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Abstract. Let G be a topological group and let G∗(P ) be the pointed gauge group of a principal

G-bundle P −→M . We prove that if G is homotopy commutative then the homotopy type of the

classifying space BG∗(P ) can be completely determined for certain M . This also works p-locally,

and valid choices of M include closed simply-connected four-manifolds when localized at an odd

prime p. In this case, an application is to calculate part of the mod-p homology of the classifying

space of the full gauge group.

1. Introduction

Let G be a topological group and let M be a pointed space. Let P −→ M be a principal

G-bundle over M . The gauge group G(P ) is the group of G-equivariant automorphisms of P that

fix M . The pointed gauge group G∗(P ) is the subgroup of G(P ) that fixes the fibre over the basepoint

in M . Gauge groups are of wide interest due to their prominent role in both mathematical physics,

Donaldson theory, and the study of semi-stable holomorphic vector bundles and their related moduli

spaces. Important problems are to calculate the mod-p homology and cohomology of the classifying

spaces BG(P ) and BG∗(P ) for a prime p when M is a closed simply-connected four-manifold, and to

determine the integral homotopy types of various spaces related to BG∗(P ) when M is an orientable

closed Riemann surface.

In this paper, assume that the topological groups have the homotopy type of connected, finite

type CW -complexes. We show that if G is homotopy commutative then for certain spaces M there

is a homotopy decomposition of BG∗(P ) as recognizable factors. This also works p-locally. Two

applications are given. The first is in the case when G is a simply-connected, simple compact

Lie group and M is a closed simply-connected four-manifold. For appropriate primes p, a p-local

homotopy decomposition of BG∗(P ) holds and this is used to determine a large split subalgebra of

the mod-p cohomology of the full gauge group BG(P ). The second is in the case when G is the

infinite unitary group and M is a closed orientable Riemann surface. A homotopy decomposition of

BG∗(P ) is used to determine the homotopy type of the space Hom(π1(Σg), U) of homorphisms from

the fundamental group of the Riemann surface to the infinite unitary group.
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The key result is a decomposition of certain pointed mapping spaces. Consider adjunction spaces

of the form

N = (

m∨
i=1

ΣAi) ∪a en

where
∨m
i=1 ΣAi is a CW -complex of dimension strictly less than n, a : Sn−1 −→

∨m
i=1 ΣAi is the

attaching map of the n-cell, and m ≥ 2. For 1 ≤ i ≤ m, let ιj : ΣAj −→
∨m
i=1 ΣAi be the inclusion of

the jth-wedge summand. Let N be the collection of all such adjunction spaces N with the additional

property that the attaching map a factors through a map a′ which is a wedge sum of some of the

Whitehead products ΣAj ∧Ak
[ιj ,ιk]−−−−→

∨m
i=1 ΣAi.

Observe that there is a cofibration
m∨
i=1

ΣAi
b−→ N

q−→ Sn

where b is the inclusion and q collapses
∨m
i=1 ΣA to a point. Let G be a topological group and let BG

be its classifying space. Then the cofibration sequence induces a fibration sequence

(1) Map∗(N,BG)
b∗−→ Map∗(

m∨
i=1

ΣAi, BG)
a∗−→ Map∗(Sn−1, BG).

Theorem 1.1. Let N ∈ N and let G be a topological group whose multiplication is homotopy

commutative. Then the map b∗ in (1) has a right inverse and there is a homotopy equivalence

Map∗(N,BG) ' Map∗(

m∨
i=1

ΣAi, BG)×Map∗(Sn, BG).

A p-local version of Theorem 1.1 also holds if the multiplication on G is only homotopy com-

mutative at p. This is particularly relevant since James and Thomas [9] showed that no simply-

connnected, simple compact Lie group has its standard multiplication being homotopy commutative,

but McGibbon [15] showed that after localizing at an odd prime there are cases when the multipli-

cation is homotopy commutative and he classified these. The classification is given in Section 2.

