫ +∞

−∞
da a2 e

− 2A

g2
YM

a2
+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + a2

n2

)8n |Zk(ia)|2 . (3.46)

The Nekrasov instanton factors Zk(a) can be determined via some combinatoric calcula-

tions, as explained in [74, 78], and we have computed the first few expressions up to k = 8

which may be found in table 1 on page 47 (but note that each k-instanton sector in fact

corresponds to having k instantons and k anti-instantons, as each sector is actually expo-

nentially suppressed by 2A instead of A). These factors are rational functions which, when

added into the integrand above, at most cancel the order of the zeroes coming from the

one-loop factor (3.9), but do not add any extra poles to the ones already present in the

denominator of this one-loop factor (see section 4).

We can determine the perturbative series around each instanton sector by expanding

the integrand above for small gYM (after a suitable change of variables and in the same

way as we did for the original perturbative series)

Zθ=0
k (gYM) '

+∞∑
g=0

g2g
YM Z(k)

g . (3.47)

This series can be easily shown to be asymptotic, with its coefficients Z
(k)
g growing facto-

rially fast at large order g. Further, the corresponding Borel transform can be determined

15The predicted value for this coefficient is

c
(3)
10

∣∣∣
predicted

= −6202653684955200ζ(3)3 +
11564852996699371908ζ(3)2

25
− 6869420324055823149ζ(5)

25
+

+
1275732601044192825230000161

250000000
+

24057ζ(3) (51103095372000000ζ(5)− 6307590904207688089)

50000
−

−5957433657579096ζ(7)− 9391359631500ζ(9).
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via the same change of variables as used before, s = 2Aa2 (recall that again λ = g2
YM is

the effecting coupling), where we now find

B[λ3/2Zθ=0
k ](s) =

2
√
s√
π

(
G
(
1 + 2i

√
s

2A

)
G
(
1− 2i

√
s

2A

) )2

(
G
(
1 + i

√
s

2A

)
G
(
1− i

√
s

2A

) )8

∣∣∣∣Zk (i

√
s

2A

)∣∣∣∣2 . (3.48)

From (3.23) we already know the order and the location of the poles and zeroes whose origin

is in the one-loop factor. As we shall see now, the inclusion of the Nekrasov instanton factor

will not change much. Table 1 shows that the poles arising from the instanton factors are

at the same location as the zeroes arising from the one-loop factor, but that the order of

these poles is lower than the order of the corresponding zeroes in the one-loop factor. This

property applies to more general N = 2 theories and the underlying reason is explained in

section 4. Thus, the location of singularities in the present Borel transforms is the same

as for the perturbative series (3.24). However, of course, due to the instanton factors, the

actual order of these singularities will be different. Performing a Laurent expansion of the

Borel transforms around each pole sn returns an analogous expansion to (3.25),

B[λ3/2Zθ=0
k ](s)

∣∣∣
sn

=
1

(s− sn)4n

+∞∑
`=0

f
(n)[k]
`

`!
(s− sn)` , (3.49)

with the earlier coefficients f
(n)
` of (3.25) now identified with f

(n)[0]
` . These new coefficients

f
(n)[k]
` will depend upon the rational functions associated with the instanton factors found

in table 1, but everything else in the analysis which was previously done for the perturbative

series essentially translates to the present case. In particular, for each instanton sector the

Borel transform is still a meromorphic function. There is a single Stokes line at θ = π (the

negative real axis), and the discontinuity across this Stokes line is now given by

Discπ Zθ=0
k (λ) = −

+∞∑
n=1

e−
sn
λ

4n−1∑
`=0

2πi f
(n)[k]
`

(−1)4n−`−1 Γ(4n− `) `!
λ`−4n− 1

2 . (3.50)

The large-order behaviour of the coefficients Z
(k)
g in the series (3.47) is finally given by

Z(k)
g '

+∞∑
n=1

Γ
(
g + 4n+ 1

2

)
(−2An2)g+4n+ 1

2

4n−1∑
`=0

(−1)4n−` Γ
(
g + 4n+ 1

2 − `
)

Γ
(
g + 4n+ 1

2

)
Γ (4n− `) `!

f
(n)[k]
`

(
−2An2

)`
.

(3.51)

All the numerical checks we have previously carried through may now be performed as

well, in order to confirm and support our results for the resurgent behavior of the pertur-

bative expansion of the partition function, around any nonperturbative k-instanton sector

(herein, at zero topological charge, but also this constraint may be eventually lifted). We

have done many of these tests and once again found complete agreement. For completion,

table 3 on page 49 list some of the relevant coefficients f
(n)[k]
` , for the first few instanton

sectors k = 1, 2 and poles n = 1, 2.
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3.3 N = 2∗ supersymmetric Yang-Mills theory

Having analyzed in detail the superconformal case, we next address a theory without

conformal symmetry, the N = 2∗ supersymmetric Yang-Mills theory with gauge group

SU(2), obtained by a N = 2 supersymmetry-preserving mass deformation of N = 4. This

theory was extensively studied in the context of Seiberg-Witten theory (see, e.g., [79–84]).

We shall again consider the weak-coupling perturbative series, and for all values of the mass

parameter M in this theory. This parameter is in fact one of its distinguishing features as

it interpolates between the limiting case of M → 0, where one recovers the superconformal

N = 4 SYM theory; and the limiting case of M → +∞, where the theory flows to pure

N = 2 SYM theory, via a renormalization of the coupling.

The partition function is still of the form (3.1). Its localization was found in [41], and its

dependence upon the mass parameter M later analyzed in detail in [52]. At large N , both

the partition function and the vev of the circular Wilson loop were investigated in [85–90],

which found a precise match with holography at strong coupling, and the emergence of

quantum phase transitions in the decompactification limit at specific values of the ’t Hooft

coupling (holographic tests for N = 2 pure SYM have also been made [91]).

Let us now fix the rank of the gauge group to N = 2. The theory depends upon

two parameters, gYM and MR, with R representing the radius of the four-sphere. For

most of the discussion we shall use units where R = 1, restoring the R dependence when

convenient. In what follows we keep the parameter M arbitrary but finite, and proceed to

analyze the partition function at small gauge coupling. In this case, it is given by

ZSU(2)
2∗SYM (gYM) =

128π5/2

g3
YM

∫ +∞

−∞
da a2 e

− 16π2

g2
YM

a2

Z1-loop(a,M)
∣∣∣ZSU(2)

inst

∣∣∣2 , (3.52)

where the Z1-loop factor is given by

Z1-loop (a,M) =

+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + (2a−M)2

n2

)n (
1 + (2a+M)2

n2

)n
e−

2M2

n

(3.53)

=
e(1+γ)2M2

(
G (1 + 2ia)G (1− 2ia)

