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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

OPTOELECTRONICS RESEARCH CENTRE

Doctor of Philosophy

APPLICATIONS OF LIGHT PROPAGATION
IN NOVEL PHOTONIC DEVICES

by Anna Claire Peacock

In this thesis, the propagation of light in novel photonic devices has been stud-

ied theoretically, numerically and experimentally. In particular, self-similar

solutions to the nonlinear Schrödinger equation have been investigated as a

means of avoiding distortions associated with high power pulse propagation

in optical fibres. The results show that it is the interplay between the nonlinear

and dispersive effects that leads to stable formation of the self-similar solu-

tions. By considering generalised nonlinear Schrödinger equations we have

extended the previous investigations of linearly chirped parabolic pulse so-

lutions, which exist in the normal dispersion regime, and have found a new

broader class of self-similar solutions, which exist when the fibre parameters

are allowed to vary longitudinally. Numerical simulations of these systems

confirm the analytic predictions. Experimental confirmation of parabolic pulse

generation in high gain cascaded amplifier systems and in highly nonlinear

microstructured fibres is also reported.

In addition, the propagation of light in modulated crystal structures has been

investigated. By modifying the linear and nonlinear properties of the crystals

it has been shown that it is possible to manipulate the speed and the wave-

length of the propagating light. In particular, negative refractive index materi-

als have been shown to support fast and/or slow propagating light, whilst two

dimensional nonlinear photonic crystals have been used to demonstrate mul-

tiple harmonic generation over a wide range of phase matching angles. The

influence of waveguiding geometries has also been considered to determine

the optimum design for the efficiency of the devices.
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Chapter 1

Introduction

The concept of controlling and manipulating the propagation of light to our

advantage is by no means a new one. In fact, optical technologies have been a

part of our lives for thousands of years in the form of devices such as glasses

and mirrors [1]. It is thus not surprising that optical devices have not only had

a major influence on our lifestyles of today, but they have also made important

contributions towards our understanding of the natural world.1 Paradoxically,

this influence is often “invisible” as the use of optical technologies in everyday

devices such as compact disk (CD) players and infrared remote controls is fre-

quently taken for granted.

As our understanding of optical systems advances, the importance of light

in our lives will continue to increase. In particular, fundamental studies in

optics are essential for the advancement of a wide range of technologies in

fields including telecommunications, medicine, micromachining and informa-

tion storage. In such fields, understanding both the linear and nonlinear pro-

cesses which occur in the optical components, whether they be optical fibres

or bulk crystals, is vital for the optimisation of the system. What establishes

an “understanding” of a system can either be a theoretical description or an

experimental observation. However, ideally the most complete description

will come from a combination of the two. Indeed, sometimes there is a need

for experimental confirmation of a theoretical result whilst in others it is the

experimental observation of a process that sparks a theoretical analysis of a

1For example Galileo Galilei’s use of a telescope for astronomical observations.
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system. In particular, it was the latter case that lead to the discovery of soli-

tons after John Scott Russell observed a “great solitary wave” propagating in

the Edinburgh-Glasgow canal [2]. Significantly, subsequent studies of wave

propagation in the presence of nonlinear and dispersive effects have not only

lead to the establishment of solitons as one of the most important components

in physical systems today, but they have also proved to be invaluable for de-

scribing a much wider range of dynamical physical phenomena [3, 4].

The results of the investigations presented in this thesis essentially cover two

main areas of research involving both linear and nonlinear phenomena. In

Part 1 of this thesis I will investigate distortion free self-similar pulse prop-

agation in nonlinear optical fibres to generate high power short pulses. Sig-

nificantly, it will be shown that it is the interplay between the nonlinear and

dispersive effects in the fibres that leads to the stable formation of these pulses.

Then, in Part 2, I will consider the control and manipulation of light in novel

crystal structures. In particular I will focus on modulated crystals which are

often referred to as metamaterials and can be used to manipulate the speed or

wavelength of the propagating light. In both cases the mathematical formalism

necessary to describe the physical processes will be introduced in the respec-

tive parts. Although these two areas are of great fundamental and practical

interest on their own, improved understanding of the individual processes can

be combined to aid with the design of more efficient devices and this will be

the focus of the third and final part of the thesis.
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Part I

Self-Similar Pulse Propagation in

Optical Fibres
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Chapter 2

Introduction

With rapid advancements in the technology of optical fibre amplifiers to gen-

erate high power pulses, the main technical challenge restricting the use of

higher peak powers in optical systems are the pulse distortions resulting from

the interplay between nonlinear and dispersive effects. In the anomalous dis-

persion regime these distortions are often associated with the pulse breaking

up into a series of sub-pulses [5], and in the normal dispersion regime they can

lead to the phenomenon of optical wave breaking [6]. As a result, numerous

investigations have been conducted to establish conditions for avoiding these

deleterious effects in nonlinear systems [7, 8, 9]. To date, the greatest successes

have been associated with the discovery of solitary wave solutions which can

propagate distortion free over large distances while maintaining their func-

tional form.

Like any physical investigation, the study of nonlinear systems is based on the

search for explicit solutions of the differential equations which describe them.

In some cases the underlying propagation equations are mathematically inte-

grable and the solutions can be found directly. This is the case for the nonlinear

Schrödinger equation (NLSE) describing pulse propagation in optical fibres. In

this instance, the use of a mathematical technique known as the inverse scat-

tering method allows soliton solutions [10]. However, for situations where

the propagation equation is more complicated the solutions are often found

via less systematic techniques such as the method of trial and error. Indeed,

it was this method that led to the discovery of the amplifier soliton solutions

of the Ginzburg-Landau equation, which describes short pulse propagation in

4
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optical fibre amplifiers [4].

More recently there has been increased interest in the mathematical technique

known as “symmetry reduction.” Importantly, this technique can be used to

find solutions of non-integrable equations; solutions which, although not nec-

essarily “solitary,” do obey relatively simple scaling laws in such a way that

their propagation can be described as self-similar [11]. The key to using sym-

metry reduction relies on identifying an invariance in the form of the solution

so that it can be mapped from one point in its evolution to another via simple

scaling laws. In particular, techniques based on symmetry reduction have re-

cently led to the discovery of an important class of pulses which can propagate

in a highly nonlinear, normal dispersion fibre amplifier such that they avoid

the effects of wavebreaking. These solutions, which have been described as

“similaritons,” were found to have an intensity profile which is parabolic and

a frequency chirp which is strictly linear, and will propagate in an amplifier

subject to the self-similar scaling of their intensity and temporal width [12, 13].

In addition to these solutions being of fundamental interest (since they repre-

sent a new class of solution to the NLSE with gain) they are also of considerable

practical interest as they offer a viable solution to overcoming the challenge of

increasing the peak powers in optical systems.

In this part of the thesis I will investigate self-similar solutions for high inten-

sity pulses propagating in optical fibres and optical fibre amplifiers. Owing

to the importance of the parabolic pulse solutions discussed above, the ear-

lier analysis of their propagation in rare-earth doped fibre amplifiers has been

extended to consider novel, more flexible, approaches to parabolic pulse gen-

eration. In addition, a new broader class of self-similar solutions found for

systems which can be modelled by the NLSE with distributed parameters will

also be presented. In all instances, it is expected that the self-similar solutions

will find wide application in many areas of optical technology in both the lab-

oratory and in industry.
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2.1 Outline for Part 1

Chapter 3 introduces the basic theory describing optical pulses and their prop-

agation in single mode optical fibres and optical fibre amplifiers. In partic-

ular, the NLSE and the various techniques used to find its solutions will be

described.

Because of the key role that self-similarity plays in this part of the thesis, Chap-

ter 4 introduces this concept in more detail, outlining in particular the asso-

ciated mathematical formalism. After discussing the previous research that

motivated the theoretical analysis of the parabolic pulse solutions, a brief de-

scription of the results of these calculations will be presented. The experiments

which provided the first confirmation of the parabolic pulse solutions will also

be discussed.

In Chapter 5, experiments to investigate the generation of parabolic pulses in

a cascaded fibre amplifier chain, where the characteristics of each of the am-

plifiers differ, will be described. The experimental results are analysed via

numerical simulations to establish the limitations and assist with the optimi-

sation of the system.

Chapter 6 considers parabolic pulse generation using an undoped microstruc-

tured fibre Raman amplifier. After a discussion of the Raman amplifier sys-

tem, numerical simulations are used to analyse the parabolic pulse propaga-

tion. Preliminary experimental results provide confirmation of parabolic pulse

generation in a highly nonlinear, normally dispersive microstructured fibre.

In Chapter 7 a new class of solutions which exist for a generalised form of

the NLSE with distributed coefficients is investigated. After a brief discussion

of the previous research which motivated our theoretical analysis, the results

of calculations which use self-similarity methods to analyse the solutions are

presented. Numerical simulations are used to confirm the theoretical results

before being extended to investigate the stability of the results.

Finally, in Chapter 8 I will present the conclusions to Part 1 of this thesis.
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Chapter 3

Pulse Propagation in Single Mode

Fibres

3.1 Introduction

As discussed in the previous chapter, in the first part of this thesis self-similar

pulse propagation in optical fibres and fibre amplifiers will be investigated.

In order to understand physically how such solutions can arise, this chapter

introduces some of the basic linear and nonlinear effects that a pulse can expe-

rience as it propagates in an optical fibre.

The discussion begins with a simple qualitative description of single mode

optical fibres and then the mathematical formalism necessary to describe the

electric field of an optical pulse guided in such a fibre is established. The linear

and nonlinear effects which influence the evolution of a propagating pulse are

discussed before the description is extended to include optical fibre amplifiers.

To quantify the discussion, the propagation equation referred to as the nonlin-

ear Schrödinger equation (NLSE) will be introduced. The important analytic

solutions which exist under special conditions will be discussed, with particu-

lar reference to soliton and solitary wave solutions. Following which consid-

eration will be paid to how it can be solved numerically in regimes where no

analytic solutions have yet been found. Finally, generalised forms of the NLSE

will be presented to describe propagation when the spectral width of the pulse

becomes large.
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Figure 3.1: Refractive index profile of a standard step-index fibre. The right hand side
of the figure shows the fundamental mode profile in the fibre.

3.2 Single Mode Optical Fibres

The simplest form of a single mode optical fibre has a step-index geometry

which consists of a thin central core, where the light is confined, surrounded

by a cladding layer. As illustrated in Fig. 3.1, for a standard single mode fibre

(SMF) the refractive index of the core n1 is slightly higher than the refractive

index of the cladding n0 where

n =
√
ε/ε0, (3.1)

and ε0 is the dielectric permittivity in a vacuum.1 The two parameters which

characterise a step-index fibre are the relative core-cladding index difference,

∆ =
n2

1 − n2
0

2n2
1

, (3.2)

and the normalised frequency

V = k0a
(
n2

1 − n2
0

)1/2
, (3.3)

where k0 = 2π/λ0, a is the core radius and λ0 is the wavelength of the trans-

mitted wave [14]. In a geometrical optics picture, this difference in refractive

index gives rise to total internal reflection at the core-cladding interface, which

will confine certain light rays to the core. It is useful to note that the maximum

light acceptance angle of the fibre is known as the numerical aperture (NA)

1This assumes that the magnetic permeability of the fibre is equal to the vacuum value so

that µ = µ0.
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and, for a small index difference, this can be related to ∆ via:

NA � n1

√
2∆. (3.4)

In a more rigorous analysis, Maxwell’s equations predict a finite set of guided

transverse modes with their energy concentrated mostly in the core. The num-

ber of modes supported by a particular fibre depends both on the wavelength

of the incident light and on the fibre parameters. It can be shown that for a

fixed wavelength, reducing the core radius until V < 2.405 ensures that only

one transverse mode is guided [14]. It is this regime of SMF propagation that

is considered in Part 1 of this thesis.

3.3 Description of Optical Pulses

In this part of the thesis a scalar approach is adopted which implies that the

optical field maintains its polarisation along the fibre length so that the electric

field vector E(r, t) associated with a pulse can be represented as:

E (r, t) =
1

2
x̂ [E (r, t) exp (−iω0t) + c.c.] . (3.5)

Here x̂ is the polarisation unit vector, E (r, t) is the slowly varying complex

envelope, ω0 is the carrier angular frequency of the field and c.c. denotes the

complex conjugate. The underlying assumption of Eq. (3.5) is that the field

is quasi-monochromatic, i.e., the spectral width ∆ω is much smaller than the

centre frequency ω0 [4].

In the search for solutions for the optical field, it is useful to separate the enve-

lope E (r, t) in the form:

E (r, t) = F (x, y)Ψ (z, t) exp (iβ0z) , (3.6)

where F (x, y) is the transverse mode distribution, β0 ≡ β (ω0) is the momen-

tum wavenumber at the carrier frequency and Ψ (z, t) is a slowly varying func-

tion of z. Substitution of Eq. (3.6) into the wave equation then leads to two

equations for F (x, y) and Ψ (z, t) [4]. The wavenumber β0 is determined by

solving the eigenvalue equation for the modes F (x, y) whilst the temporal

characteristics of the optical pulse are obtained via the solutions for Ψ (z, t).
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Considerable insight into the temporal features of the pulse can then be ob-

tained by separating the complex signal Ψ (z, t) into its amplitude A and phase

Φ:

Ψ (z, t) = A (z, t) exp [iΦ (z, t)] , (3.7)

where A (z, t) = |Ψ (z, t)| is positive definite. From Eqs. (3.5) and (3.7) it is

apparent that the instantaneous frequency of the electric field is:

ω (z, t) = ω0 + Ωc (z, t) = ω0 − ∂Φ

∂t
or Ωc (z, t) = −∂Φ

∂t
, (3.8)

where the angular frequency ω is related to the frequency ν through ω = 2πν,

and Ωc (z, t) is the chirp function which represents the instantaneous frequency

deviation from the carrier frequency [4].

It is also useful to consider the envelope of the field in the frequency domain

Ψ̃ (z, ν), obtained from the Fourier transform of Ψ (z, t), defined as:

Ψ̃ (z, ν) =

∫ ∞

−∞
Ψ (z, t) exp (i2πνt) dt. (3.9)

Analogous to Eq. (3.7), Ψ̃ (z, ν) can be written as:

Ψ̃ (z, ν) = Ã (z, ν) exp
[
iΦ̃ (z, ν)

]
, (3.10)

where Ã and Φ̃ are the amplitude and phase in the frequency domain, respec-

tively. The group delay T (ω) is then defined as [15]:

T (ω) =
∂Φ̃

∂ω
, (3.11)

which presents the relative time delay between the mean temporal location of

the spectral components within the pulse.

From Eq. (3.9), it can be seen that in order to obtain Ã (z, ν) from A (z, t) [or

similarly, A (z, t) from Ã (z, ν)], one must have complete knowledge of both

the amplitude and phase in the original domain. However, a convenient way

of characterising the relationship between a pulse in the temporal domain

and its corresponding spectrum is through the root-mean-square (RMS) time-

bandwidth product (TBP) [4]:

TBP = ∆Ω · ∆τ ≥ ρ. (3.12)

Here, the RMS temporal width is defined by

∆τ =
[〈
t2
〉− 〈t〉2]1/2

, (3.13)

10
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where

〈tn〉 =

∫∞
−∞ tn |Ψ (z, t)|2 dt∫∞
−∞ |Ψ (z, t)|2 dt

,

and a similar relation exists for the RMS spectral width ∆Ω in terms of ω. In

Eq. (3.12), ρ is a real positive parameter that depends on the pulse shape. In

general, Eq. (3.12) suggests that the more highly chirped the pulse, the larger

the TBP. In the case where Eq. (3.12) is an equality, the pulse possesses a flat

phase and is said to be “transform limited” (see Appendix A). The RMS time-

bandwidth products for the commonly encountered Gaussian and hyperbolic

secant (sech) pulse profiles are given in Table 3.3, where T0 is the half width at

the 1/e –intensity point.

Profile Temporal Amplitude Spectral Amplitude Time-Bandwidth Product

Gaussian exp (−t2/2T 2
0 ) exp (−2π2T 2

0 ν
2) 0.5

sech sech (t/T0) sech (π2T0ν) 0.5227

Table 3.1: Time-bandwidth products for Gaussian and hyperbolic secant temporal pro-
files.

3.4 Chromatic Dispersion

Chromatic dispersion arises due to the frequency dependence of the effective

refractive index. Thus a pulse consisting of a finite band of wavelengths, over

which the phase velocity vp varies significantly, will experience a temporal sep-

aration of its different spectral components during propagation. In an optical

fibre there are two effects that lead to chromatic dispersion: (i) the material

dispersion, which is intrinsic to any lossy medium, and (ii) the waveguide dis-

persion, which can be used to tailor the total chromatic dispersion.

3.4.1 Material Dispersion

The material dispersion of a propagation medium has its origins in the fre-

quency dependent response of the bound electrons of the dielectric to the in-

cident optical field. Far from the resonant frequencies of the medium, the re-

11
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fractive index of a fibre is well described by the Sellmeier equation [16]:

n2 (ω) = 1 +

m∑
j=1

Bjω
2
j

ω2
j − ω2

, (3.14)

where Bj is the strength of the resonance at ωj. For bulk fused silica, the three

resonances of importance have the parameters [17]:

B1 = 0.6961663 B2 = 0.4079426 B3 = 0.8974794

λ1 = 0.0684043µm λ2 = 0.1162414µm λ3 = 9.896161µm

where λj = 2πc/ωj, and c is the velocity of light in a vacuum.

The effects of dispersion can be included in the propagation equations through

the wavenumber β (ω) = n (ω)ω/c. To simplify the mathematical description

this can be expanded in a Taylor series about ω0 as:

β (ω) = β0 + β1 (ω − ω0) +
1

2
β2 (ω − ω0)

2 +
1

6
β3 (ω − ω0)

3 + · · · , (3.15)

where

βm =

[
dmβ

dωm

]
ω=ω0

(m = 0, 1, 2, 3, ...) , (3.16)

which is valid under the quasi-monochromatic approximation [Section 3.3]. It

is worth noting that some limitations on the use of this expansion are discussed

in Ref. [18]. Generally the cubic and higher order terms in this expansion are

negligible for pulses with small bandwidths as ∆ω << ω0 and it is only neces-

sary to consider β1 and β2. Eq. (3.15) then yields the relations:

β1 =
1

c

(
n+ ω

dn

dω

)
=

1

vg
,

β2 =
1

c

(
2
dn

dω
+ ω

d2n

dω2

)
= − 1

v2
g

dvg

dω
, (3.17)

where vg is the group velocity at ω0. From the first expression it follows that

β1 determines the speed of the pulse envelope. In the second expression, β2

determines how the group velocity of the pulse changes as a function of the

frequency. Consequently, β2 is referred to as the group velocity dispersion

(GVD) parameter. This latter coefficient vanishes in fused silica at a wave-

length λzd � 1.27µm called the zero dispersion wavelength. For wavelengths

such that λ0 < λzd, β2 > 0 and the fibre is said to exhibit normal dispersion

for which the red shifted frequency components travel faster than those that
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Figure 3.2: (a) Refractive index n and (b) the resultant GVD β2 for fused silica, as
functions of wavelength.

are blue shifted. In contrast, the opposite occurs in the anomalous disper-

sion regime where λ0 > λzd and β2 < 0. Using Eqs. (3.14) and (3.17), Fig. 3.2

shows (a) the variation of n and (b) the resultant β2, as functions of wavelength,

clearly showing the different regions of the GVD.

Although, as mentioned above, in most cases the contribution of the β2 term

dominates, for wavelengths close to λzd or alternately, for pulses with signif-

icant bandwidths, it becomes necessary to include the higher order term pro-

portional to β3 in Eq. (3.15). This can be understood from Fig. 3.2(b) where

it can be seen that for pulses with a large bandwidth, β2 varies significantly

over the wavelengths contained within the spectrum. Clearly, the wavelength

dependence of β2 will play some role in the pulse broadening. From Eq. (3.16):

β3 =
d3β

dω3
=

dβ2

dω
, (3.18)

which implies that β3 is related to the dispersion slope. Consequently, the

inclusion of β3 can be viewed as a way of incorporating the wavelength de-

pendence of β2.

3.4.2 Waveguide Dispersion

In optical fibres the tails of the transverse mode extend into the cladding (see

Fig. 3.1) by an amount dependent on the wavelength. Due to the lower refrac-

tive index of the cladding, this leads to a small perturbation to the effective

refractive index given by [14]:

δn (ω) = Γ2 (ω)∆n, (3.19)

13
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where Γ2 (ω) is the fraction of power flowing in the cladding and ∆n is as-

sumed to be independent of wavelength. To first order Γ2 (ω) ∝ κ/ω2, where

κ is a positive constant which depends on the fibre design parameters such as

the core radius. It then follows from Eq. (3.17) that the approximate change in

dispersion δβ2 (ω) is given by:

δβ2 (ω) =
1

c

(
2
d (δn)

dω
+ ω

d2 (δn)

dω2

)
=

∆n

c

(
2
dΓ2

dω
+ ω

d2Γ2

dω2

)
=

2∆n

c

κ

ω3
. (3.20)

Eq. (3.20) shows that the effect of waveguide dispersion is to increase the

group velocity dispersion in fibres, which consequently shifts the zero disper-

sion wavelength so that in typical optical fibres λzd � 1.31µm. An additional

feature of Eq. (3.20) is that it illustrates the ∆n dependence of β2, and this

suggests that the dispersion can also be modified by introducing dopants (see

Section 3.6). These results also indicate that the waveguide dispersion can be

exploited to shift, or flatten, the dispersion curve [19], and this has important

implications for the field of telecommunications.

3.5 Nonlinear Effects in Optical Fibres

When intense electromagnetic fields propagate through a medium they cause

the bound electrons to oscillate in an anharmonic manner. As a result, the

induced polarisation P no longer depends linearly on the incident field E and

must be extended to the more general expression [20]:

Pi (ω1) = χ
(1)
ij (ω1;ω1)Ej (ω1) + χ

(2)
ijk (ω1;ω1 − ω2, ω2)Ej (ω1 − ω2)Ek (ω2)

+ χ
(3)
ijkl (ω1;ω1 − ω2 − ω3, ω2, ω3)Ej (ω1 − ω2 − ω3)Ek (ω2)El (ω3)

+ . . . , (3.21)

where χ(j) is the (j + 1) th rank susceptibility tensor, Pi (ω) and Ei (ω) are the

Fourier components of the fields Pi and Ei, respectively, and the Einstein sum-

mation convention applies. Although for simplicity Eq. (3.21) assumes that

the polarisation can be related to the field via a power series, it is nevertheless

extremely useful for describing a large number of nonlinear phenomena.

The linear susceptibility is still the dominant term in this expansion and this

gives rise to the refractive index n and the attenuation coefficient α through:

n (ω) = 1 +
1

2
Re
[
χ(1) (ω)

]
, (3.22)

14
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α (ω) =
ω

nc
Im
[
χ(1) (ω)

]
. (3.23)

The second order susceptibility χ(2) is responsible for effects such as second

harmonic generation and sum frequency three wave mixing, but this vanishes

for fused silica glass due to its inversion symmetry. As a result the lowest order

nonlinear effects in optical fibres originate from the third order susceptibility

χ(3), which gives rise to effects such as nonlinear refraction, third harmonic

generation and four-wave mixing. In general, with most common fibres there

is insufficient phase matching to observe the latter two processes and the ma-

jority of nonlinear effects result from the nonlinear refraction.

3.5.1 Nonlinear Refraction

Nonlinear refraction gives rise to the intensity dependence of the refractive

index so that n becomes [4]:

ñ
(
ω, |E|2) = n (ω) + n2 |E|2 , (3.24)

where n (ω) is given by Eq. (3.22), |E|2 is the intensity of the field and n2 is the

nonlinear index coefficient given by

n2 =
3

8n
Re
[
χ(3)

xxxx

]
. (3.25)

The assumption of a linearly polarised field implies that only the xxxx compo-

nent of the χ(3) tensor contributes to the nonlinear index n2. The effect of the

second term in Eq. (3.24) is to cause an additional phase shift

∆ΦSPM = n2k0 |E|2 L, (3.26)

where L is the fibre length. Thus the field experiences a self-induced phase

shift referred to as self-phase modulation (SPM). It is this phase shift that is

responsible for the spectral broadening of short pulses and in general, due to

the symmetric nature of the pulse profiles, will also be symmetric. At this

point it is useful to note that n2 appears in the propagation equations through

the fibre specific parameter γ defined as:

γ =
n2ω0

cAeff
, (3.27)
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where Aeff is the effective mode area given by

Aeff =

[∫∞
−∞
∫∞
−∞ |F (x, y)|2 dxdy

]2
∫∞
−∞
∫∞
−∞ |F (x, y)|4 dxdy

. (3.28)

If two optical fields are copropagating in a fibre at different wavelengths, the

total electric field E is now given by:

E (r, t) =
1

2
x̂ [E1 (r, t) exp (−iω1t) + E2 (r, t) exp (−iω2t) + c.c.] .

Thus the nonlinear phase shift induced on the first field by the second is

∆ΦXPM = 2n2k0 |E2|2 L, (3.29)

and this effect is known as cross-phase modulation (XPM). It follows from

Eqs. (3.26) and (3.29) that if the two fields are of equal intensity, then the XPM

phase shift is twice as large as that induced by SPM. The defining feature of

the XPM phase shift is that, in general, it leads to an asymmetry in the pulse

spectrum. This is because the contributing portion of the second field to the

phase shift changes as the pulses move through each other.

3.6 Doped Fibre Amplifiers

The incorporation of rare-earth ions, such as Yb3+ and Er3+, as dopants in a sil-

ica fibre provides a source of gain which allows such a medium to amplify an

optical field as it propagates. In order to improve the efficiency of the pump-

ing, the inclusion of rare-earth dopants is often accompanied by a high con-

centration of codopants. As it has just been shown, both the dispersion and

the nonlinear effects that govern the propagation are fibre specific parameters.

This suggests that the inclusion of dopants will lead to a qualitative change in

the propagation in comparison to a SMF.

In Section 3.4 it was noted that the contribution due to the waveguide disper-

sion depends on ∆n and the core radius. The inclusion of rare-earth ions and

codopants such as GeO2, Al2O3, P2O5 (or a combination of these) increases

the refractive index difference in a fibre amplifier, which leads to a shift in the

zero dispersion wavelength to longer wavelengths [Eq. (3.20)]. In addition,
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Figure 3.3: Gain spectra for a Yb3+:doped germanosilicate fibre amplifier, for 910 nm
and 975 nm pumps, from Ref. [22].

fibres with higher refractive index differences generally have smaller core di-

ameters which further shifts the dispersion [21]. A small shift in the dispersion

curve can also be attributed to a slight change in the material dispersion and

increasing the codopant content can enhance this effect, but in general this is

negligible.

The equation for the nonlinearity coefficient γ [Eq. (3.27)] then showed that

this depends on the effective mode area Aeff so that it also depends on the

radius of the amplifier core. Thus the reduction in the core radius suggested

above implies a decrease in Aeff and hence an increase in the absolute value

of γ compared to that of a SMF. Furthermore, the introduction of dopants and

codopants into the core can cause a small change in γ by altering the nonlinear

refractive index n2 of the medium slightly [4].

A typical gain profile g (z0, λ) for a rare-earth fibre amplifier doped with Yb3+

ions is shown in Fig. 3.3 [22]. This illustrates the high gains attainable over a

broad gain bandwidth which is an attractive feature for ultrashort pulse am-

plification. In general, the gain is a function of distance z along the fibre, and

saturates with increasing pump power. However, typical pulse energies are

much smaller than the saturation energy and so g (z, λ) can be replaced by

g (λ) . In addition, if g (λ) does not vary significantly over the spectral width of
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the optical signal then g (λ) � g (λ0).

One further consideration is the attenuation of the pump beam as it propagates

down the amplifier. This attenuation implies that g will have an additional z

dependence which will be a function of the pumping configuration employed

in the amplification. The choice of the pumping geometry will in general de-

pend on the nature of the experiment. The most commonly encountered ge-

ometries are those of: (i) pumping codirectionally with the signal beam so that

the gain decreases along the length of the amplifier, (ii) pumping counterdirec-

tionally so that the gain increases along the amplifier and (iii) pumping bidi-

rectionally so that the gain remains approximately constant over the length of

the amplifier.

3.7 Nonlinear Schrödinger Equation

As discussed in Section 3.1, the effects of dispersion, nonlinearity, loss and gain

on the propagation of a pulse in an optical fibre can be combined in a single

propagation equation. For a scalar field, the NLSE is given by:

i
∂

∂z
Ψ =

β2

2

∂2

∂T 2
Ψ + i

β3

6

∂3

∂T 3
Ψ − γ |Ψ|2 Ψ + i

[
g − α

2

]
Ψ, (3.30)

where z is the propagation length and T = t− β1z = t− z/vg so that the pulse

propagates in a temporal reference frame whose origin moves with the centre

of the pulse.2 For the majority of fibres considered in this part of the thesis, the

losses are typically around 1× 10−3 dBm−1 so that α can be set to zero for short

propagation lengths.

In addition to the assumptions discussed in the preceding sections where the

dispersion and nonlinear effects were introduced, there is a further approxi-

mation inherent in the derivation of Eq. (3.30). This is that the effect of the

nonlinearity is included as a perturbation to the linear solution. This approxi-

mation is justified in optical fibres where the linear polarisation is much larger

than the nonlinear polarisation, even at very high intensities.

At this point it is useful to introduce propagation lengths which quantify the

importance of the dispersive or nonlinear effects on the evolution of the pulse
2This is often referred to as the retarded frame.
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along the fibre. The relations,

LD =
T 2

0

|β2| and LNL =
1

γP0
,

where P0 is the initial peak power, describe the dispersion and nonlinear lengths,

respectively.

3.8 Analytic Solutions to the NLSE

In general, solutions to the full NLSE given in Eq. (3.30) cannot be obtained

analytically and instead must be found numerically. However, some important

analytic expressions exist in situations where certain terms can be neglected.

Considering a lossless SMF, when the propagation distance satisfies z ∼ LD

and z << LNL, Eq. (3.30) becomes

i
∂

∂z
Ψ =

β2

2

∂2

∂T 2
Ψ, (3.31)

which can be solved in the Fourier domain to give:

Ψ̃ (z, ν) = Ψ̃ (0, ν) exp

[
i

2
β2 (2πν)2 z

]
. (3.32)

Thus it can be seen that the effect of GVD only propagation is to introduce

a quadratic spectral phase. Although this modification to the phase will not

alter the shape of the spectrum, it causes the spectral components to separate

in time which results in a temporal broadening of the pulse.