The connection with gauge groups comes from work of Gottlieb [5] or Atiyah and Bott [2]. They

showed that if M is a pointed space and P −→M is a principal G-bundle then there is a homotopy

equivalence BG∗(P ) ' Map∗P (M,BG), where Map∗P (M,BG) is the component of Map∗(M,BG)

that contains the map inducing P . Consider two cases. First, let M be a closed simply-connected

four-manifold and let G be a simply-connected simple compact Lie group. By [16], M is homotopy

equivalent to a CW -complex (
∨m
i=1 S

2)∪ae4. Second, let M be an orientable closed Riemann surface

of genus g and let G = U(n). Classically (see [6] for instance), M is homotopy equivalent to a CW -

complex (
∨2g
i=1 S

1) ∪a e2. In either case, [M,BG] ∼= Z so there is a component of Map∗(M,BG) for

each integer k, and this integer determines a corresponding equivalence class of principal G-bundles

P −→M . Write Pk for the equivalence class corresponding to k and let G∗k(M) = G∗(Pk).

Let Ω3
0G be the component of Ω3G containing the basepoint. Write X(p) for a space X localized

at the prime p.
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Corollary 1.2. LetM be a closed simply-connected Spin four-manifold with m two-cells, m ≥ 2, and

let G be a simply-connected simple compact Lie group whose multiplication is homotopy commutative

when localized at p. Then there is a p-local homotopy equivalence

BG∗k(M)(p) ' (

m∏
i=1

ΩG(p))× Ω3
0G(p).

In the second case, stabilize by considering the infinite unitary group U . Since U is an infinite

loop space its loop multiplication is homotopy commutative. Write Σg for the surface of genus g,

and let Ω0U be the component of ΩU containing the basepoint.

Corollary 1.3. Let Σg be a closed orientable closed Riemann surface of genus g ≥ 1. Then there

is an integral homotopy equivalence

BG∗k(Σg) ' (

2g∏
i=1

U)× Ω0U.

Corollaries 1.2 and 1.3 are the first systematic decompositions of the classifying spaces of pointed

gauge groups. In the context of Corollary 1.2, Masbaum [14] proved the G = SU(2) case earlier but

by using different methods that depended on the specific group. Also, while a great deal of work

has been done recently to identify the p-local homotopy types of gauge groups [10, 12, 13, 19] and

study their properties [11], nothing has been done for their classifying spaces.

Applications of these decompositions to the mod-p homology of gauge groups and the homotopy

type of Hom(π1(Σg), U) will be discussed in the final section of the paper.

The author would like to thank the referee for making many valuable comments that helped

improve the clarity of the paper.

2. Preliminary homotopy theory

In this section we discuss some notions from homotopy theory involving Whitehead products

and the homotopy commutativity of topological groups. As we are building towards a strictly

commutative diagram in (6) rather than a homotopy commutative diagram, some extra care will be

taken along the way.

Let G be a topological group and let

ev : ΣΩBG −→ BG

be the evaluation map. Let iL : ΣΩBG −→ ΣΩBG ∨ ΣΩBG and iR : ΣΩBG −→ ΣΩBG ∨ ΣΩBG

be the inclusions of the left and right wedge summands respectively and let

[iL, iR] : ΣΩBG ∧ ΩBG −→ ΣΩBG ∨ ΣΩBG

be the Whitehead product of iL and iR. By [1] there is a homotopy equivalence

(ΣΩBG ∨ ΣΩBG) ∪[iL,iR] C(ΣΩBG ∧ ΩBG) ' ΣΩBG× ΣΩBG
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where C(ΣΩBG ∧ ΩBG) is the reduced cone on ΣΩBG ∧ ΩBG. Let t be the composite

t : ΣΩBG ∨ ΣΩBG
ev∨ev−−−−→ BG ∨BG ∇−−−−→ BG

where ∇ is the folding map and let

[ev, ev] : ΣΩBG ∧ ΩBG −→ BG

be the Whitehead product of ev with itself. Note that [ev, ev] is homotopic to ∇ ◦ [iL, iR]. The

following proposition connects the homotopy commutativity of G to the existence of a certain ex-

tension.