)2

G (1+i (2a−M))G (1+i (2a+M))G (1−i (2a−M))G (1−i (2a+M))
,

with γ the Euler constant. In this work we shall only study the zero-instanton sector of this

theory, which corresponds to taking Z
SU(2)
inst → 1. It would be interesting to proceed with an

analysis of higher instanton sectors in future work. Within the present perturbative setting,

it is straightforward to perform a perturbative expansion of the partition function (3.52)

at small gYM coupling, which may be done numerically up to very large orders. Formally,

we expect this expansion to be of the generic form

Z0 (gYM) '
+∞∑
g=0

g2g
YM Z(0)

g , (3.54)
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and one can easily check (numerically) that at large order the leading behavior of the

above perturbative coefficients is of the type Z
(0)
g ∼ C−g Γ(g + β) cos (θa(g + β) + θb){

1 +O(g−1)
}

for some C, β, θk. This means that besides the, by now familiar, factorial

growth, there is also an oscillatory component. In order to fully understand this behavior

from an analytical point-of-view, all we have to do is to proceed in the exact same way as

we did before when addressing the superconformal case. Changing variables as 2Aa2 = s,

with A = 8π2, in (3.52) one quickly obtains a representative for the Borel transform of the

perturbative series,

(
g2

YM

)3/2Z0 (gYM) =

∫ +∞

0
ds e

− s

g2
YM B[(g2

YM)3/2Z0](s), (3.55)

with

B[λ3/2Z0](s) ≡ 2
√
s√
π

e(1+γ)2M2

(
G
(
1 + 2i

√
s

2A

)
G
(
1− 2i

√
s

2A

) )2

∏
±G

(
1 + i

(
2
√

s
2A ±M

))
G
(
1− i

(
2
√

s
2A ±M

)) . (3.56)

The structure of singularities of the above Borel transform can be found by taking into

account the infinite-product representation of the Z1-loop factor in (3.53). In this way, one

obtains that the singularities are all poles, located at

sn,± (M) =
1

2
A (M ± in)2 =

1

2
A
(
n2 +M2

)
eiθn,±(M), n ∈ N, (3.57)

with

θn,± (M) =

± arctan
∣∣∣ 2nM
M2−n2

∣∣∣ , n ≤M

π ∓ arctan
∣∣∣ 2nM
M2−n2

∣∣∣ , n > M
, (3.58)

and where each pole is of order n. The Borel transform is once again a meromorphic

function, but the singularity structure in the complex Borel plane is yet different from our

earlier examples: we now find a countable infinity of Stokes lines along the directions θn,±,

much like in the Chern-Simons example of section 2.1, but where each direction only meets

a single singularity (a pole of order n) at a distance |sn,± (M)| = 1
2A
(
M2 + n2

)
from the

origin. There are always two poles at the same distance to the origin,16 labeled by n and

at complex conjugate directions θn,±.

Figure 6 illustrates the singularity structure of this Borel transform. In particular, it

makes the structural dependence of these singularities, with respect to the mass parameter,

more evident. In the first and fourth quadrants (positive real part) we have a finite number

of singularities (and thus, of Stokes lines). In fact, only poles which satisfy n < M will be

in these quadrants — all other poles with n > M will be located in the third and fourth

quadrants.

The limit M → 0 makes all poles converge to the negative real axis, to their new

locations sn,± (M = 0) = −1
2An

2. They become double poles, which exactly cancel with

16Naturally, the larger the value of n the further away from the origin the corresponding poles are. Also

note that if M is an integer, two of the Stokes lines will be precisely at θ± = ±π
2

, i.e., in the imaginary

axis.
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Figure 6. Singularities in the complex Borel plane for the N = 2∗ supersymmetric Yang-Mills

theory on S4. There are infinite countable Stokes lines, each with only one pole. In the plot, the

mass parameter was set to M = 3.2, thus only six of the Stokes lines lie in the first and fourth

quadrants (for n = 1, 2, 3).

the double zeros found in the numerator of the Z1-loop factor in (3.53), ensuring that

Z1-loop → 1 as expected for superconformal N = 4 SYM theory.

In the opposite limit, M → +∞, all poles move to infinity.17 Which is the resulting

theory depends on how the coupling gYM is scaled with MR. If the M =∞ limit is taken

with gYM → 0 at the same time, keeping MR e−2π2/g2YM fixed, then the theory flows to pure

N = 2 SYM theory [79]. As will be discussed in section 4, the corresponding perturbative

series is convergent, in consistency with the fact that poles move to infinity. If, on the

other hand, the MR → ∞ limit is taken with fixed gYM, then one just recovers N = 2∗

theory on flat spacetime. In this case, the weak-coupling expansion has a finite radius of

convergence, again in consistency with the fact that the corresponding Borel transform has

no singularities.

We now turn to determining the discontinuities across the existing Stokes lines for fixed

finite M . In order to determine the Stokes discontinuities, we first need to understand the

behavior of the Borel transform around each pole. Akin to before, we find

B[λ3/2Z0](s)
∣∣∣
sn,±

=
1

(s− sn,±)n

+∞∑
`=0

f
(n)
`,±
`!

(s− sn,±)` . (3.59)

17There is also an overall factor e4M
2R2 logMR, which reproduces the expected UV divergence of the

partition function originating from zero modes of the one-loop determinant.
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As in the superconformal case, the Taylor series around sn,±, with coefficients f
(n)
`,± , is

obtained by expanding the product of B[λ3/2Z0](s) with (s− sn,±)n, and thus each pole

will have a different series. Translating this singular structure to the usual “simple rep-

resentative”, the discontinuities of the asymptotic (perturbative) partition function along

each singular direction, θn,±, may be read off immediately. We shall just follow the same

procedure as before. For each Stokes line there is now a single singularity, in which case,

Discθn,± Z0(λ) = −e−
sn,±
λ ∆sn,±Z0(λ) (3.60)

= −e−
sn,±
λ λ−n−

1
2 ∆sn,±

(
λn+ 1

2Z0(λ)
)
, (3.61)

where the alien derivative ∆sn,±

(
λn+1/2Zθ=0

0 (λ)
)

can be read off directly from the behavior

of the Borel transform (in the adequate representative) around the very same singularity,

B[λn+1/2Z0](s)
∣∣∣
sn,±

=
f

(n)
0,±

(−1)n−1 (n−1)!

1

s− sn,±
+
B[ψn,±] (s−sn,±)

2πi
log (s−sn,±) + regular.

(3.62)

Here B[ψn,±] is the Borel transform of ψn,±, given by

ψn,±(λ) =
n−1∑
`=1

2πi f
(n)
`,±

(−1)n−`−1 Γ(n− `) `!
λ`. (3.63)

This function is obviously not resurgent; again it is just a polynomial. This basically

implies that the original Borel transform is meromorphic. It then follows

∆sn,±

(
λn+ 1

2Z0(λ)
)

= ψn,±(λ), (3.64)

and we finally determined the discontinuities across the Stokes lines as

Discθn,± Z0(λ) = −e−
sn,±
λ

n−1∑
`=0

2πi f
(n)
`,±

(−1)n−`−1 Γ(n− `) `!
λ`−n−

1
2 . (3.65)

With all the information gathered above, we can now finish by presenting the expression

describing the resurgent behavior of the asymptotic series Z0(λ) in (3.54), alongside with

large-order numerical checks. First, from (3.65) and (3.54) in the usual dispersion relation,

we find

Z(0)
g '

+∞∑
n=1

n−1∑
`=0

1

Γ(n− `) `!
Γ
(
g + n− `+ 1

2

)
|sn|g+n−`+

1
2

∑
±
f

(n)
`,± eiθn,±(`−g−n− 1

2). (3.66)

In the above expression we use the notation |sn| ≡ |sn,±|, which is the same for both signs.

