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The difficulty of describing the gauge dependent biquark condensate in the QCD color superconducting
phase has made it hard to construct a holographic dual of the state. To side step this problem, we argue that
near the chiral restoration transition in the temperature-chemical potential plane, the strongly coupled
gluons are likely completely gapped so that the color quantum numbers of the quarks can be thought of
below that gap as global indices. A standard anti-de Sitter–superconductor model can then be used to
analyze the fermionic gap formation. We investigate the role of four-fermion interactions, which might be
used to include the gapped QCD interactions, on the vacuum and metastable vacua of the model. It turns out
to be easiest to simply relate the standard interaction of the holographic superconductor to the strength of
the gapped gluons. The result is a holographic description of the QCD color superconducting phase
diagram. We take a first look at how quark mass enters and causes a transition between the color-flavor
locked phase and the two flavor color superconducting phase.
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I. INTRODUCTION

A fermionic system at finite chemical potential is
expected to develop a Fermi surface. It is known that if
there is any attractive interaction between the fermions,
Cooper pair condensation will occur, causing supercon-
ductivity or superfluidity. This was made transparent to a
particle physics audience by the renormalization group
flow analysis of Refs. [1] (updated to a relativistic system in
Ref. [2]). This fact leads to the natural expectation that
quarks will condense in high density QCD, and there has
been considerable work on understanding the phase struc-
ture over a number of years (see, e.g., the review [3]).
Typically, the preferred condensation channel is expected to
break the color gauge group, so the phenomena is referred
to as color superconductivity (CSC).
At very large chemical potentials, QCD is believed to

become weakly coupled due to asymptotic freedom, and an
exact computation of the condensation pattern is possible
[4]. The more experimentally interesting case, though, is
when the density and temperature of the quark gluon
plasma are of order the strong coupling scale Λc, and here
the strongly coupled nature of the problem makes precise
computation tricky. Gap equation and renormalization

group analysis have been done, and there is a large amount
of literature on the possible phase structure as a function of
Nf and the quark masses [3].
Over the last two decades, holography has emerged as a

new tool to study strongly coupled gauge theories [5]. It
provides the ability to rigorously compute in theories close to
largeNc N ¼ 4 super Yang-Mills theory (including theories
with quarks [6]) using aweakly coupled gravitational/stringy
dual. The framework has been expanded phenomenologi-
cally to anti-de Sitter (AdS)/QCD type models of a wider
space of theories [7]. It has been natural throughout this
period to attempt to study the CSC phase of QCD with this
new tool. There is immediately a number of large obstacles,
though. TheCSCeffect is subleading in the largeNc limit [8].
The condensate depends on Nc, so there is no clear large Nc
limit. Finally, the dimension-3 condensate likely breaks the
gauge group, yet on the gravitational side, only gauge
invariant operators are manifest, so it is not clear how to
even pose the problem (the gauge invariant square of the
operator is dimension 6 but a stringy state in the dual theory).
Nevertheless, an instability to pair condensation of gauginos,
which can form a color singlet pair, in the presence of a
chemical potential was observed, e.g., early on in Ref. [9].
This idea was phenomenologically used to develop AdS
descriptions of superconducting condensed matter systems
[10], leading to the AdS/Condensed Matter (CM) field of
study. Holographic studies of related instabilities in theories
with scalar quarks have also been studied in Refs. [11].
In this paper, we want to return to the problem in QCD.

The obstacles above remain grave, so our approach will be
to side step them. In the intermediate density phase of
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QCD, the quark gluon plasma is strongly coupled and full
of free electrically charged quarks and presumably
composite, magnetically charged scalars (see Ref. [12]
for a recent discussion). The latter condense below the
chiral phase transition to cause confinement (at least in the
pure glue theory). Above the transition, such states will still
be present if not condensed. The expectation is that these
fields, through loop diagrams, will generate a Debye mass
of order g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ2

p
for both the electric and magnetic

gluons (the latter are not gapped at weak coupling where
there are no magnetic charges present [13]). We will posit
here that, because g is large, there can be an order of
magnitude gap between the gluon mass and the chemical
potential/temperature scale. We will squeeze a holographic
description, in the spirit of AdS/QCD, into this energy
regime. Since the gluons are gapped, we will dodge the
issue of treating the SU(3) color symmetry of the quarks as
a gauge symmetry and instead impose it as just a flavor
symmetry. Although the biquark condensate will further
gap the gluons, we presume this to be a small effect relative
to the Debye screening. These assumptions will save us
from the problems encountered holographically to date.
We stress that we work in a phenomenological bottom-

