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Abstract

We make an attempt to map the integrable boundary conditions for 2 dimensional non-
linear O(N) σ-models. We do it at various levels: classically, by demanding the existence
of infinitely many conserved local charges and also by constructing the double row transfer
matrix from the Lax connection, which leads to the spectral curve formulation of the problem;
at the quantum level, we describe the solutions of the boundary Yang-Baxter equation and
derive the Bethe-Yang equations. We then show how to connect the thermodynamic limit of
the boundary Bethe-Yang equations to the spectral curve.

1 Introduction
Integrable quantum field theories are useful toy examples of particle physics. Their popularity is
due to the fact that many physical quantities can be calculated exactly and, despite their simplicity,
they exhibit phenomena relevant for QCD. In particular, 2 dimensional (2D) O(N) σ-models are
asymptotically free in perturbation theory and their classical conformal invariance is broken by a
dynamically generated mass scale Λ. Massive excitations form the vector multiplet of the O(N)
group with factorized scattering [1], which makes possible to calculate the relation between the
mass m and the parameter Λ [2].

The O(N) σ-models are also relevant from the AdS/CFT point of view. In a large class of
integrable string σ-models strings propagate on the product of an anti-de Sitter space and spheres
Sn [3]. Light-cone gauge fixed string theories on the sphere part are described classically by the
O(N) σ-models. In the string theory applications we are often interested in open strings, strings
ending on some D-brane submanifolds of SN [4]. This translates to O(N) models with boundaries,
and an important question is to classify those boundary conditions which maintain integrability.
This is the motivation of our work.

Interestingly, there are not many papers analyzing integrable boundary conditions for O(N)
models. Soon after the seminal paper of Ghoshal and Zamolodchikov on integrable boundaries [5]
Ghoshal determined the solutions of the boundary Yang-Baxter equation (BYBE) in the O(N)
σ-models with diagonal reflections having O(N) and O(N − 1) symmetries [6]. These reflec-
tion factors correspond to free and fixed boundary conditions for the fundamental fields. Later
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Corrigan and Sheng established the classical integrability of the free boundary condition by con-
structing infinitely many conserved charges via the Lax connection [7]. They also found a new
(field dependent) boundary condition in the O(3) model. Using the boundary generalizations of
the Goldschmidt-Witten argument, Moriconi and de Martino [8] indicated that free and fixed
boundary conditions can be quantum integrable and even extended the result for a mixture of
free and fixed boundary conditions (for the boundary value of the fundamental field). Later Mori-
coni analyzed systematically the boundary conditions of the O(N) models [9, 10]. He identified
new types of integrable boundary conditions, which can be implemented by adding a quadratic
boundary potential including the time derivative of the fundamental field to the Lagrangian. He
managed to transform the O(3) boundary condition found by Corrigan and Sheng to his class.
These boundary conditions can be represented by an antisymmetric matrix, which can be brought
into a 2 by 2 block-diagonal form. Thus they break the O(N) symmetry to the products of O(2)s.
He then searched for the quantum analogues of this new class of boundary conditions and found
a few non-diagonal representatives only. Namely only with a single block and Dirichlet bound-
ary conditions, or in O(2N) models with all 2 by 2 block being the same. This classification
was confirmed and extended in the O(4) case to a two parameter family of reflection factors in
[11]. It was argued in [12] that the non-diagonal boundary conditions does not have a consistent
Hamiltonian description, although, as we will show the constraint was not properly implemented
in the Lagrangian description. The open boundary integrability in the string theory, relevant for
the O(N) models, was analyzed in [13, 14, 15]. It seemed from the investigations that not all
combinations of free and fixed boundary conditions are compatible with Lax integrability. Similar
conclusion was drawn by investigating integrable boundary conditions in coset theories [16, 17].
The aim of our paper is to investigate the integrability of boundary conditions at various levels:
Lagrangian, Lax, quantum, trying to map them as completely as possible and to establish their
relations.

The rest of this paper is organized as follows: In section 2 we analyze the integrability at the
classical level. We start by reviewing the construction of conserved charges in the periodic case.
We use three different descriptions: in the first we use the stereographically projected coordinates
on SN−1, in the second we use the embedding coordinates in RN ⊃ SN−1, while in the third
we consider the sphere SN−1 as a coset SO(N)

SO(N−1) theory. In the second part of section 2 we use
these descriptions to map the integrable boundary conditions in the model, while also showing
the equivalence of the various descriptions. At the end of this section we formulate the boundary
integrability at the language of the Lax connection. We construct the double row transfer matrix
and use its eigenvalues to define the spectral curve. We analyze the analytical and symmetry
properties of this curve, which provides an alternative way to find and classify classical solutions
and also helps in quantizing the model. We close the section by explicitly constructing the spectral
curve of some rotating string solutions in the O(4) model. Section 3 is devoted to the quantum
theory. Integrable boundary conditions at the quantum level are charachterized by reflection
matrices, which solve the boundary Yang-Baxter equations and satisfy unitarity and boundary
crossing unitarity. We systematically describe these reflection matrices and use them to derive
the Bethe-Yang equations, which provide the asymptotic spectrum on a large interval. At the end
of the section we calculate the classical limit of the spectrum for two boundary conditions in the
O(4) model and reproduce the classical spectral curve. We conclude in section 4, while technical
details are relegated to two appendices.

2 Classical integrability
In this section we investigate the classical integrability of the O(N) σ-model in the presence of
boundaries. We start by introducing three different descriptions in the bulk theory, then following
the same descriptions for the theory with boundaries.
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2.1 Bulk formulations
Here we recall the bulk formulations using unconstrained and constrained variables on the sphere.
We finish by regarding the sphere as a coset.

2.1.1 Unconstrained fields

The O(N) σ-model is a 2D field theory of a variable which lives on an N − 1-dimensional sphere.
This sphere is naturally given by the unit sphere in RN and can be projected stereographically onto
the hyperplane passing through the origin. Let us denote the corresponding projected coordinates
by ~ξ = (ξ1, . . . , ξN−1). The Lagrangian of the model is given by

L = 4
∂α~ξ · ∂α~ξ
(1 + ξ2)2

; ξ2 = ~ξ · ~ξ , (1)

with the metric being the pullback of the flat metric in RN . Variation of the action gives the
equations of motion:

∂µ∂
µξj − 4 ∂µξj ~ξ · ∂µ~ξ − 2ξj ∂µ~ξ · ∂µ~ξ

1 + ξ2
= 0. (2)

The model has an explicit O(N − 1) symmetry, as the currents

J ijα =
4

(1 + ξ2)2
(ξi∂αξ

j − ξj∂αξi) (3)

are conserved on shell. In fact, the model has an implicit O(N) symmetry. The extra conserved
symmetry currents are

J iNα = −JNiα = − 2

(1 + ξ2)2
(2ξi~ξ · ∂α~ξ + (1− ξ2)∂αξ

i), (4)

and correspond to the infinitesimal transformations

ξj = ξj + ε(2ξjξi + (1− ξ2)δij), j = 1, . . . , N − 1 .

These transformations change ξ2 by δξ2 = 2εξi(1 + ξ2).
The energy-momentum tensor of the model is traceless, and its lightcone components are

T++ =
4

(1 + ξ2)2

∑
i

(∂+ξ
i)2 = −

N∑
I,J=1

JIJ+ JJI+ ,

and similarly for T−−. Here we introduced light-cone coordinates σ± ≡ 1
2 (τ ± σ) and ∂± ≡ ∂τ±∂σ.

Conservation of the currents implies that

∂−T++ = 0→ T++(σ+) ; ∂+T−− = 0→ T−−(σ−).

Thus, σ-models are classically conformal and possess infinitely many conservation laws:

∂−T
k
++ = 0 ; ∂+T

k
−− = 0 ; k > 2. (5)

Indeed, the conserved currents associated to the spin ±s charges Q±s must satisfy

∂−T
(s+1) = ∂+Θ(s−1) ; ∂−T̄

(s+1) = ∂+Θ̄(s−1) (6)
Thus choosing T (2s) = T k++, Θ(2s−2) = 0 and T̄ (2s) = T k−−, Θ̄(2s−2) = 0 leads to conserved higher
spin charges

Q2k−1 =

ˆ
T k++(σ, τ)dσ ; Q−2k+1 =

ˆ
T k−−(σ, τ)dσ ; k > 1 (7)

which are algebraically independent of the stress tensor (whose charges are given by k = 1). In
the O(N) σ-models there are higher polynomial expressions of the currents leading to higher spin
conserved charges [18]. They are related to Casimirs of the O(N) group and form a Poisson
commuting set. In this paper we do not study the Poisson structure and focus only on the charges
related to the conformality of the model, i.e. to T k±±.
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2.1.2 Constrained fields

To make the full O(N) symmetry manifest we can use coordinates on RN :

ni =
2ξi

1 + ξ2
, i = 1, . . . , N − 1, nN =

1− ξ2

1 + ξ2
. (8)

They parametrize the unit sphere as nt = (n1, . . . , nN ) ∈ RN with the constraint ntn = 1. This
constraint has to be included in the Lagrangian to maintain equivalence with eq. (1):

L = ∂an
t∂an− λ(ntn− 1) .

Variation of the action leads to the equation of motion

∂a∂
an + λn = 0.

Using the constraint, the Lagrange multiplier can be eliminated leading to

∂a∂
an + (∂an

t∂an)n = 0 ,

which is equivalent to eq. (2) once the relation (8) is used. The conserved currents take the
universal form

JIJα = nI∂αn
J − nJ∂αnI ,

and the energy momentum tensor is given by

T±± = ∂±n · ∂±n .

From the unit vector n one can define the group element

m = I− 2nnt

with m−1 = m, such that the current one-form reads as

J = mdm = −2(dn)nt + 2n dnt. (9)

In terms of this current one-form, the Lagrangian is simply

L = tr(JαJ
α) = tr(J ∧ ?J) .

The flatness of the current, together with its conservation

dJ + J ∧ J = 0 ; d ? J = 0 ,

can be packed into the flatness of a spectral parameter-dependent Lax connection:

a(λ) :=
1

1− λ2
J − λ

1− λ2
? J . (10)

These formulas together with (9) resemble the formulation of a coset theory. Indeed, SN−1 can
be represented as an O(N)/O(N − 1) coset, which leads to the following description.

2.1.3 Gauged σ-model point of view

A map between the O(N)/O(N − 1) := {g ∼ gh|g ∈ O(N), h ∈ O(N − 1)} coset and the sphere
SN−1 := {n ∈ RN |ntn = 1} can be obtained by choosing a representative point nt0 = {1, 0, . . . , 0}
on SN−1. The O(N − 1) subgroup, which leaves n0 invariant is the (N − 1)× (N − 1) lower right
corner of O(N), whose Lie algebra is denoted by h. The map between the coset and the sphere is
simply

O(N)

O(N − 1)
→ SN−1 ; gh→ gn0 .
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The Maurer-Cartan form,
ω = g−1dg = A + K,

can be decomposed w.r.t. the coset structure as ω ∈ o(N) = h ⊕ f with A ∈ h,K ∈ f, where K
contains the physical degrees of freedom and A is a gauge field. By definition, this current satisfies
the flatness condition:

dω + ω ∧ ω = 0.