The leading factorial growth, and next-to-leading exponential growth are very distinguish-

able when g � 1,

Z(0)
g '

Γ
(
g + 3

2

)(
1
2A (1+M2)

)g+ 3
2

(
f

(1)
0,+ e−iθ1,+(g+ 3

2) + f
(1)
0,− e−iθ1,−(g+ 3

2)
)

+O
(

(s2,±)−g−
5
2

)
, (3.67)
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Figure 7. Numerical analysis of the leading large-order behavior of the coefficients Z
(0)
g , for values

of the mass parameter M = 3.2, and A1 = 1
2A
(
1 +M2

)
. On the left, both the numerical value of

these coefficients (the dots) and their predicted analytical behavior (the solid line) are shown. On

the right, we plot the convergence towards 2 cos θ1,+ of a particular combination of the coefficients,

the one given in (3.68), where θ1,+ is the angle associated with the first instanton action s1. The

agreement is excellent.

where the coefficients f
(1)
0,± =

∣∣∣f (1)
0

∣∣∣ e±iθf0 may be found in appendix A, and the angles θ1,±

are given in (3.58). It is the existence of complex “instanton actions” which gives rise to

the oscillatory behavior of the perturbative coefficients, now clearly seen in (3.67) above.

In particular, from a numerical standpoint, for large order g the leading behavior of the

coefficients Z
(0)
g is no longer a series in 1/g, and one cannot use the method of Richard-

son transforms. Nevertheless, one can still perform a numerical check of the predicted

behavior (3.67). The left plot of figure 7 shows the numerical coefficients Z
(0)
g alongside

their predicted behavior (3.67), for values of 2A = (4π)2 and M = 3.2. The right plot of

figure 7 shows the large-order convergence towards the value of 2 cos θ1,+ via a numerical

determination of the combination of ratios

Z
(0)
g+1

Z
(0)
g

1
2A
(
1 +M2

)
g + 3

2

+
Z

(0)
g−1

Z
(0)
g

g + 1
2

1
2A (1 +M2)

' 2 cos θ1,+. (3.68)

In both cases the coincidence between numerical and analytical results is excellent.

One can go one step further in the numerical checks of the predicted resurgent behav-

ior, (3.66). Defining

Z{1}g ≡ Z(0)
g −

Γ
(
g + 3

2

)(
1
2A (1 +M2)

)g+ 3
2

∣∣∣f (1)
0

∣∣∣ (e−iθ1,+(g+ 3
2)+iθf0 + e−iθ1,−(g+ 3

2)−iθf0

)
, (3.69)

it is simple to verify that the large-order behaviour of Z
{1}
g is the exponentially suppressed

“two-instanton” sector, given by

Z{1}g '
Γ
(
g + 5

2

)∣∣A
2 (4 +M2)

∣∣g+ 5
2

∣∣∣f (2)
0

∣∣∣∑
±

e
−iθ2,±(g+ 5

2)±iθf0,2

+
Γ
(
g + 3

2

)∣∣A
2 (4 +M2)

∣∣g+ 3
2

∣∣∣f (2)
1

∣∣∣∑
±

e
−iθ2.±(g+ 3

2)±iθf1,2 . (3.70)
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Figure 8. Numerical analysis of the exponentially subleading large-order behavior of the coefficients

Z
(0)
g , for a value of the mass parameter M = 3.2 and A2 = 1

2A
(
4 +M2

)
, corresponding to the

leading behavior of the redefined coefficients Z
{1}
g . Left and right plots show both the numerical

value of these coefficients (the dots) as well as their analytically predicted large-order behavior (the

solid line), for small and large g, respectively. The agreement is clearly excellent at large order.

The coefficients f
(2)
`,±, with ` = 0, 1, may be found in appendix A. Figure 8 shows the

numerical convergence of the coefficients Z
{1}
g to their analytically predicted behavior,

given in (3.70), for a chosen value of the mass parameter of M = 3.2. As usual, excellent

agreement is evident.

Summing things up, the numerical checks we have performed above provide very clean

and ample evidence that indeed the resurgent structure of the perturbative series associated

with the partition function of N = 2∗ SYM theory, explicitly given by formulae (3.52)

and (3.54), is fully and correctly described by the exact resurgence result we derived, (3.66).

4 Nonperturbative effects and Borel singularities

In conventional quantum field theories, the large-order behavior of perturbation theory is

typically associated with classical solutions involving large fields. The underlying mecha-

nism was first understood by Lipatov [44], who studied simple examples where the asymp-

totic behavior of perturbation theory is controlled by classical solutions (but see also [92]).

In turn, as discussed throughout this paper, these classical solutions imply singularities

in the Borel transform. For Yang-Mills gauge theory in four dimensions, the large-order

behavior was first argued to be controlled by certain complex instantons [93]. The current

understanding is that the precise picture must be more intricate: while instanton solutions

do lead to singularities in the Borel transform, and thus affect the large-order behavior,

other (more dominant) singularities will be present due to renormalons, see, e.g., [2]. These

latter singularities are associated with terms in the operator product expansion (OPE) and

will contribute to the n! behavior of perturbation theory, this time around arising not from

a growing number ∼ n! of Feynman diagrams, but rather from certain n-loop Feynman

diagrams individually contributing as n!.

In the context of our present work, supersymmetric physical observables are given in

terms of analytic formulae, which in particular encapsulate their exact coupling depen-
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dence. This allows for a complete analytic description of the singularities in the complex

Borel plane, as described in detail in previous sections, providing for a clean set-up to

clarify the interplay between large-order behavior and semiclassical field configurations.

In many examples (e.g., [31]) instanton sectors are responsible (at least in part; see [23])

for the asymptotic behavior of the perturbative series; they resurge in the perturbative

series. For the examples considered in this work, one might therefore expect that the

resurgence properties of the perturbative sector could be traced back to these gauge-theory

instanton sectors (given by the Nekrasov equivariant partition function), and that this

would be seen at the level of the Borel transform as having its singularities located at sn =

nA, with A representing the instanton action. In contrast, however, in previous sections

we have seen that resurgence does not mix these different gauge-theory instanton sectors.

Consider, for example, the case of N = 2 superconformal SU(2) Yang-Mills theory.

