The University of Southampton
University of Southampton Institutional Repository

Developing safety performance functions for railway grade crossings: A case study of Canada

Developing safety performance functions for railway grade crossings: A case study of Canada
Developing safety performance functions for railway grade crossings: A case study of Canada

Although accident frequencies at railway grade crossings have shown a decreasing trend over the last two decades (partly due to implemented safety improvements and technological advances), safety at grade crossings is still a major concern since crossing accidents are usually associated with devastating consequences. This paper investigates the effect of various site attributes on railway crossing safety outcomes using recent Canada wide data from a 6-year period (2008-2013). The new data sets allow adjusting previous accident models according to latest circumstances (e.g., vehicles' improved safety features) affecting safety dynamics at crossings. Employing Bayesian hierarchical models including the non-conventional Poisson-Weibull model, different safety performance functions were separately developed for crossings with the following major warning systems: (1) flashing light and bell (FLB), (2) flashing light, bell, and gate (FLBG), (3) standard reflectorized crossing sign (SRCS), and (4) standard reflectorized crossing sign and stop sign (SRCS & STOP). Among other findings, the results indicated that traffic exposure (product of train and vehicle), number of lanes, whistle prohibition, train speed, and road speed were the most important factors affecting accident frequencies at Canadian railway crossings. It should be also noted that safety performance functions vary, in terms of independent variables and their associated coefficients, between the aforementioned warning devices.

American Society Of Mechanical Engineers (ASME)
Heydari, Shahram
0d12a583-a4e8-4888-9e51-a50d312be1e9
Fu, Liping
239058dc-3019-46af-9488-0bde99e6904a
Heydari, Shahram
0d12a583-a4e8-4888-9e51-a50d312be1e9
Fu, Liping
239058dc-3019-46af-9488-0bde99e6904a

Heydari, Shahram and Fu, Liping (2015) Developing safety performance functions for railway grade crossings: A case study of Canada. In 2015 Joint Rail Conference, JRC 2015. American Society Of Mechanical Engineers (ASME). 7 pp . (doi:10.1115/JRC2015-5768).

Record type: Conference or Workshop Item (Paper)

Abstract

Although accident frequencies at railway grade crossings have shown a decreasing trend over the last two decades (partly due to implemented safety improvements and technological advances), safety at grade crossings is still a major concern since crossing accidents are usually associated with devastating consequences. This paper investigates the effect of various site attributes on railway crossing safety outcomes using recent Canada wide data from a 6-year period (2008-2013). The new data sets allow adjusting previous accident models according to latest circumstances (e.g., vehicles' improved safety features) affecting safety dynamics at crossings. Employing Bayesian hierarchical models including the non-conventional Poisson-Weibull model, different safety performance functions were separately developed for crossings with the following major warning systems: (1) flashing light and bell (FLB), (2) flashing light, bell, and gate (FLBG), (3) standard reflectorized crossing sign (SRCS), and (4) standard reflectorized crossing sign and stop sign (SRCS & STOP). Among other findings, the results indicated that traffic exposure (product of train and vehicle), number of lanes, whistle prohibition, train speed, and road speed were the most important factors affecting accident frequencies at Canadian railway crossings. It should be also noted that safety performance functions vary, in terms of independent variables and their associated coefficients, between the aforementioned warning devices.

Full text not available from this repository.

More information

Published date: 2015
Venue - Dates: ASME/ASCE/IEEE 2015 Joint Rail Conference, JRC 2015, San Jose, United States, 2015-03-23 - 2015-03-26

Identifiers

Local EPrints ID: 424168
URI: http://eprints.soton.ac.uk/id/eprint/424168
PURE UUID: e923bab9-a018-4562-bd4b-fb27e3f142b2

Catalogue record

Date deposited: 05 Oct 2018 11:31
Last modified: 06 Nov 2018 17:30

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×