Using the properties
[h, h] = h ; [h, f] = f ; [f, f] = h ,

the flatness condition for ω can be decomposed as

dA + A ∧A + K ∧K = 0 ; (11)
dK + A ∧K + K ∧A = 0 . (12)

One can introduce the operators which project onto the h and f subspaces as follows:

Πh : o(N)→ h ; v → 1

2
(v + jvj) ,

Πf : o(N)→ f ; v → 1

2
(v − jvj) ,

where j = I− 2n0n
t
0. The gauge invariant Lagrangian takes the form:

L = tr [Πf(ωa)Πf(ω
a)] = tr(KaK

a). (13)

To obtain the equations of motion one can make the variations

g → g(1 + ε) ; ω → ω + dε+ [ω, ε].

where ε ∈ f since ε ∈ h would not change the action. This variation changes the action by

δL = 2tr[(∂aε+ [Aa, ε])K
a] = −2tr[ε(∂aK

a + [Aa,K
a])] + 2∂atr[εKa] ,

and leads to the equation of motion

d ?K + A ∧ ?K + ?K ∧A = 0 . (14)

To make contact with the formulation of the constrained field n we recall that

n = gn0 ; m = gjgt ; J = g(jωj − ω)gt = −2gΠf(ω)gt = −2gKgt ∈ gfgt. (15)

This makes the two formulations completely equivalent. Finally, we note that the equations of
motion can be encoded into the flatness of a spectral parameter-dependent Lax connection:

L(λ) = A +
λ2 + 1

λ2 − 1
K− 2λ

λ2 − 1
?K. (16)

2.2 Boundary formulations
Let us turn to the formulations of the boundary problem in the same order as they were analyzed
in the bulk theory.
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2.2.1 Unconstrained fields

Using the unconstrained fields, the boundary theory can obtained by restricting the space coordi-
nates to an open interval parametrized by σ ∈ (0, π)

S =

ˆ
dτ

π̂

0

dσ
∂α~ξ · ∂α~ξ
(1 + ξ2)2

. (17)

Now, because of the boundaries, when computing the variations of the action ξk → ξk + δξk,
ξi → ξi (i 6= k), the following surface terms arise

− 2δξk∂σξ
k

(1 + ξ2)2
|π0 . (18)

If there is no constraint at the boundary for ξk then there is no summation over k. (If there were
any constraints, they should be added to the Lagrangian with a Lagrange multiplier). Assuming
that there is no long-range interaction between the boundaries, the surface terms must vanish
separately, i.e. we find the consistent boundary conditions (b.c.-s)

δξk∂σξ
k = 0, k = 1, . . . , N − 1 (19)

on both ends of the interval. If we interpret the conditions δξk|0 = 0 (or δξk|π = 0) as also
implying the vanishing of ∂τξk, then we conclude that the consistent b.c.-s imply either Neumann
or Dirichlet b.c.-s for the fields ξi. Let us focus on the integrability of these b.c.-s. According to
[5], the bulk conservation laws (6) lead to a boundary conserved quantity if, at the boundary, the
difference [

T (s+1) − T̄ (s+1) + Θ̄(s−1) −Θ(s−1)
]
| = dΣ

dt
(20)

is a total time-derivative of some quantity Σ. (By the empty vertical line we mean to evaluate the
expression at the boundary. When the boundary is not specified, then the statement is true for both
boundaries.) In the most general case Σ can even depend on the dynamical fields. In this paper we
restrict our analysis only to the cases when Σ = 0. Clearly, the boundary conditions (19) we found
are conformal and guarantee the vanishing of (T k++−T k−−)| ∝ (T++−T−−)| ∼ ∂τ ~ξ·∂σ~ξ

(1+ξ2)2 | = 0 for all k.
This ensures the existence of infinitely many conserved higher spin charges, which are independent
of the energy. Still it may happen that the infinite number of conserved charges following from
the conformality of the boundary condition is not "infinite enough" to ensure integrability. In
particular conserved charges should form a commuting family. It was shown in [17] that coset
boundary conditions compatible with the bulk coset structure lead to infinite number of conserved
charges in involution. Since in the framework of this paper we do not investigate either the
Poisson structure or the higher Casimir charges we have no tool to check if conformality implies
integrability or not.

Let us try to extend the Lagrangian with a boundary potential, which could preserve integra-
bility of the model. Motivated by previous investigations [10], we add also a boundary Lagrangian
term

∑
I,J

nIMIJ ṅ
J with an antisymmetric matrixMIJ = −MJI (and where we used ˙ ≡ ∂τ ). Here

capital indices I, J run from 1 to N , while lower case indices i, j run from 1 to N − 1. One readily
obtains∑
I,J

nIMIJ ṅ
J = −1

2
tr(MJτ ) =

2

(1 + ξ2)2

(∑
ij

Mij(ξ
iξ̇j − ξj ξ̇j)−

∑
i

(
2ξi~ξ · ~̇ξ + (1− ξ2)ξ̇i

)
MiN

)
.

We compute the change of this boundary piece under the ξk → ξk + δξk variation, with the
understanding that in every term containing ˙δξk we integrate by parts and drop the integrated
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terms. This way one finds

δtr(MJτ ) =
16δξk

(1 + ξ2)2

(
− ξk

1 + ξ2
(∑
ij

Mij(ξ
j ξ̇i − ξiξ̇j) + 2

∑
i

MiN ξ̇
i
)

+

∑
i

Mik ξ̇
i +

2~ξ · ~̇ξ
1 + ξ2

(MkN +
∑
j

Mkjξ
j)
)
.

Combining this with the surface terms (18) coming from the variation of the bulk action, one finds
the boundary conditions (k = 1, . . . , N − 1)

∂σξ
k| = −

(
− ξk

1 + ξ2
(∑
ij

Mij(ξ
j ξ̇i − ξiξ̇j) + 2

∑
i

MiN ξ̇
i
)

+
∑
i

Mik ξ̇
i + (21)

2~ξ · ~̇ξ
1 + ξ2

(MkN +
∑
j

Mkjξ
j)
)∣∣∣∣ .

This boundary condition is conformal, as direct calculation guarantees that ∂τ ~ξ · ∂σ~ξ ∝ (T k++ −
T k−−)| = 0, providing infinitely many higher spin charges. Let us analyse the same boundary
conditions in the alternative formulations.

2.2.2 Constrained fields

The action which corresponds to the theory (17) in terms of the constrained variable n reads as

S =

ˆ
dτ

π̂

0

dσ
[
∂an

t∂an− λ(ntn− 1) + δ(σ)λ0(ntn− 1)− δ(σ − π)λπ(ntn− 1)
]
. (22)

Observe that we have implemented the constraint ntn also at the boundary. All previous analysis
seemed to miss this term. Variation now leads to the bulk equation of motion and to the boundary
condition:

δnt(∂σn− λ|n)| = 0 .

Thus for any i we can choose either generalized Neumann or Dirichlet boundary conditions. We
shall assume that l directions satisfy generalized Neumann boundary condition while N − l direc-
tions obey Dirichlet instead.

∂σni|0 = λ0ni|0 ; i = 1, . . . , l ; δni|0 = 0 ; i = l + 1, . . . , N .

All these boundary conditions are conformal

(T++ − T−−)| ∼ ∂τnt · ∂σn| = 0.

and conformality also guarantees that

(T k++ − T k−−)| ∝ (T++ − T−−)| = 0 , (23)

thus infinitely many higher spin conserved charges exist.
Without loss of generality, we can choose the Dirichlet directions as

nl+1|0 = α ; nl+2|0 = · · · = nN |0 = 0 .

This implies that
∑l
i=1 nini|0 = 1 − α2, which can be used to determine λ0 and obtain the

boundary condition for the generalized Neumann directions:

∂σni|0 =
ni

1− α2

l∑
j=1

nj∂σnj |0 . (24)
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These boundary conditions are equivalent to Dirichlet and Neumann boundary conditions for
appropriately rotated ξi variables, see Appendix A for the details.

A special case is when α = 0, i.e. we restrict the boundary field to a sphere of maximal radius.
This can be obtained by intersecting the unit sphere with a hyperplane passing through the origin.
This boundary condition is given by the ξi = 0 Dirichlet boundary conditions. Actually, in this
case the space-derivative of the constraint ntn = 1 implies that

l∑
i=1

ni∂σni
∣∣
0

= 0 −→ ∂σni|0 = 0 ; i = 1, . . . , l ,

and thus the remaining directions satisfy Neumann boundary condition. We analyze the symmetry
of this boundary condition in detail in Appendix A. It turns out that the symmetry is O(l)×O(N−
l).

In order to get the most general conformal boundary condition, we could demand that the time
and space derivatives of n are orthogonal at the boundary: ∂τnt · ∂σn| = 0. This can be achieved
by adding a boundary potential with an antisymmetric matrix M to the boundary Lagrangian:

Lb = δ(σ)
(
ntM∂τn + λ0(ntn− 1)

)
,

where, for definiteness, we added it at the σ = 0 boundary. Similar terms could be added at σ = π
as well. Here we again emphasize that the constraint had to be added to the boundary piece, as
required by consistency. After eliminating the Lagrange multiplier, the boundary condition turns
out to be

M∂τn− (ntM∂τn)n = ∂σn. (25)

Contracting with nt on the left we can see that this is indeed consistent with the constraint
ntn = 1, in contrast to what one can find in the literature, where the b.c. appears without the
second term [10, 12]. Using eq. (8), it is straightforward to show that the boundary condition in
eq. (21), given in terms of the unconstrained variables, is equivalent to this one in terms of the n
fields. Conformality of the boundary conditions follow from ∂τn

t · ∂σn| = 0. It is also instructive
to rewrite the boundary condition for the current and group elements. In terms of the current,
the boundary term reads simply as

Lb = δ(σ)tr (JτM) .

Making an infinitesimal variation

m→ m(1 + ε), ; J → J + dε+ [J, ε] ,

with ε satisfying the constraint (i.e. it is an element of the gfgt subspace), changes the bulk part
of the action as

δL = tr[(∂aε+ [Ja, ε])J
a] = −tr[ε(∂aJ

a)] + ∂atr[εJa] ,

while the boundary part changes as

δLb = tr {(∂τ ε+ [Jτ , ε])M} = tr(ε[M,Jτ ]) = tr(ε[gΠh(gtMg)gt, Jτ ]).

Therefore, the boundary condition is

Jσ = [gΠh(gtMg)gt, Jτ ] =
1

2
([M,Jτ ] + [mMm,Jτ ]).

This particularly nice boundary condition is explicitly conformal, as

(T k++ − T k−−)| ∼ (T++ − T−−)| ∼ tr(JσJτ )

We show in appendix A that this is equivalent to the boundary condition we got from the ξ
variables.

This whole analysis can be also recovered from the gauge theory formulation, which follows.
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2.2.3 Gauged σ-model point of view

Boundary conditions in the coset language are geometrical. In particular, in the case of integrable
boundary conditions of principal chiral models, the group element is restricted to a coset [16, 17].
Thus, we first analyze the boundary conditions by restricting the boundary field to SN−1 →
SN−k−1, where the spheres have radius 1 and there is no extra boundary Lagrangian term in the
coset action. In the language of the n this means

ni = 0, where i = N − k + 1, . . . , N.

