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Abstract
Acoustic black holes are structural features that have a varying thickness profile, and provide a potential
lightweight damping solution for flexural vibrations. In practical applications, the length of an acoustic
black hole will be constrained by the available space and the minimum tip height will be limited by both
the manufacturing capabilities and strength requirements. Therefore, the power law of the taper is often the
critical design parameter. In this paper, a parametric study of an acoustic black hole termination on a beam
is presented with practical constraints on the length and tip height. The reflection coefficient of the acoustic
black hole has been calculated for a range of power laws and it has been shown that, for a fixed power law,
the reflection coefficient varies over frequency and exhibits bands of high and low reflection. These bands
can be related to modes of the acoustic black hole. In addition, it has been found that an optimum power law
exists for minimising the broadband average reflection coefficient for each acoustic black hole configuration.

1 Introduction

The acoustic black hole effect, as described by Mironov in 1988 [1], is a phenomenon that occurs when a
beam or plate is tapered to a point, over a distance equal to or larger than the acoustic wavelength. Figure

Figure 1: A diagram of an acoustic black hole taper.

1 shows an example of an acoustic black hole, seen as the tapering of the beam to a point via a power law
curve. The behaviour of such an acoustic black hole can be explained by considering flexural vibrations
travelling down a tapered Euler-Bernoulli beam. As the vibrations propagate towards the tip, their velocity
is reduced following the relationship
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whereE is the Young’s modulus of the beam material, h(x) = εxµ+htip is the height function of the beam, ω
is the angular frequency of the vibrations, ρ is the density of the beam material and ν is the poisson ratio [2,3].
For a tapered semi-infinite plate, the same equation may be used by the inclusion of the poisson ratio term:
1/(1 − ν2) [4]. It can be seen, from equation 1, that the wave speed in a tapered beam is proportional to
the square root of the beam height. It follows that, as the height function tends to zero, the velocity of a
propagating wave converges to zero. Hence, the propagating wave will theoretically never reach the tip of
the taper and therefore will not reflect back out of the taper. In reality, a perfect and infinite tapered beam
cannot be manufactured and the structural integrity of the acoustic black hole is questionable for very thin tip
heights. It has previously been shown that the acoustic black hole effect is negligible for practical tip heights,
but that improvements could be made to the effectiveness by applying thin viscoelastic damping layers to
either one or both sides of the taper, which results in a significant reduction in the reflection coefficient from
the acoustic black hole [5–7]. It is clear that there is a tradeoff between practicality and performance in the
design of acoustic black holes.

Over time, there has been an increase in the amount of literature modelling more practically dimensioned
acoustic black holes. This has coincided with an increase in experimental studies, used to validate the models,
which are limited by manufacturing restrictions on the tip height and length of the taper. The thickness tends
to range from about a 10mm beam or plate height down to a 0.25mm tip height. The taper lengths are usually
up to 10cm long and the power law of the taper tends to be between 2 and 4. Damping layers, applied to the
acoustic black hole taper, have usually been thin but theory predicts that the thickness of the damping layer
can be up to six times the thickness of the base layer before the increase in loss factor diminishes [8, 9].

So far, work has been done that examines the influence of the tip height and power law on the modal density
of an acoustic black hole on a beam [10]. It has been shown that a smaller tip height significantly increases
the modal density of an acoustic black hole. Higher power laws cause a slight increase in modal density.
The modal density of the acoustic black hole on a beam was not found to be related to the modal density
of a uniform beam [10]. In addition to this, band gaps have been observed in acoustic black holes. For an
acoustic black hole cell, the mode shapes of the bounding frequencies of the band gaps have been matched to
the mode shapes of the resonant frequencies [11]. These band gaps have also been shown to vary in range and
frequency when the power law of the acoustic black hole taper is changed, and when the tip height is changed.
The optimum thickness of damping has been investigated with the use of a laser as both an excitation and
measurement device, which also allowed visualisation of wave propagation and small imperfections in the
structure [7].

This paper will investigate the potential link between the reflection coefficient of an acoustic black hole, the
band gaps mentioned in [11] and the different controllable parameters of an acoustic black hole. In this paper,
a finite element model of a lightly damped acoustic black hole on a beam is presented and used to investigate
the design tradeoff between the geometric parameters. The reflection coefficient for frequency dependant
parameter sweeps and broadband frequency parameter tradeoffs is then shown and there is a discussion of
the findings. A link between the modes of an acoustic black hole and the power law of the taper is presented
alongside a discussion about optimising the power law for practical application. Finally, the conclusions of
this work are presented.