We found that all Borel singularities lied on the negative real axis, at sn = −(4π)2 n2,

for integer n ≥ 1. On the other hand, the gauge theory instanton action is positive

and real, A = 8π2, and consequently in each topological sector the k-instanton sector is

exponentially suppressed as usual, exp
(
− 2A
g2YM
|k|
)

. One would thus naively expect to find

Borel singularities related to these sectors at multiples of twice the gauge instanton action,

i.e., located at s∗n = n 2A. However, this is not what we have found in our resurgent

analysis. The Borel singularities are not located at positive multiples of the instanton

action (where they would lie on the positive real axis), but instead at negative multiples

of twice this action (on the negative real axis). In particular, we found in (3.33) that the

discontinuity of the perturbative partition function across the Stokes line has the form

Discπ Z0 =

+∞∑
n=1

e
16π2n2

λ λ−4n− 1
2 pn(λ), λ ≡ g2

YM, (4.1)

where pn is a polynomial of degree 4n−1 in g2
YM. Furthermore, we see that not all multiples

of the instanton action appear, as one might expect from a standard theory with multi-

instantons. Instead, only the multiples corresponding to an integer squared, sn = −n2 2A,

appear. One then concludes that the resurgence properties of the perturbative sector (i.e.,

its Borel singularity structure) are not governed by the gauge theory instanton sectors,

but by some other physical effect. What these effects might be is what we shall discuss in

the following.

4.1 Instantons in gauge theories

In the computation of the partition function by supersymmetric localization, instanton

solutions arise by admitting singular field configurations where the gauge field strength is

non-vanishing only at the North or South poles of the four-sphere. Instanton solutions with

F+ = 0 are localized at the North pole, whereas anti-instanton solutions with F− = 0 are

localized at the South pole. In turn, this gives rise to the equivariant instanton partition

function of [74, 75],

Zinst(ia) =

+∞∑
k=0

e2πikτ Zk(ia) ≡
+∞∑
k=0

qk Zk(ia). (4.2)
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An interesting question concerns the convergence properties of this series. In the abelian

U(1) case, for N = 2 SYM theory, it was already shown in [41] that the instanton partition

function is a convergent series (in fact yielding an entire function). On what concerns the

nonabelian case, we have studied this problem for the SU(2) N = 2 SCF theory. The first

few multi-instanton contributions Zk(ia) are listed in table 1 in appendix A, and for fixed

values of a higher instantons can be generated numerically (we have generated terms up

to k = 20). Analyzing ratios of consecutive coefficients in the above series, we find that

the series is not asymptotic; in fact it has non-zero radius of convergence (of order q ∼ 1).

Another example, which can be carried out analytically [41], is that of N = 2∗ U(N) theory

with unphysical mass parameter M = i. In this case one finds

ZN=2∗
inst (ia,M = i) =

+∞∏
n=1

1

(1− qn)N
, (4.3)

which also has finite non-zero radius of convergence |q| = 1.

Returning to the resurgence properties of perturbation series in N = 2 supersymmetric

Yang-Mills theories, the fact that gauge-theory instantons do not imply n! large-order

behavior is more evident in the case of N = 2 pure SU(2) SYM theory, i.e., with no matter

multiplets. It is instructive to describe this case in more detail. The partition function for

N = 2 SU(2) pure SYM is given by

Z
SU(2)
Pure =

128π5/2

g3
YM

∫ +∞

−∞
da a2 e

− 16π2

g2
a2
H2(2a) |Zinst(a)|2 , (4.4)

with

H2(2a) =

+∞∏
n=1

(
1 +

4a2

n2

)2n

and Zinst =

+∞∑
k=0

qk Zk(a). (4.5)

The instanton partition function is understood with equivariant parameters ε1 = ε2 = 1

(recall that we are using units where the radius R of the four-sphere is R = 1). It can be

computed explicitly term by term. In particular [41],

Z1 =
1

2(1 + a2)
, (4.6)

Z2 =
8a2 + 33

(4 + 4a2) (9 + 4a2)2 . (4.7)

Note that the potential pole at a2 = −1 cancels against one of the zeros ofH2(2a). Similarly

for the potential pole at a2 = −9/4. This pattern holds to all orders, and it is ensured by

the structure of the equivariant instanton partition function. Indeed, as observed in [41],

the function Zinst(a; ε1, ε2) has simple poles at

ai − aj = i (n1ε1 + n2ε2) , n1, n2 = 1, 2, 3, . . . , (4.8)

which, for SU(2) gauge theories on the sphere, implies poles at

2a = ±in, n ≡ n1 + n2. (4.9)
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There are exactly n of such poles for n1 = 1, 2, . . . , n − 1, leading to a pole of order n

in Zinst(a) and a pole of order 2n in |Zinst(a)|2. Since the zero of the one-loop factor at

2a = ±in is of order 2n, for pure SU(2) SYM, the poles from the instanton factor are

completely canceled by the zeroes of the one-loop factor.

Consequently, unlike the cases of the N = 2 theories with matter supermultiplets,

which we have studied at length earlier, now the Borel transform has no poles. This implies

that perturbation theory does not have an asymptotic ∼ n! large-order behavior, i.e., that

it is not an asymptotic series. In fact we have numerically found that the perturbation

series for ZSU(2) has a finite non-zero radius of convergence, of order |gYM| < g0
YM with18

g0
YM ∼ 2.8.

Another example exhibiting similar features is massless SQCD, i.e., N = 2 SU(2)

SYM with one fundamental and one antifundamental matter multiplet. Akin to N = 2

pure SYM, this theory is also asymptotically free. The perturbative expansion of the

partition function can be obtained from the expression for the partition function of the

superconformal theory by simply replacing H8(a) in the denominator by H4(a). For the

perturbative part (the k = 0 instanton sector), we find

Z
SU(2)
SQCD

∣∣∣
k=0

=
2√
πα

∫ +∞

0
dt e−t B(αt), α =

g2
YM

16π2
, (4.10)

where the Borel transform is now

B(s) =
√
s

+∞∏
n=1

(
1 + 4s

n2

)2n(
1 + s

n2

)4n =
√
s

+∞∏
n=1

(
1 +

4s

(2n− 1)2

)4n−2

. (4.11)

Compared to the case of theN = 2 SCF theory, the change of power in the denominator has

produced a dramatic effect: all the poles have now canceled against zeroes of the numerator.

What remains has no singularities in the complex plane. As a result, perturbation theory

again has a finite non-zero radius of convergence.

In conclusion, despite these theories containing instanton solutions there is no associ-

ated asymptotic growth ∼ n! in the perturbative coefficients. More generally, it is easy to

see that in any N = 2 SYM theory with gauge group SU(2) or U(2) and arbitrary matter

content — including cases where perturbation theory exhibits n! large-order behavior —

resurgence never mixes the perturbative series with instanton sectors of non-zero instanton

number. We expect that this result extends to any gauge group, for similar considerations.

The reason that gauge theoretic instantons do not imply n! large-order behavior of the

perturbative expansion is most likely N = 2 supersymmetry. For pure SYM, N = 2 su-

persymmetry seems to ensure a massive cancellation of the n! Feynman diagrams that one

can draw at n-loop order in the gauge theory.