We introduce new notation by decomposing n as: n = ñ + n̂, with

ñ = (n1, . . . , nN−k, 0, . . . , 0) , n̂ = (0, . . . , 0, nN−k+1, . . . , nN ),

The boundary conditions then become:

∂1ñ = 0 ; ∂0n̂ = 0 .

Let us derive this boundary condition using the coset language. At the boundary, the only non-
zero variables are the ñ-s. Introduce an O(N − k) × O(k) subgroup of O(N), which can be used
for the parametrization of the SN−k−1 subspace. We will denote it by G1, and its Lie algebra by
g1. Let us also denote the little subgroup of G1 by H1 and its Lie algebra by h1. The fields at
the boundary can be parametrized by SN−k−1 ≡ G1/H1 := {g1 ∼ g1h1|g1 ∈ G1, h1 ∈ H1} and
ñ = g1n0 where g1 ∈ G1. We will have to use a decomposition of h, f and g1:

h = h1 ⊕ h2, f = f1 ⊕ f2, h1 ⊕ f1 = g1;

[h1, h1] ⊂ h1, [h1, f1] ⊂ f1, [f1, f1] ⊂ h1, [h1, h2] ⊂ h2, [h1, f2] ⊂ f2,

[h2, h2] ⊂ h1, [h2, f1] ⊂ f2, [h2, f2] ⊂ f1, [f1, f2] ⊂ h2, [f2, f2] ⊂ h1.

The o(N) = g algebra w.r.t. to the splitting above becomes:

g =

0 f1 f2
f1 h1 h2
f2 h2 h1

 .

This is a Z2 × Z2 graded algebra with {h1, h2, f1, f2} ∼ {(0, 0), (0, 1), (1, 0), (1, 1)}. Thus, the two
symmetric cosets G/H and G/G1 are compatible, where G = O(N).

We can observe that the physical currents live in the f1 ∼ (1, 0) subspace which is the even
part of the G/H and the odd part of the G/G1 decompositions. Therefore ”coset of the bulk" and
"coset of the boundary” mean different things.

The decomposition of the current at the boundary is

ω = gtdg = A(1) + A(2) + K(1) + K(2),

where A(i) ∈ h1 and K(i) ∈ f1.
At the boundary, g ∈ G1, so A

(2)
τ = K

(2)
τ = 0. This is equivalent to the boundary conditions

[Aτ , κ] = 0 ; [Kτ , κ] = 0,

where
κ = diag(1, . . . , 1,−1, . . . ,−1).

When we make the variation of the action (13), we have to use g → g(1 + ε) with ε ∈ g1 at the
boundary. After the variation we get the K(1)

σ = 0 boundary conditions, which are equivalent to

{Kσ, κ} = 0.
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Let us now add a gauge-invariant boundary term to the Lagrangian, of the form

Lb = tr[Πf(ωτ )Πf(g
tMg)],

where M ∈ o(n) is a constant matrix. After the variation we get:

δLb = tr
{

(∂τ ε+ [Aτ , ε])Πf(g
tMg) +Kτ [Πh(gtMg), ε]

}
= 2tr(ε[Kτ ,Πh(gtMg)])+∂τ tr(εΠf(g

tMg)).

Using also terms from the variation of the bulk part of the action, we arrive at the boundary
condition:

Kσ = [Πh(gtMg),Kτ ].

This boundary condition is conformal as

(T++ − T−−)| ∝ tr(KσKτ ) = 0 .

In terms of components we have

A
(2)
0 = 0 ; K

(2)
0 = 0 ; K

(1)
1 = Πg1

(
[Πh(gtMg),K0]

)
.

This result is consistent with the result obtained in the language of the constrained fields n:

∂τ n̂ = 0 ; ∂σñ = M∂τ ñ− (ñtM∂τ ñ)ñ.

2.3 Lax connection and spectral curve
In this section we construct Lax matrices for the boundary problem, which lead to its spectral
curve formulation.

2.3.1 Bulk transfer matrix

We have already mentioned two different versions of the Lax connections. In the formulation based
on the fundamental field it was defined by

a(λ) :=
1

1− λ2
J − λ

1− λ2
? J ,

while in the gauged σ-model formulation we found

L(λ) = A +
λ2 + 1

λ2 − 1
K− 2λ

λ2 − 1
?K,

where ω = gtdg = A + K. By recalling the relation

J = g(jωj − ω)gt = −2gΠf(ω)gt = −2gKgt ,

we can see that the two connections are related by a “gauge” transformation:

L(λ) = A +
λ2 + 1

λ2 − 1
K− 2λ

λ2 − 1
?K = ω − 2(

1

1− λ2
K− λ

1− λ2
?K) = gtdg + gta(λ)g .

Consequently, gauge-invariant quantities can be easily expressed in any of these formulations. The
usefulness of the Lax connection lies in the fact that one can generate from it an infinite family of
conserved charges. One first defines the transport matrix

T (b, a, λ) = P←−exp

{
−
ˆ b

a

dσ aσ (σ, λ)

}
, (26)

10



for a path connecting a and b. The transport matrix of the other connection L(λ), can then be
expressed as

P←−exp

{
−
ˆ b

a

dσLσ (σ, λ)

}
= gt(b)T (b, a, λ)g(a) (27)

In the cylindrical geometry (bulk theory) one can integrate the connection for a spacial non-
contractible loop, such as for the path from 0 to 2π, leading to a gauge-invariant quantity,
T (2π, 0, λ), called the monodromy matrix. Using the flatness condition of the connection aa:
∂τaσ = ∂σaτ − [aσ,aτ ], we can calculate the time derivative of the transport matrix

∂τT (b, a, λ) = −
ˆ b

a

dσ∂σ

(
P←−exp

{
−
ˆ b

σ

dσ′ aσ (σ′, λ)
}

aτ (σ, λ)P←−exp
{
−
ˆ σ

a

dσ′′ aσ (σ′′, λ)
})

= T (b, a, λ) aτ (a, λ)− aτ (b, λ)T (b, a, λ) . (28)

Since aτ (2π, λ) = aτ (0, λ) this ensures that the trace of the monodromy matrix, called the transfer
matrix, is time-independent

T (λ) = trP←−exp

{
−
ˆ 2π

0

dσ aσ (σ, λ)

}
,

and generates infinitely many conserved charges. The bulk theory was thoroughly analysed in [19],
in the context of AdS/CFT (see also [20] for the supersymmetric equivalent). Let us now turn to
the parallel construction in the presence of boundaries.

2.3.2 Boundary transfer matrix

The monodromy matrix in the boundary case takes a double row type form [13, 14]

Ω (λ) = U0 (λ)TR (2π, π, λ)Uπ (λ)T (π, 0, λ) ,

where U0,π(λ) are (as of yet λ and time-dependent) O(N) matrices encoding the type of boundary
conditions we have at σ = 0, π, respectively, and the matrix TR (2π, π, λ) is the reflected transport
matrix, obtained via a parity transformation σ → 2π − σ. Taking into account that parity
transforms the currents as1

Jσ (σ)→ JRσ (σ) = −Jσ (2π − σ) ; Jτ (σ)→ JRτ (σ) = Jτ (2π − σ) ,

we can see that
aRσ (σ, λ) = −aσ (2π − σ,−λ) .

The reflected transport matrix is then given by

TR (2π, π, λ) ≡ P←−exp

{
−
ˆ 2π

π

dσ aRσ (σ, λ)

}
= P←−exp

{
−
ˆ 0

π

dσ aσ (σ,−λ)

}
(29)

= T (π, 0,−λ)
−1
.

This leads to the following form of the monodromy matrix

Ω (λ) = U0 (λ)T (−λ)
−1
Uπ (λ)T (λ) ; T (λ) = T (π, 0, λ) . (30)

The most general condition of integrability can be written in terms of Ω(λ) as

∂τΩ(λ) = [N(λ),Ω(λ)] (31)
1The minus sign in the reflected current JRσ (σ) comes from the fact that Jσ includes a derivative which under

parity transforms as ∂σ → −∂σ .
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with some appropriate N(λ), as this condition guarantees that tr(Ω(λ)k) is conserved for any inte-
ger k. Thus, expanding the boundary transfer matrix T (λ) = tr(Ω(λ)) in the spectral parameter
generates infinitely many conserved charges.

Using eq. (28) we can calculate the time derivative of the boundary monodromy matrix as

∂τΩ (λ) = ∂τU0(λ)U0 (λ)
−1

Ω (λ)− U0 (λ) aτ (0,−λ)U0 (λ)
−1

Ω (λ) + Ω (λ) aτ (0, λ) +

+U0 (λ)T (−λ)
−1 (

∂τUπ(λ)− Uπ (λ) aτ (π, λ) + aτ (π,−λ)Uπ (λ)
)
T (λ) .

Demanding that

∂τU0(λ) = U0 (λ) aτ (0,−λ)− aτ (0, λ)U0 (λ) ;

∂τUπ(λ) = Uπ (π) aτ (π, λ)− aτ (π,−λ)Uπ (λ) , (32)

the time evolution of the monodromy matrix is given by

∂τΩ (λ) = [Ω (λ) , aτ (0, λ)] . (33)

Thus integrability requires the existence of matrices U0 and Uπ which satisfy eq. (32). These
matrices are not gauge invariant. Indeed, using eq. (27) we can see that the boundary matrix Ui
in the L formulation is Ũi = gUig

t such that

[A0, Ũ ] = 0 ; [K0, Ũ ] = 0 ; {K1, Ũ} = 0. (34)

This actually shows that constant U matrices in one description lead to time-dependent matrices
in the other. Classification of all U matrices satisfying eq. (32) means the classification of the
integrable boundary conditions in the Lax language. Let us start with the investigations of time-
independent U -s.In terms of the currents, the time-independent restrictions become

U0 (λ) (Jτ − λJσ)− (Jτ + λJσ)U0 (λ)|σ=0 = 0;

Uπ (λ) (Jτ + λJσ)− (Jτ − λJσ)Uπ (λ)|σ=π = 0.

Assuming a Taylor expansion for the matrices Ui (λ) ∈ O(N):

Ui (λ) =

+∞∑
n=0

U
(n)
i λn, (35)

we can solve the above restrictions order by order in powers of λ. We easily obtain[
U

(0)
i , Jτ

]∣∣∣
σ=i

= 0, i = 0, π; (36)[
U

(k)
0 , Jτ

]∣∣∣
σ=0

=
{
U

(k−1)
0 , Jσ

}∣∣∣
σ=0

;
[
U (k)
π , Jτ

]∣∣∣
σ=π

= −
{
U (k−1)
π , Jσ

}∣∣∣
σ=π

, k ≥ 1.

