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We propose a number of modifications to the classical term in the dressing phase for integrable strings
in AdS3 x S3 x §3 x S', and check these against existing perturbative calculations, crossing symmetry,
and the semiclassical limit of the Bethe equations. The principal change is that the phase for different
masses should start with a term Q1 Q2, like the one-loop AdS3 dressing phase, rather than Q;Q3 as for
the original AdSs AFS phase.
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1. Introduction

The central object in the integrable picture of planar AdSs/CFT4
is the all-loop S-matrix, and the Bethe ansatz equations which
follow from this [1]. Its nontrivial dependence on the 't Hooft cou-
pling A comes from the dressing phase, and expanding at strong
coupling this has the form

A
OBEs (X, ¥) = exp i% D s Q0 Qs(y) (1)

r,s>2

where ¢r5 = (8r41,s — 8r.541) + ar,s/v/A + O(1/1). The first term
was introduced by Arutyunov, Frolov and Staudacher (AFS) in [2]
as a correction needed to match classical strings in AdSs x S°. The
coefficients a, s are the extension to one-loop strings of [3], and
this was later extended to all loops in [4].

The dressing phase for AdSs backgrounds is different, and is
now understood quite well at one loop [5-8]; see also [9,10]. How-
ever we believe that the classical part of the dressing phase has
been treated incorrectly in the literature. This is the subject of our
Letter.

A new feature of strings in AdS3 x S3 x §3 x S! is that there are
excitations (above the BMN state) of mass 1, «, 1 —« and 0 [11],
rather than just one mass in AdSs x S® or two in AdSs x CP3. The
bosonic modes of mass s; =« and s3 =1 — « are excitations in
the two S3 factors (which have different radii), and there are two
such excitations in each sphere, one in the left copy of the algebra
(labelled 1, or 3) and one in the right (1, or 3). These and their
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superpartners are the elementary particles in the Bethe ansatz de-
scription of [12], which gives the spectrum as

K¢
A—]=)"% Eepei)

t k=1

E¢(pek) = /s? + 4h?sin? % o

where the allowed p, are constrained by equations of the form
elPerl — ]_[#k S(pk, pj), using the S-matrix of [13]. This must in-
clude (for the first time') a dressing phase for the scattering of
particles of different mass.

The first classical phase for two particles of different mass was
written down by Borsato, Ohlsson Sax and Sfondrini [12], who gave

. h
1— o\ Twy tray=y) g

xty Xyt Xyt

oBos(X, y) = 1 1] 1 - 1

T xtyT T xyT T oxFyT
3)

where the masses sy, sy enter explicitly through
_ 4sxSy ] 2ss, Sx =Sy
Y sebsy |4y, sxtsy=1

When sy = sy =1, this is exactly the original AFS phase used in
AdSs. A similar phase was used in [18] when comparing to tree-

1 In the AdS4 x CP?/ABJM correspondence there are particles of mass 1 and %
but only the latter appear in the Bethe equations, and hence in the AFS phase.
The heavy particles are composite objects, mirror bound states [14,15]. The entire
dressing phase for this correspondence is simply half the BES phase [16,17].
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level amplitudes, but with the exponent of the first factor replaced
by?

ih 1 1
— (xt =y — =
Wiy <X +x+ Y y—>

ih 1 1 Sx + Sy
PP R V. 817
Wiy X y Wiy

The last term here has no effect on tree-level worldsheet scatter-
ing.

Our first proposal is that the correct generalisation of the AFS
phase to particles of different mass is instead:

:_h 1 1
__1 1 \lwyey—y)
5= 1= =57
Xty X~y
oars(X, y) = » 7 i
T oxtyt T xyo
sx—Sy sx+sy

1— 1 Wxy 1-— _1 Wyxy
1- 1- -

This follows from changing the original definition, the first term of
(1), by an overall factor:

o0

h
oars(x. y) = exp {iw—xy > I MQ ) - Q@ W -

r=2
(5)

However this change alone will break the agreement with tree-
level worldsheet scattering seen in [18], as we discuss below. This
leads us to suggest two further modifications, which we parame-
terise by 8,8, A, in addition to y, T" in [12]. Of these five parame-
ters, three will be fixed by tree-level scattering, and one more by
a semiclassical limit of the Bethe equations.

e In the one-loop dressing phase, an important difference from
the AdSs case is that the sum starts with a; 2Q1Q2 [10,5,6],
rather than a;3Q2Q3 as in (1). It seems natural to wonder
if this should apply to the classical phase too, and thus our
second proposal is to include a factor

Oone(X, y) = exp {i

h
o o -p el ©

We use O’Ot;e oars as the classical phase for different-mass scat-
tering only, with power 8 =1 most natural.

e The S-matrix derived in [13] contains a number of unfixed
scalars S“", each of which should include the dressing phase.
An ansatz for the remaining factors was given in [12], and our
third proposal is that this should be slightly modified, intro-
ducing a phase like the one needed for the string frame, but
with an arbitrary power. Explicitly, we set

1
_ Tyy+s
xyt\ 2T
xty-

5”<x,y>=(

1— +1 _ 1+2y
x [1_% s (X, y)} o3 (xy)
x~yt

2 The variables x* depend on the mass sy through

+ 1 1 .
X+—i:X+—il
X X

Sx

h

where h = /A/2m + ¢ + O(1/+/%) is the Bethe coupling, normalised as in [13,19,
12,18].