up fashion in the spirit of AdS/QCD (at Nc ¼ 3) or AdS/
CM (where phonon interactions of electrons are described).
We will use an AdS space to phenomenologically describe
the conformal symmetries of the free fermions below the
Debye gap scale, which are then broken by the operators
and sources of the theory that appear in the bulk—for
example, temperature, chemical potential, etc. One should
of course worry that at low Nc the bulk modes might
become strongly coupled and stringy, but the AdS/QCD
philosophy is to soldier on and measure success by the
output. Our model is at heart the simplest AdS/super-
conductor model [10]. We still need to correctly describe
the broken QCD interactions that generate the Cooper pair
condensation. We will discuss reintroducing the inter-
actions as four fermion terms using Witten’s double trace
prescription [14] (recent work on developing the hologra-
phy of four fermion operators can be found in
Refs. [15,16]). There are subtleties in this analysis includ-
ing excited states of the vacuum, and it turns out that an
infinitely repulsive force is needed to switch off the
inherent attractive channel of the base AdS/superconduc-
tivity model. We will conclude we should just choose to
tune the intrinsic pairing interaction of the holographic
model to represent the broken QCD interactions on the
global color degrees of freedom (d.o.f.). The goal of this
Paper is to study such broken gauge interactions in the
quark gluon plasma to develop a sensible description of the
CSC phase in the QCD phase diagram.
Let us quickly review the CSC condensation patterns that

will interest us here [3]. The superconducting condensation
is triggered by a chemical potential for Uð1ÞB and the
associated quark number density. In all cases, we are

interested in the condensation of a biquark operator with
quark number 2 or baryon number 2=3. We assume that at
strong coupling the 3̄ color channel remains attractive as at
weak coupling while the 6 is repulsive so the condensation
is the usual antisymmetric 3̄ state. A spin 0 condensate is
formed from an antisymmetric combination of spins. The
flavor wave function of the condensate must also therefore
be antisymmetric. First, with three massless quark flavors,
this implies the condensate is an antisymmetric flavor 3̄
also. We can represent this state by the matrix (we show the
makeup of the 3̄s of color and flavor in terms of the
constituents)

R̄ Ḡ B̄

BG − GB BR − RB RG −GR

ū sd − ds j Δ1 j
d̄ su − us j Δ2 j
s̄ ud − du j Δ3 j

:

ð1Þ

In the three flavor massless limit the expectation is that
the condensate will be the diagonal as shown with all Δi
equal—this is the color-flavor locked state [17]. As the
strange quark becomes massive, the condensates of the top
two rows (Δ1, Δ2) switch off, and we expect to find a
vacuum expectation value (vev) for the triplet, SU(2) flavor
singlet of the bottom row (Δ3)—this is the 2SC phase of the
massless two flavor case. Note all of these states carry net
color charge, although we have argued the main source of
gluon mass is the Debye screening rather than the Meissner
induced mass. In the holographic model, we will describe
an AdS-scalar ψ that is dual to an element Δi of this matrix
which acquires a vev. We will seek the phase boundary
where the condensate switches on in the T − μ plane. We
will briefly discuss including a quark mass in our final
section to display a transition between the color-flavor
locked and the 2SC phases, although as we will stress, the
analysis is very naive, and challenges remain to find a
complete holographic picture.
In Sec. II, we will review the origin of the electric and

magnetic Debye gluon masses that generate a gap. In
Sec. III, we review the AdS superconductor model that we
will use including fields for each of the biquark gaps we
consider. In Sec. IV, we look at the role of four quark
operators in the supercondutor model including the role of
unstable minima of the model. In Sec. V, we match the
superconductor model’s coupling to the QCD coupling in
the T − μ plane to predict the gap size. In Sec. VA, we
discuss how quark mass would enter the holographic model
to suppress the biquark condensates. Finally, in Sec. VI, we
conclude.
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II. ELECTRIC AND MAGNETIC DEBYE MASSES