In the principal chiral model we found λ dependent U − s, but in the O(N) σ-model we could
manage to find only constant ones. In this case, the requirements become

[Ui, Jτ ]|σ=i = {Ui, Jσ}|σ=i , i = 0, π. (37)

Using the definition of the currents J±, it is easy to check that at the boundary we have

J±|σ=i = U−1i J∓|σ=i Ui, i = 0, π. (38)

and that
[
J±, U

2
i

]∣∣
σ=i

= 0, i = 0, π. Naturally, this condition is satisfied with the condition
U2
i = 1. This actually means that J± → α(J±) = UJ±U

−1 defines an automorphism of the
Lie algebra leaving the energy momentum tensor invariant: T++ = tr(J2

+) = T−− = tr(J2
−).

Automorphisms, which satisfy eq. (37), are well-known for Lie algebras and are related to their
symmetric space decompositions [21]:

o(N) = h + m ; α(h) = h ; α(m) = −m ,

12



such that
[h, h] ⊂ h , [h,m] ⊂ m ; [m,m] ⊂ h .

The various components of the currents at the boundary have to be in different subspaces

Jτ | ∈ h ; Jσ| ∈ m ,

Choosing the decomposition

h = so(k)⊕ so(N − k) ; m =
so(N)

so(N)⊕ so(N − k)

leads to the matrix
U = diag(1, . . . , 1︸ ︷︷ ︸

k

,−1, . . . ,−1︸ ︷︷ ︸
N−k

) (39)

The corresponding boundary condition is exactly what we can describe in all cases as

∂σni| = 0 ; i = 1, . . . , k ; ni| = 0 ; i = k + 1, . . . , N ,

i.e. Neumann for the first k components and vanishing Dirichlet for the remaining N − k. This
also means that the group element m is restricted to the coset O(N)

O(k)×O(N−k) and [U,m] = 0.
In the following we analyze the analytic properties of the eigenvalues of the monodromy matrix

for this case (39).

2.4 Analytic properties of the boundary transfer matrix
In the following we assume that U0 = Uπ = U is a λ independent constant such that U2 = 1.
By definition, the transport matrix is an element of the O(N) group. Since an open path can be
contracted to a point, it has to be in the identity component of O(N), i.e. in SO(N). Taking a
generic complex λ, the transport matrix sits in SO(N,C), and so will also be the the monodromy
matrix. Then, by diagonalization we can bring it into the form

Ωdiag (λ) =

{
diag

(
eiq1(λ), e−iq1(λ), · · · , eiq[N/2](λ), e−iq[N/2](λ)

)
, forN even

diag
(
eiq1(λ), e−iq1(λ), · · · , eiq[N/2](λ), e−iq[N/2](λ), 1

)
, forN odd

. (40)

The eigenvalues come in pairs, and the qi (λ) are the so-called quasi-momenta. They parametrize a
multi-sheeted Riemann surface, which has a specific structure for each classical solution. Common
features for all are the pole singularities at λ = ±1 and branch cuts, starting whenever two
quasi-momenta coincide. Let us denote by Cr the collection of such branch cuts. The conserved
quantities are related to traces of powers of the monodromy matrix, thus should be insensitive for
these branch cuts. As a result, quasi-momenta may be permuted up to multiples of 2π on the cuts

q` (λ+ iε)− q`+1 (λ− iε) = 2πn`,r, x ∈ C`,r, ` = 1, · · · , [N/2]− 1.

Let us analyze the analytic structure of the quasi-momenta.

2.4.1 Asymptotics at λ→ +∞

The large λ asymptotics of the transport matrix T (λ) can be read off from the definition of the
connection (10)

T (λ) ∼ P←−exp

{
1

λ

ˆ π

0

dσJτ

}
∼ I +

1

λ

ˆ π

0

dσJτ ≡ I +
Q̄

λ
+ . . . . (41)

where Q̄ would be the conserved charge of the bulk theory. This implies, for the boundary
monodromy matrix:

Ω (λ) ∼ I− 1

λ

(
UQ̄U + Q̄

)
+ · · · = I− 2Q

λ
+ . . . ; Q ∈ h .

13



Clearly, only the charges corresponding to the survived symmetry appear in the asymptotic be-
haviour of the monodromy matrix. For its eigenvalues, this implies that

q` (λ) ∼ 1

λ
q
[∞]
` +O

(
λ−2

)
,

where q[∞]
l are the eigenvalues of the conserved charges preserved by the boundary.

2.4.2 Reflection symmetry

The boundary nature of the monodromy matrix, together with U2 = I, implies the following
reflection property

Ω(λ) = UΩ−1(−λ)U .

Let us see how this relation translates to the quasi-momenta. Assuming that Ω(λ) is diagonalized
as Ω(λ) = A(λ)Ωdiag (λ)A(λ)−1 and that the quasi-momenta are all different for generic λ, we
have

Ωdiag (λ) = PΩdiag (−λ)
−1
P−1 ; P = A(λ)−1UA(−λ)

Since P connects a generic diagonal matrix to another generic diagonal matrix, it has to be a
permutation, actually the same permutation for any λ. To identify the permutation, we analyze
the relation at λ→ ±∞. In this limit

Ωdiag (λ) ' I +
2Q

λ
= P

(
I− 2Q

−λ

)
P ' P (Ωdiag (−λ))

−1
P (42)

For a generically charged state it implies that P = 1, which leads to the following reflection
property of the quasi-momenta

q` (−λ) = −q` (λ) . (43)

2.4.3 Singularities around λ = ±1

Let us first recall that

aσ (λ) =
1

1− λ2
Jσ +

λ

1− λ2
Jτ =

J+
1− λ

− J−
1 + λ

(44)

Thus the pole singularities around λ = ±1 are governed by the light-cone components of the
currents J±. Let us denote the matrix which diagonalizes these currents by h± (σ):

Jdiag
± (σ) = h± (σ)

−1
J± (σ)h± (σ) . (45)

For the monodromy matrix we have at leading order around λ = ±1

Ω (λ)|λ=±1 = U h∓ (0) exp

(
1

λ∓ 1

ˆ π

0

dσJdiag
∓ (σ)

)
h∓ (π, )

−1
U × (46)

h± (π) exp

(
1

λ∓ 1

ˆ π

0

dσJdiag
± (σ)

)
h± (0)

−1
.

Recall from (38) that at the boundaries the light-cone currents are related by the automorphism,
α, as J− (σi) = U J+ (σi) U , where σi = 0, π. This means that, at the boundary, the matrices
which diagonalize J− and J+ are related, and

Jdiag
∓ (σi) = h∓ (σi)

−1
Uh± (σi) J

diag
± (σi)h± (σi)

−1
Uh∓ (σi) . (47)

Actually the currents J = m dm = −2(dn)nt+2ndnt are rank 2 matrices and their diagonal form
is

Jdiag
∓ (σ) = diag(i j∓(σ),−i j∓(σ), 0, . . . , 0) ,
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thus h∓ (σi)
−1
Uh± (σi) is either the identity or the permutation matrix on the relevant 2 dimen-

sional space. Here we assumed that j∓(σ) is never vanishing, thus the 2 dimensional nonzero
subspace is the same for any σ. Let us introduce

ˆ π

0

dσj∓ (σ) = κ∓,

such that for the quasi-momenta we have

(q1,−q1, . . . )|λ∼1 =
κ

λ− 1
(1,−1, 0, . . . , 0) + . . .

(q1,−q1, . . . )|λ∼−1 =
±κ
λ+ 1

(1,−1, 0, . . . , 0) + . . . ,

where κ = κ+±κ− depending whether the permutation is the identity or not. However, consistency
with the parity properties favors the κ = κ+ + κ− choice and the plus sign in the behaviour of q1
at λ ∼ −1, i.e. at the boundary Jdiag

∓ (σi) = Jdiag
± (σi).

2.4.4 Inversion symmetry

To derive the behaviour of Ω under the inversion transformation we recall that the Lax connection
transforms under inversion as

a(λ−1) = m(d+ a(λ))m.

This implies for the transport matrix that

T (λ−1) = m(π)T (λ)m(0),

where m(0) and m(π) are the boundary values of the O(N) element. Since in general these values
are different for the two different boundaries, this is not a similarity transformation. Nevertheless,
using it together with [U,m|bdry] = 0 in the definition of Ω one finds that

Ω(λ−1) = m(0)−1Ω(λ)m(0) .

We can now argue similarlyto the case of the reflection symmetry: the eigenvalues of the mon-
odromy at λ−1, Ωdiag(λ−1), and of the original monodromy matrix Ωdiag(λ), are related by a
λ-independent parity transformation:

Ωdiag (λ) = PΩdiag

(
λ−1

)
P−1 ; P = A(λ)−1m(0)A(λ−1) . (48)

Analysing the λ→ λ−1 transformation for the singularities around λ = ±1 we can conclude that

q1(1/λ) = −q1(λ) .

Restricting the relation (48) for the non-singular part of the monodromy matrix and evaluating
at λ = 1 implies that the quasi-momenta qj for j 6= 1 will not suffer any permutations under
inversion:

qj (1/λ) = qj (λ) . (49)

Let us note one difference from the bulk theory. When there are no boundaries, inversion symmetry
allows qbulk1 (1/λ) = 2πn− qbulk1 (λ). But when we have boundaries, the parity condition enforces
this mode number to be zero.

2.5 Explicit example in the O(4) model
In the following, we construct explicitly the spectral curve of a solution having SO(2) × SO(2)
symmetry. At the language of the n variables it corresponds to two Dirichlet and two Neumann
boundary conditions

∂σn1| = 0 ; ∂σn2| = 0 ; n3| = 0 ; n4| = 0 .
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The U matrix in the Lax formulation is

U = diag(1, 1,−1,−1) .

A solution satisfying this boundary condition is

n1 = cosnσ cosωτ ; n2 = cosnσ sinωτ ; n3 = sinnσ cosωτ ; n4 = sinnσ sinωτ .

One can check that both the bulk equations of motion and the boundary conditions are satisfied,
provided n ∈ Z. The solution corresponds to a circular rotating string in S3, where the end points
of the string rotate on the same S1 ⊂ S3. The Lax connection, aσ(λ), is a complicated function
of σ, making it very difficult to calculate the path-order exponential. To avoid this problem we
switch to the coset formulation. One possible evolution on the group manifold can be described
as

g(τ, σ) = e−nσ(J13+J24)e−ωτ(J12+J34) ; (Jik)lm = δilδkm − δimδkl
Note that we can recover the constrained fields of the circular string via the relations (15). A
gauge equivalent evolution can be obtained by changing the sign of J34. What is nice about this
choice is that [J13 + J24, J12 + J34] = 0, and the components of the Maurer-Cartan one-form are
constants:

ωσ = g−1∂σg = −n(J13 + J24) ; ωτ = g−1∂τg = −ω(J12 + J34) .

The projected currents are

Aσ = −nJ24 ; Aτ = −ωJ34 ; Kσ = −nJ13 ; Kτ = −ωJ12 ,

which satisfy the equation of motion (14). The σ component of the Lax connection is

Lσ(λ) = −nJ24 − n
λ2 + 1

λ2 − 1
J13 − ω

2λ

λ2 − 1
J12 .

Since
−ULσ(−λ)U = Lσ(λ) −→ UT (−λ)−1U = T (λ)

we can simply diagonalize Lσ(λ) and exponentiate it to get the eigenvalues of the monodromy
matrix. We find

q1,2 =
2π

1− λ2
i
√
n2(λ4 + 1) + 2ω2λ2 ± 2A ; A = λ2

√
(ω2 + n2λ2)(n2/λ2 + ω2) .