_ I'+A
S, y) = <" y+)

xty~

1— 1

x—yt

1 1 1420
ST
x [—y Ol (X, y) 0 (X, y)}

X 05 (X, Y). (7)

The expressions in [12] have unfixed y and T’ but § = A =0,
while going to the string frame would normally mean increas-
ing § and A by % We write the one-loop dressing phase oy
outside the power of 1+ 2y, as it was the total phase which
was calculated by semiclassical means in [6]. We omit the
two-loop and higher phases.

2. Tree-level BMN scattering

Let us now test this against the results of Sundin and Wulff
[18], who computed tree-level Feynman diagrams in the world-
sheet theory. To do this we must take the BMN limit, writing
p = p/h with p order 1 and h > 1. Then we can expand

S i(s 1
Xt = x+wx:|: (x+(1)x)+(,)( ),

Dy 2h h2
where wy=+/s2 + P2 = Ex(px) +....
The charges used above are Q1(x) = px = —ilog(x*t/x~) and, for
n>1,

0= [ 1 }
"(X)zn_l (X+)”*1 (Xf)nfl

s )

Apart from obvious phases, the other expansions we will need for
this limit are

1— = 2 i 1 4
&[ s ] 1 L s ey (L2
1 X71y+ Oone OAFS + oh Px(wy Sy)(sx ny>
- 1 48
+Py(0)x_5x) — = j|+
(sy ny)

xT—y~ _ i|. ~ a(ﬁx"‘ﬁy)z 1

a)x[’y - wyf’x h?
sx =Sy =« only.

Consider two bosons from the left sector of the theory, “1” of
mass « and “3” of mass 1—q. As in [18], and in [20,14], we should
allow for some unknown gauge dependence through a in addition
to the spin-chain S-matrix. However for the mixed-mass case we
allow two parameters b, ¢ (and expect them to be equal at o = %).
Thus we write the scattering amplitudes as

XT—y~

ia, . . B
A”(Xs Y)zeXp[_ M(wxpy _wypx)] = —yt SH(X, ),
Sx:Sy =
i/.wxDy ~wyp
A, y)=exp| - H(C%—bﬁ)]sw(x, ».

sx=a, sy=1—a. (8)
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The corresponding worldsheet results are in Eq. (3.2) of [18]. These
depend on the AFZ gauge parameter [21] which is a = % for the

simplest light-cone gauge?:
i a(px+p y)z

As(Px, Py) =14 =— =
WSEX £y Zhwxpy Wy Dx

+ %a ~20) by — 0y 5] + 0 ;)

AWs (P By) =1+ L(l —2a) [wxpy — wybx] + O(hZ)

2h
Matching Al = Alls and A'3 = A}, and demanding that I" % —
we find that
=1, (35F=l ASF:_l_ZF (9)
2 2
and

20=1+2y +@a—1Da, 2b=—(1+2I)+ 2a— 11 —a),
20=—(14+2IN+ (2a—Da.

We write §sg to indicate that these are the parameters in the string
frame; in the spin chain frame we have § =0 and A = -1 - 2T
instead.

The comparison performed in [18] used ogos for A'3 (and for
A, opos = oars). If we repeat this allowing arbitrary parameters
(including B, and demanding « # 3, I' # —1) we find that

p=0,

and 2a=1+2y +(a—a, 2b=1+2I + 2a— 1)(1 — ), 2¢ =
1+ 2l + (2a — 1. Setting y =T =0 returns precisely the phases
used in [18].

We can similarly check agreement for scattering with a “1” or
“3" particle in the right sector, using the same gauge phases d, b,
¢ as before with the appropriate $ matrix elements from [13]:

1
Isp=Asp= 3

All(x, y)
ia B 5 \/1 a #\/ a # 11
— e~ ha (@xPy—®yPx) " - sx, y)
— -
AB(x.y)
i x0xPy 7 wypx \/ ++\/1 = 3
— @Y —p ) Xy y B, y).
1-— X+y

The phases S“™ should be modified from those of [12] by the same
factors 8, A, i.e.

