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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

APPLICATIONS OF LIGHT PROPAGATION
IN NOVEL PHOTONIC DEVICES

by Anna Claire Peacock

In this thesis, the propagation of light in novel photonic devices has been stud-
ied theoretically, numerically and experimentally. In particular, self-similar
solutions to the nonlinear Schrodinger equation have been investigated as a
means of avoiding distortions associated with high power pulse propagation
in optical fibres. The results show that it is the interplay between the nonlinear
and dispersive effects that leads to stable formation of the self-similar solu-
tions. By considering generalised nonlinear Schrédinger equations we have
extended the previous investigations of linearly chirped parabolic pulse so-
lutions, which exist in the normal dispersion regime, and have found a new
broader class of self-similar solutions, which exist when the fibre parameters
are allowed to vary longitudinally. Numerical simulations of these systems
confirm the analytic predictions. Experimental confirmation of parabolic pulse
generation in high gain cascaded amplifier systems and in highly nonlinear
microstructured fibres is also reported.

In addition, the propagation of light in modulated crystal structures has been
investigated. By modifying the linear and nonlinear properties of the crystals
it has been shown that it is possible to manipulate the speed and the wave-
length of the propagating light. In particular, negative refractive index materi-
als have been shown to support fast and/or slow propagating light, whilst two
dimensional nonlinear photonic crystals have been used to demonstrate mul-
tiple harmonic generation over a wide range of phase matching angles. The
influence of waveguiding geometries has also been considered to determine
the optimum design for the efficiency of the devices.
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Chapter 1
Introduction

The concept of controlling and manipulating the propagation of light to our
advantage is by no means a new one. In fact, optical technologies have been a
part of our lives for thousands of years in the form of devices such as glasses
and mirrors [1]. It is thus not surprising that optical devices have not only had
amajor influence on our lifestyles of today, but they have also made important
contributions towards our understanding of the natural world.! Paradoxically,
this influence is often “invisible” as the use of optical technologies in everyday
devices such as compact disk (CD) players and infrared remote controls is fre-
quently taken for granted.

As our understanding of optical systems advances, the importance of light
in our lives will continue to increase. In particular, fundamental studies in
optics are essential for the advancement of a wide range of technologies in
fields including telecommunications, medicine, micromachining and informa-
tion storage. In such fields, understanding both the linear and nonlinear pro-
cesses which occur in the optical components, whether they be optical fibres
or bulk crystals, is vital for the optimisation of the system. What establishes
an “understanding” of a system can either be a theoretical description or an
experimental observation. However, ideally the most complete description
will come from a combination of the two. Indeed, sometimes there is a need
for experimental confirmation of a theoretical result whilst in others it is the
experimental observation of a process that sparks a theoretical analysis of a

'For example Galileo Galilei’s use of a telescope for astronomical observations.
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system. In particular, it was the latter case that lead to the discovery of soli-
tons after John Scott Russell observed a “great solitary wave” propagating in
the Edinburgh-Glasgow canal [2]. Significantly, subsequent studies of wave
propagation in the presence of nonlinear and dispersive effects have not only
lead to the establishment of solitons as one of the most important components
in physical systems today, but they have also proved to be invaluable for de-
scribing a much wider range of dynamical physical phenomena [3, 4].

The results of the investigations presented in this thesis essentially cover two
main areas of research involving both linear and nonlinear phenomena. In
Part 1 of this thesis | will investigate distortion free self-similar pulse prop-
agation in nonlinear optical fibres to generate high power short pulses. Sig-
nificantly, it will be shown that it is the interplay between the nonlinear and
dispersive effects in the fibres that leads to the stable formation of these pulses.
Then, in Part 2, | will consider the control and manipulation of light in novel
crystal structures. In particular | will focus on modulated crystals which are
often referred to as metamaterials and can be used to manipulate the speed or
wavelength of the propagating light. In both cases the mathematical formalism
necessary to describe the physical processes will be introduced in the respec-
tive parts. Although these two areas are of great fundamental and practical
interest on their own, improved understanding of the individual processes can
be combined to aid with the design of more efficient devices and this will be
the focus of the third and final part of the thesis.




Part |

Self-Similar Pulse Propagation in
Optical Fibres



Chapter 2
Introduction

With rapid advancements in the technology of optical fibre amplifiers to gen-
erate high power pulses, the main technical challenge restricting the use of
higher peak powers in optical systems are the pulse distortions resulting from
the interplay between nonlinear and dispersive effects. In the anomalous dis-
persion regime these distortions are often associated with the pulse breaking
up into a series of sub-pulses [5], and in the normal dispersion regime they can
lead to the phenomenon of optical wave breaking [6]. As a result, numerous
investigations have been conducted to establish conditions for avoiding these
deleterious effects in nonlinear systems [7, 8, 9]. To date, the greatest successes
have been associated with the discovery of solitary wave solutions which can
propagate distortion free over large distances while maintaining their func-
tional form.

Like any physical investigation, the study of nonlinear systems is based on the
search for explicit solutions of the differential equations which describe them.
In some cases the underlying propagation equations are mathematically inte-
grable and the solutions can be found directly. This is the case for the nonlinear
Schrodinger equation (NLSE) describing pulse propagation in optical fibres. In
this instance, the use of a mathematical technique known as the inverse scat-
tering method allows soliton solutions [10]. However, for situations where
the propagation equation is more complicated the solutions are often found
via less systematic techniques such as the method of trial and error. Indeed,
it was this method that led to the discovery of the amplifier soliton solutions
of the Ginzburg-Landau equation, which describes short pulse propagation in

4



Chapter 2 Introduction

optical fibre amplifiers [4].

More recently there has been increased interest in the mathematical technique
known as “symmetry reduction.” Importantly, this technique can be used to
find solutions of non-integrable equations; solutions which, although not nec-
essarily “solitary,” do obey relatively simple scaling laws in such a way that
their propagation can be described as self-similar [11]. The key to using sym-
metry reduction relies on identifying an invariance in the form of the solution
so that it can be mapped from one point in its evolution to another via simple
scaling laws. In particular, techniques based on symmetry reduction have re-
cently led to the discovery of an important class of pulses which can propagate
in a highly nonlinear, normal dispersion fibre amplifier such that they avoid
the effects of wavebreaking. These solutions, which have been described as
“similaritons,” were found to have an intensity profile which is parabolic and
a frequency chirp which is strictly linear, and will propagate in an amplifier
subject to the self-similar scaling of their intensity and temporal width [12, 13].
In addition to these solutions being of fundamental interest (since they repre-
sent a new class of solution to the NLSE with gain) they are also of considerable
practical interest as they offer a viable solution to overcoming the challenge of
increasing the peak powers in optical systems.

In this part of the thesis | will investigate self-similar solutions for high inten-
sity pulses propagating in optical fibres and optical fibre amplifiers. Owing
to the importance of the parabolic pulse solutions discussed above, the ear-
lier analysis of their propagation in rare-earth doped fibre amplifiers has been
extended to consider novel, more flexible, approaches to parabolic pulse gen-
eration. In addition, a new broader class of self-similar solutions found for
systems which can be modelled by the NLSE with distributed parameters will
also be presented. In all instances, it is expected that the self-similar solutions
will find wide application in many areas of optical technology in both the lab-
oratory and in industry.
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2.1 OQutline for Part 1

Chapter 3 introduces the basic theory describing optical pulses and their prop-
agation in single mode optical fibres and optical fibore amplifiers. In partic-
ular, the NLSE and the various techniques used to find its solutions will be
described.

Because of the key role that self-similarity plays in this part of the thesis, Chap-
ter 4 introduces this concept in more detail, outlining in particular the asso-
ciated mathematical formalism. After discussing the previous research that
motivated the theoretical analysis of the parabolic pulse solutions, a brief de-
scription of the results of these calculations will be presented. The experiments
which provided the first confirmation of the parabolic pulse solutions will also
be discussed.

In Chapter 5, experiments to investigate the generation of parabolic pulses in
a cascaded fibre amplifier chain, where the characteristics of each of the am-
plifiers differ, will be described. The experimental results are analysed via
numerical simulations to establish the limitations and assist with the optimi-
sation of the system.

Chapter 6 considers parabolic pulse generation using an undoped microstruc-
tured fibre Raman amplifier. After a discussion of the Raman amplifier sys-
tem, numerical simulations are used to analyse the parabolic pulse propaga-
tion. Preliminary experimental results provide confirmation of parabolic pulse
generation in a highly nonlinear, normally dispersive microstructured fibre.

In Chapter 7 a new class of solutions which exist for a generalised form of
the NLSE with distributed coefficients is investigated. After a brief discussion
of the previous research which motivated our theoretical analysis, the results
of calculations which use self-similarity methods to analyse the solutions are
presented. Numerical simulations are used to confirm the theoretical results
before being extended to investigate the stability of the results.

Finally, in Chapter 8 I will present the conclusions to Part 1 of this thesis.




Chapter 3

Pulse Propagation in Single Mode
Fibres

3.1 Introduction

As discussed in the previous chapter, in the first part of this thesis self-similar
pulse propagation in optical fibres and fibre amplifiers will be investigated.
In order to understand physically how such solutions can arise, this chapter
introduces some of the basic linear and nonlinear effects that a pulse can expe-
rience as it propagates in an optical fibre.

The discussion begins with a simple qualitative description of single mode
optical fibres and then the mathematical formalism necessary to describe the
electric field of an optical pulse guided in such a fibre is established. The linear
and nonlinear effects which influence the evolution of a propagating pulse are
discussed before the description is extended to include optical fibre amplifiers.
To quantify the discussion, the propagation equation referred to as the nonlin-
ear Schrodinger equation (NLSE) will be introduced. The important analytic
solutions which exist under special conditions will be discussed, with particu-
lar reference to soliton and solitary wave solutions. Following which consid-
eration will be paid to how it can be solved numerically in regimes where no
analytic solutions have yet been found. Finally, generalised forms of the NLSE
will be presented to describe propagation when the spectral width of the pulse
becomes large.
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Figure 3.1: Refractive index profile of a standard step-index fibre. The right hand side
of the figure shows the fundamental mode profile in the fibre.

3.2 Single Mode Optical Fibres

The simplest form of a single mode optical fibre has a step-index geometry
which consists of a thin central core, where the light is confined, surrounded
by a cladding layer. As illustrated in Fig. 3.1, for a standard single mode fibre
(SMF) the refractive index of the core n, is slightly higher than the refractive
index of the cladding ny where

n =+/g/eo, (3.1)

and ¢, is the dielectric permittivity in a vacuum.! The two parameters which
characterise a step-index fibre are the relative core-cladding index difference,

ni — ng

2 Y
2ny

A:

3.2)
and the normalised frequency
V = koa (n? —n2)"?, (3.3)

where ko = 27/, a is the core radius and ), is the wavelength of the trans-
mitted wave [14]. In a geometrical optics picture, this difference in refractive
index gives rise to total internal reflection at the core-cladding interface, which
will confine certain light rays to the core. It is useful to note that the maximum
light acceptance angle of the fibre is known as the numerical aperture (NA)

IThis assumes that the magnetic permeability of the fibre is equal to the vacuum value so
that p = pp.
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and, for a small index difference, this can be related to A via:

NA ~ n,v2A. (3.4)

In a more rigorous analysis, Maxwell’s equations predict a finite set of guided
transverse modes with their energy concentrated mostly in the core. The num-
ber of modes supported by a particular fibre depends both on the wavelength
of the incident light and on the fibre parameters. It can be shown that for a
fixed wavelength, reducing the core radius until V' < 2.405 ensures that only
one transverse mode is guided [14]. It is this regime of SMF propagation that
is considered in Part 1 of this thesis.

3.3 Description of Optical Pulses

In this part of the thesis a scalar approach is adopted which implies that the
optical field maintains its polarisation along the fibre length so that the electric
field vector E(r, ¢) associated with a pulse can be represented as:

E (r,t) = =2 [E (r,t) exp (—iwpt) + c.c.]. (3.5)

Here 2 is the polarisation unit vector, E (r,t) is the slowly varying complex
envelope, wy is the carrier angular frequency of the field and c.c. denotes the
complex conjugate. The underlying assumption of Eq. (3.5) is that the field
IS quasi-monochromatic, i.e., the spectral width Aw is much smaller than the
centre frequency wy [4].

In the search for solutions for the optical field, it is useful to separate the enve-
lope E (r,t) in the form:

E(r,t)=F(z,y)V(zt)exp (ifyz), (3.6)

where F'(x,y) is the transverse mode distribution, 5, = [ (wp) is the momen-
tum wavenumber at the carrier frequency and V (z, t) is a slowly varying func-
tion of z. Substitution of Eqg. (3.6) into the wave equation then leads to two
equations for F (z,y) and W (z,t) [4]. The wavenumber f, is determined by
solving the eigenvalue equation for the modes F'(z,y) whilst the temporal
characteristics of the optical pulse are obtained via the solutions for W (z, t).

9
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Considerable insight into the temporal features of the pulse can then be ob-
tained by separating the complex signal ¥ (z, ¢) into its amplitude A and phase
d:

U (z,t) = A(z,t)exp i (z,1)], (3.7)
where A (z,t) = |V (z,t)| is positive definite. From Egs. (3.5) and (3.7) it is
apparent that the instantaneous frequency of the electric field is:

w(Z,t)ZwoJch(Z,t):wo—%—f or Qc(z,t):—%—cf,

where the angular frequency w is related to the frequency v through w = 27y,

(3.8)

and Q¢ (z, t) is the chirp function which represents the instantaneous frequency
deviation from the carrier frequency [4].

It is also useful to consider the envelope of the field in the frequency domain
¥ (z,v), obtained from the Fourier transform of ¥ (z,t), defined as:

U (z,v) = /_00 U (z,t) exp (i27vt) dt. (3.9)

o0

Analogous to Eq. (3.7), U (z,v) can be written as:

U (z,v) = A(z,v)exp [@ (z, y)} , (3.10)

where A and @ are the amplitude and phase in the frequency domain, respec-
tively. The group delay 7" (w) is then defined as [15]:

Od
T = — 3.11
which presents the relative time delay between the mean temporal location of

the spectral components within the pulse.

From Eq. (3.9), it can be seen that in order to obtain A (z,v) from A (z,t) [or
similarly, A (z,t) from A(z,v)], one must have complete knowledge of both
the amplitude and phase in the original domain. However, a convenient way
of characterising the relationship between a pulse in the temporal domain
and its corresponding spectrum is through the root-mean-square (RMS) time-
bandwidth product (TBP) [4]:

TBP = AQ - AT > p. (3.12)
Here, the RMS temporal width is defined by

1/2

Ar = [ — )], (3.13)

10
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where
[ 47| (2, )] dt

oo (2, ) dt

and a similar relation exists for the RMS spectral width AQ in terms of w. In

(") =

Y

Eq. (3.12), p is a real positive parameter that depends on the pulse shape. In
general, Eq. (3.12) suggests that the more highly chirped the pulse, the larger
the TBP. In the case where Eqg. (3.12) is an equality, the pulse possesses a flat
phase and is said to be “transform limited” (see Appendix A). The RMS time-
bandwidth products for the commonly encountered Gaussian and hyperbolic
secant (sech) pulse profiles are given in Table 3.3, where Tj is the half width at
the 1/e-intensity point.

Profile | Temporal Amplitude | Spectral Amplitude | Time-Bandwidth Product

Gaussian exp (—t%/21%) exp (—2m2T3v?) 0.5

sech sech (t/Tp) sech (m2Tyv) 0.5227

Table 3.1: Time-bandwidth products for Gaussian and hyperbolic secant temporal pro-
files.

3.4 Chromatic Dispersion

Chromatic dispersion arises due to the frequency dependence of the effective
refractive index. Thus a pulse consisting of a finite band of wavelengths, over
which the phase velocity v, varies significantly, will experience a temporal sep-
aration of its different spectral components during propagation. In an optical
fibre there are two effects that lead to chromatic dispersion: (i) the material
dispersion, which is intrinsic to any lossy medium, and (ii) the waveguide dis-
persion, which can be used to tailor the total chromatic dispersion.

3.4.1 Material Dispersion

The material dispersion of a propagation medium has its origins in the fre-
guency dependent response of the bound electrons of the dielectric to the in-
cident optical field. Far from the resonant frequencies of the medium, the re-

11
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fractive index of a fibre is well described by the Sellmeier equation [16]:

)
ijj
2

2 =1 14
n” (w) +;wj—w2’ (3.14)

where B; is the strength of the resonance at w;. For bulk fused silica, the three
resonances of importance have the parameters [17]:

By = 0.6961663 By =0.4079426 B3 = 0.8974794
A1 = 0.0684043 pm Ay = 0.1162414 pm A3 = 9.896161 pm

where )\; = 27¢/w;, and c is the velocity of light in a vacuum.

The effects of dispersion can be included in the propagation equations through
the wavenumber [ (w) = n (w)w/c. To simplify the mathematical description
this can be expanded in a Taylor series about w as:

0() = o 01 (@ —w0) + 5 (0 =) + gl w—wo) + o, (315)
where

d=s

By = {dwm]wwo (m=0,1,2,3,...), (3.16)

which is valid under the quasi-monochromatic approximation [Section 3.3]. It
is worth noting that some limitations on the use of this expansion are discussed
in Ref. [18]. Generally the cubic and higher order terms in this expansion are
negligible for pulses with small bandwidths as Aw << w and it is only neces-
sary to consider 3; and (.. EqQ. (3.15) then yields the relations:

1 1
ﬁlz_(n—’_wd_n) =

c dw Vg
1/ dn d?n 1 dv
_1lfpdn  dm) _ 1dy, 3.17
b ¢ ( dw +wdw2) v2 dw’ (3.17)

where v, is the group velocity at w,. From the first expression it follows that
(3, determines the speed of the pulse envelope. In the second expression, (3,
determines how the group velocity of the pulse changes as a function of the
frequency. Consequently, 3, is referred to as the group velocity dispersion
(GVD) parameter. This latter coefficient vanishes in fused silica at a wave-
length \,q ~ 1.27 um called the zero dispersion wavelength. For wavelengths
such that \y < .4, B2 > 0 and the fibre is said to exhibit normal dispersion
for which the red shifted frequency components travel faster than those that

12
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Figure 3.2: (a) Refractive index n and (b) the resultant GVD f, for fused silica, as
functions of wavelength.

are blue shifted. In contrast, the opposite occurs in the anomalous disper-
sion regime where \y > \,q and 3, < 0. Using Egs. (3.14) and (3.17), Fig. 3.2
shows (a) the variation of n and (b) the resultant 3, as functions of wavelength,
clearly showing the different regions of the GVD.

Although, as mentioned above, in most cases the contribution of the 3, term
dominates, for wavelengths close to \,4 or alternately, for pulses with signif-
icant bandwidths, it becomes necessary to include the higher order term pro-
portional to 35 in Eq. (3.15). This can be understood from Fig. 3.2(b) where
it can be seen that for pulses with a large bandwidth, 3, varies significantly
over the wavelengths contained within the spectrum. Clearly, the wavelength
dependence of 3, will play some role in the pulse broadening. From Eq. (3.16):
_d’8 dB,

63 - @ - Ea
which implies that 55 is related to the dispersion slope. Consequently, the
inclusion of 35 can be viewed as a way of incorporating the wavelength de-

(3.18)

pendence of j.

3.4.2 Waveguide Dispersion

In optical fibres the tails of the transverse mode extend into the cladding (see
Fig. 3.1) by an amount dependent on the wavelength. Due to the lower refrac-
tive index of the cladding, this leads to a small perturbation to the effective
refractive index given by [14]:

on (w) =Ty (w) An, (3.19)

13
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where I'; (w) is the fraction of power flowing in the cladding and An is as-
sumed to be independent of wavelength. To first order 'y (w) x x/w?, where
K Is a positive constant which depends on the fibre design parameters such as
the core radius. It then follows from Eq. (3.17) that the approximate change in
dispersion 63, (w) is given by:
2 2
932 (w) = % (Qdéin) —l—wddi(;n)) _An (QC;I;Q wiij) _2An

Eq. (3.20) shows that the effect of waveguide dispersion is to increase the

(3.20)

c w3’
group velocity dispersion in fibres, which consequently shifts the zero disper-
sion wavelength so that in typical optical fibres \,q ~ 1.31 ym. An additional
feature of Eq. (3.20) is that it illustrates the An dependence of (3;, and this
suggests that the dispersion can also be modified by introducing dopants (see
Section 3.6). These results also indicate that the waveguide dispersion can be
exploited to shift, or flatten, the dispersion curve [19], and this has important
implications for the field of telecommunications.

3.5 Nonlinear Effects in Optical Fibres

When intense electromagnetic fields propagate through a medium they cause
the bound electrons to oscillate in an anharmonic manner. As a result, the
induced polarisation P no longer depends linearly on the incident field E and
must be extended to the more general expression [20]:
Piw) = X3 (wiiwn) B (wi) + X (@iiwn — wa, wa) By (wy — wn) By (wn)
+ ngl)gl (Wi w1 — wa — w3, wa, w3) Ej (w1 — wo — w3) By (w2) By (w3)

o (3.21)

where ) is the (j + 1) th rank susceptibility tensor, P, (w) and E; (w) are the
Fourier components of the fields P, and E;, respectively, and the Einstein sum-
mation convention applies. Although for simplicity Eqg. (3.21) assumes that
the polarisation can be related to the field via a power series, it is nevertheless
extremely useful for describing a large number of nonlinear phenomena.

The linear susceptibility is still the dominant term in this expansion and this
gives rise to the refractive index n and the attenuation coefficient o through:

nw)=1+ %Re [X(l) (w)], (3.22)

14
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a(w) = %Im [X(l) (w)] - (3.23)

The second order susceptibility y(? is responsible for effects such as second
harmonic generation and sum frequency three wave mixing, but this vanishes
for fused silica glass due to its inversion symmetry. As a result the lowest order
nonlinear effects in optical fibres originate from the third order susceptibility
x®), which gives rise to effects such as nonlinear refraction, third harmonic
generation and four-wave mixing. In general, with most common fibres there
is insufficient phase matching to observe the latter two processes and the ma-
jority of nonlinear effects result from the nonlinear refraction.

3.5.1 Nonlinear Refraction

Nonlinear refraction gives rise to the intensity dependence of the refractive
index so that n becomes [4]:

ﬂ(w,\E|2) =n(w)+ns|E”, (3.24)

where n () is given by Eq. (3.22), | E|” is the intensity of the field and n, is the
nonlinear index coefficient given by

ny = iRe[ ®) ] - (3.25)

The assumption of a linearly polarised field implies that only the zzxzx compo-
nent of the x® tensor contributes to the nonlinear index n,. The effect of the
second term in Eq. (3.24) is to cause an additional phase shift

Adspy = ngko ‘EF L, (3.26)

where L is the fibre length. Thus the field experiences a self-induced phase
shift referred to as self-phase modulation (SPM). It is this phase shift that is
responsible for the spectral broadening of short pulses and in general, due to
the symmetric nature of the pulse profiles, will also be symmetric. At this
point it is useful to note that n, appears in the propagation equations through
the fibre specific parameter ~ defined as:

NaWwo
’y =
cAefi’

(3.27)
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where Ag is the effective mode area given by

[f f |F:Ey\ dxdy

Agtr = .
off = f f |F:Ey\dxdy

(3.28)

If two optical fields are copropagating in a fibre at different wavelengths, the
total electric field E is now given by:

1
E(r,t) = éi [Ey (r,t) exp (—iwqt) + Es (r,t) exp (—iwst) + c.c.] .

Thus the nonlinear phase shift induced on the first field by the second is
ADypm = 2nko |Es|* L, (3.29)

and this effect is known as cross-phase modulation (XPM). It follows from
Egs. (3.26) and (3.29) that if the two fields are of equal intensity, then the XPM
phase shift is twice as large as that induced by SPM. The defining feature of
the XPM phase shift is that, in general, it leads to an asymmetry in the pulse
spectrum. This is because the contributing portion of the second field to the
phase shift changes as the pulses move through each other.

3.6 Doped Fibre Amplifiers

The incorporation of rare-earth ions, such as Yb** and Er3*, as dopants in a sil-
ica fibre provides a source of gain which allows such a medium to amplify an
optical field as it propagates. In order to improve the efficiency of the pump-
ing, the inclusion of rare-earth dopants is often accompanied by a high con-
centration of codopants. As it has just been shown, both the dispersion and
the nonlinear effects that govern the propagation are fibre specific parameters.
This suggests that the inclusion of dopants will lead to a qualitative change in
the propagation in comparison to a SMF.

In Section 3.4 it was noted that the contribution due to the waveguide disper-
sion depends on An and the core radius. The inclusion of rare-earth ions and
codopants such as GeO,, Al,O3, P,O5 (or a combination of these) increases
the refractive index difference in a fibre amplifier, which leads to a shift in the
zero dispersion wavelength to longer wavelengths [Eq. (3.20)]. In addition,
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Figure 3.3: Gain spectra for a Yb3*:doped germanosilicate fibre amplifier, for 910 nm
and 975 nm pumps, from Ref. [22].

fibres with higher refractive index differences generally have smaller core di-
ameters which further shifts the dispersion [21]. A small shift in the dispersion
curve can also be attributed to a slight change in the material dispersion and
increasing the codopant content can enhance this effect, but in general this is
negligible.

The equation for the nonlinearity coefficient v [Eq. (3.27)] then showed that
this depends on the effective mode area A.s so that it also depends on the
radius of the amplifier core. Thus the reduction in the core radius suggested
above implies a decrease in Agr and hence an increase in the absolute value
of v+ compared to that of a SMF. Furthermore, the introduction of dopants and
codopants into the core can cause a small change in + by altering the nonlinear
refractive index n, of the medium slightly [4].

A typical gain profile g (zy, \) for a rare-earth fibre amplifier doped with Yb3*
ions is shown in Fig. 3.3 [22]. This illustrates the high gains attainable over a
broad gain bandwidth which is an attractive feature for ultrashort pulse am-
plification. In general, the gain is a function of distance =z along the fibre, and
saturates with increasing pump power. However, typical pulse energies are
much smaller than the saturation energy and so g(z, A\) can be replaced by
g (). Inaddition, if g (\) does not vary significantly over the spectral width of
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the optical signal then g (\) ~ g ()\).

One further consideration is the attenuation of the pump beam as it propagates
down the amplifier. This attenuation implies that g will have an additional =
dependence which will be a function of the pumping configuration employed
in the amplification. The choice of the pumping geometry will in general de-
pend on the nature of the experiment. The most commonly encountered ge-
ometries are those of: (i) pumping codirectionally with the signal beam so that
the gain decreases along the length of the ampilifier, (ii) pumping counterdirec-
tionally so that the gain increases along the amplifier and (iii) pumping bidi-
rectionally so that the gain remains approximately constant over the length of
the amplifier.

3.7 Nonlinear Schrodinger Equation

As discussed in Section 3.1, the effects of dispersion, nonlinearity, loss and gain
on the propagation of a pulse in an optical fibre can be combined in a single
propagation equation. For a scalar field, the NLSE is given by:

2 3 _
ig\p:@8_@+i@8—q}—7’qf’2m+ilg2a:| v, (3.30)

0z 2 072 6 0713

where z is the propagation lengthand 7" =t — 3,z = t — z/v, so that the pulse
propagates in a temporal reference frame whose origin moves with the centre
of the pulse.? For the majority of fibres considered in this part of the thesis, the
losses are typically around 1 x 10~3 dBm ™" so that « can be set to zero for short
propagation lengths.

In addition to the assumptions discussed in the preceding sections where the
dispersion and nonlinear effects were introduced, there is a further approxi-
mation inherent in the derivation of Eq. (3.30). This is that the effect of the
nonlinearity is included as a perturbation to the linear solution. This approxi-
mation is justified in optical fibres where the linear polarisation is much larger
than the nonlinear polarisation, even at very high intensities.

At this point it is useful to introduce propagation lengths which quantify the
importance of the dispersive or nonlinear effects on the evolution of the pulse

2This is often referred to as the retarded frame.
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along the fibre. The relations,

T? 1
Ip=—2 and Ly =—,
° ’52‘ Nt 7Py

where F, is the initial peak power, describe the dispersion and nonlinear lengths,
respectively.

3.8 Analytic Solutions to the NLSE

In general, solutions to the full NLSE given in Eqg. (3.30) cannot be obtained
analytically and instead must be found numerically. However, some important
analytic expressions exist in situations where certain terms can be neglected.

Considering a lossless SMF, when the propagation distance satisfies z ~ Lp
and z << Ly, Eq. (3.30) becomes

.0 By 0

which can be solved in the Fourier domain to give:
U (z,v) = ¥ (0,v)exp Bﬁg (27v)? z} . (3.32)

Thus it can be seen that the effect of GVD only propagation is to introduce
a quadratic spectral phase. Although this modification to the phase will not
alter the shape of the spectrum, it causes the spectral components to separate
in time which results in a temporal broadening of the pulse.

The solution for the complex field in the time domain can then be found by
calculating the inverse Fourier transform of Eq. (3.32):

U(z,T) = /OO U (z, v) exp (—i27vT) dv. (3.33)

— 00

For an incident Gaussian pulse, such that ¥ (0,7) = /Py exp (—1/2 (T/Tp)?),
Eq. (3.33) can be solved exactly to yield the solution:

VR (_ o )
12 i) P\ 2T i) ) (3.34)

Thus, in a dispersive medium, a Gaussian pulse maintains its shape on prop-

U (2,T) =

agation but with its width scaling as T; [1 + (z/LD)Q} vz However, even for
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non-Gaussian pulses, where closed form solutions to Eq. (3.33) for arbitrary =
cannot be found, it is possible to use the method of stationary phase to show
that in the limit of large =z [23]:
141(52/ |B2]) ( 1 )1/2 - ( T ) ( i T2)
W (z,T) ~ U0, — |exp|—=—]. 3.35
( ) \/§ 27 \52\ Z B2z P 2 Bz ( )

Thus any pulse that propagates in a linear dispersive medium ultimately de-

velops a temporal profile that has the same form as its spectrum with a linear
chirp.

Now considering the situation where the propagation distance satisfies z ~
Ly and z << Lp, Eq. (3.30) can be written as
0
=0 = — |U]* 0. (3.36)
0z
For sufficiently small z it can be assumed that [¥|° remains unchanged so that

Eq. (3.36) has the solution:
U (2, T)=W(0,T)exp [iv w|? z], (3.37)

and thus the effect of SPM alone is to cause an intensity dependent temporal
phase. By noting that this phase induces an intensity dependent chirp, it can
be seen that the effect of SPM is to introduce new frequency components into
the pulse which results in spectral broadening.

To illustrate the separate effects of dispersive and nonlinear propagation, Fig. 3.4
shows the evolution of a transform limited Gaussian pulse, such that Lp =
1/2m and Ly, = 1/5m, for (a) dispersive propagation in the normal disper-
sion regime and (b) nonlinear propagation.
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Figure 3.4: Evolution of (a) the temporal intensity under dispersive propagation
(B2 > 0) only and (b) the spectral intensity under nonlinear propagation only.
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3.8.1 Soliton Solutions to the NLSE

For systems where it becomes necessary to consider the combined effects of
dispersion and nonlinearity (Lp ~ Ln_ ~ 2), interesting phenomena can arise
from the interplay between GVD and SPM. In such instances, ignoring gain,
loss and higher order dispersion, Eqg. (3.30) takes the form:

0 92
i 0= %W\p—wmw. (3.38)

This equation belongs to a special class of equations that can be solved ex-
actly using the inverse scattering method [24]. The success of this approach
lies in identifying a suitable scattering problem whose potential is the solution
sought. The field at any point z can then be found via the evolution of the
scattering data, which can simply be obtained by solving the linear scattering
problem.

Using this method Eq. (3.38) was found to have an important class of solu-
tions known as solitons [10]. These soliton pulses have the property that they
can propagate over long distances in a fibre without undergoing distortions
as a result of an effective cancellation of the dispersive and nonlinear effects.
Specifically, the term soliton is restricted to solutions found via inverse scatter-
ing techniques in which the energy propagates in the form of a localised packet
(without gain or loss) and which remain unaffected after collisions with each
other [25]. A more general term is a solitary wave and these will be discussed
in the following section. Owing to their robustness in nonlinear systems, soli-
tons have been studied extensively in many fields of physics. In the context of
pulse propagation in optical fibres, solitons are not only of great fundamental
importance but they have also found wide application in many technologies.
As it is about to be shown, the qualitative features of the solutions depend
strongly on the sign of the dispersion.

In the anomalous dispersion regime, Eq. (3.38) supports soliton solutions which
propagate in a cycle returning to the initial form after one soliton period z, =
mLp/2 [4].3 The exception to this is the fundamental soliton whose shape re-
mains unchanged over the propagation and, provided /4T3 P,/ |3.| = 1, has

3These are sometimes referred to as bright solitons in the literature to distinguish them
from the solutions where 5, > 0.
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the form: -
.z
U (2, T) = +/Pysech (?0> exp (lﬁ) : (3.39)

Here the condition placed on the dispersion and nonlinear lengths illustrates
the strong dependence of the soliton pulse parameters on the fibre parameters.

In the normal dispersion regime Eq. (3.38) also supports soliton solutions which
are referred to as dark solitons. Here the term dark soliton is used since the in-
tensity profile is in the form of a dip embedded on a uniform background. The
general solution is given by:

1/2
U (z,T)= Ay {3_2 — sech? <£)} exp

T() B L D

igp(T’)H(@) i], (3.40)

where T = A,T/Ty + (A2/B) (1 — B%)"? 2/ Lp. The parameter 4, determines
the level of the background and B (the so-called “blackness parameter’) gov-
erns the depth of the dip (|B| < 1). The temporal phase varies across the dark
soliton, with the magnitude of the phase shift depending on B through:

Btanh (T")
1 — B2?sech® (1] G

o (T") =sin! {
[

For B = 1 the intensity goes to zero at the centre of the dip and the soliton is
often referred to as a black soliton. Whereas for |B| < 1, the intensity of the
dip does not extend all the way to zero and the solutions are referred to as gray
solitons.

A significant difference between the soliton of Eq. (3.39) and that of Eq. (3.40)
is that fundamental solitons are even pulses, with a constant phase across the
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Figure 3.5: Evolution of (a) a bright soliton (32 < 0) and (b) a black soliton (3; > 0).
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entire pulse, and black solitons are odd pulses, with a = phase jump at the
centre (where the intensity is zero).* To illustrate the differences between the
two solutions, Fig. 3.5 shows the evolution of (a) a fundamental soliton and (b)
a black soliton.

3.8.2 Solitary Wave Solutions to the Ginzburg-Landau Equa-
tion

In situations where the fibre possesses gain, loss, and/or when higher order
dispersive effects must be considered, the propagation equation may no longer
be integrable by such inverse scattering techniques and so does not possess
soliton solutions in the strict mathematical sense. However, these equations
can often be found to have solitary wave solutions that can propagate undis-
torted such that their shape does not change but which may undergo scaling of
their amplitude or width. An example of such solitary wave solutions are the
autosolitons which exist for a modified form of Eq. (3.30) called the Ginzburg-
Landau equation [26]:

0 1 .02 2 g
i V=3 (B2 +19) 7Y~ W]° 0 + SV (3.41)

Here the dispersive term proportional to ig/2 is related to the finite gain band-
width and is referred to as gain dispersion. This equation is often studied in
the context of short pulse propagation in optical fibre amplifiers with the solu-
tions being referred to as amplifier solitons [5].

As mentioned in Chapter 2, the amplifier soliton solutions were found via a
method of trial and error to be [27]:

U (z,T) = /Py sech (pT) exp [i® (2, T)), (3.42)
where the phase ¢ is given by:
® (2, T) =Tz — qln[cosh (pT], (3.43)
and the constants F,, p, ¢ and I" are determined via:
_Dp —g

P=E2r(2 -2 2 44

4The description of the pulse as odd refers to its amplitude.
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2 2

:3s:|: 2(3+8g), Fzg—gz[s(l—cﬁ)—qu}, (3.45)
where s = sgn (J2). These pulses represent a solution that will propagate in an
amplifier, whilst maintaining both their shape and energy, where the amplifier
gain is balanced by the loss introduced by the gain dispersion. An important
property of these amplifier solitons is that, in contrast to the soliton solutions,
these pulses have a time dependent phase. Significantly, however, because of
the gain limiting effects, amplifier solitons are undesirable in most amplifier
systems and particularly in those that require the pulses to be amplified to a

high energy.

To illustrate the significance of these solitary wave solutions, Fig. 3.6(a) shows
the evolution of an arbitrary input pulse in an amplifier with a finite gain band-
width. It can be seen that after the initial propagation, where the pulse expe-
riences gain, the evolution stabilises and a solitary wave is formed. Further-
more, by comparing the output pulse from the amplifier with the solutions of
Egs. (3.42)-(3.45), Fig. 3.6(b) confirms that this pulse has indeed evolved to be
an amplifier soliton.
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Figure 3.6: (a) Evolution of an autosoliton pulse in an optical fibre amplifier with
a finite gain bandwidth. (b) Intensity profile (left axis) and chirp (right axis) of the
output amplifier soliton together with the theoretical predictions (circles).
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3.9 Numerical Solutions to the NLSE

In the previous section it has been shown that analytic solutions only exist for
special reduced forms of Eq. (3.30), and that they often depend critically on the
parameters of the system. Thus for more complicated systems and/or an arbi-
trary choice of initial conditions, it is unlikely that any analytic solutions will
exist. As a result, most of the progress which has been made in unveiling the
properties of propagation in realistic systems is due to numerical simulations.

Several numerical techniques exist for solving the NLSE but the fastest and the
most extensively employed is the split-step Fourier method [4], and it is this
technique that is used in this thesis. The essence of this method lies in iden-
tifying that the terms in Eq. (3.30) can be separated into those that are easily
solved in the temporal domain (i.e., the nonlinear terms) and those that are
more efficiently solved in the spectral domain (i.e., the linear terms). Eq. (3.30)
can then be rewritten in the form:

ig—i’ - (D + N) v, (3.46)

where the dispersive® and nonlinear operators are

Ao B O B0 [g-a
N =—y|¥P, (3.48)

respectively. Although the dispersive and nonlinear effects act together along
the length of the propagation, for a sufficiently small = step (k) it can be as-
sumed that they act independently. Thus each propagation segment z — z+ h
is split into two steps where in each step an operator corresponding to the
combined effects in the respective domain is applied. Mathematically this is
expressed as:

U (z+ h,T) ~exp <hD> exp (hN) U(z,T), (3.49)
where the execution of the dispersive operator is carried out in the Fourier
domain via:

exp (hD) V' (2,T) = {Fﬁl exp [hD (iw)] F} U (2,T). (3.50)

5The effects of absorption and/or gain are included in this linear operator.
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Here F is the Fourier transform operation and D (iw) is the operator D of
Eq. (3.47) in Fourier space. This process is then repeated until the required
propagation distance has been covered.

To illustrate typical propagation with the combined effects of dispersion and
nonlinearity this technique is used to propagate a Gaussian pulse under con-
ditions where Lp = 5LN./2 (52 > 0, g = 0 and the individual effects can be
seen in Fig. 3.4). Fig. 3.7(a) shows the evolution of the temporal intensity and
(b) shows the evolution of the spectral intensity. Comparing these evolutions
with those of Fig. 3.4 it can be seen that, in the normal dispersion regime, the
combination of GVD and SPM increases the rate at which the temporal profile
broadens. Subsequently, this acts to reduce the peak power of the pulse and
hence decreases the rate of the spectral broadening. Additionally, it is clear
that the multi-peak structure seen with only SPM is also suppressed, and this
is due to the reduction in the SPM induced phase shift. Thus the dispersion
induced broadening reduces the effects of the nonlinear propagation so that
Ln. << Lp is needed to achieve a large nonlinear response.
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(a) Temporal: GVD and SPM (b) Spectral: GVD and SPM

Figure 3.7: Numerical evolution of the intensity profile with the combined effects of
GVD and SPM, (a) in the temporal domain and (b) in the spectral domain.

Extending the above simulation to include the effects of a constant gain profile,
the propagation now describes the evolution of a pulse in an optical fibre am-
plifier. Fig. 3.8 shows the evolution with Ly = 5Ly, /2 (6, > 0) and g = 2m ™"
where again (a) is the temporal intensity and (b) is the spectral intensity. This
shows that the inclusion of gain results in a further increase in the rate of the
broadening in both domains. This is to be expected as the increase in the peak

26



Chapter 3 Pulse Propagation in Single Mode Fibres

=
o
=
(=}

Power (arb.)
o
(&3]
Power (arb.)
o
(6]

-

o
=
o

O
R
90
o
()]
O
\)Q’\% )
9’)
o
(6]

10 1000 1005

10 ° 995
Time (ps) Wavelength (nm)

@’L
o

@’L
o

(a) Temporal: With Gain (b) Spectral: With Gain

Figure 3.8: Numerical evolution of the intensity profile with the combined effects of
GVD, SPM and gain, (a) in the temporal domain and (b) in the spectral domain.

power leads to an increase in the nonlinear effects.

The different evolution processes can be summarised by the evolution of the
RMS time-bandwidth product [Eqg. (3.12)]. Fig. 3.9 shows the resultant prod-
ucts for GVD only, SPM only, GVD and SPM and the combined effects of GVD,
SPM and gain, as functions of the propagation distance. It is clear that for
g = 0, in all cases the broadening increases linearly for large propagation dis-
tances, whereas for g # 0 the rate of the broadening continues to increase as
the peak power grows.

8 T T T T
GVD, SPM and Gain
6F | GVD and SPM -
.—.— SPM only
_ GVD only

RMS TBP (AQAT)

0 0.2 0.4 0.6 0.8 1
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Figure 3.9: Evolution of the RMS time-bandwidth product for GVD only, SPM only,
GVD and SPM, and the combined effects of GVD, SPM and gain.
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3.10 Generalised NLSE

Although the NLSE introduced in Section 3.7 is extremely successful in ex-
plaining a large number of linear and nonlinear effects seen in optical fibres,
it often needs modification in order to explain some of the more subtle effects
which present themselves during pulse propagation. These effects occur when
the spectral width Aw of the pulse becomes large, and hence several approxi-
mations made in deriving the propagation equations are no longer valid. The
following investigates modifications to the NLSE necessary to include the ef-
fects of a complex Lorentzian gain profile and a delayed nonlinear response.

3.10.1 Complex Lorentzian Gain Model

The Ginzburg-Landau equation, as described in Section 3.8.2, is based on a
parabolic gain approximation where the dopant susceptibility is truncated af-
ter the second order terms. In general, this leads to an overestimation of the
losses in the wings of the spectrum and consequently Eq. (3.41) is only valid for
situations where the spectral width of the pulse remains within the gain band-
width [7]. A more rigorous model to describe a system with a finite bandwidth
requires that the amplification process is modelled by the Maxwell-Bloch equa-
tions which include the effects of dynamic gain saturation [4]. However, since
the upper state lifetimes of rare-earth amplifiers are of the order of several
milliseconds, the population inversion remains nearly constant across a prop-
agating picosecond pulse and, in such cases, the system can be very accurately
described by the NLSE with a complex Lorentzian gain profile [28].

In reality, the gain profile of a rare-earth doped fibre amplifier is far more
complicated than a simple Lorentzian and, in fact, consists of peaks of several
overlapping transitions which suffer both strong homogeneous and inhomo-
geneous broadening [Fig. 3.3]. However, for the purposes of this thesis, as the
primarily concern is with the general features of how a frequency dependent
gain profile influences the pulse shaping, it suffices to model the gain medium
as a homogeneously broadened single transition.