Our arguments about the gapping of the gluonic d.o.f. are
important to our approach, sowewill briefly review the ideas
already in the literature in more detail. At high density QCD
is believed to becomeweakly coupled, and one can explicitly
compute in perturbation theory [13]. Here, it is then known
that the electric A0 gluon components acquire a Debye mass
of order gμ. The magnetic Ai d.o.f., though, are not fully
screened but instead Landau damped. Their self-energy
behaves as Σ2 ∼ g2μ2jq0j=jqj with q the gluonic four-
momentum. In such weakly coupled theories, if color
superconductivity sets in, then the charged gap is the only
source of mass for the magnetic gluonic d.o.f. Indeed, a
central point of the analysis in Ref. [4] was to include the
effects of the Landau damping in the estimate for the
gap scale.
We argue, though, that at low chemical potential, which is

relevant for neutron star and heavy ion collisions, the
behavior is probably rather different. In particular, we expect
theQCDplasma to containmagnetically charged scalars (see
Ref. [12] for a recent discussion) because of their role in
confinement below the chiral/deconfinement transition. If
such (composite) states do exist, then they will simply
through one loop diagrams generate a Debye-like mass
for the magnetic Ai gluonic d.o.f., too. Now, all the gluons
are gapped at the scale gμ, which for chemical potentials in
the hundreds ofMeVand for g ∼ 4π aremuch higher than the
superconductor gap scale, which is typically estimated in the
tens ofMeV.This separation of scalesmotivates a description
of color supeconductivity in which the quarks exist as the
sole d.o.f. in the low energy theory below gμ interacting only
by four fermion operators generated by the gluons. In such a
description, the color quantum numbers of the quarks will
appear as global quantum numbers (although a full descrip-
tion of all higher-dimension operatorswould secretly include
gauge invariance). Since holographic color superconductor
models describe the breaking of global symmetries, we can
now hope to apply that framework to this energy regime in
high density QCD.Note that we assume that the contribution
to the gluon gap from the low scale superconducting
condensate is small relative to the Debye masses generated
by the plasma so that the cutoff scale and gap can be
considered disconnected.

III. ADS SUPERCONDUCTORS

As a first start in this paper, we will just address the CSC
phase, which is the novel physics of interest. We will
assume the chiral transition, where the q̄q condensation
occurs, is at the scale where the QCD coupling diverges Λc.
Thus, consider T, μ scales above this energy scale only. One
finds the phase diagram in Fig. 5.
Let us begin by setting up a very simple AdS description

of superconductivity following the start up model of
Ref. [10]. We place our description in a black hole
geometry (which we will not backreact)

ds2 ¼ r2ð−fdt2 þ dx⃗2Þ þ 1

r2f
dr2; f ¼ 1 −

r4H
r4

: ð2Þ

Here, x⃗ ¼ x, y, z are the boundary coordinates, and the radial
distance is r so that the boundary is located at infinity. The
usual relation between temperature and the horizon position
is rH ¼ πT (we have set the AdS radius to 1).
In our setup we consider a scalar field, ψ i, to represent

the quark bilinear Δi from (1) (here, a component of the
quark bilinear in the 3̄ of color) with baryon number
B ¼ 2=3 and dimension 3, and a gauge field associated
with Uð1ÞB of which the At component will describe the
chemical potential. We use an action,

L ¼ −
1

4
FμνFμν − j∂ψ i − iBAψ ij2 þ 3ψ2

i ; ð3Þ

the mass is picked to be minus 3 in units of the AdS radius
since this corresponds holographically viaM2 ¼ ΔðΔ − 4Þ
to a dimension-3 operator. We have neglected any order ψ4

interaction terms between different ψ i.
The equations of motion are

ψ 00
i þ

�
f0

f
þ 5

r

�
ψ 0
i þ

B2

r4f2
A2
tψ i þ

3

r2f
ψ i ¼ 0 ð4Þ

and

A00
t þ

3

r
A0
t −

X
i

2B2

r2f
ψ2
i At ¼ 0: ð5Þ

Asusual, for regularity, one requiresAt ¼ 0 at the horizon,
which implies from the first equation of motion that

ψ 0
i ¼ −

3

4rH
ψ i: ð6Þ

Note that strictly at T ¼ 0 we cannot assume this boundary
condition and the model is not complete. We will use the
model to work out the edge of the phase boundary at finite T
and not address the T ¼ 0 state.
There is always a solution,