1
2

- 1- =7
staxyy=|—1 sy,
1=
] 1- 1 7%
SBay=|—=5-| s"&xy (10)
1— =

(and oy is replaced with org) and the worldsheet results are [18]
i 40Py P 1
L _dabby o1

A , =A , = -
Ws(px Py) Ws(Px py) oh OxDy — Wy px

h

Al (Bxs By) = Aws(Bx, Py).-
Clearly we obtain no new constraints from these.

3 These are A?% and A® in the notation of [18], where the particle of mass o
is “2”. We have also restored a factor 1/h.

3. Crossing relations

We can obtain a check on the phases described above from
crossing symmetry [22]. If we stay in the BMN limit there is noth-
ing to learn, since (by construction) we have not changed the
results. But if we take the semiclassical limit without small mo-
mentum (h > 1, p ~ 1) then we obtain a nontrivial check which
in fact mixes the classical and one-loop phases. The relevant equa-
tions from [12] for the scalars S (7) and S (10) are

X -y~

Vx— xt—yt

_ i(prpy)/4] —elPtpf2 o 1
=ie 1 eiopyz + (E)

_y X+

41— elPetp)/2

s, y»Ssx 7) =

13 13 oy
ST ySTHY) = X+_y+

— _ipiBpx—3py)

—ie'CP py/m‘f’ (11)
Here y indicates that the argument has been moved y* — 1/y*.
On the right we use x* = e*Px/2 4 O(1/h), and separate two fac-
tors: a phase and a trigonometric part. (There are two more cross-
ing equations, for S (x, 7)S11(x, y) and S13(x, 7)S13(x, y). These
can be treated almost identically.)

In this h > 1 limit we can write the complete dressing phase
as

O-Ol?le OAFS OLL Ohigher-loop

= exp [ih(BOone + Oars) + 101 + O(1/h)]
with each 6 of order 1. Considering (11) at order h in the ex-
ponent, the cancellation is very simple from (5) and (6), because

Qn(1/y*) = —Qa(y*) +O(1/h). At order h° it's easier to use form
(4) for the AFS phase. The exponent V(,—'iy(x—f— 1-y- %) has terms

at order h and h~! but not h°, so this first factor does not con-
tribute. The other two factors give

+ o+ + 1
OAFs(X™, Yy )XUAFS(X y—i)

] N Sx—. " sx+sy
W W
(Lo oE) w<1—fwx -5)"
T\ 1 y- _ 1 y-
1 vy 1= 1 xty~ T X
DxSy 1
=ex +(’)<—> .
p[ Wiy h
At the same order there is also a contribution from (6). Using

Q2(1/y%) = —Qa2(y®) — 2sy/h + O(1/h?) we see that it exactly
cancels the last equation if g =1:

aone(xi,yi)aone(xi, ii)—exp( 2PxSy +) (12)
y Wiy
Note that if 8 =0, it is difficult to imagine what would cancel the
phase ePx/2% from oaps in the S13513 case at generic o.*
For the remaining factors in S¢™ (7) and S“™ (10), the contri-
bution is

41f we wused (3) instead, the power would be an integer:

oBos (xt, yE) opos(xF, §k) = eP + O(1/h) in both the st and s13s13
cases.
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_ I4y+s 1 — _1_7'2r
gligii. x“yT\? T— 5
: xty— 1- 1

x~yt

1
1 - q—3+2y
N AtV ¥y 72
y X"y \?2 1— 27
xtyt _y
X

=i exp[—ipx(7/4+4y +28) +ipy /4] + O(1/h).

Combined with (e?x)21+2Y) from oars, and using coefficients (9)
with the spin-chain-frame § = 0, we get ePx/4 as in (11). For the
mixed mass case, the remaining contribution is instead

S1Bs13. _jexp [—ipx(5/4+4T +2A) —ipy /4] + O(1/h)
which combined with ooneoars gives ePx/4. In both cases the
power of e'Py does not yet match (11).

At order h° there will also be a contribution from the one-loop

phase. The semiclassical calculation of this in [6] gave the follow-
ing final answer for left-left scattering:

O, y5) = x xT y D) — x Ty ) = x Ty D F XLy
= (Iyx — Iy).

T1 9G(z, y¥) +
Iyx = — | dz ————= G(z, 13
yx Zlﬁﬂ/ 9z (z,x7) (13)
+ U
+
and for left-right scattering:

OR(E, Yy =1y =&y ) =X,y + X, y)

= (T —Tyy),
~ F1 3Gz, y*) 1 .
T=Y —— 57 Jg(=
x ZlGﬂ/dz 9z G(z’x)
+ 1]
+
where
g
G(z,xi)z—ilog<z X )—&.
Z—X" 2

Notice that G(1,x) = G(z,1/x*). Then it is easy to see that
O (xE, y&) 4+ O r(x*, 1/y*) = 0, and thus there is no contribu-
tion to crossing from evaluating at 1/y*. However in moving
y* — 1/y* we move some poles across contours.