Considering a model which will describe the propagation of a pulse in a homo-
geneously broadened two-level amplifying medium (in the low-gain satura-
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tion limit), for a pulse injected into the amplifier on resonance the propagation
equation is given by [7]:

L0 Py O? 2 e I - ,
15\11 = ?W\If — Y| ¥ — 15\11 +3 /_Oo Xp (V) ¥ (z,v) exp (—i27vT) dv.
(3.51)
By writing the susceptibility as
1—2mvT:
o) = 9 2) (352)

1+ (2mD)?

where T5 is the dipole relaxation time, it is easy to see that the imaginary part
represents the resonant Lorentzian gain profile, with a peak gain of g, and
the real part represents the resonant dispersion, introduced by the amplifier
dopants. Eq. (3.51) can be solved numerically via the split-step Fourier method
by calculating the resonant term in the frequency domain.

3.10.2 Delayed Nonlinear Response

The nonlinear effects discussed in Section 3.5.1 are elastic in the sense that no
energy is exchanged between the electric field and the propagation medium.
The following now considers a situation in which the optical field transfers
part of its energy to the nonlinear medium. This occurs when a photon of the
incident field is annihilated to create a photon at the downshifted Stokes fre-
guency and a phonon of the exact energy and momentum necessary so that
both of these quantities are conserved.® This generally occurs in a situation
where a pump beam is copropagating with a probe beam at the Stokes fre-
guency, in which case it is referred to as stimulated Raman scattering (SRS).
However, if a pulse possesses a broad enough spectrum so that the Stokes fre-
quency is within the bandwidth of the pulse (= 1THz), the Raman gain can
amplify the low energy frequency components by transferring energy from the
high frequency components of the same pulse. This latter case is often referred
to as intrapulse Raman scattering and it is this effect that leads to the well
known soliton self-frequency shift [4, 29].

To extend the system to include the effects of a delayed Raman response, a

®A higher energy photon can be created at the anti-Stokes frequency if a phonon of the right
energy and momentum is available.
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nonlinear polarisation of the form [30]:

T
Pu (v, T) = eoxPE (r,T) / R(T —T')E*(x, T dT’ (3.53)

isassumed, where R (T') is the nonlinear response function which is normalised
to [ R(T)dT = 1 and the upper limit of integration extends only up to 7" since
the response function R (7' — 7") must become zero for 7" > 7' to ensure causal-
ity.” Including this in the propagation equation leads to the modified NLSE [4]:

0 Py 0P 3 0 |-«
P 17 R T A s a
i 0 > / N |2 /

An important feature of Eq. (3.54) is the inclusion of the time derivative opera-
tor in the nonlinear term. This term describes the Stokes’ losses associated with
the material excitation during the Raman self-scattering process, the frequency
dependence of the nonlinearity and the self-steepening effect. Although it is
often neglected in Raman analysis of pulses with small bandwidths [29], it is
in fact necessary to ensure that the photon number, and not the optical energy,
is conserved so that the Raman interaction is described correctly. The response
function R (T") should include both the electronic and vibrational (Raman) con-
tributions. If the electronic contribution is assumed to be instantaneous, then
the functional form of R (T") can be written as:

R(T)= (1~ fr)6(T)+ frhr(T),

where ¢ (T') is the Dirac delta function and fx represents the fractional con-
tribution of the delayed Raman response governed by hg (7)) [31]. The form
of the Raman response function hg (7') can be obtained experimentally, or
through an approximate analytic form which is modelled on experimental re-
sponse functions [30]. In this thesis an experimentally determined response
function obtained for a silica fibre is used [32], where fzr = 0.18 and hg(T) is
given in Fig. 3.10. Here Fig. 3.10(a) is the temporal variation and (b) is the Ra-
man gain spectrum corresponding to the Stokes gain. Significantly, although
both doped and undoped fibres are considered in this thesis, the inclusion of
rare-earth dopants has a negligible effect on the response function of silica fi-
bres.

"Both the electric field and the induced polarisation vectors are assumed to point along the
same direction so that a scalar notation can be used.
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Figure 3.10: (a) Temporal variation and (b) Raman gain spectrum (corresponding to
the Stokes gain) of the Raman response function used in this thesis.

Numerical Solutions

Eq. (3.54) can be solved numerically via the split-step Fourier method, de-
scribed in Section 3.9, but with special treatment of the Raman term [30]:

.0 i 0 9
where * has been used to denote the convolution,
Rx |0 = / R(T)|W(z, T — T[> dT". (3.56)
0
Defining:
V(2,T) =V (zT)exp [~i(z — z) YR * \\110]2] : (3.57)
where
% = \IJO = \I] (Zo,T) s (358)

it can be noted that as R = |¥y|> € R, this implies that |V[° = |¥|* and hence
R+ |V|* = R« |¥|°. The derivative of V is then calculated as:

ov ov

—i(z—20)yRx|¥o|? : 2\ _—i(z—20)yRx|To|?
E :Ee (z—z0)vR*|Wo| +‘1/(—WR*|‘1/0‘)€ (z—z0)yR*|Wo|
= iy 1+Li R ‘\1;|2\I;e*i(Z*ZO)VR*\‘I’O\2_i,yR* |\I;0|2\1;efi(szO)vR*\\I’o\2
woaT
. 0
= iR (V] = [Vol?) — wlO@_T (VR V). (3.59)

To integrate this system a second order Runge-Kutta scheme is used, where
the integration of

oV
E :6(27 V)
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from z, to 2,1 = 2, + dz is performed as:
Vi1 =V + 02 x {2, +02/2,V, +02/2 X E(20, Vi) } - (3.60)

This equation can be solved in a two step process where, using Eqg. (3.59), the
intermediate step (n + %) is obtained as:

Visr = Vo +02/2 X & (20, Vi)
Yoz O 9
S VA L 61
Vi o0 T (VaR* |V, [7) (3.61)

so that,

Vs

Vit

0

2 2
_ VVn\2)— vézﬂ(VM%R* ) . (3.62)

The field ¥ (2, T') is then reconstructed from Eg. (3.62) using Eq. (3.57) before
being operated on by the dispersive operator, as described by Eq. (3.50).
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Chapter 4

Self-Similar Parabolic Pulse
Solutions to the NLSE with Gain

4.1 Introduction

As discussed in Chapter 2, recent calculations using self-similarity methods
have led to the discovery of an important class of solutions to the NLSE with
normal dispersion and gain. These pulses, which have a parabolic intensity
profile, will maintain a strictly linear chirp so that they propagate self-similarly
in highly nonlinear, normal dispersion, media subject to simple scaling rules.
Importantly, it is the ability of these solutions to undergo distortion free am-
plification to high powers, and to be efficiently compressed to ultrashort pulse
widths, that has motivated the investigations presented in the first part of this
thesis. For this reason, this chapter presents a review of some of the important
results regarding parabolic pulses and discusses the significant features of the
solutions. To facilitate the theoretical analysis, the discussion begins with a
brief introduction to the mathematical formalism of self-similarity techniques.

4.2 An Introduction to Self-Similarity

It is often the case that the evolution of a physical system will exhibit some
form of symmetry such that the behaviour of the system at one stage can
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be mapped onto its behaviour at some other stage through a suitable scal-
ing transformation. It may be that the properties of this system exhibit un-
changing or periodic characteristics, such as the case of soliton solutions (see
Section 3.8), or that their evolution with time or distance obeys a simple power-
law relationship. In any case, irrespective of the details of the symmetries (or
“similarities”) possessed by a particular physical system, their identification is
the key to establishing a useful mathematical description of the system.

4.2.1 Self-Similarity and Scaling in Physics

A self-similar solution is one in which the functional form of the solution is
invariant so that the solution at one point (in space or time for example) can be
found from a solution at another point by a similarity transformation. Despite
its apparent complexity, self-similarity is a concept that is taught in high school
geometry classes in the context of “similar triangles,” which have the same
angles, but sides of different lengths. In such a case, it is straightforward to
map one triangle on to the other by a simple linear scaling transformation.

A slightly more complex example is the evolution of the radius of the acoustic
shock-wave produced as a result of a nuclear explosion. A nuclear explosion
is, of course, a very complicated event whose complete description must take
into account many different factors such as the particular radioactive isotopes
used and the geometry of the explosive device. However, the evolution of the
radius r; of the generated acoustic shock-wave is found to obey a remarkably
simple scaling law, where the rate of expansion is determined only by the en-
ergy released in the explosion, and not the specifics of the system. The result

Et2 1/5
7°f = (—) s (41)
Po

where E is the energy of the explosion, py is the density of the air and ¢ is the

IS:

time after the explosion [33]. The realisation that a complex event such as an
explosion possesses such a simple underlying structure is both very satisfying
from a physical point of view, but also of immense practical importance. For
example, Eq. (4.1) allowed opposing sides during the Cold War to estimate the
energy released in nuclear tests based only on analysis of available television
footage.
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Although self-similarity has long been a focus of studies involving nonlin-
ear physical phenomena in fields ranging from hydrodynamics to solid state
physics, such techniques have yet to be strongly established in the field of op-
tics. However, in recent years some important results have been obtained and
this has sparked a tremendous growth in the current interest of these tech-
niques. For interest, some of the results obtained in the field of nonlinear optics
are summarised below.

Radial Pattern Formation in a Laser Cavity

One of the first demonstrations of self-similarity techniques in optics was con-
ducted in 1991 by Afanas’ev et al. [34]. In their calculations they investigated
the self-action of counterpropagating axially symmetric light beams within the
nonlinear medium of a laser cavity. They found that a number of self-similar
solutions can exist in different experimental regimes which depend on the pa-
rameters of the input beam and the nonlinear medium. In particular, these so-
lutions can describe the self-focusing or defocusing of the propagating beams
under single or double focus conditions.

Phase Grating Formation in Optical Fibres

Motivated by the discovery of self-organised grating formation in optical fi-
bres, An and Sipe investigated a model to describe the dynamics of grating
formation by visible light [35]. Using this model they showed that the grating
formation can be described by a single universal parameter (or a self-similarity
variable) so that the parameters which describe the grating state evolve self-
similarly subject to a variation in their scaling rates. Thus the growth of a grat-
ing will ultimately approach a fixed point and this corresponds to a perfectly
phase matched stable grating.

Transient Stimulated Raman Scattering

Transient stimulated Raman scattering (TSRS) occurs in the limit where the
pulse durations are short compared to the dipole deexcitation time 75. In this
limit the system can be said to have “memory” in the sense that the medium
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will retain information long after the pulses have passed. Thus when investi-
gating the solutions of such systems it is important to study the long distance
behaviour. Indeed, it was this approach that lead to the discovery by Menyuk
et al. that, after an initial period of transient behaviour, the soliton pulses nor-
mally associated with SRS [36] disappear and the solutions tend towards a
self-similar solution [37]. Importantly, they found that the exact form of the
self-similar solution toward which the system tends is determined entirely by
the initial fields at early times.

Self-Similar Evolution of Self-Written Waveguides

Self-written waveguides can be written in a photosensitive material using the
intensity dependent refractive index change induced by a propagating light
beam. Significantly, whilst numerically investigating the self-writing of chan-
nel waveguides, in 1998 Monro et al. showed that as the waveguide evolved
its shape appeared to remain approximately constant, but with a scaling of
its depth and width [38]. As a result, this motivated them to use similarity
techniques to search for the solutions for the self-similar mode shape and the
corresponding refractive index profile. By studying the evolution of arbitrary
input pulses they could confirm that the predicted self-similar solutions were
indeed stable solutions to the self-writing process.

4.2.2 Mathematical Methods

Mathematically, self-similar solutions are found by the technique of “symme-
try reduction.” This involves reformulating the problem in terms of a certain
combination of the original variables, called a similarity variable, so that the
number of degrees of freedom of the system is reduced. This means that the
original problem of solving partial differential equations can be recast into a
problem of solving a reduced system of differential equations, which greatly
simplifies the analytic treatment. Exactly how this reformulation is carried out
varies from problem to problem.

In general, the similarity variables can be found using techniques based on Lie
algebra theory [11]. This analysis is based on the fact that self-similar solutions
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are invariant under some symmetry group of the system of partial differential
equations. Consequently, finding the global invariants of the group equates to
finding the similarity variable, and thus results in a reduction in the differential
equations.

However, this type of formal approach is often unnecessary if the solution to a
similar problem has already been found. In such cases it is often more conve-
nient to construct the similarity variable based on the findings of the previous
solution. Indeed, this was the case for the parabolic pulse solutions found by
Kruglov et al. (to be described in Section 4.4), where the theoretical analysis
was based on the combined results of high intensity wave-breaking-free prop-
agation in normal dispersion fibres [9] with those obtained for radial pattern
formation in a laser cavity [34]. It is important to note that in choosing this
approach one must be wary of subtle differences in the two systems which can
lead to an incorrect reformulation of the problem. Thus when constructing
a similarity variable in this manner one must use a large amount of physi-
cal intuition and in particular, be very cautious of an incorrect choice of the
governing parameters which will lead to inconsistencies in the solution. How-
ever, irrespective of the techniques used to obtain the scaling laws, the essential
physical behaviour of all such self-similar systems is identical: the scaling laws
map the evolution at one point exactly onto the evolution at another.

4.3 Parabolic Pulse Propagation in Normal Disper-
sion Fibres

The theoretical analysis describing parabolic pulse evolution in normal disper-
sion optical amplifiers was motivated by previous observations of self-similar
behaviour of parabolic pulses in normal dispersion fibres by Anderson et al. [9]
and Tamura and Nakazawa [39]. To establish the foundations for the analyti-
cal calculations, this section describes these precursory papers, and the signif-
icance of the results, in more detail.
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4.3.1 Parabolic Pulse Propagation in the High Intensity Limit

As mentioned in Chapter 2, the interaction between dispersive and nonlinear
effects acting on a high intensity pulse in a normal dispersion optical fibre can
lead to severe pulse distortions due to the effect of optical wave breaking [Ap-
pendix B]. To this end, in 1993 Anderson et al. presented an investigation into
the conditions under which wave breaking effects could be avoided [9]. Sig-
nificantly, their results showed that the particular class of solution for which
this was the case was in fact a linearly chirped parabolic pulse.

Their analysis was based on a simplified form of the NLSE given by Eq. (3.30)
with 63 = g = a = 0, with the condition of normal dispersion 3, > 0. By
writing the field in terms of the real amplitude A and phase ¢: VU (z,7) =
A(z,T)exp[i® (z,T)], the NLSE could then be expressed in terms of the cou-
pled equations:

0b By |10°A  [0D\?
5 =% |aem - (5r) | * “2)
d (A? 5 0D
o = e (457 “3)

An important aspect of the analysis of Anderson et al. was the realisation that
much physical insight into the evolution of a propagating pulse is obtained
by recasting the above equations in terms of the chirp function, Q, = —0®/0T
[Eqg. (3.8)]. Making the appropriate substitutions in the above equations yields:

00 By (1OPA ,
az_a_Tl?(ZW_Q>_7A}’ (4.4)
0 (A 0
E?z ) - —ﬁza—T (A2Qc> ) (4-5)

which clearly shows how the evolution of the chirp and the intensity of the
propagating pulse are coupled together. A solution to these equations which
avoids the effect of optical wave breaking is one which, even though it expands
temporally, nonetheless preserves its shape as it propagates. This will be the
case if the pulse possesses a linear chirp such that the rate of change of the time
separation is the same for all parts of the pulse. Thus the pulse propagates self-
similarly in z. With this condition for the chirp, the form of the intensity profile
can then be determined via Eqs. (4.4)—(4.5).
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From EQq. (4.4), the initial evolution of the chirp function can be approximated

as.
Qe (2,T) ~ Q(0,7) (4.6)
0 [ B 1 9?PA(0,T) 2 2
‘o3 o e - HOD] D]

For an unchirped input pulse, € (0,7) = 0, requiring that the chirp must de-
velop to be linear in time yields:
B 1 9?A(0,T)
2 A0, T) 012
where A (0,7) is an even function of 7', and C, and C, are constants. If the

—yA*(0,T) = Co + O\ T7, (4.7)

initial pulse satisfies Eq. (4.7), the chirp will remain linear and consequently
the pulse will preserve its shape as it propagates.

In the limit of a high intensity pulse, the nonlinear effects will dominate over
the dispersive effects so that the first term on the left hand side of Eq. (4.7) can
be neglected. This directly yields the intensity profile as:
2

A%(0,T) = AZ (1 — :11:—02) , (4.8)
where the constants C, and C are replaced by the more physically meaningful
pulse parameters A, and Ty, being the peak amplitude and the zero crossing
of the intensity profile at z = 0. Thus the form of a pulse which will propagate
self-similarly in a normal dispersion fibre, free from the effects of optical wave
breaking, is a pulse with a parabolic intensity profile and a linear frequency
chirp. Importantly, whilst it is true that any pulse that maintains a linear chirp
will propagate self-similarly, such as the Gaussian pulse solutions to the linear
equation [Eq. (3.31)], most profiles cannot sustain such a chirp in the presence
of nonlinearity, and eventually undergo pulse distortion. The distinguishing
feature of the high power parabolic pulse in this regard is the fact that both
the induced phase due to GVD and SPM have a parabolic form (and the same
sign) and thus the linear chirp is preserved [23].

4.3.2 Simulations of Parabolic Pulse Generation in a Fibre Am-
plifier

Despite the physical significance of the analysis by Anderson et al., the results
appeared to be of limited practical application due to the apparent impossibil-
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ity of constructing a pulse with a parabolic intensity profile. However, in 1996
Tamura and Nakazawa published a paper where they pointed out the signif-
icance of the results in Ref. [9] for the evolution of optical pulses in high gain
fibre amplifiers operating in the normal dispersion regime [39]. Using numer-
ical simulations of the NLSE, Tamura and Nakazawa considered the evolution
of an input fundamental soliton pulse in an amplifier with a constant longitu-
dinal gain profile and (33 = a = 0 [Eq. (3.30)].

Their results showed that after about one dispersion length, the input pulse
appeared to evolve into a parabolic pulse and furthermore, continued to prop-
agate in the amplifier in a self-similar manner without any change in shape
even though its intensity continued to be amplified. Although Tamura and
Nakazawa did attempt to verify these results experimentally in an Er**:doped
fibre ampilifier, they were limited with their pulse diagnostic techniques (see
Section 5.3.4). They did, however, show that the autocorrelation function of
the output pulses was nontriangular, which indicated that the pulse was not
undergoing the usual pulse shaping associated with normal dispersion fibre
propagation and optical wave breaking. Although these results were not con-
clusive, they were a clear indication that the generation of pulses with parabolic
intensity profiles, which possess a strictly linear chirp, may be possible in
a normal dispersion optical amplifier. This was enough to motivate further
study into the formation and propagation of parabolic pulses which will be
discussed in the following section.

4.4 Parabolic Pulse Solutions in an Amplifier

This section describes the theoretical calculations used to analyse the parabolic
pulse solutions of the NLSE with gain and normal dispersion. These calcu-
lations form a series of investigations conducted within the Applied Optics
Group of The University of Auckland [12, 13, 40]. In this analysis two regimes
of propagation were considered: (i) in an amplifier with a constant gain profile
in the asymptotic limit z — oo and (ii) in an amplifier with an arbitrary gain
profile in the high intensity limit z > z,. Despite the slight differences in the
analysis, in both cases the form of the solution is the same yielding a linearly

1This work was conducted during the course of my Masters degree in Physics.
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chirped pulse with a parabolic intensity profile.

44.1 Asymptotic Solutions for an Amplifier with a Constant
Gain Profile

The theoretical analysis for the asymptotic parabolic pulse solutions was based
on the evolution of pulses in an amplifier with spectral bandwidths less than
the amplifier bandwidth and a constant longitudinal gain profile. Ignoring
fibre loss and higher order dispersion terms (o« = 33 = 0), the equation gov-
erning the propagation of pulses in this system is of the form [EQ. (3.30)]:

L0 B O 2 .9
Based on the previous work of Anderson et al., the search for solutions to this
system also began by substituting the expanded field [ = Aexp (i®)] into

Eqg. (4.9). This now yields the following coupled equations in A and :

A 9AID By PP g
By (0ON\® 00| 5 0PA ;
[3 (57) —a] =g @1

As mentioned in Section 4.2.2, the solutions to this system were found via tech-
niques based on symmetry reduction where the similarity variables were con-
structed based on the previous findings of Refs. [9, 34]. In particular, with the
requirement of normal dispersion (3, > 0), motivated by the results obtained
for Egs. (4.2) and (4.3), linearly chirped solutions having the form:

Az, T) = f(2)F(2,T) = f(2)F(9), (4.12)
®(2,T) = p(z) + C(2)T7, (4.13)

were sought where the self-similarity variable ¥ is given by:
9 = f2(2) exp(—gz)T. (4.14)

Here, the explicit form of the amplitude was constructed so that for the partic-
ular form of ¢, it satisfied the energy conservation integral of Eq. (4.9):

U (2) = Upexp (g2)., (4.15)
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where U (z) = [*_|¥ (2, T)|*dT and U, = U (0).

With the form of the solutions as given by Eqs. (4.12)—(4.14), it was found that
in the limit z — oo there exists an exact asymptotic solution such that [12]:

VD) =A@ 1= | Fo ] ewie ] mshe). @9

T
Ty (2)
with ¥ (z,7) = 0 for |T'| > Tj, (2) , and where:

3AG (2)  gT?
29 60
The scaling of the peak amplitude A, (z) and the effective width 7; (z) are re-

O (2, T) =Py + T <To(z). (4.17)

lated to the system parameters as:

1/3
1 gUy gz
Ao () = 5 < %/2) exp (§> , (4.18)

6/ 2
To(z) = VTWAO (2). (4.19)
The interpretation of the various terms of this solution is facilitated by referring

to Fig. 4.1. Since, experimentally, it is common to examine pulse shapes on
a logarithmic scale to distinguish low amplitude features in the wings, the
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Figure 4.1. Generic figure of the asymptotic parabolic pulse solution. Top: intensity
profile (left axis) and chirp (right axis). Bottom: normalised intensity on a logarithmic
scale.
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figure includes both linear and logarithmic intensity plots. In particular, the
logarithmic plot highlights an interesting feature of a parabolic pulse which is
the steepness of the slope on the edges of the intensity profile.

This parabolic pulse represents a solution to Eg. (4.9) which maintains its lin-
ear chirp so that it propagates self-similarly (retaining its parabolic shape) sub-
ject to the exponential scaling of its peak amplitude A, (z) and effective width
parameter Tj (z) . Significantly, the solutions show that it is only the energy
of the initial pulse, and not its specific shape, that determines the amplitude
and width of the asymptotic parabolic pulse. It is worth noting that these
results provided theoretical confirmation of Tamura and Nakazawa’s observa-
tion that a linearly chirped parabolic pulse arises naturally as a consequence
of the propagation of a pulse in a normal dispersion amplifier, as discussed in
Section 4.3.2.

To demonstrate these results, propagation in an amplifier with: 5, = 25 x
103 ps?m™t, v = 58 x 103Wm ™!, g = 1.9m~! and a length L = 6m
is simulated.? Fig. 4.2 shows the evolution of a 12pJ, 200fs full width half
maximum (FWHM) Gaussian input pulse in this amplifier. This figure illus-
trates the expected increase in the peak intensity and the pulse width, as well
as the parabolic form of the pulse in the latter stages of the amplifier. The
parabolic nature of the output pulse is then confirmed in Fig. 4.3(a) where the

>The parameters were chosen based on realistic parameters for an Yb3*:doped fibre ampli-
fier [12].
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Figure 4.2: Evolution of a parabolic pulse in an optical fibre amplifier.
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Figure 4.3: (a) Intensity profile (left axis - logarithmic scale) and chirp (right axis -
linear scale) of the output pulse from Fig. 4.2, together with the theoretical predictions
(circles). (b) Corresponding spectrum.

simulated pulse (solid lines) is compared with the theoretical predictions of
Eqgs. (4.16)—(4.19) (circles). Although at |T'| = T; (z) the solution of Eq. (4.16)
has an infinite slope, this is only the case in the asymptotic limit. At interme-
diate propagation distances both simulations and analytic analysis predict the
appearance of low amplitude wings which decay exponentially as a function
of T"and indeed such wings can be seen on the simulation results in Fig. 4.3(a)
at power levels less than 10~° W [40].

The corresponding spectrum is plotted below in Fig. 4.3(b). It can be noted that
the oscillations present on the edges of the spectrum are not manifestations of
optical wave breaking as they are not accompanied by the presence of oscilla-
tions on the edge of the temporal profile [Appendix B]. They are, in fact, due to
slight fluctuations in the quadratic phase which results in small oscillations on
the linear chirp [40]. Such phase modulations are not unexpected because of
the strong nonlinear pulse shaping as the pulse evolves from the initial pulse
profile to the asymptotic parabolic pulse solution. Thus these oscillations are a
characteristic feature of the transition of a pulse to the parabolic regime.

44



Chapter 4 Self-Similar Parabolic Pulse Solutions to the NLSE with Gain

Finally, to demonstrate the asymptotic nature of the parabolic pulse solutions
it is useful to consider the evolution of Gaussian input pulses with a fixed in-
put energy U, = 12 pJ, but with a range of pulse durations from 100 fs — 5 ps
(FWHM). The amplifier parameters are the same as those used in Figs. 4.2 and
4.3. As a means of comparing the evolution of these different input pulses,
Fig. 4.4 shows the (a) peak amplitude and (b) effective width parameter, as
functions of the propagation distance in the amplifier, obtained from the sim-
ulation results together with the analytic predictions (see legend). It is clear
from these results that for an amplifier of fixed gain, the rate at which a pulse
evolves to the parabolic pulse solution depends strongly on the choice of the
input pulse width. This is to be expected as, for a fixed energy, a broader tem-
poral width implies a lower peak power. It is therefore expected that the initial
nonlinear evolution will be substantially different for the various input pulses.
Indeed, it can be noticed that the pulse with the largest input pulse width (and
hence the lowest peak power) is the slowest pulse to converge to the parabolic
pulse solution. Nevertheless, it is clear that in all cases the evolution of the
pulse in the amplifier does indeed approach the asymptotic limit.

o Asymptotic Evolution
Input FWHM 100 fs

- ---- Input FWHM 200 fs
-~ - - Input FWHM 1 ps
T e Input FWHM 5 ps

Amplitude (W?)

Width T (ps)

Propagation Distance z (m)

Figure 4.4; Simulation results showing the evolution of the peak pulse amplitude (top)
and the effective temporal width (bottom), as functions of the propagation distance,
for Gaussian pulses of duration 100 fs—5 ps. The results are compared with the asymp-
totic predictions (see legend).
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4.4.2 Solutions for an Amplifier with an Arbitrary Gain Profile

For an amplifier with an arbitrary longitudinal gain profile g (z) the theoretical
analysis was based on the generalised form of Eq. (4.9):

D [y O 2 .g(2)

Again, with the field expanded in terms of the amplitude A and phase o,
self-similar solutions of the form given by Egs. (4.12) and (4.13) were sought.
However, unlike the previous analysis for a constant gain profile, this time
the investigations were based on a search for exact self-similar solutions in
the regime z > z,. Here z, defines the start of the parabolic regime and this
corresponds to the pulse entering a high intensity regime where the nonlin-
ear effects dominate over the dispersive. From dimensional analysis and the
group symmetry properties of Eq. (4.20), the explicit form of the self-similarity
variable ) was found to be [13]:

U (20)

V= U (2)

f2(2) T, (4.21)

where the evolution of the energy is now
U (z) = U(z) exp {/ g(z") dz/} : (4.22)

Significantly, the form of the solutions for an arbitrary gain profile were found
to be identical to that previously obtained for a constant gain [EqQ. (4.16)]:

VD) = A 1= | po] ewle ] mshe), 62

Ty (2)
and V¥ (z,T) = 0 for |T'| > T (z), but with a quadratic phase now given by:

B 3y [FU(Z) 1 d 9
O (2) = Py + 1 T (Z,)dz - 2—ﬁ2$1n [Ty (2)] T, IT| <Ty(z). (4.24)

The scaling of the amplitude A, (z) and width T (z) can then be determined
via the relations:

3U (z) 12
Ao(Z):<4TO (Z)) : (4.25)
d*Ty (2) 3\ BU (2)
i~ () 20
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where Eq. (4.26) is subject to the boundary condition:

ME _ 1) Swimy ()] - (4.27)

dz

20 20

Thus the solution for the case of a longitudinal distributed gain profile is still
a parabolic pulse with a linear chirp but now the scaling of its amplitude and
width are determined by the form of the gain profile g(z). Importantly, this
solution holds for any function g (z) and in particular g can be zero, which cor-
responds to an undoped normal dispersion fibre (see Section 4.3.1), or negative
(i.e., a fibre with loss) so long as the pulse intensity is high.

To illustrate the significance of the shape of the longitudinal gain on the self-
similar solutions of Eqgs. (4.23)—(4.27), the top curves of Fig. 4.5 show the evo-
lution of identical Gaussian input pulses in amplifiers with three different
gain profiles corresponding to: (a) pumping counterdirectionally so that the
gain increases along the ampilifier, (b) pumping bidirectionally with constant
gain along the ampilifier, and (c) pumping codirectionally with decreasing gain
along the amplifier. Explicitly, the respective gain profiles are: (a) g(z) =
g,exp(z/z,) with g = 0.687Tm™"! and z, = 3m, (b) g(z) = g, with g, =
1.44m™' and (c) g(z) = g,exp(—z/z,) with g, = 2.606m™" and z, = 3m.
Here the initial gain coefficients g were chosen such that in all cases the to-
tal integrated gain was 25 dB and the remaining amplifier parameters were:
Ba =35 x 1073 ps’m™, v = 6 x 1073 W-'m~t and L = 4m [13]. Although, as
expected, the scaling of the pulses in the amplifiers differ quite considerably,
nevertheless comparison of the output pulses (solid lines - middle curves) with
the theoretical predictions (circles) confirms their parabolic nature. In addition,
it can also be noticed that the corresponding output spectra (bottom curves)
differ in shape and width indicating that the choice of pumping geometry will
play an important role in situations where the bandwidth of the ampilifier is
significant. The differences in the spectral widths can be understood by noting
that for the case where the gain increases (decreases) along the length of the
amplifier, the incident pulse is amplified slowly (rapidly) to high power and
subsequently experiences the largest amount of SPM in the final (initial) stages
of its evolution so that it develops the smallest (broadest) spectral width [41].

47



Chapter 4 Self-Similar Parabolic Pulse Solutions to the NLSE with Gain

wu

10 T T T ! ! ! T T T
(@) (b) (©)
2 10 | 1 F 1 -
o
2 10° 1t 1 1
o
10710 1 1 i 1 1
-5 0 5 -5 0 5 -5 0 5

20

B 1 [ I -20

(zH1) duyd

Power (kW)
o N B~ O

-5 0 5 -5 0 5 -5 0 5
Time (ps) Time (ps) Time (ps)
- 1-0- T T T i T T T i T T T i
g
&
g ol - - -
O
()
o
n
0 1 1 1 1 1 1 1 1 1
-10 0 10 -10 0 10 -10 0 10
Frequency (THz) Frequency (THz) Frequency (THz)

Figure 4.5: Top: parabolic evolution for (a) increasing gain, (b) constant gain and (c)
decreasing gain. Middle: intensity (left axis) and chirp (right axis) of the amplifier
outputs obtained from simulation results (solid curves), compared with the theoretical
predictions (circles). Bottom: the corresponding spectra.

4.5 Experimental Confirmation

As part of the confirmation of the analytic parabolic pulse solutions presented
in Section 4.4, preliminary experimental verification of the results was also
provided in Ref. [12].® These experiments were conducted by Dr M. Fermann
and Dr B. Thomsen at IMRA America in collaboration with the Applied Op-
tics Group in Auckland, and a schematic diagram of their experimental setup
is shown in Fig. 4.6. In their experiments they considered the amplification of
12pJ, 200 fs (FWHM) Gaussian input pulses generated in a fibre based pulse
source, at a wavelength of 1.06 um [42]. These pulses were then injected into a
3.6 m long high gain Yb?**:doped fibre with dispersion and nonlinearity coeffi-

3For a more complete description of the experiments and a comparison with the theory, the
interested reader is referred to Ref. [41].
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Figure 4.6: Schematic diagram of the experimental setup for parabolic pulse genera-
tion in an Yb3*:doped fibre amplifier.

cients of 3, = 25x10 3 ps’m~tand vy = 5.8x 1073 W~'m~!, which could provide
a maximum gain of 30 dB. The complete characterisation of the output pulses
was carried out using a second harmonic generation (SHG) frequency-resolved
optical gating (FROG) technique, which will be discussed in Section 5.3.4.

The output pulse profile and chirp obtained from the FROG retrieval algorithm
are plotted in Fig. 4.7(a) together with the analytic predictions of Egs. (4.16)-
(4.19) (dashed lines) and the results of numerical simulations (circles). Despite
the weak oscillations in the wings, which were attributed to resonant effects,
clearly in all cases the intensity and chirp are in good agreement. Further con-
firmation of this agreement is also provided by the similarities in the shapes of
the corresponding spectra seen in Fig. 4.7(b).
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Figure 4.7: (a) Measured intensity (logarithmic scale - solid lines) and chirp (linear
scale - solid lines), compared with simulation results (circles) and the theoretical pre-
dictions (dashes). (b) Pulse spectra from experiment (bottom), simulations (middle)
and theory (top). Experimental data obtained from Ref. [12].
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In addition to these measurements, they also considered launching the ampli-
fied pulses shown in Fig. 4.7 into a 2 m long undoped fibre (SMF) with normal
dispersion. From the FROG traces of the output from the fibre they were able
to show that the pulses had maintained their parabolic form indicating that
they were indeed propagating self-similarly as predicted by the analysis of
Anderson et al. [Section 4.3.1].
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Chapter 5

Parabolic Pulse Generation in a
Fibre Amplifier Chain

5.1 Introduction

In the previous chapter, the parabolic pulse solutions that exist for the non-
linear Schrodinger equation (NLSE) with gain were presented which showed
that they evolved naturally via amplification in a fibre amplifier. This chapter
describes experiments to investigate the generation of high energy parabolic
pulses in a fibre amplifier chain where each of the amplifiers have different dis-
persion and nonlinear properties. The experimental results are complemented
by a numerical anaylsis to establish the limitations and assist with the optimi-
sation of the system.

5.2 Description of the Project

The research described in this chapter evolved out of an industrially funded
project to develop a practical, high power short pulse Yb**:doped fibre based
laser and amplifier system. The Yb3*:doped fibre source was developed by
Dr L. Lefort and Dr J. Price in the form of a passively mode-locked fibre based
oscillator. This produced pulses with widths of ~ 2.5 ps (FWHM) and energies
of ~ 60 pJ. The aim of the amplifier system was to then boost these energies to
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produce ~ 10 pJ output pulses which could be efficiently compressed down to
~ 200fs. However, as the build up of amplified spontaneous emission (ASE)
limits the gain from a single fibre amplifier to around 30—40 dB [43], this would
not be sufficient for the pulses to reach the microjoule level. Thus it was nec-
essary to employ a cascaded system consisting of a series of three Yb**:doped
amplifiers.

Because of the high peak powers generated within the amplifiers it soon be-
came apparent that it would be beneficial to exploit the self-similar nature of
parabolic pulses in order to avoid deleterious nonlinear distortions. The signif-
icant feature of using a cascaded system is that each amplifier in the chain has
different dispersion and nonlinear coefficients as well as different gain char-
acteristics. As the development of a parabolic pulse relies strongly on the in-
terplay between the gain, dispersion and nonlinear properties of the amplifier
this poses the question of whether parabolic pulses are sufficiently robust to
form in an amplifier chain. In addition, as the pulses undergo coupling losses
between each amplification stage this introduces an additional problem in that,
as discussed in Section 4.4, the final parabolic pulse is dependent on the input
pulse energy and thus these discrete jumps in the pulse energy will affect the
evolution.

The experimental component of this project described in the following sections
was carried out primarily by Dr J. Price and Dr A. Malinowski. My role in this
work was to simulate the system and analyse the results in order to establish
the limitations and aid with the optimisation of the system.

5.3 Experimental Setup

As discussed, the experiments were based on the amplification of picosecond
pulses in a cascaded Yb**:doped fibre amplifier system. A schematic diagram
of the experimental set up is presented in Fig. 5.1. Owing to the complexity
of the system the individual components will be described separately in the
following sections.
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Figure 5.1: Schematic diagram of the experimental setup.

5.3.1 Pulse Source

The input pulse source was developed within the ORC and a detailed technical
description can be found in Ref. [44]. A schematic of the source is illustrated
in Fig. 5.2. The laser is based on a simple Fabry-Perot cavity design with a
grating based dispersive delay line, and is pumped by a fibre coupled diode
operating at 976 m to produce gain at 1.055 um. The mode-locking operation
is based on the stretched-pulse principle using nonlinear polarisation evolu-
tion as a fast saturable absorber [45]. Reliable self-start mode-locking is facil-
itated by incorporating a semiconductor saturable absorber mirror (SESAM).
Two polarisers and associated waveplates are also included to control the bias
of the polarisation switch and adjust the output coupling. The polarisation
switch is the polarisation beam splitter PBS1, where the rejected part of the
pulse appears at Port 1. The half-waveplate between PBS1 and PBS2 controls
the output coupling strength of the ports so that pulses can either be extracted
from Port 2 with a negative chirp or Port 3 with a positive chirp. In our experi-
ments we chose to use the positively chirped output pulses from Port 3 which
had a duration of 2.5 ps (FWHM) and a maximum energy of 60 pJ.

976 nm Port 1
65 mW A HR
: Mirror
SESAM WDM PBS1 PBS2 f -------- |
H OQ Yb*:doped Dl]ﬂi]ﬂ ; ml] : ‘%at!ng
fibre : ' Pair

v v
Port2 Port3

Figure 5.2: Experimental configuration of the picosecond pulse source at 1.055 ym.
PBS=polarising beam splitter and HR=highly reflecting.
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5.3.2 Cascaded Amplifier System

Maximum
Gains (dB) -8 +25 -4.5 +27 -3 +30

_ Pulse
Oscillator Selector

Amplifier 3.5m 3.7m 3.5m
Lengths

Figure 5.3. Experimental configuration of the cascaded amplifier system to generate
parabolic pulses.

As mentioned above, the seed pulses were generated via a Yb3*:based fibre
oscillator which produced ~ 60 pJ, 2.5 ps (FWHM) positively chirped output
pulses. These pulses were then launched into the three stage cascaded am-
plifier system. To prevent the build up of ASE in the system an isolator and
an accousto-optic modulator (AOM) pair were placed between each amplifier
stage. Polarisation controllers (PC) were also used to ensure optimum trans-
mission through the isolators.

The first two preamplifiers, P1 and P2, were standard single mode Yb?**:doped
fibres with parameters similar to those used in previous studies of parabolic
pulse amplification [12, 13]. These were pumped codirectionally to reduce
the noise level. The final amplifier, however, was a large mode area (LMA)
quasi-single mode amplifier with a core diameter of 30 um.! This was designed
specifically to reduce the nonlinear effects in the final amplification stage, but
otherwise the remaining parameters are the same as those of the preamplifiers.
In contrast to the preampilifiers, this was pumped counterdirectionally so as to
restrict the growth of the spectral width [Section 4.4.2].

To estimate the effective bandwidths of the ampilifiers, the widths of the out-
put pulse spectra were measured after propagation at low powers, where the
nonlinear effects are negligible. As the gain bandwidth of Yb is typically of
the order ~ 40nm [22], the small bandwidths of the preamplifiers that were

IThis amplifier was doped such that the gain of the fundamental mode was enhanced rel-
ative to the higher order modes.
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measured were likely to have been influenced by the polarising isolators used
in the free space coupling processes. For reference, the parameters describing
each of the three amplifiers are given explicitly in Table 5.1.

P2 (ps'm™") | f (ps'm™") | v (W™'m™") | AX (um)
PL | 30x107% | 25x107° | 6.9x107° 10
P2 | 30x107% | 25x107° | 6.9x10°° 15
LMA | 30x 1073 | 25x107° | 2x 107 40

Table 5.1: Fibre parameters for the amplifiers in Fig. 5.3.

5.3.3 Linear Pulse Compressor

To obtain the required femtosecond durations, it is necessary to compress the
output pulses from the LMA amplifier and, to this end, a simple linear com-
pression device was employed. In such a system, if the pulse initially possesses
a chirp (which is approximately linear) that has the opposite sign to that im-
posed by the GVD of the compressor then the two tend to cancel each other,
resulting in an output pulse that is temporally narrower than the input pulse.
Here we employed a simple grating pair compressor which is the most com-
monly used device to provide anomalous GVD to optical pulses with a positive
linear chirp.

Compressed
Pulse

Input Pulse T

/\

N
<
S N

> N
Beam
Splitter
. HR
Grating E Mirror
Pair

Figure 5.4: Schematic drawing of a linear grating pair compressor in the double-pass
configuration.
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Fig. 5.4 shows a schematic drawing of the grating pair setup used in our sys-
tem. A double pass configuration is employed so that the pulse is recollimated
into its original cross section. In this system the pulse is incident on one grating
of the pair of two parallel gratings. As each frequency component associated
with the pulse is diffracted at a slightly different angle, the different compo-
nents travel slightly different path lengths through the grating pair. As a result,
they experience different time delays so that the blue shifted components ar-
rive earlier than the red shifted components. Consequently, for a positively
chirped pulse, the trailing edge catches up with the leading edge so that the
pulse is compressed during the passage through the grating pair. The opti-
mum compression of the chirp (i.e., the point where the anomalous dispersion
of the grating exactly cancels the positive chirp of the pulse) can be obtained
simply through careful choice of the grating separation.

5.3.4 Characterisation Techniques

The output pulses from the LMA amplifier were characterised in the temporal
domain via the technique of frequency-resolved optical gating (FROG). How-
ever, as the compressed pulses should have a flat phase, these were simply
characterised using a standard autocorrelation method. As the comparison of
our experimental data with an analytic parabolic pulse relies heavily on the ac-
curate characterisation of the measured pulses, the following provides a brief
description of both the FROG and autocorrelation techniques.

Frequency-Resolved Optical Gating

Although several varieties of FROG exist, the results in this chapter were ob-
tained via second harmonic generation (SHG) FROG [46]. In SHG FROG, a
Michelson-type interferometer is used to split the pulse to be measured into
two identical replicas which are then combined in a y® nonlinear medium.
The envelope of the signal field has the form:

Esg(t,7)=E({t)E(t—1), (5.1)

where 7 is the time delay between the two beams and the carrier frequency of
the field is neglected as it simply represents an arbitrary phase shift. The signal
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Figure 5.5: Experimental setup for SHG FROG.

field of Eq. (5.1) is incident on a spectrometer where it is spectrally resolved as
a function of delay to yield the FROG trace:

2

Irrog (W, T) = ‘Esig (w,T)‘z = ‘/ dtFsig (t, 7) exp (iwt)| , (5.2)

which is a positive real-valued function of the variables w and 7. The experi-
mental setup for SHG FROG is shown in Fig. 5.5.

Although the measurement of such a FROG trace is a relatively simple exercise
experimentally, solving the inverse problem to determine the complex elec-
tric field of the incident pulse requires rather sophisticated numerical methods
based on two dimensional phase retrieval. In our case, this was carried out
using an iterative “generalised projections” retrieval algorithm whose task is
to estimate the discrete complex field Er (t) (where the subscript R denotes
the retrieved field) which generates the best approximation |E§§g (w,7)|? to
Irroc (w, 7) in a least squares sense [15].