Proposition 2.1. Let G be a topological group. Then the following are equivalent:

(a) G is homotopy commutative;

(b) the Whitehead product [ev, ev] is null homotopic;

(c) there is a strictly commutative diagram

ΣΩBG ∨ ΣΩBG
t //

��

BG

(ΣΩBG ∨ ΣΩBG) ∪[iL,iR] C(ΣΩBG ∧ ΩBG)

e

44iiiiiiiiiiiiiiiiiiii

for some map e. �

Proof. The equivalence of parts (a) and (b) was proved by James and Thomas [8] and the equivalence

of parts (b) and (c) was proved by Arkowitz [1]. �

Remark 2.2. It should be noted that the homotopy commutativity condition in Proposition 2.1 is

fairly restrictive. For example, there are no simply-connected, simple compact Lie groups which are

homotopy commutative [9]. However, obstructions to homotopy commutativity may vanish when

localized at a prime p (see [7] for a good discussion of localization). McGibbon [15] classified those

simply-connected, simple compact Lie groups G which are homotopy commutative at p. To describe

these, recall that G is rationally homotopy equivalent to a product of spheres, G 'Q
∏l
i=1 S

2ni−1.

The type of G is defined to be {n1, . . . , nl}. The loop multiplication on G is homotopy commutative

when localized at p in precisely the following cases:

(2) p > 2nl; G = Sp(2) and p = 3; G = G2 and p = 5.

On the other hand, Bott periodicity implies that the infinite matrix groups U , SU , SO and Sp are

all infinite loop spaces and so are integrally homotopy commutative.
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Next, we generalize the (a) implies (c) part of Proposition 2.1. Let X1, . . . , Xm be path-connected,

pointed spaces and consider the wedge
∨m
i=1 ΣXi. For 1 ≤ j ≤ m, let ιj : ΣXj −→

∨m
i=1 ΣXi be the

inclusion of the jth wedge summand. Let

f :
∨

1≤j<k≤m

ΣXj ∧Xk −→
m∨
i=1

ΣXi

be the wedge sum of the Whitehead products [ιj , ιk]. Let

T (ΣX1, . . . ,ΣXm) =

( m∨
i=1

ΣXi

)
∪f C

( ∨
1≤j<k≤m

ΣXj ∧Xk

)
.

Observe that there is a homotopy equivalence

T (ΣX1, . . . ,ΣXm) '
⋃

1≤j<k≤m

ΣXj × ΣXk.

To be clear, T (ΣX1, . . . ,ΣXm) is a subspace of ΣX1 × · · · ×ΣXm, each ΣXj ×ΣXk in the union is

regarded as including into the (j, k) coordinates of ΣX1×· · ·×ΣXm, and intersections are identified.

This construction is natural. Suppose that there are maps g : ΣA −→ Z, h : ΣB −→ Z and

t : Z −→ Z ′. Represent the homotopy class [g, h] as the adjoint of the Samelson product 〈g′, h′〉,

where g′ : A −→ ΩZ and h′ : B −→ ΩZ are the adjoints of g and h respectively. The Samelson

product is defined by the pointwise commutator in ΩZ, which commutes with any loop map ΩZ
Ωt−→

ΩZ ′. Thus we obtain t ◦ [g, h] = [t ◦ g, t ◦ h] on the nose. Hence, given maps fi : ΣXi −→ ΣX ′i for

1 ≤ i ≤ m, we obtain a strictly commutative diagram

(3)

∨m
i=1 ΣXi

∨m
i=1 fi //

��

∨m
i=1 ΣX ′i

��
T (ΣX1, . . . ,ΣXm)

T (f1,...,fm)
// T (ΣX ′1, . . . ,ΣX

′
m).

In our case, for 1 ≤ i ≤ m, let Xi = ΩBG. Write T (ΣΩBG) for T (ΣΩBG, . . . ,ΣΩBG). Let tm

be the composite

tm :

m∨
i=1

ΣΩBG
∨m

i=1 ev−−−−→
m∨
i=1

BG
∇m−−−−→ BG

where ∇m is the m-fold folding map. By Proposition 2.1, if G is homotopy commutative then the

restriction of tm to any pair ΣΩBG ∨ ΣΩBG extends to a map

(ΣΩBG ∨ ΣΩBG) ∪[iL,iR] C(ΣΩBG ∧ ΩBG) −→ BG.

Construct an extension for all pairs of wedge summands indexed by (j, k) for 1 ≤ j < k ≤ m.

Observe that the extensions are compatible because they intersect only on the wedge summands.