The solution for the complex field in the time domain can then be found by

calculating the inverse Fourier transform of Eq. (3.32):

Ψ (z, T ) =

∫ ∞

−∞
Ψ̃ (z, ν) exp (−i2πνT ) dν. (3.33)

For an incident Gaussian pulse, such that Ψ (0, T ) =
√
P0 exp

(−1/2 (T/T0)
2),

Eq. (3.33) can be solved exactly to yield the solution:

Ψ (z, T ) =

√
P0T0

(T 2
0 − iβ2z)

1/2
exp

(
− T 2

2 (T 2
0 − iβ2z)

)
. (3.34)

Thus, in a dispersive medium, a Gaussian pulse maintains its shape on prop-

agation but with its width scaling as T0

[
1 + (z/LD)2]1/2

. However, even for
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non-Gaussian pulses, where closed form solutions to Eq. (3.33) for arbitrary z

cannot be found, it is possible to use the method of stationary phase to show

that in the limit of large z [23]:

Ψ (z, T ) � 1 + i (β2/ |β2|)√
2

(
1

2π |β2| z
)1/2

Ψ̃

(
0,

T

β2z

)
exp

(
− i

2

T 2

β2z

)
. (3.35)

Thus any pulse that propagates in a linear dispersive medium ultimately de-

velops a temporal profile that has the same form as its spectrum with a linear

chirp.

Now considering the situation where the propagation distance satisfies z ∼
LNL and z << LD, Eq. (3.30) can be written as

i
∂

∂z
Ψ = −γ |Ψ|2 Ψ. (3.36)

For sufficiently small z it can be assumed that |Ψ|2 remains unchanged so that

Eq. (3.36) has the solution:

Ψ (z, T ) = Ψ (0, T ) exp
[
iγ |Ψ|2 z] , (3.37)

and thus the effect of SPM alone is to cause an intensity dependent temporal

phase. By noting that this phase induces an intensity dependent chirp, it can

be seen that the effect of SPM is to introduce new frequency components into

the pulse which results in spectral broadening.

To illustrate the separate effects of dispersive and nonlinear propagation, Fig. 3.4

shows the evolution of a transform limited Gaussian pulse, such that LD =

1/2 m and LNL = 1/5 m, for (a) dispersive propagation in the normal disper-

sion regime and (b) nonlinear propagation.
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Figure 3.4: Evolution of (a) the temporal intensity under dispersive propagation
(β2 > 0) only and (b) the spectral intensity under nonlinear propagation only.
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3.8.1 Soliton Solutions to the NLSE

For systems where it becomes necessary to consider the combined effects of

dispersion and nonlinearity (LD ∼ LNL ∼ z), interesting phenomena can arise

from the interplay between GVD and SPM. In such instances, ignoring gain,

loss and higher order dispersion, Eq. (3.30) takes the form:

i
∂

∂z
Ψ =

β2

2

∂2

∂T 2
Ψ − γ |Ψ|2 Ψ. (3.38)

This equation belongs to a special class of equations that can be solved ex-

actly using the inverse scattering method [24]. The success of this approach

lies in identifying a suitable scattering problem whose potential is the solution

sought. The field at any point z can then be found via the evolution of the

scattering data, which can simply be obtained by solving the linear scattering

problem.

Using this method Eq. (3.38) was found to have an important class of solu-

tions known as solitons [10]. These soliton pulses have the property that they

can propagate over long distances in a fibre without undergoing distortions

as a result of an effective cancellation of the dispersive and nonlinear effects.

Specifically, the term soliton is restricted to solutions found via inverse scatter-

ing techniques in which the energy propagates in the form of a localised packet

(without gain or loss) and which remain unaffected after collisions with each

other [25]. A more general term is a solitary wave and these will be discussed

in the following section. Owing to their robustness in nonlinear systems, soli-

tons have been studied extensively in many fields of physics. In the context of

pulse propagation in optical fibres, solitons are not only of great fundamental

importance but they have also found wide application in many technologies.

As it is about to be shown, the qualitative features of the solutions depend

strongly on the sign of the dispersion.

In the anomalous dispersion regime, Eq. (3.38) supports soliton solutions which

propagate in a cycle returning to the initial form after one soliton period z0 =

πLD/2 [4].3 The exception to this is the fundamental soliton whose shape re-

mains unchanged over the propagation and, provided
√
γT 2

0P0/ |β2| = 1, has

3These are sometimes referred to as bright solitons in the literature to distinguish them

from the solutions where β2 > 0.
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the form:

Ψ (z, T ) =
√
P0 sech

(
T

T0

)
exp

(
i
z

2LD

)
. (3.39)

Here the condition placed on the dispersion and nonlinear lengths illustrates

the strong dependence of the soliton pulse parameters on the fibre parameters.

In the normal dispersion regime Eq. (3.38) also supports soliton solutions which

are referred to as dark solitons. Here the term dark soliton is used since the in-

tensity profile is in the form of a dip embedded on a uniform background. The

general solution is given by:

Ψ (z, T ) = A0

[
B−2 − sech2

(
A0T

T0

)]1/2

exp

[
iϕ (T ′) + i

(
A0

B

)2
z

LD

]
, (3.40)

where T ′ = A0T/T0 + (A2
0/B) (1 − B2)

1/2
z/LD. The parameter A0 determines

the level of the background and B (the so-called “blackness parameter”) gov-

erns the depth of the dip (|B| ≤ 1). The temporal phase varies across the dark

soliton, with the magnitude of the phase shift depending on B through:

ϕ (T ′) = sin−1

{
B tanh (T ′)[

1 −B2 sech2 (T ′)
]1/2

}
.

For B = 1 the intensity goes to zero at the centre of the dip and the soliton is

often referred to as a black soliton. Whereas for |B| < 1, the intensity of the

dip does not extend all the way to zero and the solutions are referred to as gray

solitons.

A significant difference between the soliton of Eq. (3.39) and that of Eq. (3.40)

is that fundamental solitons are even pulses, with a constant phase across the
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Figure 3.5: Evolution of (a) a bright soliton (β2 < 0) and (b) a black soliton (β2 > 0).
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entire pulse, and black solitons are odd pulses, with a π phase jump at the

centre (where the intensity is zero).4 To illustrate the differences between the

two solutions, Fig. 3.5 shows the evolution of (a) a fundamental soliton and (b)

a black soliton.

3.8.2 Solitary Wave Solutions to the Ginzburg-Landau Equa-

tion

In situations where the fibre possesses gain, loss, and/or when higher order

dispersive effects must be considered, the propagation equation may no longer

be integrable by such inverse scattering techniques and so does not possess

soliton solutions in the strict mathematical sense. However, these equations

can often be found to have solitary wave solutions that can propagate undis-

torted such that their shape does not change but which may undergo scaling of

their amplitude or width. An example of such solitary wave solutions are the

autosolitons which exist for a modified form of Eq. (3.30) called the Ginzburg-

Landau equation [26]:

i
∂

∂z
Ψ =

1

2
(β2 + ig)

∂2

∂T 2
Ψ − γ |Ψ|2 Ψ + i

g
2
Ψ. (3.41)

Here the dispersive term proportional to ig/2 is related to the finite gain band-

width and is referred to as gain dispersion. This equation is often studied in

the context of short pulse propagation in optical fibre amplifiers with the solu-

tions being referred to as amplifier solitons [5].

As mentioned in Chapter 2, the amplifier soliton solutions were found via a

method of trial and error to be [27]:

Ψ (z, T ) =
√
P0 sech (pT ) exp [iΦ (z, T )], (3.42)

where the phase Φ is given by:

Φ (z, T ) = Γz − q ln [cosh (pT )] , (3.43)

and the constants P0, p, q and Γ are determined via:

P0 =
p2

2

β2

γ

[
s
(
q2 − 2

)
+ 3qg

]
, p2 =

−g
g (1 − q2) + 2sq

, (3.44)

4The description of the pulse as odd refers to its amplitude.

23



Chapter 3 Pulse Propagation in Single Mode Fibres

q =
3s±√(9 + 8g2)

2g
, Γ =

−p2

2β2

[
s
(
1 − q2

)− 2qg
]
, (3.45)

where s = sgn (β2). These pulses represent a solution that will propagate in an

amplifier, whilst maintaining both their shape and energy, where the amplifier

gain is balanced by the loss introduced by the gain dispersion. An important

property of these amplifier solitons is that, in contrast to the soliton solutions,

these pulses have a time dependent phase. Significantly, however, because of

the gain limiting effects, amplifier solitons are undesirable in most amplifier

systems and particularly in those that require the pulses to be amplified to a

high energy.

To illustrate the significance of these solitary wave solutions, Fig. 3.6(a) shows

the evolution of an arbitrary input pulse in an amplifier with a finite gain band-

width. It can be seen that after the initial propagation, where the pulse expe-

riences gain, the evolution stabilises and a solitary wave is formed. Further-

more, by comparing the output pulse from the amplifier with the solutions of

Eqs. (3.42)–(3.45), Fig. 3.6(b) confirms that this pulse has indeed evolved to be

an amplifier soliton.
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Figure 3.6: (a) Evolution of an autosoliton pulse in an optical fibre amplifier with
a finite gain bandwidth. (b) Intensity profile (left axis) and chirp (right axis) of the
output amplifier soliton together with the theoretical predictions (circles).
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3.9 Numerical Solutions to the NLSE

In the previous section it has been shown that analytic solutions only exist for

special reduced forms of Eq. (3.30), and that they often depend critically on the

parameters of the system. Thus for more complicated systems and/or an arbi-

trary choice of initial conditions, it is unlikely that any analytic solutions will

exist. As a result, most of the progress which has been made in unveiling the

properties of propagation in realistic systems is due to numerical simulations.

Several numerical techniques exist for solving the NLSE but the fastest and the

most extensively employed is the split-step Fourier method [4], and it is this

technique that is used in this thesis. The essence of this method lies in iden-

tifying that the terms in Eq. (3.30) can be separated into those that are easily

solved in the temporal domain (i.e., the nonlinear terms) and those that are

more efficiently solved in the spectral domain (i.e., the linear terms). Eq. (3.30)

can then be rewritten in the form:

i
∂Ψ

∂z
=
(
D̂ + N̂

)
Ψ, (3.46)

where the dispersive5 and nonlinear operators are

D̂ =
β2

2

∂2

∂T 2
+ i

β3

6

∂3

∂T 3
+ i

[
g − α

2

]
, (3.47)

N̂ = −γ |Ψ|2 , (3.48)

respectively. Although the dispersive and nonlinear effects act together along

the length of the propagation, for a sufficiently small z step (h) it can be as-

sumed that they act independently. Thus each propagation segment z → z+ h

is split into two steps where in each step an operator corresponding to the

combined effects in the respective domain is applied. Mathematically this is

expressed as:

Ψ (z + h, T ) � exp
(
hD̂
)

exp
(
hN̂
)

Ψ (z, T ) , (3.49)

where the execution of the dispersive operator is carried out in the Fourier

domain via:

exp
(
hD̂
)

Ψ′ (z, T ) =
{
F−1 exp

[
hD̂ (iω)

]
F
}

Ψ′ (z, T ) . (3.50)

5The effects of absorption and/or gain are included in this linear operator.
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Here F is the Fourier transform operation and D̂ (iω) is the operator D̂ of

Eq. (3.47) in Fourier space. This process is then repeated until the required

propagation distance has been covered.

To illustrate typical propagation with the combined effects of dispersion and

nonlinearity this technique is used to propagate a Gaussian pulse under con-

ditions where LD = 5LNL/2 (β2 > 0, g = 0 and the individual effects can be

seen in Fig. 3.4). Fig. 3.7(a) shows the evolution of the temporal intensity and

(b) shows the evolution of the spectral intensity. Comparing these evolutions

with those of Fig. 3.4 it can be seen that, in the normal dispersion regime, the

combination of GVD and SPM increases the rate at which the temporal profile

broadens. Subsequently, this acts to reduce the peak power of the pulse and

hence decreases the rate of the spectral broadening. Additionally, it is clear

that the multi-peak structure seen with only SPM is also suppressed, and this

is due to the reduction in the SPM induced phase shift. Thus the dispersion

induced broadening reduces the effects of the nonlinear propagation so that

LNL << LD is needed to achieve a large nonlinear response.
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Figure 3.7: Numerical evolution of the intensity profile with the combined effects of
GVD and SPM, (a) in the temporal domain and (b) in the spectral domain.

Extending the above simulation to include the effects of a constant gain profile,

the propagation now describes the evolution of a pulse in an optical fibre am-

plifier. Fig. 3.8 shows the evolution with LD = 5LNL/2 (β2 > 0) and g = 2 m−1

where again (a) is the temporal intensity and (b) is the spectral intensity. This

shows that the inclusion of gain results in a further increase in the rate of the

broadening in both domains. This is to be expected as the increase in the peak
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Figure 3.8: Numerical evolution of the intensity profile with the combined effects of
GVD, SPM and gain, (a) in the temporal domain and (b) in the spectral domain.

power leads to an increase in the nonlinear effects.

The different evolution processes can be summarised by the evolution of the

RMS time-bandwidth product [Eq. (3.12)]. Fig. 3.9 shows the resultant prod-

ucts for GVD only, SPM only, GVD and SPM and the combined effects of GVD,

SPM and gain, as functions of the propagation distance. It is clear that for

g = 0, in all cases the broadening increases linearly for large propagation dis-

tances, whereas for g �= 0 the rate of the broadening continues to increase as

the peak power grows.
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Figure 3.9: Evolution of the RMS time-bandwidth product for GVD only, SPM only,
GVD and SPM, and the combined effects of GVD, SPM and gain.
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3.10 Generalised NLSE

Although the NLSE introduced in Section 3.7 is extremely successful in ex-

plaining a large number of linear and nonlinear effects seen in optical fibres,

it often needs modification in order to explain some of the more subtle effects

which present themselves during pulse propagation. These effects occur when

the spectral width ∆ω of the pulse becomes large, and hence several approxi-

mations made in deriving the propagation equations are no longer valid. The

following investigates modifications to the NLSE necessary to include the ef-

fects of a complex Lorentzian gain profile and a delayed nonlinear response.

3.10.1 Complex Lorentzian Gain Model

The Ginzburg-Landau equation, as described in Section 3.8.2, is based on a

parabolic gain approximation where the dopant susceptibility is truncated af-

ter the second order terms. In general, this leads to an overestimation of the

losses in the wings of the spectrum and consequently Eq. (3.41) is only valid for

situations where the spectral width of the pulse remains within the gain band-

width [7]. A more rigorous model to describe a system with a finite bandwidth

requires that the amplification process is modelled by the Maxwell-Bloch equa-

tions which include the effects of dynamic gain saturation [4]. However, since

the upper state lifetimes of rare-earth amplifiers are of the order of several

milliseconds, the population inversion remains nearly constant across a prop-

agating picosecond pulse and, in such cases, the system can be very accurately

described by the NLSE with a complex Lorentzian gain profile [28].

In reality, the gain profile of a rare-earth doped fibre amplifier is far more

complicated than a simple Lorentzian and, in fact, consists of peaks of several

overlapping transitions which suffer both strong homogeneous and inhomo-

geneous broadening [Fig. 3.3]. However, for the purposes of this thesis, as the

primarily concern is with the general features of how a frequency dependent

gain profile influences the pulse shaping, it suffices to model the gain medium

as a homogeneously broadened single transition.

Considering a model which will describe the propagation of a pulse in a homo-

geneously broadened two-level amplifying medium (in the low-gain satura-
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tion limit), for a pulse injected into the amplifier on resonance the propagation

equation is given by [7]:

i
∂

∂z
Ψ =

β2

2

∂2

∂T 2
Ψ − γ |Ψ|2 Ψ − i

α

2
Ψ +

1

2

∫ ∞

−∞
χD (ν) Ψ̃ (z, ν) exp (−i2πνT ) dν.

(3.51)

By writing the susceptibility as

χD (ν) =
g (i − 2πνT2)

1 + (2πνT2)
2 , (3.52)

where T2 is the dipole relaxation time, it is easy to see that the imaginary part

represents the resonant Lorentzian gain profile, with a peak gain of g, and

the real part represents the resonant dispersion, introduced by the amplifier

dopants. Eq. (3.51) can be solved numerically via the split-step Fourier method

by calculating the resonant term in the frequency domain.

3.10.2 Delayed Nonlinear Response

The nonlinear effects discussed in Section 3.5.1 are elastic in the sense that no

energy is exchanged between the electric field and the propagation medium.

The following now considers a situation in which the optical field transfers

part of its energy to the nonlinear medium. This occurs when a photon of the

incident field is annihilated to create a photon at the downshifted Stokes fre-

quency and a phonon of the exact energy and momentum necessary so that

both of these quantities are conserved.6 This generally occurs in a situation

where a pump beam is copropagating with a probe beam at the Stokes fre-

quency, in which case it is referred to as stimulated Raman scattering (SRS).

However, if a pulse possesses a broad enough spectrum so that the Stokes fre-

quency is within the bandwidth of the pulse (� 1 THz), the Raman gain can

amplify the low energy frequency components by transferring energy from the

high frequency components of the same pulse. This latter case is often referred

to as intrapulse Raman scattering and it is this effect that leads to the well

known soliton self-frequency shift [4, 29].

To extend the system to include the effects of a delayed Raman response, a

6A higher energy photon can be created at the anti-Stokes frequency if a phonon of the right

energy and momentum is available.
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nonlinear polarisation of the form [30]:

PNL (r, T ) = ε0χ
(3)E (r, T )

∫ T

−∞
R (T − T ′)E2 (r, T ′) dT ′ (3.53)

is assumed, whereR (T ) is the nonlinear response function which is normalised

to
∫
R (T ) dT = 1 and the upper limit of integration extends only up to T since

the response functionR (T − T ′) must become zero for T ′ > T to ensure causal-

ity.7 Including this in the propagation equation leads to the modified NLSE [4]:

i
∂

∂z
Ψ =

β2

2

∂2

∂T 2
Ψ + i

β3

6

∂3

∂T 3
Ψ + i

[
g−α

2

]
Ψ

− γ

(
1+

i

ω0

∂

∂T

)
Ψ

∫ ∞

0

R (T ′) |Ψ (z, T − T ′)|2 dT ′. (3.54)

An important feature of Eq. (3.54) is the inclusion of the time derivative opera-

tor in the nonlinear term. This term describes the Stokes’ losses associated with

the material excitation during the Raman self-scattering process, the frequency

dependence of the nonlinearity and the self-steepening effect. Although it is

often neglected in Raman analysis of pulses with small bandwidths [29], it is

in fact necessary to ensure that the photon number, and not the optical energy,

is conserved so that the Raman interaction is described correctly. The response

functionR (T ) should include both the electronic and vibrational (Raman) con-

tributions. If the electronic contribution is assumed to be instantaneous, then

the functional form of R (T ) can be written as:

R (T ) = (1 − fR) δ (T ) + fRhR (T ) ,

where δ (T ) is the Dirac delta function and fR represents the fractional con-

tribution of the delayed Raman response governed by hR (T ) [31]. The form

of the Raman response function hR (T ) can be obtained experimentally, or

through an approximate analytic form which is modelled on experimental re-

sponse functions [30]. In this thesis an experimentally determined response

function obtained for a silica fibre is used [32], where fR = 0.18 and hR(T ) is

given in Fig. 3.10. Here Fig. 3.10(a) is the temporal variation and (b) is the Ra-

man gain spectrum corresponding to the Stokes gain. Significantly, although

both doped and undoped fibres are considered in this thesis, the inclusion of

rare-earth dopants has a negligible effect on the response function of silica fi-

bres.
7Both the electric field and the induced polarisation vectors are assumed to point along the

same direction so that a scalar notation can be used.
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Figure 3.10: (a) Temporal variation and (b) Raman gain spectrum (corresponding to
the Stokes gain) of the Raman response function used in this thesis.

Numerical Solutions

Eq. (3.54) can be solved numerically via the split-step Fourier method, de-

scribed in Section 3.9, but with special treatment of the Raman term [30]:

i
∂

∂z
Ψ = −γ

(
1 +

i

ω0

∂

∂T

)
ΨR ∗ |Ψ|2 , (3.55)

where ∗ has been used to denote the convolution,

R ∗ |Ψ|2 =

∫ ∞

0

R (T ′) |Ψ(z, T − T ′)|2 dT ′. (3.56)

Defining:

V (z, T ) = Ψ (z, T ) exp
[−i (z − z0) γR ∗ |Ψ0|2

]
, (3.57)

where

V0 = Ψ0 = Ψ (z0, T ) , (3.58)

it can be noted that as R ∗ |Ψ0|2 ∈ R, this implies that |V |2 = |Ψ|2 and hence

R ∗ |V |2 = R ∗ |Ψ|2. The derivative of V is then calculated as:

∂V

∂z
=
∂Ψ

∂z
e−i(z−z0)γR∗|Ψ0|2 + Ψ

(−iγR ∗ |Ψ0|2
)
e−i(z−z0)γR∗|Ψ0|2

= iγ

(
1+

i

ω0

∂

∂T

)
R ∗ |Ψ|2 Ψe−i(z−z0)γR∗|Ψ0|2− iγR ∗ |Ψ0|2 Ψe−i(z−z0)γR∗|Ψ0|2

= iγV R ∗ (|V |2 − |V0|2
)− γ

ω0

∂

∂T

(
V R ∗ |V |2) . (3.59)

To integrate this system a second order Runge-Kutta scheme is used, where

the integration of
∂V

∂z
= ξ (z, V )
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from zn to zn+1 = zn + δz is performed as:

Vn+1 ≈ Vn + δz × ξ {zn + δz/2, Vn + δz/2 × ξ (zn, Vn)} . (3.60)

This equation can be solved in a two step process where, using Eq. (3.59), the

intermediate step (n + 1
2
) is obtained as:

Vn+ 1
2

= Vn + δz/2 × ξ (zn, Vn)

= Vn − γδz

2ω0

∂

∂T

(
VnR ∗ |Vn|2

)
, (3.61)

so that,

Vn+1 = Vn + iγδzVn+ 1
2
R ∗
(∣∣∣Vn+ 1

2

∣∣∣2− |Vn|2
)
− γδz

ω0

∂

∂T

(
Vn+ 1

2
R ∗
∣∣∣Vn+ 1

2

∣∣∣2) . (3.62)

The field Ψ (z, T ) is then reconstructed from Eq. (3.62) using Eq. (3.57) before

being operated on by the dispersive operator, as described by Eq. (3.50).
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Chapter 4

Self-Similar Parabolic Pulse

Solutions to the NLSE with Gain

4.1 Introduction

As discussed in Chapter 2, recent calculations using self-similarity methods

have led to the discovery of an important class of solutions to the NLSE with

normal dispersion and gain. These pulses, which have a parabolic intensity

profile, will maintain a strictly linear chirp so that they propagate self-similarly

in highly nonlinear, normal dispersion, media subject to simple scaling rules.

Importantly, it is the ability of these solutions to undergo distortion free am-

plification to high powers, and to be efficiently compressed to ultrashort pulse

widths, that has motivated the investigations presented in the first part of this

thesis. For this reason, this chapter presents a review of some of the important

results regarding parabolic pulses and discusses the significant features of the

solutions. To facilitate the theoretical analysis, the discussion begins with a

brief introduction to the mathematical formalism of self-similarity techniques.

4.2 An Introduction to Self-Similarity

It is often the case that the evolution of a physical system will exhibit some

form of symmetry such that the behaviour of the system at one stage can
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be mapped onto its behaviour at some other stage through a suitable scal-

ing transformation. It may be that the properties of this system exhibit un-

changing or periodic characteristics, such as the case of soliton solutions (see

Section 3.8), or that their evolution with time or distance obeys a simple power-

law relationship. In any case, irrespective of the details of the symmetries (or

“similarities”) possessed by a particular physical system, their identification is

the key to establishing a useful mathematical description of the system.

4.2.1 Self-Similarity and Scaling in Physics

A self-similar solution is one in which the functional form of the solution is

invariant so that the solution at one point (in space or time for example) can be

found from a solution at another point by a similarity transformation. Despite

its apparent complexity, self-similarity is a concept that is taught in high school

geometry classes in the context of “similar triangles,” which have the same

angles, but sides of different lengths. In such a case, it is straightforward to

map one triangle on to the other by a simple linear scaling transformation.

A slightly more complex example is the evolution of the radius of the acoustic

shock-wave produced as a result of a nuclear explosion. A nuclear explosion

is, of course, a very complicated event whose complete description must take

into account many different factors such as the particular radioactive isotopes

used and the geometry of the explosive device. However, the evolution of the

radius rf of the generated acoustic shock-wave is found to obey a remarkably

simple scaling law, where the rate of expansion is determined only by the en-

ergy released in the explosion, and not the specifics of the system. The result

is:

rf =

(
Et2

ρ0

)1/5

, (4.1)

where E is the energy of the explosion, ρ0 is the density of the air and t is the

time after the explosion [33]. The realisation that a complex event such as an

explosion possesses such a simple underlying structure is both very satisfying

from a physical point of view, but also of immense practical importance. For

example, Eq. (4.1) allowed opposing sides during the Cold War to estimate the

energy released in nuclear tests based only on analysis of available television

footage.
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Although self-similarity has long been a focus of studies involving nonlin-

ear physical phenomena in fields ranging from hydrodynamics to solid state

physics, such techniques have yet to be strongly established in the field of op-

tics. However, in recent years some important results have been obtained and

this has sparked a tremendous growth in the current interest of these tech-

niques. For interest, some of the results obtained in the field of nonlinear optics

are summarised below.

Radial Pattern Formation in a Laser Cavity

One of the first demonstrations of self-similarity techniques in optics was con-

ducted in 1991 by Afanas’ev et al. [34]. In their calculations they investigated

the self-action of counterpropagating axially symmetric light beams within the

nonlinear medium of a laser cavity. They found that a number of self-similar

solutions can exist in different experimental regimes which depend on the pa-

rameters of the input beam and the nonlinear medium. In particular, these so-

lutions can describe the self-focusing or defocusing of the propagating beams

under single or double focus conditions.

Phase Grating Formation in Optical Fibres

Motivated by the discovery of self-organised grating formation in optical fi-

bres, An and Sipe investigated a model to describe the dynamics of grating

formation by visible light [35]. Using this model they showed that the grating

formation can be described by a single universal parameter (or a self-similarity

variable) so that the parameters which describe the grating state evolve self-

similarly subject to a variation in their scaling rates. Thus the growth of a grat-

ing will ultimately approach a fixed point and this corresponds to a perfectly

phase matched stable grating.

Transient Stimulated Raman Scattering

Transient stimulated Raman scattering (TSRS) occurs in the limit where the

pulse durations are short compared to the dipole deexcitation time T2. In this

limit the system can be said to have “memory” in the sense that the medium
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will retain information long after the pulses have passed. Thus when investi-

gating the solutions of such systems it is important to study the long distance

behaviour. Indeed, it was this approach that lead to the discovery by Menyuk

et al. that, after an initial period of transient behaviour, the soliton pulses nor-

mally associated with SRS [36] disappear and the solutions tend towards a

self-similar solution [37]. Importantly, they found that the exact form of the

self-similar solution toward which the system tends is determined entirely by

the initial fields at early times.

Self-Similar Evolution of Self-Written Waveguides

Self-written waveguides can be written in a photosensitive material using the

intensity dependent refractive index change induced by a propagating light

beam. Significantly, whilst numerically investigating the self-writing of chan-

nel waveguides, in 1998 Monro et al. showed that as the waveguide evolved

its shape appeared to remain approximately constant, but with a scaling of

its depth and width [38]. As a result, this motivated them to use similarity

techniques to search for the solutions for the self-similar mode shape and the

corresponding refractive index profile. By studying the evolution of arbitrary

input pulses they could confirm that the predicted self-similar solutions were

indeed stable solutions to the self-writing process.

4.2.2 Mathematical Methods

Mathematically, self-similar solutions are found by the technique of “symme-

try reduction.” This involves reformulating the problem in terms of a certain

combination of the original variables, called a similarity variable, so that the

number of degrees of freedom of the system is reduced. This means that the

original problem of solving partial differential equations can be recast into a

problem of solving a reduced system of differential equations, which greatly

simplifies the analytic treatment. Exactly how this reformulation is carried out

varies from problem to problem.

In general, the similarity variables can be found using techniques based on Lie

algebra theory [11]. This analysis is based on the fact that self-similar solutions
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are invariant under some symmetry group of the system of partial differential

equations. Consequently, finding the global invariants of the group equates to

finding the similarity variable, and thus results in a reduction in the differential

equations.

However, this type of formal approach is often unnecessary if the solution to a

similar problem has already been found. In such cases it is often more conve-

nient to construct the similarity variable based on the findings of the previous

solution. Indeed, this was the case for the parabolic pulse solutions found by

Kruglov et al. (to be described in Section 4.4), where the theoretical analysis

was based on the combined results of high intensity wave-breaking-free prop-

agation in normal dispersion fibres [9] with those obtained for radial pattern

formation in a laser cavity [34]. It is important to note that in choosing this

approach one must be wary of subtle differences in the two systems which can

lead to an incorrect reformulation of the problem. Thus when constructing

a similarity variable in this manner one must use a large amount of physi-

cal intuition and in particular, be very cautious of an incorrect choice of the

governing parameters which will lead to inconsistencies in the solution. How-

ever, irrespective of the techniques used to obtain the scaling laws, the essential

physical behaviour of all such self-similar systems is identical: the scaling laws

map the evolution at one point exactly onto the evolution at another.

4.3 Parabolic Pulse Propagation in Normal Disper-

sion Fibres

The theoretical analysis describing parabolic pulse evolution in normal disper-

sion optical amplifiers was motivated by previous observations of self-similar

behaviour of parabolic pulses in normal dispersion fibres by Anderson et al. [9]

and Tamura and Nakazawa [39]. To establish the foundations for the analyti-

cal calculations, this section describes these precursory papers, and the signif-

icance of the results, in more detail.
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4.3.1 Parabolic Pulse Propagation in the High Intensity Limit

As mentioned in Chapter 2, the interaction between dispersive and nonlinear

effects acting on a high intensity pulse in a normal dispersion optical fibre can

lead to severe pulse distortions due to the effect of optical wave breaking [Ap-

pendix B]. To this end, in 1993 Anderson et al. presented an investigation into

the conditions under which wave breaking effects could be avoided [9]. Sig-

nificantly, their results showed that the particular class of solution for which

this was the case was in fact a linearly chirped parabolic pulse.