Let us focus on the effect on the term ¥ (x*, y). The only pole
in the integrand at z=y* comes from 3,G(z, y*) in Tyx. Moving
the pole to z=1/y™ pulls it across U, anti-clockwise, and the
final pole has residue —iG(y*, x*). The contribution is then

i 1
Ax(xt yh) = 3 [— log(y™ —x%) + 5 logxq

There is a similar contribution from TXy. from the log cut. Together
these give the remainder of (11):

VP -y =yt
VxE =yt =y

1 ei(pxtpy)/2

GLZL(Xa Y)ULZR(Xa y) =

iy o
=¢ 1 _elhxpy2 (14)

4. Semiclassical limit of Bethe equations

Another check of the phases is to look at the semiclassical
limit of the Bethe equations, which should reproduce the finite-
gap equations. This calculation was also done in [12], so we do not
show much detail. But the result is changed by using our phase:
[12] found T =y + 1.

It suffices to look at the left sector, with Ky £ 0 and K3 #0
only. Then Eqgs. (4.5) and (4.7) of [12] become

2 =X [[L+1<1(l+y+5)+1<3(r+A)]
2a x2—1 2
l—-a-8
+Q1,2[1+(1+2)/)]+Q3,2[(1+2F)T}]
-1 (1+2I)
Xz_lT[OlQLl-i-(ﬁ—Ol)Qm]

1+T
+2][dy,01(y) - Q[UQM +@ —Ol)Q3,1]
xX—y o

2mnzx X 1
2(1_a)_xz_l{[L+I<1(F+A)+K3(7+y+8)]
a—p
+Q3,z[1+(1+2V)]+Q1,2[(1+2F)1_a]]
+ 21 [winding]+2][dy’03(y)+[constant]
x4 —1 X—y

(15)

where Qg is the total charge Q, of particles of type ¢ (and of
course Q4 is momentum, Q3 an energy). Define & to be the curly
brackets above (i.e. —% the sum of the residues at x = &1, divided
by the mass).

If we set &1 = &3 (which in the language of [23] means working
above the ¢ = ¢ vacuum) we find
B=1, )/—i—F:—%, §—A=1+2I. (16)
We have derived these constraints on the parameters independent
of the near-BMN comparison, (9), but the two are clearly compati-
ble. Using both (i.e. using (16) and § = 0) we get

2mE1 =2mé&s
=L—(1+T)(Ki+K3)—(1+2I)(Q1.2+ Q3.2).

5. Conclusion

In summary, we suggest three alterations to the classical dress-
ing phase given in [12] for strings in AdS3 x S3 x §3 x S!, when
scattering particles of different mass:

1. Preserve the AFS phase’s form 6Oaps = ih/W Z?iz [QrQ

Qr+1Q/]. which gives (4).

2. Start this sum from r = 1, giving one more term, (6) with
B=1.

3. Add an extra string frame-like phase, as in (7), with A =
—-1-2T.

/ f—
r+1

Testing these against the tree-level near-BMN scattering [18], we
find that given the first point, the other two are obligatory. And
all parameters but y and I' are then fixed. The crossing equations
(up to one-loop order) give a similar constraint; in particular the
first point requires the second. Finally the semiclassical limit of the
Bethe equations gives another, compatible constraint which also
relates y and T'.
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This leaves one free parameter. We conjecture that this is
y =0, and thus T = —%, because known string solutions can be
placed in one or both S3 factors, and this fact must be reflected in
the Bethe equations. As o — 0, 1 we approach AdSs x S3 x T* with
a unit radius sphere, and thus should recover the usual su(2) equa-

tion.> At o = % we can place exactly the same solution in each S3,

and the situation is very similar to that studied in AdSs4 x CP? in
[16], where it was necessary to scale the coupling h by the mass
of the particles.

The S-matrix has been compared to one-loop worldsheet scat-
tering only for massive modes at o = 1, when the background is
AdS3 x S3 x T* [18,7,24]. This is only sensitive to the equal-mass
phase S'1, and is thus unaffected by our proposal.®

In the case of AdS3 x S3 x T* with mixed NS-NS and R-R
flux, some issues of how to correctly define the AFS phase were
discussed in [25]. In that case, the dispersion relation is E(p) =

M2 +4h2(1 = x2)sin? (p/2) with M?(p) = (1:+ xhp)?, differing
for left and right sectors (with y = 0 for pure R-R). But no dif-
ferences from the earlier proposal of [26] are claimed at tree
level.

The dressing phase also matters a great deal in the quan-
tum Bethe equations; this is of course how the one-loop phase
was discovered [3]. Comparisons of such results against one-loop
energy corrections to spinning strings have been published in
[10,27], and (unlike AdSs x S°) they do not yet see perfect agree-
ment.
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