On the other hand, for N = 2 theories on S4 with general matter content, more Feyn-

man diagrams are added. The n! large-order behavior of the perturbative series indicates

18The same considerations apply for the vev of the 1
2
BPS circular Wilson loop operator, obtained by

insertion of e2πa in the integrand. It is easy to see that the convergence properties of the perturbative series

are the same as for the partition function.
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that there are ∼ O(n!) surviving Feynman diagrams, notwithstanding theN = 2 supersym-

metry. This diagrammatic argument is also explaining why the resurgence triangle of our

N = 2 theories is somewhat in-between the bosonic and the supersymmetric resurgence

triangles of [21]. Different gauge-theoretic nonperturbative sectors are classified accord-

ing to their instanton number and topological charge (k, k′), respectively (recall (3.11)

and (3.12)). From a resurgence viewpoint, these sectors are neatly organized into the

so-called resurgence triangle [21], as

(0, 0)

(1, 1) (1,−1)

(2, 2) (2,−2)(2, 0)

(3, 3) (3,−3)(3, 1) (3,−1)

(4, 4) (4,−4)(4, 2) (4, 0) (4,−2)

· · · · · · · · · · · · (4.12)

where the resurgence mixing (and any nonperturbative ambiguities cancelation) occurs

only at fixed topological charge, i.e., along the columns of the above triangle (the solid

arrows). For the flat-space two-dimensional extended supersymmetric theories considered

in [21], this triangle becomes almost trivial as many sectors do not exist,

(0, 0)

(1, 1) (1,−1)

(2, 2) (2,−2)×

(3, 3) (3,−3)× ×

· · · · · · · · · (4.13)

But for the N = 2 theories on the compact four-sphere S4 we consider in this paper, these

sectors are still there. One could thus be tempted to write a resurgence triangle similar

to the “bosonic” triangle above, in (4.12). However, it is still the case that supersymme-

try/localization ensure that resurgence only acts inside each fixed gauge-theoretic instanton

and topological sector as

(k, k′)
(4.14)

This essentially means that the resurgence triangle is actually simplified even further, albeit

in a different fashion to what occurred in (4.13): the triangular structure is of course still
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there, but resurgence only acts within each sector. The discontinuities in the partition

function further show that there still is an underlying resurgence triangle, but now mixing

sectors with weights exp
(
n2

α

)
. One basic question still remains: if not gauge theory

instantons, what are the classical field configurations associated with the n! large-order

behavior?

4.2 Resurgence of “instantons”

In the gauge theories discussed herein, the discontinuities associated with the n! large-order

behavior of perturbation theory are of the form of an exponential of a classical action.

Thus, a natural question is whether this n! behavior is associated with any semiclassical

field configuration.

As stressed earlier, the n! large-order behavior of perturbation theory cannot be pro-

duced by renormalons, since they do not show up in theories with vanishing β-functions.

Therefore, the n! behavior of the perturbative series in the N = 2 SCF theory and in the

N = 2∗ theory must indeed be due to the fact that there are approximately n! Feynman

diagrams contributing at the nth loop order, as argued long ago by Dyson [94]. Moreover,

in specific examples with non-vanishing β-function, such as the pure N = 2 SYM or SQCD

discussed above, perturbation theory does not exhibit n! growth behavior. This suggests

that renormalons do not contribute to 1
2BPS supersymmetric observables in any N = 2

supersymmetric gauge theory.

To understand the physical origin of the singularities in the complex Borel plane, it is

useful to recall the structure of the one-loop determinant within the localization procedure.

Schematically, fluctuations from the fields associated with vector and hyper multiplets, in

a representation W , appear at the Lagrangian level as

Lvec
fluct ∼ ΦV

(
∇2 + (α · a)2

)
ΦV, (4.15)

Lhyper
fluct ∼ ΦH

(
∇2 + ((w · a)±M)2

)
ΦH, (4.16)

where α runs over all roots of the Cartan subalgebra h of the gauge group, w runs over

the weights of W and a ∈ h represents the vev of the scalar of the vector multiplet. The

differential operator ∇2 is the Laplacian on S4 (its eigenvalues given by spin eigenvalues

of spherical harmonics), and M represents the mass of the matter multiplets. In this case

one finds

Z1-loop ∝
∏
αH (iα · a)∏

wH (iw · a+ iM) H (iw · a− iM)
, (4.17)

where the numerator originates from the vector multiplet and the denominator from the

hypermultiplet. In particular, for the N = 2 superconformal theory,

Z1-loop =
+∞∏
n=1

(
1 + 4a2

n2

)2n

(
1 + a2

n2

)8n . (4.18)

The poles in this expression thus correspond to points in the Coulomb branch of the moduli

space where a given hypermultiplet fluctuation becomes a zero mode. Viewing the matrix
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theory as a Kaluza-Klein reduction to zero dimensions, these are points in the moduli space

where a given Kaluza-Klein excitation becomes a zero mode of the determinant. Restoring

the dependence on the four-sphere radius, R, this occurs when

N = 2 SCF : a2 +
n2

R2
= 0, (4.19)

N = 2∗ : (a±M)2 +
n2

R2
= 0. (4.20)

The first term in each equation represents the mass of the hypermultiplet in a vacuum

labelled by a1 = −a2 = a. The second term is the contribution from the angular part

of the Laplacian. The zero modes thus appear on the imaginary axis of a. It should be

noticed that the integral defining the partition function is convergent, due to the fact that

one deliberately chooses the integration contour over real a. As a result, singularities do

not lie on the integration region and the Gaussian factor renders the integral convergent at

infinity. The fact that there are no singularities in the integration region is also underlying

the Borel summability of the perturbative series.

An important question is whether the singularities described by (4.19) and (4.20) are

a consequence of the infrared regularization provided by the four-sphere. In particular, one

would like to know if the Borel transform also has the same singularities for the theory on

flat spacetime. To address this question, we must separate conformal and non-conformal

theories. Recall that for the superconformal theories the partition function is independent

of the radius of the sphere. In particular, the perturbation series with n! large-order

behavior that one computes at finite radius is exactly the same, term by term, to the one

obtained by computing Feynman diagrams on flat spacetime with an appropriate infrared

regularization (some explicit calculations can be found in, e.g., [95–97]). The four-sphere

can simply be viewed as a gauge invariant, supersymmetric infrared regularization which

does not affect the calculation of observables.

In a non-conformal theory, observables depend upon the radius of S4. This means that

the large-order behavior of the perturbative series for the theory on the four-sphere can

be potentially different from the behavior of the perturbative series for the theory on R4.

The precise form of the perturbative expansion at large R depends on the precise way in

which the decompactification limit is taken. In N = 2∗ SU(N) SYM theory, the partition

function depends only on the dimensionless combination MR. Therefore, taking R → ∞
at fixed M is equivalent to taking M → ∞ at fixed R. The latter limit is known [41, 79]

to decouple the matter hypermultiplets provided we take at the same time the coupling

g2
YM → 0, keeping fixed

4π2

g2
YM,ren

=
4π2

g2
YM

−N logMR. (4.21)

In this case the theory flows to pure SYM which, as shown above, has a perturbative

series with finite non-zero radius of convergence. Thus the Borel singularities disappear in

this case.