Their analysis was based on a simplified form of the NLSE given by Eq. (3.30)

with β3 = g = α = 0, with the condition of normal dispersion β2 > 0. By

writing the field in terms of the real amplitude A and phase Φ: Ψ (z, T ) =

A (z, T ) exp [iΦ (z, T )], the NLSE could then be expressed in terms of the cou-

pled equations:

−∂Φ
∂z

=
β2

2

[
1

A

∂2A

∂T 2
−
(
∂Φ

∂T

)2
]
− γA2, (4.2)

∂ (A2)

∂z
= β2

∂

∂T

(
A2∂Φ

∂T

)
. (4.3)

An important aspect of the analysis of Anderson et al. was the realisation that

much physical insight into the evolution of a propagating pulse is obtained

by recasting the above equations in terms of the chirp function, Ωc = −∂Φ/∂T
[Eq. (3.8)]. Making the appropriate substitutions in the above equations yields:

∂Ωc

∂z
=

∂

∂T

[
β2

2

(
1

A

∂2A

∂T 2
− Ω2

c

)
− γA2

]
, (4.4)

∂ (A2)

∂z
= −β2

∂

∂T

(
A2Ωc

)
, (4.5)

which clearly shows how the evolution of the chirp and the intensity of the

propagating pulse are coupled together. A solution to these equations which

avoids the effect of optical wave breaking is one which, even though it expands

temporally, nonetheless preserves its shape as it propagates. This will be the

case if the pulse possesses a linear chirp such that the rate of change of the time

separation is the same for all parts of the pulse. Thus the pulse propagates self-

similarly in z. With this condition for the chirp, the form of the intensity profile

can then be determined via Eqs. (4.4)–(4.5).
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From Eq. (4.4), the initial evolution of the chirp function can be approximated

as:

Ωc (z, T ) ≈ Ωc (0, T ) (4.6)

+
∂

∂T

{
β2

2

[
1

A (0, T )

∂2A (0, T )

∂T 2
− Ω2

c (0, T )

]
− γA2 (0, T )

}
z.

For an unchirped input pulse, Ωc (0, τ) = 0, requiring that the chirp must de-

velop to be linear in time yields:

β2

2

1

A (0, T )

∂2A (0, T )

∂T 2
− γA2 (0, T ) = C0 + C1T

2, (4.7)

where A (0, T ) is an even function of T , and C0 and C1 are constants. If the

initial pulse satisfies Eq. (4.7), the chirp will remain linear and consequently

the pulse will preserve its shape as it propagates.

In the limit of a high intensity pulse, the nonlinear effects will dominate over

the dispersive effects so that the first term on the left hand side of Eq. (4.7) can

be neglected. This directly yields the intensity profile as:

A2 (0, T ) = A2
0

(
1 − T 2

T 2
0

)
, (4.8)

where the constants C0 and C1 are replaced by the more physically meaningful

pulse parameters A0 and T0, being the peak amplitude and the zero crossing

of the intensity profile at z = 0. Thus the form of a pulse which will propagate

self-similarly in a normal dispersion fibre, free from the effects of optical wave

breaking, is a pulse with a parabolic intensity profile and a linear frequency

chirp. Importantly, whilst it is true that any pulse that maintains a linear chirp

will propagate self-similarly, such as the Gaussian pulse solutions to the linear

equation [Eq. (3.31)], most profiles cannot sustain such a chirp in the presence

of nonlinearity, and eventually undergo pulse distortion. The distinguishing

feature of the high power parabolic pulse in this regard is the fact that both

the induced phase due to GVD and SPM have a parabolic form (and the same

sign) and thus the linear chirp is preserved [23].

4.3.2 Simulations of Parabolic Pulse Generation in a Fibre Am-

plifier

Despite the physical significance of the analysis by Anderson et al., the results

appeared to be of limited practical application due to the apparent impossibil-
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ity of constructing a pulse with a parabolic intensity profile. However, in 1996

Tamura and Nakazawa published a paper where they pointed out the signif-

icance of the results in Ref. [9] for the evolution of optical pulses in high gain

fibre amplifiers operating in the normal dispersion regime [39]. Using numer-

ical simulations of the NLSE, Tamura and Nakazawa considered the evolution

of an input fundamental soliton pulse in an amplifier with a constant longitu-

dinal gain profile and β3 = α = 0 [Eq. (3.30)].

Their results showed that after about one dispersion length, the input pulse

appeared to evolve into a parabolic pulse and furthermore, continued to prop-

agate in the amplifier in a self-similar manner without any change in shape

even though its intensity continued to be amplified. Although Tamura and

Nakazawa did attempt to verify these results experimentally in an Er3+:doped

fibre amplifier, they were limited with their pulse diagnostic techniques (see

Section 5.3.4). They did, however, show that the autocorrelation function of

the output pulses was nontriangular, which indicated that the pulse was not

undergoing the usual pulse shaping associated with normal dispersion fibre

propagation and optical wave breaking. Although these results were not con-

clusive, they were a clear indication that the generation of pulses with parabolic

intensity profiles, which possess a strictly linear chirp, may be possible in

a normal dispersion optical amplifier. This was enough to motivate further

study into the formation and propagation of parabolic pulses which will be

discussed in the following section.

4.4 Parabolic Pulse Solutions in an Amplifier

This section describes the theoretical calculations used to analyse the parabolic

pulse solutions of the NLSE with gain and normal dispersion. These calcu-

lations form a series of investigations conducted within the Applied Optics

Group of The University of Auckland [12, 13, 40].1 In this analysis two regimes

of propagation were considered: (i) in an amplifier with a constant gain profile

in the asymptotic limit z → ∞ and (ii) in an amplifier with an arbitrary gain

profile in the high intensity limit z > z0. Despite the slight differences in the

analysis, in both cases the form of the solution is the same yielding a linearly

1This work was conducted during the course of my Masters degree in Physics.
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chirped pulse with a parabolic intensity profile.

4.4.1 Asymptotic Solutions for an Amplifier with a Constant

Gain Profile

The theoretical analysis for the asymptotic parabolic pulse solutions was based

on the evolution of pulses in an amplifier with spectral bandwidths less than

the amplifier bandwidth and a constant longitudinal gain profile. Ignoring

fibre loss and higher order dispersion terms (α = β3 = 0), the equation gov-

erning the propagation of pulses in this system is of the form [Eq. (3.30)]:

i
∂

∂z
Ψ =

β2

2

∂2

∂T 2
Ψ − γ |Ψ|2 Ψ + i

g
2
Ψ. (4.9)

Based on the previous work of Anderson et al., the search for solutions to this

system also began by substituting the expanded field [Ψ = A exp (iΦ)] into

Eq. (4.9). This now yields the following coupled equations in A and Φ:

∂A

∂z
= β2

∂A

∂T

∂Φ

∂T
+
β2

2
A
∂2Φ

∂T 2
+

g
2
A, (4.10)

[
β2

2

(
∂Φ

∂T

)2

−∂Φ
∂z

]
A =

β2

2

∂2A

∂T 2
− γA3. (4.11)

As mentioned in Section 4.2.2, the solutions to this system were found via tech-

niques based on symmetry reduction where the similarity variables were con-

structed based on the previous findings of Refs. [9, 34]. In particular, with the

requirement of normal dispersion (β2 > 0), motivated by the results obtained

for Eqs. (4.2) and (4.3), linearly chirped solutions having the form:

A(z, T ) = f(z)F (z, T ) = f(z)F (ϑ), (4.12)

Φ(z, T ) = ϕ(z) + C(z)T 2, (4.13)

were sought where the self-similarity variable ϑ is given by:

ϑ = f 2(z) exp(−gz)T. (4.14)

Here, the explicit form of the amplitude was constructed so that for the partic-

ular form of ϑ, it satisfied the energy conservation integral of Eq. (4.9):

U (z) = U0 exp (gz) , (4.15)
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where U (z) =
∫∞
−∞ |Ψ (z, T )|2 dT and U0 = U (0).

With the form of the solutions as given by Eqs. (4.12)–(4.14), it was found that

in the limit z → ∞ there exists an exact asymptotic solution such that [12]:

Ψ (z, T ) = A0 (z)

√
1 −
[

T

T0 (z)

]2
exp [iΦ (z, T )] , |T | ≤ T0 (z) , (4.16)

with Ψ (z, T ) = 0 for |T | > T0 (z) , and where:

Φ (z, T ) = Φ0 +
3γA2

0 (z)

2g
− gT 2

6β2

, |T | ≤ T0 (z) . (4.17)

The scaling of the peak amplitude A0 (z) and the effective width T0 (z) are re-

lated to the system parameters as:

A0 (z) =
1

2

(
gU0√
γβ2/2

)1/3

exp
(gz

3

)
, (4.18)

T0(z) =
6
√
γβ2/2

g
A0 (z) . (4.19)

The interpretation of the various terms of this solution is facilitated by referring

to Fig. 4.1. Since, experimentally, it is common to examine pulse shapes on

a logarithmic scale to distinguish low amplitude features in the wings, the
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Figure 4.1: Generic figure of the asymptotic parabolic pulse solution. Top: intensity
profile (left axis) and chirp (right axis). Bottom: normalised intensity on a logarithmic
scale.
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figure includes both linear and logarithmic intensity plots. In particular, the

logarithmic plot highlights an interesting feature of a parabolic pulse which is

the steepness of the slope on the edges of the intensity profile.

This parabolic pulse represents a solution to Eq. (4.9) which maintains its lin-

ear chirp so that it propagates self-similarly (retaining its parabolic shape) sub-

ject to the exponential scaling of its peak amplitude A0 (z) and effective width

parameter T0 (z) . Significantly, the solutions show that it is only the energy

of the initial pulse, and not its specific shape, that determines the amplitude

and width of the asymptotic parabolic pulse. It is worth noting that these

results provided theoretical confirmation of Tamura and Nakazawa’s observa-

tion that a linearly chirped parabolic pulse arises naturally as a consequence

of the propagation of a pulse in a normal dispersion amplifier, as discussed in

Section 4.3.2.

To demonstrate these results, propagation in an amplifier with: β2 = 25 ×
10−3 ps2m−1, γ = 5.8 × 10−3 W−1m−1, g = 1.9 m−1 and a length L = 6 m

is simulated.2 Fig. 4.2 shows the evolution of a 12 pJ, 200 fs full width half

maximum (FWHM) Gaussian input pulse in this amplifier. This figure illus-

trates the expected increase in the peak intensity and the pulse width, as well

as the parabolic form of the pulse in the latter stages of the amplifier. The

parabolic nature of the output pulse is then confirmed in Fig. 4.3(a) where the

2The parameters were chosen based on realistic parameters for an Yb3+:doped fibre ampli-

fier [12].
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Figure 4.2: Evolution of a parabolic pulse in an optical fibre amplifier.
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Figure 4.3: (a) Intensity profile (left axis - logarithmic scale) and chirp (right axis -
linear scale) of the output pulse from Fig. 4.2, together with the theoretical predictions
(circles). (b) Corresponding spectrum.

simulated pulse (solid lines) is compared with the theoretical predictions of

Eqs. (4.16)−(4.19) (circles). Although at |T | = T0 (z) the solution of Eq. (4.16)

has an infinite slope, this is only the case in the asymptotic limit. At interme-

diate propagation distances both simulations and analytic analysis predict the

appearance of low amplitude wings which decay exponentially as a function

of T and indeed such wings can be seen on the simulation results in Fig. 4.3(a)

at power levels less than 10−5 W [40].

The corresponding spectrum is plotted below in Fig. 4.3(b). It can be noted that

the oscillations present on the edges of the spectrum are not manifestations of

optical wave breaking as they are not accompanied by the presence of oscilla-

tions on the edge of the temporal profile [Appendix B]. They are, in fact, due to

slight fluctuations in the quadratic phase which results in small oscillations on

the linear chirp [40]. Such phase modulations are not unexpected because of

the strong nonlinear pulse shaping as the pulse evolves from the initial pulse

profile to the asymptotic parabolic pulse solution. Thus these oscillations are a

characteristic feature of the transition of a pulse to the parabolic regime.
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Finally, to demonstrate the asymptotic nature of the parabolic pulse solutions

it is useful to consider the evolution of Gaussian input pulses with a fixed in-

put energy U0 = 12 pJ, but with a range of pulse durations from 100 fs − 5 ps

(FWHM). The amplifier parameters are the same as those used in Figs. 4.2 and

4.3. As a means of comparing the evolution of these different input pulses,

Fig. 4.4 shows the (a) peak amplitude and (b) effective width parameter, as

functions of the propagation distance in the amplifier, obtained from the sim-

ulation results together with the analytic predictions (see legend). It is clear

from these results that for an amplifier of fixed gain, the rate at which a pulse

evolves to the parabolic pulse solution depends strongly on the choice of the

input pulse width. This is to be expected as, for a fixed energy, a broader tem-

poral width implies a lower peak power. It is therefore expected that the initial

nonlinear evolution will be substantially different for the various input pulses.

Indeed, it can be noticed that the pulse with the largest input pulse width (and

hence the lowest peak power) is the slowest pulse to converge to the parabolic

pulse solution. Nevertheless, it is clear that in all cases the evolution of the

pulse in the amplifier does indeed approach the asymptotic limit.
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Figure 4.4: Simulation results showing the evolution of the peak pulse amplitude (top)
and the effective temporal width (bottom), as functions of the propagation distance,
for Gaussian pulses of duration 100 fs−5 ps. The results are compared with the asymp-
totic predictions (see legend).
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4.4.2 Solutions for an Amplifier with an Arbitrary Gain Profile

For an amplifier with an arbitrary longitudinal gain profile g (z) the theoretical

analysis was based on the generalised form of Eq. (4.9):

i
∂

∂z
Ψ =

β2

2

∂2

∂T 2
Ψ − γ |Ψ|2 Ψ + i

g (z)

2
Ψ. (4.20)

Again, with the field expanded in terms of the amplitude A and phase Φ,

self-similar solutions of the form given by Eqs. (4.12) and (4.13) were sought.

However, unlike the previous analysis for a constant gain profile, this time

the investigations were based on a search for exact self-similar solutions in

the regime z > z0. Here z0 defines the start of the parabolic regime and this

corresponds to the pulse entering a high intensity regime where the nonlin-

ear effects dominate over the dispersive. From dimensional analysis and the

group symmetry properties of Eq. (4.20), the explicit form of the self-similarity

variable ϑ was found to be [13]:

ϑ =
U (z0)

U (z)
f 2 (z)T, (4.21)

where the evolution of the energy is now

U (z) = U(z0) exp

[∫ z

z0

g (z′) dz′
]
. (4.22)

Significantly, the form of the solutions for an arbitrary gain profile were found

to be identical to that previously obtained for a constant gain [Eq. (4.16)]:

Ψ (z, T ) = A0 (z)

√
1 −
[

T

T0 (z)

]2
exp [iΦ (z, T )] , |T | ≤ T0 (z) , (4.23)

and Ψ (z, T ) = 0 for |T | > T0 (z), but with a quadratic phase now given by:

Φ (z) = Φ0 +
3γ

4

∫ z

z0

U (z′)
T0 (z′)

dz′ − 1

2β2

d

dz
ln [T0 (z)]T 2, |T | ≤ T0 (z) . (4.24)

The scaling of the amplitude A0 (z) and width T0 (z) can then be determined

via the relations:

A0 (z) =

(
3U (z)

4T0 (z)

)1/2

, (4.25)

d2T0 (z)

dz2
=

(
3

2

)
β2γU (z)

T 2
0 (z)

, (4.26)
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where Eq. (4.26) is subject to the boundary condition:

dT0 (z)

dz

∣∣∣∣
z0

= T0 (z0)
d

dz
ln [T0 (z)]

∣∣∣∣
z0

. (4.27)

Thus the solution for the case of a longitudinal distributed gain profile is still

a parabolic pulse with a linear chirp but now the scaling of its amplitude and

width are determined by the form of the gain profile g (z). Importantly, this

solution holds for any function g (z) and in particular g can be zero, which cor-

responds to an undoped normal dispersion fibre (see Section 4.3.1), or negative

(i.e., a fibre with loss) so long as the pulse intensity is high.

To illustrate the significance of the shape of the longitudinal gain on the self-

similar solutions of Eqs. (4.23)−(4.27), the top curves of Fig. 4.5 show the evo-

lution of identical Gaussian input pulses in amplifiers with three different

gain profiles corresponding to: (a) pumping counterdirectionally so that the

gain increases along the amplifier, (b) pumping bidirectionally with constant

gain along the amplifier, and (c) pumping codirectionally with decreasing gain

along the amplifier. Explicitly, the respective gain profiles are: (a) g (z) =

ga exp (z/za) with ga = 0.687m−1 and za = 3 m, (b) g (z) = ga with ga =

1.44 m−1, and (c) g (z) = ga exp (−z/za) with ga = 2.606m−1 and za = 3 m.

Here the initial gain coefficients ga were chosen such that in all cases the to-

tal integrated gain was 25 dB and the remaining amplifier parameters were:

β2 = 35 × 10−3 ps2m−1, γ = 6 × 10−3 W−1m−1 and L = 4 m [13]. Although, as

expected, the scaling of the pulses in the amplifiers differ quite considerably,

nevertheless comparison of the output pulses (solid lines - middle curves) with

the theoretical predictions (circles) confirms their parabolic nature. In addition,

it can also be noticed that the corresponding output spectra (bottom curves)

differ in shape and width indicating that the choice of pumping geometry will

play an important role in situations where the bandwidth of the amplifier is

significant. The differences in the spectral widths can be understood by noting

that for the case where the gain increases (decreases) along the length of the

amplifier, the incident pulse is amplified slowly (rapidly) to high power and

subsequently experiences the largest amount of SPM in the final (initial) stages

of its evolution so that it develops the smallest (broadest) spectral width [41].
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Figure 4.5: Top: parabolic evolution for (a) increasing gain, (b) constant gain and (c)
decreasing gain. Middle: intensity (left axis) and chirp (right axis) of the amplifier
outputs obtained from simulation results (solid curves), compared with the theoretical
predictions (circles). Bottom: the corresponding spectra.

4.5 Experimental Confirmation

As part of the confirmation of the analytic parabolic pulse solutions presented

in Section 4.4, preliminary experimental verification of the results was also

provided in Ref. [12].3 These experiments were conducted by Dr M. Fermann

and Dr B. Thomsen at IMRA America in collaboration with the Applied Op-

tics Group in Auckland, and a schematic diagram of their experimental setup

is shown in Fig. 4.6. In their experiments they considered the amplification of

12 pJ, 200 fs (FWHM) Gaussian input pulses generated in a fibre based pulse

source, at a wavelength of 1.06µm [42]. These pulses were then injected into a

3.6 m long high gain Yb3+:doped fibre with dispersion and nonlinearity coeffi-

3For a more complete description of the experiments and a comparison with the theory, the

interested reader is referred to Ref. [41].
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Figure 4.6: Schematic diagram of the experimental setup for parabolic pulse genera-
tion in an Yb3+:doped fibre amplifier.

cients of β2 = 25×10−3 ps2m−1 and γ = 5.8×10−3 W−1m−1, which could provide

a maximum gain of 30 dB. The complete characterisation of the output pulses

was carried out using a second harmonic generation (SHG) frequency-resolved

optical gating (FROG) technique, which will be discussed in Section 5.3.4.

The output pulse profile and chirp obtained from the FROG retrieval algorithm

are plotted in Fig. 4.7(a) together with the analytic predictions of Eqs. (4.16)–

(4.19) (dashed lines) and the results of numerical simulations (circles). Despite

the weak oscillations in the wings, which were attributed to resonant effects,

clearly in all cases the intensity and chirp are in good agreement. Further con-

firmation of this agreement is also provided by the similarities in the shapes of

the corresponding spectra seen in Fig. 4.7(b).
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Figure 4.7: (a) Measured intensity (logarithmic scale - solid lines) and chirp (linear
scale - solid lines), compared with simulation results (circles) and the theoretical pre-
dictions (dashes). (b) Pulse spectra from experiment (bottom), simulations (middle)
and theory (top). Experimental data obtained from Ref. [12].
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In addition to these measurements, they also considered launching the ampli-

fied pulses shown in Fig. 4.7 into a 2 m long undoped fibre (SMF) with normal

dispersion. From the FROG traces of the output from the fibre they were able

to show that the pulses had maintained their parabolic form indicating that

they were indeed propagating self-similarly as predicted by the analysis of

Anderson et al. [Section 4.3.1].
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Chapter 5

Parabolic Pulse Generation in a

Fibre Amplifier Chain

5.1 Introduction

In the previous chapter, the parabolic pulse solutions that exist for the non-

linear Schrödinger equation (NLSE) with gain were presented which showed

that they evolved naturally via amplification in a fibre amplifier. This chapter

describes experiments to investigate the generation of high energy parabolic

pulses in a fibre amplifier chain where each of the amplifiers have different dis-

persion and nonlinear properties. The experimental results are complemented

by a numerical anaylsis to establish the limitations and assist with the optimi-

sation of the system.

5.2 Description of the Project

The research described in this chapter evolved out of an industrially funded

project to develop a practical, high power short pulse Yb3+:doped fibre based

laser and amplifier system. The Yb3+:doped fibre source was developed by

Dr L. Lefort and Dr J. Price in the form of a passively mode-locked fibre based

oscillator. This produced pulses with widths of ∼ 2.5 ps (FWHM) and energies

of ∼ 60 pJ. The aim of the amplifier system was to then boost these energies to
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produce ∼ 10µJ output pulses which could be efficiently compressed down to

∼ 200 fs. However, as the build up of amplified spontaneous emission (ASE)

limits the gain from a single fibre amplifier to around 30−40 dB [43], this would

not be sufficient for the pulses to reach the microjoule level. Thus it was nec-

essary to employ a cascaded system consisting of a series of three Yb3+:doped

amplifiers.

Because of the high peak powers generated within the amplifiers it soon be-

came apparent that it would be beneficial to exploit the self-similar nature of

parabolic pulses in order to avoid deleterious nonlinear distortions. The signif-

icant feature of using a cascaded system is that each amplifier in the chain has

different dispersion and nonlinear coefficients as well as different gain char-

acteristics. As the development of a parabolic pulse relies strongly on the in-

terplay between the gain, dispersion and nonlinear properties of the amplifier

this poses the question of whether parabolic pulses are sufficiently robust to

form in an amplifier chain. In addition, as the pulses undergo coupling losses

between each amplification stage this introduces an additional problem in that,

as discussed in Section 4.4, the final parabolic pulse is dependent on the input

pulse energy and thus these discrete jumps in the pulse energy will affect the

evolution.

The experimental component of this project described in the following sections

was carried out primarily by Dr J. Price and Dr A. Malinowski. My role in this

work was to simulate the system and analyse the results in order to establish

the limitations and aid with the optimisation of the system.

5.3 Experimental Setup

As discussed, the experiments were based on the amplification of picosecond

pulses in a cascaded Yb3+:doped fibre amplifier system. A schematic diagram

of the experimental set up is presented in Fig. 5.1. Owing to the complexity

of the system the individual components will be described separately in the

following sections.
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Figure 5.1: Schematic diagram of the experimental setup.

5.3.1 Pulse Source

The input pulse source was developed within the ORC and a detailed technical

description can be found in Ref. [44]. A schematic of the source is illustrated

in Fig. 5.2. The laser is based on a simple Fabry-Perot cavity design with a

grating based dispersive delay line, and is pumped by a fibre coupled diode

operating at 976µm to produce gain at 1.055µm. The mode-locking operation

is based on the stretched-pulse principle using nonlinear polarisation evolu-

tion as a fast saturable absorber [45]. Reliable self-start mode-locking is facil-

itated by incorporating a semiconductor saturable absorber mirror (SESAM).

Two polarisers and associated waveplates are also included to control the bias

of the polarisation switch and adjust the output coupling. The polarisation

switch is the polarisation beam splitter PBS1, where the rejected part of the

pulse appears at Port 1. The half-waveplate between PBS1 and PBS2 controls

the output coupling strength of the ports so that pulses can either be extracted

from Port 2 with a negative chirp or Port 3 with a positive chirp. In our experi-

ments we chose to use the positively chirped output pulses from Port 3 which

had a duration of 2.5 ps (FWHM) and a maximum energy of 60 pJ.

976 nm
65 mW

WDM PBS1 PBS2

��	 ��	��


Port 1

Port 2 Port 3

HR
Mirror

Grating
Pair

Yb :doped
fibre

3+

SESAM

Figure 5.2: Experimental configuration of the picosecond pulse source at 1.055µm.
PBS=polarising beam splitter and HR=highly reflecting.
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5.3.2 Cascaded Amplifier System

Oscillator

Amplifier
Lengths

Maximum
Gains (dB) -8 -4.5 -3+25

3.5 m

+27

3.7 m

+30

3.5 m

P1 P2 LMA
Pulse

Selector

PC AOM AOMPC

Figure 5.3: Experimental configuration of the cascaded amplifier system to generate
parabolic pulses.

As mentioned above, the seed pulses were generated via a Yb3+:based fibre

oscillator which produced ∼ 60 pJ, 2.5 ps (FWHM) positively chirped output

pulses. These pulses were then launched into the three stage cascaded am-

plifier system. To prevent the build up of ASE in the system an isolator and

an accousto-optic modulator (AOM) pair were placed between each amplifier

stage. Polarisation controllers (PC) were also used to ensure optimum trans-

mission through the isolators.

The first two preamplifiers, P1 and P2, were standard single mode Yb3+:doped

fibres with parameters similar to those used in previous studies of parabolic

pulse amplification [12, 13]. These were pumped codirectionally to reduce

the noise level. The final amplifier, however, was a large mode area (LMA)

quasi-single mode amplifier with a core diameter of 30µm.1 This was designed

specifically to reduce the nonlinear effects in the final amplification stage, but

otherwise the remaining parameters are the same as those of the preamplifiers.

In contrast to the preamplifiers, this was pumped counterdirectionally so as to

restrict the growth of the spectral width [Section 4.4.2].

To estimate the effective bandwidths of the amplifiers, the widths of the out-

put pulse spectra were measured after propagation at low powers, where the

nonlinear effects are negligible. As the gain bandwidth of Yb is typically of

the order ∼ 40 nm [22], the small bandwidths of the preamplifiers that were

1This amplifier was doped such that the gain of the fundamental mode was enhanced rel-

ative to the higher order modes.
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measured were likely to have been influenced by the polarising isolators used

in the free space coupling processes. For reference, the parameters describing

each of the three amplifiers are given explicitly in Table 5.1.

β2 (ps2m−1) β3 (ps3m−1) γ (W−1m−1) ∆λ (nm)

P1 30 × 10−3 2.5 × 10−5 6.9 × 10−3 10

P2 30 × 10−3 2.5 × 10−5 6.9 × 10−3 15

LMA 30 × 10−3 2.5 × 10−5 2 × 10−4 40

Table 5.1: Fibre parameters for the amplifiers in Fig. 5.3.

5.3.3 Linear Pulse Compressor

To obtain the required femtosecond durations, it is necessary to compress the

output pulses from the LMA amplifier and, to this end, a simple linear com-

pression device was employed. In such a system, if the pulse initially possesses

a chirp (which is approximately linear) that has the opposite sign to that im-

posed by the GVD of the compressor then the two tend to cancel each other,

resulting in an output pulse that is temporally narrower than the input pulse.

Here we employed a simple grating pair compressor which is the most com-

monly used device to provide anomalous GVD to optical pulses with a positive

linear chirp.

Input Pulse

Grating
Pair

Compressed
Pulse

Beam
Splitter

HR
Mirror

Figure 5.4: Schematic drawing of a linear grating pair compressor in the double-pass
configuration.
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Fig. 5.4 shows a schematic drawing of the grating pair setup used in our sys-

tem. A double pass configuration is employed so that the pulse is recollimated

into its original cross section. In this system the pulse is incident on one grating

of the pair of two parallel gratings. As each frequency component associated

with the pulse is diffracted at a slightly different angle, the different compo-

nents travel slightly different path lengths through the grating pair. As a result,

they experience different time delays so that the blue shifted components ar-

rive earlier than the red shifted components. Consequently, for a positively

chirped pulse, the trailing edge catches up with the leading edge so that the

pulse is compressed during the passage through the grating pair. The opti-

mum compression of the chirp (i.e., the point where the anomalous dispersion

of the grating exactly cancels the positive chirp of the pulse) can be obtained

simply through careful choice of the grating separation.

5.3.4 Characterisation Techniques

The output pulses from the LMA amplifier were characterised in the temporal

domain via the technique of frequency-resolved optical gating (FROG). How-

ever, as the compressed pulses should have a flat phase, these were simply

characterised using a standard autocorrelation method. As the comparison of

our experimental data with an analytic parabolic pulse relies heavily on the ac-

curate characterisation of the measured pulses, the following provides a brief

description of both the FROG and autocorrelation techniques.

Frequency-Resolved Optical Gating

Although several varieties of FROG exist, the results in this chapter were ob-

tained via second harmonic generation (SHG) FROG [46]. In SHG FROG, a

Michelson-type interferometer is used to split the pulse to be measured into

two identical replicas which are then combined in a χ(2) nonlinear medium.

The envelope of the signal field has the form:

Esig (t, τ) = E (t)E (t− τ) , (5.1)

where τ is the time delay between the two beams and the carrier frequency of

the field is neglected as it simply represents an arbitrary phase shift. The signal
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Figure 5.5: Experimental setup for SHG FROG.

field of Eq. (5.1) is incident on a spectrometer where it is spectrally resolved as

a function of delay to yield the FROG trace:

IFROG (ω, τ) =
∣∣Esig (ω, τ)

∣∣2 =

∣∣∣∣
∫ ∞

−∞
dtEsig (t, τ) exp (iωt)

∣∣∣∣
2

, (5.2)

which is a positive real-valued function of the variables ω and τ . The experi-

mental setup for SHG FROG is shown in Fig. 5.5.

Although the measurement of such a FROG trace is a relatively simple exercise

experimentally, solving the inverse problem to determine the complex elec-

tric field of the incident pulse requires rather sophisticated numerical methods

based on two dimensional phase retrieval. In our case, this was carried out

using an iterative “generalised projections” retrieval algorithm whose task is

to estimate the discrete complex field ER (t) (where the subscript R denotes

the retrieved field) which generates the best approximation |ER
sig (ω, τ) |2 to

IFROG (ω, τ) in a least squares sense [15].

It is important to note that both E (t) and its time reversed conjugate E∗ (−t)
produce identical SHG FROG traces, which causes a time-phase reversal am-

biguity. This ambiguity can be removed either by additional propagation ex-

periments in media of known dispersion or by a priori knowledge of the char-

acteristics of the pulse to be measured. This latter condition was the case for

our experiments where we anticipate that the output pulses from the amplifier

will always possess a large positive chirp.
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Autocorrelation Measurements

The most widely used autocorrelation technique is again based on the phe-

nomenon of SHG [14]. A sketch of the SHG autocorrelation setup is shown

in Fig. 5.6. As in the case of a SHG FROG, a Michelson-type interferometer is

used to split the pulse to be measured into two identical replicas where one

of the pulses can be advanced (or delayed) by τ seconds relative to the other.

The two pulses are then recombined in a nonlinear crystal to produce a second

harmonic pulse which is incident on a “slow” detector.

Figure 5.6: Experimental setup for SHG autocorrelation measurements.