It is instructive to write the quasi-momenta as

q1 =
2πiλ

1− λ2

(√
ω2 + n2λ2 +

√
n2

λ2
+ ω2

)
; q2 =

2πiλ

1− λ2

(√
ω2 + n2λ2 −

√
n2

λ2
+ ω2

)
.

This solution is analogous to the open string solution of the Y = 0 brane [15]. The point-like
string solution does not depend on σ and corresponds to n = 0. Its quasi-momenta are

q1 =
4πiλω

1− λ2
; q2 = 0

One can easily check that the spectral curve has the right asymptotics and residues around λ = ±1,
and satisfies the inversion and reflection properties. Let us also note that the point-like string
solution satisfies the all Neumann boundary condition, too.

16



3 Quantum integrability
The quantum integrability of the O(N) non-linear σ-models can be shown by following the ar-
gumentations of Polyakov [22], Goldschmidt and Witten (GW) [23]. The idea is to analyze the
classical conservation laws (5) and their possible quantum corrections. Since products of operators
are not well-defined at the quantum level they have to be regularized, leading to the appearance
of new terms which can make the classical symmetry anomalous. To decide whether a higher spin
symmetry is maintained or not, one has to classify the possible anomaly terms. In the case of T 2

++,
the global symmetry, the dimensionality of the fields and the Lorentz transformation property fix
the anomaly of the form

∂−T
2
++ = c1∂−

(
∂2+n

t∂2+n
)

+ c2∂+
(
∂−n

t∂+n∂+n
t∂+n

)
+ c3∂+

(
∂3+n

t∂−n
)
.

Grouping the terms a conservation law can be established at the quantum level – of the form (6)
–

∂−T
(4) = ∂+Θ(2) (50)

with

T = T 2
++ − c1

(
∂2+n

t∂2+n
)

; Θ(2) = c2
(
∂−n

t∂+n∂+n
t∂+n

)
+ c3

(
∂3+n

t∂−n
)
,

which implies factorized scattering. We can obtain a similar equation by exchanging ∂+ ↔ ∂−.
Integrability in the presence of boundaries, similarly to the classical case, requires the fulfillment

of the equation [
T (s+1) − T̄ (s+1) + Θ̄(s−1) −Θ(s−1)

]
| = dΣ

dt
.

Since at the quantum level the bulk-boundary OPEs can get quantum corrections, classical inte-
grable boundary conditions can be anomalous. In particular, for the O(N) symmetric Neumann
boundary condition, ∂1n = 0, symmetry and dimensionality allow for an anomaly of the form

T++ − T−−| = c∂τn
t∂τn ,

which would even spoil the existence of a conserved energy. Since we have no control of such terms,
nor have we a systematic quantization approach which can decide in these questions, we classify
the integrable boundary conditions based on the existence of reflection factors, which satisfy the
boundary bootstrap equations.

3.1 Reflection factors
As we explained, the GW argument implies that the O(N) non-linear σ-model is integrable at the
quantum level. There are N particles with the same mass, m, and they transform in the vector
representation of O(N). The index structure of the scattering matrix, S, compatible with this
symmetry, has the form

Skjij (θ) = σ1(θ)δijδ
kl + σ2(θ)δki δ

l
j + σ3(θ)δliδ

k
j .

Factorized scattering implies the Yang-Baxter equation (YBE) which, together with unitarity and
crossing symmetry, restricts the amplitudes to

σ1(θ) = − iλ

iπ − θ
σ2(θ) ; σ3(θ) = − iλ

θ
σ2(θ) ; λ =

2π

N − 2
,

where

σ2(θ) =
Γ( 1

2 + λ
2π + iθ

2π )

Γ( 1
2 + λ

2π −
iθ
2π )

Γ(1 + iθ
2π )

Γ(− iθ
2π )

Γ( 1
2 −

iθ
2π )

Γ( 1
2 + iθ

2π )

Γ( λ2π −
iθ
2π )

Γ(1 + λ
2π + iθ

2π )
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In the presence of an integrable boundary particles reflect from the boundary by a reflection
matrix Rji (θ), which satisfies the boundary analogue of the Yang-Baxter equation

Snmji (θ1 − θ2)Rpn(θ1)Sqlmp(θ1 + θ2)Rkq (θ2) = Rpi (θ2)Snmjp (θ1 + θ2)Rqn(θ1)Sklmq(θ1 − θ2).

The scalar factor is fixed from unitarity and boundary crossing unitarity [5]

Rki (θ)Rjk(−θ) = δji ; Rji (
iπ

2
− θ) = Sijkl(2θ)R

l
k(
iπ

2
+ θ).

The solutions of these equations were classified and they fall into the following classes:

1. Diagonal [8]. The diagonal reflection factors have the form

R(θ) = diag(R1(θ), . . . , R1(θ)︸ ︷︷ ︸
k

, R2(θ), . . . , R2(θ)︸ ︷︷ ︸
N−k

)

where from the boundary Yang-Baxter equation it follows that

R2(θ)

R1(θ)
=
c− θ
c+ θ

; c = −iπ
2

N − 2k

N − 2
.

Clearly, for the transformation k ↔ N − k the reflection factors exchange R1 ↔ R2, thus it
is enough to consider the cases k ≤ N/2. Unitarity and boundary crossing unitarity fix the
scalar factor up to a CDD factor as

R1(θ) = −R0(θ)
Γ( 1

4 + λ
4π + iθ

2π )

Γ( 1
4 + λ

4π −
iθ
2π )

Γ( 3
4 + λ

4π −
iθ
2π )

Γ( 3
4 + λ

4π + iθ
2π )

Γ( 1
4 + λ(N−k−1)

4π + iθ
2π )

Γ( 1
4 + λ(N−k−1)

4π − iθ
2π )

Γ( 3
4 + λ(N−k−1)

4π − iθ
2π )

Γ( 3
4 + λ(N−k−1)

4π + iθ
2π )

;

R0(θ) =
Γ( 1

2 + λ
4π −

iθ
2π )

Γ( 1
2 + λ

4π + iθ
2π )

Γ(1 + iθ
2π )

Γ(1− iθ
2π )

Γ( 1
4 −

iθ
2π )

Γ( 1
4 + iθ

2π )

Γ( 3
4 + λ

4π + iθ
2π )

Γ( 3
4 + λ

4π −
iθ
2π )

.

The symmetry of this boundary condition is SO(k) × SO(N − k). The case k = N − 1
corresponds to the fixed boundary condition of Ghoshal [6], i.e. all boundary conditions
are Dirichlet, while the case k = 0 corresponds to the O(N) symmetric Neumann boundary
condition of Ghoshal [6]. Finally, we also note that in the θ →∞ limit the reflection factor
agrees with the boundary Lax matrix U .

2. One-block [10]. The reflection factor is diagonal except a 2× 2 block

R(θ) =


Aξ(θ) Bξ(θ) 0 · · · 0
−Bξ(θ) Aξ(θ) 0 · · · 0

0 0 Rξ(θ) · · · 0
...

...
...

. . .
...

0 0 0 · · · Rξ(θ)


where

A(θ) =
1

2

(
c− θ
c+ θ

+
c′ − θ
c′ + θ

)
R(θ) ; B(θ) =

1

2i

(
c− θ
c+ θ

− c′ − θ
c′ + θ

)
R(θ) ,

with the constraint

c = − iπ
2

N − 4

N − 2
+ ξ ; c′ = − iπ

2

N − 4

N − 2
− ξ.

The symmetry of this boundary condition is SO(2) × SO(N − 2). The case ξ = 0 reduces
to the diagonal solution with k = 2 above. There is another diagonal limit of the reflection
factor, namely by sending ξ →∞ we can recover the O(N) symmetric boundary condition.
Unitarity, together with boundary crossing unitarity, fixes the reflection factors to be:

Rξ(θ) = −R0(θ)
Γ( 1

4 + λ+2iξ
4π + iθ

2π )

Γ( 1
4 + λ+2iξ

4π − iθ
2π )

Γ( 3
4 + λ+2iξ

4π − iθ
2π )

Γ( 3
4 + λ+2iξ

4π + iθ
2π )

Γ( 1
4 + λ−2iξ

4π + iθ
2π )

Γ( 1
4 + λ−2iξ

4π − iθ
2π )

Γ( 3
4 + λ−2iξ

4π − iθ
2π )

Γ( 3
4 + λ−2iξ

4π + iθ
2π )

.
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3. All blocks the same [10]. There is also a completely non-diagonal reflection factor for any
even N of the form

R(θ) =


A(θ) B(θ) 0 0 · · ·
−B(θ) A(θ) 0 0 · · ·

0 0 A(θ) B(θ) · · ·
0 0 −B(θ) A(θ) · · ·
...

...
...

...
. . .

 .

From the boundary YBE it follows that

B(θ) = α θA(θ) .

The symmetry of the boundary condition is U(N/2). Unitarity and boundary crossing
unitarity fix the scalar factor to

A(θ) = − 1

2πα

Γ
(
1
2 −

1
2πα + iθ

2π

)
Γ
(
− 1

2πα −
iθ
2π

)
Γ
(
1
2 −

1
2πα −

iθ
2π

)
Γ
(
1− 1

2πα + iθ
2π

)R0(θ) .

4. Exceptional boundary conditions for the O(4) model. The above classification was con-
firmed in [11], and additionally a new family of boundary conditions was found in the O(4)
model. Since SO(4) ≡ SU(2)l × SU(2)r, the O(4) model is an SU(2) principal chiral model,
which allows a two parameter, (ξl, ξr) family of reflection factors:

R(θ) =


A+(θ) B+(θ) 0 0
−B+(θ) A+(θ) 0 0

0 0 A−(θ) B−(θ)
0 0 −B−(θ) A−(θ)

 ,

where

A±(θ) = R(θ)
ξlξr ± θ2

(ξl + θ)(ξr + θ)
; B±(θ) =

−iθ(ξr ± ξl)
(ξl + θ)(ξr + θ)

and

R(θ) =
Γ
(

1
2 −

iξl
2π + iθ

2π

)
Γ
(

1
2 −

iξl
2π −

iθ
2π

) Γ
(

1− iξl
2π −

iθ
2π

)
Γ
(

1− iξl
2π + iθ

2π

) Γ
(

1
2 −

iξr
2π + iθ

2π

)
Γ
(

1
2 −

iξr
2π −

iθ
2π

) Γ
(

1− iξr
2π −

iθ
2π

)
Γ
(

1− iξr
2π + iθ

2π

)R0(θ) .

The symmetry of this boundary condition is U(1)l × U(1)r. By choosing ξl = −ξr, the
solution reduces to the one-block case, while choosing ξr = i/α and taking the ξl →∞ limit
we can recover the two block, same reflection factor.

Comparing this classification with the classical case, we can see that the “all block different”
boundary reflection factor exists only in the O(4) case. It would be interesting to understand
how the general integrable boundary conditions, formulated in terms of the antisymmetric matrix
M , become anomalous during the quantization procedure. From the existence of the nondiagonal
reflection factors in the quantum case it is expected that they also have classical limits, which
should be described by monodromy matrices and spectral curves. In order to make a connection
to the classical formulations, we analyze the classical limit of the spectrum via the Bethe-Yang
equations.