On the other hand, if it is the R → ∞ limit which is taken, at fixed coupling g2
YM,

one obtains the N = 2∗ theory on flat space [86]. This can be seen explicitly by using the
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asymptotic expansion of the Barnes G-function

logG(1 + z) ≈ z2

2
log z (4.22)

(in using this expression, the zeroes of the Barnes G-function disappear). This gives rise to

the different terms in the one-loop effective action, which on flat R4 space are proportional

to m2R2 logm2R2, for a field of mass m and an infrared cutoff 1/R. The mass runs over

the mass spectrum of the theory

mv
ij = |ai − aj | , (4.23)

mh
ij = |ai − aj ±M | . (4.24)

Then the integrand of the zero-instanton part of the partition function for the SU(N)

N = 2∗ theory becomes exp (−Seff[a]), with

Seff[a]

R2
=

8π2

g2
YM

∑
i

a2
i −

∑
i 6=j

{
1

4
(ai − aj +M)2 log (ai − aj +M)2R2+ (4.25)

+
1

4
(ai − aj −M)2 log (ai − aj −M)2R2 − 1

2
(ai − aj)2 log (ai − aj)2R2

}
.

The first term originates from the coupling of the scalar Φ to the curvature of the sphere

S4, and it scales in the same way with the radius as the one-loop terms. Thus, in the

decompactification limit the singularities of the integrand disappear. In agreement with

this, it was shown in [86, 87] that the large N partition function has a weak coupling

expansion in powers of exp
(
− 8π2

Ng2YM

)
, with finite radius of convergence.

Let us now discuss the semiclassical field configurations associated with the n! large-

order behavior of the perturbative series for the N = 2 SCF theory. Specifically, one would

like to identify the semiclassical field configurations that contribute to the discontinuities

across the Stokes lines. In the localized partition function, where all classical gauge fields

are set to zero and the scalar of the vector multiplet is set to Φ = diag (a1, . . . , aN ), the

field configurations which contribute to the discontinuities are not manifest, but encrypted

in the matrix integral. For SU(2), after localization, we end up with an effective action

for the constant part of the scalar field and the Coleman-Weinberg one-loop potential of

the theory. The one-loop potential incorporates the effects of integrating out all physical

fluctuations of the theory. We write

Z ∼
∫

da exp (−V (a)) , (4.26)

with

V (a) =
a2

α
− 2 log a−

+∞∑
n=1

n log

(
1 +

4a2

n2

)2

+
+∞∑
n=1

n log

(
1 +

a2

n2

)8

(4.27)

and α ≡ g2
YM/16π2. The saddle-point equation is V ′(a) = 0. This has an infinite number

of solutions, which for α� 1 get close to the singular points. They are of the form

a2
n ≈ −n2 − 4nα, a2

m ≈ −
(
m+

1

2

)2

+ 4α

(
m+

1

2

)
. (4.28)
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For α � 1, the an lie slightly off the poles on the imaginary axis. The saddle-point

evaluation of Z then gives

Z ∼ e
n2

α
n4ne4n

(4α)4n+ 1
2

(1 +O(α)) . (4.29)

Thus, by deforming the contour of integration, upon crossing a pole one picks the disconti-

nuity (4.29). This is in precise agreement with the leading term in (4.1), showing that the

discontinuities can indeed be interpreted in terms of semiclassical values for the vacuum

expectation values for the scalar field of the vector multiplet. On the other hand, the a2
m

lie near the zeroes of the Borel transform and give an irrelevant subleading contribution

α4m+ 1
2 e

m2

α .

Finally, note that here we have only explored semiclassical solutions of the one-loop

effective action for the vev of the scalar field, and shown that these solutions effectively

account for the discontinuities. It would be extremely interesting to identify non-trivial

(possibly complex) classical field configurations in the non-localized theory, which have

classical action proportional to −n2/α, with integer n (and classify them in terms of a

topological number). We will not attempt this in this work, but leave it as an open

problem for future research.

The analysis for the case of ABJM is very similar, so we omit the derivation. The

basic idea is as follows. Start with expression (2.38) for the ABJM partition function. The

discontinuities in the Borel transform are related to residues at the double poles of the factor

tanh2 u in this partition function, upon the imaginary axis. There is an infinite set of saddle-

points lying near these poles. They can be found by expanding the factor 1/ sinh(πuk) in

the partition function in terms of exponential functions. In turn, this produces a double

sum: a sum over saddles, and the series expansion of 1/ sinh(πuk) reproducing the second

term within parenthesis of Discθ±ZABJM

(
S3
)

(k) in (2.54) (this is the leading term at

large `,m where the saddle-point approximation applies). One can then trace back the

origin of the discontinuities to the original formula for the partition function. The poles of

tanh2 u come from zero modes of the one-loop determinant for the bifundamental matter

fluctuations, that occur at specific values of the eigenvalues. In the original, non-localized

action, presumably these saddle-points correspond to nonperturbative field configurations

describing monopole instantons.19

5 Comments and outlook

In this work we began the study of the resurgence properties of the partition function

(and free energy) in examples of supersymmetric field theories where exact analytic results

are known. This allows for precise tests of resurgence properties in the context of gauge

theories. Concretely, we investigated the resurgence properties of the 1/N expansion of

Chern-Simons gauge theory on lens spaces, and weak-coupling expansions in ABJM gauge

19For U(2)k×U(2)−k ABJM theory on flat spacetime, a family of BPS monopole instanton solutions was

found in [98]. It would be very interesting to find the corresponding solutions on the three-sphere, where

the vacuum degeneracy of the moduli space is lifted.
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theory on S3, N = 2 superconformal Yang-Mills theory on S4, and N = 2∗ supersymmetric

Yang-Mills theory also on S4.

All our examples produced asymptotic perturbative expansions, with coefficients which

grew factorially fast. The study of the many different asymptotic series at hand always

led to associated Borel transforms which turned out to be meromorphic functions. This

is an important point as it was the key element which allowed us to perform exact calcu-

lations from an analytical standpoint. Usually, the Borel surface may be a very intricate

Riemann surface with many branch cuts. But in the meromorphic case the Borel surface

is essentially the complex plane, turning the resurgent algebra “abelian”, in the sense that

all resurgence formulae may be computed exactly. In particular, although obviously start-

ing off with asymptotic perturbative series, the remaining (would-be) “resurgent” series

around the nonperturbative exponential sectors were always found to have a finite number

of terms. This is naturally associated with the meromorphicity of the Borel transform, and

in particular it implies that the “instantons” have trivial large-order behavior. Nontrivial

resurgence would require finding an asymptotic series in front of the log branch-cut of the

Borel transform (with this asymptotic series representing another sector, which would be

“mixing” or “resurging” with the one of the Borel transform under consideration). This

occurs in examples with a “nonabelian” branched structure for the Borel surface, see,

e.g., [31, 34, 40].