The second harmonic field radiated from the nonlinear crystal is proportional

to the square of the complex amplitude of the incident fundamental field:

E2ω(t) ∝ E2
ω(t) + E2

ω(t− τ)e−2iωτ + 2Eω(t)Eω(t− τ)e−iωτ . (5.3)

The current produced by the detector is then proportional to the incident in-

tensity so that:

id(t) ∝ E2ω(t)E∗
2ω(t)

= [Eω(t)E∗
ω(t)]2 + [Eω(t− τ)E∗

ω(t− τ)]2

+ 4Eω(t)E∗
ω(t)Eω(t− τ)E∗

ω(t− τ) + s(τ), (5.4)

where s(τ) is composed of oscillating terms that can be averaged out over in-

tegration in the delay τ . Since the temporal (t) variation of the first three terms
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is on the scale of picoseconds (or less), the much slower optical detector in-

tegrates the current with the result that the actual output is a function of the

delay only. Thus the normalised detector output is simply:

id(τ) = 1 + 2
〈I(t)I(t− τ)〉

〈I2(t)〉 . (5.5)

A plot of id(τ) versus τ will produce a symmetric normalised pulse with a cen-

tral width of τ0. The determination of the true pulse width ∆T0 (FWHM) from

the width of the autocorrelation trace is somewhat ambiguous. However, from

integration of Eq. (5.5) the ratio ∆T0/τ0 can be calculated and for a Gaussian

pulse: ∆T0/τ0 =
√

2, whilst for a hyperbolic secant pulse: ∆T0/τ0 = 1.55.

5.4 Results and Analysis

In our investigations we focused on two different regimes where: (a) the gain

in P2 and the LMA amplifier were similar and (b) the gain in P2 is considerably

less than that in the LMA amplifier. The total pulse gain in each amplifier

and the final output pulse energies are given in Table 5.2. Clearly, both the

output pulse energies are only of the order of hundred’s of nanojoules, which

is considerably less than the required ∼ 10µJ. However, as we will discuss

below, despite investigating various pumping configurations, in all cases we

found the output energies were restricted to this regime.

P1 (dB) P2 (dB) LMA (dB) Energy (nJ)

(a) 22.6 12.5 14.8 177

(b) 22.6 4.3 25.8 334

Table 5.2: Total pulse gains at each amplifier stage and the output pulse energies for
situations where: (a) the gain in P2 is similar to that in the LMA amplifier and (b) the
gain in P2 is much less than the LMA amplifier.

The temporal (top) and spectral (bottom) characteristics of the measured out-

put pulses, obtained from the retrieved FROG trace, are plotted in Fig. 5.7. A

comparison between the defining parameters of the temporal pulses and those

predicted for a parabolic pulse, calculated from Eqs. (4.24)-(4.27), is given in

Table 5.3. We note that in our calculations we only considered parabolic pulse
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Figure 5.7: Top: intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) of the LMA fibre output obtained from FROG data. Bottom: the corresponding
spectra.

evolution in the LMA amplifier. Furthermore, as we approximate the peak

gain by an exponentially increasing profile, the parabolic predictions can only

serve as an indication of any parabolic evolution. Although the agreement be-

tween the widths and the peak powers is reasonable, from the chirps we see

that neither of these pulses is strictly parabolic. The slow convergence to the

parabolic regime can be partially attributed to the large input pulse widths

because, as discussed in Section 4.4.1, although the final parabolic pulse only

depends on the input pulse energy, the rate of convergence does depend on

the initial pulse parameters. Nevertheless, in both cases the pulses exhibit a

Input Measured Parabolic

U0 (nJ) T0 (ps) T0 (ps) P0 (kW) Ωc (THz) T0 (ps) P0 (kW) Ωc (THz)

(a) 5.9 5.2 ∼ 7 ∼ 25 ∼ 0.60 7.4 18 0.82

(b) 0.88 4.4 ∼ 6 ∼ 55 ∼ 0.54 6.5 40 1.3

Table 5.3: Comparison between the measured pulse parameters and those predicted
for a parabolic pulse.
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linear chirp over the central region.

Although Table 5.3 indicates that neither pulse is particularly more parabolic

than the other, on examination of the spectra we see that whilst the spectrum

for case (a) is fairly featureless, the spectrum for case (b) is in fact showing

signs of the oscillations typically seen on the spectral edges of a parabolic pulse

(see Fig. 4.3). Thus this suggests that pulse (b) has advanced further into the

parabolic regime. However, this seems in contradiction with the comparison

between the chirp slopes where the measured chirp of pulse (a) is in better

agreement with the parabolic predictions. A possible explanation for this is

that in case (b) the pulse is actually evolving from the parabolic regime and

entering an amplifier soliton regime. As discussed in Section 3.8.2, the forma-

tion of amplifier solitons can occur in an amplifier due to the effects of a finite

gain bandwidth. Significantly, it has also been shown that in normal dispersion

amplifiers stable solitary wave propagation is often associated with an initial

period of propagation where the pulse exhibits parabolic characteristics [8].

Indeed, by comparing the output pulse from case (b) with a typical amplifier

soliton in Fig. 5.8, obvious similarities can be seen in both the intensity profile

and the chirp. Importantly, this would explain the observation that despite our

attempts to increase the output pulse energy, these are typically restricted to

the order of hundreds of nanojoules.
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Figure 5.8: Comparison between (a) a typical amplifier soliton and (b) the output pulse
of Fig. 5.7(b), plotted on logarithmic scales.

The autocorrelations of the compressed pulses are plotted in Fig. 5.9. These

both have autocorrelation FWHM widths of ∼ 450 fs indicating compressed

pulse widths of ∼ 300 fs (assuming a Gaussian profile). Although the widths

of the central peaks are similar, the pedestals are greatly reduced for pulse (b)
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Figure 5.9: Measured autocorrelation traces corresponding to the compression of the
pulses in Fig. 5.7.

[∼ 70 % of the pulse energy in the central peak as opposed to ∼ 35 % for pulse

(a)]. Again this indicates that pulse (b) has, at some stage in its propagation,

evolved further into the parabolic regime.

Although the output pulse energies for the two cases differ quite considerably,

we have found that for case (a) increasing the gains simply acts to further dis-

tort the output pulse. A possible explanation for this can be understood by

noting that P2 has a large nonlinear coefficient (compared to the LMA ampli-

fier) and is pumped codirectionally so that the pulse sees most of the gain in

the initial amplification stages. Thus by placing a large gain in P2, there is a

rapid initial growth of the spectrum so that it quickly approaches the width

of the gain bandwidth (see Fig. 4.5) leading to bandwidth limiting effects [8].

However, in case (b), due to the low gain in P2, the pulse enters the LMA

amplifier with a relatively low peak power and this combined with the small

nonlinearity coefficient in this amplifier means that most of the amplification

occurs within the gain bandwidth. Thus these results suggest that in order to

understand how we might reach the desired pulse energies of ∼ 10µJ, a de-

tailed investigation of the evolution of the pulses in each stage of the amplifier

system is required.

5.5 Numerical Investigations of Modified Systems

The results presented in Section 5.4 suggest that the main limitation to our

setup is the small gain bandwidths of the preamplifiers. Thus we expect that
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to reach the microjoule regime we will need to find a way to increase these

and/or redistribute the gain in the amplifiers. To illustrate this we simulate

a system based on that described in Fig. 5.3, but using slightly larger gain

bandwidths in the preamplifiers and distributing the gain so that there is more

gain in the amplifiers which have larger bandwidths. Specifically we consider

a system with amplifier bandwidths of 15 nm, 20 nm and 40 nm and gains of

6 dB, 20 dB and 40 dB for P1, P2 and the LMA amplifier, respectively. The re-

maining amplifier parameters were unchanged. Propagation in the amplifiers

was modelled on Eq. (3.51) from Section 3.10.1, but with the modification of a

z dependent peak gain to approximate the different pumping geometries (as

discussed in Section 4.4).

The output pulse and spectrum are plotted in Fig. 5.10. This pulse has an

energy of 10µJ so that it satisfies the output energy requirements of the exper-

imental project. Furthermore, the appearance of linear wings on the intensity

profile and the oscillations on the edges of the spectrum, suggest that the pulse

is in the early stages of evolution towards the parabolic regime (see Fig. 4.3).

Thus these results indicate that despite the increased gains, there has not been

a substantial increase of the bandwidth limiting effects.

−10 −5 0 5 10

10
−2

10
0

Time (ps)

P
ow

er
 (

M
W

)

−5

0

5

C
hirp (T

H
z)

1.04 1.06 1.08
−15

−10

−5

0

Wavelength (µm)

S
pe

ct
ru

m
 (

ar
b.

)(a) (b) 

Figure 5.10: (a) Intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) obtained from numerical simulations of a modified system based on Fig. 5.3. (b)
The corresponding spectrum.

The corresponding calculated autocorrelation of the compressed pulse is shown

in Fig. 5.11. Clearly, not only does this pulse show a significant reduction in

the pedestals over those of the experimental pulses (see Fig. 5.9), but it also has

a true compressed width of ∼ 200 fs (FWHM) which also satisfies the project

requirements. We can expect these results to be further improved with addi-
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Figure 5.11: Calculated autocorrelation corresponding to the compression of the sim-
ulated pulse of Fig. 5.10.

tional increments of the preamplifier bandwidths.

In addition, we have also performed numerous simulations in attempt to es-

tablish modifications to the system which could improve our results. As an

example, Fig. 5.12 shows the effect on the energy and the compressed output

pulse width as functions of the core size of the LMA amplifier and the pream-
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Figure 5.12: Output pulse energy (left axis - circles) and compressed pulse width (right
axis - crosses) as functions of (a) the effective area of the LMA and (b) the bandwidths
of the preamplifiers where the x labels are the bandwidths of P1 and P2, respectively.
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plifier bandwidths.2 From the left hand curves we see that increasing Aeff in-

creases both the output pulse energy and the compressed pulse width. This

is because the smaller effective nonlinearities reduce the spectral broadening

so that the spectrum is better contained within the gain bandwidth. Conse-

quently, for a fixed gain, the rates of increase saturate as the spectrum becomes

narrower. In contrast, not only does increasing the preamplifier bandwidths

increase the output pulse energy, but because it allows for enhanced spectral

broadening it also reduces the compressed pulse width (right hand curves).

As expected, this effect is ultimately limited by the bandwidth of the LMA

amplifier.

5.5.1 Two Amplifier System

Further aspects to this work have included experimental and numerical in-

vestigations into the performance of the system with only one preamplifier.

Although this reduces the total gain available in the system, it removes one

of the coupling losses so that not much should be lost in terms of achievable

pulse energy. Fig. 5.13(a) shows temporal (top) and spectral (bottom) profiles

of simulation results for a system identical to case (b) from Section 5.4 [see

Fig. 5.7(b)], but with P2 removed. We note that the decision to remove P2 over

P1 was motivated by the fact that this eliminated one of the free space cou-

pling sections. Although this pulse appears significantly less distorted than

the pulse in Fig. 5.7(b), the output pulse energy is only 53 nJ so that this can

simply be attributed to a reduction in the total gain. Repeating this simulation,

but with the gains increased to 30 dB in P1 and 40 dB in the LMA amplifier,

an output pulse energy of 3.1µJ was achieved and the corresponding output

pulse can be seen in Fig. 5.13(b). However, on comparison with Fig. 5.7(b) it is

clear that this pulse has suffered similar bandwidth limiting distortions. Thus

these results have simply emphasised the problems discussed above. As a

result, the system was returned to the original configuration with both pream-

plifiers.

2The remaining amplifier parameters are the same as those used in Fig. 5.10.
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Figure 5.13: Top: output pulses (left axis - logarithmic scale) and chirps (right axis - lin-
ear scale) of pulses simulated in a two amplifier system where the gains are (a) 22.6 dB,
25.8 dB and (b) 30 dB, 40 dB, for P1 and the LMA amplifier, respectively. Bottom: the
corresponding pulse spectra.

5.6 Future Directions

In response to these findings, work is currently being conducted within the

ORC by members of Prof. D. Richardson’s fibre fabrication group to design

new preamplifiers with larger effective bandwidths but whilst maintaining the

large effective nonlinearities. As previously mentioned, because it is likely that

the polarising isolators used in the free space coupling are contributing to the

observed small effective bandwidths, design of the new preamplifiers must

include improving their ability to maintain the polarisation of the amplified

field as well as flattening their gain profiles.
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Chapter 6

Parabolic Evolution in

Microstructured Fibre Raman

Amplifiers

6.1 Introduction

The previous two chapters have discussed parabolic pulse generation in doped

fibre amplifiers. This chapter now moves to consider parabolic pulse genera-

tion using an undoped microstructured fibre Raman amplifier. After a de-

scription of the Raman amplifier system, numerical simulations to demon-

strate parabolic pulse generation in a highly nonlinear, normally dispersive

microstructured fibre will be presented. The preliminary experimental results

indicate that parabolic pulse generation in these fibres is indeed possible via

Raman amplification.

6.2 Raman Amplifier System

To date, the theoretical studies of parabolic pulse generation have considered

the evolution of pulses in a rare-earth doped fibre amplifier so that the propa-

gation is described by the nonlinear Schrödinger equation (NLSE) with a gain

term [Section 4.4]. As a result, all related numerical and experimental investi-
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gations have also been based on their formation in such amplifiers. The results

have shown that the most efficient parabolic pulse generation occurs when

the nonlinear propagation dominates over the dispersive propagation and that

this requires a gain medium with a large gain bandwidth to support the grow-

ing spectral width of the pulse. Indeed, as it was shown in Chapter 5, for ef-

ficient parabolic pulse formation to occur the spectral width of the pulse must

remain within the gain bandwidth of the amplifier.

This chapter now considers a new approach to parabolic pulse generation us-

ing amplification in an undoped fibre based on the Raman effect. Such an am-

plifier would enable the exploitation of the broad Raman amplification band

where bandwidths of more than 100 nm have been demonstrated [47]. In addi-

tion, as the Raman effect is not confined to any particular wavelength, this

technology can be used to provide gain at wavelengths where no conven-

tional amplifiers are possible and more importantly, can form the basis of a

tunable high power pulse source. Such pulse sources will find wide spread

applications in all optical processes such as wavelength division multiplexing

(WDM) [48], terahertz optical asymmetric demultiplexing (TOAD) [49], and

optical logic [50].

Commercial Raman amplifiers based on standard fibre are available and are

typically pumped via continuous wave (CW) sources operating at several Watt

power levels. It has been shown by Finot et al. that in such a regime propa-

gation lengths of the order of kilometers are required for the pulse to become

parabolic due to the small gain [51]. To over come this problem, the follow-

ing investigations consider using a high power pulsed pump source and, to

further enhance the nonlinear effects, a microstructured fibre with a large ef-

fective nonlinearity [52]. Importantly, unlike high nonlinearity fibres with a

large n2 [see Eq. (3.25)] which can have a reduced Raman gain bandwidth [53],

the bandwidth of the single material microstructured fibres considered in this

chapter is simply that of pure silica. In addition, the dispersive properties

of a microstructured fibre can be tailored such that they have normal disper-

sion, necessary for parabolic pulse propagation, over a wide range of wave-

lengths extending up to and beyond the optical communications window of

1.5µm − 1.6µm.
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Figure 6.1: Microstructured fibre cross section with the air holes arranged in a hexag-
onal lattice in the cladding region.

6.2.1 Microstructured Fibres

The microstructured fibres considered in this chapter consist of a central fused

silica core surrounded by a regular array of air holes which extend down the

length of the fibre. A sketch of an idealised microstructured fibre, where the

air holes are arranged in an hexagonal lattice, is given in Fig. 6.1. The design

parameters of a microstructured fibre are specified by the hole diameter (d) and

the hole-to-hole spacing (Λ) which are typically on the scale of the wavelength

of light. With careful choice of the number, size and orientation of the air holes

the confinement and dispersion characteristics of the fibre can be tailored to

obtain nonlinear and dispersion parameters not available in conventional fibre

structures.

For a typical microstructured fibre, as illustrated in Fig. 6.1, the average in-

dex of the core region is greater than that of the surrounding cladding so that,

similar to a conventional fibre, light is guided by a modified form of total inter-

nal reflection [Section 3.2]. However, in a microstructured fibre the combina-

tion of the large air/glass index difference and the small structural dimensions

make the effective cladding index a strong function of wavelength. This wave-

length dependence can be explained by noting that at longer wavelengths the

modes extend further into the air holes thus reducing the effective index of the

cladding and increasing the core-cladding index contrast.

The fabrication process used to construct the microstructured fibres discussed

in this chapter is illustrated in a schematic diagram in Fig. 6.2. First, an array of

capillaries is stacked in a hexagonal configuration around a solid rod, which

defines the core. The resulting stack (preform) is then drawn down to the
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appropriate fibre dimensions using a conventional fibre drawing tower [54].

The parameters d and Λ are controlled via the choice of the wall thickness and

the tube diameter of the capillaries, and the conditions (such as the speed)

under which the fibre is drawn. The microstructured fibre used in Section 6.4

was fabricated by Dr K. Furusawa.

Figure 6.2: Schematic diagram for the procedure used for microstructured fibre fabri-
cation.

To establish the modal properties of a microstructured fibres a full-vector or-

thogonal function model is employed, as described in Ref. [55]. In this ap-

proach, the modal fields and refractive index profile are decomposed into plane

wave components so that the wave equation can be reduced to an eigenvalue

equation. Solutions to this equation yield the mode profiles and their corre-

sponding propagation constants. The modelling of the microstructured fibres

discussed in Section 6.3 was conducted by Dr T. Monro.

6.3 Simulating the Raman Amplifier System

This section describes the numerical model used to analyse the Raman ampli-

fier system and presents a detailed discussion of the results. It will be shown

that parabolic pulse formation is possible in a range of microstructured fibres

with normal dispersion. The dependence of the parabolic pulse solution on

the parameters of the microstructured fibre is also discussed.
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6.3.1 Numerical Model and Fibre Parameters

Given the modal properties of a microstructured fibre, pulse propagation can

be described by the standard NLSE. Including the effects of Raman amplifi-

cation, the evolution can be described by the propagation equation given in

Section 3.10.2:

i
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0

R (T ′) |Ψ (z, T − T ′)|2 dT ′, (6.1)

where, as discussed in Chapter 3, β2 is the group velocity dispersion parame-

ter, β3 is the third order dispersion, α is the loss, γ is the effective nonlinearity

of the microstructured fibre and ω0 is the carrier frequency. Here the field Ψ, in

comoving coordinates of the pump beam, is expressed in terms of the ampli-

tude Aj and the phase Φj (j = p, s) of the pump and the signal beams as:

Ψ (z, T ) = Ap (z, T ) exp [iΦp (z, T )] + As (z, T ) exp [iΦs (z, T )] , (6.2)

where the signal field is downshifted in frequency by 13.2 THz from the pump

beam, corresponding to the peak of the Raman gain spectrum [Fig. 3.10].

The simulations consider a range of small core pure silica microstructured fi-

bre designs with the aim of determining whether they are suitable hosts for

parabolic pulse generation. Values for the effective mode area Aeff and the

propagation constant β are shown in Fig. 6.3 for the three microstructured fi-

bres used in the simulations. The transverse refractive index profile for a fibre

with d/Λ = 0.8 is shown in the inset of Fig. 6.3(b). Specifically, fibres with Λ in

the range 0.9µm−1.2µm and ratios d/Λ of 0.8−0.85 are considered, where the

numerical predictions indicate normal dispersion at wavelengths in the range

1.5µm− 1.7µm. As small (sub-λ) values of Λ lead to small core sizes and large

values of d/Λ give a large NA [Eq. (3.4)], the combined effects result in tight

modal confinement thus offering large effective nonlinearities. It should be

recalled that the propagation constant β is related to the group velocity disper-

sion (GVD) and the third order dispersion parameters via Eq. (3.16) and that

Aeff is related to γ via Eq. (3.27). For reference, the nonlinear and dispersion

parameters of the three fibres in Fig. 6.3 are given explicitly in Table 6.1. Such

fibres are similar to that used previously as a Raman amplifier [52].
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Figure 6.3: (a) Effective areas Aeff and (b) propagation constants β, as functions of
wavelength, for fibre A (solid curves), fibre B (dashed curves) and fibre C (dotted
curves). Inset: refractive index profile of a fibre with d/Λ = 0.8.

Λ (µm) d/Λ β2 (ps2m−1) β3 (ps3m−1) γ (W−1m−1)

Fibre A 0.9 0.8 0.4980 -0.0013 0.0517

Fibre B 1.2 0.8 0.0929 -0.0010 0.0524

Fibre C 1.0 0.85 0.3412 -0.0018 0.0564

Table 6.1: Dispersion and nonlinearity parameters for the fibres corresponding to the
profiles in Fig. 6.3, calculated at λ = 1.647µm.

6.3.2 Parabolic Pulse Generation

The numerical simulations are based on a Raman interaction pumped with a

20 W, ∼ 1 ns (FWHM) m = 20 super-Gaussian (square) pulse at 1.536µm, typi-

cal of the output from a diode pumped high power Er3+:doped fibre amplifier

chain (see Section 6.4.1). The Gaussian signal pulses of 5 W, 1 ps duration

(FWHM) are injected at 1.647µm into the three fibres with lengths of 16 m so

that the total pulse gains are of the order of ∼ 30 dB. The output signal pulses

(top curves) and spectra (bottom curves) resulting from amplification in the

three fibres are plotted in Fig. 6.4, corresponding to total pulse gains of: (A)

∼ 29 dB, (B) ∼ 25 dB and (C) ∼ 29 dB. These results illustrate the significance

of the fibre parameters on the total pulse gain and the final pulse shape. De-

spite these differences, it is clear that in all cases the pulse displays the char-
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acteristic features of a pulse entering the parabolic regime including both the

low intensity exponentially decaying wings and the oscillations on the edges

of the spectrum (see Fig. 4.3 in Section 4.4).
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Figure 6.4: Top: intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) of the fibre outputs obtained from simulated propagation in fibres A, B and C
(solid lines) together with the corresponding parabolic and linear fits (circles). Bottom:
the output spectra.

In order to illustrate the extent to which each of the pulses has developed into

the parabolic regime, the top curves of Fig. 6.4 also include parabolic and linear

fits (obtained via a minimisation scheme based on the Nelder-Mead Simplex

method [56]) to the intensity profile and the chirp, respectively (circles). These

fits indicate that the pulse which has evolved to be the most parabolic is that

corresponding to fibre B. This is to be expected as this fibre has the smallest

GVD parameter relative to the fibre nonlinearity so that the nonlinear effects

are more pronounced. However, it is also apparent that in all cases the pulse

has developed asymmetrically. Although some of the asymmetry in the output

pulse can be attributed to the third order dispersion [4], and the shape of the

gain spectrum [Fig. 3.10], it is in fact primarily due to pump depletion where

the leading edge of the pulse experiences more gain than the trailing edge.
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This effect is significant because the signal intensity eventually exceeds that of

the pump intensity [4] and, due to the large gains necessary to amplify a pulse

to the parabolic regime, it is a difficult problem to avoid. Indeed, the peak

powers of the output pulses are: (A) 102 W, (B) 96 W and (C) 125 W, so that

they are all much greater than the initial pump power of 20 W. Furthermore,

on comparing the output pulse profiles in Fig. 6.4, it is clear that the relative

sizes of the peak powers are in agreement with the size of the induced asym-

metry in the pulses, with the pulse generated in fibre C displaying the largest

asymmetry. In this context, it is worth noting that given the high peak powers

reached by the signal pulse it could be possible for it to pump a second Raman

pulse, downshifted from itself by 13.2 THz, out of the amplifier noise, thus cre-

ating a cascaded Raman effect. However, observations indicate that over the

relatively short propagation lengths considered in the simulations, the gain

that the signal provides to the noise is not sufficient for a second Raman pulse

to form or, more importantly, to degrade the quality of the generated parabolic

pulse.

6.3.3 The Effects of Third Order Dispersion

An important consequence of the effects of the pump depletion is that the for-

mation of a parabolic pulse is highly dependent on the sign of the third order

dispersion. Indeed, the simulations have shown that when β3 < 0 then the

asymmetry induced by the third order dispersion acts in the opposite direction

to that induced by the pump depletion and thus can actually improve the qual-

ity of the output pulse. However, when β3 > 0 the effects of the asymmetries

combine, destroying the linearity of the chirp, and can lead to the pulse devel-

oping oscillations on the long sloping trailing edge. Such effects can be seen in

Fig. 6.5 where (a) shows the intensity profile and chirp (plotted on linear scales)

and (b) shows the spectrum of the output pulse generated under the same con-

ditions as that in Fig. 6.4(C) but this time with β3 = 0.0018 ps3m−1. Although

in standard single mode fibres β3 is typically positive over most wavelengths,

both positive and negative values of β3 are possible in small core microstruc-

tured fibres. Clearly, from the slope of the dispersion profiles in Fig. 6.3(b), in

all cases considered here β3 < 0.
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Figure 6.5: (a) Intensity (left axis) and chirp (right axis) of the output obtained from
simulated propagation in fibre C but with β3 = 0.0018 ps3m−1. (b) The corresponding
spectrum.

6.3.4 Dependence on the Input Pulse Characteristics

From the results presented in Figs. 6.4 and 6.5 it is evident that the evolution of

the signal pulse to the parabolic pulse regime depends strongly on the param-

eters of the microstructured fibre. Further design work could be performed to

identify microstructed fibres that are optimised for parabolic pulse generation.

However, previous investigations of parabolic evolution have shown that for

a given amplifier with fixed parameters, there are certain input pulse param-

eters that allow for a more efficient convergence to the parabolic regime [40].

Based on these results, additional simulations have been conducted to estab-

lish the input signal and pump pulse parameters which optimise the evolution

to the parabolic pulse solution with the hope that a faster convergence to the

parabolic regime will make the specific fibre design less critical.

Despite the complexity of the Raman term in Eq. (6.1), in the limit of low pump

depletion it can in fact be well approximated by the NLSE with a simple gain

term as given in Eq. (3.30). Consequently, in this limit it can be expected that

the amplified pulses can be described by the parabolic pulse solutions of Chap-

ter 4. However, in the high gain systems investigated here, the effects of pump

depletion cannot be ignored and it must be expected that the parabolic pulse

solutions will deviate from the analytic predictions based on the simplified

equation. Nevertheless, as the previous results have shown, clearly the pulses

in this system are still evolving to have a parabolic form. Thus, as a means

of quantifying the level to which a pulse has become parabolic, a root-mean-

square (RMS) intensity error can be introduced between the numerically sim-
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ulated pulse INUM (T ) = |Ψ (L, T )|2, where L is the fibre length, and the fitted

parabolic pulse IFIT (T ) (as shown in Fig. 6.4) as [57]:

εI =

√√√√√√√√
1
N

N∑
j=0

[INUM (Tj) − IFIT (Tj)]
2

1
N

N∑
j=0

I2
NUM (Tj)

. (6.3)

The results of the simulations have shown that the important pulse parameters

are the input pulse width and the ratio of the peak powers of the pump and

signal pulses. To illustrate the dependence of the pulse width, Fig. 6.6 shows

a plot of the RMS intensity error as a function of the input width (FWHM)

where in all cases the input pulse energy is 5.3 pJ (as used for the input pulses

in Fig. 6.4), and the fibre parameters correspond to fibre A. This clearly shows

that for a fixed input pulse energy there is an optimum input pulse width, in

agreement with the earlier observations of Ref. [40], and for this system the

width is ∼ 6 ps.

0 2 4 6 8 10
0.10

0.12

0.14

0.16

0.18

Input pulse width (ps)

ε I

Figure 6.6: RMS intensity error as a function of input pulse duration (FWHM) for a
fixed signal pulse energy. The fibre parameters correspond to fibre A.

The remaining curves plotted in Fig. 6.7 then show a comparison between two

parabolic pulses generated with the same input pulse and fibre parameters as

used to generate Fig. 6.4(A) (i.e., a signal peak power of 5 W) but with pump

powers of (a) 40 W and (b) 100 W. As larger pump powers offer larger gains

per unit length, the fibre lengths were chosen to be 8 m and 3 m for (a) and

(b), respectively, so that in both cases the signal pulse experienced a gain of

∼ 28 dB. Although the intensity misfits for these output pulses are similar, (a)

εI = 0.17 and (b) εI = 0.15, the steep sloping edges on the pulse in Fig. 6.7(b)
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Figure 6.7: Top: intensity (left axis - logarithmic scale) and chirp (right axis - linear
scale) of the fibre outputs obtained from simulations with (a) 40W and (b) 100W
pump pulses, respectively. Bottom: the corresponding spectra. In both cases the fi-
bre parameters correspond to fibre A.

indicate that this pulse is more parabolic [Section 4.4]. Thus these results sug-

gest that a larger gain per unit length can enhance the rate of evolution to the

parabolic regime.

6.3.5 Compression of a Raman Amplified Parabolic Pulse

Finally, to demonstrate the potential use of Raman amplified parabolic pulses

for high power short pulse generation, the compression of the pulses in Fig. 6.4

is simulated via a simple linear grating pair (see Section 5.3.3). Importantly, it

can be noted that the simulations have indicated that compressing the pulses to

obtain the flattest spectral phase corresponds to the optimal compressed pro-

file in that it simultaneously minimises the temporal phase variation across the

central peak as well as the fraction of the total pulse energy contained in the

pedestals (see Appendix A). Using this technique, the resultant compressed

pulses can be seen in Fig. 6.8 where the corresponding output widths are

(A) 900 fs, (B) 640 fs and (C) 920 fs. Here the long pedestals on the trailing edges

can be partly attributed to the parabolic nature of the pulses as it has been
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Figure 6.8: Intensity profiles of the output pulses from Fig. 6.4 after linear compres-
sion.

shown that the analytic form of a compressed parabolic pulse is in fact a Bessel

function of the first kind [41]. Significantly, a characteristic feature of this result

is that the amplitude and frequency of these oscillations increase with increas-

ing spectral width. This is in agreement with the observations as the pulse cor-

responding to case B possess both the broadest spectrum (2.1 THz compared

to 0.9 THz for case A and 1.3 THz for case C) and the largest pedestals (46 %

of the total pulse energy compared to 28 % for case A and 42 % for case C).

In addition, because of the asymmetry of these pedestals, they can also be at-

tributed to the asymmetry in the uncompressed pulses. Thus it is expected that

these results could be improved by employing specially designed fibre Bragg

grating dispersion compensators [58]. Nonetheless, the ease with which these

pulses can be compressed suggests that Raman amplified parabolic pulses of-

fer an efficient source of high power short pulses unrestricted by wavelength.

6.4 Experimental Confirmation

The results of the numerical simulations presented in Section 6.3.2 have demon-

strated parabolic pulse generation in microstructured fibre Raman amplifiers.

This section now presents preliminary experimental confirmation of these nu-

merical results. The experiments described in the following were performed

with the help of Dr M. O’Connor who built and maintained the signal pulse

source. Because of the specialised apparatus used in these experiments, this

section begins with a detailed description of the experimental configuration.
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6.4.1 Experimental Apparatus

The Microstructured Fibre

Figure 6.9: SEM image of the cross section of the microstructured fibre used in the
experiments.

The amplifying fibre used in the experiments is a hexagonally stacked pure

silica small core microstructured fibre. A scanning electron microscope (SEM)

image of the fibre cross section is shown in Fig. 6.9.1 From this image we could

estimate d and Λ which in turn allowed us to calculate the nonlinearity and

dispersion properties of the fibre. For reference, the relevant fibre parameters

are listed in Table 6.2.