ψ i ¼ 0; At ¼ μ −
μr2H
r2

: ð7Þ

There are more complex solutions that we can find
numerically by shooting out from the horizon. In the UV,
they take the form

ψ i ¼
Jc
r
þ c
r3

þ � � � At ¼ μþ d
r2

þ � � � ð8Þ

c is interpreted as the Cooper pair condensate, O ¼ ψψ , Jc
is the source for that operator (which carries both color and
flavor indices generically), μ is the chemical potential, and
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d is the density. Since there are two constraints on ψ , ψ 0, At,
A0
t at the horizon, we get a two parameter family of

solutions [set in the IR by ψðrHÞ and A0
tðrHÞ, which we

label by the values of Jc and μ, predicting c and d].
For example, let us consider the casewith a singleψ i field,

which might describe Δ3 in the two flavor case. Note that if
there is more than one identical ψ i then there is an effective
factor of Ni in the interaction term in (5). This can be
removed by rescaling the ψ i by 1=

ffiffiffiffiffi
Ni

p
leaving the same

equations to be solved. In practice, this means the color-
flavor locked (CFL) condensates will be a factor of

ffiffiffi
3

p
smaller than the 2SC computations we make. Crucially,
though, the phase boundaries remain at the same coupling
values. For this reason,wewillmainly study theNi ¼ 1 case.
Now, we can solve (4) and (5) numercially. In Fig. 1(a)

for T ¼ 0.1, we plot the solutions of ψ (we plot rψ , which
asymptotes to Jc in the UV), where in each case A0

tðrHÞ has
been adjusted to set μ ¼ 1.0. In Fig. 1(b), we show
solutions for μ ¼ 5.0. At low μ, there is no symmetry
breaking—the only solution with Jc ¼ 0 is that with ψ ¼ 0
so that c ¼ 0. For the higher value of μ, the solution that
asymptotes to Jc ¼ 0 is symmetry breaking (the curve

shown with the highest IR value)—this solution has a
nonzero condensate c. The physics here in AdS is that the
chemical potential generates an effective negative mass
squared for the scalar ψ, and when it violates the
Brietenlohner-Freedman (BF) bound of M2 ¼ −4 [18],
an instability to ψ condensation results.
In Fig. 2, we plot the value of the condensate against μ

for the Jc ¼ 0 embeddings at fixed T ¼ 0.1 and show there
is a second order transition. Note that the presence of this
transition means the model has an intrinsic attractive
interaction built into it—condensation would not occur
otherwise. Below, we will investigate switching off this
intrinsic attraction by switching on a repulsive four fermion
interaction but also move to adjusting its strength to play
the role of the QCD interactions.
The model has interesting structure beyond the basic

transition. If in the broken phase we allow ψðrHÞ to fall
below the value that generates the Jc ¼ 0, c ≠ 0 solution,
there are solutions, shown in Fig. 1(b), that asymptote to
negative Jc. A minimum Jc is encountered as one lowers
ψðrHÞ, and the UV value of Jc then rises again. There is a
further solution with Jc ¼ 0, c ≠ 0, where the ψ function
dips once below the axis. This is an excited state of the
vacuum where the first radially excited state of the bound
states associated with ψ has condensed rather than the
ground state. As ψðrHÞ falls, further excited states can
occur, with condensation of higher and higher excitation
modes. We demonstrate this by plotting the solutions in the
Jc, c plane for μ ¼ 5, 10 in Fig. 3, where a spiral structure is
revealed. As the spiral moves between quadrants of the
plane, the solutions for ψ change—first, there are solutions
for which ψ is always positive, and then when the solution
falls below the axis in the UV, we switch to negative Jc and
so on. This is typical in holographic models of symmetry
breaking having first been identified in the D3/D7 system
with a magnetic field [19]. These extra vacua will play an
interesting role in the discussions to come.
We will next turn to introducing NJL interactions into

the model.

(a)

(b)

FIG. 1. (a) The ψ functions in the unbroken phase at T ¼ 0.1,
μ ¼ 1.0. (b) The ψ functions in the broken phase at T ¼ 0.1,
μ ¼ 5.0.