It is important to note that both F (¢) and its time reversed conjugate E* (—t)
produce identical SHG FROG traces, which causes a time-phase reversal am-
biguity. This ambiguity can be removed either by additional propagation ex-
periments in media of known dispersion or by a priori knowledge of the char-
acteristics of the pulse to be measured. This latter condition was the case for
our experiments where we anticipate that the output pulses from the amplifier
will always possess a large positive chirp.
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Autocorrelation Measurements

The most widely used autocorrelation technique is again based on the phe-
nomenon of SHG [14]. A sketch of the SHG autocorrelation setup is shown
in Fig. 5.6. As in the case of a SHG FROG, a Michelson-type interferometer is
used to split the pulse to be measured into two identical replicas where one
of the pulses can be advanced (or delayed) by r seconds relative to the other.
The two pulses are then recombined in a nonlinear crystal to produce a second
harmonic pulse which is incident on a “slow” detector.

Input
Beam
Chopper | Beam-
PP Splitter
i |:€ P Slow
! L/ Detector
> >o |
»\ /- % :_:I
Reference
Arm SHG
A Y Delay Crystal
' Arm &4
T
?

Figure 5.6: Experimental setup for SHG autocorrelation measurements.

The second harmonic field radiated from the nonlinear crystal is proportional
to the square of the complex amplitude of the incident fundamental field:

B, (t) o< E2(t) + E2(t — 7)e 27 4 2E,(t) B, (t — 7)e 7. (5.3)

The current produced by the detector is then proportional to the incident in-
tensity so that:

ia(t) o< Eay(t)E5,(t)
= [EL()EL(0)) + [Eu(t — 7)EL(t — 7))
+ AB(OEL Bt — T)EL(t — 1) + s(7), (5.4)

where s(7) is composed of oscillating terms that can be averaged out over in-
tegration in the delay 7. Since the temporal () variation of the first three terms
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is on the scale of picoseconds (or less), the much slower optical detector in-
tegrates the current with the result that the actual output is a function of the
delay only. Thus the normalised detector output is simply:

(LIt =)
O (5.5)

ig(t) =1+2
A plot of i,(7) versus 7 will produce a symmetric normalised pulse with a cen-
tral width of ry. The determination of the true pulse width A7y (FWHM) from
the width of the autocorrelation trace is somewhat ambiguous. However, from
integration of Eq. (5.5) the ratio AT, /7, can be calculated and for a Gaussian
pulse: ATy /7 = /2, whilst for a hyperbolic secant pulse: ATy /7 = 1.55.

5.4 Results and Analysis

In our investigations we focused on two different regimes where: (a) the gain
in P2 and the LMA amplifier were similar and (b) the gain in P2 is considerably
less than that in the LMA amplifier. The total pulse gain in each amplifier
and the final output pulse energies are given in Table 5.2. Clearly, both the
output pulse energies are only of the order of hundred’s of nanojoules, which
is considerably less than the required ~ 10 uJ. However, as we will discuss
below, despite investigating various pumping configurations, in all cases we
found the output energies were restricted to this regime.

P1(dB) | P2 (dB) | LMA (dB) | Energy (nJ)
(@ | 226 12.5 14.8 177
(b) | 22.6 4.3 25.8 334

Table 5.2: Total pulse gains at each amplifier stage and the output pulse energies for
situations where: (a) the gain in P2 is similar to that in the LMA amplifier and (b) the
gain in P2 is much less than the LMA amplifier.

The temporal (top) and spectral (bottom) characteristics of the measured out-
put pulses, obtained from the retrieved FROG trace, are plotted in Fig. 5.7. A
comparison between the defining parameters of the temporal pulses and those
predicted for a parabolic pulse, calculated from Eqgs. (4.24)-(4.27), is given in
Table 5.3. We note that in our calculations we only considered parabolic pulse
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Figure 5.7: Top: intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) of the LMA fibre output obtained from FROG data. Bottom: the corresponding
spectra.

evolution in the LMA amplifier. Furthermore, as we approximate the peak
gain by an exponentially increasing profile, the parabolic predictions can only
serve as an indication of any parabolic evolution. Although the agreement be-
tween the widths and the peak powers is reasonable, from the chirps we see
that neither of these pulses is strictly parabolic. The slow convergence to the
parabolic regime can be partially attributed to the large input pulse widths
because, as discussed in Section 4.4.1, although the final parabolic pulse only
depends on the input pulse energy, the rate of convergence does depend on
the initial pulse parameters. Nevertheless, in both cases the pulses exhibit a

Input Measured Parabolic
Uo () | To (ps) | To (ps) | Po (kW) | (THz) | 1o (ps) | Po (kW) | €2 (THz)
(@) 5.9 5.2 ~ 7 ~ 25 ~ 0.60 7.4 18 0.82
(b) | 0.88 4.4 ~ 6 ~ 55 ~ 0.54 6.5 40 1.3

Table 5.3: Comparison between the measured pulse parameters and those predicted
for a parabolic pulse.
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linear chirp over the central region.

Although Table 5.3 indicates that neither pulse is particularly more parabolic
than the other, on examination of the spectra we see that whilst the spectrum
for case (a) is fairly featureless, the spectrum for case (b) is in fact showing
signs of the oscillations typically seen on the spectral edges of a parabolic pulse
(see Fig. 4.3). Thus this suggests that pulse (b) has advanced further into the
parabolic regime. However, this seems in contradiction with the comparison
between the chirp slopes where the measured chirp of pulse (a) is in better
agreement with the parabolic predictions. A possible explanation for this is
that in case (b) the pulse is actually evolving from the parabolic regime and
entering an amplifier soliton regime. As discussed in Section 3.8.2, the forma-
tion of amplifier solitons can occur in an amplifier due to the effects of a finite
gain bandwidth. Significantly, it has also been shown that in normal dispersion
amplifiers stable solitary wave propagation is often associated with an initial
period of propagation where the pulse exhibits parabolic characteristics [8].
Indeed, by comparing the output pulse from case (b) with a typical amplifier
soliton in Fig. 5.8, obvious similarities can be seen in both the intensity profile
and the chirp. Importantly, this would explain the observation that despite our
attempts to increase the output pulse energy, these are typically restricted to
the order of hundreds of nanojoules.

(‘qre) diyd

Intensity (arb.)

1 1 1 1 1 1

Time (arb.) Time (arb.)

Figure 5.8: Comparison between (a) a typical amplifier soliton and (b) the output pulse
of Fig. 5.7(b), plotted on logarithmic scales.

The autocorrelations of the compressed pulses are plotted in Fig. 5.9. These
both have autocorrelation FWHM widths of ~ 450 fs indicating compressed
pulse widths of ~ 300 fs (assuming a Gaussian profile). Although the widths
of the central peaks are similar, the pedestals are greatly reduced for pulse (b)
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Figure 5.9: Measured autocorrelation traces corresponding to the compression of the
pulses in Fig. 5.7.

[~ 70 % of the pulse energy in the central peak as opposed to ~ 35 % for pulse
(@)]. Again this indicates that pulse (b) has, at some stage in its propagation,
evolved further into the parabolic regime.

Although the output pulse energies for the two cases differ quite considerably,
we have found that for case (a) increasing the gains simply acts to further dis-
tort the output pulse. A possible explanation for this can be understood by
noting that P2 has a large nonlinear coefficient (compared to the LMA ampli-
fier) and is pumped codirectionally so that the pulse sees most of the gain in
the initial amplification stages. Thus by placing a large gain in P2, there is a
rapid initial growth of the spectrum so that it quickly approaches the width
of the gain bandwidth (see Fig. 4.5) leading to bandwidth limiting effects [8].
However, in case (b), due to the low gain in P2, the pulse enters the LMA
amplifier with a relatively low peak power and this combined with the small
nonlinearity coefficient in this amplifier means that most of the amplification
occurs within the gain bandwidth. Thus these results suggest that in order to
understand how we might reach the desired pulse energies of ~ 10 uJ, a de-
tailed investigation of the evolution of the pulses in each stage of the amplifier
system is required.

5.5 Numerical Investigations of Modified Systems

The results presented in Section 5.4 suggest that the main limitation to our
setup is the small gain bandwidths of the preamplifiers. Thus we expect that
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to reach the microjoule regime we will need to find a way to increase these
and/or redistribute the gain in the amplifiers. To illustrate this we simulate
a system based on that described in Fig. 5.3, but using slightly larger gain
bandwidths in the preamplifiers and distributing the gain so that there is more
gain in the amplifiers which have larger bandwidths. Specifically we consider
a system with amplifier bandwidths of 15 nm, 20 nm and 40 nm and gains of
6dB, 20dB and 40dB for P1, P2 and the LMA amplifier, respectively. The re-
maining amplifier parameters were unchanged. Propagation in the amplifiers
was modelled on Eq. (3.51) from Section 3.10.1, but with the modification of a
z dependent peak gain to approximate the different pumping geometries (as
discussed in Section 4.4).

The output pulse and spectrum are plotted in Fig. 5.10. This pulse has an
energy of 10 xJ so that it satisfies the output energy requirements of the exper-
imental project. Furthermore, the appearance of linear wings on the intensity
profile and the oscillations on the edges of the spectrum, suggest that the pulse
is in the early stages of evolution towards the parabolic regime (see Fig. 4.3).
Thus these results indicate that despite the increased gains, there has not been
a substantial increase of the bandwidth limiting effects.
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Figure 5.10: (a) Intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) obtained from numerical simulations of a modified system based on Fig. 5.3. (b)
The corresponding spectrum.

The corresponding calculated autocorrelation of the compressed pulse is shown
in Fig. 5.11. Clearly, not only does this pulse show a significant reduction in
the pedestals over those of the experimental pulses (see Fig. 5.9), but it also has
a true compressed width of ~ 200 fs (FWHM) which also satisfies the project
requirements. We can expect these results to be further improved with addi-

63



Chapter 5 Parabolic Pulse Generation in a Fibre Amplifier Chain

0.5

Autocorrelation (arb.)

0 1 1 1
-15 -10 -5 0 5 10 15

Delay (ps)

Figure 5.11: Calculated autocorrelation corresponding to the compression of the sim-
ulated pulse of Fig. 5.10.

tional increments of the preamplifier bandwidths.

In addition, we have also performed numerous simulations in attempt to es-
tablish modifications to the system which could improve our results. As an
example, Fig. 5.12 shows the effect on the energy and the compressed output
pulse width as functions of the core size of the LMA amplifier and the pream-
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Figure 5.12: Output pulse energy (left axis - circles) and compressed pulse width (right
axis - crosses) as functions of (a) the effective area of the LMA and (b) the bandwidths
of the preamplifiers where the x labels are the bandwidths of P1 and P2, respectively.
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plifier bandwidths.? From the left hand curves we see that increasing A.g in-
creases both the output pulse energy and the compressed pulse width. This
is because the smaller effective nonlinearities reduce the spectral broadening
so that the spectrum is better contained within the gain bandwidth. Conse-
guently, for a fixed gain, the rates of increase saturate as the spectrum becomes
narrower. In contrast, not only does increasing the preamplifier bandwidths
increase the output pulse energy, but because it allows for enhanced spectral
broadening it also reduces the compressed pulse width (right hand curves).
As expected, this effect is ultimately limited by the bandwidth of the LMA
amplifier.

5.5.1 Two Amplifier System

Further aspects to this work have included experimental and numerical in-
vestigations into the performance of the system with only one preamplifier.
Although this reduces the total gain available in the system, it removes one
of the coupling losses so that not much should be lost in terms of achievable
pulse energy. Fig. 5.13(a) shows temporal (top) and spectral (bottom) profiles
of simulation results for a system identical to case (b) from Section 5.4 [see
Fig. 5.7(b)], but with P2 removed. We note that the decision to remove P2 over
P1 was motivated by the fact that this eliminated one of the free space cou-
pling sections. Although this pulse appears significantly less distorted than
the pulse in Fig. 5.7(b), the output pulse energy is only 53 nJ so that this can
simply be attributed to a reduction in the total gain. Repeating this simulation,
but with the gains increased to 30dB in P1 and 40dB in the LMA amplifier,
an output pulse energy of 3.1 uJ was achieved and the corresponding output
pulse can be seen in Fig. 5.13(b). However, on comparison with Fig. 5.7(b) it is
clear that this pulse has suffered similar bandwidth limiting distortions. Thus
these results have simply emphasised the problems discussed above. As a
result, the system was returned to the original configuration with both pream-
plifiers.

2The remaining amplifier parameters are the same as those used in Fig. 5.10.
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Figure 5.13: Top: output pulses (left axis - logarithmic scale) and chirps (right axis - lin-
ear scale) of pulses simulated in a two amplifier system where the gains are (a) 22.6 dB,
25.8dB and (b) 30dB, 40 dB, for P1 and the LMA amplifier, respectively. Bottom: the
corresponding pulse spectra.

5.6 Future Directions

In response to these findings, work is currently being conducted within the
ORC by members of Prof. D. Richardson’s fibre fabrication group to design
new preamplifiers with larger effective bandwidths but whilst maintaining the
large effective nonlinearities. As previously mentioned, because it is likely that
the polarising isolators used in the free space coupling are contributing to the
observed small effective bandwidths, design of the new preamplifiers must
include improving their ability to maintain the polarisation of the amplified
field as well as flattening their gain profiles.
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Chapter 6

Parabolic Evolution in
Microstructured Fibre Raman
Amplifiers

6.1 Introduction

The previous two chapters have discussed parabolic pulse generation in doped
fibre amplifiers. This chapter now moves to consider parabolic pulse genera-
tion using an undoped microstructured fibre Raman amplifier. After a de-
scription of the Raman amplifier system, numerical simulations to demon-
strate parabolic pulse generation in a highly nonlinear, normally dispersive
microstructured fibre will be presented. The preliminary experimental results
indicate that parabolic pulse generation in these fibres is indeed possible via
Raman amplification.

6.2 Raman Amplifier System

To date, the theoretical studies of parabolic pulse generation have considered
the evolution of pulses in a rare-earth doped fibre amplifier so that the propa-
gation is described by the nonlinear Schrodinger equation (NLSE) with a gain
term [Section 4.4]. As a result, all related numerical and experimental investi-
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gations have also been based on their formation in such amplifiers. The results
have shown that the most efficient parabolic pulse generation occurs when
the nonlinear propagation dominates over the dispersive propagation and that
this requires a gain medium with a large gain bandwidth to support the grow-
ing spectral width of the pulse. Indeed, as it was shown in Chapter 5, for ef-
ficient parabolic pulse formation to occur the spectral width of the pulse must
remain within the gain bandwidth of the amplifier.

This chapter now considers a new approach to parabolic pulse generation us-
ing amplification in an undoped fibre based on the Raman effect. Such an am-
plifier would enable the exploitation of the broad Raman amplification band
where bandwidths of more than 100 nm have been demonstrated [47]. In addi-
tion, as the Raman effect is not confined to any particular wavelength, this
technology can be used to provide gain at wavelengths where no conven-
tional amplifiers are possible and more importantly, can form the basis of a
tunable high power pulse source. Such pulse sources will find wide spread
applications in all optical processes such as wavelength division multiplexing
(WDM) [48], terahertz optical asymmetric demultiplexing (TOAD) [49], and
optical logic [50].

Commercial Raman amplifiers based on standard fibre are available and are
typically pumped via continuous wave (CW) sources operating at several Watt
power levels. It has been shown by Finot et al. that in such a regime propa-
gation lengths of the order of kilometers are required for the pulse to become
parabolic due to the small gain [51]. To over come this problem, the follow-
ing investigations consider using a high power pulsed pump source and, to
further enhance the nonlinear effects, a microstructured fibre with a large ef-
fective nonlinearity [52]. Importantly, unlike high nonlinearity fibres with a
large n, [see Eq. (3.25)] which can have a reduced Raman gain bandwidth [53],
the bandwidth of the single material microstructured fibres considered in this
chapter is simply that of pure silica. In addition, the dispersive properties
of a microstructured fibre can be tailored such that they have normal disper-
sion, necessary for parabolic pulse propagation, over a wide range of wave-
lengths extending up to and beyond the optical communications window of
1.5pum — 1.6 pm.
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Figure 6.1: Microstructured fibre cross section with the air holes arranged in a hexag-
onal lattice in the cladding region.

6.2.1 Microstructured Fibres

The microstructured fibres considered in this chapter consist of a central fused
silica core surrounded by a regular array of air holes which extend down the
length of the fibre. A sketch of an idealised microstructured fibre, where the
air holes are arranged in an hexagonal lattice, is given in Fig. 6.1. The design
parameters of a microstructured fibre are specified by the hole diameter (d) and
the hole-to-hole spacing (A) which are typically on the scale of the wavelength
of light. With careful choice of the number, size and orientation of the air holes
the confinement and dispersion characteristics of the fibre can be tailored to
obtain nonlinear and dispersion parameters not available in conventional fibre
structures.

For a typical microstructured fibre, as illustrated in Fig. 6.1, the average in-
dex of the core region is greater than that of the surrounding cladding so that,
similar to a conventional fibre, light is guided by a modified form of total inter-
nal reflection [Section 3.2]. However, in a microstructured fibre the combina-
tion of the large air/glass index difference and the small structural dimensions
make the effective cladding index a strong function of wavelength. This wave-
length dependence can be explained by noting that at longer wavelengths the
modes extend further into the air holes thus reducing the effective index of the
cladding and increasing the core-cladding index contrast.

The fabrication process used to construct the microstructured fibres discussed
in this chapter is illustrated in a schematic diagram in Fig. 6.2. First, an array of
capillaries is stacked in a hexagonal configuration around a solid rod, which
defines the core. The resulting stack (preform) is then drawn down to the
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appropriate fibre dimensions using a conventional fibre drawing tower [54].
The parameters d and A are controlled via the choice of the wall thickness and
the tube diameter of the capillaries, and the conditions (such as the speed)
under which the fibre is drawn. The microstructured fibre used in Section 6.4
was fabricated by Dr K. Furusawa.

+ ~10mm

~100pm
% e

4

Figure 6.2: Schematic diagram for the procedure used for microstructured fibre fabri-
cation.

To establish the modal properties of a microstructured fibres a full-vector or-
thogonal function model is employed, as described in Ref. [55]. In this ap-
proach, the modal fields and refractive index profile are decomposed into plane
wave components so that the wave equation can be reduced to an eigenvalue
equation. Solutions to this equation yield the mode profiles and their corre-
sponding propagation constants. The modelling of the microstructured fibres
discussed in Section 6.3 was conducted by Dr T. Monro.

6.3 Simulating the Raman Amplifier System

This section describes the numerical model used to analyse the Raman ampli-
fier system and presents a detailed discussion of the results. It will be shown
that parabolic pulse formation is possible in a range of microstructured fibres
with normal dispersion. The dependence of the parabolic pulse solution on
the parameters of the microstructured fibre is also discussed.
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6.3.1 Numerical Model and Fibre Parameters

Given the modal properties of a microstructured fibre, pulse propagation can
be described by the standard NLSE. Including the effects of Raman amplifi-
cation, the evolution can be described by the propagation equation given in
Section 3.10.2:

3 i ﬁg (92 ,ﬁg 83 e
5V = oYty QY
i 0 > / |2 /
- 7(1+—w0—aT)\1//0 R(T)|W (2, T — T')[*dT", (6.1)

where, as discussed in Chapter 3, 3, is the group velocity dispersion parame-
ter, f5 is the third order dispersion, « is the loss, v is the effective nonlinearity
of the microstructured fibre and wy is the carrier frequency. Here the field ¥, in
comoving coordinates of the pump beam, is expressed in terms of the ampli-
tude A; and the phase ®; (j = p, s) of the pump and the signal beams as:

U (2,T)=A,(2,T)exp[i®, (2,T)] + As (2, T) exp [i®s (2, T)] , (6.2)

where the signal field is downshifted in frequency by 13.2 THz from the pump
beam, corresponding to the peak of the Raman gain spectrum [Fig. 3.10].

The simulations consider a range of small core pure silica microstructured fi-
bre designs with the aim of determining whether they are suitable hosts for
parabolic pulse generation. Values for the effective mode area A.s and the
propagation constant g are shown in Fig. 6.3 for the three microstructured fi-
bres used in the simulations. The transverse refractive index profile for a fibre
with d/A = 0.8 is shown in the inset of Fig. 6.3(b). Specifically, fibres with A in
the range 0.9 ym — 1.2 um and ratios d/A of 0.8 — 0.85 are considered, where the
numerical predictions indicate normal dispersion at wavelengths in the range
1.5 um — 1.7 um. As small (sub-)) values of A lead to small core sizes and large
values of d/A give a large NA [Eq. (3.4)], the combined effects result in tight
modal confinement thus offering large effective nonlinearities. It should be
recalled that the propagation constant S is related to the group velocity disper-
sion (GVD) and the third order dispersion parameters via Eq. (3.16) and that
Aeq 1S related to ~ via Eq. (3.27). For reference, the nonlinear and dispersion
parameters of the three fibres in Fig. 6.3 are given explicitly in Table 6.1. Such
fibres are similar to that used previously as a Raman amplifier [52].
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Figure 6.3: (a) Effective areas A.g and (b) propagation constants (3, as functions of
wavelength, for fibre A (solid curves), fibre B (dashed curves) and fibre C (dotted
curves). Inset: refractive index profile of a fibre with d/A = 0.8.

A (pm) | d/A | By (ps"m™") | B3 (ps’'m™) | v (W™ m ™)
FibreA | 09 | 08 | 04980 -0.0013 0.0517
FibreB | 1.2 | 0.8 | 0.0929 -0.0010 0.0524
FibreC | 1.0 [085| 03412 -0.0018 0.0564

Table 6.1: Dispersion and nonlinearity parameters for the fibres corresponding to the
profiles in Fig. 6.3, calculated at A = 1.647 ym.

6.3.2 Parabolic Pulse Generation

The numerical simulations are based on a Raman interaction pumped with a
20 W, ~ 1 ns (FWHM) m = 20 super-Gaussian (square) pulse at 1.536 pm, typi-
cal of the output from a diode pumped high power Er**:doped fibre amplifier
chain (see Section 6.4.1). The Gaussian signal pulses of 5W, 1ps duration
(FWHM) are injected at 1.647 um into the three fibres with lengths of 16 m so
that the total pulse gains are of the order of ~ 30 dB. The output signal pulses
(top curves) and spectra (bottom curves) resulting from amplification in the
three fibres are plotted in Fig. 6.4, corresponding to total pulse gains of: (A)
~ 29dB, (B) ~ 25dB and (C) ~ 29 dB. These results illustrate the significance
of the fibre parameters on the total pulse gain and the final pulse shape. De-
spite these differences, it is clear that in all cases the pulse displays the char-
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acteristic features of a pulse entering the parabolic regime including both the
low intensity exponentially decaying wings and the oscillations on the edges
of the spectrum (see Fig. 4.3 in Section 4.4).
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Figure 6.4: Top: intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) of the fibre outputs obtained from simulated propagation in fibres A, B and C
(solid lines) together with the corresponding parabolic and linear fits (circles). Bottom:
the output spectra.

In order to illustrate the extent to which each of the pulses has developed into
the parabolic regime, the top curves of Fig. 6.4 also include parabolic and linear
fits (obtained via a minimisation scheme based on the Nelder-Mead Simplex
method [56]) to the intensity profile and the chirp, respectively (circles). These
fits indicate that the pulse which has evolved to be the most parabolic is that
corresponding to fibre B. This is to be expected as this fibre has the smallest
GVD parameter relative to the fibre nonlinearity so that the nonlinear effects
are more pronounced. However, it is also apparent that in all cases the pulse
has developed asymmetrically. Although some of the asymmetry in the output
pulse can be attributed to the third order dispersion [4], and the shape of the
gain spectrum [Fig. 3.10], it is in fact primarily due to pump depletion where
the leading edge of the pulse experiences more gain than the trailing edge.
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This effect is significant because the signal intensity eventually exceeds that of
the pump intensity [4] and, due to the large gains necessary to amplify a pulse
to the parabolic regime, it is a difficult problem to avoid. Indeed, the peak
powers of the output pulses are: (A) 102W, (B) 96 W and (C) 125 W, so that
they are all much greater than the initial pump power of 20 W. Furthermore,
on comparing the output pulse profiles in Fig. 6.4, it is clear that the relative
sizes of the peak powers are in agreement with the size of the induced asym-
metry in the pulses, with the pulse generated in fibre C displaying the largest
asymmetry. In this context, it is worth noting that given the high peak powers
reached by the signal pulse it could be possible for it to pump a second Raman
pulse, downshifted from itself by 13.2 THz, out of the amplifier noise, thus cre-
ating a cascaded Raman effect. However, observations indicate that over the
relatively short propagation lengths considered in the simulations, the gain
that the signal provides to the noise is not sufficient for a second Raman pulse
to form or, more importantly, to degrade the quality of the generated parabolic
pulse.

6.3.3 The Effects of Third Order Dispersion

An important consequence of the effects of the pump depletion is that the for-
mation of a parabolic pulse is highly dependent on the sign of the third order
dispersion. Indeed, the simulations have shown that when ; < 0 then the
asymmetry induced by the third order dispersion acts in the opposite direction
to that induced by the pump depletion and thus can actually improve the qual-
ity of the output pulse. However, when 5 > 0 the effects of the asymmetries
combine, destroying the linearity of the chirp, and can lead to the pulse devel-
oping oscillations on the long sloping trailing edge. Such effects can be seen in
Fig. 6.5 where (a) shows the intensity profile and chirp (plotted on linear scales)
and (b) shows the spectrum of the output pulse generated under the same con-
ditions as that in Fig. 6.4(C) but this time with 53 = 0.0018 ps>m~!. Although
in standard single mode fibres (s is typically positive over most wavelengths,
both positive and negative values of 35 are possible in small core microstruc-
tured fibres. Clearly, from the slope of the dispersion profiles in Fig. 6.3(b), in
all cases considered here 33 < 0.
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Figure 6.5: (a) Intensity (left axis) and chirp (right axis) of the output obtained from
simulated propagation in fibre C but with 85 = 0.0018 ps®m~!. (b) The corresponding
spectrum.

6.3.4 Dependence on the Input Pulse Characteristics

From the results presented in Figs. 6.4 and 6.5 it is evident that the evolution of
the signal pulse to the parabolic pulse regime depends strongly on the param-
eters of the microstructured fibre. Further design work could be performed to
identify microstructed fibres that are optimised for parabolic pulse generation.
However, previous investigations of parabolic evolution have shown that for
a given amplifier with fixed parameters, there are certain input pulse param-
eters that allow for a more efficient convergence to the parabolic regime [40].
Based on these results, additional simulations have been conducted to estab-
lish the input signal and pump pulse parameters which optimise the evolution
to the parabolic pulse solution with the hope that a faster convergence to the
parabolic regime will make the specific fibre design less critical.

Despite the complexity of the Raman term in Eq. (6.1), in the limit of low pump
depletion it can in fact be well approximated by the NLSE with a simple gain
term as given in Eqg. (3.30). Consequently, in this limit it can be expected that
the amplified pulses can be described by the parabolic pulse solutions of Chap-
ter 4. However, in the high gain systems investigated here, the effects of pump
depletion cannot be ignored and it must be expected that the parabolic pulse
solutions will deviate from the analytic predictions based on the simplified
equation. Nevertheless, as the previous results have shown, clearly the pulses
in this system are still evolving to have a parabolic form. Thus, as a means
of quantifying the level to which a pulse has become parabolic, a root-mean-
square (RMS) intensity error can be introduced between the numerically sim-
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ulated pulse Iyun (T) = |¥ (L, T)|?, where L is the fibre length, and the fitted
parabolic pulse Ir;r (T') (as shown in Fig. 6.4) as [57]:

%%[INUM( ;) — Ierr (T5))?
= |22 . (6.3)

The results of the simulations have shown that the important pulse parameters
are the input pulse width and the ratio of the peak powers of the pump and
signal pulses. To illustrate the dependence of the pulse width, Fig. 6.6 shows
a plot of the RMS intensity error as a function of the input width (FWHM)
where in all cases the input pulse energy is 5.3 pJ (as used for the input pulses
in Fig. 6.4), and the fibre parameters correspond to fibre A. This clearly shows
that for a fixed input pulse energy there is an optimum input pulse width, in
agreement with the earlier observations of Ref. [40], and for this system the

width is ~ 6 ps.
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Figure 6.6: RMS intensity error as a function of input pulse duration (FWHM) for a
fixed signal pulse energy. The fibre parameters correspond to fibre A.

The remaining curves plotted in Fig. 6.7 then show a comparison between two
parabolic pulses generated with the same input pulse and fibre parameters as
used to generate Fig. 6.4(A) (i.e., a signal peak power of 5 W) but with pump
powers of (a) 40 W and (b) 100 W. As larger pump powers offer larger gains
per unit length, the fibre lengths were chosen to be 8 m and 3m for (a) and
(b), respectively, so that in both cases the signal pulse experienced a gain of
~ 28 dB. Although the intensity misfits for these output pulses are similar, (a)
er = 0.17 and (b) e; = 0.15, the steep sloping edges on the pulse in Fig. 6.7(b)
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Figure 6.7: Top: intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) of the fibre outputs obtained from simulations with (a) 40 W and (b) 100 W
pump pulses, respectively. Bottom: the corresponding spectra. In both cases the fi-
bre parameters correspond to fibre A.

indicate that this pulse is more parabolic [Section 4.4]. Thus these results sug-
gest that a larger gain per unit length can enhance the rate of evolution to the
parabolic regime.

6.3.5 Compression of a Raman Amplified Parabolic Pulse

Finally, to demonstrate the potential use of Raman amplified parabolic pulses
for high power short pulse generation, the compression of the pulses in Fig. 6.4
is simulated via a simple linear grating pair (see Section 5.3.3). Importantly, it
can be noted that the simulations have indicated that compressing the pulses to
obtain the flattest spectral phase corresponds to the optimal compressed pro-
file in that it simultaneously minimises the temporal phase variation across the
central peak as well as the fraction of the total pulse energy contained in the
pedestals (see Appendix A). Using this technique, the resultant compressed
pulses can be seen in Fig. 6.8 where the corresponding output widths are
(A) 900 fs, (B) 640 fs and (C) 920 fs. Here the long pedestals on the trailing edges
can be partly attributed to the parabolic nature of the pulses as it has been
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Figure 6.8: Intensity profiles of the output pulses from Fig. 6.4 after linear compres-
sion.

shown that the analytic form of a compressed parabolic pulse is in fact a Bessel
function of the first kind [41]. Significantly, a characteristic feature of this result
is that the amplitude and frequency of these oscillations increase with increas-
ing spectral width. This is in agreement with the observations as the pulse cor-
responding to case B possess both the broadest spectrum (2.1 THz compared
to 0.9 THz for case A and 1.3 THz for case C) and the largest pedestals (46 %
of the total pulse energy compared to 28 % for case A and 42 % for case C).
In addition, because of the asymmetry of these pedestals, they can also be at-
tributed to the asymmetry in the uncompressed pulses. Thus it is expected that
these results could be improved by employing specially designed fibre Bragg
grating dispersion compensators [58]. Nonetheless, the ease with which these
pulses can be compressed suggests that Raman amplified parabolic pulses of-
fer an efficient source of high power short pulses unrestricted by wavelength.

6.4 Experimental Confirmation

The results of the numerical simulations presented in Section 6.3.2 have demon-
strated parabolic pulse generation in microstructured fibre Raman amplifiers.
This section now presents preliminary experimental confirmation of these nu-
merical results. The experiments described in the following were performed
with the help of Dr M. O’Connor who built and maintained the signal pulse
source. Because of the specialised apparatus used in these experiments, this
section begins with a detailed description of the experimental configuration.
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6.4.1 Experimental Apparatus

The Microstructured Fibre

990000004
Oreeen

Figure 6.9: SEM image of the cross section of the microstructured fibre used in the
experiments.

The amplifying fibre used in the experiments is a hexagonally stacked pure
silica small core microstructured fibre. A scanning electron microscope (SEM)
image of the fibre cross section is shown in Fig. 6.9.! From this image we could
estimate d and A which in turn allowed us to calculate the nonlinearity and
dispersion properties of the fibre. For reference, the relevant fibre parameters
are listed in Table 6.2.

Parameter Value
Hole diameter d 1.1 pm
Hole-to-hole spacing A 1.2 ym

Nonlinearity parameter v | 90 x 1073 W=tm~!

Dispersion parameter 3, | 63 x 1072 ps>m~!
Loss a 0.2dBm™*
Length L 5m

Table 6.2: Microstructured fibre parameters used in the experiments.

Because of the extremely small core size we expect the nonlinear effects in
this fibre to be dramatically enhanced, and in particular we found it to exhibit
some very unusual Raman properties. Specifically, one would expect that for

LA SEM is a microscope that uses electrons rather than light to form an image so that higher
resolutions can be attained.
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Figure 6.10: Raman spectrum for the microstructured fibre of Fig. 6.9 taken at the time
of the measurements.

a pure silica fibre the peak of the Raman gain spectrum should appear down-
shifted from the pump by 13.2 THz so that for a 1.536 um pump we should
choose a signal beam at 1.649 ym. However, from Fig. 6.10 which shows the
Raman spectrum of this fibre at the time of our measurements, clearly this is
not the case as the peak gain isin fact at ~ 1.62 ym. Furthermore, we also found
that this Raman peak shifted in wavelength as the fibre was recleaved and the
coupling was varied. This anomaly can possibly be attributed to the nonuni-
formity of the fibre cross section and examples of alternative Raman spectra
obtained in this fibre are shown in Fig. 6.11. Nevertheless, as a complete in-
vestigation into the Raman properties of this fibre was beyond the scope of
this thesis, we simply attributed this behaviour to the extreme nature of the
fibre structure. In addition, it is worth noting that because of the small core

Power (dB)

-30 I I I —40 I I I
1550 1580 1610 1640 1550 1600 1650 1700

Wavelength (nm) Wavelength (nm)

Figure 6.11: Alternative Raman spectra for the microstructured fibre of Fig. 6.9 show-
ing the wavelength dependence of the coupling.
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size, the coupling efficiencies obtained during this experiment were typically
of the order of 10% or less and were highly dependent on the wavelength of
the coupled light.

The Signal Pulse Source

To ensure efficient parabolic pulse amplification in the microstructured fibre
described above we required a picosecond pulse source at the peak of the Ra-
man gain curve: ~ 1.62 um. To this end, Dr M. O’Connor developed a syn-
chronously pumped optical parametric oscillator (OPO) based on wavelength
conversion in a periodically poled lithium niobate (LiNbO;3) crystal (PPLN)
(see Chapter 10 for a more complete description of PPLN). A detailed techni-
cal description of a similar OPO has been published in Ref. [59].

A schematic diagram of the signal pulse source is given in Fig. 6.12. The
pump source is a mode-locked Nd:YLF laser (Microlase DPM-1000-120), cou-
pled with a Nd:YLF amplifier system, which operates at a wavelength of A\ =
1.047 pm to produce 4 ps (FWHM) hyperbolic secant pulses at a repetition rate
of 120 MHz. These pulses are injected into the OPO ring cavity where the wave-
length conversion occurs in a 19 mm long PPLN crystal with a grating period of
30 pm. The crystal was housed in an oven (dashed box) where the temperature
could be adjusted to tune through the converted wavelengths and for signal

HR/ Signal A=1.62um %

Pump A=1.047um

Nd:YLF o Nd:YLF
Laser LA Amplifier

Figure 6.12: Experimental configuration of the OPO used to generate picosecond
pulses at 1.62 ym.
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and idler waves of \¢ = 1.62um and \; = 2.96 um, the operating tempera-
ture was 135°C. The cavity was surrounded by three highly reflecting (HR)
mirrors and an output coupler (OC) with a 40% transmission fraction (at the
signal wavelength) to produce ~ 550 mW of average power.

At this point we note that the source that will be used to pump the Raman in-
teraction only operates at a repetition rate of the order of 100 kHz (see following
section). Thus if we were to consider launching the signal beam into the fibre
at the maximum repetition rate of 120 MHz, only 1 out of ~ 1200 pulses would
be amplified. As slower detection devices [such as an optical spectrum anal-
yser (OSA)] integrate the optical signals over a window in time, this averaging
effect would make it almost impossible to detect the gain in a single amplified
pulse. As a result, to reduce the number of pulses that enter the fibre stage an
accousto-optic modulator (AOM) is used to chop the pulse train from the OPO
into a series of pulse windows which occur at a repetition rate of 100 kHz. A
schematic illustration of this can be seen in Fig. 6.13. An example of a typical
window of pulses for an AOM trigger width of 350 ns, obtained from a 100 MHz
digital oscilloscope, is plotted in Fig. 6.14(a).? Here the departure of the pulse
window from the perfect rectangular function of Fig. 6.13 is due to the finite
response time of the AOM and for window sizes less than ~ 4 us leads to a
reduction in the peak power of even the most central pulses. With the AOM
window fully open (8.3 us) the maximum average signal power before the mi-
crostructured fibre launch was 30 mW.

10us

AU~ =5 A

Figure 6.13: Reduction of the signal pulse repetition rate for launch into the Raman
amplifier system.

Finally, Fig. 6.14(b) shows an autocorrelation trace of the input pulses into the
Raman amplifier system. Assuming a hyperbolic secant pulse profile, the au-
tocorrelation width of 6.12 ps indicates a true input pulse width of ~ 4.0 ps
(FWHM). The fine oscillatory structure on the envelope of the pulse is due to
the chopping of the pulse train by the AOM.

2Although the pulse-to-pulse spacing is large enough to be resolved accurately, the small
bandwidth of the scope causes an exaggeration of the pulse widths.
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Figure 6.14: (a) Typical example of a window of signal pulses for input into the mi-
crostructured fibre. (b) Autocorrelation trace of the input pulses into the microstruc-
tured fibre.

The Pump Pulse Source

The pump pulse source was also developed within the ORC and a detailed
technical description can be found in Ref. [60]. Fig. 6.15 shows a schematic
diagram of the experimental setup. The laser is seeded by a simple laser diode
providing 1 mW CW at 1.536 um which is externally modulated to produce 5 ns
square pulses. To compensate for the losses resulting from the chopping of the
beam, an amplifier is also included in this preliminary stage. These pulses are
then passed into a two stage, high gain Er3*:doped fibre preamplifier before

___________________ Pulse
Generator
CW. Laser 00 [ EoM AOM
Diode
Modulation Stage 1
Stage

Stage 3

Figure 6.15: Experimental configuration of the high power pump pulse source to pro-
duce pulses at 1.536 pm.
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finally being launched into the large mode area (LMA) Er3*—Yb3+:doped fibre
amplifier. The three amplifier stages were separated by two AOMs triggered
to gate through the pulses whilst stopping the ASE from passing between ad-
jacent stages. In addition, a 1 nm bandpass filter was placed before the LMA
amplifier stage to eliminate the small amount of ASE in the time slot of the
pulse. With the pulse generator operating at a repetition rate of 100 kHz this
setup produced 5 ns pulses with peak powers of ~ 1 kW.

6.4.2 Experimental Setup

The complete experimental setup to generate parabolic pulses in a microstruc-
tured fibre Raman amplifier is illustrated in Fig. 6.16. The AOM in the sig-
nal setup was triggered off the pump source so that the signal pulses were
launched into the microstructured fibre to overlap with the pump pulses. Po-
larisation controllers (PC) were included in the pump and signal launch paths
so that both beams could be launched onto a single polarisation axis. Typi-
cally, the average pump power before the microstructured fibre launch was
250 mW. Coupling into the fibre was achieved using a 2.75 mm focal length
lens and coupling efficiencies of ~ 10% and ~ 5% were usually obtained for
the pump and signal beams, respectively.® This resulted in a maximum pump
peak power of 40 W and a maximum signal peak power of 4.5 W (when the
AOM window was fully open: 8.3 us) in the microstructured fibre.

To verify that the pulses were in fact experiencing gain from the Raman in-
teraction, before attempting to measure autocorrelation traces of the output
pulses we first looked at the output from the fibre on the digital scope. As
mentioned previously [Section 6.4.1], the small bandwidth of the scope causes
an exaggeration of the observed pulse widths so that this is not a true represen-
tation of the output pulses. However, it is clear from Fig. 6.17(a) that the signal
pulse which is overlapped by the pump pulse is experiencing gain. In order to
see the unamplified pulses on this scale, this image was taken for a relatively
low average input pump power of 100 mW (corresponding to a peak pump
power in the fibre of ~ 13 W) and resulted in ~ 8dB of gain. Increasing the
input pump power to 250 mW (~ 40 W of peak pump power in the fibre), the

3This assumes a launch optimised for the pump beam.
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Figure 6.16: Schematic diagram of the experimental setup for parabolic pulse gener-
ation in a microstructured fibre Raman amplifier. WDM=wavelength division multi-
plexer, MF=microstructured fibre and RM=removable mirror.

amplified pulse in Fig. 6.17(b) is now sufficiently large that the unamplified
pulses are undetectable on this scale, and this corresponded to a total pulse
gain of ~ 22 dB.

Once we were satisfied that the signal pulses were experiencing Raman gain
we then aligned the output to the autocorrelator. This was done with the AOM
window fully open so that the power was at a maximum. A removable mirror
was placed just before the entrance to the autocorrelator so that the output
could be redirected to an OSA and thus we could obtain measurements of the
pulses in the temporal and spectral domains under the same conditions.
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Figure 6.17: Oscilloscope traces showing signal pulses with: (a) 8dB and (b) 22 dB of
Raman gain.
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We recall that as the defining features of a parabolic pulse are the steep edges
of the temporal profile and its linear frequency chirp [Chapter 4], a thorough
characterisation of a parabolic pulse requires the use of the FROG measure-
ment technique which allows for the complete retrieval of both the intensity
profile and the phase (as described in Section 5.3.4). However, at the time of
these measurements a FROG device at 1.62 ym was not available. Thus in or-
der to establish any parabolic nature of the amplified pulses it was important
to consider both the temporal and spectral measurements where, in the time
domain the steep parabolic edges will translate to an autocorrelation trace with
steep edges, and in the frequency domain the strong chirp will result in a broad
spectral width [Section 3.2].

6.4.3 Analysis of Experimental Data

With the experimental configuration set up to look at the fibre output on the
OSA, the coupling and polarisation of the pump beam were optimised to ob-
tain the largest Raman gain at 1.62 ym. We found that, at the time of the mea-
surements, this corresponded to an input pump power of 210 mW and a cou-
pling efficiency of ~ 8 % so that the peak power of the pump in the fibre was
~ 25mW.

The measured autocorrelation trace of a Raman amplified pulse is shown in
Fig. 6.18(a). This was taken for an AOM window size of 4 us and with only
10mW of average signal power before the fibre, we estimate an average cou-
pled power of ~ 1mW, corresponding to a peak signal power of ~ 2W.
Clearly there is a very large noise component to this pulse which makes it
difficult to distinguish any defining features. This is due to the extremely low
average power of the signal beam and, in fact, for this window size it was not
possible to measure an autocorrelation trace of the signal pulses through the
fibre without gain (i.e., with the pump turned off). Nevertheless, the steepness
of the edges of this trace suggests that the pulse has departed from its input
hyperbolic secant profile.

The output spectrum from the microstructured fibre showing both the pump
at 1.536 pm and the amplified spectrum at 1.62 pm is plotted in Fig. 6.18(b). To
estimate the Raman pulse gain we then closed the AOM window down even
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Figure 6.18: (a) Measured autocorrelation trace and (b) spectrum of a Raman amplified
pulse.

further to 60 ns, so that there were approximately 4 significant signal pulses in
each train, and measured the spectrum of the signal pulses with and without
the copropagating pump. The resulting pulse spectra can be seen in Fig. 6.19
and from these we calculated the Raman gain to be ~ 16 dB. Importantly we
note that due to the reduction in the peak power, caused by the reduction of the
AOM window, we can expect that this calculation will actually underestimate
the true Raman pulse gain and this is facilitated by the suppression of the pulse
shaping effects seen from Fig. 6.18(b) to Fig. 6.19(b). However, as it was not
possible to measure the Raman gain directly from the temporal pulses, this
was the best estimate that we could obtain.

To investigate these results in more detail, the system has been simulated based
on the input pump and signal pulse properties, as estimated above, and with

o (a) i

Power (arb.)