Parameter Value

Hole diameter d 1.1µm

Hole-to-hole spacing Λ 1.2µm

Nonlinearity parameter γ 90 × 10−3 W−1m−1

Dispersion parameter β2 63 × 10−3 ps2m−1

Loss α 0.2 dBm−1

Length L 5 m

Table 6.2: Microstructured fibre parameters used in the experiments.

Because of the extremely small core size we expect the nonlinear effects in

this fibre to be dramatically enhanced, and in particular we found it to exhibit

some very unusual Raman properties. Specifically, one would expect that for

1A SEM is a microscope that uses electrons rather than light to form an image so that higher

resolutions can be attained.
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Figure 6.10: Raman spectrum for the microstructured fibre of Fig. 6.9 taken at the time
of the measurements.

a pure silica fibre the peak of the Raman gain spectrum should appear down-

shifted from the pump by 13.2 THz so that for a 1.536µm pump we should

choose a signal beam at 1.649µm. However, from Fig. 6.10 which shows the

Raman spectrum of this fibre at the time of our measurements, clearly this is

not the case as the peak gain is in fact at ∼ 1.62µm. Furthermore, we also found

that this Raman peak shifted in wavelength as the fibre was recleaved and the

coupling was varied. This anomaly can possibly be attributed to the nonuni-

formity of the fibre cross section and examples of alternative Raman spectra

obtained in this fibre are shown in Fig. 6.11. Nevertheless, as a complete in-

vestigation into the Raman properties of this fibre was beyond the scope of

this thesis, we simply attributed this behaviour to the extreme nature of the

fibre structure. In addition, it is worth noting that because of the small core
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Figure 6.11: Alternative Raman spectra for the microstructured fibre of Fig. 6.9 show-
ing the wavelength dependence of the coupling.
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size, the coupling efficiencies obtained during this experiment were typically

of the order of 10% or less and were highly dependent on the wavelength of

the coupled light.

The Signal Pulse Source

To ensure efficient parabolic pulse amplification in the microstructured fibre

described above we required a picosecond pulse source at the peak of the Ra-

man gain curve: ∼ 1.62µm. To this end, Dr M. O’Connor developed a syn-

chronously pumped optical parametric oscillator (OPO) based on wavelength

conversion in a periodically poled lithium niobate (LiNbO3) crystal (PPLN)

(see Chapter 10 for a more complete description of PPLN). A detailed techni-

cal description of a similar OPO has been published in Ref. [59].

A schematic diagram of the signal pulse source is given in Fig. 6.12. The

pump source is a mode-locked Nd:YLF laser (Microlase DPM-1000-120), cou-

pled with a Nd:YLF amplifier system, which operates at a wavelength of λ =

1.047µm to produce 4 ps (FWHM) hyperbolic secant pulses at a repetition rate

of 120 MHz. These pulses are injected into the OPO ring cavity where the wave-

length conversion occurs in a 19 mm long PPLN crystal with a grating period of

30µm. The crystal was housed in an oven (dashed box) where the temperature

could be adjusted to tune through the converted wavelengths and for signal

Figure 6.12: Experimental configuration of the OPO used to generate picosecond
pulses at 1.62µm.
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and idler waves of λS = 1.62µm and λI = 2.96µm, the operating tempera-

ture was 135 ◦C. The cavity was surrounded by three highly reflecting (HR)

mirrors and an output coupler (OC) with a 40% transmission fraction (at the

signal wavelength) to produce ∼ 550 mW of average power.

At this point we note that the source that will be used to pump the Raman in-

teraction only operates at a repetition rate of the order of 100 kHz (see following

section). Thus if we were to consider launching the signal beam into the fibre

at the maximum repetition rate of 120 MHz, only 1 out of ∼ 1200 pulses would

be amplified. As slower detection devices [such as an optical spectrum anal-

yser (OSA)] integrate the optical signals over a window in time, this averaging

effect would make it almost impossible to detect the gain in a single amplified

pulse. As a result, to reduce the number of pulses that enter the fibre stage an

accousto-optic modulator (AOM) is used to chop the pulse train from the OPO

into a series of pulse windows which occur at a repetition rate of 100 kHz. A

schematic illustration of this can be seen in Fig. 6.13. An example of a typical

window of pulses for an AOM trigger width of 350 ns, obtained from a 100 MHz

digital oscilloscope, is plotted in Fig. 6.14(a).2 Here the departure of the pulse

window from the perfect rectangular function of Fig. 6.13 is due to the finite

response time of the AOM and for window sizes less than ∼ 4µs leads to a

reduction in the peak power of even the most central pulses. With the AOM

window fully open (8.3µs) the maximum average signal power before the mi-

crostructured fibre launch was 30 mW.

Figure 6.13: Reduction of the signal pulse repetition rate for launch into the Raman
amplifier system.

Finally, Fig. 6.14(b) shows an autocorrelation trace of the input pulses into the

Raman amplifier system. Assuming a hyperbolic secant pulse profile, the au-

tocorrelation width of 6.12 ps indicates a true input pulse width of ∼ 4.0 ps

(FWHM). The fine oscillatory structure on the envelope of the pulse is due to

the chopping of the pulse train by the AOM.

2Although the pulse-to-pulse spacing is large enough to be resolved accurately, the small

bandwidth of the scope causes an exaggeration of the pulse widths.
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Figure 6.14: (a) Typical example of a window of signal pulses for input into the mi-
crostructured fibre. (b) Autocorrelation trace of the input pulses into the microstruc-
tured fibre.

The Pump Pulse Source

The pump pulse source was also developed within the ORC and a detailed

technical description can be found in Ref. [60]. Fig. 6.15 shows a schematic

diagram of the experimental setup. The laser is seeded by a simple laser diode

providing 1 mW CW at 1.536µm which is externally modulated to produce 5 ns

square pulses. To compensate for the losses resulting from the chopping of the

beam, an amplifier is also included in this preliminary stage. These pulses are

then passed into a two stage, high gain Er3+:doped fibre preamplifier before

CW Laser
Diode

EDFA EOM EDFA AOM EDFA AOM

Pulse
Generator

Modulation
Stage

Stage 1 Stage 2

Er-Yb
LMA

Stage 3

Figure 6.15: Experimental configuration of the high power pump pulse source to pro-
duce pulses at 1.536µm.
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finally being launched into the large mode area (LMA) Er3+–Yb3+:doped fibre

amplifier. The three amplifier stages were separated by two AOMs triggered

to gate through the pulses whilst stopping the ASE from passing between ad-

jacent stages. In addition, a 1 nm bandpass filter was placed before the LMA

amplifier stage to eliminate the small amount of ASE in the time slot of the

pulse. With the pulse generator operating at a repetition rate of 100 kHz this

setup produced 5 ns pulses with peak powers of ∼ 1 kW.

6.4.2 Experimental Setup

The complete experimental setup to generate parabolic pulses in a microstruc-

tured fibre Raman amplifier is illustrated in Fig. 6.16. The AOM in the sig-

nal setup was triggered off the pump source so that the signal pulses were

launched into the microstructured fibre to overlap with the pump pulses. Po-

larisation controllers (PC) were included in the pump and signal launch paths

so that both beams could be launched onto a single polarisation axis. Typi-

cally, the average pump power before the microstructured fibre launch was

250 mW. Coupling into the fibre was achieved using a 2.75 mm focal length

lens and coupling efficiencies of ∼ 10% and ∼ 5% were usually obtained for

the pump and signal beams, respectively.3 This resulted in a maximum pump

peak power of 40 W and a maximum signal peak power of 4.5 W (when the

AOM window was fully open: 8.3µs) in the microstructured fibre.

To verify that the pulses were in fact experiencing gain from the Raman in-

teraction, before attempting to measure autocorrelation traces of the output

pulses we first looked at the output from the fibre on the digital scope. As

mentioned previously [Section 6.4.1], the small bandwidth of the scope causes

an exaggeration of the observed pulse widths so that this is not a true represen-

tation of the output pulses. However, it is clear from Fig. 6.17(a) that the signal

pulse which is overlapped by the pump pulse is experiencing gain. In order to

see the unamplified pulses on this scale, this image was taken for a relatively

low average input pump power of 100 mW (corresponding to a peak pump

power in the fibre of ∼ 13 W) and resulted in ∼ 8 dB of gain. Increasing the

input pump power to 250 mW (∼ 40 W of peak pump power in the fibre), the

3This assumes a launch optimised for the pump beam.
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Figure 6.16: Schematic diagram of the experimental setup for parabolic pulse gener-
ation in a microstructured fibre Raman amplifier. WDM=wavelength division multi-
plexer, MF=microstructured fibre and RM=removable mirror.

amplified pulse in Fig. 6.17(b) is now sufficiently large that the unamplified

pulses are undetectable on this scale, and this corresponded to a total pulse

gain of ∼ 22 dB.

Once we were satisfied that the signal pulses were experiencing Raman gain

we then aligned the output to the autocorrelator. This was done with the AOM

window fully open so that the power was at a maximum. A removable mirror

was placed just before the entrance to the autocorrelator so that the output

could be redirected to an OSA and thus we could obtain measurements of the

pulses in the temporal and spectral domains under the same conditions.
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Figure 6.17: Oscilloscope traces showing signal pulses with: (a) 8 dB and (b) 22 dB of
Raman gain.
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We recall that as the defining features of a parabolic pulse are the steep edges

of the temporal profile and its linear frequency chirp [Chapter 4], a thorough

characterisation of a parabolic pulse requires the use of the FROG measure-

ment technique which allows for the complete retrieval of both the intensity

profile and the phase (as described in Section 5.3.4). However, at the time of

these measurements a FROG device at 1.62µm was not available. Thus in or-

der to establish any parabolic nature of the amplified pulses it was important

to consider both the temporal and spectral measurements where, in the time

domain the steep parabolic edges will translate to an autocorrelation trace with

steep edges, and in the frequency domain the strong chirp will result in a broad

spectral width [Section 3.2].

6.4.3 Analysis of Experimental Data

With the experimental configuration set up to look at the fibre output on the

OSA, the coupling and polarisation of the pump beam were optimised to ob-

tain the largest Raman gain at 1.62µm. We found that, at the time of the mea-

surements, this corresponded to an input pump power of 210 mW and a cou-

pling efficiency of ∼ 8 % so that the peak power of the pump in the fibre was

∼ 25 mW.

The measured autocorrelation trace of a Raman amplified pulse is shown in

Fig. 6.18(a). This was taken for an AOM window size of 4µs and with only

10 mW of average signal power before the fibre, we estimate an average cou-

pled power of ∼ 1 mW, corresponding to a peak signal power of ∼ 2 W.

Clearly there is a very large noise component to this pulse which makes it

difficult to distinguish any defining features. This is due to the extremely low

average power of the signal beam and, in fact, for this window size it was not

possible to measure an autocorrelation trace of the signal pulses through the

fibre without gain (i.e., with the pump turned off). Nevertheless, the steepness

of the edges of this trace suggests that the pulse has departed from its input

hyperbolic secant profile.

The output spectrum from the microstructured fibre showing both the pump

at 1.536µm and the amplified spectrum at 1.62µm is plotted in Fig. 6.18(b). To

estimate the Raman pulse gain we then closed the AOM window down even
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Figure 6.18: (a) Measured autocorrelation trace and (b) spectrum of a Raman amplified
pulse.

further to 60 ns, so that there were approximately 4 significant signal pulses in

each train, and measured the spectrum of the signal pulses with and without

the copropagating pump. The resulting pulse spectra can be seen in Fig. 6.19

and from these we calculated the Raman gain to be ∼ 16 dB. Importantly we

note that due to the reduction in the peak power, caused by the reduction of the

AOM window, we can expect that this calculation will actually underestimate

the true Raman pulse gain and this is facilitated by the suppression of the pulse

shaping effects seen from Fig. 6.18(b) to Fig. 6.19(b). However, as it was not

possible to measure the Raman gain directly from the temporal pulses, this

was the best estimate that we could obtain.

To investigate these results in more detail, the system has been simulated based

on the input pump and signal pulse properties, as estimated above, and with
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Figure 6.19: Signal pulse spectra corresponding to (a) no gain (pump off) and (b) gain
(pump on) to estimate the total Raman gain.
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the fibre parameters given in Table 6.2. Fig. 6.20(a) shows the intensity profile

and chirp of the output pulse from the simulation (solid curves). The total

output pulse gain was 15.9 dB, consistent with the estimated measured gain.

Clearly, not only is this pulse starting to look visually parabolic, it is also in

good agreement with the parabolic fit to its intensity profile and the linear fit

to its chirp (circles).4 In addition, the corresponding spectrum of Fig. 6.20(b)

appears to be developing the oscillations on its edges typically associated with

the entrance to the parabolic regime [Section 4.4].
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Figure 6.20: (a) Intensity profile (left axis) and chirp (right axis) of the simulated Ra-
man amplified pulse together with parabolic and linear fits (circles). (b) Correspond-
ing spectrum.

To compare our measured pulse with the simulation results, Fig. 6.21(a) shows

the autocorrelation trace of the pulse from Fig. 6.18(a) (solid curve) together

with the calculated autocorrelation of the pulse from Fig. 6.20(a) (dashes). De-

spite the noise induced asymmetry in the peak of the measured trace, there

is still good agreement between the autocorrelations and specifically between

their half maximum widths which are 7.2 ps (measured) and 7.3 ps (simulated).

Furthermore, not only is there good agreement between the spectral widths

(8.3 nm and 8.4 nm for the measured and simulated spectra, respectively), there

is also excellent qualitative agreement between the shape of the spectral pro-

files as seen in Fig. 6.21(b). Consequently, we can expect that the simulated

pulse of Fig. 6.20 is a reasonable representation of the measured amplified

pulse in Fig. 6.18 which indicates that parabolic pulses are indeed being gen-

4As in Section 6.3.2, the fits are obtained via a minimisation scheme based on the Nelder-

Mead Simplex method.
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Figure 6.21: (a) Autocorrelation traces and (b) Raman amplified spectra of the mea-
sured pulse (solid curves) compared with the simulated parabolic pulse (dashed
curves).

erated in our system.

Finally, to emphasise the parabolic nature of the output pulse, Fig. 6.22 com-

pares the measured autocorrelation trace (solid line) with calculated autocor-

relations for parabolic (dashes), Gaussian (dot-dashed) and hyperbolic secant

(dotted) fits to the simulated pulse of Fig. 6.20, on a logarithmic scale. Clearly,

the parabola offers the best fit to the experimental pulse, especially in the

wings. Thus these results offer the first confirmation of a parabolic pulse gen-

erated via Raman amplification in a microstructured fibre.
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Figure 6.22: Autocorrelation trace of the experimentally measured pulse (solid curve)
compared with calculated autocorrelations of parabolic (dashes), Gaussian (dot-
dashes) and hyperbolic secant (dots) fits to the simulated pulse of Fig. 6.20.
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6.4.4 Future Directions

The results presented in this section have indicated that the main limiting fea-

ture of this experiment is the very low coupling efficiency of the microstruc-

tured fibre, which is due to the extremely small core size. Unfortunately, to

date, investigations of the dispersion properties of various microstructured fi-

bres have shown that in the wavelength range 1.5µm − 1.7µm normal disper-

sion is typically associated with small core structures [61]. In the interest of

establishing the structural features that give rise to the dispersion, and also the

nonlinearity, of a microstructured fibre, members of Dr T. Monro’s microstruc-

tured fibre group are currently working to solve the inverse problem of calcu-

lating possible fibre structures given a fixed dispersion profile. Thus it is hoped

that in the near future we could exploit this technique to design fibres with dis-

persion and nonlinear properties that are optimised to our specific needs.

As well as the small coupling efficiencies, we also faced the additional problem

that the signal source was passively mode locked so that this could not be

synchronised exactly with the pump source. Thus in order to improve the

efficiency of the measurements it would also be beneficial to design a signal

source that could be triggered directly off our pump source, such as a Raman

fibre laser [62], enabling single pulse measurements.

Finally, to make more rigorous comparisons between the experimental mea-

surements and the parabolic theory it is important that our pulse diagnostic

techniques are improved. Thus, to this end, we will need to develop a FROG

setup (such as that described in Section 5.3.4) that operates at ∼ 1.62µm so

that we can obtain a complete retrieval of both the intensity and phase of the

field. Furthermore, it is hoped that a better understanding of the output pulse

characteristics, and hence the precise effects of the dispersion and nonlinearity,

will aid in the design process of the microstructured fibres.
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Chapter 7

Self-Similar Solutions of the NLSE

with Distributed Coefficients

7.1 Introduction

The self-similar solutions discussed in the previous two chapters exist under

the conditions of normal dispersion and gain. In this chapter a new class of

solutions which exist for a much wider parameter range that extends to both

signs of the dispersion parameter, and either gain or loss is investigated. These

solutions have been found for a generalised form of the nonlinear Schrödinger

equation (NLSE) with distributed coefficients which vary longitudinally down

the length of the fibre or fibre amplifier. It will be shown that this system

permits a broad class of exact self-similar solutions and that these include a

set of solitary wave solutions. In order to establish the robustness of these

solutions to realistic experimental conditions, a numerical investigation into

their stability is also presented.

7.2 Background of the Project

Development of the techniques involved in optical fibre fabrication mean that

it is now possible to fabricate fibres with longitudinally varying dispersion and

nonlinear properties. Such tailored fibres have already been shown to have
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important applications in the areas of pulse compression and amplification, as

pulse degradation due to the nonlinear effects can be minimised. In particular,

dispersion decreasing fibres have been used to demonstrate clean, high power

short pulse generation via adiabatic soliton compression in both low gain fibre

amplifiers and dispersion decreasing fibres [63].

Motivated by these results, in 1996 Moores conducted an analytical investiga-

tion into similar systems under which rapid compression was possible [64].

In his work he focused on pulse propagation in anomalous dispersion fibres

or fibre amplifiers where either the gain or the dispersion parameter is a dis-

tributed function of the propagation distance. His results showed that high

quality rapid compression is indeed possible and that the pulses are chirped

throughout the compression with the size of the chirp being proportional to the

rapidity of the amplification. However, as these results were obtained rather

serendipitously, they could not be extended to consider more complex systems

where two or more of the parameters varied along the fibre length.

This chapter presents the results of an independent analysis based on a more

general system. Specifically, it will be shown that in systems where all of the

parameters describing the fibre or fibre amplifier can vary longitudinally, there

exists a new class of exact self-similar solutions. This work is the result of a

collaboration with Prof. J. Harvey and Dr V. Kruglov of the Applied Optics

Group at The University of Auckland. The theoretical component of this work

was carried out by Dr V. Kruglov using similar techniques to those employed

for the case of parabolic pulse propagation in normal dispersion amplifiers, as

discussed in Chapter 4. My role was to conduct the numerical analysis to aid

with the development and verification of these results, and to establish their

stability under perturbations.

7.3 Nonlinear Schrödinger Equation with Variable

Parameters

Pulse propagation in a fibre with distributed dispersion, nonlinearity and gain

can be described by the standard NLSE, as introduced in Section 3.7, with z-
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dependent coefficients so that:

i
∂Ψ

∂z
=
β2(z)

2

∂2Ψ

∂T 2
− γ(z) |Ψ|2 Ψ + i

g (z)

2
Ψ. (7.1)

As discussed in Chapter 3, Ψ (z, T ) is the slowly varying envelope of the pulse

in a co-moving frame, β2 is the GVD parameter, γ is the nonlinearity parameter,

g is the fibre gain (or loss if g is negative) and, to simplify the theoretical anal-

ysis, we assume that the higher order dispersive effects are negligible so that

we can set β3 = 0. The inclusion of a distributed gain function g(z) has already

been discussed in Section 4.4.2 in the context of the amplifier pumping geom-

etry. To produce distributed dispersion in a fibre, longitudinal variation of the

chemical composition, refractive index, or the core diameter is required. As the

core diameter is controlled by the fibre drawing speed, this is by far the eas-

iest parameter to control and thus dispersion variation is generally achieved

by tapering the fibre. However, because the nonlinearity parameter depends

on the mode size of the guided light [Eq. (3.27)], this is also controlled by the

core diameter so that we expect a tapered fibre to have both distributed dis-

persion and nonlinearity. Although previous theoretical studies of pulse prop-

agation in tapered fibres have neglected the effects of the distributed nonlin-

earity claiming that this effect is small, as the desire for shorter device lengths

becomes greater, more extreme tapers will be required and these claims will

no longer be accurate. Thus we expect to find that for such cases the full z-

dependence of the coefficients in Eq. (7.1) must be considered.

7.4 Solutions to the Modified NLSE

In this section we consider the solutions to Eq. (7.1) under conditions where all

of the fibre parameters are functions of the propagation distance. Following

the analysis of Chapter 4, we start by writing the field Ψ in terms of its real

amplitude A and phase Φ: Ψ(z, T ) = A(z, T ) exp [iΦ(z, T )]. Substituting this

into Eq. (7.1) we again obtain the coupled equations in A and Φ as:

A
∂Φ

∂z
=
β2(z)

2

[
A

(
∂Φ

∂T

)2

− ∂2A

∂T 2

]
+ γ(z)A3, (7.2)

∂A

∂z
=
β2(z)

2

[
A
∂2Φ

∂T 2
+ 2

∂A

∂T

∂Φ

∂T

]
+

g(z)

2
A. (7.3)
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As discussed in Section 4.2, with the assumption of self-similar evolution in

the amplifier we can reduce the number of degrees of freedom of the system

by rewriting the equations in terms of carefully chosen combinations of the

original variables. Based on the results of the self-similar parabolic pulse so-

lutions, for the generalised NLSE considered here we choose the two indepen-

dent variables: Γ(z) and τ = T/Γ(z) [41]. Using these we can represent the

amplitude in the form:

A(z, T ) = S(z)F (τ) , (7.4)

and without loss of generality we can suppose that:

S(0) = 1 and Γ(0) = 1. (7.5)

As it was shown in Section 4.4.2, for an equation of the form of (7.1) with a

longitudinally varying gain profile, the evolution of the pulse energy in the

amplifier satisfies the integral of motion:

U(z) = U0 exp

[∫ z

0

g(z′)dz′
]
, (7.6)

where U0 = U(0). With the form of the amplitude as given by Eq. (7.4) we find:

U(z) = S2(z)

∫ ∞

−∞
F 2

(
T

Γ

)
dT = S2(z)Γ(z)

∫ ∞

−∞
F 2(τ)dτ, (7.7)

U0 = S2(0)Γ(0)

∫ ∞

−∞
F 2(τ)dτ =

∫ ∞

−∞
F 2(τ)dτ, (7.8)

so that the integral of Eq. (7.6) yields:

S(z) =
1√
Γ(z)

exp

[∫ z

0

g (z′)
2

dz′
]
. (7.9)

It follows from Eq. (7.4) that the self-similar form of the amplitude is thus:

A(z, T ) =
1√
Γ(z)

F (τ) exp

[
1

2
G(z)

]
, (7.10)

where we have defined

G(z) =

∫ z

0

g(z′)dz′. (7.11)

To find the solution for the phase we first assume that it is quadratic in T :

Φ(z, T ) = φ(z) + C(z)T 2. (7.12)
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The significance of this ansatz becomes clear by recalling that if a pulse pos-

sesses a linear chirp then the rate at which the temporal components expand

or compress is the same for all parts of the pulse [Section 4.3.1]. Thus as the

pulse propagates in the fibre its form will be preserved and hence it behaves

self-similarly. As demonstrated by the analysis of Chapter 4, the value of this

approach has been confirmed for the case of self-similar parabolic pulse prop-

agation in both fibres and fibre amplifiers.

With this ansatz Eq. (7.2) can be rewritten as:

A

(
dφ(z)

dz
+

dC(z)

dz
T 2

)
= 2β2(z)AC

2(z)T 2 − β2(z)

2

∂2A

∂T 2
+ γ(z)A3. (7.13)

This equation contains an explicit dependence on the variable T which disap-

pears when the terms proportional to T2 are equal. Thus we obtain the follow-

ing pair of equations:
dC(z)

dz
= 2β2(z)C

2(z), (7.14)

A
dφ(z)

dz
= −β2(z)

2

∂2A

∂T 2
+ γ(z)A3. (7.15)

We then rewrite the second coupled equation (7.3) as:

∂A

∂z
= β2(z)C(z)A − 2β2(z)C(z)T

∂A

∂T
+

g(z)

2
A. (7.16)

With the form of the amplitude as given in Eq. (7.10), it follows that Eq. (7.16)

can be satisfied if and only if the function Γ(z) is defined via:

1

Γ(z)

dΓ(z)

dz
= −2β2(z)C(z). (7.17)

The solutions to Eqs. (7.14) and (7.17) follow as:

C(z) =
C0

1 − C0D(z)
, (7.18)

and

Γ(z) = 1 − C0D(z), (7.19)

where the initial chirp C0 = C(0) �= 0, because the phase must be quadratic in

T for all z, and the function D(z) is

D(z) = 2

∫ z

0

β2(z
′)dz′. (7.20)
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Via substitution of the form of the amplitude [Eq. (7.10)] into Eq. (7.15) we then

obtain the differential equation for F to be:

d2F

∂τ 2
+

2Γ2(z)

β2(z)

dφ(z)

dz
F − 2γ(z)Γ(z)

β2(z)
exp [G(z)]F 3 = 0. (7.21)

As in the most general case the coefficients in Eq. (7.21) are functions of z whilst

F only depends on the scaling variable τ , this equation only has nontrivial

solutions (F (τ) �= 0) if and only if the coefficients are constants such that:

−2Γ2(z)

β2(z)

dφ(z)

dz
= λ, (7.22)

−γ(z)Γ(z)

β2(z)
exp [G(z)] = κ. (7.23)

Hence λ and κ can be calculated at z = 0:

λ = − 2

β2(0)

dφ

dz

∣∣∣∣
z=0

and κ = − γ(0)

β2(0)
, (7.24)

and Eq. (7.21) can be rewritten as:

d2F

∂τ 2
+ 2κF 3 = λF. (7.25)

The significance of writing Eq. (7.25) in this form is that it is clear that this

equation can be regarded as an eigenvalue equation where λ is the eigenvalue

to be determined. To complete the solution to the phase, Eq. (7.22) can be

integrated to yield:

φ(z) = φ0 − λD(z)

4 [1 − C0D(z)]
, (7.26)

where φ0 is a constant of the integration, and combining this with Eq. (7.18) we

obtain:

Φ (z, T ) = φ0 − λD(z)

4 [1 − C0D(z)]
+

C0T
2

1 − C0D(z)
. (7.27)

Importantly, as it was found from Eq. (7.17), the self-similar solutions de-

scribed by Eqs. (7.10) and (7.27) do not exist for any combination of arbitrary

shaped dispersion, nonlinearity and gain functions. To this end, it is useful to

rewrite Eq. (7.19) in the form:

ρ(z) = ρ(0) [1 − C0D(z)] exp [G(z)] , (7.28)

where the function ρ(z) is defined by:

ρ(z) =
β2(z)

γ(z)
. (7.29)
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This equation [Eq. (7.28)] is the necessary and sufficient condition for the exis-

tence of the self-similar solutions of Eq. (7.1). Furthermore, it is also interesting

to differentiate Eq. (7.28) to obtain:

g(z) =
1

ρ(z)

dρ(z)

dz
+

2C0β2(z)

1 − C0D(z)
, (7.30)

which, given the dispersion and nonlinearity profiles of the fibre, yields the

required form of the gain. Combining these results we find that the complete

description of the self-similar solutions to the NLSE with distributed coeffi-

cients is:

Ψ(z, T ) =
1√

1 − C0D(z)
F

(
T

1 − C0D(z)

)
exp

[
G(z)

2

]
exp[iΦ(z, T )],

where

Φ (z, T ) = φ0 − λD(z)

4 [1 − C0D(z)]
+

C0T
2

1 − C0D(z)
. (7.31)

Explicit Forms of the Self-Similar Solutions

In order to find the explicit forms of the possible sets of self-similar solutions

we now consider integrating Eq. (7.25) for different signs of κ [i.e., different

signs of the product β2(z)γ(z)]. As the nonlinear coefficient is always posi-

tive in optical fibres (γ > 0), this corresponds to considering the two cases of

anomalous (β2 < 0) and normal (β2 > 0) dispersion. Firstly for the case of

anomalous dispersion (κ > 0), we find the amplitude through Eq. (7.10) to be:

A(z, T ) =

√|ρ(z)|
T0[1 − C0D(z)]

sech

(
T

T0[1 − C0D(z)]

)
, (7.32)

which is in fact in the form of a solitary wave solution where T0 is the initial

pulse width and T−2
0 = λ [Eq. (7.27)]. For the case of normal dispersion (κ < 0),

Eq. (7.25) then yields the amplitude in the form of a kink solution [4]:

A(z, T ) =

√|ρ(z)|
T0[1 − C0D(z)]

tanh

(
T

T0[1 − C0D(z)]

)
, (7.33)

where now −2/T 2
0 = λ. It is also possible to find a solution to Eq. (7.25) which

is independent of T for either sign of κ and for such cases the amplitude is

found to be:

A(z, T ) =
Λ
√|ρ(z)|

1 − C0D(z)
, (7.34)
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where Λ is an arbitrary real parameter and 2Λ2sgn (κ) = λ.

In addition to these localised solutions, Eq. (7.25) also has six bounded peri-

odic solutions which depend on an arbitrary parameter 0 < k < 1. Using the

notations for the Jacobian elliptic functions [65], the solutions are, for κ < 0,

case 1: −(1 + k2)T−2
0 = λ,

U(z, T ) =

√|ρ(z)|k
T0[1 − C0D(z)]

sn

(
T

T0[1 − C0D(z)]
, k

)
, (7.35)

case 2: −(1 + k2)T−2
0 = λ,

U(z, T ) =

√|ρ(z)|k
T0[1 − C0D(z)]

cd

(
T

T0[1 − C0D(z)]
, k

)
, (7.36)

and for κ > 0,

case 3: (2k2 − 1)T−2
0 = λ,

U(z, T ) =

√|ρ(z)|k
T0[1 − C0D(z)]

cn

(
T

T0[1 − C0D(z)]
, k

)
, (7.37)

case 4: (2 − k2)T−2
0 = λ,

U(z, T ) =

√|ρ(z)|
T0[1 − C0D(z)]

dn

(
T

T0[1 − C0D(z)]
, k

)
, (7.38)

case 5: (2k2 − 1)T−2
0 = λ,

U(z, T ) =

√|ρ(z)|k√1 − k2

T0[1 − C0D(z)]
sd

(
T

T0[1 − C0D(z)]
, k

)
, (7.39)

case 6: (2 − k2)T−2
0 = λ,

U(z, T ) =

√|ρ(z)|√1 − k2

T0[1 − C0D(z)]
nd

(
T

T0[1 − C0D(z)]
, k

)
. (7.40)

In the case where β2 is a constant (independent of z), the travelling solutions

can also be found by a Galilean transformation [66]. These oscillatory solutions

correspond to the transmission of amplitude modulated light which experi-

ences a simultaneous amplification (or loss) and a modulation frequency shift

under the influence of nonlinearity, dispersion and gain (or loss). To illustrate

this solution set, Fig. 7.1 plots the Jacobian elliptic solutions for a constant β2

for both κ < 0 (top curves) and κ > 0 (bottom curves), where k = 1/2.
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Figure 7.1: Oscillatory Jacobian elliptic solutions for constant β2 where the top curves
are for κ < 0 and the bottom are for κ > 0. In both cases k = 1/2.