FIG. 2. The condensation vs μ in the broken phase at T ¼ 0.1.
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IV. NJL OPERATORS

A natural step is to include the QCD interactions in our
model of CSC as four fermion operators since the gluons are
assumed to have acquired a large mass. Four fermion
operators are an example of a “double trace” operator and
canbe incorporated usingWitten’s prescription [14]. Previous
work on NJL operators in holographic superconductors can

be found in Ref. [15], and recent work understanding the
holographic description of the relativistic Nambu–Jona-
Lasinio (NJL) model is in Ref. [16].
Consider the holographic description of an operator/

source pair O, J by a holographic field ψ in AdS,

ds2 ¼ r2dx23þ1 þ
dr2

r2
; ð9Þ

with action (here, we pickM2 ¼ −3 since all our operators
are dimension 3)

S ¼ −
Z

dr
1

2
ðr5ð∂rψÞ2 − 3r2ψ2Þ: ð10Þ

The solutions take the form

ψ ¼ J=rþO=r3: ð11Þ
Evaluating the action, there is a UV divergence, so we must
include the counterterm at the UV boundary (Λ):

LUV ¼ −
1

2
Λ4ψ2jΛ: ð12Þ

This term is crucial for the analysis below.
(Note that in the previous paper [16] we worked with a

rescaled field L ¼ rψ . This is natural from the point of
view of the D3/probe D7 system where the UVaction takes
precisely this form. If one substitutes this rescaled field into
the action above and integrates by parts, then the surface
term vanishes, and the action takes the form

L ¼ −
Z

dr
1

2
r3ð∂rLÞ2; ð13Þ

which, since L ∼ J þ � � �, has no UV divergence and hence
no counterterm. The IR boundary condition ∂rL ¼ 0 forces
O ¼ 0, which is appropriate for supersymmetric gauge
theory configurations where, e.g., the quark condensate is
forbidden. Here, the action also vanishes with L ¼ constant
corresponding to the vacuum energy of the gauge theory
vanishing.)
We now wish to include in the field theory a term of the

form

ΔL ¼ −
g2

Λ2
OO; ð14Þ

where O ≠ 0; then, this term generates a source, J ¼ g2

Λ2 O.
If we substitute this relation back into the Lagrangian term,
we uncover

ΔL ¼ −
Λ2J2

g2
: ð15Þ

In analogy to this term, Witten’s prescription in the holo-
graphic description is to add a UV surface term evaluated at
the cutoff Λ,

(a)

(b)

(c)

FIG. 3. c vs Jc, where T ¼ 0.1. (a) Unbroken phase where
μ ¼ 1.0. (b): Broken phase where μ ¼ 5.0. (c) Broken phase
where μ ¼ 10.0.
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ΔL ¼ −
Λ4ψ2

g2
; ð16Þ

since in the UV ψ ∼ J=Λþ � � �, one obtains (15).
The simplest way to include this extra term in the

analysis is by considering the result of the change to the
UV boundary condition on the solutions. Varying the action
gives

δS¼ 0¼−
Z

dr

�
∂r

∂L
∂ψ 0−

∂ψ
∂ψ

�
δψþ ∂L

∂ψ 0 δψ
����
UV;IR

: ð17Þ

There is also the variation of the surface counterterm

δS ¼ −2Λ4ψδψ jUV: ð18Þ

Normally, in the UV, one would require the source to be
fixed and δψ ¼ 0 to satisfy the boundary condition. We do
this by fixing the source J to specify a particular theory.
To describe the double trace operator, though, we allow

ψ (J) to change at the UV boundary and instead impose the
vanishing at that boundary of

0 ¼ ∂L
∂ψ 0 þ ψΛ4

UV þ 2ψΛ4
UV

g2
; ð19Þ

where we have included the variation of the new surface
term. For our action, ∂L

∂ψ 0 ¼ −r5ψ 0. Assuming (11), we find
that we need

J ≃
g2

Λ2
O: ð20Þ

This condition [which matches the expectation under (14)]
is simple to apply to the solutions of the (unchanged)
equation of motion we already have.