~ ) .

1610 1615 1620 1625 1630 1610 1615 1620 1625 1630

Wavelength (nm) Wavelength (nm)

Figure 6.19: Signal pulse spectra corresponding to (a) no gain (pump off) and (b) gain
(pump on) to estimate the total Raman gain.
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the fibre parameters given in Table 6.2. Fig. 6.20(a) shows the intensity profile
and chirp of the output pulse from the simulation (solid curves). The total
output pulse gain was 15.9 dB, consistent with the estimated measured gain.
Clearly, not only is this pulse starting to look visually parabolic, it is also in
good agreement with the parabolic fit to its intensity profile and the linear fit
to its chirp (circles).* In addition, the corresponding spectrum of Fig. 6.20(b)
appears to be developing the oscillations on its edges typically associated with
the entrance to the parabolic regime [Section 4.4].
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Figure 6.20: (a) Intensity profile (left axis) and chirp (right axis) of the simulated Ra-
man amplified pulse together with parabolic and linear fits (circles). (b) Correspond-
ing spectrum.

To compare our measured pulse with the simulation results, Fig. 6.21(a) shows
the autocorrelation trace of the pulse from Fig. 6.18(a) (solid curve) together
with the calculated autocorrelation of the pulse from Fig. 6.20(a) (dashes). De-
spite the noise induced asymmetry in the peak of the measured trace, there
is still good agreement between the autocorrelations and specifically between
their half maximum widths which are 7.2 ps (measured) and 7.3 ps (simulated).
Furthermore, not only is there good agreement between the spectral widths
(8.3nm and 8.4 nm for the measured and simulated spectra, respectively), there
is also excellent qualitative agreement between the shape of the spectral pro-
files as seen in Fig. 6.21(b). Consequently, we can expect that the simulated
pulse of Fig. 6.20 is a reasonable representation of the measured amplified
pulse in Fig. 6.18 which indicates that parabolic pulses are indeed being gen-

4As in Section 6.3.2, the fits are obtained via a minimisation scheme based on the Nelder-
Mead Simplex method.
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Figure 6.21: (a) Autocorrelation traces and (b) Raman amplified spectra of the mea-

sured pulse (solid curves) compared with the simulated parabolic pulse (dashed
curves).

erated in our system.

Finally, to emphasise the parabolic nature of the output pulse, Fig. 6.22 com-
pares the measured autocorrelation trace (solid line) with calculated autocor-
relations for parabolic (dashes), Gaussian (dot-dashed) and hyperbolic secant
(dotted) fits to the simulated pulse of Fig. 6.20, on a logarithmic scale. Clearly,
the parabola offers the best fit to the experimental pulse, especially in the
wings. Thus these results offer the first confirmation of a parabolic pulse gen-
erated via Raman amplification in a microstructured fibre.
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Figure 6.22: Autocorrelation trace of the experimentally measured pulse (solid curve)
compared with calculated autocorrelations of parabolic (dashes), Gaussian (dot-
dashes) and hyperbolic secant (dots) fits to the simulated pulse of Fig. 6.20.

89



Chapter 6 Parabolic Evolution in Microstructured Fibre Raman Amplifiers

6.4.4 Future Directions

The results presented in this section have indicated that the main limiting fea-
ture of this experiment is the very low coupling efficiency of the microstruc-
tured fibre, which is due to the extremely small core size. Unfortunately, to
date, investigations of the dispersion properties of various microstructured fi-
bres have shown that in the wavelength range 1.5 ym — 1.7 um normal disper-
sion is typically associated with small core structures [61]. In the interest of
establishing the structural features that give rise to the dispersion, and also the
nonlinearity, of a microstructured fibre, members of Dr T. Monro’s microstruc-
tured fibre group are currently working to solve the inverse problem of calcu-
lating possible fibre structures given a fixed dispersion profile. Thus it is hoped
that in the near future we could exploit this technique to design fibres with dis-
persion and nonlinear properties that are optimised to our specific needs.

As well as the small coupling efficiencies, we also faced the additional problem
that the signal source was passively mode locked so that this could not be
synchronised exactly with the pump source. Thus in order to improve the
efficiency of the measurements it would also be beneficial to design a signal
source that could be triggered directly off our pump source, such as a Raman
fibre laser [62], enabling single pulse measurements.

Finally, to make more rigorous comparisons between the experimental mea-
surements and the parabolic theory it is important that our pulse diagnostic
techniques are improved. Thus, to this end, we will need to develop a FROG
setup (such as that described in Section 5.3.4) that operates at ~ 1.62 ym so
that we can obtain a complete retrieval of both the intensity and phase of the
field. Furthermore, it is hoped that a better understanding of the output pulse
characteristics, and hence the precise effects of the dispersion and nonlinearity,
will aid in the design process of the microstructured fibres.
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Chapter 7

Self-Similar Solutions of the NLSE
with Distributed Coefficients

7.1 Introduction

The self-similar solutions discussed in the previous two chapters exist under
the conditions of normal dispersion and gain. In this chapter a new class of
solutions which exist for a much wider parameter range that extends to both
signs of the dispersion parameter, and either gain or loss is investigated. These
solutions have been found for a generalised form of the nonlinear Schrodinger
equation (NLSE) with distributed coefficients which vary longitudinally down
the length of the fibre or fibre amplifier. It will be shown that this system
permits a broad class of exact self-similar solutions and that these include a
set of solitary wave solutions. In order to establish the robustness of these
solutions to realistic experimental conditions, a numerical investigation into
their stability is also presented.

7.2 Background of the Project

Development of the techniques involved in optical fibre fabrication mean that
itis now possible to fabricate fibres with longitudinally varying dispersion and
nonlinear properties. Such tailored fibres have already been shown to have
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important applications in the areas of pulse compression and amplification, as
pulse degradation due to the nonlinear effects can be minimised. In particular,
dispersion decreasing fibres have been used to demonstrate clean, high power
short pulse generation via adiabatic soliton compression in both low gain fibre
amplifiers and dispersion decreasing fibres [63].

Motivated by these results, in 1996 Moores conducted an analytical investiga-
tion into similar systems under which rapid compression was possible [64].
In his work he focused on pulse propagation in anomalous dispersion fibres
or fibre amplifiers where either the gain or the dispersion parameter is a dis-
tributed function of the propagation distance. His results showed that high
quality rapid compression is indeed possible and that the pulses are chirped
throughout the compression with the size of the chirp being proportional to the
rapidity of the amplification. However, as these results were obtained rather
serendipitously, they could not be extended to consider more complex systems
where two or more of the parameters varied along the fibre length.

This chapter presents the results of an independent analysis based on a more
general system. Specifically, it will be shown that in systems where all of the
parameters describing the fibre or fibre amplifier can vary longitudinally, there
exists a new class of exact self-similar solutions. This work is the result of a
collaboration with Prof. J. Harvey and Dr V. Kruglov of the Applied Optics
Group at The University of Auckland. The theoretical component of this work
was carried out by Dr V. Kruglov using similar techniques to those employed
for the case of parabolic pulse propagation in normal dispersion amplifiers, as
discussed in Chapter 4. My role was to conduct the numerical analysis to aid
with the development and verification of these results, and to establish their
stability under perturbations.

7.3 Nonlinear Schrdodinger Equation with Variable

Parameters

Pulse propagation in a fibre with distributed dispersion, nonlinearity and gain
can be described by the standard NLSE, as introduced in Section 3.7, with z-
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dependent coefficients so that:

OV B ﬁg(z) 0*U 2 Q(Z)
= —v(2) |¥| \I/+1T\I/. (7.1)

As discussed in Chapter 3, ¥ (2, T') is the slowly varying envelope of the pulse
in a co-moving frame, 3, is the GVD parameter, v is the nonlinearity parameter,

g is the fibre gain (or loss if g is negative) and, to simplify the theoretical anal-
ysis, we assume that the higher order dispersive effects are negligible so that
we can set 33 = 0. The inclusion of a distributed gain function g(z) has already
been discussed in Section 4.4.2 in the context of the amplifier pumping geom-
etry. To produce distributed dispersion in a fibre, longitudinal variation of the
chemical composition, refractive index, or the core diameter is required. As the
core diameter is controlled by the fibre drawing speed, this is by far the eas-
iest parameter to control and thus dispersion variation is generally achieved
by tapering the fibre. However, because the nonlinearity parameter depends
on the mode size of the guided light [EqQ. (3.27)], this is also controlled by the
core diameter so that we expect a tapered fibre to have both distributed dis-
persion and nonlinearity. Although previous theoretical studies of pulse prop-
agation in tapered fibres have neglected the effects of the distributed nonlin-
earity claiming that this effect is small, as the desire for shorter device lengths
becomes greater, more extreme tapers will be required and these claims will
no longer be accurate. Thus we expect to find that for such cases the full z-
dependence of the coefficients in Eq. (7.1) must be considered.

7.4 Solutions to the Modified NLSE

In this section we consider the solutions to Eq. (7.1) under conditions where all
of the fibre parameters are functions of the propagation distance. Following
the analysis of Chapter 4, we start by writing the field ¥ in terms of its real
amplitude A and phase ®: V(z,T) = A(z,T)exp[i®(z,T)]. Substituting this
into Eq. (7.1) we again obtain the coupled equations in A and ¢ as:

402 _ Ba(2) [A (a<1>>2 P4

oL 3
5 = 2 3T +7(2)A%, (7.2)

0z 2

4B [\F0 2400, o)

a2 T larar| T o A (7.3)

93



Chapter 7 Self-Similar Solutions of the NLSE with Distributed Coefficients

As discussed in Section 4.2, with the assumption of self-similar evolution in
the amplifier we can reduce the number of degrees of freedom of the system
by rewriting the equations in terms of carefully chosen combinations of the
original variables. Based on the results of the self-similar parabolic pulse so-
lutions, for the generalised NLSE considered here we choose the two indepen-
dent variables: T'(z) and 7 = T/T'(z) [41]. Using these we can represent the
amplitude in the form:

A(z,T) = S(2)F (1), (7.4)

and without loss of generality we can suppose that:
S(0)=1 and o) =1 (7.5)

As it was shown in Section 4.4.2, for an equation of the form of (7.1) with a
longitudinally varying gain profile, the evolution of the pulse energy in the
amplifier satisfies the integral of motion:

U(2) = Upexp l /0 Z g(z/)dz’] | (7.6)

where U, = U(0). With the form of the amplitude as given by Eq. (7.4) we find:

U(z) = S2(2) / T <Z) AT = S2(2)T(2) /_ T endn @)

o I 0
Uy = S*(0)I'(0) / h F?(r)dr = / h F?(1)dr, (7.8)
so that the integral of Eq. (7.6) yields:
R S by o 1C)) Z}

It follows from Eq. (7.4) that the self-similar form of the amplitude is thus:

Az, T) =

x5 F () exp BG(Z)] : (7.10)

where we have defined

G(z) = / g(+')d=" (7.11)
0
To find the solution for the phase we first assume that it is quadratic in 7

O(2,T) = ¢(2) + C(2)T? (7.12)
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The significance of this ansatz becomes clear by recalling that if a pulse pos-
sesses a linear chirp then the rate at which the temporal components expand
or compress is the same for all parts of the pulse [Section 4.3.1]. Thus as the
pulse propagates in the fibre its form will be preserved and hence it behaves
self-similarly. As demonstrated by the analysis of Chapter 4, the value of this
approach has been confirmed for the case of self-similar parabolic pulse prop-
agation in both fibres and fibre amplifiers.

With this ansatz Eq. (7.2) can be rewritten as:

do(z)  dC(2),, o 2 2 52(2)82/4
A( s + P T)—Qﬁg(z)AC’ (2)T° — 5 W%—v(z)/l?’. (7.13)

This equation contains an explicit dependence on the variable 7" which disap-
pears when the terms proportional to 77 are equal. Thus we obtain the follow-
ing pair of equations:

dC(z) B 5
9 _ap(:)00), (7.12)
do(z) Ba(2) %A 3
A L~ 3 a7 +7(2)A°. (7.15)

We then rewrite the second coupled equation (7.3) as:

DA DA g(2)
9 P2(2)C(2)A — 252(2)0(2)Tﬁ + TA-

(7.16)
With the form of the amplitude as given in Eq. (7.10), it follows that Eq. (7.16)
can be satisfied if and only if the function I'(z) is defined via:

1 dI'(2)

['(z) dz

= —20,(2)C(2). (7.17)

The solutions to Eqs. (7.14) and (7.17) follow as:

Co
C) =1 CoD()’ (7.18)
and
['(z) =1—CyD(z), (7.19)

where the initial chirp Cy = C(0) # 0, because the phase must be quadratic in
T for all z, and the function D(z) is

D(z) =2 /OZ Bo(2")d2". (7.20)
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Via substitution of the form of the amplitude [Eq. (7.10)] into Eq. (7.15) we then

obtain the differential equation for F' to be:
d*F N 2I%(2) do(2) ., 29(2)T'(2)
o fo(z) dz Ba(z)

As in the most general case the coefficients in Eq. (7.21) are functions of z whilst

xp [G(2)] F? = 0. (7.21)

F only depends on the scaling variable 7, this equation only has nontrivial
solutions (F'(7) # 0) if and only if the coefficients are constants such that:

212 (z) dg(2)
B S 7.22
Ba(z) dz ( )
v(2)T'(2)
—— 2 L exp|G(2)] = k. 7.23
G P [G(2)] (7.23)
Hence )\ and « can be calculated at z = 0:
2 d¢ 7(0)
A= — - and K= — , 7.24
F2(0) dz 0 B2(0) ( )
and Eq. (7.21) can be rewritten as:
2
P Y (7.25)
or?

The significance of writing Eq. (7.25) in this form is that it is clear that this
equation can be regarded as an eigenvalue equation where ) is the eigenvalue
to be determined. To complete the solution to the phase, Eq. (7.22) can be

integrated to yield:
B AD(z)
¢z) = do = 7 1= CoD(a)

where ¢, is a constant of the integration, and combining this with Eq. (7.18) we

(7.26)

obtain:

)\D(Z) + C’ozﬁ2

&) =0 I e T T Gb ()

(7.27)

Importantly, as it was found from Eq. (7.17), the self-similar solutions de-
scribed by Egs. (7.10) and (7.27) do not exist for any combination of arbitrary
shaped dispersion, nonlinearity and gain functions. To this end, it is useful to
rewrite Eq. (7.19) in the form:

p(z) = p(0) [1 = CoD(2)] exp [G(2)] (7.28)

where the function p(z) is defined by:

plz) = 22 (7.29)
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This equation [Eq. (7.28)] is the necessary and sufficient condition for the exis-
tence of the self-similar solutions of Eq. (7.1). Furthermore, it is also interesting
to differentiate Eq. (7.28) to obtain:

1 dp(z) 2Cy52(2)
9(=) = p(z) dz 1—CoD(z2)’

(7.30)

which, given the dispersion and nonlinearity profiles of the fibre, yields the
required form of the gain. Combining these results we find that the complete
description of the self-similar solutions to the NLSE with distributed coeffi-
cients is:

V) = =t (=g = | e

where
)\D(Z) + C’ozﬁ2

¢ (2,T)=do~ (7.31)

Explicit Forms of the Self-Similar Solutions

In order to find the explicit forms of the possible sets of self-similar solutions
we now consider integrating Eq. (7.25) for different signs of « [i.e., different
signs of the product 5:(z)v(z)]. As the nonlinear coefficient is always posi-
tive in optical fibres (v > 0), this corresponds to considering the two cases of
anomalous (3; < 0) and normal (3, > 0) dispersion. Firstly for the case of
anomalous dispersion (x > 0), we find the amplitude through Eq. (7.10) to be:

1p(2)] T
AzT) = Toll = CoD (=] *°h (To[l - (JOD(Z)]) ’ (7:32)

which is in fact in the form of a solitary wave solution where 7 is the initial
pulse width and T, 2 = X [Eq. (7.27)]. For the case of normal dispersion (x < 0),
Eqg. (7.25) then yields the amplitude in the form of a kink solution [4]:

p(2)] T
AlzT) = Toll = CoD(z)] b (To[l - COD(Z)]> : (7:33)

where now —2/7% = \. It is also possible to find a solution to Eq. (7.25) which
is independent of 7" for either sign of x and for such cases the amplitude is
found to be:

Az, T) = 1{7 %, (7.34)
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where A is an arbitrary real parameter and 2A%sgn (k) = .

In addition to these localised solutions, Eq. (7.25) also has six bounded peri-
odic solutions which depend on an arbitrary parameter 0 < k < 1. Using the
notations for the Jacobian elliptic functions [65], the solutions are, for x < 0,

case 1: —(1+ k)T, % = )\,

U 1) = — V1P n( I k), (7.35)

T Tl = CoD(2)] T\ Tyl = CoD(2)]’

case 2: —(1 + k)T, 2 = ),

o) — VPG

T
T o1 = CoD(2)] cd (To[l — CoD(2)]’ k) ) (7.36)

and for x > 0,
case 3: (2k? — 1)1, % = A,

Vie(2)lk

T
U“J”:nu—awwnm(nu—apwwk)’ (7.37)

case 4: (2 —k2)T;% = A,

U(z,T) = i _"’gjg ks ( T k) , (7.38)

case 5: (2k? — 1T, 2 = ),

VIR kv — K2 T
U“T*‘nu—%n@]“(%u—%D@rg’ (7:39)
case 6: (2 — k2)T;% = ),
OVITE T
Wa”‘fw—a@@ﬁﬂgw—am@rg' (7.40)

In the case where (3, is a constant (independent of z), the travelling solutions
can also be found by a Galilean transformation [66]. These oscillatory solutions
correspond to the transmission of amplitude modulated light which experi-
ences a simultaneous amplification (or loss) and a modulation frequency shift
under the influence of nonlinearity, dispersion and gain (or loss). To illustrate
this solution set, Fig. 7.1 plots the Jacobian elliptic solutions for a constant 3
for both x < 0 (top curves) and x > 0 (bottom curves), where k = 1/2.
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Figure 7.1: Oscillatory Jacobian elliptic solutions for constant (3, where the top curves
are for k < 0 and the bottom are for x > 0. In both cases k = 1/2.

7.4.1 Solitary Wave Solutions with Distributed Dispersion and
Nonlinearity

In this section we focus on the solitary wave solution of the generalised NLSE
[Eq. (7.1)] found for the case of x > 0, given by Eq. (7.32). Specifically we
consider a system where the solution describes the evolution of optical pulses
in dispersion decreasing fibres [67]. For definiteness, we suppose the fibre to
have the physically realistic dispersion and the nonlinearity distributions:

Ba(2) = Bapexp(—oz), 7(2) = yoexp(az), (7.41)

where 3,5 < 0 (as 7o > 0) and o > 0. It follows from Eq. (7.30) that the gain
function for self-similar solutions in this case is:

o(v—1)

_ vl 7.42
v—1+e 9% (7.42)

9(z) = -

where we have introduced the parameter v = o /2C, 52 (# 0). With this form
of the gain profile, we find the amplitude of the solitary wave solution to be:

A(2,T) = Ap(2) sech ( ) , (7.43)

W(z)
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where the evolution of the peak amplitude A,(z) and the pulse width W (z) are

given by:
v ||Bp exp[—1(a + 0)z]
Ao() = 7|5 ( e ) (7.44)
1o _
W(z)=—(v—-1+e), (7.45)
1%

together with the phase:

ﬁg oV 1 —e97 g T2
O (2,T) =g — = . 7.46
(2,T) = o 207¢ \v—1+e7* * 2620 \ ¥ — 1+ e0? (7.46)

To demonstrate typical physical systems where these solutions apply we con-
sider the two simplest cases corresponding to: (i) constant gain (i.e., where the
amplifier is pumped from both ends) and (ii) constant loss (propagation in an
undoped fibre). For case (i), referring to Eq. (7.42) it is clear that this takes place
when v = 1and a < 0so that g = —«a = |a|. Here the energy of the pulse grows
as E (z) = Eyexp (|a| z) whilst the width decreases W (z) = Ty exp (—oz). Thus
this solution describes the compression of a pulse in a fibre amplifier. Further-
more, we note that by allowing the amplifier to have a distributed gain profile
(v # 1) this solution provides other design possibilities for an amplifying pulse
COMpressor.

For the second case (ii) of constant loss, again referring to Eq. (7.42) we require
that » = 1 but now a > 0 so that g = —a = —|a| is negative. Despite the
fact that the energy of the pulse now decays as £ (z) = Eyexp (— || z), the
width still decreases at the same rate, W (z) = Ty exp (—oz), so that again the
pulse undergoes compression. Importantly, from these solutions we find that
for systems with o > 0 (dispersion decreasing fibre) the pulses will always un-
dergo compression, whereas for o < 0 (dispersion increasing fibre) the pulses
will always broaden.

To illustrate the two cases discussed above, we consider the evolution of a
pulse with an amplitude profile as described by Eq. (7.43) and a width of
To = 4ps (7ps FWHM) in a fibre of length 9m. We choose the fibre param-
eters to be: 3,0 = —0.01ps’m™, 90 = 0.01W'm™!, ¢ = 0.1m™ !, g = —a and
a = F0.25m™! corresponding to gain and loss, respectively. Fig. 7.2 shows the
output pulses resulting from the simulations (solid curves) together with the
theoretical predictions (circles) where in (a) the pulse has experienced ~ 10 dB
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of gain and in (b) it has experienced ~ 10dB of loss. Clearly, in both cases
the numerical simulations are in excellent agreement with the solitary wave
solution. As expected, despite the different mechanisms involved, the rate
at which the pulses compress is the same yielding output pulses with dura-
tions of 2.9 ps (FWHM). Defining the compression factor as: £, = ATy /AT omp,
where AT, and AT, are the input and output widths (FWHM) of the com-
pressor [4], this corresponds to a compression factor of 2.5 for these pulses.
Although the pulses have only undergone modest compression, because they
are chirped they can be subjected to further compression to compensate for
this. In fact, after additional linear compression (see Section 5.3.3) we find that
the pulses have a width of ~ 28 fs (FWHM), corresponding to a compression
factor of F. = 250. This is pictured in Fig. 7.2(c) which shows the output pulse
corresponding to the linear compression of the pulse in Fig. 7.2(a).
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Figure 7.2: Intensity profiles (left axis) and chirps (right axis) of the output pulses from
simulations (solid curves) in a fibre with both distributed dispersion and nonlinearity
in the case of (a) constant gain and (b) constant loss (note the axis scales). The circles
are the self-similar solitary wave solutions as predicted by the theory. (c) Output pulse
from (a) after additional linear compression.

At this point we recall that previous attempts to simulate the nonlinear ampli-
fication of pulses in the anomalous dispersion regime, using constant parame-
ters, have shown that the pulse tends to break up into a series of sub-pulses due
to the combined effects of self-phase modulation and dispersion [4]. Impor-
tantly, these results have shown that by allowing the pulses to have an initial
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chirp and the amplifier to have distributed coefficients, the pulses can undergo
clean and efficient nonlinear compression producing high power short pulses.

7.4.2 Solitary Wave Solutions with Distributed Gain or Dis-
persion

We begin by returning to the solitary wave solution of Eq. (7.32) as found for
x > 0 and, assuming that the z-dependence of the nonlinear coefficient is negli-
gible, we describe two cases corresponding to: (i) distributed gain and constant
dispersion, and (ii) constant gain and distributed dispersion. We note that it
was precisely these two systems that were previously investigated by Moores,
as discussed in Section 7.2.

For case (i), solutions can be found for Eq. (7.1) with constant 3, and v provided
the distributed gain function has the form [Eq. (7.30)]:

9%

9(z) = m

(7.47)

With this gain profile it follows that the amplitude and phase of the chirped
solitary wave are:

— VIBl/ ] T
A(z,T) = 7%[1 g2 sech (7%[1 — QOZ]> , (7.48)

and )
52 goT

_ + .
2g()TOQ[1 - QOZ] 252 - [1 - QOZ]

O(2,T) = ¢ (7.49)
For case (ii), the form of the dispersion profile that yields chirped solitary wave
solutions with constant g and ~ can again be found from Eq. (7.30) but by
rearranging to make f, (z) the subject. This yields:

P2(2) = P20 exp[gyz — n(exp(gy2) — 1)), (7.50)

where n = 205,/ 9, is a free parameter because Cj, is an arbitrary real param-
eter. In this case the solitary wave solution has amplitude and phase functions
of the form:

A1) — VBT T

Ty exp[—n(exp(gy,z) — 1)] sech (To exp[—n(exp(g,z) — 1)]

) , (7.51)
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and

_ 1 exp[n(exp(gyz) — 1)] CoT?
O(2,T) = ¢o + 107 1 OOT(;Q + o o e Y (7.52)

Comparing the above solutions with those of Ref. [64] it can be seen that, with
the appropriate substitutions, these are identical. Thus by solving Eq. (7.1)
we have been able to generalise the earlier predictions by Moores to include
the possible effects of a variation in the mode size (and hence a distributed
nonlinearity) and also the simultaneous variation of multiple fibre parameters.

To illustrate these results, Fig. 7.3 compares the outputs from simulations (solid
curves) with the theoretical predictions (circles) for the two cases discussed
above. In both instances we inject a 7, = 4 ps pulse with the appropriate form
of the amplitude profile [Eq. (7.48) or Eq. (7.51)] into an amplifier of length L =
9 m with parameters corresponding to a total pulse gain of ~ 10 dB. Fig. 7.3(a)
shows the results for case (i) with 3, = —0.01 ps?m™!, v = 0.01 W—'m~! and
g, = 0.1m™', whilst Fig. 7.3(b) shows the results for case (ii) with %, =
—0.01ps’m™, v = 0.01W'm™!, 0 = 0.1m ™}, g = 0.25m ! and Cy = 0/204.
Clearly the simulation results are in excellent agreement with the theoretical
predictions with the resulting output pulses having FWHM widths of (a) 698 fs
and (b) 237 fs, corresponding to compression factors of £. = 10 and F, = 30,
respectively. Importantly we note that whilst in this instance case (ii) produced
a shorter output pulse, as the final compressed width depends on the choice
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Figure 7.3: Intensity profiles (left axis) and chirps (right axis) of the simulated output
pulses (solid curves) for (a) distributed gain and constant dispersion, and (b) constant
gain and distributed dispersion. The circles are the self-similar solitary wave solutions
as predicted by Egs. (7.48)—(7.52) and by Ref. [64].
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of input parameters this will not always be the case. In addition, as mentioned
in the previous section, a further reduction of the pulse width can be achieved
via linear compression of the residual chirp and in both cases the transform
limited pulse has a duration of ~ 28 fs (FWHM), again corresponding to com-
pression factors of F. = 250.

We now wish to reconsider case (i) described above (i.e., distributed gain and
constant dispersion), but this time applying the results to the oscillatory solu-
tions of Eq. (7.37). It follows from the form of the gain profile, Eq. (7.47), that
the amplitude and phase of the chirped oscillatory solution are:

~ IBl/Ivk T
A(z,T) = 7%[1 — QOZ] cn (7%[1 — QOZ]’ k) , (7.53)
and )
(2, T) = ¢y e 901 (7.54)

g, - 9,2 250 - g
so that the form of the phase is identical to the phase of the solitary wave
solution [Eq. (7.49)]. Significantly, we note that in the amplitude solution, 7
refers to the width of the oscillations and not the length of the pulse train.

In order to demonstrate the important features of these oscillatory solutions
Fig. 7.4 plots both the input truncated pulse train and corresponding output
pulse train after propagation in a 0.9 m long amplifier with: 3, = —0.01 ps?m ™1,
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Figure 7.4: Intensity profiles (left axis) and chirps (right axis) of the self-similar oscil-
latory wave solutions corresponding to Eq. (7.37) where (a) is the input pulse train
and (b) is the simulated output pulse train after propagation in an amplifier with dis-
tributed gain and constant dispersion. In (b) the circles are the theoretical predictions
of Egs. (7.53) and (7.54).
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7y =001W'm™ 7T, =1,k=1/2and g, = 1m~' (so that the gain is 10 dB).
The excellent agreement between the output profile and chirp (solid lines) with
the theoretical predictions (circles) confirms the self-similar nature of the evo-
lution. In addition, on comparing the rate of the oscillations of the input and
output pulse trains (see x axes) it is clear that the modulation frequency at the
output is 10 times larger than at the input which is a significant enhancement.
Thus we expect these solutions to find application as a new way to generate
very high frequency amplitude modulated light.

7.5 Stability of the Solutions

The results presented in Sections 7.4.1 and 7.4.2 have verified the excellent
agreement between the theoretical predictions and simulations based on the
generalised NLSE of Eq. (7.1). However, in these simulations we have con-
sidered the evolution of ideal input pulses in fibres with the exact distributed
dispersion, nonlinearity and gain profiles. In addition, we have also neglected
the higher order terms in the NLSE which will become important as the pulses
compress to the femtosecond regime. Consequently, these results tell us little
about the robustness of the system to perturbations and more importantly, of
their suitability to real experimental situations. Thus in this section we inves-
tigate the solitary wave solutions under various non-optimum conditions to
establish the stability of their evolution. Specifically, we consider the cases cor-
responding to a non-ideal input pulse, an incorrect gain profile, the influence of
higher order dispersion and nonlinear effects and finally, the combined effect
of the perturbations in an amplifier with experimentally realistic parameters.

7.5.1 Evolution of a Non-ldeal Input Pulse

A useful test of the stability of a self-similar solution is to investigate the evo-
lution of a pulse with initial parameters that deviate from their ideal values.
In this sense we know that solitons are stable as a soliton-like pulse with non-
ideal input parameters will shed any excess energy (in the form of dispersive
waves) as the pulse evolves to the exact soliton solution. In this section we
consider three types of perturbation to the solitary wave solutions: (i) an in-
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put peak power which is less than the ideal value, (ii) an input chirp with a
slope that is less than the ideal value, and (iii) an ideal input pulse but with the
addition of random noise on the amplitude and phase.

We investigate the system described in Section 7.4.1 corresponding to propaga-
tion in an amplifier with distributed dispersion and nonlinearity, but constant
gain, so that the solitary wave solution is given by Egs. (7.43)—(7.46) with v = 1
and a < 0. Under these conditions, the optimum input peak power and chirp

are.
1 By od —oT

vt T02 Yo ﬁ - ﬁ2,0 .
Unless otherwise stated, the input pulse and fibre parameters are the same as
those used to generate Fig. 7.2(a). Both the input pulses (top curves) and out-
put pulses (bottom curves) are plotted in Fig. 7.5 together with the predicted

(7.55)

and Qg = —

analytic solutions (circles). Fig. 7.5(a) shows the pulse generated from the am-
plification of an input pulse with a peak power of 0.95F,,,. The fact that the
peak power of the simulated output is still less than that of the theoretical pre-
dictions is to be expected as in both cases (simulated and analytic) the pulses
have seen the same effective gain. However, importantly the simulated pulse
still has a peak power which is 95 % of the analytic solution and there has been
no significant change to the shape of the pulse profile or the chirp. Thus this
suggests that despite the non-optimum input power the pulse can still propa-
gate self-similarly.

In Fig. 7.5(b) we then compare the results from the amplification of a pulse
with an initial chirp of 0.95Q,,,. Unlike the previous case of a reduced input
power, this time there is further deviation from the expected chirp with the
output slope now being 89 % of the analytic prediction. Furthermore, we see
that the intensity profile has also deviated from the theory and this is because
the simulated pulse has undergone less compression than predicted. Although
these deviations are small, they nonetheless highlight the fact that the self-
similar evolution of the pulse is more sensitive to the initial slope of the chirp
function than to the peak powver.

Finally, Fig. 7.5(c) shows the output pulse generated from the amplification of
an ideal input pulse but with 5% random noise on the amplitude and phase.
Despite there still being some remaining noise on the output pulse, it is clear
that both the profile and the chirp are in excellent agreement with the theory.
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Figure 7.5: Top: intensity profiles (left axis) and chirps (right axis) of the input pulses
where: (a) the peak power is 0.95 P, (b) the chirp is 0.950,, and (c) there is 5 % ran-
dom noise on the amplitude and phase (solid curves). Bottom: intensity profiles and
chirps of the pulses after amplification. In all cases the numerical pulses are compared
with the theoretical predictions under ideal conditions (circles).

In addition, as the relative size of the noise on the output pulse is much less
than that on the input pulse, this provides further confirmation of the stability
of the solitary wave solutions in the presence of noise.

7.5.2 Evolution in an Amplifier with an Incorrect Gain Profile

As we saw in Section 7.4, once the dispersion and nonlinearity profiles of an
amplifier are known the shape of the gain profile required to observe self-
similar propagation can be found via Eq. (7.30). However, as the shape of
the gain profile is largely determined by saturation effects caused by pump
depletion, and thus the pumping geometry, such accurate control over its lon-
gitudinal variation is not possible. For this reason here we study the evolution
of a pulse in an amplifier with an experimentally realistic profile that differs
slightly in shape from the ideal profile, yet yields the same total pulse gain.
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We consider the evolution of a pulse in an amplifier with distributed gain but
constant dispersion and nonlinearity so that the situation corresponds to case
(i) described in Section 7.4.2. We recall that the shape of the gain profile re-
quired for self-similar propagation in such a fibre is given by [Eq. (7.47)]:

_ 9%
9= =gz

An experimentally realistic approximation to this, corresponding to counter-
directional pumping, is an exponentially increasing profile of the form:

9(2) = gyexp (2/2a), (7.56)

where z, determines the rate of increase. With the input pulse and fibre param-
eters the same as those used to generate Fig. 7.3(a), to ensure that the total pulse
gain also remains the same (~ 10 dB) we require z, = 5.44 m. Fig. 7.6 shows the
intensity profile and the chirp of the output pulse from the simulations with
the gain profile given in Eq. (7.56) (solid curves), clearly in agreement with
the theoretical predictions based on the exact gain profile (circles). Thus this
suggests that the self-similar nature of these solutions is sufficiently robust to
withstand amplification in an experimental situation where the longitudinal
gain may deviate from the ideal profile.
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Figure 7.6: Intensity profile (left axis) and chirp (right axis) generated via amplification
of the solitary wave solution with a gain profile given by Eq. (7.56) (solid curves) com-
pared with the analytic solitary wave predictions for the exact gain profile (circles).
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7.5.3 Evolution in an Amplifier with Higher Order Effects
Third Order Dispersion

As discussed in Chapter 3, although the basic form of the NLSE employed in
this chapter [EqQ. (7.1)] is remarkably successful in describing many of the fea-
tures of pulse propagation in fibre amplifiers [4], it often needs to be extended
to include higher order terms when the bandwidth of a pulse becomes large.
Thus in this section we consider the effects of higher order dispersion and non-
linearity, independently, to establish whether the neglect of such terms in our
theoretical analysis was justified. As in Section 7.5.1, in both cases we investi-
gate the system described in Section 7.4.1 corresponding to propagation in an
amplifier with distributed dispersion and nonlinearity, but constant gain, so
that the solitary wave solution is given by Egs. (7.43)-(7.46) with v = 1 and
a < 0. Again we choose the input pulse and fibre parameters to be the same
as those used to generate Fig. 7.2(a).

The equation describing pulse propagation in a fibre including the effects of
third order dispersion is [Eq. (3.7)]:

2 3
O _ B(2) 07T B 070 — Ay (2) | U

v g(z)
Y9: =~ "2 orz "6 o1 v, (7.57)

2

where we have assumed that the z-dependence of 35 is negligible. With the
choice of 33 = 0.1 x 10~*ps®m~1, we obtain an output pulse of the form given
in Fig. 7.7(a). Although there is still good agreement between the intensity
profile of the simulated pulse (solid curves) and the solitary wave solution
(circles), clearly the symmetry of the pulse profile and the linearity of the chirp
have been destroyed. These intensity and phase distortions are well known
consequences of propagation with higher order dispersion which arise due
to the cubic spectral phase introduced by the third order dispersive term [4].
Consequently, we expect that for larger values of (3, or alternatively, longer
amplifier lengths, the pulses will become highly distorted so that the theoret-
ical predictions will no longer be valid. However, these results show that the
solitary pulses can endure a small amount of higher order dispersion and with
the availability of dispersion flattened fibres to provide (3 ~ 0 we expect that
these solutions should be valid for a wide range of systems.
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Figure 7.7: Intensity profiles (left axis) and chirps (right axis) of the output pulses
generated under amplification with: (a) third order dispersion and (b) Raman gain.
The numerical simulations (solid curves) are compared with the predicted self-similar
solitary wave solutions (circles).

Delayed Nonlinear Response

In Section 3.10.2 it was noted that for pulses with bandwidths in excess of
1THz it is possible for the Raman gain to amplify the low frequency compo-
nents by transferring energy from the high frequency components of the same
pulse. Modifying Eq. (3.54) to include the effects of longitudinally varying
fibre parameters yields:

U—v(z) (1 + li) % /OOO R(T') |V (2, T —T")[>dT",

[O% oT
(7.58)
where again R (1) = (1— fr)0 (T')+ frhr (T'). The output pulse from the simu-
lations is plotted in Fig. 7.7(b) (solid curves) showing excellent agreement with

OV _ () PV g (2)

0z 2 OT2 2

the solitary wave solution (circles). As expected the simulated pulse has un-
dergone a slight frequency shift. However, this was calculated to be 0.192 MHz
(in the red direction) which, compared to the terahertz bandwidth of the pulse,
is negligible. The slightness of the self-frequency shift seen here, relative to the
soliton self-frequency shift [29], can be attributed to the fact that the pulse is
chirped (which results in a spreading of the frequency components) so that
internal pumping of the high frequency components to the low frequencies is
less efficient. Although the effects of Raman gain also accumulate over the
length of the fibre, the length required for the effects to become noticeable is
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well beyond practical amplifier lengths. Thus these results illustrate the insen-
sitivity of the solitary wave solutions to Raman gain, justifying the neglect of
this effect in the theoretical analysis.

7.5.4 Evolution in an Experimentally Realistic Amplifier

Having considered each of the perturbative effects independently, in this sec-
tion we now consider the evolution of a pulse in an amplifier with realistic
experimental parameters under the influence of a combination of these effects.
Again we return to the case of a pulse in an amplifier with distributed gain but
constant dispersion and nonlinearity so that the situation corresponds to case
(i) described in Section 7.4.2. Assuming an input pulse given by Egs. (7.48)
and (7.49), with T, = 4ps and 5 % random noise on the amplitude and phase,
we investigate the propagation of pulses in an amplifier with the exponen-
tially increasing gain profile as given in Section 7.5.2 [Eq. (7.56)] and includ-
ing the effects of Raman gain. Explicitly, the amplifier parameters are: 35, =
—0.024ps’m™!, B3 = 0.1 x 1074 ps®m ™!, v = 5.6 x 107* W tm™!, g, = 0.1 m~!
and z, = 6.36 m~!. Here z, was chosen so that the total pulse gain is the same as
that for the exact gain profile after 8 m of amplification. The simulated output
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Figure 7.8: Intensity profile (left axis) and chirp (right axis) of the output pulse gener-
ated under amplification with experimentally realistic parameters and a combination
of perturbative effects. The numerical simulations (solid curves) are compared with
the predicted self-similar solitary wave solutions (circles). (b) The corresponding pulse
after additional linear compression.
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pulse is plotted in Fig. 7.8(a) (solid curves), showing excellent agreement with
the theoretical predictions (circles). The corresponding pulse after additional
linear compression is then given in Fig. 7.8(b) where the minimum pulse width
is 85 fs (FWHM) so that F, = 76. The success of these results provides the final
evidence of the robustness of these solutions to real experimental conditions.

7.5.5 Discussion

The results presented in this section have shown that the solitary wave solu-
tions found for Eq. (7.1), in the case of anomalous dispersion, are relatively
insensitive to perturbations from the ideal system. Thus in spite of the simple
model on which the theory was based, the analytic solutions should provide
an accurate description of pulse propagation in fibres and fibre amplifiers with
distributed parameters. In addition, these simulations have highlighted areas
where extra care needs to be taken when designing an experimental system
such as the precise choice of the input chirp and the use of fibres and ampli-
fiers with relatively flat dispersion slopes.
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Chapter 8
Conclusion

In Part 1 of this thesis | have presented results of investigations of self-similar
solutions for high intensity pulses propagating in optical fibres and optical
fibre amplifiers.

The experimental and numerical results of Chapters 5 and 6 have demon-
strated novel techniques for generating linearly chirped parabolic pulses which
are well known self-similar solutions to the NLSE with gain. The experimen-
tal investigations of Chapter 5 to generate high energy parabolic pulses in a
cascaded amplifier chain have shown that whilst it is indeed possible to gen-
erate output pulses in the early stages of the parabolic regime, the output en-
ergies are lower than expected. Numerical simulations have indicated that the
main limitation to the system performance is the small gain bandwidths of the
preamplifiers.

The numerical simulations presented in Chapter 6 then demonstrated that
parabolic pulse formation was possible in a range of normal dispersion un-
doped microstructured fibre Raman amplifiers. The success of these results
was attributed to the large gain bandwidth offered by the pure silica host and
the ability to tailor the dispersion profile of a microstructured fibre to provide
normal dispersion over a wide range of wavelengths. In addition, prelimi-
nary experimental results of parabolic pulse formation in a highly nonlinear
microstructured were also reported. Despite being limited by our low output
powers and our pulse diagnostic techniques, comparison with numerical sim-
ulations indicated that the pulses were nonetheless entering the early stages of
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the parabolic regime, thus confirming the numerical predictions.

Finally, Chapter 7 presented the results of theoretical calculations to describe
a new class of self-similar solutions which exist for the NLSE with distributed
coefficients. It was shown that this class encloses a set of solitary wave solu-
tions as well as a set of periodic “oscillatory’ solutions which describe ampli-
tude modulated light. The theoretical results have been verified numerically
and additional simulations were conducted to established the stability of the
solutions.

The work described in this part of the thesis has led to some important new
results regarding self-similar pulse solutions in nonlinear optics. Due to the
unique distortion-free propagation properties of self-similar pulses, it is ex-
pected that they will find wide ranging applications in the development of the
next generation of ultrashort pulse sources. It is hoped that the results pre-
sented in this part of the thesis can contribute to this development.
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Controlling Light Propagation in
Periodic Materials
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Chapter 9
Introduction

A considerable number of the major technological breakthroughs of our time
have evolved out of the establishment of a deeper understanding of the prop-
erties of materials. Importantly, the significance of knowing a material’s prop-
erties was a concept that was established even as far back as prehistoric times.
Indeed, the transition of our ancestors from the Stone age through to the Iron
age can be attributed to their increased recognition of the physical qualities of
natural materials. However, motivated by the desire for more elaborate tools,
eventually early engineers learned to do more than simply take what the Earth
provided in the raw form. By manipulating the properties of naturally occur-
ring materials it was quickly established that substances with even more de-
sirable properties could be produced, with one of the earliest examples being
bronze [68].

In the last century, our control over materials has become even more sophisti-
cated and today our lives are surrounded by a whole host of artificial materials
such as plastics, ceramics and metal alloys. In particular, more recently control
of the electrical and optical properties of such materials has led to important
revolutions in many fields such as semiconductor physics and optical telecom-
munications. Whilst some of these advancements have been associated with
the invention of complex structures such as band gap crystals that can prohibit
the propagation of light at certain frequencies [69], others have been as simple
as optical fibres which can guide and manipulate the propagation of light (as
described in Part 1 of this thesis).
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In this second part of this thesis | will describe investigations to control the
propagation of light in materials whose physical properties have been modu-
lated in some way. Such materials are commonly referred to as metamaterials.
In the investigations, two distinct types of modified materials will be consid-
ered which have both been shown to exhibit effects which strongly influence
electromagnetic fields. The first are the exotic negative refractive index materi-
als which have only recently been observed experimentally [70]. Such negative
index materials are currently generating much interest because they exhibit a
number of properties that differ considerably from those of positive index ma-
terials, and specifically for their ability to manipulate the speed of light. The
second are two dimensional electrically poled nonlinear crystals [71]. These
form a novel extension to the well known one dimensional photonic crystal
structures and in particular, provide an attractive opportunity to achieve phase
matching of multiple nonlinear processes. Despite the significant differences
between the two materials, all of the investigations presented in the following
chapters are focused towards the common theme of controlling and manipu-
lating the propagation of light in modulated crystal structures. Thus it is ex-
pected that they will benefit many areas of optical technologies including the
development of lasers, high speed computers and optical data storage devices.