2 The finite element model of an ABH on a beam

In order to carry out a parametric study of the acoustic black hole, a finite element model of an acoustic
black hole on the end of a long beam has been developed. The beam was assigned a width of 4cm, a length
of 3m and a height of 1cm. The acoustic black hole shared the same width and starting height as the beam.
The beam and taper were both assumed to be constructed from aluminium and a small amount of isotropic
damping (η = 0.07) was applied to the acoustic black hole taper in addition to the natural damping properties
of aluminium. It should be noted that isotropic damping does not have frequency dependant characteristics
and is therefore not the most accurate representation of a practical, thinly applied, damping layer. However,



isotopic damping was considered to be suitable for this investigation since it is the profile of the taper that
is being investigated rather than the damping layer itself. The initial conditions of the acoustic black hole
were set to stationary and the boundary conditions of all the edges were set to free. A point force of 10N
was applied to the end of the beam furthest from the acoustic black hole. Finally, the two dimensional
model was meshed using an edge element mesh. To determine the necessary mesh size, a convergence
study was carried out which determined the number of elements required per wavelength for both the beam
section and the acoustic black hole section. Although it is possible to mesh the acoustic black hole with
a spatially varying element size, for simplicity the acoustic black hole was meshed in a uniform manner
and the reference wavelength was taken from the tip so that there would be at least the required number
of elements per wavelength to obtain accurate results. An example of the difference in mesh size for the

Figure 2: The meshing difference between the beam, on the left, and the acoustic black hole, on the right.

acoustic black hole and beam section is shown in Figure 2, where the difference in mesh resolution for the
beam and taper sections is clear. The displacement of the acoustic black hole calculated by the model when
it is being excited at 2kHz is shown in Figure 3. Note that, because the displacement has been magnified

Figure 3: The position along the taper plotted against the displacement of the taper for an excitation of 10N
at 2000Hz. The flexural wave speed is shown as a colour scale.

for clarity, the taper height in Figure 3 is not to scale. The flexural wave speed has also been included to
demonstrate the acoustic black hole effect (ie the slowing of the wave speed) occurring towards the tip. For
reference, the dimensions of the model can be found in the default column of Table 1 in Section 3.

Figure 4: The evaluation points used on the beam for measurement of the acoustic black hole reflection
coefficient.



Two evaluation points were added midway along the beam section, shown in Figure 4, at x = −1.55m and
x = −1.45m to allow calculation of the reflection coefficient. The transverse acceleration of the beam was
evaluated at these two points. Based on the sensor separation, an upper frequency limit can be been defined
as

fmax =
cb

2∆x
(2)

where ∆x is the separation between the two sensor points and fmax is the upper frequency limit [12]. The
influence of near field effects can be assumed negligible (max contribution ≈ 0.04) if the sensor array is at
least half a wavelength away from the primary source and any significant changes in the structure (ie the
ABH). Therefore, a lower frequency limit can be defined as
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where fmin is the lower frequency limit and ` is the distance from the sensor array to the primary source [12].
The evaluation points were 1.45m from either the input force or the discontinuity in the beam formed by the
taper and therefore near field effects could be neglected at frequencies above 0.06Hz. Therefore, assuming
these limits are fulfilled, the wave amplitudes of the positive and negatively travelling propagating waves can
be calculated as
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where a is the measured acceleration at the data acquisition points 1 and 2 (shown in Figure 4), A and B are
the complex amplitudes of the positive and negative travelling waves respectively, ω is the angular frequency
and kB is the bending wavenumber, calculated as
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where ρs is the cross-sectional density, S is the cross-sectional area,E is the Young’s modulus of the material
and Iz is the cross-sectional moment of inertia. The reflection coefficient can then be calculated by taking
the ratio of the reflected to the incident wave amplitudes,

R =

∣∣∣∣BA
∣∣∣∣. (7)

This technique has commonly been used for the calculation of the reflection coefficient for acoustic samples
[12–15] and also for vibrational samples in acoustic black holes [16].