Thus they may be assembled to produce a map T (ΣΩBG) −→ BG extending tm. This is recorded

as follows.
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Lemma 2.3. Let G be a topological group whose loop multiplication is homotopy commutative, Then

there is a strictly commutative diagram

∨m
i=1 ΣΩBG

tm //

��

BG

T (ΣΩBG)

em

99ttttttttttt

for some map em. �

We close this section with one more observation about T (ΣX1, . . . ,ΣXm). Let X
E−→ ΩΣX be

the suspension map, defined by sending x ∈ X to the loop ωx on ΣX, where ωx is characterized by

ωx(t) = (t, x). The evaluation map ΣΩY
ev−→ Y is defined by sending (s, ω) to ω(s). The definitions

imply that the composite ΣX
ΣE−→ ΣΩΣX

ev−→ ΣX is the identity map on ΣX. Now suppose that

there is a map f : ΣX −→ Y . The naturality of the evaluation map implies that there is a strictly

commutative diagram

ΣΩΣX
ΣΩf

//

ev

��

ΣΩY

ev

��
ΣX

ΣE
::vvvvvvvvv
ΣX

f
// Y.

Thus, if f = (ΣΩf) ◦ ΣE, then we obtain a lift

(4)

ΣΩY

ev

��
ΣX

f
//

f
;;wwwwwwww
Y.

Combining this with (3) we obtain the following.

Lemma 2.4. Suppose that for 1 ≤ i ≤ m there are maps fi : ΣXi −→ Y . Then there is a strictly

commutative diagram

∨m
i=1 ΣXi

∨m
i=1 fi //

��

∨m
i=1 ΣΩY

��
T (ΣX1, . . . ,ΣXm)

T (f1,...,fm)
// T (ΣΩY, . . . ,ΣΩY ). �

3. The class N

Recall from the Introduction that N is the class of adjunction spaces

N = (

m∨
i=1

ΣAi) ∪a en

where
∨m
i=1 ΣAi is a CW -complex of dimension strictly less than n, the attaching map a factors

through a map a′ which is a wedge sum of some of the Whitehead products ΣAj ∧ Ak
[ιj ,ιk]−−−−→
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i=1 ΣAi, and m ≥ 2. The factorization condition on a can be restrictive. In the context of gauge

groups, one typically wants to work with an N that is homotopy equivalent to a manifold. Most

manifolds do not satisfy the attaching map condition. However, there are some very interesting

families of manifolds that do. For example:

(1) if M is a simply-connected Spin 4-manifold with H2(M ;Z) of rank m ≥ 2 then M is

homotopy equivalent to a CW -complex (
∨m
i=1 S

2) ∪a e4 ∈ N ;

(2) if Σg is a closed orientable surface of genus g ≥ 1 then Σg is homotopy equivalent to a

CW -complex (
∨2g
i=1 S

1) ∪a e2 ∈ N ;

(3) if M is a simply-connected Spin 5-manifold then M is homotopy equivalent to a CW -complex

(
∨m
i=1 ΣAi)∪a e5 where each ΣAi is either S2, S3 or a mod-pr Moore space of dimension 3,

and if m ≥ 2 then this CW -complex is in N .

The CW -structure for M in (1) is due to Milnor [16]; the CW -structure for Σg in (2) is commonly

known, one reference is [6]; the CW -structure for M in (3) is given in [18]. Other examples exist,

such as certain (n− 1)-connected 2n-dimensional manifolds [20] and the connected sum of products

of two spheres.

The property that is needed for the spaces in N is the following. Recall that there is a homotopy

cofibration Sn−1 a−→
∨m
i=1 ΣAi

b−→ N where b is the inclusion.

Lemma 3.1. Let N ∈ N . Then there is an extension∨m
i=1 ΣAi

b //

��

N

eNxxqqq
qqq

qqq
qqq

T (ΣA1, . . . ,ΣAm)

for some map eN .