9.1 Controlling the Speed of Light

It follows from the fundamental physical notion of causality and the theory of
special relativity that information cannot be passed with a velocity exceeding
that of light in a vacuum. However, it is well known that various velocities,
such as the phase velocity v, , can exceed c without violating special relativity
because they do not represent velocities of signals, or information. Despite
this, an enduring misconception is that the group velocity v, of a light pulse
cannot be faster than ¢, or equivalently negative, where the propagation is also
considered to be superluminal [72]. Thus, in 1968 when Veselago proposed
that a material with a negative refractive index will possess a negative group
velocity [73], this sparked much debate into the validity of his work which still
continues today [74, 75].

Due to the absence of naturally occurring negative index materials, until re-
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cently there was little research that could be conducted to settle these argu-
ments. However, in 1996 Pendry et al. proposed a simple periodic structure
that could be used to observe a negative dielectric permittivity [76] and this
was closely followed by subsequent work to construct a material with a nega-
tive magnetic permeability [77]. Consequently, it was not long before these re-
sults were combined to provide the first demonstration of a negative refractive
index material [70]. As well as providing the vital component for the verifica-
tion of Veselago’s predictions this demonstration aroused considerable interest
into the phenomena of negative refraction, and in particular, to the possibility
of manipulating the speed of light. Thus, to date, not only have there been
a number of demonstrations of superluminal light [78, 79], it has also been
shown that these materials can exhibit slow light which has important impli-
cations for the design of optical traps [80].

9.2 Harmonic Frequency Generation

Coherent short wavelength sources have a wide range of applications in many
areas of optical technology. In particular, such sources can increase the capac-
ity of optical storage devices and can be used to fabricate and inspect nanos-
tructures and high density integrated circuits [81]. Although the production of
semiconductor lasers which operate at blue, or shorter, wavelengths has been
achieved, this technology is still in the early stages of development [82]. An
alternative approach, which avoids the expensive development of new mate-
rials, is to employ well established existing “cheap” lasers which operate at
longer wavelengths and frequency double (or triple) their output radiation.
To this end, highly nonlinear materials such as lithium niobate (LiNbO3) and
potassium titanyl phosphate (KTP) have been the subject of much attention as
candidates for use in quasi-phase matched second harmonic generation (SHG)
devices.

Since the first observation of SHG by Franken et al. in 1961 [83], interest in this
field has grown considerably. As a result, much attention has been devoted to
the development of highly efficient nonlinear crystals and the enhancement of
harmonic processes. The primary limitation of efficient harmonic generation
in nonlinear crystals has always been the material dispersion, which causes
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the interacting fields to move out of phase. An important breakthrough in this
area thus came in 1962 when Giordmaine [84] and Maker et al. [85] demon-
strated that the efficiency of these processes could be dramatically improved
by using the birefringence of the crystal to match the relative phase velocities
of the propagating beams. However, later in the same year Armstrong et al.
proposed the concept of quasi-phase matching in which the fields are periodi-
cally brought back into phase by modifying the crystal structure, and it is this
technique that is most commonly employed today [86]. Although quasi-phase
matching was originally conceived for the purpose of one dimensional geome-
tries such as periodically poled lithium niobate (PPLN) [86, 87, 88], the concept
has been extended to one dimensional aperiodic structures [89] and more re-
cently, to two dimensional periodic patterns, with great success [71, 90].

9.3 OQutline for Part 2

Chapter 10 introduces the basic structure of a photonic crystal and presents
some of the theory used to describe the propagation of light in these crystals.
In particular, this will include a model to describe SHG in a nonlinear photonic
crystal.

In Chapter 11, numerical investigations of the properties of the guided modes
in negative refractive index waveguides are described. By calculating the prop-
agation characteristics of the guided modes a number of peculiar properties of
the solutions will be revealed.

Chapter 12 presents experimental measurements of SHG in a two dimensional
photonic crystal structure. To enhance the efficiency of the process a planar
waveguide geometry is employed in the investigations. The performance of
the waveguide is evaluated by determining the interaction properties of the
fundamental and second harmonic fields.

In Chapter 13 a new type of two dimensional quasi-crystal structure based on
a Penrose tiled pattern is investigated. The preliminary experiments involving
SHG have indicated the dense nature of the reciprocal lattice space so that
phase matching can occur almost continuously over a wide range of angles.
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Finally, in Chapter 14 | will present the conclusions to Part 2 of this thesis.
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Chapter 10

Controlling Light in Periodic
Materials

10.1 Introduction

As discussed in the previous chapter, the second part of this thesis investigates
the control and manipulation of light in modulated crystal structures. In order
to understand the physical aspects of the various processes, this chapter intro-
duces some of the basic properties of a crystalline structure and the equations
which describe them.

This chapter begins with an introduction to the concept of a photonic crystal,
on which the bulk of the investigations are based, and discusses the construc-
tion of such structures in one and two dimensions. After a brief description of
the mathematical formalism which defines the crystal lattice and its represen-
tation in reciprocal lattice (or wavevector) space, the linear and nonlinear ef-
fects which influence the evolution of a propagating field will be described. To
complement the discussion of these effects, the mathematical equations which
define the fields under certain special conditions will also be presented with
particular attention being paid to the phase matching considerations for fields
interacting in nonlinear dispersive materials. Finally, as the bulk of the in-
vestigations considered in this part of thesis will focus on second harmonic
generation (SHG) in nonlinear crystals, the development of a model to analyse
the evolution of the propagating fields will be described.
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10.2 Photonic Crystals

To understand how a material structure might be modified in order to manip-
ulate the propagation of light within it, it is useful to make an analogy with
electronic materials, such as ordinary semiconductor crystals. These crystals
form a periodic lattice where the basic building blocks are atoms or molecules.
Thus a semiconductor crystal will present a periodic potential to a propagat-
ing electron where the conduction properties will be dictated by the geometry
of the structure. In particular, due to Bragg-like diffraction from the atoms,
the lattice can introduce gaps into the energy spectrum of the electron so that
electrons with energies within these gaps are forbidden to propagate.

An optical analogy to this effect is the material structure offered by photonic
crystals, where the lattice is now constructed via a periodic modulation of a
material’s properties. Provided the modulation is sufficiently strong, scatter-
ing off the interfaces in a photonic crystal can produce many of the same phe-
nomena for photons as the atomic potential does for electrons. Significantly,
as photonic crystals are scalable to a wide range of dimensions these can be
constructed with millimeter periodicity for microwave control, or with micron
periodicity for infrared control. Photonic crystals can form the basis of a wide
range of devices from dielectric mirrors to waveguides and are thus currently
being exploited in many areas of optical technology [69].

10.2.1 One Dimensional Photonic Crystals

The simplest photonic crystal is a one dimensional Bragg grating structure of
the type shown in Fig. 10.1. This consists of alternating semi-infinite layers of
material with differing physical properties. In situations where the modulated
property is the dielectric constant, such crystals have found use as dielectric
mirrors and optical filters [1]. However, in this part of the thesis the majority
of the investigations will consider the periodic modulation of the nonlinear
coefficient, and in this arrangement these nonlinear photonic crystals can be
used to phase match SHG in dispersive nonlinear media [86].
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Figure 10.1: Sketch of a one dimensional photonic crystal.
10.2.2 Two Dimensional Photonic Crystals

A typical two dimensional photonic crystal is shown in Fig. 10.2. This is con-
structed based on a square lattice of columns where again the physical proper-
ties of the columns differ from that of the background media. These structures
are periodic in a plane constructed along two of its axes and are homogeneous
in the third. Thus the propagation effects observed in the z direction of a one
dimensional crystal can now occur for propagation over the entire = — y plane.

L/
e

ele
O

Figure 10.2: Sketch of a two dimensional photonic crystal. The right inset shows the
square lattice from above together with the unit cell (dashed line).

10.2.3 Quasi-Crystals

An interesting extension to the defined subset of periodic photonic crystals
described above are quasi-crystals. These structures have a quasi-periodic
translational order and can be designed in either one dimension (Fibonacci
sequences [91]) or two dimensions (Penrose tiles [92]). One dimensional quasi-
crystals are very similar to the structure shown in Fig. 10.1 but with layers of
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Figure 10.3: (a) A Penrose tile pattern that is constructed out of thick and thin rhombi.
(b) An example of a two dimensional quasi-crystal (cross section in the =z — y plane)
based on the structure in (a).

differing widths stacked aperiodically. However, in two dimensions the struc-
tures are usually constructed by placing a feature with a single basic shape
(such as a cylinder as used in Fig. 10.2) at the vertices of a quasi-crystalline
tiling pattern. An example of a two dimensional quasi-crystal based on a Pen-
rose tile pattern, constructed out of thick and thin rhombi, is shown in Fig. 10.3.
A significant feature of quasi-crystals is that they can possess higher, or even
forbidden, rotational symmetries than periodic crystals and this has important
consequences to their use in multiple harmonic generation processes, as will
be demonstrated in Chapter 13.

10.3 Reciprocal Lattice Space and the Brillouin Zone

The photonic structures illustrated in Figs. 10.1-10.3 were shown in real, or lat-
tice, space. However, an equally valid presentation of the crystal could have
also been obtained through their structure in reciprocal lattice space. As the
reciprocal lattice is the space inhabited by the wavevectors, it is this space that
will be considered when establishing the phase matching conditions of the
crystals in Chapters 12 and 13. The following analysis develops the mathemat-
ical representation of the reciprocal lattice vectors which define the reciprocal
space.

If a function f(r) is considered which is periodic on a lattice, then f(r) = f(r +
R) where the set of vectors R are the lattice vectors. Expanding f(r) in terms
of plane waves with various wave vectors q yields:

f(r)= / dqg(q)e™, (10.1)
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where g(q) is the coefficient of the plane wave. It follows that the requirement
f(r) = f(r+ R) implies:

fr+R) = / dqg(q)e et = / dqg(q)e'”, (10.2)

so that ¢9® = 1 or q- R = 27N, where N is an integer. Thus the vectors
which satisfy this condition are the reciprocal lattice vectors and these are usu-
ally designated by the letter G. Furthermore, as in general the analysis can be
restricted to consider a discrete number of reciprocal lattice vectors, the inte-
gration in Eq. (10.1) can be replaced by a weighted sum so that:

fx) =" fae'ST, (10.3)
G

where fg are the corresponding Fourier coefficients.

For a given set of lattice vectors R it is straight forward to calculate the recip-
rocal lattice vectors G. As every lattice vector can be expressed in terms of a
set of primitive lattice vectors a; and a, (which are the smallest vectors point-
ing from one lattice point to another), R can be written as: R = la; + mas,.
Likewise, the reciprocal lattice also has a set of primitive vectors b; so that:
G = I'b; + m'by. Thus the reciprocal lattice vectors can be calculated simply
by ensuring that they satisfy:

G R = (la, +may) - (I'by +m'by) = 27N, (10.4)

An important feature of the modes of a periodic structure is that the wavevec-
tors k and k+G represent the same mode. Because of this there is a redundancy
in the labelling of the wavevectors and thus attention can be restricted to a re-
duced zone within the reciprocal space in which you cannot get from one part
to another by simply adding any G. This zone is called the Brillouin zone [69].
A more visual description of the Brillouin zone is to imagine highlighting the

(@)

lai< (b) >12M¢ (c)

%

Figure 10.4: (a) Lattice space and (b) reciprocal space for a one dimensional photonic
crystal. (c) The corresponding Brillouin zone (shaded region).
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Figure 10.5: (a) Lattice space and (b) reciprocal space for a two dimensional photonic
crystal. (c) The corresponding Brillouin zone (shaded region).

volume around a lattice point in the reciprocal space which is closer to that lat-
tice point than any other. If the original lattice point is chosen to be the origin,
then the highlighted region is the Brillouin zone. Examples of the (a) lattice
space, (b) reciprocal space and (c) the corresponding Brillouin zone in one and
two dimensional photonic crystals are illustrated in Figs. 10.4 and 10.5, respec-
tively.

Unlike the periodic structures, the reciprocal lattice vectors of an aperiodic
quasi-crystal densely fill all reciprocal space. However, it is often useful to
choose a subset of basic reciprocal lattice vectors that correspond to the rel-
atively intense spots in the diffraction pattern. This is illustrated in Fig. 10.6
which shows (a) the two dimensional quasi-crystal lattice together with (b) the
corresponding diffraction pattern, where the radii of the spots are proportional
to the magnitude of the related Fourier coefficients. Importantly, the diffrac-
tion pattern highlights the self-similar nature of these quasi-crystals in that the
outer sets of reciprocal lattice vectors can be obtained by inflation of the inner
sets [93]. In addition, although quasi-crystals do not possess a Brillouin zone, it
is possible to construct an analogue called the pseudo-Jones zone which is de-
fined by the lines bisecting the basic reciprocal lattice vectors [94]. For the crys-

@ e O ] ©
;.o.o.:.:.:.o.o : :'::.: : —

Figure 10.6: (a) Lattice space and (b) the corresponding diffraction pattern showing
some of the larger Fourier coefficients for a two dimensional quasi-crystal. (c) The
corresponding shape of the pseudo-Jones zone.
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tal shown in Fig. 10.6(a), the corresponding shape of the pseudo-Jones zone is
a decagon as sketched in (c).

10.3.1 Rotational Symmetry and the Irreducible Brillouin Zone

In addition to translational symmetries, photonic crystals can also possess ro-
tational symmetries, as mentioned in Section 10.2.3. When there is rotational
symmetry in the lattice the frequency bands w (k) have additional redundan-
cies within the Brillouin zone. Thus it is not necessary to consider every k-
point within the zone and the smallest area for which all w (k) are not related
by symmetry is called the irreducible Brillouin zone. As an example, Fig. 10.7
shows the Brillouin zone for the simple square lattice of Fig. 10.5 where the
shaded triangular wedge is the irreducible Brillouin zone. Here the conven-
tional notation for the points defining the irreducible zone is used [69].

M

r X

Figure 10.7: Brillouin zone for a two dimensional photonic crystal based on a square
lattice where the shaded region is the irreducible zone.

10.4 Linear Effects in Crystals

In Section 3.4 the chromatic dispersion was described as the frequency depen-
dence of the refractive index. In particular the Sellmeier equation which de-
scribes the material dispersion of the propagation medium was introduced.
However, the exact form of this equation is in fact dependent on the nature of
the material and differs quite considerably for crystal structures. For example
this section considers the Sellmeier equation describing a congruently grown
lithium niobate crystal of the type employed in Chapters 12 and 13. Lithium
niobate is a uniaxial birefringent crystal and thus it is necessary to consider
both the ordinary refractive index n° (electric field polarised normal to the
crystal axis) and the extraordinary refractive index n° (electric field polarised
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along the crystal axis) [1]. Furthermore, when intense light is incident on these
crystals it can induce an optical change in the refractive index referred to as the
photorefractive effect [95]. Although in some applications the photorefractive
effect is welcome [38], in the investigations presented in this thesis it is not as
it degrades the beam quality. However, by heating the crystal to temperatures
above ~ 100 °C, the photorefractive effect becomes self-annealing for infrared
wavelengths and thus these deleterious effects can be avoided. However, this
temperature change means that it is also important to consider the tempera-
ture dependence of the refractive indices. With these considerations, the form
of the equation defining the refractive indices was previously found directly
from experimental measurements, by Edwards and Lawrence [96], to be:

‘ A AL+ Bif .
YNT) = 4| A 2 1) Bsf — At )\2 10.
n ()\7 ) \/ 1 + )\2 . (Aé + Béf)2 + 3f 4)\ ) ( 0 5)

where i = o, e corresponds to the ordinary and the extraordinary values, re-

spectively, XA is in microns and
f=(T—-245°C)(T +570.82°C), (10.6)

with 7" in degrees Celsius. The parameters A} and B (j = 1—4, k = 1—3) were
then calculated from fits to the experimental data and are given Table 10.1.

Ordinary Indices Extraordinary Indices
A9 =4.9048 | BY =2.2314x 1078 | AS =4.5820 | BS =5.2716 x 107%
A5 =0.11775 | BS = —2.9671 x 107® | AS = 0.09921 | B = —4.9143 x 1078
A3 =021802 | B =2.1429 x 10° | A5 =0.21090 | B§ =2.2971 x 1077
A$ =0.027153 A§ = 0.021940

Table 10.1: Physical parameters for calculation of the refractive index using Eq. (10.5).

With more recent attention being focused on quasi-phase matching processes
where both beams are propagated along the extraordinary axis (see Section 10.8),
it has been observed that Eq. (10.5) is not sufficiently accurate for predicting the
linear properties of a crystal at longer wavelengths and/or elevated tempera-
tures [97]. Owing to these observations, the equation for the extraordinary
refractive index has since been revised by Jundt so that it is now described
by [98]:

AS + BSf A+ Bsf
eAT — Ae Be 2 2 4 4
1) \/1+ A gy S e Cy T

— 48Nz, (10.7)
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Extraordinary Indices

A¢ = 5.35583 B¢ =4.629 x 107
AS = 0.100473 BS =3.862 x 1078
AS = 0.20692 BS = —0.89 x 1078
AS =100 BS =2.657 x 107
Ag = 11.34927

Ag = 1.5334 x 1072

Table 10.2: Physical parameters for calculation of the extraordinary refractive index
using Eq. (10.7).

where the parameters A’ and B, (j = 1 — 6, k = 1 — 4) are given in Table 10.2.
Importantly, at present it is this equation that is most commonly used for cal-
culating the refractive indices in lithium niobate.

While it is expected that there will also be a waveguide contribution to the
chromatic dispersion (as for the case of fibre geometries), as this is highly de-
pendent on the waveguide geometry it will not be discussed here.

10.5 Mathematical Description of Waveguides

In Chapter 9 it was briefly mentioned that a photonic crystal can be used as
a waveguiding device to manipulate the propagation of light. Indeed, an ex-
ample of this has already been demonstrated in Chapter 6 in the form of the
microstructured fibres. As discussed in Section 3.2, an optical waveguide con-
sists of a core in which the majority of the light is confined, surrounded by a
cladding. The most common waveguide geometries are optical fibres (as con-
sidered in Part 1 of this thesis), channel waveguides and planar waveguides.
Typically the refractive index is given by Eq. (3.1) and is higher in the core than
in the cladding so that light coupled into the waveguide is confined to the core
via total internal reflection. However, as Chapter 11 extends the definition of
the refractive index to consider negative index materials, the dielectric permit-
tivity and the magnetic permeability should now be expressed as:

g = &o&i,

K= [oHi; (10.8)
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where (¢ = 2, 1) in the core and cladding, respectively, and both ¢; and p; can
take on negative values. Thus it is necessary to redefine the refractive index as:

n = \/ep/eopo. (10.9)

Clearly, as i1 = ug for all nonmagnetic materials, in such cases this definition
simply reduces to Eqg. (3.1). The wavenumber of light in the medium is then
expressed as:

k' = w\/eu = wny/Eopig = kn, (10.10)

where & is the wavenumber in a vacuum,

k=w/c (10.11)

The search for guided mode solutions of a waveguide begin with Maxwell’s
equations for a dielectric medium [3]:!

. OB
E=-—"— 10.12
VxH= %—]t) +7J. (10.13)

In media which contain no free currents such as those considered in this thesis,
J can immediately be set to zero. Furthermore, as the formation of the guided
modes is determined by the linear properties of the medium, it follows that:

B = uH, (10.14)

D =¢E, (10.15)

so that Maxwell’s equations reduce to the form [99]:

. oH
E=—nu— 10.16
- OE
H=c—. 10.17
V x € T ( )
Defining the electric E and magnetic H fields as:
E(r,t) = E(r) e (@52, (10.18)

1t is important to note that in this part of the thesis tilde are used to denote fields that
include the full temporal dependence, as illustrated in Egs. (10.18) and (10.19).
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H(r,t) = H(r) e (@52 (10.19)

it is easy to see how Egs. (10.16) and (10.17) can be solved to obtain the mode
profiles of the waveguides. However, it is important to note that these equa-
tions do not determine the fields completely and must be solved in conjunction
with the boundary conditions of the respective problem.

Once Egs. (10.16) and (10.17) have been solved for a given mode profile, the
total power flowing in the direction of propagation through a surface S can be

p= / /S (E x H) -u,dzdy, (10.20)

where u, is the inward directed unit vector. Thus E x H represents the power

calculated via:

flow density and it is useful to define:
S=E x H, (10.22)

which is referred to as the Poynting vector.

10.6 Nonlinear Effects in Crystals

As discussed in Section 3.5, for intense electric fields the induced polarisation
P no longer depends linearly on the incident field E and the relation must be
extended to the more general expression [20]:

P = (x“’ ‘E+x? :E+ y®EEE +-- ) , (10.22)

where the nonlinear response is assumed to be instantaneous, and again x7) is
the (7 + 1) th rank susceptibility tensor. Although for fibres the second order
susceptibility x® vanishes due to the inversion symmetry of silica glass, this
is not the case for all crystal structures and thus it is now this term that gives
rise to the lowest order nonlinear effects. In particular, it is the x(?) term that is
responsible for second harmonic generation, whilst y® is responsible for third
harmonic generation.

If the initial electric field is of the form:

B (r,1) = %z [E (r) exp (—iwt) + c.c], (10.23)
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where the light is assumed to be polarised along the =z axis, then the second
term of Eq. (10.22) is:

P, (r,t) = eoxPE2 (r,t) = eox?,2 [E? (r) exp (2iwt) + c.c.] . (10.24)

RZZ

Thus if eox@E? is sufficiently large, then the fundamental field will generate
a second harmonic field. The scale of the nonlinear effects in a crystal are con-
trolled by the structure and the polarisation of the incident light. To quantify
the performance of a crystal to generate second harmonic frequencies, the non-
linear coefficients d,;, = XEJQ.,)C/Q can be introduced, where for SHG it is common
to use the reduced notation such that:

[ Bw ]
E; (w)
P, (2w) din dyp diz diyg dis dis B (o)
Py (QW) = 2¢g dor  doo d23 doy d25 d26 X N . (1025)
P, (2w) Ay dsy dss dsy dss d 2By () B (@)
z 31 32 d3z d3q d3s dze 2F, () E. (@)
2, (w) By (w)

It is clear from Eq. (10.25) that the sign of the nonlinear coefficients determines
the sense of the polarisation, whilst the size determines the overall efficiency n
of the process where:

n= 2 (10.26)

10.7 Wave Equation in Nonlinear Crystals

This section presents a brief derivation of the wave equation to describe the
propagation of light in a nonlinear optical medium. In particular, the consid-
erations will be extended to describe SHG, as it is this process on which the
experimental investigations of Chapters 12 and 13 are based.

The derivations begin with Maxwell’s equations as given by their form in
Egs. (10.12) and (10.13). Again with the assumption of a material containing
no free currents, so that J = 0, and B given by Eq. (10.14), the material is now
allowed to be nonlinear in the sense that D is related to E via:

D = ¢E + PN, (10.27)
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where PN depends nonlinearly on the strength of the electric field. Taking the
curl of Eq. (10.12) and substituting the right hand side of Eq. (10.13) for V x B
yields:

. 02 -
E+pu—D =0. 10.28
VxVxE-+ Fog ( )
Using Eq. (10.27) to eliminate D, this can be expressed in terms of the fields E
and PN" as:

~ 2 ~
VxVxE+ su%E = —u—PN, (10.29)

which is the most general form of the wave equation. However, in most cases
of interest Eq. (10.29) can be simplified using the vector relation

VXVXE:V<V~E>—V2E

as V - E is, in general, negligibly small. In such instances the wave equation

becomes: ) 9 2

V’E — eM@E =55 NL (10.30)
Eqg. (10.30) can now be extended to describe SHG in which two photons of
frequency w are converted to one of frequency 2w. For simplicity, the polar-
isation and the direction of the propagating fundamental beam are assumed
to be fixed so that a scalar relationship can be considered. Furthermore, with
the additional assumption that the fields are polarised along the z axis, the
tensor notation of the nonlinear susceptibility is dropped so that y? = Xiﬁl.

Expressing the total electric field within the nonlinear medium as,

E(r,t) = E, (r,t) + Eo, (r,1), (10.31)

it can be assumed that each frequency component obeys Eq. (10.30) so that:

. 9% - 0% -

V2E; — €itigaEi = a5 (10.32)

where j = w,2w. The expressions for PJNL are then obtained from Eq. (10.24)
as:

P = 2e0x P B, E, (10.33)
PYE = oD E2. (10.34)

For propagation in a conventional (positive index) medium, where ;1 = o and
n = \/e/eo [EQ. (3.1)], this yields the coupled SHG equations in their standard

form as: 2 52 ) o2
2 _ WO 2 Y (5 s
V2B, - =B = P o (BwEy) (10.35)
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ng, O 5 1 90

Vi, "% p 1
2 2 o2 02X ot?

E2. (10.36)

10.8 Phase Matching Harmonic Generation

As mentioned in Section 9.2, due to material dispersion, the nonlinear pro-
cesses discussed in the previous sections require that the interacting fields be
phase matched. To illustrate this, this section describes the physical consider-
ations of the SHG process in more detail.

Second harmonic generation is a three photon process where: w + w — 2w, SO
that the requirement of energy conservation is satisfied:

hw + hw = h (2w) . (10.37)
Similarly, conservation of momentum for the photons yields:
k, + ko = Koy, (10.38)

where k; (k; = 27n;/);) are the wavevectors, n; are the refractive indices, \;
are the wavelengths and ¢ = w, 2w for the fundamental and second harmonic
fields, respectively. Rewriting Eg. (10.38) in one dimension as,

21N, 2Ny,
2 = 10.39

it is clear that momentum is conserved if and only if n, = n,,. However,
because of the wavelength dispersion, in general n,, # ns, and the fundamen-
tal and second harmonic waves periodically move in and out of phase as they
propagate through the crystal. As aresult, the intensity of the second harmonic
wave also varies periodically and the period at which this occurs is twice the
coherence length [., where [87]:

s A
I = _ © 10.40
ka — ka 4 (ngw — nw) ( )

Thus after the waves have propagated one coherence length the energy of the
second harmonic starts to return to the fundamental. This is demonstrated in
Fig. 10.8 which shows the evolution of the second harmonic power where it
can be seen that P, = 0 at x = 2/, when there is no phase matching.
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Figure 10.8: Evolution of the second harmonic power for phase matched and non-
phase matched propagation.

The process of balancing the refractive indices at the different wavelengths is
what is referred to as phase matching. This was first demonstrated in negative
birefringent crystals by propagating the two beams at an angle to the optic
axis within the crystal such that the condition n2 = n5_ was satisfied [84, 85].
However, this technique is somewhat limited in that it is restricted to wave-
lengths where n? = n§ , and, because of the angular/polarisation restrictions,
it is often unable to access the largest nonlinear coefficient of the crystal [see
Eg. (10.25)] so that a smaller alternative coefficient may have to be employed,
thus reducing the nonlinear conversion efficiency [87]. For example, while the
largest nonlinear coefficient in lithium niobate is ds; = 31.5 pmV !, the largest
nonlinear coefficient that can be accessed by a birefringent phase matched pro-
cess is d3; = —4.52 pmV !, which is almost an order of magnitude smaller.

An alternative to birefringent phase matching is quasi-phase matching (QPM)
and it is this technique that is employed in the experiments described in Chap-
ters 12 and 13. Quasi-phase matching requires modification of the crystal struc-
ture by periodically reversing the spontaneous polarisation, which is equiva-
lent to reversing the sign of the nonlinear coefficient. This in turn rephases the
fundamental and generated second harmonic fields as they propagate through
the crystal so that they remain in phase. Because the nonlinear susceptibility
tensor x? is now periodic, it can be written as a Fourier series,

XD (1) = ke, (10.41)

where &, ,, are the Fourier coefficients corresponding to the reciprocal lattice
vectors G,, ,, [Eq. (10.3)]. The phase matching condition then becomes:

Ko, — 2k, = G- (10.42)
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Figure 10.9: Schematic diagram of SHG in PPLN showing the periodic domain struc-
ture and the phase matching condition (below). The input and output fields are verti-
cally polarised.

Importantly, it can be noted that the coupling strength of a phase matched
process using a particular G,, ,,, is proportional to the corresponding coefficient
Knm, and if k, ,, = 0 the interaction will not occur.

As a simple example, the one dimensional case of SHG in periodically poled
lithium niobate (PPLN) is considered, as illustrated in Fig. 10.9. A schematic of
the phase matching diagram, given below, shows that this process is collinear.
Quasi-phase matching this process requires GG; = 27/A where the grating pe-
riod A, poled along the optic axis, is given by [87]:

A=2l. = /\—‘” (10.43)

2 (n2w - nw)
To illustrate the success of this technique, the evolution of the second harmonic
power P, for poled (quasi-phase matched) and unpoled (non-phase matched)

lithium niobate is presented in Fig. 10.10, clearly showing the increase in the

Quasi—-phase matched

2w

Non-phase matched

1 1 1 1

0 2 4 6
Propagation Distance x (IC)

Figure 10.10: Evolution of the second harmonic power for quasi-phase matched and
non-phase matched propagation.
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efficiency for the quasi-phase matched process.

This example highlights the main attraction of using nonlinear photonic crys-
tals in that, once the defining condition G has been established, the lattice
structure can then be designed specifically to phase match the desired non-
linear interaction. In addition, by altering the shape of the poled regions the
relative ratios of the Fourier coefficients can be adjusted such that some non-
linear interactions are stronger than others, and this is particularly important
when one is considering using higher order reciprocal lattice vectors.

10.9 Modelling Second Harmonic Generation in Non-
linear Crystals

In this section, a numerical model to investigate SHG in nonlinear crystals
will be described. This work was motivated by the previous observations of
Broderick et al. that second harmonic generation could occur over a wide range
of angles in two dimensional periodically poled structures [90]. It was hoped
that this model would not only provide a means by which to compare the
experimental results, but that it would also aid in the design of new crystal
structures. The significant feature of this model is that, if it is to accurately
describe two dimensional crystals, any restrictions on the propagation angle of
the second harmonic beam must be avoided. Thus the following calculations
will not make use of the usual paraxial approximation which assumes that the
electric field varies slowly in the direction of propagation.

10.9.1 Preliminary Investigations

The initial approach to this problem was to consider the evolution of the fields
in the frequency domain so that the system could be described by the Fourier
transform of the coupled SHG equations (10.35) and (10.36) as:

I 1y, n [
V2E, (r,w) + = E, (r,w) = ?X@) (r) By, (r,w) £ (r,w), (10.44)
n%w (QW)Q = (QW)Q (2) -

X (r) B2 (r,w). (10.45)
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In this representation the total electric field is given by: E (r,w) = E,, (r,w) +
Es, (r,w), where F;(r,w) is the Fourier transform of the field £;(r, t) [Eq. (10.23)],
defined as:

By (r,0) = \/LQ_W /_ Z E; (r, 1) exp (iwt) dt. (10.46)
However, as for a particular process the frequencies of the electric fields are
fixed, the w dependence in Egs. (10.44) and (10.45) can be dropped. In addition,
to further simplify these preliminary investigations the analysis was based on
the undepleted pump approximation so that knowledge of the fundamental
field could be assumed over all space. Thus the investigations of the system
could be reduced to solving the single equation:

ngw (2("))2 n

oo (1) = 2@ () B2 (). (10.47)

V2E,, (r) + 2
In the formulation of the numerical problem, a two dimensional structure
based on the coordinate system of Fig. 10.2 is considered. Thus it could be as-
sumed that the fields extended infinitely in the = direction so that: E;(x,y, z) =
Ei(x,y) and V2 = 9% /022 4+ 0% /0y>. By discretising the resulting fields over the
x — y plane, they could then be represented in the form of an M x N matrix
where M is the x dimension and N is the y dimension. Solutions to equations
of the form of Eq. (10.47) can usually be found by employing either finite differ-
ence or finite element techniques. However, as both these methods require the
boundary conditions to be fixed in advance, to avoid placing any restrictions
on the outgoing second harmonic field an absorbing layer was placed on the
end of the grid and the field at the output was set to be: E,, (L., y) = 0. In addi-
tion, after ensuring that the input Gaussian fundamental beam was sufficiently
contained within the y direction, the fields at the y axis boundaries could also
be set as: Ey, (z,0) = Ey, (r,L,) = 0. A schematic diagram of the numerical
construction which illustrates these conditions is shown in Fig. 10.11.

Unfortunately, none of the solutions to Eq. (10.47) obtained via either of these
methods were found to be stable as they all depended strongly on the choice
of the grid and system parameters.? Although the observed instabilities were
initially attributed to an inadequate numerical technique, it has since been es-
tablished that the problem in fact lies in the form of Eq. (10.47) itself. To un-

2These numerical investigations were conducted with the help of Dr K. Thomas from the
department of Electronics and Computer Science (ECS).
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Figure 10.11: Schematic diagram showing the construction of the grid used to numer-
ically model interactions in a two dimensional nonlinear crystal.

derstand why the solutions do not converge, it is useful to consider the finite
difference representation and write the resulting system of linear equations in
the conventional matrix form:

Ax = b, (10.48)

where A is an N’ x N’ matrix, b is a vector of the given data and x is the
vector of the N unknown field values. As for a two dimensional system the
matrix describing the field must be unwrapped into a single column vector,
for the purposes of this demonstration, a reduced problem in one dimension
is considered so that: E;(z,y) = Ei(z), V> = 9*/0z*> and N’ = M. Eq. (10.47)
can then be rewritten in the form:

1 ~
ﬁ |:E2w

2
_ (2w) [X(2) 2

— 2 Esy, N 2

+ EQw

:| + 042 ng
1

m} . (10.49)

m+1 m—

where o2 = n3_ (2w)® /¢, h is the size of the z grid and the difference formula
refers to the grid point = = mh. It follows from Eq. (10.49) that:

-2 1
= +a? 7z 0 0 0
1 -2 2 1
m h2 +O€ ﬁ 0
1 -2 2 1
y 0 oo T g
1 =2

The condition for the convergence of the system given by Eq. (10.48) is that the
matrix A is strictly diagonally dominant, in that for each row the magnitude
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of the diagonal element must be larger than the sum of the moduli of the off-
diagonal elements [100],

Ayl > A, VL (10.50)
m=#l

Thus as o? > 0, it is clear that for this problem the condition is not satisfied
and the solutions will not converge.

10.9.2 Finite Difference Model for SHG

Following the results of the preliminary investigations, the next step was to
consider a revised problem where the fields include the full time dependence.
Although this modified problem now involves an additional variable, the in-
corporation of the time dependence should force the stability of the solutions
[101]. Owing to the inclusion of the extra temporal dimension, the investi-
gations in this section will be restricted to problems with only one spatial di-
mension. However, a brief discussion on the possible extension to two spatial
dimensions will be included as a final remark.

Solutions in One Dimension

Again the investigations begin by considering the case of an undepleted pump
so that in one spatial dimension the system is simply described by Eq. (10.36)
as:

P 2 o . Ly P,

With the fields now discretised in the sense of = and ¢, so that they can be
represented as an M x N matrix where M is the z dimension and N is the ¢
dimension, the explicit form of the finite difference representation of Eq. (10.51)
is written as [102]:

By ‘Zjl = 2 (1 —P2> B, I+ [EQw s + B, ’:lnfl]

2 2 772
m n3, ot?

, m,n € Z. (10.52)

Here p = kc/hna,, h and k are the grid sizes in the distance and time coordi-
nates, respectively, and the difference formula refers to the grid point x = mh,
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t = nk. As the determination of the field at ¢t = (n + 1)k requires that the fields
at the two previous time steps are known, to further simplify the problem,
propagation of the fundamental field is started well before the front face of the
crystal so that the first two temporal second harmonic fields can be set to zero.
In addition, the time of the propagation is restricted so that neither of the fields
reach the end of the crystal and thus: £, (L,,t) = 0 and E,,, (L,,t) = 0.

In order to test the solutions to Eq. (10.52), the first step is to consider a per-
fectly phase matched system so that: n,, = n,, = n and the nonlinear suscep-
tibility is a constant: \? (x) = x(?(0). In this instance, theory predicts that for
a continuous wave (CW) pump beam the evolution of the second harmonic

power is given by [87]:
2202 P?
Ry

where A is the mode area and

(10.53)

deff = K'n,mdija (1054)

is the effective nonlinear coefficient. Fig. 10.12 shows the evolution of the
guasi-CW fundamental field (top) and the generated second harmonic field
(bottom) for two snap shots in time, where (a) t = 3ps and (b) ¢t = 6 ps, for:
n = 2.14236, A = 1.536 um and y® = 33 x 10~% yumV~'. Comparing the second
harmonic fields with the predictions of Eq. (10.53) (dashed curve) clearly, in the
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=
3 05 E 05} 4
o
0 1 0 !
T 7 T /
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Figure 10.12: Evolution of the fundamental field (top) and the second harmonic field
(bottom) for the case of perfect phase matching and assuming no pump depletion.
The panels illustrate two snap shots in time where (a) ¢t = 3ps and (b) ¢t = 6 ps, and the
dashed curves are the theoretical prediction for the evolution of Ps,, from Eq. (10.53).
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first half of the crystal where the field has become essentially CW, the agree-
ment is excellent. The slight deviation in the latter stages of the crystal [see
Fig. 10.12(b)] can be attributed to the initial ramping up of the fundamental
field.

Once satisfied that the program was generating the second harmonic field cor-
rectly, the next step was to consider the case where ny,, # n,, so that a periodic
x? (z) was required to quasi-phase match the process. Fig. 10.13(a) shows
the evolution of the second harmonic field, at ¢ = 6 ps, generated from the
same fundamental field as shown in Fig. 10.12(b), but now with: n,, = 2.14236,
ng, = 2.18450, A = 1.536 pm and a nonlinear susceptibility with a magnitude:
X (x)| = 33 x 107 umV " and period: A = 18.22 um [Eq. (10.43)]. On com-
paring the evolution of the second harmonic with the theoretical prediction
calculated for the previous case of perfect phase matching (see Fig. 10.12(b) -
dashed curve), it can be seen that, as expected, the quasi-phase matched power
grows at a slower rate. However, in this calculation it has been assumed that
the same nonlinear coefficient is available for use in both cases. In lithium nio-
bate crystals this is in fact not the case and, whilst the quasi-phase matched
process uses the largest nonlinear coefficient ds3, the perfect phase matched
case uses ds; ~ ds3/7. The efficiency of a quasi-phase matched process relative
to perfect phase matching can thus be calculated as (ds3/d3;)*(2/7)? ~ 20. Ac-
counting for this correction yields the dotted curve, also in Fig. 10.13(a), which
is in excellent agreement with the SHG evolution in the first half of the crys-
tal. In addition, the close up of the initial stages of the evolution in the crystal

0.6} T T LI T 7] 3 T T T
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Figure 10.13: (a) Evolution of the second harmonic field for the case of quasi-phase
matching together with the theoretical prediction from Eq. (10.53) for perfect phase
matching (dashed curve) and the corrected predictions for quasi-phase matching (dot-
ted curve). (b) Close up of the second harmonic evolution showing the periodic nature
of the generation.
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shown in Fig. 10.13(b) confirms that the second harmonic field is indeed be-
ing generated at the correct period, which provides further verification of the
accuracy of the model.

Up to this point the analysis has been restricted to solving systems where the
effects of pump depletion can be neglected [Egs. (10.47) and (10.51)]. Although,
because of its simplicity, it is this approach that is typically employed in the-
oretical studies of SHG, it soon breaks down in the limits of high conversion
efficiencies. Thus ultimately the coupled equations need to be considered to
describe the evolution of both the second harmonic and the fundamental field
within the crystal. Rewriting Egs. (10.35) and (10.36) in one spatial dimension
yields:

82
ot?

o2 n3, 0 1
e 2E2w(x t)—%@ng(x t) = CX()( T) ==
2 n? & 5

0 -~ 0 2

- _w 2,2 *

By (a8) = s B (0,t) = 5P (1) 5 | Ba (2.8) ES (0,1)] . (10.56)
The explicit forms of the finite difference representations of Eqgs. (10.55) and
(10.56) at z = mh and t = nk are [102]:

[E (z, t)] S (1055)

B I3 = 20— ) B [y + 07 [ B [y + B | = B )

1 ~ - -
— x| B2 T 2B+ B (1057)
Mo
E. M = 2 (1 —7“2) B Iyt | B [y + B [y = B I3
- [E By M = 2By B "+ By B \:;1},
m,n €7, (10.58)

where p = kc/hnsy, and r = kc/hn,,. The significant feature of considering the
effects of pump depletion is that, unlike Eqg. (10.52), Egs. (10.57) and (10.58)
involve undetermined source terms in the ¢t = (n + 1)k step. Thus, in order
to solve these equations an iterative (predictor-corrector) method is employed
where the fields at the earlier time step ¢ = nk are used as the initial guess of
the fields at the following step. This procedure is then executed repeatedly,
updating the guess of the fields at ¢ = (n + 1)k at each step, until the algorithm
converges.

Again, to test the solutions to Eqgs. (10.57) and (10.57) the first step is to consider
the case of perfect phase matching and set: ny, = n,, = 2.14236, A = 1.536 um
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and y® = 33 x 1079 umV~". Fig. 10.14 plots the evolution of both the quasi-
CW fundamental field (top) and the second harmonic field (bottom) inside the
crystal for two snap shots in time where (a) t = 3 psand (b) ¢t = 6 ps. From these
itis clear that by comparing the second harmonic field with the theoretical pre-
dictions of Eq. (10.53), the fundamental power has been sufficiently reduced to
slow down the rate of generation of the second harmonic. Although the re-
duction in this rate is quite large, this can be attributed to the effects being
exaggerated by the initial ramping up of the fundamental field which is sub-
stantiated by the change in the shape of the leading edge of the beams from
Fig. 10.12 to Fig. 10.14. As a means of verifying the accuracy of this model, the
evolution of the energy has been calculated showing that, at any given time,
the fields satisfy the requirement of energy conservation [3]:

o, [ =~ Moy [~
Uit = / Ldz + / Lyde = 22 / B, [2de + 22 / By ?dz,  (10.59)
Z Z

where Z, = 377 is the vacuum impedance and the total energy U,.; can be
calculated from the known input field.
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Figure 10.14: Evolution of the fundamental field (top) and the second harmonic field
(bottom) for the case of perfect phase matching and including the effects of pump
depletion. The panels illustrate two snap shots in time where (a) t = 3ps and (b)
t = 6 ps, and the dashed curves are the theoretical prediction from Eq. (10.53) for the
case of perfect phase matching and no pump depletion.

Finally, this model is used to investigate a quasi-phase matched second har-
monic process where the fundamental input is pulsed. To this end, the injec-
tion of a 145 pJ, 180 fs (FWHM) Gaussian fundamental pulse at A = 2 ym into
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a PPLN crystal is simulated, with: n,, = 2.12988, ny, = 2.16406, |x? (z)| =
33 x 1079 umV~1, A = 29.2521 pm and L = 400 um. It is worth noting that for
a Gaussian input pulse, Eq. (10.51) predicts that the second harmonic pulse
will also have a Gaussian profile with a FWHM width AT = ATY /\/2. The
output second harmonic pulse is shown in Fig. 10.15 and this has an energy of
9.4 pJ and a width of 128 fs (FWHM). For comparison, the circles show a Gaus-
sian fit to the intensity profile. The good agreement between the simulated
pulse and the fit is supported by calculation of the ratio: AT /ATy = 0.711,
which is close to the predicted value of ~ 0.707. Although the conversion ef-
ficiency of this process appears quite low, this can be attributed to the phase
mismatch due to the broad bandwidth associated with the short input funda-
mental pulse [103]. Thus these results can be expected to be a valid represen-
tation of SHG with a pulsed fundamental beam.
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Figure 10.15: The output pulse from a quasi-phase matched SHG process with a
pulsed fundamental beam, together with a Gaussian fit.