3.2 Bethe-Yang equations
In this section we analyze the large volume spectrum in a finite volume. The energy of an n-particle
state on an interval of size L, with rapidities θ1, . . . , θn, can be written as

E =

n∑
i=1

m cosh θi +O
(
e−mL

)
. (51)
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Figure 1: Extended Dynkin diagram of O(N) for even N .

Volume dependence comes through momentum quantisation, which formulates the periodicity of
the wave function. The requirement is called the Bethe-Yang equation, which is based on the
infinite volume scattering and reflection matrices as

eim2L sinh θi

n∏
j=i+1

S(θi − θj)R(θi)

1∏
j=n:j 6=i

S(θj + θi)R(−θi)
i−1∏
j=1

S(θi − θj) = 1, (52)

where we assumed that the left and the right boundaries are the same. These matrix equations
can be solved by diagonalizing the double row transfer matrix

T (θ0|{θi}) = tr0

 n∏
j=1

S(θ0 − θj)R(θ0)

1∏
j=n

S(θj + θ0)Rc(−θ0)

 , (53)

where the charge conjugation of the reflection factor ensures the equivalence to eq. (52) (see [24]
for details). The diagonalization can be done either via the analytic [11] or the algebraic [25] Bethe
Ansatz (BA). Results are available only for even N so we restrict ourselves to those cases. In the
analytic BA, the regularity of the transfer matrix at the positions of the Bethe roots provides
the BA equations. They can be most compactly described using roots and functions related to
the extended Dynkin diagram for O(N). The original Dynkin diagram of DN/2 is extended by a
black dot, with label 0, which represents the massive particle, see Figure 3.2. Additionally there
are magnonic particles with labels, i = 1, . . . , N/2 − 2,+,−. For each index we associate two
Q-functions:

Qi(θ) =

ni∏
k=1

(θ − u(i)k )(θ + u
(i)
k ), (54)

Q̃i(θ) =

ni∏
k=1
θ 6=u(i)

k

(θ − u(i)k )(θ + u
(i)
k ). (55)

The one with tilde leaves out the root, if it is evaluated at the root position. All the magnonic
BA equations can be formulated very compactly as:

Q−i−1(u
(i)
k )

Q+
i−1(u

(i)
k )

Q̃++
i (u

(i)
k )

Q̃−−i (u
(i)
k )

Q−i+1(u
(i)
k )

Q+
i+1(u

(i)
k )

= r0i (u
(i)
k )rπi (u

(i)
k ), 0 < i <

N

2
− 2, (56)

Q−−(u
(i)
k )

Q+
−(u

(i)
k )

Q̃++
i (u

(i)
k )

Q̃−−i (u
(i)
k )

Q−+(u
(i)
k )

Q+
+(u

(i)
k )

= r0i (u
(i)
k )rπi (u

(i)
k ), i =

N

2
− 2, (57)

Q−N/2−2(u
(−)
k )

Q+
N/2−2(u

(−)
k )

Q̃++
− (u

(−)
k )

Q̃−−− (u
(−)
k )

= r0−(u
(−)
k )rπ−(u

(−)
k ), (58)

Q−N/2−2(u
(+)
k )

Q−N/2−2(u
(+)
k )

Q̃++
+ (u

(+)
k )

Q̃−−+ (u
(+)
k )

= r0+(u
(+)
k )rπ+(u

(+)
k ), (59)
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where f±(θ) = f(θ ± iπ
N−2 ) and the BA equations for the massive particles reads as:

ei2pkL
n0∏
j=1
j 6=k

S(u
(0)
k − u

(0)
j )

Q−1 (u
(0)
k )

Q+
1 (u

(0)
k )

= r00(u
(i)
k )rπ0 (u

(i)
k ).

Above, we introduced the function

S(θ) =
Γ(− iθ

2π )

Γ(1− iθ
2π )

σ2(θ).

The dependence on the boundary conditions sits in the various reflection phases, of which the
non-trivial ones (6= 1) are the following:

1. SO(k)× SO(N − k) case with even k (k ≤ N/2):

r0(θ) = R1(θ), (60)

ri(θ) =
iπ2

N−k
N−2 − θ

iπ2
N−k
N−2 + θ

δi,k/2. (61)

2. SO(2)× SO(N − 2) case:

r0(θ) = A(θ) + iB(θ), (62)

ri(θ) =
iπ2 − ξ − θ
iπ2 − ξ + θ

δi,1. (63)

3. U(N/2) case:

r0(θ) = A(θ) + iB(θ), (64)

ri(θ) =
iπ2 + i

α − θ
iπ2 + i

α + θ
δi,+. (65)

4. U(1)l ×U(1)r case:

r0(θ) = R(θ), (66)

r−(θ) =
iπ2 + ξl − θ
iπ2 + ξl + θ

δi,−, (67)

r+(θ) =
iπ2 + ξr − θ
iπ2 + ξr + θ

δi,+. (68)

3.3 Spectral curve as the limit of the BY equations
In this section we investigate the (quasi-) classical limit of the boundary Bethe-Yang equations in
the O(4) model, for two boundary conditions: the free boundary conditions (all four Neumann)
and the the mixed diagonal reflection with two Neumann and two Dirichlet ones.

The quantum O(4) σ-model is asymptotically free with a dynamically generated mass m =

Λ e−
√
λ
2 (Λ being the cutoff and λ is the ’t Hooft coupling evaluated at Λ). Similarly to the periodic

case [26], we can only compare this model to a quantum field theory defined by a Lagrangian in
the classical limit λ→∞ (m→ 0), in which case it exhibits the classical conformal symmetry of
the latter. In this limit, the dimensionless parameter µ = mL = ΛLe−

√
λ
2 appearing in the BA

equations tends to zero, µ→ 0. The quasi-momenta of the corresponding classical spectral curve
then have cuts, originated from the condensation of Bethe roots, see [27] for details. Indeed, if
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we take both the number of particles n0 and the number of roots 2n+ ∼ 2n− ∼ 2n0 to infinity
(n0 → ∞), while keeping the quantization number fixed, it implies that all roots ±θα, ±uj and
±vj-s become large together with their differences. In an appropriately rescaled variable, relevant
for the classical limit, they start to condense on cuts. If one introduces the densities of these
condensed roots, then the Bethe ansatz equations provide integral equations restricting these
densities. Finally, the solutions for the resolvent of the densities can be mapped to the quasi-
momenta of the classical spectral curve. Let us see, how this can be achieved in the simplest
case.

The Bethe-Yang equations for the roots θβ = u
(0)
β take the following form:

e2ipβL
n0∏

α:α6=β

S2
0(θβ + θα)S2

0(θβ − θα)r2i (θβ)
Q+

+(θβ)

Q−+(θβ)

Q+
−(θβ)

Q−−(θβ)
= 1, i = f,m β = 1, . . . , n0 (69)

where

S0(θ) = i
Γ( 1

2 −
iθ
2π )

Γ( 1
2 + iθ

2π )

Γ( iθ2π )

Γ(− iθ
2π )

and

rf (θ) =
Γ( 3

4 −
iθ
2π )

Γ( 3
4 + iθ

2π )

Γ(1 + iθ
2π )2

Γ(1− iθ
2π )2

Γ( 1
4 −

iθ
2π )

Γ( 1
4 + iθ

2π )
; rm(θ) =

Γ( 3
4 −

iθ
2π )

Γ( 3
4 + iθ

2π )

Γ( 1
2 + iθ

2π )2

Γ( 1
2 −

iθ
2π )2

Γ( 1
4 −

iθ
2π )

Γ( 1
4 + iθ

2π )
.

The accompanying Bethe equations for the roots u(+)
j ≡ uj are

1 =
Q−0 (uj)

Q+
0 (uj)

Q̃++
+ (uj)

Q̃−−+ (uj)
, j = 1, . . . , n+ (70)

for the free case, while for the mixed case they change to(uj − iπ
2

uj + iπ
2

)2
=
Q−0 (uj)

Q+
0 (uj)

Q̃++
+ (uj)

Q̃−−+ (uj)
, j = 1, . . . , n+ . (71)

(The equations for the u(−)j roots, denoted here by vj , are obtained from eqs. (70), (71) by
the (uj , n

+) → (vj , n
−) substitutions). It is straightforward to show, using the transformation

properties of the various functions appearing in eq. (69), that if θβ is a solution, then so is −θβ .
Note that substituting uj → −uj (but keeping ui for i 6= j the same) changes eqs. (70), (71) to
their inverses, thus the roots are also doubled: to every root uj solving eqs. (69)-(70) (or eqs.
(69)-(71)) there is another one −uj .

Apart from the r2i (θβ) factors in eq. (69) and the l.h.s. in eq. (71) the system consisting of
(69)-( 70) (or (69)-(71)) is identical to the system of BA equations in the periodic case [26] but for
2n0 particles with rapidities coming in pairs (θβ ,−θβ), accompanied by 2n+ “left” roots (uj ,−uj)
(2n+ “right” roots (vj ,−vj) ) coming also in pairs. Thus the effect of the integrability preserving
boundaries is twofold: on the one hand they double the particles and the left/right roots, while
on the other hand they introduce the r2i (θβ) factors and the l.h.s. in eq. (71). However, in the
light of the observations in the previous paragraph, even in the presence of these modifications
the solutions of the boundary BA equations above are n0 pairs of (θβ ,−θβ), accompanied by 2n+
(2n−) pairs of roots (uj ,−uj) ((vj ,−vj)).

Let us now consider the limit classical limit when µ → 0. We also let both the number of
particles n0, and the number of roots 2n+ ∼ 2n− ∼ 2n0 go to infinity enforcing that all ±θα, ±uj
and ±vj-s become large allowing us to take the logarithms of the Bethe equations and use the
“Coulomb approximations” (large θ or u):

−i logS2(θ)→ −π
θ
, −i log r21(θ)→ −3π

2θ
, −i log r22(θ)→ π

2θ
, log

u+ iB

u− iB
→ 2iB

u
.
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We consider here the classical limit of eq.(69) in the absence of any roots. Then, after taking the
log of both sides and using the previous approximations, we find:

2µ

π
sinh(θβ)−

∑
α6=β

( 1

θβ + θα
+

1

θβ − θα

)
+
− 3

2θβ
1

2θβ

= 2mβ , mβ ∈ Z β = 1, . . . , n0.

where the upper line applies for the free and the lower line for the mixed diagonal boundary
conditions.

These equations describe a system of (1D) particles put into the combination of constant ex-
ternal forces (2mβ) and a (confining) potential V (θ) = 2µ

π cosh(θ), which interact by the Coulomb
repulsion not only with each other but also with their “mirror images” at −θβ . The interaction of
the particles with the boundaries is described by the last terms. To emphasize our interpretation
we rewrite

− 3
2θβ

2θβ

= − 1

2θβ
+
− 1
θβ
1
θβ

since the 1/(2θβ) term reproduces the Coulomb repulsion between the β-th particle and its mirror
image (and thus can be absorbed into the first term of the sum), and the interactions with the
boundaries differs only by a sign between the free and the mixed diagonal cases. This interaction
with the mirror images and with the boundaries are the two new phenomena which are absent in
the periodic case.