A. NJL operators in the superconductor

Let us now return to the holographic superconductor
model of the previous section. We can apply our analysis to
the ψ functions of Fig. 1. We can interpret each function,
including those with Jc ≠ 0, as describing the model with
zero intrinsic Jc but a four fermion operator present. The
four fermion operator in the presence of the condensate c
generates the UV source Jc. For example, we can translate
the functions of Fig. 1(a), where μ lies below the critical
value, through Fig. 3(a), to a plot of c against g2, which we
show in Fig. 4(a). Here, we have takenΛ ¼ 10 numerically.
We observe a critical value of the NJL coupling that triggers
symmetry breaking at a second order transition. Note here
there are no solutions where in the UV Jc and c have
opposite signs—putting in a repulsive four fermion term
(negative g2) produces no solutions other than Jc ¼ 0,
c ¼ 0 as one might expect.

Similarly, we can translate the functions of Figs. 1(b)–3(b)
to the plot in Fig. 4(b), which again shows c vs g2, but here at
g2 ¼ 0, there is already symmetry breaking. There are two
interesting additional features here. First, there are solutions
at negative, repulsive, g2. This is not surprising because at
g2 ¼ 0 there is symmetry breaking—switching on a repul-
sive four fermion term would be expected to reduce the
condensation, and it does. The surprising feature is that the
condensation does not switch off completely except at
infinite repulsive interaction strength (there are solutions
with zero c but nonzero Jc that generate infinite g2 values).
The intrinsic attractive interaction in theAdS/superconductor
model is presumably more subtle in structure than the NJL
operator, which is only switching parts of the interaction off.
Remember in superconductor theory any attractive interac-
tion will result in condensation. The remaining structure in
the c − g2 plane is the translation of the spiral in the c − Jc
plane seen previously.
Our initial intention to describe QCD had been to take

the basic holographic superconductor model and introduce
a critically tuned repulsive NJL operator to switch off

(a)

(b)

FIG. 4. (a) Plot of c against g2 (Λ ¼ 10) in the unbroken phase
for embeddings in Fig 1(a) (T ¼ 0.1, μ ¼ 0.1). (b) Plot of c
against g2 (Λ ¼ 10) in the broken phase (T ¼ 0.1, μ ¼ 5) for
solutions in Fig. 1(b).
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condensation at each T, μ value. On this interaction free
description of the quark gluon plasma, we would then add
back the QCD interactions as further positive shifts in the
NJL coupling strengths. We have now shown that this is not
achievable because the intrinsic interactions are more subtle
than the NJL interaction so an infinitely repulsive inter-
action is needed to switch off the base condensation.
However, this approach was essentially to uninvent the
wheel and then reinvent it. An equally sensible approach is
to simply modify the strength of the interaction between ψ
and At to reflect the QCD interaction strength. Our
assumption is still that the gluons are massive in this
strongly coupled phase so that we can describe the color of
quarks by a global symmetry, but now the interactions will
be introduced through the action

L ¼ −
1

4
FμνFμν − j∂ψ − iGBAψ j2 þ 3=L2ψ2: ð21Þ

We interpret the Aψ interaction term as the holographic
models knowledge of the broken gauge interactions. Note
the inclusion of the new coupling G, which we will shortly
relate to the QCD running coupling.
First, though, we can find the phase boundary for the

superconducting phase as a function of G. For each T and
G, we make plots as in Fig. 2 and then plot μcðTÞ in the
plane. This is shown in Fig. 5. Note that, given the solutions
for G ¼ 1, one can move to another G by scaling ψ → Gψ
and At → GAt in (4) and (5) so the critical μ just scales
with G.

V. QCD PHASE DIAGRAM

Let us now attempt to describe the color superconducting
phase of QCD using these tools. We will assume that the
chiral phase transition occurs at T2 þ μ2 ¼ Λ2

c and numeri-
cally set Λc ¼ 1 with a UV cut off on the holographic

model of Λ ¼ 10Λc where we read off c; Jc. We will
assume a phase with a q̄q condensate lives below Λc.
In the quark gluon plasma phase, we will use the action

of (21), but we must set the value of G at the cutoff scale to
a sensible ansatz in QCD. A natural choice based on the one
loop running is

G2¼ κ

b lnðT2þμ2Þ=Λ2
c
; b¼ 11Nc=3−2Nf=3; ð22Þ

which blows up at Λc. We need to fix κ so it is appropriate
for the strength of attraction that generates the 3̄ of color
condensate.
Perturbatively, the strength of tree level t-channel one

gluon exchange interaction for the four different color
channels for q̄q and qq is