Comment on Solutions in Two Dimensions

As discussed earlier, the primary motivation for developing this model was to
investigate harmonic generation in two dimensional nonlinear crystals. How-
ever, due to the resolution required to ensure that the phase of the second har-
monic field is generated correctly, and thus that phase matching occurs, even
in one dimension this problem quickly approaches the limits of the memory
size of typical desktop computers.® Thus in order to consider two dimensional

31t is for this reason that the crystal lengths have been restricted to 1 mm in the simulations
of Figs. 10.12 and 10.13.
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problems, access to a computational device with a much larger memory capac-
ity will need to be obtained.
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Chapter 11

1D Negative Refractive Index
Materials

11.1 Introduction

In this chapter the properties of the guided modes in one dimensional negative
refractive index waveguides are investigated. This analysis was motivated by
previous calculations performed by Shadrivov et al. for negative index planar
waveguides [80]. The chapter begins with a discussion of negative refractive
index materials, before describing existing fabrication techniques. By calculat-
ing possible guided mode solutions of both channel waveguides and optical
fibres, a number of peculiar properties of negative index core waveguides will
be revealed. Particular attention is paid to the manipulation of the velocities
of the propagating modes.

11.2 Negative Refractive Index Materials

Negative index materials offer a unique possibility to extend the experimental
domain and investigate novel physical phenomena. Such materials, which
possess simultaneously negative values of the dielectric permittivity ¢ and
magnetic permeability u, were initially investigated theoretically by Veselago
in 1968 where he concluded that they would have dramatically different prop-
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agation characteristics to conventional materials [73]. In particular, these neg-
ative index materials can exhibit extraordinary properties such as negative re-
fraction, antiparallel group and phase velocities (backwards waves) and nega-
tive energy fluxes (radiation tension). Despite the physical significance of his
analysis, the results appeared to be of limited practical application due to the
absence of naturally occurring negative index materials. However, motivated
by earlier investigations [76, 77], in 2000 the first negative index material was
demonstrated by Smith et al. in the form of a composite material consisting of
periodic regions of negative ¢ and negative . [70].

To date, the only experimental investigations of negative refraction phenom-
ena have been reported in the microwave regime where the fabrication of such
composite materials is possible [70, 104]. These experiments have confirmed
that the electromagnetic waves behave as predicted by the theory. It is, how-
ever, unlikely that these composite materials will scale to optical frequencies
and instead photonic crystals have often been suggested as an alternative to
extend the effects of negative refraction into the optical regime [105]. Indeed,
in 2000 Notomi performed a detailed theoretical and numerical investigation
of light propagation in photonic crystals and showed that as the effective re-
fractive index is determined by the photonic band structure, it can in fact be
less than unity or even negative [106]. Although these photonic crystals may
have positive € and i throughout, they have nonetheless been shown to exhibit
similar anomalous light behavior to the composite negative £ and ;. materi-
als [107]. Recently a dielectric photonic crystal based on an array of aluminum
rods in air was shown to exhibit negative refraction [108] and despite the fact
that this experiment was still conducted in the microwave regime, by using
electrical poling techniques [109] it should be possible to fabricate more com-
plex structures that may scale to the optical regime.

11.2.1 Fabrication

In the microwave regime, a negative refractive index material can be fabricated
by constructing a periodic array of interspaced regions of negative permittivity
e and permeability ;.. The concept of a negative ¢ material is well established
in the context of plasmons [110]. Here the ideal dielectric response of a plasma
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Is given by:

2
w? .
g (w)=1- -2, (11.1)

wQ

where w, ; is the electronic plasma frequency and again (z = 2, 1) in the core
and cladding, respectively. Clearly, when w < w,;, then ¢, takes on negative
values. To date, the most common plasmon structure employed in negative ¢
experiments consists of very thin metallic wires arranged in a periodic lattice
such as a simple cubic lattice shown in Fig. 11.1. Significantly, as the plasma
frequency depends on the width and length of the wires, these structures can
be tailored to exhibit w, ; at microwave or lower frequencies [76].

=
1 [ =

Figure 11.1: Schematic of a material structure which can exhibit a negative ¢ at mi-
crowave frequencies. The periodic array is composed of thin metallic wires arranged
in a simple cubic lattice.

—>
a

In contrast to the negative ¢ materials which have long been known to occur in
both gaseous and solid state plasmas, until recently there were no known neg-
ative © materials. However, in 1999 Pendry et al. [77] demonstrated a structure
whose properties mimicked those of a magnetic plasma so that they exhib-
ited effective permeabilities which where not accessible in naturally occurring
materials. This structure consisted of a sequence of flat split ring disks com-
prising of two thin sheets of metal, as illustrated in Fig. 11.2. Analogous to the
electronic plasma, the magnetic response of ;. can be expressed as:

Fuw?

pi(w) =1—= ———, (11.2)
w? — wi;

where wy ; is the magnetic resonance frequency and F' is a constant dependent
on the material structure. Significantly, it was a combination of this split ring
lattice with the wire lattice of Fig. 11.1 which led to the first demonstration of a
composite medium with simultaneously negative ¢ and p by Smith et al. [70].
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Figure 11.2: Schematic of a material structure which can exhibit a negative ; at mi-
crowave frequencies. Each split ring is comprised of two thin metal sheets and is
stacked in a periodic structure as shown.

As mentioned previously, although it is possible to modulate the optical prop-
erties of a crystal periodically by means of the electronic poling technique,! to
date such photonic crystals have only been shown to have an effective negative
refractive index. However, as the techniques involved in the fabrication pro-
cesses are improved, it can be expected that this technology could be combined
with that of the composite materials to obtain negative ¢ negative . materials
in the optical wavelength regime.

11.3 Channel Waveguides

In this section, the guided mode solutions for a channel waveguide with a neg-
ative index (negative ¢ and p) core are calculated. By investigating the prop-
erties of the modes, it will be shown that these differ considerably from the
guided modes of a conventional positive index waveguide. Typical features
of these waveguides include the absence of the fundamental mode, possible
double degeneracy of modes and backwards propagating waves with nega-
tive energy flux.

IThis will be discussed in more detail in Chapter 12.
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11.3.1 Guided Mode Solutions

Similar to the geometry of an optical fibre [Section 3.2], a channel waveguide
consists of a square (or rectangular) core surrounded by a cladding which dif-
fers in its refractive index. The calculations presented here consider a symmet-
ric channel waveguide with the geometry and parameters given in Fig. 11.3.
The dielectric permittivity and the magnetic permeability in the cladding (i =
1) and the core (i = 2) are related to their vacuum values via Eq. (10.8). In the
analysis, the cladding is assumed to have a positive index with both ¢; and i,
positive, and the core is set to have ¢, and 5 negative. The guided modes will
be stationary solutions to Maxwell’s equations of the form,

E (2,y, 2, t)=E(x,y) e i(wt=p2), (11.3)

H (z,y,21) = H(z,y)e (“=5) (11.4)

where w is the angular frequency of the field, ;3 is the propagation constant and
E (z,y) and H (z,y) are the spatially localised transverse mode profiles of the
electric and magnetic fields, respectively.
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Figure 11.3; Channel waveguide geometry and parameters.

The analysis of the system given in Fig. 11.3 follows Marcatili’s method for two
dimensional optical waveguides [111]. Although more complicated methods
allow for a more rigorous description of the mode properties (e.g., Kumar’s
method [99]), this method should nevertheless be sufficient to obtain a qual-
itative understanding of the mode characteristics. The electric field is chosen
to be polarised in the z direction (i.e., the £, modes), with E, and H, as the
principal field components. Here p and ¢ are integers which correspond to the
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number of peaks of the optical power in the = and y directions, respectively.
Substituting Egs. (11.3) and (11.4) into Maxwell’s equations [Eqgs. (10.16) and
(10.17)] it follows that the wave equation in this representation is:
0*H, n 0*H,
ox? oy?

+ (k*eipi — B) Hy = 0, (11.5)

and the remaining field representations are related to H, via,

H, =0
g —iom,
B oy
W o fg 1 02Hy
E, = H
5 y+w€05iﬁ Or?
1 0°H
E, = L oH,
weB 0xdy
—i0H,

Marcatili’s method is based on the assumption that the electric and magnetic
fields are confined to the core so that they decay exponentially in the cladding
and are negligible in the shaded regions of Fig. 11.3. In addition, since the
waveguide shown in this figure is symmetric with respect to the = and y axes,
the analysis can be restricted to only consider regions (1)—(3). With these con-
siderations, the electric field distributions in the three regions can be expressed
as:

Acos (kyx — ¢) cos (kyy — ) region (1)
H,= ¢ Acos(k,L — ¢)e ==L cos (k,y — 1) region (2) (11.7)
Acos (kyx — ¢) e WL cos (k,L — 1)) region (3),

where the constant A is related to the power carried by the mode [Eq. (10.20)].
Here k,, k,, 7, and v, are related by:

—kZ = ki + KPeop — 57 =0 region (1)
Vo — k4 ke — 2 =0 region (2) (11.8)
—k2 ;) + ke — 2 =0 region (3),

and the optical phases ¢ and ¢ are,

¢=(p— 11) (11.9)

v=1(q¢-1)
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Applying the boundary condition that the field components E, and H. should
be continuous at x = L and y = L, respectively, the following dispersion rela-
tions are obtained:

&1 ™
L=%1L L—(p—1)= 11.1
%l = ZhLtan (kL = (p=1)5). (11.10)
L = kyLtan (kL = (g 1)%) . (11.11)

Rearranging Egs. (11.8) so that v, and ~, are expressed in terms of ¢, x and the
transverse wavenumbers, k, and k,, yields:

2
w
V= — (eap2 — 1) — k2, (11.12)
2 w2 2
Y= 2 (e2p2 — €1p11) — k- (11.13)

The propagation constant 3 can then be calculated from,

2

w
B = ok — (k2 +K2). (11.14)

The dispersion relations of Eqgs. (11.10) and (11.11) can be solved together with
Egs. (11.12) and (11.13) using standard graphical techniques (see Ref. [99]). Pre-
vious analysis of negative index planar waveguides has shown that it is pos-
sible to obtain solutions where the transverse wavenumber ik becomes purely
imaginary [80]. These “slow wave” solutions occur when [ exceeds a critical
value and have been likened to surface waves in metal films [112]. Thus the pa-
rameter planes (k, L, v, L) and (k,L,v,L) can be extended to include imaginary
values of k£, and &, by defining: ~, = ik, and x, = ik,. Fig. 11.4 shows typical
solutions for the = and y components of the field with: ¢, = 0.8, y; = 0.41,
gy = —2.3, up = —2.2 and w/27r = 4.4GHz.?2 The solid lines are the right
hand sides of Egs. (11.10) and (11.11) and the dashed lines are obtained from
the right hand sides of Eqgs. (11.12) and (11.13). Here the 3 dashed lines cor-
respond to waveguides with the widths: (1) L = 0.1c¢m, (2) L = 0.4cm and
(3) L = 1.4 cm.

The points of intersection indicate the existence of guided modes. From these
intersections, six different solutions can be constructed and, to illustrate this,
examples of typical mode profiles can be seen in Fig. 11.5. The possible Hj,

2These parameters where chosen based on realistic values of wp,i, wo,; and £ [70, 80].
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2 Y, L

Figure 11.4: Typical solutions for the x (top) and y (bottom) components of the guided
modes of a negative index channel waveguide. The solid lines are the right hand sides
of Egs. (11.10) and (11.11) and the dashed lines are obtained from the right hand sides
of Egs. (11.12) and (11.13).

modes are plotted in the top row where the (a, A) mode has an imaginary
k. but real k, and the (b, B) mode has both %, and k, real. The middle row
shows the strongly (c, I') and weakly (d, I') localised H;, modes. Similarly, the
bottom row shows the strongly (c, A) and weakly (d, A) localised /3, modes,
although in this instance the weakly localised mode has an imaginary (5 so that
it decays exponentially as it propagates in z. It is worth noting that a similar
analysis for the £ mode (electric field polarised in the y direction) leads to
H, solutions with forms such as those shown in Fig. 11.4, but with the = and
y components interchanged. In addition, as the solutions in Fig. 11.4 are still
functions of L, it is clear that similar solutions will be found for rectangular
guides.

Figs. 11.4 and 11.5 illustrate some of the important properties of negative index
channel waveguides. Firstly, the guided modes can only be supported in high-
index waveguides (i.e., oo > e11). This is in contrast to negative index
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-6} (b,B)

0 0
y (cm) y (cm)

Figure 11.5: Examples of the mode profiles for the solutions in Fig. 11.4. Top row:
Hy | solutions corresponding to intersections (a, A) and (b, B). Middle row: H so-
lutions corresponding to intersections (c,I') and (d,T'). Bottom row: H}, solutions
corresponding to intersections (c, A) and (d, A). 7

slab waveguides [80] and is a consequence of the dispersion relations of the
y component of the field. In addition, as the dispersion relations do not allow
for an imaginary k,, only the z component of the field can exhibit surface wave
effects. Secondly, however, in accordance with the observations in negative
index planar waveguides it is again found that the conventional hierarchy of
the fast modes disappears. In particular, (i) for p = 0 the right hand side of
Eg. (11.10) is negative so that the fundamental H}, mode does not exist; (ii)
for a given width L, solutions of -, L associated with the first order 13, mode
only exist for a particular range of w greater than a critical value; (iii) for modes
greater than Hj,, as the v, L solutions in Fig. 11.4 decrease monotonically with
k. L at different rates, there are two possible solutions to Eg. (11.10) so that two
modes with the same number of nodes (i.e., degenerate modes) can coexist in a
waveguide, as illustrated by the solution pairs: (c,I'), (d,T") and (¢, A), (d, A).
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11.3.2 Propagation Characteristics of the Guided Modes

To investigate the frequency dispersion of the guided waves it is necessary to
consider the frequency dependence of both ¢; and y; in Eq. (11.14). Although
the specific form of the refractive index of a photonic crystal depends of the
band structure [106], in this analysis the forms for the composite negative in-
dex material, as given in Egs. (11.1) and (11.2), will be used. Based on earlier
analysis the defining parameters are chosen to be: w,, »/27 = 10 GHz, wy»/27 =
4 GHz and F' = 0.56 [70, 80]. In this case, the region of simultaneously neg-
ative £, and p, ranges from 4 GHz to 6 GHz. The values of w, /27 = 2GHz
and wy1/2m = 1 GHz were then chosen so that ¢, and x; are always positive
and e90 > 11 In this range. Examples of dispersion curves for the modes
of Fig. 11.5 are plotted in the top curves of Fig. 11.6. These curves correspond
to the solutions: (a) (a,A) with L = 0.1cm, (b) (b, B) with L = 1cm (i.e., the
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Figure 11.6: Top: propagation constants 3, middle: group velocities v, and bottom:
group velocity dispersion parameters (5. These solutions correspond to the modes: (a)
(a,A), (b) (b,B), and (c) (¢,I") and (d,T") of Fig. 11.5 where in (c) the solid and dashed
lines correspond to the strongly (¢, T") and weakly (d,T") localised modes, respectively.
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two Hj3, solutions), and (c) (c,I') and (d, I') with L = 2cm (i.e., the degenerate
H3, solutions) where the solid line corresponds to the strongly localised mode
and the dashed line is the weakly localised mode. From this it is seen that of
the two solutions offered by each designated mode type, one has a dispersion
curve with a positive slope and the other a negative slope. Significantly, as
v, = 1/p = dw/dp [Eq. (3.17)], this implies that the sign of the group veloc-
ities will also be different and thus each mode can support both forward and
backwards propagating waves [113]. This is confirmed in the middle curves of
Fig. 11.6 where v, is plotted explicitly for each of the modes. For the case of the
Hj , modes it is the non-surface wave which has a negative v,, and for the H3,
modes it is the tightly confined mode. In addition, it can also be seen that for
the case of the degenerate modes, as the frequency is increased the two solu-
tions for 3 converge until they reach a cutoff frequency v, associated with their
intersection.® As a result, this convergence of the two solutions means that as
the frequency approaches v., v, approaches zero so that the propagating mode
will be slowed considerably. Thus this waveguide offers a convenient method
for generating “fast” light (v, < 0), “slow” light (v, < c) and perhaps to even
trap light (v, = 0). The possibility to slow or trap light has many potential
applications such as optical data storage, optical memories and quantum com-
puting. Furthermore, as the light-matter interaction is enhanced for low vy,
slow light can be used to observe nonlinear processes such as harmonic gener-
ation and four-wave mixing in even weakly nonlinear materials [114].

The group velocity dispersion (GVD) of the guided modes as calculated via:
By = d?3/dw? [EQ. (3.16)] is then plotted for each of the modes in the bottom
curves of Fig. 11.6. In all cases the GVD parameter is quite large, particu-
larly for the degenerate modes where the frequency approaches v, (the region
of low v,), and can be either anomalous [(a, A) and (c,I')] or normal [(b, B)
and (d,I")]. Such large dispersion is typical behavior of the GVD at the band
edges of photonic crystals [115] and for these particular modes, the dispersion
can be around 9 orders of magnitude larger than that of conventional mate-
rials such as silica fibres (20 ps*’km™"'). This makes these waveguides idea for
dispersion management and particularly for use in integrated circuits where
short device lengths are favoured. In addition, by exploiting the reduced non-

3Although the strongly localised mode exists for frequencies below those plotted here, the
weakly localised mode does not as the right hand side of Eq. (11.10) crosses the = axis.
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linear threshold/large GVD combination it should be possible to investigate
nonlinear effects such as optical soliton formation (see Section 3.8.1).

The energy flux of the guided (degenerate) modes in Fig. 11.6(c), which is char-
acterised by the z component of the Poynting vector [Eq. (10.21)], has also been
calculated. Since for backwards waves the Poynting vector and the wave-
vector point in opposite directions, it is expected that the energy flux of the
modes will also have opposite signs [73]. The total power flux through the
core and cladding regions of the waveguide are calculated as,

Pcore == // Szd:[:dy, Pclad = // Szdl'dy (1115)
core clad

For both modes the power flux inside the core is opposite to that in the cladding
(see middle row of Fig. 11.5). However, on calculating the total normalised en-

ergy flux defined as:

Pcore + Pclad
pP= , 11.16
‘Pcore‘+|Pclad‘ ( )

Fig. 11.7 shows that total energy flows in a positive direction for the weakly

localised mode and a negative direction for the strongly localised mode, in
agreement with the signs of v,. It is worth noting that by definition, |P| < 1
and P — 1 as the mode becomes poorly confined and P — —1 as the mode
becomes tightly confined. The significant feature of this result is that as the
solutions converge at v, the energy fluxes inside and outside the guide exactly
cancel so that the total energy flux vanishes. Importantly, in their analysis for
a negative index planar waveguide, Shadrivov et al. showed that at P = 0 the
energy flowed in a double-vortex structure so that most of the energy remained
localised inside the wave packet [80]. Thus as the energy flux goes to zero, the
guided modes do not disintegrate and an analogous result for the modes of a
channel waveguide can be expected.

Energy Flux
o

-1
480 485 490 495 500
Frequency (THz)

Figure 11.7: Normalised energy flux as calculated for the Hé{l solutions of Fig. 11.6(c).
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In Figs. 11.6 and 11.7 the dispersion and energy flux of typical modes have
been examined as functions of the frequency. Alternatively, it is also useful
to consider the dependence of the mode properties on the waveguide width
L. Fig. 11.8 shows (a) the propagation constant and (b) the normalised energy
flux for the 3, modes at a fixed frequency, w/2r = 5 GHz, where again the
solid line corresponds to the strongly localised mode (¢, I') and the dashed line
is the weakly localised mode (d,I"). As expected, these have similar forms to
the previous curves for varying frequency except that this time the two solu-
tions converge as L is decreased until they reach a cutoff length L.. Thus these
results suggest that the propagating mode can be slowed simply by adiabati-
cally decreasing the waveguide width. Furthermore, by decreasing the width
to the critical length L. it should be possible to stop the light completely. Thus
it is expected that a simple waveguide structure such as that shown in the inset
of Fig. 11.8 should act as an optical trap, where the frequency of light that can
be trapped is determined by the range of the waveguide width.
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Figure 11.8: (a) Propagation constant and (b) normalised energy flux of the Hé{l solu-
tions from Fig. 11.6(c) as functions of the waveguide width L. The solid and dashed
lines correspond to the strongly (c,I') and weakly (d,I") localised modes, respectively.
Inset: design for an optical trap.
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11.4 Fibre Modes

The previous section has shown that the guided mode solutions of a channel
waveguide with a negative index core possess a number of properties that
differed from those of a conventional positive index waveguide. In this section,
similar analysis is conducted to investigate the properties of the guided modes
of an optical fibre with a negative index (negative ¢ and ) core. It will be
shown that in contrast to the channel waveguides, negative index core fibres
exhibit similar guiding characteristics to conventional fibres.

11.4.1 Wave Theory of Step-Index Fibres

000000
00O

Figure 11.9: Waveguide structure and parameters of an optical fibre.

The analysis is based on the wave theory of step-index fibres [99]. Although,
this approach ignores the complex refractive index profile of the negative index
fibre, it should nevertheless be sufficient to obtain a qualitative understanding
of the allowed modes. The analysis considers an axially symmetric fibre with
the geometry and parameters given in Fig. 11.9. Here, the fibre has been il-
lustrated as having a periodic cross sectional structure similar to that of the
microstructured fibres described in Section 6.2.1, however, the mathematical
analysis will be kept general so that it could equally apply to any fibre struc-
ture. In particular, if the fibre presented in Fig. 11.9 is to exhibit regions of
negative refractive index then the “air hole” regions, at least in the core, are
in fact likely to be regions of differing material. In this figure, the core, with a
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radius a, and the cladding are defined by regions of differing hole diameter d
and hole-to-hole spacing A. Again, it is assumed that the cladding has a posi-
tive index (¢; > 0 and p; > 0) and the core has a negative index (s, < 0 and
iz < 0). In cylindrical coordinates, the guided modes in an optical fibre are
expressed as:

E(r,0,zt) = E(r,0) e @52, (11.17)

H(r,0,z2,t) = H/(r,0) e (“=5), (11.18)

Substituting Egs. (11.17) and (11.18) into Maxwell’s equations [Egs. (10.16) and
(10.17)], the well known wave equations are obtained as:

O*E, N 10F, N 1 0*°FE
or? r Or r2 062
0’H 10H 1 0°H

= - z B —t I€2i i 2 HZZO 1120
or? +7°07° +r2392+[ =it 6] ’ ( )
with the transverse fields related to £, and H. as follows:

=+ [KPeip — B E. = (11.19)

g - i ( OFE, %01@)
" [k2 Zul r 00
B = k 61/% (fa;; HZ)
Hy = k 61/% <ﬁ 887" “;5 8892)
Hy = R <f@;§ Z) : (11.21)

11.4.2 TE and TM modes

The analysis begins by considering the TE modes (E, = 0) for which the wave

equation is:
0*H 10H n?
E =2 Keipi — > — — | H, = 11.22
or? + r or * [ ifti = 0 7"2} = =0, ( )
where n is an integer and the related fields can be found via:
—iwp 10H, iwp O0H,
E, = - , Ey = 11.23
(K2ei — 32)r 90 "7 (Ke — 37) Or (11.23)
—ip OH, —ip 1OH,
= Hy = - ) 11.24
(K2eipu — 2) Or © T (Ko — 021 00 (11.24)
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Due to the cylindrical symmetry of the fibre, the magnetic field H. in the core
and the cladding can be expressed as:

H, — { i ((:)) } cos (n + ) ES i Z)S %) (11.25)

Applying the boundary condition that the tangential field components H, and
Hy should be continuous at r = «, it follows that:

g(a) = h(a),
2 g(a)sin (nf 4 ) = -0 " h(a) sin (nf 11.26
mgg(a)sm(n +¢)—mg (a)sin (nf +).  (11.26)

As 99 # pye1, for the bottom equation to hold for all angles 8, n must equal
zero which is referred to as the azimuthal condition. Thus 0H, /00 = 0 which
when substituted into the appropriate components of Egs. (11.23) and (11.24)
yields: E, = Hy = 0. Combining these results, the wave equation for the TE
modes reduces to:

0*H 10H
AN ke, — B?| H, = 11.27
or? * r Or * [ sitti = 0 ] - =0, ( )
together with:
iwpop;  OH, —if3 0H,
Ey = H, = ) 11.28
’ (K2eip; — B%) Or’ (k%esp; — %) Or ( )

Defining the wavenumbers in the core and cladding along the transversal di-
rection as:

K = 4/ k252,u2 — 62 and o = AV ﬁQ — 1{3281/,61, (1129)

the wave equation in the core [H, = g(r)] can be written as:

0?9 10g

92 + ar + kg = 0, (11.30)
and in the cladding [H, = h(r)]:

0*h  10h

ij;E—ah—O. (1131)

As g;1; > 0 in both the core and the cladding, Egs. (11.30) and (11.31) have an
identical form to the wave equations found for a positive index core fibre and
thus, by analogy, the solution for the H, mode is:

_{ AlJy (kr) (0<r<a)

_ (11.32)
BK, (or) (r > a).

z
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Applying the boundary conditions for H, and E, at r = a:

AJy(ka) = BKy(oa),

A B
M0M2;J6 (ka) = —MOMFK(/) (oa), (11.33)
yields the dispersion relation as:

S(w) K (w)
A (u) MK, (w)’

(11.34)

where

u=ark = a\/k?eauy — > and w =aoc = a\/[? — k*c1 1. (11.35)

Finally, it is noted that the transverse wavenumbers » and w are related via:
u? +w? = k? (eapio — e1p11) a* = v, (11.36)

where v is referred to as the normalised frequency. Thus, once v is given, u and
w can be found from Egs. (11.34) and (11.36) and the electromagnetic fields for
the TE modes are completely determined. The explicit forms of the electric and
magnetic fields can be summarised as:

E, =E,=Hy, =0, (11.37)
@core(0<r<a):Ey = —jwquQ%AJI (%r)
H, = iﬁ%AJl (%r)
H, = AlJy (%) : (11.38)
a
- B a Jo(u) w
(b) cladding (r > a) : Ey = whopi - X, (w)AKl (ar)
a0 Jo(u) w
He = =i e AR (a r)
Jo (u) w
H, = ——AK,|— 11.
: Ko (w) 0(@7‘), (11.39)

and again the constant A is related to the mode power [Eq. (11.7)].

Applying the same procedure for the TM modes (H, = 0), it follows that the

dispersion relation is:

Ji(w) — Ki(w)
82uJO (u) gleo (w)’

(11.40)
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and the electromagnetic fields are given by:

Ey=H,=H, =0, (11.41)

@core(0<r<a):E = iﬁgAJl (gr)
u a

E. = AJy (%)

Hy = iw»sOeg%AJl (%T) (11.42)
(b) cladding (r > a) : E, = —w% ]‘g ((1;))141}(1 (%T)

b= iR (3)

H = —iweoesl% [‘g(("g)AKl (%) (11.43)

The propagation constant 5 of the fibre can be calculated by solving the dis-
persion equations [Eq. (11.34) or Eq. (11.40)] under the condition u? + w? = v?,
using similar graphical techniques to those employed for the case of the chan-
nel waveguides (see Ref. [99]). Fig. 11.10 shows typical dispersion relations
for the (@) TE modes and (b) TM modes of a fibre with: ¢ = 1.46, yu; = 1,
g9 = —1.7, iy = —0.9, a = 2 ym and v = 10.* The similarity in the appearance
of these two figures can be explained by noting that the dispersion relations
only differ by the ratios p; /s = —1.11 and ¢;/e; = —0.86, and in both cases
the mode boundaries are defined by the zero crossings of J, and J; (dotted
lines). For comparison, Fig. 11.10(c) shows an example of the dispersion rela-
tions for a fibre with identical parameters but a positive index core (s = 1.7
and pus = 0.9). Significantly, it can be seen that the allowed modes of the neg-
ative index guide exist in the forbidden regions of the positive index guide.
Thus the negative guide permits modes at lower frequencies than the cutoff
frequency for the positive index guide. Furthermore, in accordance with the
observations of a channel guide, it can also be seen that for a given core radius
a, solutions of the first order mode of a negative index fibre only exist for a par-
ticular range of v. Possible solutions for the first order TE mode of the negative
guide are shown in Figs. 11.10(d) and (e).> These figures illustrate solutions in

4The parameters were chosen so that n? (= ex) and a are close to that of a standard silica
fibre [4].
The discontinuity in Fig. 11.10(e) is due to a discontinuity in K (w).

164



Chapter 11 1D Negative Refractive Index Materials

Figure 11.10: u — w relationships for (a) TE and (b) TM modes with a negative index
core. (c) TE modes with a positive index core and (d)-(e) first order TE modes for a
negative index core.

two different regimes: (i) in (d) v = 2.5 and only one possible solution exists,
and (ii) in (e) v = 2.36 and two solutions can exist. Although this property
of degenerate modes (i.e., two modes with the same number of nodes coexist-
ing in the guide) was also established for the negative index channel guides,
unlike the situation here, those existed for the higher order modes.

Examples of typical profiles for the TE modes are shown in Fig. 11.11 where
B, = pH, is plotted [Eq. (10.14)], which is continuous in r. These correspond
to the solutions marked in Fig. 11.10. Here A is a first order mode, B is a third
order mode and I and A are the tightly and weakly confined degenerate first
order modes, respectively. It is worth noting that as the appearance of the TM
modes are similar to the TE modes but with H, interchanged for E,, examples
of the TM solutions will not be plotted here. The interesting feature of these
plots is that modes A, and to a lesser extent I', have the appearance of surface
waves. Such surface waves were also found for the case of negative index
channel guides and they also appeared in a region where propagating modes
were forbidden for positive guides.
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Figure 11.11: TE mode profiles corresponding to the marked solutions in Fig. 11.10
where A is a first order mode, B is a third order mode and I" and A are degenerate
first order modes.

Figs. 11.10 and 11.11 have illustrated a number of important properties of the
negative index fibre modes which are similar to those of the negative index
channel waveguide modes. Such similarities are not unexpected due to simi-
larities in the geometries. In additional, it has also been established that, like
the negative index channel guides, these fibres can only support propagating
modes in a high-index waveguide (i.e., eapio > £1417).

It now remains to investigate the frequency dispersion of the guided modes.
Clearly, as the composite material described in Section 11.2.1 is not practical
for a fibre geometry, it is not possible to use the forms of the permittivity and
permeability as given in Section 11.3. Thus the following analysis will sim-
ply assume that ¢;(w) and p;(w) are constant over the frequency range being
investigated. This is a reasonable assumption as for the frequencies consid-
ered in Fig. 11.6, ¢;(w) and y;(w) varied by less than 2%. The dispersion curves
for modes A, B and A, as found from Egs. (11.34) and (11.35), are plotted in
Figs. 11.12(a), (b) and (c), respectively. Again, the group velocity, v, = dw/dp,
and the GVD, 3, = d?3/dw? (middle and bottom curves, respectively) are also
calculated. From the curves for the first two modes it is clear that these exhibit
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dispersion characteristics similar to those of standard positive index fibres and
in particular, in both cases the slope of 5 is positive so that the group veloci-
ties are also positive. However, one difference is that the GVD parameter of
the first order mode is 3 orders of magnitude larger than a conventional fi-
bre (20 x 1073 ps?m~1!). Significantly, from the curves for the third mode it can
be noticed that although the group velocity of the mode A is still positive,
this does in fact exhibit “fast” light as for the lower frequency range v, > c
(¢ =300 umps™1).
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Figure 11.12: Dispersion curves for the TE mode profiles given in Fig. 11.11.

Again, these results have indicated the ability of the negative index waveg-
uides to manipulate the propagation characteristics of the guided modes. Im-
portantly, although it has been shown that these negative index fibres can sup-
port fast light, in all cases v, > 0 and furthermore, there was no evidence of
them supporting slow (v, — 0) light. Thus for these reasons the normalised
power flow will not be calculated here as, for all the modes represented in
Fig. 11.12, it will simply fall in the range 0 < P < 1 [EqQ. (11.16)].
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11.4.3 Hybrid modes

The following analysis will now consider the case of the hybrid modes where
both the axial electromagnetic field components £, and H, are non-zero. In
such instances, 0F. /Or and 0H. /00 (or OF, /00 and 0H,/0r) should have the
same 6 dependencies. Taking this into consideration, using Eq. (11.32) the z-
components of the electric field can be written as [116]:

: { AJ (% ) COS (nQ + Qb) (0 <r< CL) (1144)
(% )cos (nh + ¢) (r>a),

- { BJ, (Yr)sin(nf+¢)  (0<r<a) (11.45)
DK, (%T) sin (nf + ¢) (r > a),

where v and w are still given by Eq. (11.35). Substituting Egs. (11.44) and
(11.45) into Eq. (11.21), it follows that the transverse components are,
(@core (0<r<a):

B = _iuiz :Aﬁ%J; (%) + Bwqu%Jn (grﬂ cos (nf + o)

£ = st (3 o, () s+

H - _lu% :Awe()eQ%Jn (gr) + Bﬁ%J; (grﬂ sin (n6 + ¢)

Hy — —ij—j Awszyd, (2r) + BE= Iy (Sr) | cos(nd + 0), (11.46)

E, = 1(1_2 -CﬁEK,/Z (gr) + DW,U/O,UIEKn (Erﬂ cos (nd + ¢)
w*= L a a T a
-9

E, = —|-CB2K, (ET> — Dwpiop— K, (gr)] sin (16 + ¢)
w*= L T a a a
-9

H, = % Cweoer~ K, (gr) + DK, (ET)} sin (nf + )
w*= L T a a a
-9

Hy = = [Cweoes 2K, (Sr) + DK, (L) cos (n0 + 6) . (11.47)
w*= L a a T a

Continuity of the tangential components (E., Ey, H. and Hy) at the boundary
r = a Yields, for the F fields:

AJ, (u) = CK,(w), (11.48)
&ZﬁAJ (u) + %MOWBJ;] (u) = _(LZ—fCKn (w) — a—wuoulDK (w)
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and for the H fields:

BJ,(u) = DK, (w), (11.49)
aw , anf aw , anf
—?éoﬁgAjn (U) — ?BJTL (U) = E&oﬁchn (w) + FDK” (w) .

For these four equations to be consistent the determinant of the coefficients
must vanish and this gives the dispersion relation as:

Kplw) o D)\ (o Kiw) Jw)
Hofy wky, () MOMQUJn () LUK, () 0%2 T @)
1 1 €0€ €0€
_ 2 - 5 0€2/bo /b2 o0€1 ot
. (u2 N w2) (Cuceholta y SEOILY - (11.50)

As for the TE and TM modes, the propagation constant 5 of the hybrid modes
is calculated by solving Eq. (11.50) together with the u—w relation of Eq. (11.35).
In addition, using the continuity equations the constants B, C' and D can be
written in terms of the usual amplitude coefficient A as:

I (w)
= A
¢ Ko (w)’
nlW
g - A leta] (11.51)
w Jp (u) K (w)
[an(u) + wKn(w)]

Unlike the analysis for the TE and TM modes of Section 11.4.2, the dispersion
relation for the hybrid mode cannot be solved exactly via simple graphical
techniques. Instead to solve Eq. (11.50) it is necessary to employ Newton’s
method which states that after m + 1 iterations,

F (Bm)
F' (Bm)’

where [ is the initial guess for 5 and F' is the differentiable function,

Bonst = B — (m=0,1,2,3,...), (11.52)

F(6,) pop I, (W) popa ), (um) ' (201K, (wim) . €02/, (Um)
1
—n? (Lz 4 _2) (5062/;0/@ X 5061/;0/%) ’ (11.53)
uz, Wz, uz, wz,

which depends on the current estimate of 3,, through «,, and w,,. Calculation
of Eq. (11.52) is then repeated until the required accuracy of (3 is reached. How-
ever, in order for the solution to converge the initial guess for 5 must be quite
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accurate. Thus to obtain a first approximation for 3, the dispersion relation is
rewritten as:

(Moﬂl wﬁf{ﬁ) + ofte u{%%) (5051 wﬁ&”ﬂ) + €0€2 u"";(f;f)> 1 v
w = 2 (EOEZ,;O,Q T eoai);,mul) T2 ,
(11.54)
where,
w' = Vv —u2, (11.55)

so that the graphical method of Section 11.4.2 can again be used to plot u vs w
curves.

Fig. 11.13 shows the u — w curves for: e; = 1.46, 1 = 1, 65 = —1.7, us = —0.9,
a = 2pum, v = 10 and n = 1. From these curves it can be seen that there
exists two solutions within the boundaries of the allowed modes. By analogy
with the solutions found for a conventional positive index core fibre, these
solutions can be designated as EH and HE modes, where the EH solutions
appear to the immediate left of the mode boundaries (dotted lines) and the
HE solutions appear to the right. The three solutions found here give: (a)
B = 2.334 um, (b) § = 2.320 yum and (c) § = 2.317 um. Using these as the initial
guesses for 3, Newton’s method then yields: (a) 5 = 2.336 um, (b) 8 = 2.321 um
and g = 2.318 um. The corresponding mode profiles at § = 0 are plotted in
Fig. 11.14 via D, = E,, which is continuous in r. These clearly illustrate the
differences between the EH and HE modes.

15 T T T T

@) i

0
)\(9\6 (C)

Figure 11.13: u — w relationship for hybrid modes in a negative index core fibre with
n=1.
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Figure 11.14: Hybrid mode profiles, at § = 0, corresponding to the marked solutions
in Fig. 11.13 where (a) is a the first HE mode, (b) is the first EH mode and (c) is the
second HE mode.

The dispersion curves for these modes, as found from Egs. (11.35) and (11.50),
are plotted in Fig. 11.15. Interestingly, despite the difference in the mode pro-
files, the frequency dispersion of the first EH mode and the second HE mode
(and even the first HE mode) are very similar. In addition, it can also be no-
ticed that the shapes of these curves are remarkably similar to the dispersion

B (1/um)

m
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~~
S
=
s 236 ,

232 ‘ 232

0
-0.2}
: -0.4 ; :
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Frequency (THz) Frequency (THz) Frequency (THz)

Figure 11.15: Dispersion curves for the hybrid mode profiles of Fig. 11.14.
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Figure 11.16: v — w relationship for hybrid modes in a negative index core fibre with
n=3.

profiles of the TE modes and in particular, all of the modes exhibit a positive
vy. However, in contrast to the TE modes, it is clear that none of the modes
represented here exhibit fast light and that all of the GVD parameters are of a

similar order of magnitude to values obtained in positive index fibres.

Finally, the properties of some higher order modes (i.e., n > 1) are also inves-
tigated. Fig. 11.16 shows the v — w curves for: ¢y = 1.46, uy = 1, 9 = —1.7,
po = —0.9, a = 2 um, v = 10 and n = 3. Due to the similarity in the dispersion
curves of the first EH mode and the second HE mode, only the first (a) HE
and (b) EH modes are considered here. The propagation constants obtained
using Newton’s method are: (a) 7 = 28.07 yum and (b) 5 = 27.75 um, and the
corresponding mode profiles at ¢ = 0 are plotted in Fig. 11.17. Calculating

1.0r(a) 7 () 7
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o
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|

|
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0 1 2 3 0 1 2 3
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Figure 11.17: Hybrid mode profiles, at # = 0, corresponding to the marked solutions
in Fig. 11.16 where (a) is the first HE mode and (b) is the first EH mode.
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Figure 11.18: Dispersion curves for the hybrid mode profiles of Fig. 11.17.

the frequency dispersion of these modes they are found to exhibit dispersion
characteristics similar to those of the n = 1 modes, and hence also of the stan-
dard positive index fibres. Significantly, a further reduction in the order of
magnitude of the GVD parameter can also be noticed which, by comparing
Figs. 11.12, 11.15 and 11.18, is in accordance with the trend that the GVD de-
creases for increasing mode order. Thus it appears that it is the lowest order
modes that exhibit the most unusual dispersion characteristics.

11.5 Coupling Between Guided Modes

If negative refractive index waveguides are to find practical application in opti-
cal systems it is necessary to establish ways in which to couple light into them.
Thus this section calculates the coupling coefficients between guided modes
of adjacent parallel waveguides with both positive and negative indices in the
core. In particular, the analysis is based on the guided mode solutions of nega-
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tive index channel waveguides which were shown to permit both forward and
backward propagating waves.

11.5.1 Formulation of the Problem

The analysis considers the case of two symmetric channel waveguides, as il-
lustrated in Fig. 11.19. The refractive index distributions for the two guides in
the absence of coupling are:

eiftn Tt x9 € [~Li, —L) U (L, L],y € [~ Ly, —L) U (L, L],
(11.56)

where p = a, b (—x( corresponds to p = a) and 2L and 2L,, are the widths of

, {e,,up vtz €[-LL,ye[-L I
n =

the waveguides and the bulk material, respectively. The combined refractive
index profile is then given by:

n2 (z,y) + An2 (z,y) = n* (z,y), (11.57)

where Ang are the perturbations to the refractive index of the waveguide due
to the neighbouring guide. The transverse electromagnetic field distributions
for a particular mode of waveguide p alone are denoted Et(p) and Ht(p), and the
propagation constant is 3,.

N
V
[ 4

m

Figure 11.19: Double channel waveguide geometry and parameters.

The first step to deriving the coupled mode equations is to restrict attention to
situations where each individual waveguide only supports one guided mode,
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and to assume that the field in the coupled guide structure can be approxi-
mated by a linear combination of the unperturbed fields as:

By (z,y,2) = A(2) B (2,y) + B(z)E® (2,y), (11.58)

and
H, (z,y,2) = A(z)H (z,y) + B(z)H® (z,y), (11.59)

where A(z) and B(z) express the z-dependence of the individual guided modes
[117]. However, this approximation is only valid in situations where the cou-
pling between the modes is weak which typically requires that the guides are
well separated and also that they are not too dissimilar. Although it is easy to
satisfy the requirement that the guides are well separated, clearly when con-
sidering coupling between positive and negative index guides the similarity
condition of the guides will be violated. Thus before the standard coupled
mode theory can be applied to this problem, the validity of the approximation
of Egs. (11.58) and (11.59) must first be established. To this end, the first step is
to consider solving for the exact electromagnetic field distribution of a coupled
mode system where one guide has a positive index and the other a negative
index. Provided the calculated solution has an intensity profile which is simi-
lar in appearance to the sum of the two unperturbed fields, it is reasonable to
expect that the superposition approximation will be valid.