Proof. Since N = (
∨m
i=1 ΣAi) ∪a en, to show that the extension eN exists it is equivalent to show

that the composite Sn−1 a−→
∨m
i=1 ΣAi −→ T (ΣA1, . . . ,ΣAm) is null homotopic. By definition,

T (ΣA1, . . . ,ΣAm) is the adjunction space formed from coning off the sum of all the Whitehead

products [ιj , ιk] for 1 ≤ j < k ≤ m. In particular, each composition ΣAj ∧ Ak
[ιj ,ιk]−→

∨m
i=1 ΣAi −→

T (ΣA1, . . . ,ΣAm) is null homotopic. Thus, as a factors through a wedge sum of some of the

Whitehead products [ιj , ιk], the composite Sn−1 a−→
∨m
i=1 ΣAi −→ T (ΣA1, . . . ,ΣAm) is also null

homotopic. �

4. A decomposition of Map∗(N,BG)

Let N ∈ N . In the sequence of maps

Sn−1 a−→
m∨
i=1

ΣAi
b−→ N

q−→ Sn
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the maps a and b form a homotopy cofibre sequence, while b and q form a cofibre sequence on the

nose. If G is a topological group then there is an induced sequence

(5) Map∗(Sn, BG)
q∗−→ Map∗(N,BG)

b∗−→ Map∗(

m∨
i=1

ΣAi, BG)
a∗−→ Map∗(Sn−1, BG)

where the maps q∗ and b∗ form a fibre sequence on the nose while b∗ and a∗ form a homotopy fibre

sequence. We will show that if the multiplication on G is homotopy commutative then the map b∗

has a right inverse.

Let f :
∨m
i=1 ΣAi −→ BG be a pointed map. Universally, a map out of a wedge is determined by

its restrictions to the wedge summands, so f =
∨m
i=1 fi where fi : ΣAi −→ BG is the restriction of f

to ΣAi. By (4), each fi lifts through ΣΩBG
ev−→ BG to a map f i = (ΣΩfi) ◦ΣE. So if N ∈ N and

the multiplication on G is homotopy commutative, we may combine the diagrams in Lemmas 2.3,

2.4 and 3.1 to obtain a strictly commutative diagram

(6)

∨m
i=1 ΣAi

∨m
i=1 fi //

��

b

xxqqq
qqq

qqq
qqq

∨m
i=1 ΣΩBG

tm //

��

BG

N
eN // T (ΣA1, . . . ,ΣAm)

T (f1,...,fm)
// T (ΣΩBG).

em

99ttttttttttt

By the definitions of tm and each f i, we have tm ◦ (
∨m
i=1 f i) =

∨m
i=1 fi. So (6) lets us define a map

θ : Map∗(

m∨
i=1

ΣAi, BG) −→ Map∗(N,BG)

by θ(f) = θ(
∨m
i=1 fi) = em ◦ T (f1, . . . , fm) ◦ eN . We wish to show that θ is continuous and that

b∗ ◦ θ is the identity map.

Lemma 4.1. The map θ is continuous.

Proof. The map θ is defined as the composite of the continuous maps em and eN and the continuous

functor T (f1, . . . , fm). Note that if Y is a locally compact Hausdorff space then the composition

Map∗(Y, Z)×Map∗(X,Y ) −→ Map∗(X,Z) is continuous with respect to the compact open topology.

Therefore θ is continuous. �

Lemma 4.2. The composite of continuous maps

Map∗(

m∨
i=1

ΣAi, BG)
θ−→ Map∗(N,BG)

b∗−→ Map∗(

m∨
i=1

ΣAi, BG)

is equal to the identity map.

Proof. By definition, b∗ sends a map φ : N −→ BG to the composite
∨m
i=1 ΣAi

b−→ N
φ−→ BG.

Therefore, by definition of θ, we have

b∗ ◦ θ(f) = b∗ ◦ θ(
m∨
i=1

fi) = b∗(em ◦ T (f1, . . . , fm) ◦ eN ) = em ◦ T (f1, . . . , fm) ◦ eN ◦ b.
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By (6) and the definition of tm, we have

em ◦ T (f1, . . . , fm) ◦ eN ◦ b = tm ◦ (

m∨
i=1

f i) =

m∨
i=1

fi = f.

Thus b∗ ◦ θ(f) = f . �

Proof of Theorem 1.1. In general, suppose that ΩB
∂−→ F

r−→ E
s−→ B is a homotopy fibration

sequence and r has a right homotopy inverse t : E −→ F . Then s is null homotopic because:

(i) r ◦ t ' 1E implies that s ' s ◦ r ◦ t, and (ii) s ◦ r is null homotopic as it is the composition of

two consecutive maps in a homotopy fibration. The null homotopy for s implies that F ' E ×ΩB.