In our four-dimensional examples, N = 2 superconformal and N = 2∗ supersymmetric

Yang-Mills theories, there is never any mixing of the perturbative series with gauge-theory

instantons described by the different sectors in the Nekrasov equivariant partition func-

tion. In these cases, the perturbative expansion of the partition function corresponds to

the zero-instanton sector of the Nekrasov partition function in the integrand. Of course

the total partition function includes higher (exponentially suppressed) instanton sectors,

and loop expansions around each of these sectors will also lead to asymptotic series. At

first, one would think that all these asymptotic series would relate to each other via resur-

gence. But what we have found is that resurgence acts within each sector alone. Each

of these nonperturbative sectors has its own resurgence properties, described by their own

meromorphic Borel transform. Thus, at fixed rank and small gauge coupling, there seems

to be no resurgent mixing between different sectors of Nekrasov instantons (in principle,

there could be some mixing if the Borel transform had poles on the positive real axes at

specific points, but this is not the case). One of the lessons of the examples examined in

this paper is that the perturbative series does not always permit the reconstruction of all

nonperturbative effects, i.e., in the present case of N = 2 theories it does not allow for a

reconstruction of sectors computed around higher Nekrasov instantons.

Let us summarize the location and nature of the Borel singularities we found:

• Chern-Simons localized on lens spaces: we addressed the 1/N expansion for the free

energy, and found a countable infinity of Stokes lines (condensing closer to the real

axis, and reflective symmetric with respect to both real and imaginary axes). The

Borel singularities along these lines consisted of first and second order poles.

– 44 –



J
H
E
P
0
3
(
2
0
1
5
)
1
7
2

• U(2) × U(2) ABJM on S3: we addressed the perturbative (large level) expansion of

the partition function. We found two Stokes lines, positive and negative imaginary

axis, with the Borel singularities consisting of first and second order poles.

• N = 2 superconformal Yang-Mills on S4: at fixed rank N = 2, we addressed the

partition function at small gauge coupling, gYM. We found a single Stokes line, along

the negative real axis. The Borel singularities consisted of poles of different order,

with an increasing distance between consecutive poles.

• N = 2∗ supersymmetric Yang-Mills on S4: again, at fixed rank N = 2, we addressed

the partition function at small gauge coupling, gYM. This time around we found a

countable infinity of Stokes lines, whose direction depended upon the mass parameter

of this theory. Each Stokes line only had one singularity, a pole whose order was found

to be higher the closer the Stokes line was to the negative real axis.

Along the way we produced many (analytical) resurgence formulae, for Stokes discon-

tinuities and (exact) large-order relations. These formulae may be checked numerically

against the perturbative expansions themselves, and we found very precise and ample

agreement between the analytical resurgent analysis and the numerical large-order results,

up to “three-instantons” level. We have also discussed the semiclassical, physical origin of

the many Borel singularities we found. Their origin lies in zero modes within the one-loop

determinant, that appear at certain complex values of the vacuum expectation values of

the scalar field. At these points in the moduli space there is a cancellation between the

squared mass of the hypermultiplet fluctuation in the vev background and the contribution

n2/R2 coming from the Laplacian on S4. For the U(2) × U(2) ABJM model on S3, Borel

singularities again occur due to the appearance of zero modes, this time associated with

fluctuations of bifundamental matter.

One natural extension of the results in this work is to consider other localizable observ-

ables. For example, it would be of great interest to extend the resurgent analysis to Wilson

loops in gauge theories, both in three dimensions, Chern-Simons and ABJM, or in four

dimensions in N = 2 gauge theories; for instance Wilson loops with less supersymmetry

in N = 4 supersymmetric Yang-Mills theory on S4 [99], or within ABJM theory following

the results in [100].

Within the four-dimensional realm there are many other theories which are worth to

explore, in particular N = 2 gauge theories with different matter contents and differ-

ent gauge structures, including quivers. It would be very interesting to investigate how

changing the amount of matter (and eventually of supersymmetry) would interplay with

the asymptotic and resurgence properties of specific observables. Examples were given in

section 4, were it was shown that both N = 2 pure SYM and N = 2 SQCD with one

fundamental and one antifundamental hyper have a perturbation series for the partition

function with finite non-zero radius of convergence.

In general, finding exact expressions for gauge theoretic observables (in all of their

parameters, coupling constants and rank of the gauge group) is a very ambitious goal.

However, due to lack of integrability in generic gauge theories, many observables are only
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accessible via their (different) asymptotic expansions. Resurgence and transseries thus

open a door into understanding nonperturbative phenomena in broad classes of theories:

while closed-form expressions may not be available, and the asymptotic series at hand may

not even be Borel summable, resurgent transseries allow for proper resummations (e.g., the

median resummation recently discussed in [46]) and for adequate nonperturbative defini-

tions of observables starting out with perturbation theory. Obtaining resurgent transseries

descriptions of many gauge theoretic observables may be a key step in the study of di-

verse dualities and of many other fascinating nonperturbative phenomena inside gauge and

field theories.
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A Analytical data for large-order asymptotics

In this appendix we present the analytical data which was required for the expansions of

the Borel transforms we computed in the main body of this paper; for the case of N = 2

superconformal Yang-Mills theory in section 3.2, and for the case ofN = 2∗ supersymmetric

Yang-Mills theory in section 3.3. For the former, we first present the rational functions

arising from the Nekrasov instanton partition functions in table 1, which are required

throughout the analysis. Then, we present in table 2 the Laurent coefficients required for

describing the singular behavior of the Borel transform of the perturbative series, which

appears in (3.25). The subsequent Laurent coefficients for the Borel transforms of one

and two instanton sectors, appearing in (3.49), are presented in table 3. In table 4 we

then turn to the latter case of N = 2∗ supersymmetric Yang-Mills theory, presenting the

respective Laurent coefficients for describing the singular behavior of the Borel transform

of the perturbative series, appearing in (3.59).
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k Zk (ia)

0 1

1 1
2

(
a2 − 3

)
2 8a8+a6−91a4−60a2+132

4(4a2+9)2

3
(a2−1)(8a8+11a6−90a4−207a2−90)

24(4a2+9)2

4 256a16+3776a14+13836a12−30881a10−277915a8−491643a6−33525a4+569160a2+330480
384(4a2+9)2(4a2+25)2

5
(a2+1)(256a16+4416a14+22460a12−9485a10−420951a8−1240351a6−876825a4+1285800a2+1652400)

3840(4a2+9)2(4a2+25)2

6

1
23040(4a2+9)2(4a2+25)4(4a2+49)2

(
32768a28 + 1978368a26 + 51087872a24+

+732417088a22 + 6242760464a20 + 29889128428a18 + 44014800773a16

−371126428388a14 − 2708497959742a12 − 8452958293056a10 − 13389026503795a8

−6268361042400a6 + 12446978984100a4 + 20072072714400a2 + 8724701160000
)

7

3+a2

322560(4a2+9)2(4a2+25)4(4a2+49)2

(
32768a28 + 2101248a26 + 58196480a24+

+905593024a22 + 8524396016a20 + 46808453524a18 + 102391212911a16

−457776318917a14 − 4531662127960a12 − 16676922708654a10 − 31270664940265a8

−21220269432225a6 + 24481569794850a4 + 52656021280800a2 + 26358049620000
)