To solve for the exact field distribution of a coupled mode system a numerical
technique known as the Shooting Method is employed [118]. The validity of
this technique has long been established in the field of Quantum mechanics
for determining the wave function of particles trapped in a system of square

gl
I
&
’-L
gl

Figure 11.20: Planar waveguide geometry and parameters.
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wells [119]. As the coupling between modes of two channel guides is a two di-
mensional problem, and is thus very computationally intensive, here the anal-
ysis is restricted to consider the reduced problem of coupling between modes
in adjacent slab waveguides. As mentioned in Section 11.1, the mode solu-
tions to the problem of a single negative refractive index slab waveguide have
been found previously by Shadrivov et al. [80]. From Maxwell’s equations
[Egs. (10.16) and (10.17)] it follows that, for a waveguide geometry as given in
Fig. 11.20, the £, component of the TE modes is described by:

~ 10w 3Ey B

9P2E, O°FE )
a; n Wy bW wa_;%% —0. (11.60)

Expressing the electric field distribution as [99]:

Acos (KL — ¢)e—o(@=1) (x> L)
E, = Acos(kx — @) (-L<z<L) (11.61)
Acos (KL — ¢) e?®+1) (x < —L),

where x and ¢ are given in Eq. (11.29), and following the analysis outlined in
Section 11.3, it is easy to show that continuity of the £, and [, components of
the field at x = +L yield the dispersion relation as:

fan (/{L _ M) _ B9 (11.62)

where m is an integer. The guided mode solutions can then be found by solv-
ing the Egs. (11.29) and (11.62) using the same graphical technique as em-
ployed for the channel waveguides [Section 11.3.1]. An example of a typical
mode profile obtained for: w/27 = 5.29 GHz, e; = 0.86, 1 = 0.44, &5 = —0.75,

E (arb.)

X (cm) X (cm)

Figure 11.21: Example of a mode profile for a negative refractive index slab guide
where (a) is calculated using Eqg. (11.61) and (b) is found via the Shooting method.
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o = —0.51 and L = 8cm is shown in Fig. 11.21(a), where the propagation
constant is calculated to be: 8 = 68.48 m™.

The numerical analysis to find the exact field distribution begins by rewriting
Eqg. (11.60) using the form of the electric field: E, (v,2) = B, (z)e 1“5 to

obtain:
d2Ey
dax?

This system has the natural boundary conditions E,(+oc0) = 0, where infin-

1 dudE
— (8 —w?p) E, + ;d—;‘d—;. (11.63)

ity is taken to be some value of z sufficiently far from the edge of the guide.
Eqg. (11.63) can then be expressed as a coupled first order system:

0 1
/
X' = ( L )X (11.64)

2 2
0% —wep o dz

where X = (X, X,)T = (E, dE,/dz)" together with the boundary conditions
X (—o0) = 0 and X, (—o0) = a. Here « is the estimate of the initial slope of
the electric field, which should be close to but not equal to zero. The Shooting
method is then implemented as follows.

(1). Make an initial guess of the propagation constant ;.

(2). Solve the system of differential equations [Eq. (11.64)] using
a fourth order Runge-Kutta scheme [118].

(3). Compare the solution of X; (co) with the known value:
E,(c0) = 0.

(4). If X; (o0) = 0 to within the required tolerance, then 5 = ;.
If not, adjust the value of j; (either bigger or smaller) and go
back to step (2).

To illustrate this technique it is used to solve for the mode solution plotted in
Fig. 11.21(a). With an initial guess of & = —1 x 1077, following steps (1)—(4)
yields a propagation constant of 3 = 68.12m™*!, which is in good agreement
with that obtained using the graphical technique. Consequently, the mode
profile found via the Shooting method, as shown in Fig. 11.21(b), is also in
good agreement with that of Eq. (11.61).

This method is now used to solve for a coupled slab waveguide system as
illustrated in Fig. 11.22. With: o = —1 x 1077, ¢; = 0.86, 11 = 0.44, ¢, = —0.75,
e = —0.51, g, = 0.90, up, = 0.44, L = 8cm and a waveguide separation of
s = 72 cm, the propagation constant is found to be 5 = 68.47m™'. The E, mode
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Figure 11.22: Double slab waveguide geometry and parameters.

profile is then plotted in Fig. 11.23(a). The bottom curve shows a close up of the
profile in the region of the negative guide which is very similar to that found
for the single negative index guide [Fig. 11.21]. Comparing this with a linear
combination of the mode solutions for the two individual guides shown in
Fig. 11.23(b) it is clear that, with an appropriate choice of the coefficients A and
B, the mode profiles appear very similar. Thus despite the large dissimilarity
in the refractive indices of the two guides the approximations of Eqgs. (11.58)
and (11.59) are nevertheless still valid.

| T —T — T —
10 (@) A 1 oF() o A -
= i i i i
S - o - -
> 05F - s 1 o951 - - T
L N
s
)
>
W
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Figure 11.23: Top: mode profiles of the double slab waveguide of Fig. 11.22 obtained
via (a) the Shooting method and (b) a linear combination of the mode solutions of the
individual guides with A = 1 and B = 20. Bottom: close up of the profile in the region
of the negative guide. Dotted lines are the waveguide boundaries.
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11.5.2 Coupled Mode Theory

The coupled mode theory considered in the following was developed by Hardy
and Streifer [117]. Their derivation is based on solutions to Maxwell’s equa-
tions [Egs. (10.16) and (10.17)] where the effect of a neighbouring guide can
be considered as a perturbation to the refractive index profile, as given by
Eq. (11.57). The coupled mode equations can then be written as:

da _ i7" YA +ikg, B, (11.65)

dz

dB

= = 7Y B + Ky, A, (11.66)
z

where 7(® and v represent corrections to the propagation constants /3, and
Oy, respectively, and x,, and x,, are the coupling coefficients.

The equations (11.65) and (11.66) follow from the orthogonality condition of
the modes which, for a material with y = py over xz,y € (—oo,c0), is given

as [14]: )
/ / EYE™ dzdy = ;’*Oalm (11.67)

However, if negative index waveguides, where ;1 # 1o over z,y € (—o0, 00),
are to be considered, Eq. (11.67) must be modified as:

(m)
2 BB Gpdy = 250 (11.68)
ﬁ k]

Although this will not alter the forms of Eqgs. (11.65) and (11.66), it does have
to be accounted for in the coefficients 7(*), v k., and xy,.

Defining the waveguide overlap as [120]:
Cog=%- / / E®) x O 4 B@OT « HP| dzdy, (11.69)
the modes are normalised such that:
Coa = Cpp = 1. (11.70)

By analogy with the analysis of Hardy and Streifer, the modified propagation
constants can be written as:

Y = B + [Faa — Capfina + CapCoa (B = BD)] /(1 = CatCha),  (11.71)
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7O = B0 + [Fy, — Chafias + CatCra (B = B)] /(1 = CapCha), (11.72)
and the coupling coefficients:
Kab = [Fab + Cap (B — B — &) ] /(1 = CatCha), (11.73)

Kba = [fiba + Chy (ﬁ(b) - B(a) - ’%aa)} /(1 - Oabcba)‘ (11.74)

Using Eq. (11.68), the constants ~,, appearing in Egs. (11.71)—(11.74), which
depend on the perturbations to the individual guides, can be expressed in a
modified form as:

Rl e (@)
Rpg = ap/ / An2® {Eél’) .Efp) — %EEP)E?)} dady, (11.75)

where the coefficient,

-~ k2 /203

— > )
ff(Ef”) dxdy

Clearly, when 1 = 1o EQ. (11.67) can be used to reduce Eq. (11.75) to the form

ay (11.76)

given in Ref. [117]. It is important to note that, in contrast to what is often
claimed in the literature, in general s, # x;, [14]. Although the complex
conjugate relationship for the coupling coefficients follows from power con-
servation considerations, as it ignores cross terms between the two waveguide
fields it is only valid for lossless identical guides.

To calculate the power flow between the waveguides it is assumed that at z =
0, all of the power is in guide b and Egs. (11.65) and (11.66) are solved subject to
the initial conditions A(0) = 0 and B(0) = B,. In a lossless system this yields:

B(z) = By |cos (fz)+%sin (€2)| 9, (11.77)
A(z) = Boi%“” sin (£2) €197, (11.78)
where
o = [9++Y] /2,
A = [ 4] /2 (11.79)
and

§ =A%+ Kaphpa- (11.80)
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From the equation for the average power flowing in z [Eq. (10.20)], it follows
that:

Pz = i ‘BO|2 {1 + % [("iab - "fba) +A (Oab + Cba)] SiIl2 (fz)} : (1181)

In Eq. (11.81), the coefficient of the term sin? (¢z) is a measure of the power

conservation and thus should be negligibly small,

_ Fab
-5

Consequently, to ensure that the weak coupling condition is satisfied so that

€

[(Kab — Kba) + A (Cap + Ca)] = 0. (11.82)

power will be conserved, in the following section the waveguide separation s
is chosen so that e is sufficiently small that the maximum variation in P, is less
than 1%.

11.5.3 Calculating the Mode Coupling

The calculations begin by considering the coupling between the lowest or-
der 3, mode of a negative index guide, with a real k, (e.g., mode (b, B) in
Fig. 11.5), with a first order H{, mode of a positive index guide. With the sys-
tem parameters: w/27 = 5.29 GHz, ¢, = 0.86, uy = 0.44, ¢, = —0.97, p, = —0.51,
gy = 0.90, up, = 0.44 and L = 3 cm, the propagation constants of the modes for
the individual guides are found to be: 3, = 65.600m~"* and 3, = 65.525m .
To ensure power conservation, the separation between the guides is chosen to
be: s = 30 cm. To illustrate the qualitative features of the coupled mode profile,
the system is plotted with A = B = 1 [in EqQ. (11.59)] in Fig. 11.24(a).

Under these conditions, Eqgs. (11.71) and (11.74) yield the modified propaga-
tion constants: 4% = 65.601m~" and v*) = 66.532m~"! and the coupling co-
efficients: x,, = 0.015m~! and x;, = 0.100m~'. In both cases the coupling
coefficient is quite small so that the power transfer between the modes will
also be small. This is illustrated in Fig. 11.24(b) where the evolution of the co-
efficients of the mode fields A(z) and B(z) are plotted assuming that all of the
power is initially in the positive index guide b [Eqgs. (11.77) and (11.78)]. Fur-
thermore, also from Fig. 11.24(b) it can be seen that the rate at which the power
is transferred between the modes is slow and again this can be attributed to the
small coupling efficiency through the value ¢ which for these modes is only
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Figure 11.24: (a) The coupled mode profile for the H3 ; mode of a negative index guide
(k. real) and the Hiy,1 of a positive index guide with A = B = 1. (b) Evolution of the
coefficients A and B.

¢ = 0.467 [Eq. (11.80)]. Significantly, however, although the power transfer
rate appears to be too slow for practical waveguide lengths, as these waves are
in the microwave regime (and not the optical), these distances are not unrea-
sonable.

Although the small efficiencies calculated here can be partially attributed to
the fact that the coupling is occurring between modes of a different order, more
significantly, as it was seen in Fig. 11.6, in a negative index guide the /3, mode
with real k, is in fact a backwards propagating mode. Consequently, despite
the small efficiencies, these results have nevertheless shown that light can be
coupled from a forwards propagating mode in a positive index guide to a back-
wards propagating mode in a negative index guide. In addition, the coupling
coefficients between the [, mode with an imaginary &, and a H{, mode of a
positive index guide have also been calculated. However, in this instance the
coupling was found to be negligibly small.

The next step was to calculate the coupling coefficients between the higher or-
der Hj, modes (e.g., modes (c,I') and (d, I') in Fig. 11.5), with a first order HY,
mode of a positive index guide. It should be recalled that the /75, mode of
a negative index guide was a degenerate mode where the strongly localised
modes are backwards propagating waves, whilst the weakly localised modes
are forward propagating waves. Thus these calculations will enable us to de-
termine the relative coupling strengths of the two different types of mode.
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Figure 11.25: Coupled mode profiles for the H 1 modes of a negative index guide and
the H%l of a positive index guide with A = B = 1, where (a) is the strongly localised
i, mode and (b) is the weakly localised Hj ; mode.

Using the same system parameters as above, but increasing the waveguide
width to L = 8 cm, to ensure power conservation the separation between the
guides is increased to s = 40cm. The propagation constants of the modes
are then found to be: 3, = 69.070m™! for the strongly localised H3; mode,
B, = 66.358 m~" for the weakly localised Hf, mode, and 3, = 67.701m™" for
the [}, mode. The mode profiles of the coupled systems with A = B = 1 are
plotted in Fig. 11.24, where the mode in guide « is (a) the strongly localised
mode and (b) the weakly localised mode.

Calculating the coupling coefficients for these two systems yields: (a) ky, =

2.0 T T T T 1.0 T T T T

- (a) ~ (b)
=2 2
& 10 . S ost .
N_ o~
< <
0 1 1 1 1 0 1 1 1 1
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Figure 11.26: Evolution of the coefficients A and B for coupling between the Hé{1
modes and the Hiy,1 mode, where (a) is the strongly localised mode and (b) is the
weakly localised mode.
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0.002m™!, Ky, = 0.001m~! and (b) ke, = 0.099m™ 1, Ky, = 0.039m~t. On com-
paring the relative sizes of x,, and x,, for the two systems, these results indi-
cate that light propagating in a positive index guide is more likely to be cou-
pled into a forward propagating wave than a backwards propagating wave.
Calculation of the corresponding modified propagation constants: (a) +* =
69.070m~", v® = 67.7012m~" and (b) v* = 66.360m~!, v = 67.698m™!
then yields the evolution of the mode coefficients A(z) and B(z) and these are
shown in Fig. 11.26. Interestingly, despite the difference in the coupling coef-
ficients and the modified propagation constants, the two systems yield similar
values of &: (@) € = 0.684m ™! and (b) £ = 0.674m™!, so that in both cases the
rate at which the power is transferred between the modes is also similar. In
addition, in both cases the power transfer rate has increased slightly from the
previous case of coupling between the 75, mode and the I, mode.

The results above have indicated that light in a positive index guide is more
likely to be coupled into a forward propagating wave than a backward propa-
gating wave. Thus it may in fact be more efficient to couple light into a back-
wards propagating mode after first coupling it into a forwards propagating
mode of a negative index guide. To this end, the final calculations consider the
coupling between the degenerate forward and backward propagating waves
of the [, modes in two identical negative index waveguides. Choosing the
system parameters as: w/2m = 5.287 GHz, ¢y = 0.86, pu; = 0.44, ¢, = g, = —0.97,

T 20

i I B /\/\/\/\
I . | 10 .
Tw
100 T T T T
“l ] 095 -
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0

Figure 11.27: (a) The coupled mode profile for the two Hé{l modes of a negative index
guide with A = B = 1. (b) Evolution of the coefficients A and B calculated via
Eqgs. (11.77) and (11.78).
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e = iy = —0.51, L = 8cm and s = 40 cm, the propagation constants of the
modes are found to be: 5, = 69.726 m~! and 3, = 66.098 m~—*. The mode profile
of the coupled system with A = B = 1 is plotted in Fig. 11.27(a).

This system yields the coupling coefficients: x,, = 0.807m~! and xy, = 0.041 m™*
which, as it would be hoped, are an order of magnitude larger than the cou-
pling coefficients between modes of a positive and a negative index guide.
Furthermore, it follows from the calculation of the modified propagation con-
stants: 7 = 69.717m~" and v*) = 66.021 m~!, that £ = 1.857. Thus the rate of
power transfer between the two modes is also more efficient than before and
this is illustrated in Fig. 11.27(b) where the evolution of A(z) and B(z) have
been plotted over the same propagation length (10 m) as considered for the
systems with guides of differing signs of the refractive indices. An interesting
feature of this result is that it suggests that once light has been coupled into a
negative index guide which permits degenerate modes with differing signs of
v,, it should be possible to excite a cyclic coupling with a second adjacent iden-
tical guide between the forwards and backwards propagating modes. This is
illustrated in Fig. 11.28 which shows how the light could be trapped between

the guides.
S101 :
— 2L | — ~ > S, -
€14 T I .
2L — Salla -
g1l :

Figure 11.28: Coupling between forwards and backwards propagating waves in iden-
tical adjacent negative index waveguides.

11.6 Discussion

The results of this chapter have demonstrated a number of unusual proper-
ties of negative index core waveguides that differ considerably from those of

185



Chapter 11 1D Negative Refractive Index Materials

conventional waveguides. Significantly, however, whilst the propagation char-
acteristics of the negative index channel waveguide modes were shown to ex-
hibit exotic effects such as low or negative group velocity, the negative index
fibres did not. Nevertheless, under certain conditions the modes of a negative
index fibre have still been shown to exhibit extremely large GVD and also to
support “fast light” (v, > c). Finally, the results of the mode coupling analysis
have shown that it is possible to couple light into both forwards and back-
wards propagating modes of a negative index waveguide.
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Chapter 12

2D HeXLN Planar Buried
Waveguides

12.1 Introduction

This chapter describes experiments to investigate efficient second harmonic
generation in a two dimensional periodic photonic crystal based on a hexag-
onal lattice in lithium niobate (HeXLN). To enhance the conversion efficiency
of the harmonic process a planar waveguide geometry is employed. After a
brief description of the design requirements and fabrication procedures of the
device, the efficiency of the second harmonic process is analysed via the inter-
action properties of the waveguide.

12.2 2D Photonic Crystals

Since the development of one dimensional nonlinear crystals to phase match
second harmonic generation (SHG), devices such as periodically poled lithium
niobate (PPLN) have generated considerable interest amongst research groups
around the world [97, 121, 122, 123]. Following on the success of these one
dimensional structures, in 1998 Berger set about investigating the possibility
of realising two dimensional crystals [71]. The results of his theoretical anal-
ysis showed that SHG could indeed occur over multiple angles in the plane
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of the crystal. Since this observation, SHG in HeXLN has been experimentally
demonstrated here at the ORC by Broderick et al. with internal conversion effi-
ciencies as high as 80% [90]. In addition, this work has recently been extended
to observe multiple harmonic generation, demonstrating the possibility of si-
multaneous phase matching in multiple directions, and the efficiencies of these
processes with respect to the operating temperature and wavelength have been
examined [124]. However, despite their success, all of these experiments were
performed in bulk crystals so that in general they suffered from relatively low
conversion efficiencies, particularly for the higher harmonics.

12.2.1 Phase Matching in HeXLN

The hexagonal domain pattern for the two dimensional HeXLN structure is
shown in Fig. 12.1. For a lattice with a period « and the basis vectors a; =
a(1,0) and a, = a(1/2,v/3/2), the corresponding reciprocal lattice vectors are:
G,... = nby + mby [Section 10.3]. Here by and b, are the basis vectors for the
reciprocal space, which is another hexagonal lattice rotated by 90 ° with respect
to the real space, with a period of 47/ (v/3a), as illustrated by the first Brillouin
zone shown on the right hand side of Fig. 12.1. From these sketches it can be
seen that the possibilities of quasi-phase matching are six fold degenerate (due
to the symmetry of the triangular lattice).
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Figure 12.1: Structure of the hexagonal domain pattern of the poled lithium niobate in
the = — y plane, together with the first Brillouin zone.

The complete reciprocal lattice structure of Fig. 12.1 is then plotted in Fig. 12.2.
Overlaid on this figure are two examples of quasi-phase matched processes.?
The first is the fundamental process which involves the shortest possible recip-

'Note that in this figure the phase matching processes are not represented to scale as typi-
cally |k,| >> |al.
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rocal lattice vector Giy;. The second is a higher order process which involves
a momentum transfer that is in fact v/3 times greater than the fundamental
process. Such a momentum transfer is not possible in a one dimensional struc-
ture and thus this shows that these two dimensional structures also open up
new quasi-phase matching orders. It is worth noting that the two dimensional
guasi-phase matching order can be labelled with two integer coordinates given
in the (G, G.) basis of the reciprocal lattice. In Fig. 12.2, the two processes that
are represented are of orders [1, 0] and [1, 1].

Figure 12.2: Reciprocal lattice of a HeXLN structure showing two possible quasi-phase
matched processes.

12.2.2 Fabrication

The two dimensional nonlinear photonic crystals used in our experiments were
hexagonally poled by Dr C. Gawith, Dr K. Gallo and Mr L. Ming using a tech-
nique similar to that applied to pole PPLN [109]. In this technique, an electric
field is applied to macroscopic regions of the crystal to invert the spontaneous
electric polarisation P,. The resulting effect is to create ferroelectric domains in
which the direction of P, differs from that of the adjacent domain. A schematic
diagram of the electric poling process can be seen in Fig. 12.3. This process was
conducted at room temperature on a z-cut 500 pm thick congruent lithium nio-
bate crystal. Firstly, the hexagonal array is defined photolithographically on a
thin layer of photoresist on the —z face.

The mask used in the photolithography was the same as that used for the ear-
lier HeXLN experiments described in Ref. [90], and so was designed for SHG
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Al electrodes

Figure 12.3: Schematic diagram of electric poling for domain inversion in lithium nio-
bate.

in a bulk sample. With a 1.536 pm fundamental beam (propagating along the =
axis) quasi-phase matched through the G, reciprocal lattice vector, at 120°C
the required spatial period was: A = 18.05 um. This was aligned carefully so
that the x — y orientation of the hexagonal structure coincided with the crys-
tals natural preferred domain wall orientation. For lithium niobate, which has
trigonal atomic symmetry (crystal class 3m), the tendency is for the domain
walls to form parallel to the y axis and at +60°.

A conductive gel is then applied to both faces of the crystal to act as electrodes
over which the electric field is applied. In order to invert the spontaneous
electric polarisation of lithium niobate at room temperature, an electric field
exceeding the coercive field (E. = 21 kVmm™") is required and thus the pho-
toresist must be sufficiently thick to block the applied field in the hexagonal
regions. Finally, the photoresist is removed using an acetone bath.

Fig. 12.4 shows the resulting hexagonal domain pattern of the poled lithium

Figure 12.4: Photograph showing the structure of the hexagonal domain pattern of
the poled lithium niobate crystal, in the 2 — y plane, together with the wavevectors
involved in the [1,0] order SHG process.
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niobate crystal, in the =+ — y plane, together with the wavevectors involved
in the first order [1,0] SHG process. In this sample, which is typical of the
HeXLN crystals used in our experiments, the hexagons constitute ~ 30 % of
the total area. We note that the clarity of the hexagonal structure of the crystal
is reduced from that often displayed in the literature due to the fact that this
sample was not etched. The reason for this is because of the close proximity
of the waveguide to the surface of the crystal and thus it is likely that etching
would affect its guiding properties.

12.3 Planar Waveguides

As seen in Section 11.5.1, a planar waveguide is characterised by three semi-
infinite layers of differing refractive indices with respect to one direction (see
Fig. 12.5). In our investigations the significant feature of the planar geome-
try is that it preserves all the benefits of the two dimensional structure, whilst
providing tighter mode confinement. Thus the intensities and the modal over-
lap of the interacting fundamental and second harmonic fields are enhanced.
Although the top layer (n;) can simply be the air outside the crystal, in order
to symmetrise the mode profile of the guided fields the waveguide within the
bulk HeXLN crystal is buried.

Figure 12.5: Diagram of a basic three-layer planar waveguide.

In our experiments the fundamental beam was launched into the waveguide
in the TM configuration (see Section 12.4). The solutions for the TE modes of a
negative index slab waveguide have already been presented in Section 11.5.1
and similarly the TM modes can be obtained via equivalent analysis. However,
as we are now dealing with a positive index material, we can return to the
original definition of n (= \/5/750) as given by Eq. (3.1). It then follows from

191



Chapter 12 2D HeXLN Planar Buried Waveguides

Maxwell’s equations [EQgs. (10.16) and (10.17)] that (for the coordinate system
given in Fig. 12.5) the H, component of the TM modes is described by:
0*H, N 0*H, e 10 0H, _
Ox? 072 Y 0z 0z
Assuming a symmetric waveguide (n; = n3), the magnetic field distribution

(12.1)

can be expressed as:

Acos (ka — ¢) e (z>a)
H, =4 Acos(kz — ¢) (—a<z<a) (12.2)
Acos (ka — ¢) e?*+) (z < —a),

where x and o are now written as:

k=1/k>n3— (%2 and o =/032—k2n?. (12.3)

Applying the boundary conditions that /, and E, should be continuous at
z = +a, the dispersion relation is obtained as:

tan (/aa — m) = 82—0, (12.4)
2 E1K

where m is an integer. Solving Egs. (12.3) and (12.4) using the graphical tech-
nique of Section 11.3.1 yields the guided modes and an example of a typical
profile is plotted in Fig. 12.6. This solution corresponds to the fundamen-
tal TM, mode with the waveguide parameters: n; = 2.130, n, = 2.158 and
a = 2 um, calculated for a wavelength of A = 1.536 pm.

10

H (arb.)

X (um)

Figure 12.6: Example of a fundamental mode profile for a TM slab guide.

12.3.1 Fabrication

The planar buried waveguide was fabricated by Dr K. Gallo using a process
of annealed proton exchange followed by reverse-proton exchange [125]. The
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initial proton exchange involves immersion of the sample in molten benzoic
acid at a temperature of 160°C. During this process H™ ions are exchanged
with Li* ions in the crystal, resulting in a thin proton-rich layer with a higher
extraordinary refractive index. The sample is then annealed in air at 328 °C so
that the protons diffuse deeper into the substrate yielding an annealed-proton-
exchanged (APE) waveguide with a graded index profile that has a maximum
at the surface of the crystal. To impose symmetry to the waveguide, reverse-
proton exchange via immersion in a lithium-rich melt (LiNO;:KNO3:NaNO;)
is then performed again at 328 °C. This process removes protons from the sur-
face which in turn acts to move the peak of the refractive index profile into the
crystal. The resulting structure and refractive index profile of the crystal are
shown in Fig. 12.7, together with the profile of the surface waveguide before
the reverse exchange.

nJ(z)

LiNbO,
H.Li,NbO,

LiNbO,

Lz

\

Figure 12.7: Cross section of the HeXLN crystal in the = — z plane. The right hand side
shows the extraordinary index profile of the buried waveguide (thick line), together
with the profile of the surface waveguide before the reverse proton exchange (thin
line).

12.4 Experimental Setup

A schematic diagram of the experimental setup to observe harmonic genera-
tion in a planar HeXLN waveguide is shown in Fig. 12.8. The pulse source used
in our experiments is the all fibre amplifier chain described in Section 6.4.1.
This produces 5 ns pulses at 1.536 pm and the repetition rate is adjustable be-
tween 1 — 500 kHz so that peak powers of up to ~ 20kW can be achieved.
The HeXLN crystal was housed in a computer-driven oven where the tem-
perature could be controlled via the direction of the current through a ~ 3 c¢m
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Figure 12.8: Schematic diagram of the experimental setup used to observe harmonic
generation in a planar HeXLN waveguide. L, is the cylindrical lens and L, and L3 are
spherical lenses.

long Peltier element.? However, as the Peltier was considerably longer than
the length of a typical HeXLN crystal (~ 1 cm), due to the large diffraction of
the exiting fields in the z direction, it was necessary to place the sample on a
copper coupling block whose base was the same size as the Peltier, but with a
top face whose x length was the same as the crystal’s. This enabled the output
coupling lens to be placed close enough to the exit face of the crystal so that
all of the generated second harmonic could be collected. A sketch of the oven
design is shown in Fig. 12.9. To avoid the photorefractive effects discussed in
Section 10.4, we ensured that the oven was maintained at a temperature above
~ 100 °C when light was incident on the crystal.

Crystal 7 PP

i Coupling Block
7

Peltier
Element

Figure 12.9: Sketch of the Peltier oven design.

To assist with the coupling of the fundamental beam into the waveguide the
oven setup was then mounted on a series of adjustable stages (x, y, z and a
rotational stage 6). Efficient coupling into a planar waveguide requires a beam
with a narrow waist in the z direction but with a broad waist in the y direction
so that the diffraction effects in this direction are minimised. To achieve this the
beam was first shaped into an ellipse using a cylindrical lens (focal length: f =

2This oven was designed by Dr R. Bratfalean.
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Figure 12.10: Intensity profile of the TMy mode at 1.536 m at the output of the waveg-
uide.

20 cm) before focusing through a spherical lens (10x objective). This resulted
in a spot size of 5.6 um x 80 um (FWHM) at the input face of the waveguide.
An image of the intensity profile of the TMy mode at 1.536 xm, at the output of
the waveguide, can be seen in Fig. 12.10.

Using this geometry a coupling efficiency of 36% into the waveguide was ob-
tained and significant generation of the second, third and fourth harmonics
(red, green and blue light) was achieved as shown in Fig. 12.11.

Figure 12.11: Output from the HeXLN planar waveguide showing the generated sec-
ond, third and fourth harmonics (red, green and blue light).

125 SHG in a HeXLN Planar Waveguide

Information on both the linear and nonlinear properties of HeXLN waveg-
uides can be obtained by studying the quadratic response of the waveguide.
This can be achieved by varying a number of parameters such as the infrared
pump power, the temperature, the wavelength of the fundamental beam and
the incident angle. In these preliminary experiments the variation of the gen-
erated second harmonic power with the operating temperature and input fun-
damental power are considered.

The HeXLN crystal used in these experiments was similar to that shown in
Fig. 12.4 with an x length of 14 mm. A typical temperature tuning curve for the
output second harmonic power of our waveguide is plotted in Fig. 12.12. This
curve was obtained using an automated system which takes a single measure-
ment of the fundamental and second harmonic powers at each temperature
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step. The most noticeable anomalies of this curve are the large oscillations in
the second harmonic power we scanned through the temperature. Although
it is possible that these oscillations are due to a lack of averaging of the second
harmonic power measurement, the fact that they occur with a regular spacing
suggests that they are actually a real feature of the crystal. A possible explana-
tion for these oscillations is that the quality of the polished ends of this crystal
were so good, the waveguide could act as a cavity. Indeed, on calculating the
average spacing of these fringes we have in fact found that they are the same
as that expected between the fringes of a Fabry-Perot resonator with a length
and refractive index equal to those of our waveguide. However, this particular
sample was unfortunately broken before this effect could be investigated any
further.
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Figure 12.12: Average second harmonic power at the output of the waveguide as a
function of temperature obtained with the Peltier oven design.

A further irregularity of this tuning curve is that it is asymmetric. This asym-
metry can be attributed to the thermal expansion of the copper coupling block
used in our oven design which led to a vertical displacement of the input beam
with respect to the waveguide as the temperature was varied. Thus we can ob-
serve that the peak at 138 °C corresponds to SHG in the waveguide, whilst the
low temperature shoulder corresponds to some of the fundamental beam be-
ing coupled into the bulk and the rapid decay at higher temperatures is due
to coupling into the air. As a result, we expect that the measured temperature
tuning bandwidth of 5.2 °C underestimates the true bandwidth of the interac-
tion.
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After reoptimising the coupling of the fundamental beam into the waveguide,
our next step was to consider the variation of the second harmonic power with
the input pump power. A plot of the internal second harmonic conversion
efficiency: nit, = PYVT /PN isshown in Fig. 12.13. Here PYVT and PN are the
average powers of the second harmonic at the output and the fundamental at
the input, respectively. Although the peak power of the pulses can be adjusted
by changing the repetition rate at which the laser diode is modulated, the level
of amplified spontaneous emission (ASE) is higher for low repetition rates as
there is a longer time between the pulses for it to be amplified by the stored
energy. Thus to avoid spurious effects due to ASE, the repetition rate of the
source was fixed to be 1 kHz and the peak power of the pulses was adjusted
externally using a combination of a half-wave plate and a polarising beam
splitter.
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Figure 12.13: SHG internal efficiency as a function of the average input fundamental
power coupled into the waveguide obtained with the Peltier oven design.

These results show that as we increase the average power of the fundamental
beam at the input, the conversion efficiency approaches an asymptotic limit.
Although this curve is in qualitative agreement with results obtained in the
high conversion limit, the saturation effects occur at a much lower efficiency
than expected [126]. Initially it was thought that this reduced efficiency could
be due to the fact that the middle of the exit face (+x face) of the crystal was
damaged, thus forcing us to use a region off centre where we expect the poling
to be less effective. However, after re-cutting and polishing the damaged end
we found that there was no significant increase in the efficiency. Thus a more
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rigorous investigation was needed to establish the limitations to the conver-
sion efficiency and this will discussed in the following section.

12.6 Characterisation of HeXLN Waveguides

Following the success of the preliminary experiments presented in Section 12.5,
in this section we describe the improvements made to the oven and present the
subsequent results. The performance of this modified system is analysed via
calculation of the conversion efficiencies.

12.6.1 Modified Experimental Setup

As we saw in Fig. 12.12, the thermal expansion of the copper block affected
the coupling into the waveguide which led to inherent errors in our measure-
ments. Thus as a solution to this problem a new oven was designed that em-
ployed a flat resistor to heat a thin copper plate suspended via an aluminium
stand.® A sketch of this new oven is shown in Fig. 12.14. Although this oven
did not allow for such accurate control of the temperature, the advantage of
using a resistor is that these can be purchased for a large range of lengths,
thus eliminating the need for the copper coupling block. The suspension de-
sign then allowed for closer placement of the focusing lenses, enhancing the
coupling efficiency both into and out of the waveguide. Thus it was expected
that this new design should produce a more accurate description of the tem-

3This oven was designed by Dr R. Bratfalean and Dr K. Gallo.

HeXLN
Crystal
| |
1\
Resistor

Figure 12.14: Sketch of the resistor oven design.
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perature tuning at the extreme temperatures as well as yielding larger second
harmonic output powers.

12.6.2 Interaction Properties of the HeXLN Waveguide

Using the oven described in the above section, our first step was to repeat the
temperature tuning curve of Fig. 12.12 in attempt to obtain a more accurate de-
scription of the bandwidth of the waveguide. Unlike our previous results, this
time the curve was measured manually, optimising the coupling and averag-
ing over the powers at each step. The new tuning curve is plotted in Fig. 12.15.
From this we see that the temperature curve is now quite symmetric indicat-
ing the success of the new oven design. In addition, the measured temperature
bandwidth is 19.5 °C so that it is much larger than that previously obtained in
Fig. 12.12.
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Figure 12.15: Average second harmonic power at the output of the waveguide, as a
function of temperature, obtained with the resistor oven design.

Our next task was to establish why the second harmonic conversion efficien-
cies obtained in Section 12.5 were lower than expected. Firstly we note that,
as mentioned in Section 12.2.2, the period of our crystal was designed for op-
timum collinear conversion of a 1.536 um fundamental field to the second har-
monic in bulk HeXLN at a temperature of 120 °C. Thus, as the dispersion prop-
erties of the waveguide differ slightly from those of the bulk [Section 12.3], we
will need to align the fundamental beam slightly off the x-axis in order to em-
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ploy the G, o reciprocal lattice vector.

For our waveguide experiments we found that the maximum SHG efficien-
cies in fact occurred at a higher operating temperature of 147.5°C. Signifi-
cantly, however, at this temperature we observed that the guided wave inter-
action TMy(w) —TMy(2w) appeared at relatively high internal incidence an-
gles (6, ~ 6° relative to the x-axis) thus implying that a higher order reciprocal
lattice vector was being employed. From this we could determine that this
interaction was in fact being phase matched via the GG, ; lattice vector. Interest-
ingly, we also noticed a second interaction which did occur at a smaller angle
(6., ~ 3°) so that it was being phase matched by the G,  lattice vector, and this
was determined to be the TM(w) —TM; (2w) interaction. Thus we could con-
clude that the waveguide was multimodal. The observed low efficiencies can
then be explained by noting that because the TMy(w) —TM;(2w) interaction
yielded the larger conversion efficiencies (due to the lower non-collinearity
and reciprocal lattice vector order), it was this process that we had been us-
ing in our measurement processes of Section 12.5. However, as the overlap
between these two modes is smaller than between two fundamental modes,
the relative expected efficiency should be less. Nevertheless, due to the larger
SHG efficiencies, we still chose to use the latter process to further investigate
the properties of the waveguide.

With a better understanding of the processes occurring in the waveguide, we
optimised the setup for the TMy(w) —TM; (2w) interaction for the purpose of
evaluating the intrinsic efficiency. Fig. 12.16 shows the evolution of the exter-
nal second harmonic average power P{YT as a function of the average input
pump power PN (circles).

To calculate the quadratic efficiency of our waveguide we use the standard
coupled mode equations (assuming no spatial walk-off or propagation losses)
in a quasi-stationary approximation [14]:

dA, K .
= i A AL, (12.5)
dAQ K
Y= i A2 12.
dl‘ 12 w? ( 6)

where here « is the nonlinear coupling coefficient and the mode amplitudes A;
(i = w,2w) are in units of W'/2, After accounting for the coupling losses and
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Figure 12.16: Evolution of the external second harmonic average power (of the TM;
mode) as a function of the average input pump power (circles). The solid curve is a
numerical fit obtained from the coupled mode equations with » = 0.05% W ~!cm 2.

the pulsed nature of the pump beam, the numerical fit given in Fig. 12.16 (solid
curve) was obtained from Egs. (12.5) and (12.6) by adjusting . An estimate of
the normalised quadratic efficiency could then be obtained simply via x? as
Nnor = 0.05% W~tem =2 [125].

For a full-nonlinearity preserving waveguide, the expected quadratic efficiency
is given by [87]:

3d w1 E2 ) Ea, dz
Thor = 2 V' €0 ( ng) nef2psfl w ( f2 2 2 (12.7)
w 2w fE dZ) fE2w dZ

where w is the average beam width along y. In this equation the mode profiles

E; and effective indices n = 3;/k; are calculated for the index profile:

Anexp [— (z — 2)° /7] z >z

2

Anexp [—(z — %) /73] z<z (128)

n(z) = nLinbos + {

where the defining parameters are estimated from the waveguide to be:
zo=1.6pum, 2z =13pum, zo=1.3pum,

An (1536 nm) = 0.022, An (768 nm) = 0.028,

and nrinbo, 1S given by the Sellmeier equations [Section 10.4]. With ds3 =
27 pmV ! and w = 100 um, the expected efficiency was calculated to be 7,,, =
0.09% W~tem=2. Thus this is in reasonable agreement (same order of magni-
tude) with our measured efficiency.
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12.6.3 Discussion

The results of this section have highlighted two key features of the device
design that have limited the efficiency of the second harmonic process. The
first is that the waveguide is multimodal so that interactions can occur be-
tween modes with a small overlap, which clearly have reduced efficiencies.
The second is that the poling pattern of the HeXLN structure needs to be op-
timised for the collinear interaction in the waveguide which requires an accu-
rate knowledge of the refractive index profile of the structure. Once this has
been established, the spatial period A required to phase match this process
can then be calculated. It is expected that by optimising the phase matching
of the TMy(w) — TMy(2w) interaction, it should be possible to increase the
quadratic efficiencies in the HeXLN waveguides to approach the theoretical
value of 7., = 2.7% W~lem ™2, predicted by Eq. (12.7).
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Chapter 13
2D Quasi-Photonic Crystals

In the previous chapter, a two dimensional nonlinear hexagonally poled lithium
niobate (HeXLN) crystal was used to demonstrate phase matching for sec-
ond harmonic generation (SHG) and higher order harmonic processes. In this
chapter these investigations are extended to consider phase matching in a two
dimensional quasi-crystal based on a Penrose tile pattern. The discussions be-
gin with a brief introduction to quasi-crystals and their use in harmonic gen-
eration. After describing the design and fabrication requirements, the prelimi-
nary experimental results to investigate SHG in a Penrose tile quasi-crystal are
presented. These results have not only enabled characterisation of the Fourier
space but they have also demonstrated the numerous possibilities for phase
matching SHG processes, emphasising the dense nature of the reciprocal lat-
tice space.

13.1 Quasi-Crystals for Harmonic Generation

In 1984, whilst investigating the diffraction properties of AIMn metal alloys,
Shechtman et al. made the first experimental observation of a quasi-crystalline
structure [127]. Since then, there have been numerous studies on the properties
of quasi-crystals in many other physical systems such as dielectric and nonlin-
ear structures. In particular, recently there has been considerable interest in
guasi-phase matching harmonic processes in one dimensional lattices based
on Fibonacci sequences [89, 91, 128].
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The benefits of using quasi-crystals over more conventional periodic structures
can immediately be seen by considering the problem of simultaneously phase
matching two nonlinear processes in one dimension. Since the only free pa-
rameter in a periodically poled lithium niobate (PPLN) structure is the domain
period a (see Section 10.2.1), simultaneous collinear phase matching of multi-
ple processes is, in general, not possible as phase mismatches are rarely integer
multiples of a constant. However, as a Fibonacci sequence is constructed via
the tiling of two lattice constants, a and b, this provides the necessary extra
degree of freedom.

An alternative approach to the problem of simultaneously phase matching
multiple nonlinear processes is to move to two dimensions whilst retaining
periodicity in the pattern. In this instance, the additional degree of freedom
arises from the fact that the reciprocal lattice vector is now a linear combina-
tion of two orthogonal vectors (see Section 10.3). Indeed, this was the approach
taken in the previous chapter which considered harmonic generation in a two
dimensional HeXLN crystal. With this in mind, a natural extension to the mul-
tiple phase matching problem, which should provide even more flexibility to
the design of the structures, is to combine the aperiodicity of the Fibonacci type
patterns with the two dimensionality of the HeXLN structures in the form of
a two dimensional quasi-crystal. It is worth noting that, although these quasi-
crystals are expected to be worse for single interactions such as SHG, they
should be better for multiple harmonic generation than strictly periodic crys-
tals due to the greater density of reciprocal lattice vectors.

13.2 Two Dimensional Quasi-Crystals

The principal two dimensional aperiodic patterns are Penrose tiles [129]. These
patterns are constructed out of a set of basic shapes that tile the plane only
aperiodically and are characterised by long range order' and “forbidden” ro-
tational symmetries. Significantly, these patterns do not have any translational
symmetries.

LA structure is said to have long range order if the precise location of all lattice points can
be calculated once the location of two lattice points are known.
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Figure 13.1: Examples of Penrose tile patterns constructed from (a) two rhombi, (b)
kites and darts and (c) pentacles.

The classic Penrose tile consists of two rhombi of equal length sides but with
different angles (as already seen in Fig 10.3). However, there are an infinite
number of possible tilings and a sample of these are illustrated in Fig. 13.1.

13.2.1 Design Criteria

The first step to designing a two dimensional quasi-crystal is to decide on an
appropriate Penrose tile pattern. Although all Penrose tiles have roughly the
same properties, for the purpose of simplifying the fabrication process it is
useful to choose a pattern with an even distribution of lattice points. For this
reason the crystals used in the following experiments are designed based on
the classic double rhombi Penrose tile of Fig. 13.1(a).

The second step in the design process is to optimise the crystal for phase
matching SHG at the desired wavelength and temperature. This involves
choosing the correct lattice period, deciding where in the lattice to put the
poled regions (e.g., face centred or body centred) and the number of poled
regions required per unit cell. Finally, it is necessary to decide on the size of
the poled region and this is chosen such that it maximises the relevant Fourier
coefficient of the desired harmonic interaction.

13.2.2 Fabrication

The lithographic mask used to define the Penrose tile was designed specifically
for collinear quasi-phase matched SHG (aligned along the x axis) of a 1.536 um
fundamental beam at 140 °C. To ensure maximum efficiency, the pattern was
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arranged so that the Fourier coefficient with the largest magnitude was used
in the phase matching process. For a nonlinear lithium niobate crystal, with
the poled regions placed at the vertices of the Penrose pattern (i.e., face cen-
tred), these requirements translate to rhombi with sides of length 18.999 pm.
Due to the trigonal atomic symmetry of lithium niobate [Section 12.2.2], the
natural shape for the poled regions are hexagons. It should be noted that the
dimensions of the hexagons on the mask were reduced with respect to the final
desired domain size to account for domain broadening beyond the electrodes
during the poling process. A schematic diagram of an expanded view of the
mask design used in the fabrication process is shown in Fig. 13.2, together with
the corresponding pattern in Fourier space. In particular, the five fold symme-
try of the Fourier space, which is forbidden in a periodic crystal, can clearly be

seen.
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Figure 13.2: Schematic diagrams of the (a) mask design and (b) Fourier space, showing
only the larger Fourier coefficients, for the Penrose tile domain pattern.