In our case, consider the homotopy fibration sequence (5). By Lemma 4.2, the map b∗ has a right

inverse. Therefore there is a homotopy equivalence

Map∗(N,BG) ' Map∗(

m∨
i=1

ΣAi, BG)×Map∗(Sn, BG).

�

To illustrate Theorem 1.1 we consider two cases of interest. Note that Map∗(St, BG) ' Ωt−1G.

Example 4.3. Let M be a simply-connected Spin 4-manifold with m two-cells, where m ≥ 2. As in

Section 3, there is a homotopy equivalence M ' (
∨m
i=1 S

2)∪ae4. Let G be a simply-connected, simple

compact Lie group listed in (2), whose multiplication is homotopy commutative when localized at p.

By [7], p-localization commutes with mapping spaces in the context of simply-connected (and more

generally, nilpotent) spaces, so we have Map∗(M,BG)(p) ' Map∗(M(p), BG(p)). Thus Theorem 1.1

implies that there is a homotopy equivalence

Map∗(M,BG)(p) ' (

m∏
i=1

ΩG(p))× Ω3G(p).

Example 4.4. Let Σg be a close orientable surface of genus g ≥ 1. As in Section 3, Σg '

(
∨2g
i=1 S

1) ∪a e2 ∈ N . Let G = U , the infinite unitary group. Since U is an infinite loop space

it is homotopy commutative so by Theorem 1.1 there is a homotopy equivalence

Map∗(Σg, BU) ' (

2g∏
i=1

U)× ΩU.

We close this section by proving Corollaries 1.2 and 1.3.

Proof of Corollary 1.2. Recall from the Introduction that if G is a simply-connected simple com-

pact Lie group, M is a simply-connected four-manifold and Pk −→ M is a principal G-bundle

induced by the homotopy class in [M,BG] ∼= Z corresponding to k, then there is a homotopy

equivalence BG∗k(M) ' Map∗k(M,BG). By Example 4.3, there is a p-local homotopy equivalence

Map∗k(M,BG)(p) ' (
∏m
i=1 ΩG(p)) × Ω3

kG(p), where Ω3
kG is the connected component of Ω3G that

contains the map S3 −→ G of degree k in the third homology group. Since π0(Ω3G) is a group,
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there is a homotopy equivalence Ω3
kG ' Ω3

0G. Therefore BG∗k(M)(p) ' (
∏m
i=1 ΩG(p)) × Ω3

0G(p), as

asserted. �

Proof of Corollary 1.3. Again, recall from the Introduction that if G = U , Σg is a closed ori-

entable surface of genus g and Pk −→ Σg is a principal G-bundle induced by the homotopy class in

[Σg, BU ] ∼= Z corresponding to k, then there is a homotopy equivalence BGk(Σg) ' Map∗k(Σg, BU).

By Example 4.4, there is a homotopy equivalence Map∗k(Σg, BU) ' (
∏2g
i=1 U)× ΩkU where ΩkU is

the connected component of ΩU that contains the map S1 −→ U of degree k in the first homology

group. Since π0(ΩU) is a group, there is a homotopy equivalence ΩkU ' Ω0U . Therefore there is a

homotopy equivalence BGk(Σg) ' (
∏2g
i=1 U)× ΩU , as asserted. �

5. Applications

In this section we give two applications, one to the calculation of the mod-p homology or coho-

mology of the classifying space of certain full gauge groups, and the other to the homotopy type of

a certain group of homomorphisms.

First, return to the case when G is a simply-connected simple compact Lie group, M is a simply-

connected four-manifold, and Pk −→ M is a principal G-bundle induced by the homotopy class in

[M,BG] ∼= Z corresponding to k. By [2] there is a homotopy commutative diagram

(7)

BG∗k(M) //

ψ∗

��

BGk(M)

ψ

��
Map∗k(M,BG) // Map k(M,BG)

where ψ∗ and ψ are homotopy equivalences. Observe also that there is a fibration

Map∗k(M,BG) −→ Map k(M,BG)
ev−→ BG

where ev evaluates a map at the basepoint of M . Stated in terms of gauge groups, up to homotopy

equivalences, there is a fibration

BG∗k(M) −→ BGk(M) −→ BG.