8

1
20643840(4a2+9)2(4a2+25)4(4a2+49)2(4a2+81)2

(
2097152a36 + 243269632a34 + 12587302912a32

+384342622208a30 + 7707957613056a28 + 106562568185856a26 + 1029641436380928a24

+6778934872979664a22 + 26832406593705870a20 + 20713659134020547a18

−478489859018087120a16 − 3408622894238047142a14 − 12496805889021145798a12

−27452324916541292565a10 − 32182941054844974000a8 − 3206638500090973200a6

+45064330148340720000a4 + 56461877336011392000a2 + 23000296271500800000
)

Table 1. Nekrasov instanton partition functions [74, 78], for k = 0, 1, 2, 3, 4, 5, 6, 7, 8 instantons.
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f
(n)
` n

1 2 3

0 134217728iπ17/2 26834iπ33/2 29132554iπ49/2

1 46137344iπ13/2 −26133127iπ29/2 −28632353479iπ45/2

2 12058624iπ9/2 2543371677iπ25/2 28332152717559iπ41/2

3 196608iπ5/2 (2ζ(3)−11) 24732iπ21/2 (13824ζ(3)−458585) 2783235iπ37/2 (3000ζ(3)−264191)

4 - −2433iπ17/2 (862272ζ(3)−4669063) −270319iπ33/2 (410616000ζ(3)−6974481067)

5 - 23815iπ13/2 (3933792ζ(3)+62208ζ(5)−5133935) 2653175iπ29/2 (17979580800ζ(3)+116640000ζ(5)−91647354373)

6 -
235325iπ9/2 (96ζ(3) (864ζ(3)−53533)−

−316224ζ(5)+1793831)

2613155iπ25/2 (12960ζ(3) (648000ζ(3)−111026707)−
−32939136000ζ(5)+2657114966989)

7 -
−2313235iπ5/2

(
423360ζ(3)2−4198228ζ(3)−

−701568ζ(5)−11664ζ(7)+368031)

−25631335iπ21/2 (1296ζ(3) (611064000ζ(3)−20098385161)−
− 25 (57049183872ζ(5)+377913600ζ(7)−761757221755))

` 8 - -

25031135iπ17/2 (10368ζ(3) (53024576400ζ(3)+699840000ζ(5))−
−5392800794086272ζ(3)−600805335536640ζ(5)−
−14084839872000ζ(7)+1608834024697183)

9 - -

24531135iπ13/2 (1492992ζ(3) (45ζ(3) (864000ζ(3)−215951329))−
−1492992ζ(3) (453843000ζ(5)−34245118364)+10706745108367872ζ(5)

−6109832556501749+602668643673600ζ(7)+4283020800000ζ(9))

10 - -

−24339527iπ9/2 (3911863299995520ζ(7)+98723629440000ζ(9)+

+11664
(
116391168000ζ(3)3−5557270743648ζ(3)2−2099520000ζ(5)2

)
+

+11664 (ζ(3)(−623016748800ζ(5)−4199040000ζ(7)+7662317088271))+

+33979972678509312ζ(5)−3967112417729327)

11 - -

237375277iπ5/2 (629055664909144704ζ(5)+137112357991560192ζ(7)−
−12708681666562711+4299816960 (546750ζ(5)−384051611) ζ(3)2+

+1944
(
60039590860800ζ(3)3−2329627392000ζ(5)2

)
+

−1944ζ(3)(194693650375680ζ(5)+4657155264000ζ(7)−469564295444861)

+8345808670464000ζ(9)+63262736640000ζ(11))

Table 2. Coefficients f
(n)
` of the Laurent expansion of the Borel transform for the perturbative series, given in (3.25), near each of the pole

singularities sn = −n22A = − (4πn)
2
, with n = 1, 2, 3.

–
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f
(n)[k]
` k = 1 k = 2

n = 1 n = 2 n = 1 n = 2

0 229iπ17/2 2663472iπ33/2 22736

54
iπ17/2 2683854

74
iπ33/2

1 −2263iπ13/2 −259336559iπ29/2 − 22434157
55

iπ13/2 − 261375225057
75

iπ29/2

2 218229iπ9/2 25233261043iπ25/2 21632132233
55

iπ9/2 25436567196937
76

iπ25/2

3 2133iπ5/2 (64ζ(3)−547) 24532iπ21/2 (677376ζ(3)− 27393881)
21132

56
iπ5/2 (388800ζ(3)−
−6308041)

2473652

77
iπ21/2 (118540800ζ(3)− 6120082807)

` 4 - −24121iπ17/2 (6367680ζ(3)− 44274409) - − 24335

77
iπ17/2 (208828670400ζ(3)−1950646403753)

5 -
236335iπ13/2 (24136800ζ(3)+338688ζ(5)−

−43700291)
-

238345
78

iπ13/2 (23194962457632ζ(3)+

+280052640000ζ(5)− 60462377285165)

6 -

233325iπ9/2
(
4064256ζ(3)2−

−308616864ζ(3)−
−16365888ζ(5) + 169110935)

-

236345
79

iπ9/2
(
3920736960000ζ(3)2−

−382275476863056ζ(3)

−16930582351200ζ(5) + 332351429558641)

7 -

−2313235iπ9/2
(
5476464ζ(3)2−

−70398829ζ(3)− 9716544ζ(5)−
−142884ζ(7) + 12070272)

-

− 231335
710

iπ5/2 (36395461881533161+

+259308ζ(3) (25686838800ζ(3)− 447803368031)

−12858187028787072ζ(5)−162097968690000ζ(7))

Table 3. Coefficients f
(n)[k]
` of the Laurent expansion of the Borel transform for the perturbative expansions around each instanton sector k = 1, 2,

given in (3.49), and near each of the pole singularities sn = −n22A = − (4πn)
2
, with n = 1, 2.
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f
(n)
`,± n

1 2

`=0 ± 32i e2M
2(1+γ) (M ± i)2 π

5
2
G(2∓iM)2G(±iM)2

G(2∓2iM)G(±2iM)
256 e2M

2(1+γ) (M ± 2i)3 π
9
2
G(3∓iM)2G(−1±iM)2

G(3∓2iM)G(−1±2iM)

`=1 –

− 64 e2M
2(1+γ) (M ± 2i)π

5
2
G(3∓iM)2G(−1±iM)2

G(3∓2iM)G(−1±2iM)
×

× (5∓ 3M i− 2 (2∓M i) γ

+ (M ± 2i)2 (ψ (3∓ iM) + ψ (−1± iM))

+ (M ± 2i)(M ± i) (ψ (3∓ 2iM) + ψ (−1± 2iM)))

Table 4. Coefficients f
(n)
`,± of the Laurent expansion of the Borel transform for the perturbative

series given in (3.59), near each of the pole singularities sn,±(M) given in (3.57), with n = 1, 2.
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[18] G. Başar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic

continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].
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