7.4.1 Solitary Wave Solutions with Distributed Dispersion and

Nonlinearity

In this section we focus on the solitary wave solution of the generalised NLSE

[Eq. (7.1)] found for the case of κ > 0, given by Eq. (7.32). Specifically we

consider a system where the solution describes the evolution of optical pulses

in dispersion decreasing fibres [67]. For definiteness, we suppose the fibre to

have the physically realistic dispersion and the nonlinearity distributions:

β2(z) = β2,0 exp(−σz), γ(z) = γ0 exp(αz), (7.41)

where β2,0 < 0 (as γ0 > 0) and σ > 0. It follows from Eq. (7.30) that the gain

function for self-similar solutions in this case is:

g(z) = −α− σ(ν − 1)

ν − 1 + e−σz
, (7.42)

where we have introduced the parameter ν ≡ σ/2C0β2,0 ( �= 0). With this form

of the gain profile, we find the amplitude of the solitary wave solution to be:

A(z, T ) = A0(z) sech

(
T

W (z)

)
, (7.43)
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where the evolution of the peak amplitude A0(z) and the pulse widthW (z) are

given by:

A0(z) =
ν

T0

√∣∣∣∣β2,0

γ0

∣∣∣∣
(

exp[−1
2
(α+ σ)z]

ν − 1 + e−σz

)
, (7.44)

W (z) =
T0

ν

(
ν − 1 + e−σz

)
, (7.45)

together with the phase:

Φ (z, T ) = φ0 − β2,0ν

2σT 2
0

(
1 − e−σz

ν − 1 + e−σz

)
+

σ

2β2,0

(
T 2

ν − 1 + e−σz

)
. (7.46)

To demonstrate typical physical systems where these solutions apply we con-

sider the two simplest cases corresponding to: (i) constant gain (i.e., where the

amplifier is pumped from both ends) and (ii) constant loss (propagation in an

undoped fibre). For case (i), referring to Eq. (7.42) it is clear that this takes place

when ν = 1 and α < 0 so that g = −α = |α|. Here the energy of the pulse grows

as E (z) = E0 exp (|α| z) whilst the width decreases W (z) = T0 exp (−σz). Thus

this solution describes the compression of a pulse in a fibre amplifier. Further-

more, we note that by allowing the amplifier to have a distributed gain profile

(ν �= 1) this solution provides other design possibilities for an amplifying pulse

compressor.

For the second case (ii) of constant loss, again referring to Eq. (7.42) we require

that ν = 1 but now α > 0 so that g = −α = − |α| is negative. Despite the

fact that the energy of the pulse now decays as E (z) = E0 exp (− |α| z), the

width still decreases at the same rate, W (z) = T0 exp (−σz), so that again the

pulse undergoes compression. Importantly, from these solutions we find that

for systems with σ > 0 (dispersion decreasing fibre) the pulses will always un-

dergo compression, whereas for σ < 0 (dispersion increasing fibre) the pulses

will always broaden.

To illustrate the two cases discussed above, we consider the evolution of a

pulse with an amplitude profile as described by Eq. (7.43) and a width of

T0 = 4 ps (7 ps FWHM) in a fibre of length 9 m. We choose the fibre param-

eters to be: β2,0 = −0.01 ps2m−1, γ0 = 0.01 W−1m−1, σ = 0.1 m−1, g = −α and

α = ∓0.25 m−1 corresponding to gain and loss, respectively. Fig. 7.2 shows the

output pulses resulting from the simulations (solid curves) together with the

theoretical predictions (circles) where in (a) the pulse has experienced ∼ 10 dB
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of gain and in (b) it has experienced ∼ 10 dB of loss. Clearly, in both cases

the numerical simulations are in excellent agreement with the solitary wave

solution. As expected, despite the different mechanisms involved, the rate

at which the pulses compress is the same yielding output pulses with dura-

tions of 2.9 ps (FWHM). Defining the compression factor as: Fc = ∆T0/∆Tcomp,

where ∆T0 and ∆Tcomp are the input and output widths (FWHM) of the com-

pressor [4], this corresponds to a compression factor of 2.5 for these pulses.

Although the pulses have only undergone modest compression, because they

are chirped they can be subjected to further compression to compensate for

this. In fact, after additional linear compression (see Section 5.3.3) we find that

the pulses have a width of ∼ 28 fs (FWHM), corresponding to a compression

factor of Fc = 250. This is pictured in Fig. 7.2(c) which shows the output pulse

corresponding to the linear compression of the pulse in Fig. 7.2(a).
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Figure 7.2: Intensity profiles (left axis) and chirps (right axis) of the output pulses from
simulations (solid curves) in a fibre with both distributed dispersion and nonlinearity
in the case of (a) constant gain and (b) constant loss (note the axis scales). The circles
are the self-similar solitary wave solutions as predicted by the theory. (c) Output pulse
from (a) after additional linear compression.

At this point we recall that previous attempts to simulate the nonlinear ampli-

fication of pulses in the anomalous dispersion regime, using constant parame-

ters, have shown that the pulse tends to break up into a series of sub-pulses due

to the combined effects of self-phase modulation and dispersion [4]. Impor-

tantly, these results have shown that by allowing the pulses to have an initial
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chirp and the amplifier to have distributed coefficients, the pulses can undergo

clean and efficient nonlinear compression producing high power short pulses.

7.4.2 Solitary Wave Solutions with Distributed Gain or Dis-

persion

We begin by returning to the solitary wave solution of Eq. (7.32) as found for

κ > 0 and, assuming that the z-dependence of the nonlinear coefficient is negli-

gible, we describe two cases corresponding to: (i) distributed gain and constant

dispersion, and (ii) constant gain and distributed dispersion. We note that it

was precisely these two systems that were previously investigated by Moores,

as discussed in Section 7.2.

For case (i), solutions can be found for Eq. (7.1) with constant β2 and γ provided

the distributed gain function has the form [Eq. (7.30)]:

g(z) =
g0

1 − g0z
. (7.47)

With this gain profile it follows that the amplitude and phase of the chirped

solitary wave are:

A(z, T ) =

√|β2|/|γ|
T0[1 − g0z]

sech

(
T

T0[1 − g0z]

)
, (7.48)

and

Φ(z, T ) = φ0 − β2

2g0T
2
0 [1 − g0z]

+
g0T

2

2β2 − [1 − g0z]
. (7.49)

For case (ii), the form of the dispersion profile that yields chirped solitary wave

solutions with constant g and γ can again be found from Eq. (7.30) but by

rearranging to make β2 (z) the subject. This yields:

β2(z) = β2,0 exp[g0z − η(exp(g0z) − 1)], (7.50)

where η = 2C0β2,0/g0 is a free parameter because C0 is an arbitrary real param-

eter. In this case the solitary wave solution has amplitude and phase functions

of the form:

A(z, T ) =

√|β2|/|γ|
T0 exp[−η(exp(g0z) − 1)]

sech

(
T

T0 exp[−η(exp(g0z) − 1)]

)
, (7.51)
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and

Φ(z, T ) = φ0 +
1

4C0T 2
0

− exp[η(exp(g0z) − 1)]

4C0T 2
0

+
C0T

2

exp[−η(exp(g0z) − 1)]
. (7.52)

Comparing the above solutions with those of Ref. [64] it can be seen that, with

the appropriate substitutions, these are identical. Thus by solving Eq. (7.1)

we have been able to generalise the earlier predictions by Moores to include

the possible effects of a variation in the mode size (and hence a distributed

nonlinearity) and also the simultaneous variation of multiple fibre parameters.

To illustrate these results, Fig. 7.3 compares the outputs from simulations (solid

curves) with the theoretical predictions (circles) for the two cases discussed

above. In both instances we inject a T0 = 4 ps pulse with the appropriate form

of the amplitude profile [Eq. (7.48) or Eq. (7.51)] into an amplifier of length L =

9 m with parameters corresponding to a total pulse gain of ∼ 10 dB. Fig. 7.3(a)

shows the results for case (i) with β2 = −0.01 ps2m−1, γ = 0.01 W−1m−1 and

g0 = 0.1 m−1, whilst Fig. 7.3(b) shows the results for case (ii) with β2,0 =

−0.01 ps2m−1, γ = 0.01 W−1m−1, σ = 0.1 m−1, g = 0.25 m−1 and C0 = σ/2β2,0.

Clearly the simulation results are in excellent agreement with the theoretical

predictions with the resulting output pulses having FWHM widths of (a) 698 fs

and (b) 237 fs, corresponding to compression factors of Fc = 10 and Fc = 30,

respectively. Importantly we note that whilst in this instance case (ii) produced

a shorter output pulse, as the final compressed width depends on the choice
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Figure 7.3: Intensity profiles (left axis) and chirps (right axis) of the simulated output
pulses (solid curves) for (a) distributed gain and constant dispersion, and (b) constant
gain and distributed dispersion. The circles are the self-similar solitary wave solutions
as predicted by Eqs. (7.48)–(7.52) and by Ref. [64].
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of input parameters this will not always be the case. In addition, as mentioned

in the previous section, a further reduction of the pulse width can be achieved

via linear compression of the residual chirp and in both cases the transform

limited pulse has a duration of ∼ 28 fs (FWHM), again corresponding to com-

pression factors of Fc = 250.

We now wish to reconsider case (i) described above (i.e., distributed gain and

constant dispersion), but this time applying the results to the oscillatory solu-

tions of Eq. (7.37). It follows from the form of the gain profile, Eq. (7.47), that

the amplitude and phase of the chirped oscillatory solution are:

A(z, T ) =

√|β2|/|γ|k
T0[1 − g0z]

cn

(
T

T0[1 − g0z]
, k

)
, (7.53)

and

Φ(z, T ) = φ0 − β2

2g0T
2
0 [1 − g0z]

+
g0T

2

2β2[1 − g0z]
, (7.54)

so that the form of the phase is identical to the phase of the solitary wave

solution [Eq. (7.49)]. Significantly, we note that in the amplitude solution, T0

refers to the width of the oscillations and not the length of the pulse train.

In order to demonstrate the important features of these oscillatory solutions

Fig. 7.4 plots both the input truncated pulse train and corresponding output

pulse train after propagation in a 0.9 m long amplifier with: β2 = −0.01 ps2m−1,
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Figure 7.4: Intensity profiles (left axis) and chirps (right axis) of the self-similar oscil-
latory wave solutions corresponding to Eq. (7.37) where (a) is the input pulse train
and (b) is the simulated output pulse train after propagation in an amplifier with dis-
tributed gain and constant dispersion. In (b) the circles are the theoretical predictions
of Eqs. (7.53) and (7.54).
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γ = 0.01 W−1m−1, T0 = 1, k = 1/2 and g0 = 1 m−1 (so that the gain is 10 dB).

The excellent agreement between the output profile and chirp (solid lines) with

the theoretical predictions (circles) confirms the self-similar nature of the evo-

lution. In addition, on comparing the rate of the oscillations of the input and

output pulse trains (see x axes) it is clear that the modulation frequency at the

output is 10 times larger than at the input which is a significant enhancement.

Thus we expect these solutions to find application as a new way to generate

very high frequency amplitude modulated light.

7.5 Stability of the Solutions

The results presented in Sections 7.4.1 and 7.4.2 have verified the excellent

agreement between the theoretical predictions and simulations based on the

generalised NLSE of Eq. (7.1). However, in these simulations we have con-

sidered the evolution of ideal input pulses in fibres with the exact distributed

dispersion, nonlinearity and gain profiles. In addition, we have also neglected

the higher order terms in the NLSE which will become important as the pulses

compress to the femtosecond regime. Consequently, these results tell us little

about the robustness of the system to perturbations and more importantly, of

their suitability to real experimental situations. Thus in this section we inves-

tigate the solitary wave solutions under various non-optimum conditions to

establish the stability of their evolution. Specifically, we consider the cases cor-

responding to a non-ideal input pulse, an incorrect gain profile, the influence of

higher order dispersion and nonlinear effects and finally, the combined effect

of the perturbations in an amplifier with experimentally realistic parameters.

7.5.1 Evolution of a Non-Ideal Input Pulse

A useful test of the stability of a self-similar solution is to investigate the evo-

lution of a pulse with initial parameters that deviate from their ideal values.

In this sense we know that solitons are stable as a soliton-like pulse with non-

ideal input parameters will shed any excess energy (in the form of dispersive

waves) as the pulse evolves to the exact soliton solution. In this section we

consider three types of perturbation to the solitary wave solutions: (i) an in-
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put peak power which is less than the ideal value, (ii) an input chirp with a

slope that is less than the ideal value, and (iii) an ideal input pulse but with the

addition of random noise on the amplitude and phase.

We investigate the system described in Section 7.4.1 corresponding to propaga-

tion in an amplifier with distributed dispersion and nonlinearity, but constant

gain, so that the solitary wave solution is given by Eqs. (7.43)–(7.46) with ν = 1

and α < 0. Under these conditions, the optimum input peak power and chirp

are:

Popt =
1

T 2
0

∣∣∣∣β2,0

γ0

∣∣∣∣ and Ωopt = −∂Φ
∂T

=
−σT
β2,0

. (7.55)

Unless otherwise stated, the input pulse and fibre parameters are the same as

those used to generate Fig. 7.2(a). Both the input pulses (top curves) and out-

put pulses (bottom curves) are plotted in Fig. 7.5 together with the predicted

analytic solutions (circles). Fig. 7.5(a) shows the pulse generated from the am-

plification of an input pulse with a peak power of 0.95Popt. The fact that the

peak power of the simulated output is still less than that of the theoretical pre-

dictions is to be expected as in both cases (simulated and analytic) the pulses

have seen the same effective gain. However, importantly the simulated pulse

still has a peak power which is 95 % of the analytic solution and there has been

no significant change to the shape of the pulse profile or the chirp. Thus this

suggests that despite the non-optimum input power the pulse can still propa-

gate self-similarly.

In Fig. 7.5(b) we then compare the results from the amplification of a pulse

with an initial chirp of 0.95Ωopt. Unlike the previous case of a reduced input

power, this time there is further deviation from the expected chirp with the

output slope now being 89 % of the analytic prediction. Furthermore, we see

that the intensity profile has also deviated from the theory and this is because

the simulated pulse has undergone less compression than predicted. Although

these deviations are small, they nonetheless highlight the fact that the self-

similar evolution of the pulse is more sensitive to the initial slope of the chirp

function than to the peak power.

Finally, Fig. 7.5(c) shows the output pulse generated from the amplification of

an ideal input pulse but with 5 % random noise on the amplitude and phase.

Despite there still being some remaining noise on the output pulse, it is clear

that both the profile and the chirp are in excellent agreement with the theory.
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Figure 7.5: Top: intensity profiles (left axis) and chirps (right axis) of the input pulses
where: (a) the peak power is 0.95Popt, (b) the chirp is 0.95Ωopt, and (c) there is 5% ran-
dom noise on the amplitude and phase (solid curves). Bottom: intensity profiles and
chirps of the pulses after amplification. In all cases the numerical pulses are compared
with the theoretical predictions under ideal conditions (circles).

In addition, as the relative size of the noise on the output pulse is much less

than that on the input pulse, this provides further confirmation of the stability

of the solitary wave solutions in the presence of noise.

7.5.2 Evolution in an Amplifier with an Incorrect Gain Profile

As we saw in Section 7.4, once the dispersion and nonlinearity profiles of an

amplifier are known the shape of the gain profile required to observe self-

similar propagation can be found via Eq. (7.30). However, as the shape of

the gain profile is largely determined by saturation effects caused by pump

depletion, and thus the pumping geometry, such accurate control over its lon-

gitudinal variation is not possible. For this reason here we study the evolution

of a pulse in an amplifier with an experimentally realistic profile that differs

slightly in shape from the ideal profile, yet yields the same total pulse gain.

107



Chapter 7 Self-Similar Solutions of the NLSE with Distributed Coefficients

We consider the evolution of a pulse in an amplifier with distributed gain but

constant dispersion and nonlinearity so that the situation corresponds to case

(i) described in Section 7.4.2. We recall that the shape of the gain profile re-

quired for self-similar propagation in such a fibre is given by [Eq. (7.47)]:

g(z) =
g0

1 − g0z
.

An experimentally realistic approximation to this, corresponding to counter-

directional pumping, is an exponentially increasing profile of the form:

g (z) = g0 exp (z/za) , (7.56)

where za determines the rate of increase. With the input pulse and fibre param-

eters the same as those used to generate Fig. 7.3(a), to ensure that the total pulse

gain also remains the same (∼ 10 dB) we require za = 5.44 m. Fig. 7.6 shows the

intensity profile and the chirp of the output pulse from the simulations with

the gain profile given in Eq. (7.56) (solid curves), clearly in agreement with

the theoretical predictions based on the exact gain profile (circles). Thus this

suggests that the self-similar nature of these solutions is sufficiently robust to

withstand amplification in an experimental situation where the longitudinal

gain may deviate from the ideal profile.
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Figure 7.6: Intensity profile (left axis) and chirp (right axis) generated via amplification
of the solitary wave solution with a gain profile given by Eq. (7.56) (solid curves) com-
pared with the analytic solitary wave predictions for the exact gain profile (circles).
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7.5.3 Evolution in an Amplifier with Higher Order Effects

Third Order Dispersion

As discussed in Chapter 3, although the basic form of the NLSE employed in

this chapter [Eq. (7.1)] is remarkably successful in describing many of the fea-

tures of pulse propagation in fibre amplifiers [4], it often needs to be extended

to include higher order terms when the bandwidth of a pulse becomes large.

Thus in this section we consider the effects of higher order dispersion and non-

linearity, independently, to establish whether the neglect of such terms in our

theoretical analysis was justified. As in Section 7.5.1, in both cases we investi-

gate the system described in Section 7.4.1 corresponding to propagation in an

amplifier with distributed dispersion and nonlinearity, but constant gain, so

that the solitary wave solution is given by Eqs. (7.43)–(7.46) with ν = 1 and

α < 0. Again we choose the input pulse and fibre parameters to be the same

as those used to generate Fig. 7.2(a).

The equation describing pulse propagation in a fibre including the effects of

third order dispersion is [Eq. (3.7)]:

i
∂Ψ

∂z
=
β2(z)

2

∂2Ψ

∂T 2
+ i

β3

6

∂3Ψ

∂T 3
− γ(z) |Ψ|2 Ψ + i

g (z)

2
Ψ, (7.57)

where we have assumed that the z-dependence of β3 is negligible. With the

choice of β3 = 0.1 × 10−4 ps3m−1, we obtain an output pulse of the form given

in Fig. 7.7(a). Although there is still good agreement between the intensity

profile of the simulated pulse (solid curves) and the solitary wave solution

(circles), clearly the symmetry of the pulse profile and the linearity of the chirp

have been destroyed. These intensity and phase distortions are well known

consequences of propagation with higher order dispersion which arise due

to the cubic spectral phase introduced by the third order dispersive term [4].

Consequently, we expect that for larger values of β3, or alternatively, longer

amplifier lengths, the pulses will become highly distorted so that the theoret-

ical predictions will no longer be valid. However, these results show that the

solitary pulses can endure a small amount of higher order dispersion and with

the availability of dispersion flattened fibres to provide β3 ≈ 0 we expect that

these solutions should be valid for a wide range of systems.
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Figure 7.7: Intensity profiles (left axis) and chirps (right axis) of the output pulses
generated under amplification with: (a) third order dispersion and (b) Raman gain.
The numerical simulations (solid curves) are compared with the predicted self-similar
solitary wave solutions (circles).

Delayed Nonlinear Response

In Section 3.10.2 it was noted that for pulses with bandwidths in excess of

1 THz it is possible for the Raman gain to amplify the low frequency compo-

nents by transferring energy from the high frequency components of the same

pulse. Modifying Eq. (3.54) to include the effects of longitudinally varying

fibre parameters yields:

i
∂Ψ

∂z
=
β2(z)

2

∂2Ψ

∂T 2
+i

g (z)

2
Ψ−γ(z)

(
1 +

i
ω0

∂

∂T

)
Ψ

∫ ∞

0

R(T ′) |Ψ (z, T − T ′)|2 dT ′,

(7.58)

where againR (T ) = (1−fR)δ (T )+fRhR (T ). The output pulse from the simu-

lations is plotted in Fig. 7.7(b) (solid curves) showing excellent agreement with

the solitary wave solution (circles). As expected the simulated pulse has un-

dergone a slight frequency shift. However, this was calculated to be 0.192 MHz

(in the red direction) which, compared to the terahertz bandwidth of the pulse,

is negligible. The slightness of the self-frequency shift seen here, relative to the

soliton self-frequency shift [29], can be attributed to the fact that the pulse is

chirped (which results in a spreading of the frequency components) so that

internal pumping of the high frequency components to the low frequencies is

less efficient. Although the effects of Raman gain also accumulate over the

length of the fibre, the length required for the effects to become noticeable is
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well beyond practical amplifier lengths. Thus these results illustrate the insen-

sitivity of the solitary wave solutions to Raman gain, justifying the neglect of

this effect in the theoretical analysis.

7.5.4 Evolution in an Experimentally Realistic Amplifier

Having considered each of the perturbative effects independently, in this sec-

tion we now consider the evolution of a pulse in an amplifier with realistic

experimental parameters under the influence of a combination of these effects.

Again we return to the case of a pulse in an amplifier with distributed gain but

constant dispersion and nonlinearity so that the situation corresponds to case

(i) described in Section 7.4.2. Assuming an input pulse given by Eqs. (7.48)

and (7.49), with T0 = 4 ps and 5 % random noise on the amplitude and phase,

we investigate the propagation of pulses in an amplifier with the exponen-

tially increasing gain profile as given in Section 7.5.2 [Eq. (7.56)] and includ-

ing the effects of Raman gain. Explicitly, the amplifier parameters are: β2 =

−0.024 ps2m−1, β3 = 0.1 × 10−4 ps3m−1, γ = 5.6 × 10−4 W−1m−1, g0 = 0.1 m−1

and za = 6.36 m−1. Here za was chosen so that the total pulse gain is the same as

that for the exact gain profile after 8 m of amplification. The simulated output
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Figure 7.8: Intensity profile (left axis) and chirp (right axis) of the output pulse gener-
ated under amplification with experimentally realistic parameters and a combination
of perturbative effects. The numerical simulations (solid curves) are compared with
the predicted self-similar solitary wave solutions (circles). (b) The corresponding pulse
after additional linear compression.
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pulse is plotted in Fig. 7.8(a) (solid curves), showing excellent agreement with

the theoretical predictions (circles). The corresponding pulse after additional

linear compression is then given in Fig. 7.8(b) where the minimum pulse width

is 85 fs (FWHM) so that Fc = 76. The success of these results provides the final

evidence of the robustness of these solutions to real experimental conditions.

7.5.5 Discussion

The results presented in this section have shown that the solitary wave solu-

tions found for Eq. (7.1), in the case of anomalous dispersion, are relatively

insensitive to perturbations from the ideal system. Thus in spite of the simple

model on which the theory was based, the analytic solutions should provide

an accurate description of pulse propagation in fibres and fibre amplifiers with

distributed parameters. In addition, these simulations have highlighted areas

where extra care needs to be taken when designing an experimental system

such as the precise choice of the input chirp and the use of fibres and ampli-

fiers with relatively flat dispersion slopes.
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Conclusion

In Part 1 of this thesis I have presented results of investigations of self-similar

solutions for high intensity pulses propagating in optical fibres and optical

fibre amplifiers.

The experimental and numerical results of Chapters 5 and 6 have demon-

strated novel techniques for generating linearly chirped parabolic pulses which

are well known self-similar solutions to the NLSE with gain. The experimen-

tal investigations of Chapter 5 to generate high energy parabolic pulses in a

cascaded amplifier chain have shown that whilst it is indeed possible to gen-

erate output pulses in the early stages of the parabolic regime, the output en-

ergies are lower than expected. Numerical simulations have indicated that the

main limitation to the system performance is the small gain bandwidths of the

preamplifiers.

The numerical simulations presented in Chapter 6 then demonstrated that

parabolic pulse formation was possible in a range of normal dispersion un-

doped microstructured fibre Raman amplifiers. The success of these results

was attributed to the large gain bandwidth offered by the pure silica host and

the ability to tailor the dispersion profile of a microstructured fibre to provide

normal dispersion over a wide range of wavelengths. In addition, prelimi-

nary experimental results of parabolic pulse formation in a highly nonlinear

microstructured were also reported. Despite being limited by our low output

powers and our pulse diagnostic techniques, comparison with numerical sim-

ulations indicated that the pulses were nonetheless entering the early stages of
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the parabolic regime, thus confirming the numerical predictions.

Finally, Chapter 7 presented the results of theoretical calculations to describe

a new class of self-similar solutions which exist for the NLSE with distributed

coefficients. It was shown that this class encloses a set of solitary wave solu-

tions as well as a set of periodic “oscillatory” solutions which describe ampli-

tude modulated light. The theoretical results have been verified numerically

and additional simulations were conducted to established the stability of the

solutions.

The work described in this part of the thesis has led to some important new

results regarding self-similar pulse solutions in nonlinear optics. Due to the

unique distortion-free propagation properties of self-similar pulses, it is ex-

pected that they will find wide ranging applications in the development of the

next generation of ultrashort pulse sources. It is hoped that the results pre-

sented in this part of the thesis can contribute to this development.
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Controlling Light Propagation in
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Chapter 9

Introduction

A considerable number of the major technological breakthroughs of our time

have evolved out of the establishment of a deeper understanding of the prop-

erties of materials. Importantly, the significance of knowing a material’s prop-

erties was a concept that was established even as far back as prehistoric times.

Indeed, the transition of our ancestors from the Stone age through to the Iron

age can be attributed to their increased recognition of the physical qualities of

natural materials. However, motivated by the desire for more elaborate tools,

eventually early engineers learned to do more than simply take what the Earth

provided in the raw form. By manipulating the properties of naturally occur-

ring materials it was quickly established that substances with even more de-

sirable properties could be produced, with one of the earliest examples being

bronze [68].

In the last century, our control over materials has become even more sophisti-

cated and today our lives are surrounded by a whole host of artificial materials

such as plastics, ceramics and metal alloys. In particular, more recently control

of the electrical and optical properties of such materials has led to important

revolutions in many fields such as semiconductor physics and optical telecom-

munications. Whilst some of these advancements have been associated with

the invention of complex structures such as band gap crystals that can prohibit

the propagation of light at certain frequencies [69], others have been as simple

as optical fibres which can guide and manipulate the propagation of light (as

described in Part 1 of this thesis).
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In this second part of this thesis I will describe investigations to control the

propagation of light in materials whose physical properties have been modu-

lated in some way. Such materials are commonly referred to as metamaterials.

In the investigations, two distinct types of modified materials will be consid-

ered which have both been shown to exhibit effects which strongly influence

electromagnetic fields. The first are the exotic negative refractive index materi-

als which have only recently been observed experimentally [70]. Such negative

index materials are currently generating much interest because they exhibit a

number of properties that differ considerably from those of positive index ma-

terials, and specifically for their ability to manipulate the speed of light. The

second are two dimensional electrically poled nonlinear crystals [71]. These

form a novel extension to the well known one dimensional photonic crystal

structures and in particular, provide an attractive opportunity to achieve phase

matching of multiple nonlinear processes. Despite the significant differences

between the two materials, all of the investigations presented in the following

chapters are focused towards the common theme of controlling and manipu-

lating the propagation of light in modulated crystal structures. Thus it is ex-

pected that they will benefit many areas of optical technologies including the

development of lasers, high speed computers and optical data storage devices.

9.1 Controlling the Speed of Light

It follows from the fundamental physical notion of causality and the theory of

special relativity that information cannot be passed with a velocity exceeding

that of light in a vacuum. However, it is well known that various velocities,

such as the phase velocity vp , can exceed c without violating special relativity

because they do not represent velocities of signals, or information. Despite

this, an enduring misconception is that the group velocity vg of a light pulse

cannot be faster than c, or equivalently negative, where the propagation is also

considered to be superluminal [72]. Thus, in 1968 when Veselago proposed

that a material with a negative refractive index will possess a negative group

velocity [73], this sparked much debate into the validity of his work which still

continues today [74, 75].

Due to the absence of naturally occurring negative index materials, until re-
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cently there was little research that could be conducted to settle these argu-

ments. However, in 1996 Pendry et al. proposed a simple periodic structure

that could be used to observe a negative dielectric permittivity [76] and this

was closely followed by subsequent work to construct a material with a nega-

tive magnetic permeability [77]. Consequently, it was not long before these re-

sults were combined to provide the first demonstration of a negative refractive

index material [70]. As well as providing the vital component for the verifica-

tion of Veselago’s predictions this demonstration aroused considerable interest

into the phenomena of negative refraction, and in particular, to the possibility

of manipulating the speed of light. Thus, to date, not only have there been

a number of demonstrations of superluminal light [78, 79], it has also been

shown that these materials can exhibit slow light which has important impli-

cations for the design of optical traps [80].

9.2 Harmonic Frequency Generation

Coherent short wavelength sources have a wide range of applications in many

areas of optical technology. In particular, such sources can increase the capac-

ity of optical storage devices and can be used to fabricate and inspect nanos-

tructures and high density integrated circuits [81]. Although the production of

semiconductor lasers which operate at blue, or shorter, wavelengths has been

achieved, this technology is still in the early stages of development [82]. An

alternative approach, which avoids the expensive development of new mate-

rials, is to employ well established existing “cheap” lasers which operate at

longer wavelengths and frequency double (or triple) their output radiation.

To this end, highly nonlinear materials such as lithium niobate (LiNbO3) and

potassium titanyl phosphate (KTP) have been the subject of much attention as

candidates for use in quasi-phase matched second harmonic generation (SHG)

devices.

Since the first observation of SHG by Franken et al. in 1961 [83], interest in this

field has grown considerably. As a result, much attention has been devoted to

the development of highly efficient nonlinear crystals and the enhancement of

harmonic processes. The primary limitation of efficient harmonic generation

in nonlinear crystals has always been the material dispersion, which causes
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the interacting fields to move out of phase. An important breakthrough in this

area thus came in 1962 when Giordmaine [84] and Maker et al. [85] demon-

strated that the efficiency of these processes could be dramatically improved

by using the birefringence of the crystal to match the relative phase velocities

of the propagating beams. However, later in the same year Armstrong et al.

proposed the concept of quasi-phase matching in which the fields are periodi-

cally brought back into phase by modifying the crystal structure, and it is this

technique that is most commonly employed today [86]. Although quasi-phase

matching was originally conceived for the purpose of one dimensional geome-

tries such as periodically poled lithium niobate (PPLN) [86, 87, 88], the concept

has been extended to one dimensional aperiodic structures [89] and more re-

cently, to two dimensional periodic patterns, with great success [71, 90].