Take homology and cohomology with mod-p coefficients. Corollary 1.2 immediately implies that

if G is homotopy commutative when localized at p then there is a coalgebra isomorphism

H∗(BG∗k(M)) ∼= (⊗mi=1H∗(ΩG))⊗H∗(Ω2
0G)

and an algebra isomorphism

H∗(BG∗k(M)) ∼= (⊗mi=1H
∗(ΩG))⊗H∗(Ω2

0G).

We aim to prove the following.
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Theorem 5.1. Let M be a closed simply-connected Spin four-manifold and let G be a simply-

connected simple compact Lie group whose multiplication is homotopy commutative when localized

at p. Then the composite of coalgebras

⊗mi=1H∗(ΩG) −→ H∗(BG∗k(M)) −→ H∗(BGk(M))

has a left inverse, and the composite of algebras

H∗(BGk(M)) −→ H∗(BG∗k(M)) −→ ⊗mi=1H
∗(ΩG)

has a right inverse.

For example, let G = SU(2), in which case G is homeomorphic to S3 and H∗(ΩS3) is well known.

This case is of key interest in Donaldson theory and a major open problem is to calculate the

mod-p homology of BGk(M). As SU(2) is homotopy commutative when localized at primes p ≥ 5,

Theorem 5.1 applies for any such prime, giving significant information about H∗(BGk(M)).

To prove Theorem 5.1, we begin by recalling some general facts about mapping spaces. Let

X1, . . . , Xm and Y be Hausdorff spaces, and let
∐m
i=1Xi be their disjoint union. Then there is a

homemorphism

Map (

m∐
i=1

Xi, Y ) ∼=
m∏
i=1

Map (Xi, Y ).

Further, if each of X1, . . . , Xm and Y are pointed, then there is a homeomorphism

Map∗(

m∨
i=1

Xi, Y ) ∼=
m∏
i=1

Map∗(Xi, Y ).

These two decompositions are compatible in the following sense. There is a quotient map

q :

m∐
i=1

Xi −→
m∨
i=1

Xi

which identifies the basepoints in each space Xi to a common point. So there is an induced map

q∗ : Map (

m∨
i=1

Xi, Y ) −→ Map (

m∐
i=1

Xi, Y ).

The two homeomorphisms above are compatible via a strictly commutative diagram

(8)

Map∗(
∨m
i=1Xi, Y )

incl //

∼=
��

Map (
∨m
i=1Xi, Y )

q∗

// Map (
∐m
i=1Xi, Y )

∼=
��∏m

i=1 Map∗(Xi, Y )

∏m
i=1 incl

// ∏m
i=1 Map (Xi, Y ).

Returning to the case of interest, as in Section 3, if M is any closed simply-connected Spin 4-

manifold then there is a space N = (
∨m
i=1 S

2) ∪a e4 ∈ N . The inclusion
∨m
i=1 S

2 b−→ N induces a
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commutative diagram

(9)

Map∗(N,BG) //

b∗

��

Map (N,BG)

b∗

��
Map∗(

∨m
i=1 S

2, BG) // Map (
∨m
i=1 S

2, BG).

Localizing at p, the fact that mapping spaces commute with localization of nilpotent spaces [7]

implies that there is a homotopy commutative diagram

(10)

Map∗(M,BG)(p)
//

'
��

Map (M,BG)(p)

'
��

Map∗(N,BG)(p)
// Map (N,BG)(p)

Juxtaposing the diagrams (7), (8), (9) and (10) we obtain a p-local homotopy commutative

diagram

BG∗k(M)(p)
//

ψ∗

��

BGk(M)(p)

ψ

��
Map∗k(M,BG)(p)

//

'
��

Map k(M,BG)(p)

'
��

Map∗k(N,BG)(p)
//

b∗

��

Map k(N,BG)(p)

b∗

��
Map∗(

∨m
i=1 S

2, BG)(p)
//

∼=

��

Map (
∨m
i=1 S

2, BG)(p)

q∗

��
Map (

∐m
i=1 S

2, BG)(p)

∼=
��∏m

i=1 Map∗(S2, BG)(p)

∏m
i=1 incl

// ∏m
i=1 Map (S2, BG)(p).