It is convenient to handle the asymptotically large nature of θβ by an appropriate rescaling
θβ = Mξβ , where we choose (following [26])

M = − logµ

2
∼ n0 .

Then, according to [26], in the n0 → ∞ limit the potential VM (ξ) = 2µ
π cosh(Mξ) becomes an

infinitely deep (square) potential well confining ξ to the interval (−2, 2), and in this interval the
equations become

1

M

L∑
α

1

ξβ + ξα
+

1

M

L∑
α 6=β

1

ξβ − ξα
+

1
Mξβ

− 1
Mξβ

= −2mβ . (72)

Note that in the limit n0 → ∞, n0/M finite, the last terms (originated in the interaction with
the boundaries) become sub-leading. Apart from the boundary contributions, this system of
equations is identical to the one considered in the periodic case in [26], but for 2n0 particles
located at ξβ , −ξβ ; indeed changing ξβ → −ξβ in (72) changes mβ → −mβ , thus providing the
(identical) other half of the system. In [26] the analogous system was investigated by putting all
mode numbers mβ equal to a common m, implying that in the continuous limit there is only one
ξ cut. Looking at eq. (72) as a system for 2n0 particles coming in pairs, shows that we cannot
choose a common mode number unless m = 0.

To implement the confining flat potential we introduce boundaries with charges q at ξ = ±2,
which we eventually will take to zero. In the presence of the boundary charges q, the equilibrium
condition for the system of charges and mirror charges becomes

n0∑
α 6=β

(
1

ξβ − ξα
+

1

ξβ + ξα

)
+

3
2ξβ

− 1
2ξβ

=
2qMξβ
4− ξ2β

β = 1, . . . , n0 .

Now defining

Q(z) = z

n0∏
i

(z − ξi)(z + ξi) = z

n0∏
i

(z2 − ξ2i ), P (z) =
1

z

n0∏
i

(z2 − ξ2i ),
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one readily proves, that

Q′′(ξβ)

Q′(ξβ)
= 2

 n0∑
α 6=β

(
1

ξβ − ξα
+

1

ξβ + ξα

)
+

3

2ξβ

 ;

P ′′(ξβ)

P ′(ξβ)
= 2

 n0∑
α 6=β

(
1

ξβ − ξα
+

1

ξβ + ξα

)
− 1

2ξβ

 .

In the definition of P,Q the product terms represent the 2n0 particles at ±ξβ , and the prefactors
are introduced to account for the boundary contributions. Though they look similar, they are
rather different: Q(z) is a polynomial of order 2n0 + 1 having zeros at z = 0, ±ξi, while P (z) is an
analytical function with zeros at ±ξi, z2n0−1 asymptotic behaviour at z → ∞, and a single pole
at z = 0.

Let us analyze the free boundary condition with m = 0. As a result of the equilibrium
conditions, the condition

(4− ξ2β)Q′′(ξβ)− 4qMξβQ
′(ξβ) = 0

holds (and similarly for ξβ → −ξβ). Since the polynomial r(z) = (4 − z2)Q′′(z) − 4qMzQ′(z)
has a zero at z = 0, and is also of order 2n0 + 1, it must be proportional to Q(z). Matching the
coefficients of the highest powers of z in them, we get

(4− z2)Q′′(z)− 4qMzQ′(z) + (2n0 + 1)(2n0 + 4qM)Q(z) = 0.

With z = 2y this is the defining equation of the Jacobi polynomials P (α,β)
n (y) with α = β =

2qM − 1, and n = 2n0 + 1. Therefore

Q(z) = P
(2qM−1,2qM−1)
2n0+1 (

z

2
),

and the ξi are twice the positive roots of this polynomial.
Realizing that the “free boundary” resolvent G(z) is related to Q(z)

G(z) =
1

M

(
1

z
+

L∑
i

(
1

z − ξi
+

1

z + ξi

))
=

1

M

Q′(z)

Q(z)
, (73)

one can derive an equation for it. Indeed using this relation and the equilibrium conditions, we
obtain

1

M
G′ = −G2 +

4qz

4− z2
G− (2n0 + 1)(2n0 + 4qM)

M2(4− z2)
.

In the continuum limit when M →∞, n0 →∞, n0/M ∼ O(1), one can drop the l.h.s. and obtain
an algebraic equation for G(z). Particularly interesting is the solution for q → 0:

G(z) = ±2n0
M

1

z
√

1− 4
z2

.

On the one hand it shows an inverse square root type singularity at z = ±2, on the other hand it
differs only in the n0 → 2n0 substitution from the analogous periodic expression [26].

Now we return to the investigation of the original problem eq. (72) for the free boundary case.
We choose a common mode number m for the positive solutions ξβ (likewise −m for the negative
ones −ξβ). Therefore in the continuum limit, the resolvent has two cuts, one running between
(0, 2), the other between (−2, 0), i.e

G(z) =
1

2π

2ˆ

0

dw
ρ+(w)

z − w
+

1

2π

0ˆ

−2

dw
ρ−(w)

z − w
.
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G(z), introduced explicitly in eq. (73), satisfies G(−z) = −G(z); imposing this symmetry on this
expression relates the two ρ-s to each other

ρ−(−w) = ρ+(w) ≡ ρ(w),

thus

G(z) =
1

2π

2ˆ

0

dw ρ(w)

(
1

z − w
+

1

z + w

)
.

In terms G(z) one can write the continuum limit of eq.(72) as

/G(z) = G(z + iε) +G(z − iε) = −2m, x ∈ (0, 2) . (74)

We solve this by making an Ansatz for the ρ(w) density motivated by the finding of [26]

ρ(w) =
B√

4− w2
,

where B is a constant. Computing the principal value (PV) integral one finds that /G(z) = 0,
which becomes a constant – as required by eq.(74) – implying that m = 0. B is determined from
the z → ∞ asymptotics of G: G(z) → 2n0+1

M
1
z ∼

2n0

M
1
z , leading to B = 4n0

M . With these values
one finds (for any z)

G(z) = ±2n0
M

1

z
√

1− 4
z2

,

which, after applying the Zhukowski map, z = λ+ 1
λ , becomes

G(λ) = ±2n0
M

λ

λ2 − 1
.

We can see that G(λ) is related to the (single) quasi-momentum of the O(4) σ-model with inte-
grable (free) boundaries, which corresponds to the uncharged, constant solution n = 0.

The situation with the mixed diagonal boundary, i.e. the one described by the second version
of eq. (72) with the −1/ξβ boundary contribution, is a bit different from the free case. First, we
found numerical solutions for m = 0 always with two imaginary roots at ξ0 = ±iα. In theM →∞
and n0 →∞ limit, however, α→ 0 and we recover the free case. Defining the resolvent as

G̃(z) =
1

M

(
−1

z
+

n0∑
i

(
1

z − ξi
+

1

z + ξi

))
,

one can repeat the previous consideration leading to an identical form for G̃(z) in the continuum
limit. The quasi-momenta is related to the n = 0 case in the classical analysis. To recover the
quasi-momenta of the one-cut solution, one has to introduce magnonic roots and let them condense
on an imaginary cut.

4 Conclusions
In this paper we analyzed the integrable boundary conditions of the O(N) non-linear σ-models at
various levels. Classically, the models are conformal and conformality of the boundary condition
implies the existence of a special set of infinitely many conserved charges. Indeed, in the conformal
boundary conditions, the boundary limit of the difference of the light-cone components of the
energy-momentum tensor vanishes. In particular, this implies that the difference of any integer
power of the same light-cone components of the energy-momentum tensor will also vanish, leading
to an infinite family of conserved charges. This conformality requirement can be guaranteed by
connecting the time derivative of the fundamental field to its space derivative at the boundary
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by an anti-symmetric matrix, M [10]. By a similarity transformation, this matrix can be brought
into a 2 by 2 block diagonal form, with different matrix entries. Taking various limits of the
matrix, one can recover boundary conditions with Dirichlet and Neumann directions. In the coset
formulation one has to ensure that the time and space components of the conserved currents are
orthogonal for the trace at the boundary. This can be achieved if one is obtained from the other by
a commutation with another matrix. However, this description is equivalent to the previous one –
formulated on the fundamental fields – only if the constraint is added to the boundary Lagrangian.
Thus the boundary condition in [10] has to be modified with a non-linear term (25). Conformality
of the boundary condition ensures the existence of infinitely many conserved charges. Whether
these charges are in involution or whether they provide enough conserved charges for the theory
to be integrable is not investigated in the paper.

In order to classify classical solutions and to have a relation to the quantum theory we intro-
duced the boundary Lax formulation of the problem. Integrable boundary conditions are classified
by O(N) group valued matrices, U , located at the boundaries. They are the classical analogues
of the reflection matrices and have to satisfy an evolution equation (32). Unfortunately we could
find only constant matrix solutions of these equations, which are related to the mixture of Neu-
mann and vanishing Dirichlet boundary conditions. We characterized the analytical structure and
symmetry properties of the spectral curve of these boundary conditions.

The quantization of the model is a highly non-trivial task. In the bulk case the anomaly terms
of the higher spin equations of motion were classified and shown to have the same structure as the
original one, leading to quantum conservation laws. Unfortunately, anomalous terms can appear
at the boundary too, which can spoil the integrability of all the boundary conditions. As we have
no control over the boundary anomalous terms, instead, assuming integrability, we classified the
quantum integrable boundary conditions by the solutions of the boundary Yang-Baxter equations.
We list all solutions found so far: these contain diagonal reflection matrices with two different
entries. They correspond to Dirichlet and vanishing Neumann boundary conditions; there are also
boundary conditions with a single 2 by 2 block and otherwise diagonal; in the O(2N) case there is a
boundary condition in which all 2 by 2 blocks are the same. Bethe Ansatz equations in spin-chains
have been formulated in all cases, except when we have odd Dirichlet (or Neumann) directions
[11]. We used them to formulate the Bethe-Yang equations which determine the asymptotically
large volume spectrum of the models on the interval with identical boundary conditions on the two
sides. Since the classifications at the quantum and classical levels do not match, we analyzed the
classical limit of certain solutions in the O(4) models with all Neumann (free) and two Dirichlet
and two Neumann (mixed) boundary conditions. We found that they correspond to the classical
solution whose spectral curve we previously calculated explicitly.

There are many open questions. There is obviously a mismatch between the boundary condi-
tions found at the various levels. This could be related to the fact that we analyzed in many cases
conformal boundary conditions. It would be very interesting to see whether the corresponding
special set of conserved charges do commute or, if we can find higher spin Casimir charges as well.
It would be also challenging to find time- and even field-dependent boundary U matrices for any
boundary conditions, which can be described by an anti-symmetric matrix, M . The quantum
theory suggests that they may exist only for the cases of one single block or all blocks the same.
To get some insight one can calculate the classical limit of all the Bethe-Yang equations including
also magnonic roots and other groups. In doing so, the derivation of the Bethe Ansatz equations in
the missing cases, i.e. when we have odd number of Neumann or Dirichlet directions, are crucial.