1q̄q∶8q̄q∶6qq∶3̄qq ¼ −
8

3
∶
1

3
∶
1

6
∶ −

1

3
: ð23Þ

The attraction might be as little as 1=8, the attraction for
the chiral condensate. Of course, at strong coupling, the
relative strength of these interactions is not known.
The intrinsic interaction between the fields ψ and At in

the holographic model should be controlled by the strength
of the QCD interactions that presumably lie between
κ ¼ 1 − ð4πÞ2. Given the 1=8th suppression, we will study
the range of κ between 1 and 20 to estimate the area of the
phase diagram where superconductivity is likely.
It is now simple to construct the phase diagram from the

analysis of Fig. 5. We overlay circles in the T, μ plane for
each value of G from (22) taking Nf ¼ 3 and identify the
points where they cross the same G value transition curve.
We find the phase diagram in Fig. 6. Very close to Λc, the
coupling gets very strong, and the superconducting phase
then hugs the phase boundary up to high values of T. Most
likely, the chiral phase will extend a little above Λc, though,

FIG. 5. Plot of the superconducting phase boundary at different
G ¼ 0.5, 1, 2, 3, 4, 5, 6, 7 from bottom to top in the T-μ plane.
The black region is expected to be the chirally symmetric phase
below a scale of μ2 þ T2 ¼ 1.

FIG. 6. QCD phase diagram: the blacked out area is below Λc,
where chiral symmetry breaking is expected. The remaining
phase edges shows where the CFL phase is present for the choices
of κ ¼ 1, 10, 20 from bottom to top.
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and this feature will be greatly reduced. Typically, we see
the superconducting phase is predicted to exist below T of
0.15 Λc (for κ ≃ 10), which we might estimate as 20 MeV
or so if Λc ≃ 175 MeV, the expected temperature of the
chiral transition. This value might rise sharply just before
the chiral transition. Usual estimates place the gap in the
10–100 MeV range [3], so this seems a sensible model.

A. Quark mass

Our phase diagram so far has been plotted for the
massless theory, and the expected condensation is of the
color-flavor locked form for Nf ¼ 3 and 2SC for Nf ¼ 2.
One might expect there to be a transition as the strange
quark mass grows from CFL to a two flavor 2SC phase at
lower μ. The presence of the mass leads to a lower value of
the Fermi momentum, which will reduce the condensate,
but also relative differences in the Fermi surface levels for
different quark flavors are expected to frustrate the for-
mation of the color-flavor locked condensate.
Holographically modeling this transition is not straight-

forward. Each component of (1) is of mixed flavor and
should see the different chemical potentials and masses
associated with each of the two constituents. Presumably
this should be described by a non-Abelian Dirac-Born-
Infeld type action (assuming one could neglect the stringy
nature of the states stretched between different flavor
branes). Here, though, we will try something very naive
to show a mechanism by which mass could switch off the
condensation.
The quark mass, m, should be described by a new holo-

graphic field χ with asymptotic behavior χ ¼ m=rþ � � �
(the solution for a scalar of mass -3 in pure AdS) and IR
dynamics that should be connected to the formation of the
chiral condensate which is the subleading operator part of
the solution. One would need a full model of the chiral
transition towrite down a potential for the χ scalar, so to avoid
getting bogged down in that dynamics, we will just set
χ ¼ m=r and look at its effects on the ψ Cooper pair
formation (of course, really, one should solve linked equa-
tions, but our simplistic approach will show how the mass
could suppress the Cooper pair condensation). We imagine a
simple Lagrangian coupling of the form jχj2jψ j2 so that the
equation of motion for ψ becomes

ψ 00 þ
�
f0

f
þ 5

r

�
ψ 0 þ G2B2

r4f2
A2
tψ þ 1

r2f

�
3 −

m2

r2

�
ψ ¼ 0:

ð24Þ

Clearly, them2 term acts to oppose the instability induced by
μ, which is the main mechanism we wish to flag here.
We first plot the phase boundary for G ¼ 0.9 at different

values ofm in Fig. 7. As the quark mass rises, the boundary
line tilts in the plane until for masses of order the chemical
potential the phase is excluded at low μ. The positive

contribution to the scalar ψ ’s mass squared is greater than
the BF bound violating negative contribution from At. The
mass therefore discourages the condensation.
We plot the phase structure of the theory with the

running coupling (22) for κ ¼ 10 and m ¼ 0., 0.5, 1.0,
1.3 in Fig. 8. For small quark masses, the phase boundary
simply moves to lower values of T at a given μ. If the mass
becomes larger, though, then for a range of μ, there is no
condensation present. At large μ, the mass is overwhelmed,
and the condensation returns. Note at μ ≃ 1 where the
coupling becomes arbitrarily strong the phase briefly
returns however large m is, but this region is likely inside
the chirally broken phase since the quark-antiquark attrac-
tion is also getting very strong.
In the case of QCD, one can interpret the above

description as that for Δ1 and Δ2 with the interaction with
χ describing the interplay with the strange quark mass. The
phase boundaries in Fig. 8 for different m represent our
estimate of where the CFL phase (Δ1 and Δ2) will switch
off, although it is only a naive estimate since we have not

FIG. 7. Phase diagram for the model at fixed G ¼ 0.9 and for
quark mass m ¼ 0, 1.3, 2, 3, 4, 5 from left to right.

FIG. 8. QCD phase diagram with quark mass m: in the blacked
out area, chiral symmetry breaking is expected. The remaining
phase edges show where the CFL phase is present for the choices
of κ ¼ 10 and m ¼ 0, 0.5, 1.0, 1.3 from top to bottom.
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included the effect of different Fermi surface levels. The
2SC phase would be expected to exist between the edge of
the CFL phase and boundary for m ¼ 0 since Δ1 is
oblivious to the strange mass. If we take κ ¼ 10 and
assume Λc ¼ 10 MeV, then the physical strange mass
corresponds roughly to the m ¼ 0.5 curve, and the CFL
phase exists down to the chiral boundary, although with a
transition to the 2SC phase at higher T. For lower κ values,
the CFL phase might cease completely at lower μ.
This discussion has been very naive, although it reveals a

mechanism by which the CFL phase will be shut down by
the strange quark mass, and we leave to future work
including the correct dynamics for χ, including the chiral
transition, as well as incorporating the non-Abelian nature
of the discussion.

VI. DISCUSSION

The goal of this paper has been to push through the block
in thinking as to how to describe the color superconducting
phase of QCD holographically. For a long while, the color
charged nature of the biquark condensate has stopped
progress. We have attempted to side step this issue by
arguing that at strong coupling and intermediate temper-
atures and chemical potentials the gluons are likely gapped
by the plasma. If we treat the color symmetry of the quarks
as a global index, then holographic models can progress.
Indeed, here, we have demonstrated that by recycling the
simplest holographic superconductor model adjusted to this
setting. The key question was how to then include the QCD
interactions. We investigated NJL operators as one pos-
sibility, and we have included the discussion here because
there is an interesting story connected to the spiral structure
in the operator-source plane in the superconductor model
reflecting excited states of the vacuum (note that this
structure is also present in the AdS4 superconductor but
we are not aware of any discussion of it in the literature).

This leads to the conclusion that only an infinitely repulsive
four fermion operator suffices to switch off the intrinsic
attractive interaction of the holographic superconductor
model. That attractive interaction is presumably more
complex in structure than the four fermion operator, and
any residual attraction would lead to superconductivity. In
fact, we moved to simply adjusting the strength of that
intrinsic interaction to reflect the QCD couplings value as a
function of μ, T. As a result, we can plot the phase diagram
of the superconducting phase—see Fig. 6. The transition
temperature lies near 20 MeV or so, which matches the
usually quoted range of 10–100 MeV.
The model we have used is somewhat like a NJL model

of color superconductivity, but the holographic setting
would allow one to easily compute equations of state
and transport properties of the phases. We hope to inves-
tigate these and the consequences for neutron star structure
and collisions in the future. There is also plenty of scope to
make a more sophisticated model of the phase structure
including backreaction on the metric, describing the chiral
transition of QCD, and the interplay between the quark
mass and the condensation pattern. We made a first attempt
at understanding that mass dependence by a very simple
model of an interaction between a quark mass and the
Cooper pair which revealed a transition between a color-
flavor locked phase and a 2SC phase—shown in Fig. 8.
Again, this matches the form of the usually expected phase
structure.
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