The two dimensional quasi-crystals used in our experiments were hexagonally
poled by Dr K. Gallo. The fabrication procedure for the Penrose pattern was
the same as that used for the HeXLN crystal described in Section 12.2.2, namely
electric field poling [109]. However, in contrast to the HeXLN case where the
mask consisted of a single bulk pattern, in the hope of minimising the poling
errors this time the mask was designed to pattern 5 identical regions of size
1mm x 20 mm on each sample. In all the poled samples the Penrose patterns
were found to be uniform across the whole structure and were faithfully re-
produced throughout the crystal depth, thus confirming the validity of this
technique for fabricating two dimensional quasi-crystals. The resulting tile
pattern is shown in Fig. 13.3, as revealed by a light etch in HF acid. In this
sample the hexagons have a thickness of 8.7 um (between opposite corners)
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and constitute ~ 25 % of the total patterned area. These images clearly illus-
trate the long range orientational order and the quasi-periodic translational
order of the structure.

Figure 13.3: Photographs of the structure of the Penrose tile domain pattern of the
poled lithium niobate crystal in the x — y plane.

13.2.3 Phase Matching in a Quasi-Crystal

The precise diffraction pattern for the Fourier space, as calculated for the mask
design given in Fig. 13.2(a), is shown in Fig. 13.4. Here Fig. 13.4(a) shows
the collinear second harmonic process for which the crystal was designed. To
illustrate the dense nature of the Fourier space, Fig. 13.4(b) then shows a sec-
ond possible phase matched process that is not collinear. However, as well
as being highly noncollinear, this second process employs a reciprocal lattice

() [ ———— (b)

Figure 13.4: Calculated diffraction pattern for the Penrose tile quasi-crystal together
with two possible phase matching conditions where () is the collinear case and (b) is
a noncollinear case.
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vector with a much smaller Fourier coefficient and so is unlikely to be seen.
The significance of the density of the Fourier space can be further emphasised
through the observation that even small adjustments in the angle of the propa-
gating fundamental beam, with respect to the crystal axis, will provide a large
number of additional phase matching conditions.

13.3 Experimental Setup

A"n A‘Zm
- et 2
Amplified ; Penrose
Pulse Source . | Quasi-Crystal

Figure 13.5: Schematic diagram of the experimental setup used to observe harmonic
generation in a Penrose tiled quasi-crystal.

A schematic diagram of the experimental setup to observe harmonic genera-
tion in the Penrose tile quasi-crystal is shown in Fig. 13.5. This setup is similar
to that used to investigate harmonic generation in a two dimensional HeXLN
crystal. The significant difference, however, is that in the HeXLN experiments
we employed a planar waveguide geometry to enhance the efficiency of the
nonlinear interaction, whereas here we simply consider harmonic generation
in the bulk sample. Thus coupling into the crystal was achieved by using a
single spherical lens (focal length: f = 13 cm) from which we could obtain a
minimum focused spot diameter of 40 um (FWHM) in the centre of the crystal.

The pulse source used in our experiments was the same all fibre amplifier
chain used in the HeXLN experiments, as described in Section 6.4.1. As be-
fore, to avoid photorefractive effects it was necessary to heat the sample to a
temperature elevated above ~ 100 °C. Because in this experiment we are con-
sidering nonlinear interactions in the bulk, the diffraction effects are less signif-
icant than those of the waveguide setup. Thus the Penrose quasi-crystal could
be housed in the computer-driven Peltier oven, described in Section 12.4, but
without the coupling block shown in Fig. 12.9. A typical example of the out-
put from the Penrose tile quasi-crystal is given in Fig. 13.6 showing significant
generation of both the second (red) and third (green) harmonics.
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Figure 13.6: Output from the Penrose tile quasi-crystal showing the generated second
(red) and third (green) harmonics.

13.4 Second Harmonic Generation in a Quasi-Crystal

This section presents the preliminary experimental results to investigate sec-
ond harmonic generation in a two dimensional Penrose tile quasi-crystal. By
investigating the phase matched interactions, the Fourier space has been char-
acterised and the efficiency of the crystal established.

13.4.1 Temperature and Wavelength Tuning

We begin our investigations of the properties of the Penrose tiled quasi-crystal
by measuring the interaction bandwidth for which information can be ob-
tained by either measuring the second harmonic power as a function of tem-
perature or wavelength. The Penrose tiled quasi-crystal used in these experi-
ments was similar to that shown in Fig. 13.3. We start by considering the tem-
perature tuning of the second harmonic power. For this measurement, the fun-

SHG Power (mW)

0
120 130 140 150 160

Temperature (°C)

Figure 13.7: Average second harmonic power at the output of the Penrose tiled quasi-
crystal as a function of temperature.
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damental pump source was operated at a repetition rate of 100 kHz to produce
5 ns pulses with an average power of 200 mW incident on the crystal. With the
fundamental beam gently focused into the crystal, the incident power was suf-
ficiently low to ensure that we were in the low conversion regime. The crystal
was then aligned with respect to the incident beam to obtain phase matching
for the brightest single second harmonic spot at 140°C. The resulting tempera-
ture tuning curve is plotted in Fig. 13.7 and this has a FWHM of 7.3°C. Signif-
icantly, the distinctly non-sinc shape of this curve, which we would expect for
a collinear interaction [3], suggests that the interaction we are investigating is
in fact noncollinear [124]. Indeed, using the relation for the predicted intensity
of the second harmonic field:
202

2w X —SI?A(kALk}g)/f ), (13.1)
where Ak = 2k, — ko, and L is the length of the crystal, we have calculated
that the expected bandwidth for a corresponding collinear interaction in PPLN
is 3.6 °C, which is under half our measured width, also impling a noncollinear
interaction. However, before investigating this any further, we first measured
the second harmonic power as a function of wavelength using the same geom-
etry.

For these measurements the fundamental pump source was again operated at
a repetition rate of 100 kHz. However, as the available power from the source
is wavelength dependent, this time we used an external attenuator (consist-
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Figure 13.8: Average second harmonic power at the output of the Penrose tiled quasi-
crystal as a function of wavelength.
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ing of a half-wave plate and a polarising beam splitter combination) to ensure
that the average power incident on the crystal remained constant at 150 mW.
The resulting wavelength tuning curve is presented in Fig. 13.8 with a FWHM
of 1.39nm. Again, using Eq. (13.1) the expected bandwidth for a collinear in-
teraction was calculated to be 0.55 nm, providing further evidence of the non-
collinearity of our interaction. We note that the tuning peaks seen on the edges
of this curve correspond to additional phase matching processes occurring si-
multaneously, and thus can be attributed to the dense nature of the reciprocal
lattice vectors.

13.4.2 Efficiency Measurements

In the interest of obtaining a better understanding of the interactions occurring
in the crystal, our next step was to measure the maximum attainable conver-
sion efficiency to the second harmonic power. For this measurement, the setup
was optimised to provide 480 mW average power at a repetition rate of 100 kW,
corresponding to a fundamental peak power of 960 W. With the coupling ad-
justed for maximum focusing to the smallest spot size, the crystal was aligned
with respect to the incident beam to obtain the optimum phase matching at
140°C. In this configuration we achieved a second harmonic peak power of
15.7'W, which corresponds to an external conversion efficiency of 1.63%. For a
collinear interaction, the expected internal conversion efficiency can be calcu-
lated via:

Nint = tanh (GL), (13.2)

where L is the interaction length and

2w? d%,

w
goc® n3

G = (0). (13.3)
Here 1,(0) is the input fundamental intensity, n ~ n, ~ ng, and d.g is the
effective nonlinear coefficient which is proportional to the size of the Fourier
coefficient [EqQ. (10.54)]. Assuming that the interaction corresponds to that de-
picted in Fig. 13.4(a), where the peak has a Fourier coefficient of 0.1053, and
taking into account the Fresnel reflections at the input and output faces of the
crystal, Eq. (13.2) predicts an external efficiency of ~ 27%. Significantly this is
considerably larger (by an order of magnitude) than our measured value and
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thus to establish the reason for this discrepancy a more careful investigation of
the setup was required.

Our first step was to establish the collinearity of the interaction and this was
achieved by measuring the angle between the pump beam and its back re-
flection from the front face of the crystal, which for a perfectly collinear case
should be zero. In doing this we noticed that there was actually a signifi-
cant angle between the normal of the crystal and the propagating fundamental
beam. Furthermore, by rotating the crystal back through the normal we found
that there was an identical spot on the other side at a corresponding negative
angle. Thus it was clear that at this temperature the crystal was not phase
matching the collinear process illustrated in Fig. 13.4(a), and that a higher or-
der reciprocal lattice vector was in fact being employed. As a result, the mask
design was rechecked and it was found that there was an error in the Pen-
rose pattern such that the sides of the rhombi were in fact 17.818 um, that is
1.172 ym shorter than the calculated value [Section 13.2.2]. Thus in order to
establish the phase matching processes that we were observing in our crystal
it was necessary to characterise the Fourier space of our crystal.

So that we could make use of the expected symmetrical nature of the Fourier
space (see Fig. 13.4), we began our characterisation process by realigning the
crystal so that the fundamental beam was perpendicular to the input face. By
scanning through the temperature range 100 — 160 °C we could then observe a
number of SHG interactions which were phase matched in this geometry and
these processes were associated with the appearance of two second harmonic
spots symmetric about the output fundamental, as illustrated in Fig. 13.9. The
two brightest sets of spots occurred at 105°C and 148 °C and it was the set at
148 °C that we chose to use for our further investigations of the Fourier space.

Figure 13.9: Output from the Penrose tile quasi-crystal with the fundamental beam
perpendicular to the crystal face showing the two symmetric second harmonic spots.

To determine the phase matching processes occurring in this configuration we
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Figure 13.10: Fourier space overlaid with the Ewald sphere showing phase matching
for the symmetric second harmonic spots at 148 °C.

first recalculated the diffraction pattern for the Penrose tile pattern for rhombi
with sides of length 17.818 um at 148°C. The recalculated diffraction pattern
is shown in Fig. 13.10 together with the Ewald sphere construction [71]. Al-
though the Ewald sphere was initially defined for investigating x-ray diffrac-
tion problems, it is also extremely useful for understanding two dimensional
quasi-phase matching processes. Here the sphere is constructed such that its
centre is located —2k, away from the origin of the reciprocal lattice with a
radius of k,,. The relevant reciprocal lattice vectors and the corresponding
Fourier coefficients for the allowed phase matched processes can then be de-
termined from the peaks which are located on the Ewald sphere as indicated
on the figure. For these two spots the Fourier coefficients were calculated to be
0.019 which is an order of magnitude smaller than the Fourier coefficient for
the collinear interaction. By measuring the external angles of the pump and the
second harmonic beams for the spots in Fig. 13.9 we could confirm that these
were in fact being generated via the interactions represented in Fig. 13.10.
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Spot | Pump Ang. | SHG Ang. | Spot | Pump Ang. | SHG Ang.
1 0.167° 2.624° 22 —21° —19.421°
2 0.167° —2.290° 23 —24.333° —25.438°
3 —1.5° —2.684° 24 2.167° 3.238°
4 —2° —6.054° 25 2.75° 6.504 °
5 —2° —12.483° 26 2.75° 13.306 °
6 -3° —9.179° 27 3.583° 9.932°
7 —5.5° —5.838° 28 6.083° 6.658 °
8 —6.5° —2.222° 29 7° 2.005°
9 —6.5° 0.381° 30 8° 10.232°
10 —7.75° —9.700° 31 8.583° 5.428°
11 —8.167° —4.922° 32 11.333° 14.937°
12 —10.833° —13.482° 33 11.333° 2.538°
13 —10.833° —4.208° 34 11.75° 9.867°
14 —11.167° —9.104° 35 12.583° 12.222°
15 —12° —11.774° 36 13° 15.705°
16 —12° —14.930° 37 15.333° 18.274°
17 —14.75° —17.421° 38 15.333° 19.510°
18 —14.75° —18.725° 39 16.583° 12.473°
19 —16.083° —11.917° 40 18.583° 15.991°
20 —17.833° —15.038° 41 18.583° 21.535°
21 —17.833° —20.842°

Table 13.1: Angular measurements for the SHG interactions in a Penrose tile quasi-
crystal.

To establish a more complete characterisation of the Fourier space, our next
step was to measure the angular dependence of the second harmonic pro-
cesses. For this measurement we simply rotated the crystal with respect to
the pump beam so that phase matching via different reciprocal lattice vectors
could be observed. As above, by measuring the external angles of the funda-
mental and second harmonic beams the corresponding Fourier peaks which
were responsible for the particular interaction could be determined. Using
an average pump power of ~ 260 mW, and rotating the crystal through an
angular range of +25°, we observed 41 phase matched SHG processes. For
reference, the measured angles are given explicitly in Table 13.1, where both
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Figure 13.11: Fourier space showing the corresponding Fourier peaks for the mea-
sured second harmonic spots given in Table 13.1.
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Figure 13.12: External second harmonic angle as a function of the external pump angle
where 0° corresponds to propagation along the crystal axis. The green spots corre-
spond to the experimental measurements and the blue to the theoretical predictions.

the pump and second harmonic angles are given with respect to the normal of
the crystal. The corresponding Fourier peaks are then labelled in Fig. 13.11.

This data is summarised in Fig. 13.12 where the external second harmonic an-
gle is plotted as a function of the external pump angle, and 0° corresponds
to propagation along the crystal axis. In this figure the green and blue spots
correspond to the experimental measurements and theoretical predictions ob-
tained from the Fourier space of Fig. 13.11, respectively. We note that the two
red spots which appear at symmetric angles about 0° correspond to situa-
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tions where, for the measured pump angle, no Fourier peaks lay exactly on the
Ewald sphere. Unfortunately we have not been able to establish the reason for
this discrepancy. However, by choosing the Fourier peak closest to the sphere
it is clear that we can still obtain a reasonable match to the measured output
second harmonic angle so that it is likely that this can be attributed to exper-
imental error. Thus these results have demonstrated an excellent agreement
between the experimental and theoretical angles over the majority of interac-
tions, including those corresponding to higher order reciprocal lattice vectors,
indicating the high quality of the crystal.

Having satisfied ourselves that the diffraction patterns illustrated in Figs. 13.10
and 13.11 are indeed accurate representations of the Fourier space of the Pen-
rose tile quasi-crystal, our final task was to recalculate the expected efficiency
for the original single spot interaction. Again, by measuring the external an-
gles of the fundamental and the second harmonic beams we could determine
that the Fourier peak which was phase matching this process was the same
Fourier peak as used in the interaction which generated spot 28 in Fig. 13.11
and this has a Fourier coefficient of 0.026. Thus using this value in Eq. (13.2)
the expected external conversion efficiency is now only 2.06%, which is in rea-
sonable agreement with our measured value of 1.63%.

13.4.3 Discussion

The results presented in this section have provided the first preliminary demon-
stration of second harmonic generation in a two dimensional quasi-crystal. By
analysing the interaction processes occurring in the crystal, we have estab-
lished that the main limitation to our conversion efficiencies is the inability to
phase match the collinear interaction illustrated in Fig. 13.4(a), which involves
the largest Fourier peak. This was due to an error in the mask design which
resulted in a reduced phase matching period. Although in theory it should be
possible to access this particular interaction by simply considering a process
involving different wavelengths, we have calculated that the required wave-
length of the fundamental pump is ~ 1.2 um, which is well outside the tuning
range of our source.? Thus in order to utilise this particular interaction ge-

2The exact wavelength will depend on the choice of operating temperature.
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ometry, we would first need to redesign our lithographic mask for the correct
dimensions.

Despite the small observed conversion efficiencies, this crystal has neverthe-
less highlighted one of the most important features of a two dimensional quasi-
crystal which is the dense nature of the reciprocal lattice space. This increased
density of the reciprocal lattice vectors should provide greater flexibility to
phase matching processes in many novel devices, particularly for situations
where multiple nonlinear interactions are required.
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In Part 2 of this thesis | have numerically and experimentally investigated the
control and manipulation of light propagating in novel crystal structures.

The results of numerical calculations used to analyse the guided mode solu-
tions of one dimensional negative refractive index waveguides, presented in
Chapter 11, have demonstrated a number of unusual properties that differ
considerably from those of conventional waveguides. Typical features of these
waveguides include anomalies in the appearance of the mode orders, double
degeneracy of modes, superluminal propagation speeds as well as extraordi-
narily large group velocity dispersion. Calculation of the coupling coefficients
between modes of positive and negative index waveguides has shown that it
is possible to couple light into these structures.

The experimental investigations of Chapter 12 provided the first demonstra-
tion of second harmonic generation in a HeXLN buried planar waveguide. By
analysing the interaction between the guided fields it was established that the
waveguide was in fact multimodal. The low conversion efficiencies measured
for the second harmonic process were attributed to an incorrect phase match-
ing period in the waveguide, which led to the interaction occurring between
modes of differing order.

Finally, the measurements presented in Chapter 13 also provided another first
by demonstrating second harmonic generation in a two dimensional quasi-
crystal based on a Penrose tile pattern. Despite the low observed conversion
efficiencies, which were due to an error in the mask design, these are neverthe-
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less in good agreement with the expected efficiencies obtained via a Fourier
analysis of the crystal. These results have illustrated numerous possibilities
for phase matching SHG processes, emphasising the dense nature of the recip-
rocal lattice space and the flexibility of such crystals for use in novel devices
based on multiple nonlinear interactions.

The work presented in this part of the thesis has demonstrated many new con-
cepts which can be employed to control and manipulate the propagation of
light in modulated crystal structures. Although many of these results are pre-
liminary, they represent a number of “firsts” in their respective technological
areas and thus they should provide a basis on which to develop more refined
devices. It is hoped that the results presented in this second part of the thesis
will not only spark interest as novel curiosities, but also that they will benefit
many areas of optical technologies.
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Applications and Future Directions
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Introduction

The results presented in the proceeding chapters have demonstrated a num-
ber of important new results regarding the control and manipulation of light
in optical devices. In particular, in Part 1 | investigated self-similar pulse so-
lutions which offer unique distortion free propagation so that the pulses can
be amplified to high powers and compressed to ultrashort durations. Then in
Part 2 | considered novel crystal structures which can be used to control the
speed of light or to generate new, shorter, wavelengths via harmonic conver-
sion processes.

As mentioned in Chapter 1, it is hoped that an improved understanding of the
processes described in the first two parts of this thesis can be combined to aid
with the design of more efficient devices. Indeed, to some extent | have already
demonstrated this within the body of the thesis. For example, in Chapter 6 the
experiment to generate parabolic pulses in a highly nonlinear microstructured
fibre via Raman amplification was seeded using an optical parametric oscilla-
tor (OPO) based on a periodically poled lithium niobate (PPLN) crystal specif-
ically because this type of source could provide a signal beam at wavelengths
tunable under the Raman gain curve. Then in Chapter 11 the investigations of
the guided mode solutions for a fibre with a negative index core were based
on a structure with a periodic cross section similar to that of the conventional
air filled microstructured fibres.

In this final part of the thesis | will describe a novel oscillator design that com-
bines many of the interesting features of the earlier results to produce an effi-
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cient, widely tunable short pulse source. Although to date the widest tuning
ranges are still obtained in OPOs based on periodically poled crystals [130],
recently some attention has been focused on wavelength tuning in fibre based
sources [131]. However, to overcome restrictions in their tunability both these
source designs have typically required continuous cavity modifications such
as changing the grating period of the crystal and/or the cavity length. For
this reason the device described in the following chapter combines both the
large wavelength conversion obtained via frequency doubling in PPLN with
the tunability of fibre loops based on the Raman frequency shift. Due to the
flexibility of this oscillator design, it is expected to find wide application in
many areas of short pulse technologies.

To conclude this thesis, the final chapter in this part will discuss suggestions
for future research directions.
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Widely Tunable Self-Similar
Oscillator

16.1 Introduction

In this chapter a numerical model of a widely tunable oscillator, that operates
in the wavelength range of 1 um — 2 um, will be investigated. This oscillator
combines the large wavelength conversion obtained via frequency doubling in
solid state periodically poled lithium niobate (PPLN) devices with the tunabil-
ity of fibre loops based on the Raman frequency shift, and thus contains some
of the important results obtained in the first two parts of this thesis. Signifi-
cantly, it will be shown that despite the wide range of devices used in the sys-
tem the pulses evolve self-similarly in each stage of the oscillator, maintaining
a hyperbolic secant form, whilst their peak power and width scale according
to the device mechanism.

16.2 Oscillator Model

The oscillator is simulated based on the schematic diagram given in Fig. 16.1.
The seed pulses are first Raman shifted from 1.5 um to 2 ym before being fre-
guency doubled via quasi-phase matched second harmonic generation (SHG)
back down to 1 um. After the pulses undergo regeneration in an amplifier/
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Figure 16.1: Schematic diagram of the oscillator model.

compressor combination they are then Raman shifted back up to 1.5 um where
again they are amplified and compressed before being relaunched into the first
Raman shifting stage. To ensure pulse stability in the oscillator, a saturable ab-
sorber with a power dependent transmission characteristic is included. This
ensures that the pulse energy does not become too great so that the correct
Raman shifts are maintained and is particularly important for the first Raman
stage as the efficiency of the subsequent PPLN stage is highly dependent on the
input wavelength. The resulting system can then be tailored to provide soli-
ton pulses potentially at any wavelength within the range 1 ym — 2 pgm simply
by placing an output coupler at the required length along either of the Raman
shifting fibres.

16.3 Numerical Model and Device Parameters

16.3.1 Propagation Equations

Modelling of the pulse evolution in the oscillator of Fig. 16.1 can be considered
in two parts, one for the fibre stages and one for the PPLN stage. Propaga-
tion in the fibre stages can be described by an equation which combines the
generalised forms of the nonlinear Schrodinger equations (NLSE) presented in
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The important feature of this equation is the inclusion of the frequency de-
pendence of the fibre parameters. This is essential because of the large 0.5 ym
wavelength shifts of the pulses in the Raman stages. As the dispersion and
nonlinearity profiles vary relatively slowly with frequency, in these terms the
frequency dependence is simply accounted for by updating their values for the
central frequency of the pulse w, at each propagation step. However, as both
the loss (o < 0) and gain (a > 0) profiles exhibit strong peaks, it is necessary
to include the full frequency dependence of these parameters [4]. It should
be noted that in the Raman term, R(7') is the usual nonlinear response func-
tion expressed in the form: R(T) = (1 — fr)6 (T) + frhr (T) [Section 3.10.2].
This equation can be solved using a combination of the techniques described
in Section 3.10.

The PPLN section of the system is modelled using the coupled equations for
SHG as given in Section 10.9.2:

o n3, 0 1 0
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Here the fields ¥, are related to the slowly varying amplitude in Eq. (16.1)
via: ¥, = U, exp [i (k,z — mT)], and m = w, 2w for the fundamental and sec-
ond harmonic fields, respectively. Again n,, are the refractive indices, k,, =
27,/ Am are the wavenumbers, and the equations are solved using the finite
difference technique also described in Section 10.9.2.

16.3.2 Device Parameters

The specific design of the oscillator was chosen so that it could take advantage
of the efficient rare-earth doped fibre amplifiers at ~ 1 ym (Yb**:doped) and
~ 1.5 um (Er3*:doped). To obtain the large frequency shifts, small core highly
nonlinear microstructured fibres are used for the Raman shifting stages. In
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particular, the use of a microstructured fibre for the second Raman stage is
necessary as their dispersion properties can be tailored such that they exhibit
anomalous dispersion over the entire 1 ym — 1.5 um wavelength range. Fur-
thermore, due to the strong OH-absorption peak in the loss profile of silica
fibres that appears at 1.37 um (see Ref. [4] and Fig. 16.2), a two stage Raman
shift was found to be more efficient in this section.

For each of the fibre stages the parameters used in the simulations are based
on realistic experimental values [12, 132, 133]. As mentioned above, due to
the large 0.5 um wavelength shifts of the pulses in the Raman stages, it is es-
sential to include the frequency dependence of the fibre parameters. For the
nonlinearity parameter, this simply requires calculating v = nswo/cAqs at each
propagation step. However, for the dispersion, loss and gain terms the ex-
plicit forms of the parameter profiles need to be considered. The dispersion
and gain profiles for a standard SMF geometry have already been given in
Chapter 3 and it is these that are used for the amplifier stages. For the mi-
crostructured fibre stages, although the exact form of the fibre parameters will
depend on the specific structural design, here the calculations are simply based
on the shape of the dispersion and loss profiles for a pure silica fibre, but with
some slight modifications. In particular, for the second Raman stage the zero
dispersion wavelength needs to be shifted so that the fibres exhibit anomalous
dispersion over the entire wavelength range. Also, as the losses are greater
in @ microstructured fibre than in a standard SMF, the magnitude of the loss
profile (as given in Ref. [4]) needs to be increased. The modified forms of the
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Figure 16.2: (a) Dispersion shifted profile for the second Raman shifting stage and (b)
the loss profile used for both the microstructured fibre stages.
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dispersion and loss profiles used in the simulations can be seen in Fig. 16.2.
For convenience, the relevant parameters are given explicitly in Table 16.1.

RAMAN1 | AMP1 | COMP1 | RAMAN?2 | AMP2 | COMP 2
L (m) 85 3.9 2.2 45,50 2.45 1.15
By (ps?km™) | silica 20 -31 DS silica 20 -31
Ao (um?) 13 35 0 8,5 23 0
a(m™?) silica 1 0 silica 0.3 0

Table 16.1: Device parameters for the fibre stages.

For the PPLN stage of the oscillator the crystal length was chosen to be 400 ym
so that, whilst it is typical of that employed in real experimental configura-
tions [134], it is not too long that it results in impractical computation times.
Assuming an operating temperature of 7" = 120°C (to avoid photorefractive
effects), the grating period for a 2 yum — 1 um process is A = 29.3 ym. The re-
fractive indices in Egs. (16.2) and (16.3) are then calculated at each cycle for the
exact wavelength of the pulse exiting the first Raman stage. Typical conver-
sion efficiencies for this process are or the order of ~ 8 %. The low efficiency
of this process is consistent with experimental observations [12] and, as dis-
cussed in Section 10.9.2, can be attributed to the phase mismatch due to the
broad bandwidth associated with the short input fundamental pulse.

Finally, the saturation energy FE.,; of the saturable absorber is chosen to be that
of the input pulse energy with a power dependent transmission characteristic,
as mentioned in Section 16.2.

16.4 Simulations Results

The oscillator is assumed to be initially seeded with 312 pJ, 350 fs (FWHM)
hyperbolic secant pulses, typical of those generated via compression of the
output from an Er3*:doped fibre laser (such as that described in Section 6.4.1).
The evolution of the pulses in the oscillator at 1.5 ym is shown in Fig. 16.3.
Despite the slight variation in the pulse shape, especially near the peak, this
figure illustrates the ability of the oscillator to produce a consistent output of
uniform pulses.
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Figure 16.3: Evolution of the pulses in the oscillator at 1.5 um over 20 cycles.

The stability of the oscillator is then confirmed in Fig. 16.4 which shows the
evolution of the (a) FWHM width and (b) peak power of the pulses also at
1.5 um. Significantly, it is clear that after each loop the pulses have returned to
a form where their parameters are consistent with those of the seed pulse. Itis
important to note that in Figs. 16.3 and 16.4 the number of oscillator cycles is
only restricted to 20 cycles due to the long computation time, particularly for
the PPLN stage.

Examples of the pulse profiles and chirps at the output of each stage of the
oscillator system are then plotted in Fig. 16.5, together with the original seed
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Figure 16.4: Evolution of the (a) FWHM width and (b) peak power of the pulses at

1.5 pm.
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Figure 16.5: Pulse profiles (left axes) and chirps (right axes) of the output pulses after
each stage of the oscillator, together the seed pulse. The pulse profiles have been
normalised in power and time so that they have a peak intensity and FWHM width of
1. The circles are hyperbolic secant fits.

pulse. To allow for easy comparison between the pulses they have been nor-
malised in power and time with their physical parameters given explicitly in
Table 16.2. Significantly, by comparing the shape of the intensity profiles it can
be seen that the functional form of the pulse remains essentially unchanged
after each stage of the oscillator. This is particularly obvious in the early stages
of the loop before it is necessary for the pulses to undergo significant regenera-
tion to compensate for the large losses experienced in the second Raman stage.
However, despite the slightly noisy appearance of the pulses after this second
regeneration stage, in all cases the pulses exhibit a reasonable agreement with

RAMAN1 | PPLN | AMP1 | COMP1 | RAMAN?2 | AMP2 | COMP 2
AT (fs) | 180 130 | 1900 | 150 240 1400 | 360
Py (W) | 760 70 | 240 | 3150 530 230 820
E (pJ) 150 10 | 480 480 160 310 310

Table 16.2: Average pulse parameters after each oscillator stage.
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the hyperbolic secant fits to the intensity profiles (circles). In addition, it can
also be noticed that in most cases the pulses have a flat phase with only the
amplified pulses possessing a significant chirp. Importantly, as it has been
shown in the first part of this thesis, the development of a linear chirp is often
associated with self-similar evolution and furthermore, ensures efficient com-
pression of the pulses with minimal pulse distortions. Thus it appears that the
evolution of the pulses in the oscillator is, in a sense, self-similar.

To understand the self-similar nature of the pulses in this system, the evolution
of the pulses in the individual stages are considered. In the Raman stages, to
obtain the large frequency shifts a shifting mechanism based on the break up
of high power pulses into multiple fundamental solitons, at different Stokes
frequencies, is employed. These solitons then propagate under the influence
of the soliton self-frequency shift, which is clearly a self-similar process. The
final pulse is then obtained simply by placing a bandpass filter of the desired
wavelength at the output of the fibre.

In the amplifier stages, as only moderate amplification is required, the evolu-
tion occurs in a regime where the nonlinear effects are still small so that dis-
persion dominates the pulse propagation. Significantly, self-similar analysis
of the evolution of pulses in an amplifier has shown that in the early stages
of the propagation, where the dispersion does indeed dominate, intermediate
asymptotic solutions exist which will maintain their initial form whilst devel-
oping a linear chirp [135]. For a hyperbolic secant input pulse the form of the
solutions are:

U(2,T) = FI(DZ) sech ( TOIT (2)) exp (G;”)) exp [iB(2, T)] (16.4)

where

- Bo (7 1 “exp[G()] T°  dr(2)
Oz, T)=¢y +2—T02/0 112(2/)dz +WPO/0 7F(z’) dz’ — 5T(2) dz

Here the evolution of the pulse width, peak power and chirp are determined

. (16.5)

by the amplifier parameters through:

G(z) = /OZ g(z"dz, (16.6)
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and

§(A222—1) [* Zexp|G(2)]
r = V14222 4+ / ds/
) T T e (1+ A222)*? :

6z /Z (A22"2 — 1) exp [G(2")]
V142222 Jy (1+ )\2212)3/2

where A\ = 2 |3,] /7TZ and § = 43, Py /7 T.

4z, (16.7)

Fig. 16.6 compares typical output pulses from the two amplifier stages with
Egs. (16.4)—(16.7). Despite the noise on the output pulse from the second Er3*:
doped amplifier stage, both these pulses and their chirps are in good agree-
ment with the theoretical predictions (circles). Thus it can be concluded that
the pulses in the amplifier stages are also evolving self-similarly, maintaining
their hyperbolic secant form. An important feature of the self-similarity of
these pulses is that because of the linearity of the developed chirps, the output
pulses from the amplifier stages can be compressed via a simple linear com-
pressor (as described in Section 5.3.3) to yield transform limited pulses that
will also retain an approximate hyperbolic secant profile.
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Figure 16.6: Examples of the output intensities (left axes) and chirps (right axes) from
(a) the Yb?+ amplifier stage and (b) the Er3* amplifier stage of the oscillator (solid
lines). The circles are the theoretical predictions for the intermediate asymptotic solu-
tions.

The final stage to consider is the pulse evolution in the PPLN crystal. As it can
be seen from Eqs. (16.2) and (16.3), the form of the SHG pulse is determined
by the fundamental so that this will again be generated to have an approxi-
mate hyperbolic secant form but with a reduced width: AT, ~ ATw/\/i,l as

1This is exact for a Gaussian pulse with the assumption of an undepleted pump.
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discussed in Section 10.9.2.

Thus these results have shown that the pulses evolve self-similarly in all stages
of the oscillator with their peak powers and widths scaling according to the
device mechanism. At this point it is important to emphasise that the self-
similar nature does not apply to the system as a whole, but only in the indi-
vidual stages. However, significantly, in all stages the self-similar propagation
evolves to a pulse with a hyperbolic secant form so that there is an overall
quasi-self-similar nature of the system.

16.4.1 Extension to Higher Energies

As a final test of the stability of this oscillator, a modified system is considered
where the oscillating pulses have higher energies than the previous system.
Importantly, this will establish the ability of the pulses to withstand deleterious
distortions associated with high energy propagation, and thus reinforce the
self-similar nature of the oscillator.

RAMAN1 | AMP1 | COMP1 | RAMAN?2 | AMP2 | COMP 2
L (m) 45 3.75 2 5,50 2.2 1
By (ps?km ) | silica 20 31 | DSsilica | 20 -31
Aug (um?) 13 35 0 8,5 23 0
a(m) silica 1 0 silica 05 0

Table 16.3: Modified device parameters for the fibre stages.

The modified system parameters are given explicitly in Table 16.3. In this sys-
tem the oscillator is now assumed to be seeded with a 380 pJ, 350 fs (FWHM)
hyperbolic secant pulse. The output pulses and chirps after each stage of the
oscillator are plotted in Fig. 16.7 where again, for comparison purposes, they
have been normalised in power and time. The corresponding pulse parame-
ters are given in Table 16.4. Clearly, despite the overall increase of the pulse
energies and peak powers in the system, these pulses have a very similar ap-
pearance to those of the previous system as seen in Fig. 16.5. Additional confir-
mation of the self-similar nature of this modified system is again provided by
the good agreement with the hyperbolic secant fits to the intensity profiles (cir-
cles). Thus it is reasonable to expect that these pulses are evolving in a similar
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Figure 16.7: Pulse profiles (left axes) and chirps (right axes) of the output pulses after
each stage of the modified oscillator, together the seed pulse. The pulse profiles have
been normalised in power and time so that they have a peak intensity and FWHM
width of 1. The circles are hyperbolic secant fits.

manner to those of the previous system.

Finally, to demonstrate the stability of this modified system, Fig. 16.8 plots the
evolution of the (a) FWHM width and (b) peak power at 1.5 um, as a function
of the oscillator cycle. Again, it is clear that after each loop the pulses have
returned to a form where their parameters are consistent with those of the

seed pulse.
RAMAN1 | PPLN | AMP1 | COMP1 | RAMAN?2 | AMP2 | COMP 2
AT (fs) 146 107 2273 150 309 1226 342
Py (W) 1020 130 270 3640 350 270 1110
E (pJ) 170 15 630 630 130 380 380

Table 16.4. Average pulse parameters after each oscillator stage for the modified sys-
tem.
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Figure 16.8: Evolution of the (a) FWHM width and (b) peak power of the pulses at
1.5 pm in a higher energy oscillator.

16.5 Discussion

The results presented in this chapter have demonstrated a self-similar oscil-
lator, tunable over the wavelength range 1 pm — 2 um, which is capable of
producing hyperbolic secant pulses with peak powers of the order of a kilo-
watt and sub-picosecond widths. Significantly, this oscillator has illustrated
how the various technologies described in the earlier parts of this thesis can be
combined to produce a novel short pulse source. In addition, it has also been
shown that with careful choice of the device parameters it is possible to scale
this oscillator to a system with higher pulse energies. Thus it is expected that
this oscillator could be tailored to yield a wide range of pulse widths and peak
powers depending on the system requirements.
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Future Directions

The work carried out in this thesis has identified many areas of research wor-
thy of further study.

The results presented in Part 1 to demonstrate high intensity self-similar pulse
solutions in optical fibres have left considerable scope for development and
could potentially spark many new directions for future research. In particular,
although the experimental demonstrations described in Chapters 5 and 6 have
indicated the early stages of parabolic pulse evolution, there is still plenty of
room for optimisation of the systems. As the main limiting feature of both
these experiments has been attributed to a lack of suitable fibres, most of the
recent efforts have been focused on developing new fibre designs.

Owing to the success of the theoretical and numerical investigations described
in Chapter 7, the next step in this project will be to conduct experiments to
provide the ultimate verification of these solutions. Because of the wide range
of fibres, pulse sources and pulse shaping techniques that are available within
the ORC it is likely that the experiments will be conducted here. Significantly,
in all likely experiments involving self-similar evolution it is highly important
that the measured pulses can be accurately characterised not only to allow for
rigorous comparisons with the predicted solutions, but also to aid in the op-
timisation of the systems. Thus it would be beneficial if parallel work was
carried out to improve the available pulse diagnostic techniques and this will
involve developing FROG pulse measurement devices optimised for the ap-
propriate wavelengths and design criteria of the experimental setups.
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The investigations into the use of novel crystal structures to control and ma-
nipulate the propagation of light, described in Part 2, have also exposed nu-
merous possible directions for further research. Although there are no imme-
diate plans to conduct any experiments involving the negative refractive index
guides discussed in Chapter 11, it is hoped that as the technologies involved
in the fabrication processes of these structures are advanced, this is something
that could be considered in the future. In contrast to this, the two dimensional
nonlinear structures used for harmonic frequency generation in Chapters 12
and 13 are still currently under considerable investigation in the pursuit of
improving the efficiency of the devices. Once this has been achieved, future
tasks will involve using these devices to investigate novel physical phenom-
ena, such as spatial solitons, as well as seeing them incorporated into practical
integrated systems.

In addition to considering the future directions of the individual projects, as
discussed in Chapter 15, there is also the option to exploit the combined knowl-
edge of the various technologies to design and develop more efficient devices.
To this end it would be desirable to construct a single device which is based on
the different structures investigated in the two parts of this thesis (i.e., fibres
and modulated crystals). In the context of this thesis, ultimately this would
be in the form of the self-similar oscillator described in Chapter 16. However,
there are numerous other design possibilities for novel devices based on these
structures and thus it is hoped that the results presented in this thesis will con-
tribute to their development.
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Appendix A

Calculation of Spectral Phase in the
Transform Limit

The notion of a “transform-limited” pulse is widely used in ultrafast optics
to refer to a pulse whose temporal duration is the shortest possible, given the
available spectral width. In this Appendix, the precise form of the spectral
phase which corresponds to this condition will be determined.

Given the complex spectral amplitude: ¥ (v) = A (v) exp [ié@ (1/)] ,where A (v) =
| (v) |, the analysis is based on the search for the form of the spectral phase

® (v) such that the temporal duration of the pulse is minimised. Here the RMS
width is considered so that:

Ar = [(£2) — 7", (A1)
where I 9
W (2, 0)]dt
(th)y = —= . (A.2)
Jo 1 (2 ) dt
From Parseval’s theorem [136],
o0 [e.e] ~ 2
/ \\If(z,t)]th:/ ’\If(z,l/) dv =U, (A3)
so that the denominator in Eq. (A.2) is simply the pulse energy U.
From the definitions of the Fourier transform,
T (v) = / W (t)e?™dt, (A.4)
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and its inverse transform,

U (t) = / T (v) e 2™y, (A.5)
it follows that ~
d¥ (v) _ i27 / tW (t)e?™dt, (A.6)
dv o
and thus .
o —1 > dv (v) —i2nut
tv(t) = o [/OO o e dv| . (A.7)

Using Egs. (A.6) and (A.7), (t2) is related to ¥ (v) through:
(1?) = l/ 20 ()] de
_ L / 0 (1)] [ ()] dt

d\I}( ) —127rut
an . [ / D v

g [ e
1 / AW (v) AT* (v) 4

£U* (t) dt

(27r) dv dv Y
1 4 (1)
(2ﬂ)2 /OO D dv.

Similarly, the relationship between (t) and W (v) is

<t>=i/°°t|\v<>\ dt

= —/ tW () U* (¢

d\If( ) 7i27r1/t
27rU . [ /_ v v
o —1 > d\il (V) >~ 2wt "
_27rU/_oo - [/mxp(t)e at| dv

i AW (v) -,
_27TU/OO o U* (v) dv.

However, by writing the field ¥ (v) in terms of its amplitude and phase, then

U (£) dt
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clearly,
d\ij (V) _ d A i®(v)
dv  — dv [A (v)e ] ’
. dA . ~dé '1&’(1/)
= E —|—1A$ e y
which yields,
~ 2
1 > |dA ~dd
) = — +iA—| d
) <27r>2U/oo T
1 ~ (44\’ o0 b\’
= — ] d A2 — ) d A8
(2m)* U {/oo (dV) V+/Oo (dl/> V}’ (A8)
and

(t) _1/ %HA@

" oU ), | dv dv

_ 2;1U /Z :Ai_f+iAQi_§ dv

S IR R

L Z A?i_fdy. (A9)

Combining Egs. (A.8) and (A.9) in Eq. (A.1), the RMS width is obtained as
~\ 2 ~ =\ 2
o {7 () e e (48 )
~ ~ 2
07 {f,oo 4 (?i_@) d”}

Using a variational approach it can be shown that this expression is minimised
when

1/2

AT = (A.10)

P
d— = const, (A.11)
dv

which implies that the transform limited pulse duration,
1

N2 1/2
>~ [dA
2T /_oo (5) d”] ’ (A12)

corresponds to a constant group delay [Eq. (3.11)]. In fact, since the only ef-
fect of this constant in the time domain is to introduce a shift in the temporal

ATTL =
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position of the pulse, without loss of generality, this constant can be set equal
to zero. Thus the physical interpretation that the minimum pulse duration is
associated with a flat spectral phase is obtained.
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Appendix B

Optical Wave Breaking

For a high intensity pulse propagating in an optical fibre the NLSE suggests
that nonlinear effects should dominate over dispersive effects, at least during
the initial stages of evolution. However, as it was seen in Section 3.9, the effects
of GVD are sufficiently large that they cannot simply be treated as a pertur-
bation to the dominant nonlinear evolution, because large nonlinearities lead
to a large SPM-induced frequency chirp across the pulse. Hence even weak
dispersive effects lead to significant pulse shaping. For a normal dispersion
fibre, a high intensity pulse broadens into a rectangular pulse with a linear
chirp across its entire width and self-steepened edges (see Fig. B.1). At these
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Figure B.1: Evolution of a high intensity Gaussian pulse, in the normal dispersion
regime, to show the effects of optical wave breaking on an initially unchirped pulse.
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Figure B.2: Temporal profile and spectrum of pulse from Fig.B.1, at = = 0.8 m. The
spectral side lobes and the temporal fine structure near the pulse edges are manifesta-
tions of optical wave breaking.

sharp edges the second derivative in the NLSE becomes large and as a result
the pulse develops oscillations on its edges. It was first suggested by Tomlin-
son et al. [137] that this phenomenon should be termed optical wave breaking
because of its similarity to the breaking of water waves.

The physical origin of these temporal oscillations stems from the chirp becom-
ing a nonmonotonic function in time, which implies that the inner, high in-
tensity, parts of the pulse expand more rapidly than the outer, low intensity,
parts. Here the red (blue) shifted light near the leading (trailing) edge travels
faster and overtakes the unshifted light in the front (end) tail of the pulse. The
leading and trailing edges of the pulse then contain light of different frequen-
cies whose interference results in the temporal oscillations seen near the pulse
edges. In the frequency domain this process represents itself in the form of
spectral side lobes consisting of the new frequency components. These effects
can be clearly seen in Fig. B.2, where (a) shows the oscillations on the temporal
profile and (b) shows the side lobes on the corresponding spectrum.

In the anomalous dispersion regime, pulse propagation is dominated by soli-
ton propagation. However, even for high intensity propagation of non-soliton
type pulses, optical wave breaking does not occur in the anomalous dispersion
regime. In this regime the red (blue) shifted part of the pulse cannot overtake
the faster (slower) moving tail and the energy in the pulse tails spreads. As
a consequence, there is no interference of the frequency components and the
pulse simply develops pedestals.
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