It would be also of interest to figure out a quantisation of the boundary system in which the
anomalous terms can be directly calculated, and the existence of quantum conservation laws can
be explicitly checked.
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A Symmetries of the boundary conditions
In this appendix we investigate the residual symmetries of the model (17), for the various boundary
conditions in the language of the unconstrained variable. First we recall that as a consequence of
the (bulk) conservation of the currents, ∂αJAα = 0 (A = ij, iN), the charges satisfy

∂τQ
A =

π̂

0

dσ∂τJAτ = −
π̂

0

dσ∂σJAσ = JAσ (π)− JAσ (0). A = ij, iN .

Assuming again the lack of interplay between the two boundaries (“locality”), we conclude that
those components of the bulk charges stay conserved in the presence of boundaries for which
JAσ | = 0.

Now consider the case when l (0 ≤ l ≤ N − 1) of the ξi-s satisfy Neumann (∂σξi = 0), while
the rest are Dirichlet (∂τξi = 0, i = l + 1, . . . , N − 1) b.c.-s. To ease the notation we write
the ~ξ field as ~ξ = (~r,~s) with boundary values ∂σ~r = 0 and ∂τ~s = 0, where ~r = (r1, . . . , rl) and
~s = (s1, . . . , sN−1−l). (Note that in this notation ξ2 = ~r2+~s2 and on the boundary ~ξ ·∂σ~ξ = ~s ·∂σ~s,
~ξ · ∂τ ~ξ = ~r · ∂τ~r). This notation is useful since the currents J ijα can be split into three sets

J ijα =
4

(1 + ξ2)2
(ri∂αr

j − rj∂αri), i, j = 1, . . . , l; J l+i,l+jα =
4

(1 + ξ2)2
(si∂αs

j − sj∂αsi)

where i, j = 1, . . . , N − l − 1, and

J i,l+jα =
4

(1 + ξ2)2
(ri∂αs

j − sj∂αri), i = 1, . . . , l, j = 1, . . . , N − l − 1,

while those of J iNα split into two sets

J iNα = − 2

(1 + ξ2)2
(2ri~ξ · ∂α~ξ + (1− ξ2)∂αr

i), i = 1, . . . , l ;

J l+j,Nα = − 2

(1 + ξ2)2
(2sj~ξ · ∂α~ξ + (1− ξ2)∂αs

j). j = 1, . . . , N − l − 1 .

It is obvious that the boundary values of J ijσ | = 0 (ij = 1, . . . , l) as a result of the Neumann b.c.
on ~r, and consequently the SO(l) symmetry generated by these currents survives. It is slightly
more complicated to see the symmetry coming from the fields with Dirichlet b.c., however one can
verify that the combinations

J̃ l+i,l+jσ = J l+i,l+jσ +
2si

1− ξ2
|JjNσ − 2sj

1− ξ2
|J iNσ

(where | stand for the boundary values of the expressions in question) do vanish on the boundary,
and the SO(N − 1− l) symmetry generated by them also survives. Thus the complete symmetry
compatible with the boundaries is SO(l)× SO(N − 1− l) when l of the ξi fields satisfy Neumann
while the remaining N − 1− l of them generic Dirichlet b.c.-s.

If l takes its maximal value l = N−1, then all ~ξ fields satisfy Neumann b.c., and looking at (8)
we see that also all components of nI do the same. From the expressions of the currents above,
it follows that all of the currents vanish at the boundary, and the full SO(N) symmetry of the
bulk theory is preserved by this b.c.. If, on the other hand, l vanishes (l = 0), then all the ~ξ fields
satisfy Dirichlet b.c., and from (8) it follows that all components of nI do the same. From the
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previous argument leading to J̃ l+i,l+jσ above, it follows that the symmetry of this “all Dirichlet”
b.c. is SO(N − 1), i.e. the bulk SO(N) symmetry is broken.

In the following we derive the boundary conditions for the constrained variables. Without loss
of generality we assume that ~s| = (α, 0, . . . , 0). This, in particular, implies the vanishing Dirichlet
boundary condition for ni:

ni| =
2si

1 + r2 + α2
| = 0 ; i = l + 2, . . . , N − 1

Let us introduce primed variables by the combinations

n′l+1 =
1√

1 + α2
(nl+1 − αnN ) ;

n′N =
1√

1 + α2
(αnl+1 + nN ) ,

as well as n′i = ni for i 6= l + 1, N . One can easily see that n′l+1 satisfies Dirichlet boundary
condition

n′l+1| =
α√

1 + α2
.

Actually the primed coordinates have length 1 and can be obtained from ni by an ortogonal
transformation. One can check that from these new coordinates, N − l − 1 satisfy a Dirichlet
boundary condition, while l + 1 satisfy the generalized Neumann boundary condition (24). This
makes the two formulations completely equivalent. Choosing, in particular, ∀sj | = 0 (i.e. ~s| = 0,
“vanishing” Dirichlet) makes both ∂σni| = 0 and ∂τnl+j | = 0 in addition to guaranteeing ∂σnN | =
0. Looking at the previous expressions for the various currents reveals that for this vanishing
Dirichlet b.c. not only J l+i,l+jσ vanish on the boundary but also J iNσ (while J l+j,Nσ | 6= 0). The –
now conserved – J iNα combine with J ijα to generate an SO(l+ 1) symmetry. Thus in this case the
total symmetry compatible with the boundaries is SO(l + 1)× SO(N − 1− l).

Now that we determined the symmetries compatible with the consistent boundary conditions
and the (matrix) form of Jσ and Jτ on the boundary, we can search for a constant U matrix which
satisfies (37). When the remaining symmetry is SO(l + 1) × SO(N − 1 − l), the construction of
such a U is known from the mathematical literature [21], since SO(N)/SO(l+ 1)×SO(N − 1− l)
is a symmetric space. However, when the residual symmetry is SO(l)×SO(N − 1− l), no such U
matrix exists, since SO(N)/SO(l)× SO(N − 1− l) is NOT a symmetric space for 1 ≤ l < N − 1.
This would be an example when a model is conformal but not Lax integrable.

The b.c.-s (21) for the ~ξ fields can be translated into b.c.-s for the currents J ijσ and J iNσ : we
take eq. (3) and (4) and replace ∂σξk| in them by the r.h.s. of eq. (21); then, after some algebraic
manipulations, we try to identify J ijτ and J iNτ in what is obtained. Since we previously derived
the b.c.

JIJσ =
1

2

(
[M,Jτ ] + [mMm,Jτ ]

)IJ
, mIJ = δIJ − 2nInJ , (75)

we need only to check whether this condition is a consequence of (21). A direct computation gives(
[M,Jτ ] + [mMm,Jτ ]

)im
=

8

(1 + ξ2)2

(
ξiMmlξ̇

l − ξmMilξ̇
l

− 2~ξ · ~̇ξ
1 + ξ2

(
ξi(Mmlξ

l +MmN )− ξm(Milξ
l +MiN )

))
,

(
[M,Jτ ] + [mMm,Jτ ]

)iN
=

4

(1 + ξ2)2

(
2ξiMNlξ̇

l − (1− ξ2)Milξ̇
l

+
2~ξ · ~̇ξ
1 + ξ2

(
(1− ξ2)(Milξ

l +MiN ) + 2ξiMNlξ
l
))
,
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and after a not very informative computation one obtains that our currents do indeed satisfy (75).
Next we translate these b.c.-s for boundary conditions for the nI fields. Starting from eq. (21)

one finds
∂σn

K =
(∑
I

MIK ṅ
I − nK

∑
L,I

nLMILṅ
I
)
.

This b.c. is highly non-linear and depends also on the boundary values of nI , not only on its
derivatives. The first term on the r.h.s. gives the naïve (and inconsistent) b.c. derived by Moriconi
[10] and analyzed by He and Zhao [12], and the second non-linear term guarantees that this b.c.
is consistent, i.e. the r.h.s vanishes also when it is multiplied by nK and summed over K. For
N = 3, when the antisymmetric MIJ can be described in terms of a three vector ~q = (q1, q2, q3)
as MIJ = εIJKq

K , this b.c. is identical to the one derived by Corrigan and Sheng [7].
To see what residual symmetries are compatible with eqs. (21) and (75) we determine which

parts of the bulk SO(N) transformations leave the boundary Lagrangian
∑
IJ n

IMIJ ṅ
J invariant.

Since the infinitesimal SO(N) transformations can be written as

nK → nK + εABΣKLABn
L, ΣKLAB = δKA δ

L
B − δLAδKB , εAB = −εBA,

one readily obtains that the transformations commuting with M ,

[M, εABΣAB ] = 0,

are the ones that leave the boundary Lagrangian invariant. Since, by an appropriate orthogonal
transformation, any antisymmetric N ×N matrix can be brought to the block diagonal form

MIJ =



0 m1

−m1 0
0 m2

−m2 0

0


(all mi-s, i = 1, . . .

[
N
2

]
, are real) it is enough to analyze the symmetries of the model when we

use these matrices in the boundary Lagrangian. If we assume that the first k mi-s are all different
mi 6= mj i, j = 1, . . . k and non zero, while the rest vanishes, then the subgroup of SO(N)
commuting with this M is SO(2)× . . . SO(2)︸ ︷︷ ︸

k

×SO(N − 2k). If, on the other hand, N = 2L is

even, and all mi-s are equal and non-vanishing, then the subgroup of SO(2L) commuting with
this M is U(L) [21].

B Comments on boundary conditions with not-maximal ra-
dius

In this appendix we consider the boundary condition when the fields are restricted to a sphere
Sn−k−1 of radius cosφ. In this case the constraints at the boundary are the following:

ñtñ = cos(φ)2, (76)

n̂tn̂ = sin(φ)2,

∂0n̂ = 0.

If we want to use stereographic projection to obtain the unconstrained variables in the bulk we
have to introduce some extra constraints at the boundary, as (76) is not a flat hypersurface in
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Rn−1. We can use the following coordinates:

n̂ = (0, . . . , 0, sin(φ)),

ni =
2ξi

1 + ξ2
, nn =

1− ξ2

1 + ξ2
, ξ2 = ξiξi.

At the boundary, however, the ξi-s live only on an (n− k − 1)-dimensional sphere because

ξ2 =
1− sin(φ)

1 + sin(φ)
.

We can see that the ξi-s are subject to a constraint at the boundary. Therefore, in the language
of ξi-s and n-s this boundary condition cannot be written in any simple homogeneous Neumann
and Dirichlet form.

In the coset language there is a subalgebra h (algebra of the little group) where hn0 = 0 and
another subalgebra g1 (which generates the Sn−k−1, G1 = O(n − k)) where ñ = exp(g1)n0. In
this case the reference vector is n0 = (cos(φ), 0, . . . , 0, sin(φ)).

We can decompose g1 to h1 ⊕ f1, where h1 ⊂ h, and we can convince ourselves that f1 is not
a subset of f. Therefore the algebra of the currents cannot be decomposed into a Z2 × Z2 graded
algebra, which means that the boundary conditions cannot be written as a commutator and an
anticommutator.
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