3 A parametric study and modal analysis of acoustic black holes

To investigate the effect that design parameters have on the acoustic black hole performance, a parametric
study has been performed and the reflection coefficient has been evaluated as a function of the different
parameters. The three parameters of interest: tip height, taper power and taper length were swept over
the ranges specified in Table 1. The parameter ranges were chosen with a consideration of manufacturing
restrictions. The acoustic black hole taper has been defined using the geometrical expression

h(x) = ε[(l − x)/l]µ + htip (8)



Parameters
Parameter Range being swept Default if not being swept
Power law (µ) 2 to 10 4
Taper length (l) 50mm to 500mm 70mm
Tip height (htip) 0.5mm to 10mm 0.5mm
Frequency (f ) 100Hz to 10000Hz -
Beam height (hbeam) - 10mm
ABH / Beam width - 40mm
ABH isotropic damping (η) - 0.07
Structure material - Aluminium

Table 1: The range over which each parameter was swept in the finite element model and the default values
for the structural parameters.

where ε = hbeam−htip. This expression Provides an exponentially decreasing taper, whilst allowing separate
control over the taper length, tip height and power law, allowing each parameter to be changed independently.

The frequency was swept on a logarithmic scale from 100Hz to 10000Hz using the expression

frange = 10log10(fmin) : 1/490 : log10(fmax) (9)

in order to account for the smaller bandwidths of low frequency resonances by increasing the frequency step
density at the low end.

It is important to note that due to the low damping factor used, the reflection from the acoustic black hole
is generally relatively high. This paper aims to provide insight into how the behaviour of an acoustic black
hole can be related to its modal characteristics and this behaviour is clearer for low damping factors and,
therefore, a low damping factor has been used to provide physical insight into the behaviour.

Figure 5a shows how the reflection coefficient of the acoustic black hole varies with different tip heights over
a frequency range of 100Hz to 10000Hz. The results show that for smaller tip heights, the frequency bands
of low reflection decrease in width but increase in density so that there is, in general, a lower amount of
reflection from the tip. Also, at higher frequencies the bands of low reflection are wider and therefore there
is less reflection from the tip at higher frequencies. These results demonstrate that there is periodic spectral
variation in the reflection coefficient of an acoustic black hole that is dependant on the tip height.

Figure 5b shows how the reflection coefficient of the acoustic black hole varies with taper length over a
frequency range of 100Hz to 10000Hz. The results show that at any frequency, a longer acoustic black
hole taper produces a lower reflection coefficient. At higher frequencies, there is less reflection for any
taper length. Considering the small damping coefficient used, a longer taper length appears to produce very
low reflection, which indicates that the acoustic black hole effect is working well. These results are also
consistent with the literature and demonstrate that the performance of an acoustic black hole is better for
longer taper lengths and at higher frequencies. These results also show the spectral variation in the reflection
coefficient of an acoustic black hole.

Figure 5c shows how the broadband average of the reflection coefficient varies with the taper length and tip
height of an acoustic black hole. These results show that on average, the reflection decreases for longer tapers
and for smaller tip heights. At a taper length shorter than 0.05m, the practical range of tip heights that were
examined appeared to have no effect on the average broadband reflection coefficient. As the taper length
increases above 0.05m, the tip height of the acoustic black hole has more influence on the average broadband
reflection coefficient and a smaller tip height produces lower reflection. For any tip height examined, the
average broadband reflection coefficient decreases as the taper length increases. There was a 0.12 average
difference in the reflection coefficient between the smallest and largest tip height and, in contrast to this,



(a) Tip height plotted against frequency for an acoustic
black hole with a taper length of 70mm and a power law
of 4.

(b) Taper length plotted against frequency for an acoustic
black hole with a tip height of 0.5mm and a power law of
4.

(c) The tradeoff between the tip height and the taper length
of an acoustic black hole with a power law of 4.

Figure 5: The reflection coefficient, plotted on a scale of 0 to 1, as a function of frequency and a parameter
(5a, 5b), and as a tradeoff between two parameters for a broadband frequency average (5c).

there was a 0.49 average difference in the reflection coefficient between the shortest and longest taper length.

Figure 6 shows how the reflection coefficient of an acoustic black hole varies with the taper power law over
a frequency range of 100Hz to 10000Hz. These results show that as the power law of the taper increases
for a single frequency, a particular range of power law values produces a low reflection coefficient. At
higher frequencies, there are more power law values that produce a low reflection coefficient for a specific
frequency. For any given power, at higher frequencies the bands of low reflection are wider. At low power
laws, these bands become very wide and this results in a cut-on frequency for each power law, above which
the acoustic black hole produces low reflection.