9.3 Outline for Part 2

Chapter 10 introduces the basic structure of a photonic crystal and presents

some of the theory used to describe the propagation of light in these crystals.

In particular, this will include a model to describe SHG in a nonlinear photonic

crystal.

In Chapter 11, numerical investigations of the properties of the guided modes

in negative refractive index waveguides are described. By calculating the prop-

agation characteristics of the guided modes a number of peculiar properties of

the solutions will be revealed.

Chapter 12 presents experimental measurements of SHG in a two dimensional

photonic crystal structure. To enhance the efficiency of the process a planar

waveguide geometry is employed in the investigations. The performance of

the waveguide is evaluated by determining the interaction properties of the

fundamental and second harmonic fields.

In Chapter 13 a new type of two dimensional quasi-crystal structure based on

a Penrose tiled pattern is investigated. The preliminary experiments involving

SHG have indicated the dense nature of the reciprocal lattice space so that

phase matching can occur almost continuously over a wide range of angles.
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Finally, in Chapter 14 I will present the conclusions to Part 2 of this thesis.
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Chapter 10

Controlling Light in Periodic

Materials

10.1 Introduction

As discussed in the previous chapter, the second part of this thesis investigates

the control and manipulation of light in modulated crystal structures. In order

to understand the physical aspects of the various processes, this chapter intro-

duces some of the basic properties of a crystalline structure and the equations

which describe them.

This chapter begins with an introduction to the concept of a photonic crystal,

on which the bulk of the investigations are based, and discusses the construc-

tion of such structures in one and two dimensions. After a brief description of

the mathematical formalism which defines the crystal lattice and its represen-

tation in reciprocal lattice (or wavevector) space, the linear and nonlinear ef-

fects which influence the evolution of a propagating field will be described. To

complement the discussion of these effects, the mathematical equations which

define the fields under certain special conditions will also be presented with

particular attention being paid to the phase matching considerations for fields

interacting in nonlinear dispersive materials. Finally, as the bulk of the in-

vestigations considered in this part of thesis will focus on second harmonic

generation (SHG) in nonlinear crystals, the development of a model to analyse

the evolution of the propagating fields will be described.
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10.2 Photonic Crystals

To understand how a material structure might be modified in order to manip-

ulate the propagation of light within it, it is useful to make an analogy with

electronic materials, such as ordinary semiconductor crystals. These crystals

form a periodic lattice where the basic building blocks are atoms or molecules.

Thus a semiconductor crystal will present a periodic potential to a propagat-

ing electron where the conduction properties will be dictated by the geometry

of the structure. In particular, due to Bragg-like diffraction from the atoms,

the lattice can introduce gaps into the energy spectrum of the electron so that

electrons with energies within these gaps are forbidden to propagate.

An optical analogy to this effect is the material structure offered by photonic

crystals, where the lattice is now constructed via a periodic modulation of a

material’s properties. Provided the modulation is sufficiently strong, scatter-

ing off the interfaces in a photonic crystal can produce many of the same phe-

nomena for photons as the atomic potential does for electrons. Significantly,

as photonic crystals are scalable to a wide range of dimensions these can be

constructed with millimeter periodicity for microwave control, or with micron

periodicity for infrared control. Photonic crystals can form the basis of a wide

range of devices from dielectric mirrors to waveguides and are thus currently

being exploited in many areas of optical technology [69].

10.2.1 One Dimensional Photonic Crystals

The simplest photonic crystal is a one dimensional Bragg grating structure of

the type shown in Fig. 10.1. This consists of alternating semi-infinite layers of

material with differing physical properties. In situations where the modulated

property is the dielectric constant, such crystals have found use as dielectric

mirrors and optical filters [1]. However, in this part of the thesis the majority

of the investigations will consider the periodic modulation of the nonlinear

coefficient, and in this arrangement these nonlinear photonic crystals can be

used to phase match SHG in dispersive nonlinear media [86].
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z
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y
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Figure 10.1: Sketch of a one dimensional photonic crystal.

10.2.2 Two Dimensional Photonic Crystals

A typical two dimensional photonic crystal is shown in Fig. 10.2. This is con-

structed based on a square lattice of columns where again the physical proper-

ties of the columns differ from that of the background media. These structures

are periodic in a plane constructed along two of its axes and are homogeneous

in the third. Thus the propagation effects observed in the z direction of a one

dimensional crystal can now occur for propagation over the entire x− y plane.

Figure 10.2: Sketch of a two dimensional photonic crystal. The right inset shows the
square lattice from above together with the unit cell (dashed line).

10.2.3 Quasi-Crystals

An interesting extension to the defined subset of periodic photonic crystals

described above are quasi-crystals. These structures have a quasi-periodic

translational order and can be designed in either one dimension (Fibonacci

sequences [91]) or two dimensions (Penrose tiles [92]). One dimensional quasi-

crystals are very similar to the structure shown in Fig. 10.1 but with layers of
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(a) (b)

Figure 10.3: (a) A Penrose tile pattern that is constructed out of thick and thin rhombi.
(b) An example of a two dimensional quasi-crystal (cross section in the x − y plane)
based on the structure in (a).

differing widths stacked aperiodically. However, in two dimensions the struc-

tures are usually constructed by placing a feature with a single basic shape

(such as a cylinder as used in Fig. 10.2) at the vertices of a quasi-crystalline

tiling pattern. An example of a two dimensional quasi-crystal based on a Pen-

rose tile pattern, constructed out of thick and thin rhombi, is shown in Fig. 10.3.

A significant feature of quasi-crystals is that they can possess higher, or even

forbidden, rotational symmetries than periodic crystals and this has important

consequences to their use in multiple harmonic generation processes, as will

be demonstrated in Chapter 13.

10.3 Reciprocal Lattice Space and the Brillouin Zone

The photonic structures illustrated in Figs. 10.1–10.3 were shown in real, or lat-

tice, space. However, an equally valid presentation of the crystal could have

also been obtained through their structure in reciprocal lattice space. As the

reciprocal lattice is the space inhabited by the wavevectors, it is this space that

will be considered when establishing the phase matching conditions of the

crystals in Chapters 12 and 13. The following analysis develops the mathemat-

ical representation of the reciprocal lattice vectors which define the reciprocal

space.

If a function f(r) is considered which is periodic on a lattice, then f(r) = f(r+

R) where the set of vectors R are the lattice vectors. Expanding f(r) in terms

of plane waves with various wave vectors q yields:

f(r) =

∫
dqg(q)eiq·r, (10.1)
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where g(q) is the coefficient of the plane wave. It follows that the requirement

f(r) = f(r + R) implies:

f(r + R) =

∫
dqg(q)eiq·reiq·R =

∫
dqg(q)eiq·r, (10.2)

so that eiq·R = 1 or q · R = 2πN , where N is an integer. Thus the vectors

which satisfy this condition are the reciprocal lattice vectors and these are usu-

ally designated by the letter G. Furthermore, as in general the analysis can be

restricted to consider a discrete number of reciprocal lattice vectors, the inte-

gration in Eq. (10.1) can be replaced by a weighted sum so that:

f(r) =
∑
G

fGeiG·r, (10.3)

where fG are the corresponding Fourier coefficients.

For a given set of lattice vectors R it is straight forward to calculate the recip-

rocal lattice vectors G. As every lattice vector can be expressed in terms of a

set of primitive lattice vectors a1 and a2 (which are the smallest vectors point-

ing from one lattice point to another), R can be written as: R = la1 + ma2.

Likewise, the reciprocal lattice also has a set of primitive vectors bi so that:

G = l′b1 + m′b2. Thus the reciprocal lattice vectors can be calculated simply

by ensuring that they satisfy:

G · R = (la1 +ma2) · (l′b1 +m′b2) = 2πN. (10.4)

An important feature of the modes of a periodic structure is that the wavevec-

tors k and k+G represent the same mode. Because of this there is a redundancy

in the labelling of the wavevectors and thus attention can be restricted to a re-

duced zone within the reciprocal space in which you cannot get from one part

to another by simply adding any G. This zone is called the Brillouin zone [69].

A more visual description of the Brillouin zone is to imagine highlighting the

Figure 10.4: (a) Lattice space and (b) reciprocal space for a one dimensional photonic
crystal. (c) The corresponding Brillouin zone (shaded region).
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Figure 10.5: (a) Lattice space and (b) reciprocal space for a two dimensional photonic
crystal. (c) The corresponding Brillouin zone (shaded region).

volume around a lattice point in the reciprocal space which is closer to that lat-

tice point than any other. If the original lattice point is chosen to be the origin,

then the highlighted region is the Brillouin zone. Examples of the (a) lattice

space, (b) reciprocal space and (c) the corresponding Brillouin zone in one and

two dimensional photonic crystals are illustrated in Figs. 10.4 and 10.5, respec-

tively.

Unlike the periodic structures, the reciprocal lattice vectors of an aperiodic

quasi-crystal densely fill all reciprocal space. However, it is often useful to

choose a subset of basic reciprocal lattice vectors that correspond to the rel-

atively intense spots in the diffraction pattern. This is illustrated in Fig. 10.6

which shows (a) the two dimensional quasi-crystal lattice together with (b) the

corresponding diffraction pattern, where the radii of the spots are proportional

to the magnitude of the related Fourier coefficients. Importantly, the diffrac-

tion pattern highlights the self-similar nature of these quasi-crystals in that the

outer sets of reciprocal lattice vectors can be obtained by inflation of the inner

sets [93]. In addition, although quasi-crystals do not possess a Brillouin zone, it

is possible to construct an analogue called the pseudo-Jones zone which is de-

fined by the lines bisecting the basic reciprocal lattice vectors [94]. For the crys-

(a) (b) (c)

Figure 10.6: (a) Lattice space and (b) the corresponding diffraction pattern showing
some of the larger Fourier coefficients for a two dimensional quasi-crystal. (c) The
corresponding shape of the pseudo-Jones zone.
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tal shown in Fig. 10.6(a), the corresponding shape of the pseudo-Jones zone is

a decagon as sketched in (c).

10.3.1 Rotational Symmetry and the Irreducible Brillouin Zone

In addition to translational symmetries, photonic crystals can also possess ro-

tational symmetries, as mentioned in Section 10.2.3. When there is rotational

symmetry in the lattice the frequency bands ω (k) have additional redundan-

cies within the Brillouin zone. Thus it is not necessary to consider every k-

point within the zone and the smallest area for which all ω (k) are not related

by symmetry is called the irreducible Brillouin zone. As an example, Fig. 10.7

shows the Brillouin zone for the simple square lattice of Fig. 10.5 where the

shaded triangular wedge is the irreducible Brillouin zone. Here the conven-

tional notation for the points defining the irreducible zone is used [69].

Figure 10.7: Brillouin zone for a two dimensional photonic crystal based on a square
lattice where the shaded region is the irreducible zone.

10.4 Linear Effects in Crystals

In Section 3.4 the chromatic dispersion was described as the frequency depen-

dence of the refractive index. In particular the Sellmeier equation which de-

scribes the material dispersion of the propagation medium was introduced.

However, the exact form of this equation is in fact dependent on the nature of

the material and differs quite considerably for crystal structures. For example

this section considers the Sellmeier equation describing a congruently grown

lithium niobate crystal of the type employed in Chapters 12 and 13. Lithium

niobate is a uniaxial birefringent crystal and thus it is necessary to consider

both the ordinary refractive index no (electric field polarised normal to the

crystal axis) and the extraordinary refractive index ne (electric field polarised
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along the crystal axis) [1]. Furthermore, when intense light is incident on these

crystals it can induce an optical change in the refractive index referred to as the

photorefractive effect [95]. Although in some applications the photorefractive

effect is welcome [38], in the investigations presented in this thesis it is not as

it degrades the beam quality. However, by heating the crystal to temperatures

above ∼ 100 ◦C, the photorefractive effect becomes self-annealing for infrared

wavelengths and thus these deleterious effects can be avoided. However, this

temperature change means that it is also important to consider the tempera-

ture dependence of the refractive indices. With these considerations, the form

of the equation defining the refractive indices was previously found directly

from experimental measurements, by Edwards and Lawrence [96], to be:

ni(λ, T ) =

√
Ai

1 +
Ai

2 +Bi
1f

λ2 − (Ai
3 +Bi

2f)2
+B3f −Ai

4λ
2, (10.5)

where i = o, e corresponds to the ordinary and the extraordinary values, re-

spectively, λ is in microns and

f = (T − 24.5 ◦C)(T + 570.82 ◦C), (10.6)

with T in degrees Celsius. The parametersAi
j andBi

k (j = 1−4, k = 1−3) were

then calculated from fits to the experimental data and are given Table 10.1.

Ordinary Indices Extraordinary Indices

Ao
1 = 4.9048 Bo

1 = 2.2314 × 10−8 Ae
1 = 4.5820 Be

1 = 5.2716 × 10−8

Ao
2 = 0.11775 Bo

2 = −2.9671 × 10−8 Ae
2 = 0.09921 Be

2 = −4.9143 × 10−8

Ao
3 = 0.21802 Bo

3 = 2.1429 × 10−8 Ae
3 = 0.21090 Be

3 = 2.2971 × 10−7

Ao
4 = 0.027153 Ae

4 = 0.021940

Table 10.1: Physical parameters for calculation of the refractive index using Eq. (10.5).

With more recent attention being focused on quasi-phase matching processes

where both beams are propagated along the extraordinary axis (see Section 10.8),

it has been observed that Eq. (10.5) is not sufficiently accurate for predicting the

linear properties of a crystal at longer wavelengths and/or elevated tempera-

tures [97]. Owing to these observations, the equation for the extraordinary

refractive index has since been revised by Jundt so that it is now described

by [98]:

ne(λ, T ) =

√
Ae

1 +Be
1f +

Ae
2 +Be

2f

λ2 − (Ae
3 +Be

3f)2
+
Ae

4 +Be
4f

λ2 − Ae
5
2 − Ae

6λ
2, (10.7)
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Extraordinary Indices

Ae
1 = 5.35583 Be

1 = 4.629 × 10−7

Ae
2 = 0.100473 Be

2 = 3.862 × 10−8

Ae
3 = 0.20692 Be

3 = −0.89 × 10−8

Ae
4 = 100 Be

4 = 2.657 × 10−5

Ae
5 = 11.34927

Ae
6 = 1.5334 × 10−2

Table 10.2: Physical parameters for calculation of the extraordinary refractive index
using Eq. (10.7).

where the parameters Ai
j and Bi

k (j = 1 − 6, k = 1 − 4) are given in Table 10.2.

Importantly, at present it is this equation that is most commonly used for cal-

culating the refractive indices in lithium niobate.

While it is expected that there will also be a waveguide contribution to the

chromatic dispersion (as for the case of fibre geometries), as this is highly de-

pendent on the waveguide geometry it will not be discussed here.

10.5 Mathematical Description of Waveguides

In Chapter 9 it was briefly mentioned that a photonic crystal can be used as

a waveguiding device to manipulate the propagation of light. Indeed, an ex-

ample of this has already been demonstrated in Chapter 6 in the form of the

microstructured fibres. As discussed in Section 3.2, an optical waveguide con-

sists of a core in which the majority of the light is confined, surrounded by a

cladding. The most common waveguide geometries are optical fibres (as con-

sidered in Part 1 of this thesis), channel waveguides and planar waveguides.

Typically the refractive index is given by Eq. (3.1) and is higher in the core than

in the cladding so that light coupled into the waveguide is confined to the core

via total internal reflection. However, as Chapter 11 extends the definition of

the refractive index to consider negative index materials, the dielectric permit-

tivity and the magnetic permeability should now be expressed as:

ε = ε0εi,

µ = µ0µi, (10.8)
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where (i = 2, 1) in the core and cladding, respectively, and both εi and µi can

take on negative values. Thus it is necessary to redefine the refractive index as:

n =
√
εµ/ε0µ0. (10.9)

Clearly, as µ = µ0 for all nonmagnetic materials, in such cases this definition

simply reduces to Eq. (3.1). The wavenumber of light in the medium is then

expressed as:

k′ = ω
√
εµ = ωn

√
ε0µ0 = kn, (10.10)

where k is the wavenumber in a vacuum,

k = ω/c. (10.11)

The search for guided mode solutions of a waveguide begin with Maxwell’s

equations for a dielectric medium [3]:1

∇× Ẽ = −∂B̃
∂t
, (10.12)

∇× H̃ =
∂D̃

∂t
+ J̃. (10.13)

In media which contain no free currents such as those considered in this thesis,

J̃ can immediately be set to zero. Furthermore, as the formation of the guided

modes is determined by the linear properties of the medium, it follows that:

B̃ = µH̃, (10.14)

D̃ = εẼ, (10.15)

so that Maxwell’s equations reduce to the form [99]:

∇× Ẽ = −µ∂H̃
∂t

, (10.16)

∇× H̃ = ε
∂Ẽ

∂t
. (10.17)

Defining the electric Ẽ and magnetic H̃ fields as:

Ẽ (r, t) = E (r) e−i(ωt−βz), (10.18)

1It is important to note that in this part of the thesis tilde are used to denote fields that

include the full temporal dependence, as illustrated in Eqs. (10.18) and (10.19).
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H̃ (r, t) = H (r) e−i(ωt−βz), (10.19)

it is easy to see how Eqs. (10.16) and (10.17) can be solved to obtain the mode

profiles of the waveguides. However, it is important to note that these equa-

tions do not determine the fields completely and must be solved in conjunction

with the boundary conditions of the respective problem.

Once Eqs. (10.16) and (10.17) have been solved for a given mode profile, the

total power flowing in the direction of propagation through a surface S can be

calculated via:

P =

∫ ∫
S

(
Ẽ × H̃

)
· uzdxdy, (10.20)

where uz is the inward directed unit vector. Thus Ẽ × H̃ represents the power

flow density and it is useful to define:

S = Ẽ × H̃, (10.21)

which is referred to as the Poynting vector.

10.6 Nonlinear Effects in Crystals

As discussed in Section 3.5, for intense electric fields the induced polarisation

P̃ no longer depends linearly on the incident field Ẽ and the relation must be

extended to the more general expression [20]:

P̃ = ε0

(
χ(1) · Ẽ + χ(2) : Ẽ + χ(3)...ẼẼẼ + · · ·

)
, (10.22)

where the nonlinear response is assumed to be instantaneous, and again χ(j) is

the (j + 1) th rank susceptibility tensor. Although for fibres the second order

susceptibility χ(2) vanishes due to the inversion symmetry of silica glass, this

is not the case for all crystal structures and thus it is now this term that gives

rise to the lowest order nonlinear effects. In particular, it is the χ(2) term that is

responsible for second harmonic generation, whilst χ(3) is responsible for third

harmonic generation.

If the initial electric field is of the form:

Ẽ (r, t) =
1

2
ẑ [E (r) exp (−iωt) + c.c.] , (10.23)

131



Chapter 10 Controlling Light in Periodic Materials

where the light is assumed to be polarised along the z axis, then the second

term of Eq. (10.22) is:

P̃2 (r, t) = ε0χ
(2)Ẽ2 (r, t) = ε0χ

(2)
zzzẑ
[
E2 (r) exp (2iωt) + c.c.

]
. (10.24)

Thus if ε0χ
(2)Ẽ2 is sufficiently large, then the fundamental field will generate

a second harmonic field. The scale of the nonlinear effects in a crystal are con-

trolled by the structure and the polarisation of the incident light. To quantify

the performance of a crystal to generate second harmonic frequencies, the non-

linear coefficients dijk = χ
(2)
ijk/2 can be introduced, where for SHG it is common

to use the reduced notation such that:



Px (2ω)

Py (2ω)

Pz (2ω)


= 2ε0



d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36


×




E2
x (ω)

E2
y (ω)

E2
z (ω)

2Ey (ω)Ez (ω)

2Ex (ω)Ez (ω)

2Ex (ω)Ey (ω)



. (10.25)

It is clear from Eq. (10.25) that the sign of the nonlinear coefficients determines

the sense of the polarisation, whilst the size determines the overall efficiency η

of the process where:

η =
P2ω

Pω

. (10.26)

10.7 Wave Equation in Nonlinear Crystals

This section presents a brief derivation of the wave equation to describe the

propagation of light in a nonlinear optical medium. In particular, the consid-

erations will be extended to describe SHG, as it is this process on which the

experimental investigations of Chapters 12 and 13 are based.

The derivations begin with Maxwell’s equations as given by their form in

Eqs. (10.12) and (10.13). Again with the assumption of a material containing

no free currents, so that J̃ = 0, and B̃ given by Eq. (10.14), the material is now

allowed to be nonlinear in the sense that D̃ is related to Ẽ via:

D̃ = εẼ + P̃NL, (10.27)
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where P̃NL depends nonlinearly on the strength of the electric field. Taking the

curl of Eq. (10.12) and substituting the right hand side of Eq. (10.13) for ∇× B̃

yields:

∇×∇× Ẽ + µ
∂2

∂t2
D̃ = 0. (10.28)

Using Eq. (10.27) to eliminate D̃, this can be expressed in terms of the fields Ẽ

and P̃NL as:

∇×∇× Ẽ + εµ
∂2

∂t2
Ẽ = −µ ∂

2

∂t2
P̃NL, (10.29)

which is the most general form of the wave equation. However, in most cases

of interest Eq. (10.29) can be simplified using the vector relation

∇×∇× Ẽ = ∇
(
∇ · Ẽ

)
−∇2Ẽ

as ∇ · Ẽ is, in general, negligibly small. In such instances the wave equation

becomes:

∇2Ẽ − εµ
∂2

∂t2
Ẽ = µ

∂2

∂t2
P̃NL. (10.30)

Eq. (10.30) can now be extended to describe SHG in which two photons of

frequency ω are converted to one of frequency 2ω. For simplicity, the polar-

isation and the direction of the propagating fundamental beam are assumed

to be fixed so that a scalar relationship can be considered. Furthermore, with

the additional assumption that the fields are polarised along the z axis, the

tensor notation of the nonlinear susceptibility is dropped so that χ(2) = χ
(2)
zzz.

Expressing the total electric field within the nonlinear medium as,

Ẽ (r, t) = Ẽω (r, t) + Ẽ2ω (r, t) , (10.31)

it can be assumed that each frequency component obeys Eq. (10.30) so that:

∇2Ẽj − εjµj
∂2

∂t2
Ẽj = µj

∂2

∂t2
P̃NL

j , (10.32)

where j = ω, 2ω. The expressions for P̃NL
j are then obtained from Eq. (10.24)

as:

P̃NL
ω = 2ε0χ

(2)Ẽ2ωẼ
∗
ω, (10.33)

P̃NL
2ω = ε0χ

(2)Ẽ2
ω. (10.34)

For propagation in a conventional (positive index) medium, where µ = µ0 and

n =
√
ε/ε0 [Eq. (3.1)], this yields the coupled SHG equations in their standard

form as:

∇2Ẽω − n2
ω

c2
∂2

∂t2
Ẽω =

2

c2
χ(2) ∂

2

∂t2

(
Ẽ2ωẼ

∗
ω

)
, (10.35)
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∇2Ẽ2ω − n2
2ω

c2
∂2

∂t2
Ẽ2ω =

1

c2
χ(2) ∂

2

∂t2
Ẽ2

ω. (10.36)

10.8 Phase Matching Harmonic Generation

As mentioned in Section 9.2, due to material dispersion, the nonlinear pro-

cesses discussed in the previous sections require that the interacting fields be

phase matched. To illustrate this, this section describes the physical consider-

ations of the SHG process in more detail.

Second harmonic generation is a three photon process where: ω + ω → 2ω, so

that the requirement of energy conservation is satisfied:

�ω + �ω = � (2ω) . (10.37)

Similarly, conservation of momentum for the photons yields:

kω + kω = k2ω, (10.38)

where ki (ki = 2πni/λi) are the wavevectors, ni are the refractive indices, λi

are the wavelengths and i = ω, 2ω for the fundamental and second harmonic

fields, respectively. Rewriting Eq. (10.38) in one dimension as,

2

(
2πnω

λω

)
=

2πn2ω

λω/2
, (10.39)

it is clear that momentum is conserved if and only if nω = n2ω. However,

because of the wavelength dispersion, in general nω �= n2ω and the fundamen-

tal and second harmonic waves periodically move in and out of phase as they

propagate through the crystal. As a result, the intensity of the second harmonic

wave also varies periodically and the period at which this occurs is twice the

coherence length lc, where [87]:

lc =
π

k2ω − 2kω

=
λω

4 (n2ω − nω)
. (10.40)

Thus after the waves have propagated one coherence length the energy of the

second harmonic starts to return to the fundamental. This is demonstrated in

Fig. 10.8 which shows the evolution of the second harmonic power where it

can be seen that P2ω = 0 at x = 2lc when there is no phase matching.
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Figure 10.8: Evolution of the second harmonic power for phase matched and non-
phase matched propagation.

The process of balancing the refractive indices at the different wavelengths is

what is referred to as phase matching. This was first demonstrated in negative

birefringent crystals by propagating the two beams at an angle to the optic

axis within the crystal such that the condition no
ω = ne

2ω was satisfied [84, 85].

However, this technique is somewhat limited in that it is restricted to wave-

lengths where no
ω = ne

2ω and, because of the angular/polarisation restrictions,

it is often unable to access the largest nonlinear coefficient of the crystal [see

Eq. (10.25)] so that a smaller alternative coefficient may have to be employed,

thus reducing the nonlinear conversion efficiency [87]. For example, while the

largest nonlinear coefficient in lithium niobate is d33 = 31.5 pmV−1, the largest

nonlinear coefficient that can be accessed by a birefringent phase matched pro-

cess is d31 = −4.52 pmV−1, which is almost an order of magnitude smaller.

An alternative to birefringent phase matching is quasi-phase matching (QPM)

and it is this technique that is employed in the experiments described in Chap-

ters 12 and 13. Quasi-phase matching requires modification of the crystal struc-

ture by periodically reversing the spontaneous polarisation, which is equiva-

lent to reversing the sign of the nonlinear coefficient. This in turn rephases the

fundamental and generated second harmonic fields as they propagate through

the crystal so that they remain in phase. Because the nonlinear susceptibility

tensor χ(2) is now periodic, it can be written as a Fourier series,

χ(2) (r) =
∑
n,m

κn,meiGn,m·r, (10.41)

where κn,m are the Fourier coefficients corresponding to the reciprocal lattice

vectors Gn,m [Eq. (10.3)]. The phase matching condition then becomes:

k2ω − 2kω = Gmn. (10.42)
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Figure 10.9: Schematic diagram of SHG in PPLN showing the periodic domain struc-
ture and the phase matching condition (below). The input and output fields are verti-
cally polarised.

Importantly, it can be noted that the coupling strength of a phase matched

process using a particular Gn,m is proportional to the corresponding coefficient

κn,m, and if κn,m = 0 the interaction will not occur.

As a simple example, the one dimensional case of SHG in periodically poled

lithium niobate (PPLN) is considered, as illustrated in Fig. 10.9. A schematic of

the phase matching diagram, given below, shows that this process is collinear.

Quasi-phase matching this process requires G1 = 2π/Λ where the grating pe-

riod Λ, poled along the optic axis, is given by [87]:

Λ = 2lc =
λω

2 (n2ω − nω)
. (10.43)

To illustrate the success of this technique, the evolution of the second harmonic

power P2ω for poled (quasi-phase matched) and unpoled (non-phase matched)

lithium niobate is presented in Fig. 10.10, clearly showing the increase in the

0 2 4 6

P
2ω

Propagation Distance x (l
c
)

Quasi−phase matched 

Non−phase matched 

Figure 10.10: Evolution of the second harmonic power for quasi-phase matched and
non-phase matched propagation.

136



Chapter 10 Controlling Light in Periodic Materials

efficiency for the quasi-phase matched process.

This example highlights the main attraction of using nonlinear photonic crys-

tals in that, once the defining condition G has been established, the lattice

structure can then be designed specifically to phase match the desired non-

linear interaction. In addition, by altering the shape of the poled regions the

relative ratios of the Fourier coefficients can be adjusted such that some non-

linear interactions are stronger than others, and this is particularly important

when one is considering using higher order reciprocal lattice vectors.

10.9 Modelling Second Harmonic Generation in Non-

linear Crystals

In this section, a numerical model to investigate SHG in nonlinear crystals

will be described. This work was motivated by the previous observations of

Broderick et al. that second harmonic generation could occur over a wide range

of angles in two dimensional periodically poled structures [90]. It was hoped

that this model would not only provide a means by which to compare the

experimental results, but that it would also aid in the design of new crystal

structures. The significant feature of this model is that, if it is to accurately

describe two dimensional crystals, any restrictions on the propagation angle of

the second harmonic beam must be avoided. Thus the following calculations

will not make use of the usual paraxial approximation which assumes that the

electric field varies slowly in the direction of propagation.

10.9.1 Preliminary Investigations

The initial approach to this problem was to consider the evolution of the fields

in the frequency domain so that the system could be described by the Fourier

transform of the coupled SHG equations (10.35) and (10.36) as:

∇2Ẽω (r, ω) +
n2

ωω
2

c2
Ẽω (r, ω) =

2ω2

c2
χ(2) (r) Ẽ2ω (r, ω) Ẽ∗

ω (r, ω) , (10.44)

∇2Ẽ2ω (r, ω) +
n2

2ω (2ω)2

c2
Ẽ2ω (r, ω) =

(2ω)2

c2
χ(2) (r) Ẽ2

ω (r, ω) . (10.45)
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In this representation the total electric field is given by: Ẽ (r, ω) = Ẽω (r, ω) +

Ẽ2ω (r, ω), where Ẽi(r, ω) is the Fourier transform of the field Ẽi(r, t) [Eq. (10.23)],

defined as:

Ẽi (r, ω) =
1√
2π

∫ ∞

−∞
Ẽi (r, t) exp (iωt) dt. (10.46)

However, as for a particular process the frequencies of the electric fields are

fixed, the ω dependence in Eqs. (10.44) and (10.45) can be dropped. In addition,

to further simplify these preliminary investigations the analysis was based on

the undepleted pump approximation so that knowledge of the fundamental

field could be assumed over all space. Thus the investigations of the system

could be reduced to solving the single equation:

∇2Ẽ2ω (r) +
n2

2ω (2ω)2

c2
Ẽ2ω (r) =

(2ω)2

c2
χ(2) (r) Ẽ2

ω (r) . (10.47)

In the formulation of the numerical problem, a two dimensional structure

based on the coordinate system of Fig. 10.2 is considered. Thus it could be as-

sumed that the fields extended infinitely in the z direction so that: Ẽi(x, y, z) =

Ẽi(x, y) and ∇2 = ∂2/∂x2 + ∂2/∂y2. By discretising the resulting fields over the

x − y plane, they could then be represented in the form of an M × N matrix

where M is the x dimension and N is the y dimension. Solutions to equations

of the form of Eq. (10.47) can usually be found by employing either finite differ-

ence or finite element techniques. However, as both these methods require the

boundary conditions to be fixed in advance, to avoid placing any restrictions

on the outgoing second harmonic field an absorbing layer was placed on the

end of the grid and the field at the output was set to be: Ẽ2ω (Lx, y) = 0. In addi-

tion, after ensuring that the input Gaussian fundamental beam was sufficiently

contained within the y direction, the fields at the y axis boundaries could also

be set as: Ẽ2ω (x, 0) = Ẽ2ω (x, Ly) = 0. A schematic diagram of the numerical

construction which illustrates these conditions is shown in Fig. 10.11.