By Lemma 4.2, the map b∗ has a right inverse. Lifting this, up to homotopy, through the homotopy

equivalences BG∗k(M)(p)
ψ∗

−→ Map∗k(M,BG)(p)
'−→ Map∗k(N,BG)(p), we obtain the following.

Lemma 5.2. LetM be a closed simply-connected Spin four-manifold and let G be a simply-connected

simple compact Lie group whose multiplication is homotopy commutative when localized at a prime p.

Then there is a homotopy commutative diagram

Map∗k(
∨m
i=1 S

2, BG)(p)
//

'

**TTT
TTTT

TTTT
TTTT

BG∗k(M)(p)
//

��

BGk(M)(p)

��∏m
i=1 Map∗(S2, BG)(p)

∏m
i=1 incl // ∏m

i=1 Map (S2, BG)(p). �

Lemma 5.2 is used to extract information about H∗(BGk(M)) and H∗(BGk(M)).
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Proof of Theorem 5.1. Consider the map Map∗(S2, BG)
incl−−→ Map (S2, BG) whose p-localization

appears in the bottom row of the diagram in Lemma 5.2. The inclusion is the fibre of the eval-

uation map Map (S2, BG)
ev−→ BG which sends a map f : S2 −→ BG to f(∗). Also, we have

Map∗(S2, BG) = ΩG. So there is a fibration

(11) ΩG −→ Map (S2, BG)
ev−→ BG.

By (2), the cases when the multiplication on G is homotopy commutative when localized at p are

known. In each such case, H∗(G) is an exterior algebra on odd degree generators, so by [3] H∗(BG)

is a polynomial algebra on even degree generators. Since cohomology is with mod-p coefficients, we

can dualize to see that H∗(BG) is also concentrated in even degrees. Further, by [4] the integral

cohomology of ΩG is concentrated in even degrees, and therefore so is the mod-p cohomology.

Therefore the homology Serre spectral sequence for the fibration (11) collapses at the E2-term and

there are no extension issues. Hence

H∗(Map (S2, BG)) ∼= H∗(BG)⊗H∗(ΩG).

Consequently, taking homology for the diagram in Lemma 5.2, we see that the composite

⊗mi=1H∗(ΩG) −→ H∗(BG∗k(M)) −→ H∗(BGk(M))

has a left inverse.

Similarly,

H∗(Map (S2, BG)) ∼= H∗(BG)⊗H∗(ΩG)

and the composite

H∗(BGk(M)) −→ H∗(BG∗k(M)) −→ ⊗mi=1H
∗(ΩG)

has a right inverse. �

We now turn to the second application. Let K and L be topological groups, and let Hom(K,L) be

the set of homomorphisms from K to L, topologized as a subspace of the mapping space Map(K,L).

If BK,BL are the classifying spaces of K and L respectively, there is a natural map

B : Hom(K,L) −→ Map∗(BK,BL).

This map has been a subject of intense study due to its connections with the Sullivan conjecture in

homotopy theory, to the moduli space of representations in algebraic geometry, and to the space of

flat connections modulo gauge equivalence in Yang-Mills theory. Consider the special case

Hom(π1(Σg), U(n)) −→ Map∗(Bπ1(Σg), BU(n)).
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Since the universal cover of Σg is contractible there is a homotopy equivalence Σg ' Bπ1(Σg). So

up to a homotopy equivalence we may regard the preceding map as

Hom(π1(Σg), U(n)) −→ Map∗(Σg, BU(n)).

Ramras [17, Theorem 3.4] used gauge theoretic methods to show that this map is an injection on π0

and an isomorphism on πm for m ≤ 2g(n − 1) + 1. Stabilizing to the infinite unitary group, we

obtain a map

Hom(π1(Σg), U) −→ Map∗(Σg, BU)

which is an injection on π0 and an isomorphism on πm for every m ≥ 1. Thus if HomI(π1(Σg), U))

is the component of Hom(π1(Σg), U)) containing the identity map, from Corollary 1.3 we obtain

homotopy equivalences

HomI(π1(Σg), U))
'−→ Map∗0(Σg, BU)

'−→ (

2g∏
i=1

U)× Ω0U

which lets one easily identify πm(Hom(π1(Σg), U)) for m ≥ 1.
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