The white dotted lines shown in Figure 6 show how the frequencies of the first five modes of the acoustic
black hole cell vary with the power law. The acoustic black hole cell is the acoustic black hole without the
beam section (i.e. just the taper). From the results shown in Figure 6, it can be seen that the modes of the
acoustic black hole occur at the same frequencies as the minima in the reflection coefficient. It can also be
seen that as the power law increases, the modal frequencies decrease. The power law could, therefore, be
used to tune the modal frequencies and thus the frequency bands of low reflection. In practice, this could be



Figure 6: The power law of the taper plotted against frequency for an acoustic black hole with a tip height
of 0.5mm and a taper length of 70mm. The reflection coefficient is represented by a colour scale from 0 to
1. An overlay of the first 5 modal frequencies for different power laws, and their shapes, are shown by the
white dotted lines.

used to tune the bands of low reflection to the resonant frequencies of a structure.

Figure 7a shows the tradeoff between the power law of the acoustic black hole and the taper length. These
results show that there is an optimum power law for the average broadband performance of an acoustic black
hole at a specific taper length. For a longer taper length, the optimum power law is slightly higher than for
a shorter taper length. The optimum power law at each taper length is shown by a dotted white line. This
confirms that the power law, a key controllable parameter, can be optimised for a specific taper length. Figure
7b shows the tradeoff between the power law of the acoustic black hole and the tip height. These results show
that there is an optimum power law that can be used to achieve a minimum average broadband reflection at
a specific tip length. For a larger tip height, the optimum power law is higher than for a smaller tip height.
The optimum power law at each tip height is shown by a dotted white line. The power law can therefore be
optimised for a specific tip height. As seen earlier in Figure 5c, over a practical range with a small amount
of damping, increasing the taper length appears to have more influence on the reflection coefficient than
decreasing the tip height. However, both Figures 7a and 7b show that for an acoustic black hole of practical
dimensions (shown as the default values in Table 1), the optimum power law is approximately 4. Optimising
and tailoring the power law can be useful, for example, when the working environment of an acoustic black
hole is restricted geometrically. In such a scenario, the power law can still be used to optimise the broadband
reflection coefficient for the particular length and tip height of the acoustic black hole.

4 Conclusions

This paper presents an extended study of how the controllable parameters influence the reflection coefficient
and broadband frequency average reflection coefficient of an acoustic black hole on a beam. An investigation



(a) The tradeoff between the power law of the taper and the
taper length for an acoustic black hole with a tip height of
0.5mm.

(b) The tradeoff between the power law of the taper and the
tip height of the acoustic black hole. The taper length was
set at 70mm.

Figure 7: The broadband frequency average reflection coefficient, plotted on a scale of 0 to 1, as a tradeoff
between the power law and the taper length (7a) and the power law and the tip height (7b). For both tradeoffs,
the optimum power law for a minimum broadband reflection coefficient has been marked on with a dotted
white line.

was carried out to determine how the power law of an acoustic black hole can be used as a key design
parameter for acoustic black holes with practical dimensions and a modal analysis was performed to observe
the modal band gaps in the reflection coefficient and their dependance on the power law of the taper.

It has been shown that an acoustic black hole has a higher performance if designed with a longer taper length
and smaller tip height. The influence of these two parameters on the reflection coefficient of the acoustic
black hole has been shown for a range of sweep values and a tradeoff between the two parameters has also
been shown. The results are as predicted for individual cases in the literature: a longer taper and smaller
tip height produces a better energy absorption and therefore a lower reflection coefficient. However, when
designing acoustic black holes for practical applications, these two parameters are likely to be constrained,
leaving the power law of the acoustic black hole taper as the key controllable parameter.

The reflection coefficient of an acoustic black hole has been shown to exhibit spectral variation over a range
of power law values, present as frequency bands of low reflection. Raising the power law has been shown
to shift the bands of low reflection down in frequency and also increase the width of the bands. The modal
analysis has shown that the frequencies of an acoustic black hole’s modes match the frequencies of the bands
of low reflection coefficient. The frequency of the modes has been shown to change with the power law of the
taper, making the power law a key controllable parameter when designing acoustic black holes, especially
for practical applications where the length and tip height may be constrained. A tradeoff plot between the
tip height and the taper length of an acoustic black hole has shown that, for the practical parameter range
investigated, increasing the taper length had more influence on the reflection coefficient than decreasing the
tip height. Tradeoff plots between the power law and both tip height and taper length have both shown
that there exists an optimum power law for the geometry of an acoustic black hole that results in the lowest
broadband refection coefficient. For the practically dimensioned acoustic black hole tested this was found to
be around 4. When utilised in a practical application, an acoustic black hole might be used to damp particular
frequency bands or provide an overall attenuation in a restricted space. Both of these cases can be optimised
by changing the power law of the acoustic black hole taper.
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