Unfortunately, none of the solutions to Eq. (10.47) obtained via either of these

methods were found to be stable as they all depended strongly on the choice

of the grid and system parameters.2 Although the observed instabilities were

initially attributed to an inadequate numerical technique, it has since been es-

tablished that the problem in fact lies in the form of Eq. (10.47) itself. To un-

2These numerical investigations were conducted with the help of Dr K. Thomas from the

department of Electronics and Computer Science (ECS).

138



Chapter 10 Controlling Light in Periodic Materials

Lx

x

y

Ly

HeXLN
Crystal

Absorbing
layer

Figure 10.11: Schematic diagram showing the construction of the grid used to numer-
ically model interactions in a two dimensional nonlinear crystal.

derstand why the solutions do not converge, it is useful to consider the finite

difference representation and write the resulting system of linear equations in

the conventional matrix form:

Ax = b, (10.48)

where A is an N ′ × N ′ matrix, b is a vector of the given data and x is the

vector of the N ′ unknown field values. As for a two dimensional system the

matrix describing the field must be unwrapped into a single column vector,

for the purposes of this demonstration, a reduced problem in one dimension

is considered so that: Ẽi(x, y) = Ẽi(x), ∇2 = ∂2/∂x2 and N ′ = M . Eq. (10.47)

can then be rewritten in the form:

1

h2

[
Ẽ2ω

∣∣∣
m+1

− 2 Ẽ2ω

∣∣∣
m

+ Ẽ2ω

∣∣∣
m−1

]
+ α2 Ẽ2ω

∣∣∣
m

=
(2ω)2

c2

[
χ(2) Ẽ2

ω

∣∣∣
m

]
, (10.49)

where α2 = n2
2ω (2ω)2 /c2, h is the size of the x grid and the difference formula

refers to the grid point x = mh. It follows from Eq. (10.49) that:

A =




−2
h2 + α2 1

h2 0 0 . . . 0
1
h2

−2
h2 + α2 1

h2 0 . . . 0

0 1
h2

−2
h2 + α2 1

h2 . . . 0
... . . . ...

. . .

0 . . . . . . 0 1
h2

−2
h2 + α2



.

The condition for the convergence of the system given by Eq. (10.48) is that the

matrix A is strictly diagonally dominant, in that for each row the magnitude
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of the diagonal element must be larger than the sum of the moduli of the off-

diagonal elements [100],

|All| >
∑
m�=l

|Alm| , ∀l. (10.50)

Thus as α2 > 0, it is clear that for this problem the condition is not satisfied

and the solutions will not converge.

10.9.2 Finite Difference Model for SHG

Following the results of the preliminary investigations, the next step was to

consider a revised problem where the fields include the full time dependence.

Although this modified problem now involves an additional variable, the in-

corporation of the time dependence should force the stability of the solutions

[101]. Owing to the inclusion of the extra temporal dimension, the investi-

gations in this section will be restricted to problems with only one spatial di-

mension. However, a brief discussion on the possible extension to two spatial

dimensions will be included as a final remark.

Solutions in One Dimension

Again the investigations begin by considering the case of an undepleted pump

so that in one spatial dimension the system is simply described by Eq. (10.36)

as:
∂2

∂x2
Ẽ2ω (x, t) − n2

2ω

c2
∂2

∂t2
Ẽ2ω (x, t) =

1

c2
χ(2) (x)

∂2

∂t2
Ẽ2

ω (x, t) . (10.51)

With the fields now discretised in the sense of x and t, so that they can be

represented as an M × N matrix where M is the x dimension and N is the t

dimension, the explicit form of the finite difference representation of Eq. (10.51)

is written as [102]:

Ẽ2ω |n+1
m = 2

(
1 − p2

)
Ẽ2ω |nm + p2

[
Ẽ2ω |nm+1 + Ẽ2ω |nm−1

]

− Ẽ2ω |n−1
m − k2

n2
2ω

χ(2) ∂
2Ẽ2

ω

∂t2

∣∣∣∣∣
n

m

, m, n ∈ Z. (10.52)

Here p = kc/hn2ω, h and k are the grid sizes in the distance and time coordi-

nates, respectively, and the difference formula refers to the grid point x = mh,
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t = nk. As the determination of the field at t = (n+ 1)k requires that the fields

at the two previous time steps are known, to further simplify the problem,

propagation of the fundamental field is started well before the front face of the

crystal so that the first two temporal second harmonic fields can be set to zero.

In addition, the time of the propagation is restricted so that neither of the fields

reach the end of the crystal and thus: Ẽω (Lx, t) = 0 and Ẽ2ω (Lx, t) = 0.

In order to test the solutions to Eq. (10.52), the first step is to consider a per-

fectly phase matched system so that: n2ω = nω = n and the nonlinear suscep-

tibility is a constant: χ(2)(x) = χ(2)(0). In this instance, theory predicts that for

a continuous wave (CW) pump beam the evolution of the second harmonic

power is given by [87]:

P2ω (x) =
2ω2d2

effP
2
ω

n3c3ε0A
x2, (10.53)

where A is the mode area and

deff = κn,mdij, (10.54)

is the effective nonlinear coefficient. Fig. 10.12 shows the evolution of the

quasi-CW fundamental field (top) and the generated second harmonic field

(bottom) for two snap shots in time, where (a) t = 3 ps and (b) t = 6 ps, for:

n = 2.14236, λ = 1.536µm and χ(2) = 33 × 10−6 µmV−1. Comparing the second

harmonic fields with the predictions of Eq. (10.53) (dashed curve) clearly, in the
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Figure 10.12: Evolution of the fundamental field (top) and the second harmonic field
(bottom) for the case of perfect phase matching and assuming no pump depletion.
The panels illustrate two snap shots in time where (a) t = 3ps and (b) t = 6ps, and the
dashed curves are the theoretical prediction for the evolution of P2ω from Eq. (10.53).
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first half of the crystal where the field has become essentially CW, the agree-

ment is excellent. The slight deviation in the latter stages of the crystal [see

Fig. 10.12(b)] can be attributed to the initial ramping up of the fundamental

field.

Once satisfied that the program was generating the second harmonic field cor-

rectly, the next step was to consider the case where n2ω �= nω so that a periodic

χ(2) (x) was required to quasi-phase match the process. Fig. 10.13(a) shows

the evolution of the second harmonic field, at t = 6 ps, generated from the

same fundamental field as shown in Fig. 10.12(b), but now with: nω = 2.14236,

n2ω = 2.18450, λ = 1.536µm and a nonlinear susceptibility with a magnitude:∣∣χ(2)(x)
∣∣ = 33 × 10−6 µmV−1 and period: Λ = 18.22µm [Eq. (10.43)]. On com-

paring the evolution of the second harmonic with the theoretical prediction

calculated for the previous case of perfect phase matching (see Fig. 10.12(b) -

dashed curve), it can be seen that, as expected, the quasi-phase matched power

grows at a slower rate. However, in this calculation it has been assumed that

the same nonlinear coefficient is available for use in both cases. In lithium nio-

bate crystals this is in fact not the case and, whilst the quasi-phase matched

process uses the largest nonlinear coefficient d33, the perfect phase matched

case uses d31 � d33/7. The efficiency of a quasi-phase matched process relative

to perfect phase matching can thus be calculated as (d33/d31)
2(2/π)2 ≈ 20. Ac-

counting for this correction yields the dotted curve, also in Fig. 10.13(a), which

is in excellent agreement with the SHG evolution in the first half of the crys-

tal. In addition, the close up of the initial stages of the evolution in the crystal
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Figure 10.13: (a) Evolution of the second harmonic field for the case of quasi-phase
matching together with the theoretical prediction from Eq. (10.53) for perfect phase
matching (dashed curve) and the corrected predictions for quasi-phase matching (dot-
ted curve). (b) Close up of the second harmonic evolution showing the periodic nature
of the generation.
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shown in Fig. 10.13(b) confirms that the second harmonic field is indeed be-

ing generated at the correct period, which provides further verification of the

accuracy of the model.

Up to this point the analysis has been restricted to solving systems where the

effects of pump depletion can be neglected [Eqs. (10.47) and (10.51)]. Although,

because of its simplicity, it is this approach that is typically employed in the-

oretical studies of SHG, it soon breaks down in the limits of high conversion

efficiencies. Thus ultimately the coupled equations need to be considered to

describe the evolution of both the second harmonic and the fundamental field

within the crystal. Rewriting Eqs. (10.35) and (10.36) in one spatial dimension

yields:

∂2

∂x2
Ẽ2ω (x, t) − n2

2ω

c2
∂2

∂t2
Ẽ2ω (x, t) =

1

c2
χ(2) (x)

∂2

∂t2

[
Ẽω (x, t)

]2
, (10.55)

∂2

∂x2
Ẽω (x, t) − n2

ω

c2
∂2

∂t2
Ẽω (x, t) =

2

c2
χ(2) (x)

∂2

∂t2

[
Ẽ2ω (x, t) Ẽ∗

ω (x, t)
]
. (10.56)

The explicit forms of the finite difference representations of Eqs. (10.55) and

(10.56) at x = mh and t = nk are [102]:

Ẽ2ω |n+1
m = 2

(
1 − p2

)
Ẽ2ω |nm + p2

[
Ẽ2ω |nm+1 + Ẽ2ω |nm−1

]
− Ẽ2ω |n−1

m

− 1

n2
2ω

χ(2) |nm
[
Ẽ2

ω |n+1
m − 2Ẽ2

ω |nm + Ẽ2
ω |n−1

m

]
, (10.57)

Ẽω |n+1
m = 2

(
1 − r2

)
Ẽω |nm + r2

[
Ẽω |nm+1 + Ẽω |nm−1

]
− Ẽω |n−1

m

− 2

n2
ω

χ(2) |nm
[
Ẽ2ωẼ

∗
ω |n+1

m − 2Ẽ2ωẼ
∗
ω |nm + Ẽ2ωẼ

∗
ω |n−1

m

]
,

m, n ∈ Z, (10.58)

where p = kc/hn2ω and r = kc/hnω. The significant feature of considering the

effects of pump depletion is that, unlike Eq. (10.52), Eqs. (10.57) and (10.58)

involve undetermined source terms in the t = (n + 1)k step. Thus, in order

to solve these equations an iterative (predictor-corrector) method is employed

where the fields at the earlier time step t = nk are used as the initial guess of

the fields at the following step. This procedure is then executed repeatedly,

updating the guess of the fields at t = (n+1)k at each step, until the algorithm

converges.

Again, to test the solutions to Eqs. (10.57) and (10.57) the first step is to consider

the case of perfect phase matching and set: n2ω = nω = 2.14236, λ = 1.536µm
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and χ(2) = 33 × 10−6 µmV−1. Fig. 10.14 plots the evolution of both the quasi-

CW fundamental field (top) and the second harmonic field (bottom) inside the

crystal for two snap shots in time where (a) t = 3 ps and (b) t = 6 ps. From these

it is clear that by comparing the second harmonic field with the theoretical pre-

dictions of Eq. (10.53), the fundamental power has been sufficiently reduced to

slow down the rate of generation of the second harmonic. Although the re-

duction in this rate is quite large, this can be attributed to the effects being

exaggerated by the initial ramping up of the fundamental field which is sub-

stantiated by the change in the shape of the leading edge of the beams from

Fig. 10.12 to Fig. 10.14. As a means of verifying the accuracy of this model, the

evolution of the energy has been calculated showing that, at any given time,

the fields satisfy the requirement of energy conservation [3]:

Utot =

∫
Iωdx+

∫
I2ωdx =

2nω

Z0

∫
|Ẽω|2dx+

2n2ω

Z0

∫
|Ẽ2ω|2dx, (10.59)

where Z0 = 377 Ω is the vacuum impedance and the total energy Utot can be

calculated from the known input field.
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Figure 10.14: Evolution of the fundamental field (top) and the second harmonic field
(bottom) for the case of perfect phase matching and including the effects of pump
depletion. The panels illustrate two snap shots in time where (a) t = 3ps and (b)
t = 6ps, and the dashed curves are the theoretical prediction from Eq. (10.53) for the
case of perfect phase matching and no pump depletion.

Finally, this model is used to investigate a quasi-phase matched second har-

monic process where the fundamental input is pulsed. To this end, the injec-

tion of a 145 pJ, 180 fs (FWHM) Gaussian fundamental pulse at λ = 2µm into
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a PPLN crystal is simulated, with: nω = 2.12988, n2ω = 2.16406,
∣∣χ(2) (x)

∣∣ =

33 × 10−6 µmV−1, Λ = 29.2521µm and L = 400µm. It is worth noting that for

a Gaussian input pulse, Eq. (10.51) predicts that the second harmonic pulse

will also have a Gaussian profile with a FWHM width ∆T 2ω
0 = ∆T ω

0 /
√

2. The

output second harmonic pulse is shown in Fig. 10.15 and this has an energy of

9.4 pJ and a width of 128 fs (FWHM). For comparison, the circles show a Gaus-

sian fit to the intensity profile. The good agreement between the simulated

pulse and the fit is supported by calculation of the ratio: ∆T2ω
0 /∆T ω

0 = 0.711,

which is close to the predicted value of ∼ 0.707. Although the conversion ef-

ficiency of this process appears quite low, this can be attributed to the phase

mismatch due to the broad bandwidth associated with the short input funda-

mental pulse [103]. Thus these results can be expected to be a valid represen-

tation of SHG with a pulsed fundamental beam.
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Figure 10.15: The output pulse from a quasi-phase matched SHG process with a
pulsed fundamental beam, together with a Gaussian fit.

Comment on Solutions in Two Dimensions

As discussed earlier, the primary motivation for developing this model was to

investigate harmonic generation in two dimensional nonlinear crystals. How-

ever, due to the resolution required to ensure that the phase of the second har-

monic field is generated correctly, and thus that phase matching occurs, even

in one dimension this problem quickly approaches the limits of the memory

size of typical desktop computers.3 Thus in order to consider two dimensional

3It is for this reason that the crystal lengths have been restricted to 1 mm in the simulations

of Figs. 10.12 and 10.13.
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problems, access to a computational device with a much larger memory capac-

ity will need to be obtained.
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Chapter 11

1D Negative Refractive Index

Materials

11.1 Introduction

In this chapter the properties of the guided modes in one dimensional negative

refractive index waveguides are investigated. This analysis was motivated by

previous calculations performed by Shadrivov et al. for negative index planar

waveguides [80]. The chapter begins with a discussion of negative refractive

index materials, before describing existing fabrication techniques. By calculat-

ing possible guided mode solutions of both channel waveguides and optical

fibres, a number of peculiar properties of negative index core waveguides will

be revealed. Particular attention is paid to the manipulation of the velocities

of the propagating modes.

11.2 Negative Refractive Index Materials

Negative index materials offer a unique possibility to extend the experimental

domain and investigate novel physical phenomena. Such materials, which

possess simultaneously negative values of the dielectric permittivity ε and

magnetic permeability µ, were initially investigated theoretically by Veselago

in 1968 where he concluded that they would have dramatically different prop-
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agation characteristics to conventional materials [73]. In particular, these neg-

ative index materials can exhibit extraordinary properties such as negative re-

fraction, antiparallel group and phase velocities (backwards waves) and nega-

tive energy fluxes (radiation tension). Despite the physical significance of his

analysis, the results appeared to be of limited practical application due to the

absence of naturally occurring negative index materials. However, motivated

by earlier investigations [76, 77], in 2000 the first negative index material was

demonstrated by Smith et al. in the form of a composite material consisting of

periodic regions of negative ε and negative µ [70].

To date, the only experimental investigations of negative refraction phenom-

ena have been reported in the microwave regime where the fabrication of such

composite materials is possible [70, 104]. These experiments have confirmed

that the electromagnetic waves behave as predicted by the theory. It is, how-

ever, unlikely that these composite materials will scale to optical frequencies

and instead photonic crystals have often been suggested as an alternative to

extend the effects of negative refraction into the optical regime [105]. Indeed,

in 2000 Notomi performed a detailed theoretical and numerical investigation

of light propagation in photonic crystals and showed that as the effective re-

fractive index is determined by the photonic band structure, it can in fact be

less than unity or even negative [106]. Although these photonic crystals may

have positive ε and µ throughout, they have nonetheless been shown to exhibit

similar anomalous light behavior to the composite negative ε and µ materi-

als [107]. Recently a dielectric photonic crystal based on an array of aluminum

rods in air was shown to exhibit negative refraction [108] and despite the fact

that this experiment was still conducted in the microwave regime, by using

electrical poling techniques [109] it should be possible to fabricate more com-

plex structures that may scale to the optical regime.

11.2.1 Fabrication

In the microwave regime, a negative refractive index material can be fabricated

by constructing a periodic array of interspaced regions of negative permittivity

ε and permeability µ. The concept of a negative ε material is well established

in the context of plasmons [110]. Here the ideal dielectric response of a plasma
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is given by:

εi (ω) = 1 − ω2
p,i

ω2
, (11.1)

where ωp,i is the electronic plasma frequency and again (i = 2, 1) in the core

and cladding, respectively. Clearly, when ω < ωp,i, then εi takes on negative

values. To date, the most common plasmon structure employed in negative ε

experiments consists of very thin metallic wires arranged in a periodic lattice

such as a simple cubic lattice shown in Fig. 11.1. Significantly, as the plasma

frequency depends on the width and length of the wires, these structures can

be tailored to exhibit ωp,i at microwave or lower frequencies [76].

a

r

Figure 11.1: Schematic of a material structure which can exhibit a negative ε at mi-
crowave frequencies. The periodic array is composed of thin metallic wires arranged
in a simple cubic lattice.

In contrast to the negative ε materials which have long been known to occur in

both gaseous and solid state plasmas, until recently there were no known neg-

ative µ materials. However, in 1999 Pendry et al. [77] demonstrated a structure

whose properties mimicked those of a magnetic plasma so that they exhib-

ited effective permeabilities which where not accessible in naturally occurring

materials. This structure consisted of a sequence of flat split ring disks com-

prising of two thin sheets of metal, as illustrated in Fig. 11.2. Analogous to the

electronic plasma, the magnetic response of µ can be expressed as:

µi (ω) = 1 − Fω2

ω2 − ω2
0,i

, (11.2)

where ω0,i is the magnetic resonance frequency and F is a constant dependent

on the material structure. Significantly, it was a combination of this split ring

lattice with the wire lattice of Fig. 11.1 which led to the first demonstration of a

composite medium with simultaneously negative ε and µ by Smith et al. [70].
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cc

r

d

l

a

Figure 11.2: Schematic of a material structure which can exhibit a negative µ at mi-
crowave frequencies. Each split ring is comprised of two thin metal sheets and is
stacked in a periodic structure as shown.

As mentioned previously, although it is possible to modulate the optical prop-

erties of a crystal periodically by means of the electronic poling technique,1 to

date such photonic crystals have only been shown to have an effective negative

refractive index. However, as the techniques involved in the fabrication pro-

cesses are improved, it can be expected that this technology could be combined

with that of the composite materials to obtain negative ε negative µ materials

in the optical wavelength regime.

11.3 Channel Waveguides

In this section, the guided mode solutions for a channel waveguide with a neg-

ative index (negative ε and µ) core are calculated. By investigating the prop-

erties of the modes, it will be shown that these differ considerably from the

guided modes of a conventional positive index waveguide. Typical features

of these waveguides include the absence of the fundamental mode, possible

double degeneracy of modes and backwards propagating waves with nega-

tive energy flux.

1This will be discussed in more detail in Chapter 12.
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11.3.1 Guided Mode Solutions

Similar to the geometry of an optical fibre [Section 3.2], a channel waveguide

consists of a square (or rectangular) core surrounded by a cladding which dif-

fers in its refractive index. The calculations presented here consider a symmet-

ric channel waveguide with the geometry and parameters given in Fig. 11.3.

The dielectric permittivity and the magnetic permeability in the cladding (i =

1) and the core (i = 2) are related to their vacuum values via Eq. (10.8). In the

analysis, the cladding is assumed to have a positive index with both ε1 and µ1

positive, and the core is set to have ε2 and µ2 negative. The guided modes will

be stationary solutions to Maxwell’s equations of the form,

Ẽ (x, y, z, t) = E (x, y) e−i(ωt−βz), (11.3)

H̃ (x, y, z, t) = H (x, y) e−i(ωt−βz), (11.4)

where ω is the angular frequency of the field, β is the propagation constant and

E (x, y) and H (x, y) are the spatially localised transverse mode profiles of the

electric and magnetic fields, respectively.

Figure 11.3: Channel waveguide geometry and parameters.

The analysis of the system given in Fig. 11.3 follows Marcatili’s method for two

dimensional optical waveguides [111]. Although more complicated methods

allow for a more rigorous description of the mode properties (e.g., Kumar’s

method [99]), this method should nevertheless be sufficient to obtain a qual-

itative understanding of the mode characteristics. The electric field is chosen

to be polarised in the x direction (i.e., the Ex
pq modes), with Ex and Hy as the

principal field components. Here p and q are integers which correspond to the
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number of peaks of the optical power in the x and y directions, respectively.

Substituting Eqs. (11.3) and (11.4) into Maxwell’s equations [Eqs. (10.16) and

(10.17)] it follows that the wave equation in this representation is:

∂2Hy

∂x2
+
∂2Hy

∂y2
+
(
k2εiµi − β

)
Hy = 0, (11.5)

and the remaining field representations are related to Hy via,

Hx = 0

Hz =
−i

β

∂Hy

∂y

Ex =
ωµ0µi

β
Hy +

1

ωε0εiβ

∂2Hy

∂x2

Ey =
1

ωεβ

∂2Hy

∂x∂y

Ez =
−i

ωε

∂Hy

∂x
. (11.6)

Marcatili’s method is based on the assumption that the electric and magnetic

fields are confined to the core so that they decay exponentially in the cladding

and are negligible in the shaded regions of Fig. 11.3. In addition, since the

waveguide shown in this figure is symmetric with respect to the x and y axes,

the analysis can be restricted to only consider regions (1)–(3). With these con-

siderations, the electric field distributions in the three regions can be expressed

as:

Hy =




A cos (kxx− φ) cos (kyy − ψ) region (1)

A cos (kxL− φ) e−γx(x−L) cos (kyy − ψ) region (2)

A cos (kxx− φ) e−γy(y−L) cos (kyL− ψ) region (3),

(11.7)

where the constant A is related to the power carried by the mode [Eq. (10.20)].

Here kx, ky, γx and γy are related by:

−k2
x − k2

y + k2ε2µ2 − β2 = 0 region (1)

γ2
x − k2

y + k2ε1µ1 − β2 = 0 region (2)

−k2
x + γ2

y + k2ε1µ1 − β2 = 0 region (3),

(11.8)

and the optical phases φ and ψ are,

φ = (p− 1)π
2

(p = 1, 2, . . .)

ψ = (q − 1)π
2

(q = 1, 2, . . .).
(11.9)
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Applying the boundary condition that the field components Ez and Hz should

be continuous at x = L and y = L, respectively, the following dispersion rela-

tions are obtained:

γxL =
ε1

ε2
kxL tan

(
kxL− (p− 1)

π

2

)
, (11.10)

γyL = kyL tan
(
kyL− (q − 1)

π

2

)
. (11.11)

Rearranging Eqs. (11.8) so that γx and γy are expressed in terms of ε, µ and the

transverse wavenumbers, kx and ky, yields:

γ2
x =

ω2

c2
(ε2µ2 − ε1µ1) − k2

x, (11.12)

γ2
y =

ω2

c2
(ε2µ2 − ε1µ1) − k2

y. (11.13)

The propagation constant β can then be calculated from,

β2 =
ω2

c2
ε2µ2 −

(
k2

x + k2
y

)
. (11.14)

The dispersion relations of Eqs. (11.10) and (11.11) can be solved together with

Eqs. (11.12) and (11.13) using standard graphical techniques (see Ref. [99]). Pre-

vious analysis of negative index planar waveguides has shown that it is pos-

sible to obtain solutions where the transverse wavenumber k becomes purely

imaginary [80]. These “slow wave” solutions occur when β exceeds a critical

value and have been likened to surface waves in metal films [112]. Thus the pa-

rameter planes (kxL, γxL) and (kyL, γyL) can be extended to include imaginary

values of kx and ky by defining: κx = ikx and κy = iky. Fig. 11.4 shows typical

solutions for the x and y components of the field with: ε1 = 0.8, µ1 = 0.41,

ε2 = −2.3, µ2 = −2.2 and ω/2π = 4.4 GHz.2 The solid lines are the right

hand sides of Eqs. (11.10) and (11.11) and the dashed lines are obtained from

the right hand sides of Eqs. (11.12) and (11.13). Here the 3 dashed lines cor-

respond to waveguides with the widths: (1) L = 0.1 cm, (2) L = 0.4 cm and

(3) L = 1.4 cm.

The points of intersection indicate the existence of guided modes. From these

intersections, six different solutions can be constructed and, to illustrate this,

examples of typical mode profiles can be seen in Fig. 11.5. The possible Hy
2,1

2These parameters where chosen based on realistic values of ωp,i, ω0,i and F [70, 80].
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Figure 11.4: Typical solutions for the x (top) and y (bottom) components of the guided
modes of a negative index channel waveguide. The solid lines are the right hand sides
of Eqs. (11.10) and (11.11) and the dashed lines are obtained from the right hand sides
of Eqs. (11.12) and (11.13).

modes are plotted in the top row where the (a,A) mode has an imaginary

kx but real ky and the (b,B) mode has both kx and ky real. The middle row

shows the strongly (c,Γ) and weakly (d,Γ) localised Hy
3,1 modes. Similarly, the

bottom row shows the strongly (c,∆) and weakly (d,∆) localised Hy
3,2 modes,

although in this instance the weakly localised mode has an imaginary β so that

it decays exponentially as it propagates in z. It is worth noting that a similar

analysis for the Ey
pq mode (electric field polarised in the y direction) leads to

Hx solutions with forms such as those shown in Fig. 11.4, but with the x and

y components interchanged. In addition, as the solutions in Fig. 11.4 are still

functions of L, it is clear that similar solutions will be found for rectangular

guides.

Figs. 11.4 and 11.5 illustrate some of the important properties of negative index

channel waveguides. Firstly, the guided modes can only be supported in high-

index waveguides (i.e., ε2µ2 > ε1µ1). This is in contrast to negative index
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Figure 11.5: Examples of the mode profiles for the solutions in Fig. 11.4. Top row:
Hy

2,1 solutions corresponding to intersections (a,A) and (b,B). Middle row: H y
3,1 so-

lutions corresponding to intersections (c,Γ) and (d,Γ). Bottom row: H y
3,2 solutions

corresponding to intersections (c,∆) and (d,∆).

slab waveguides [80] and is a consequence of the dispersion relations of the

y component of the field. In addition, as the dispersion relations do not allow

for an imaginary ky, only the x component of the field can exhibit surface wave

effects. Secondly, however, in accordance with the observations in negative

index planar waveguides it is again found that the conventional hierarchy of

the fast modes disappears. In particular, (i) for p = 0 the right hand side of

Eq. (11.10) is negative so that the fundamental Hy
1,1 mode does not exist; (ii)

for a given width L, solutions of γxL associated with the first order Hy
2,1 mode

only exist for a particular range of ω greater than a critical value; (iii) for modes

greater than Hy
2,1, as the γxL solutions in Fig. 11.4 decrease monotonically with

kxL at different rates, there are two possible solutions to Eq. (11.10) so that two

modes with the same number of nodes (i.e., degenerate modes) can coexist in a

waveguide, as illustrated by the solution pairs: (c,Γ), (d,Γ) and (c,∆), (d,∆).
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11.3.2 Propagation Characteristics of the Guided Modes

To investigate the frequency dispersion of the guided waves it is necessary to

consider the frequency dependence of both εi and µi in Eq. (11.14). Although

the specific form of the refractive index of a photonic crystal depends of the

band structure [106], in this analysis the forms for the composite negative in-

dex material, as given in Eqs. (11.1) and (11.2), will be used. Based on earlier

analysis the defining parameters are chosen to be: ωp,2/2π = 10 GHz, ω0,2/2π =

4 GHz and F = 0.56 [70, 80]. In this case, the region of simultaneously neg-

ative ε2 and µ2 ranges from 4 GHz to 6 GHz. The values of ωp,1/2π = 2 GHz

and ω0,1/2π = 1 GHz were then chosen so that ε1 and µ1 are always positive

and ε2µ2 > ε1µ1 in this range. Examples of dispersion curves for the modes

of Fig. 11.5 are plotted in the top curves of Fig. 11.6. These curves correspond

to the solutions: (a) (a,A) with L = 0.1 cm, (b) (b,B) with L = 1 cm (i.e., the
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Figure 11.6: Top: propagation constants β, middle: group velocities vg and bottom:
group velocity dispersion parameters β2. These solutions correspond to the modes: (a)
(a,A), (b) (b,B), and (c) (c,Γ) and (d,Γ) of Fig. 11.5 where in (c) the solid and dashed
lines correspond to the strongly (c,Γ) and weakly (d,Γ) localised modes, respectively.
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two Hy
2,1 solutions), and (c) (c,Γ) and (d,Γ) with L = 2 cm (i.e., the degenerate

Hy
3,1 solutions) where the solid line corresponds to the strongly localised mode

and the dashed line is the weakly localised mode. From this it is seen that of

the two solutions offered by each designated mode type, one has a dispersion

curve with a positive slope and the other a negative slope. Significantly, as

vg = 1/β1 = dω/dβ [Eq. (3.17)], this implies that the sign of the group veloc-

ities will also be different and thus each mode can support both forward and

backwards propagating waves [113]. This is confirmed in the middle curves of

Fig. 11.6 where vg is plotted explicitly for each of the modes. For the case of the

Hy
2,1 modes it is the non-surface wave which has a negative vg, and for the Hy

3,1

modes it is the tightly confined mode. In addition, it can also be seen that for

the case of the degenerate modes, as the frequency is increased the two solu-

tions for β converge until they reach a cutoff frequency νc associated with their

intersection.3 As a result, this convergence of the two solutions means that as

the frequency approaches νc, vg approaches zero so that the propagating mode

will be slowed considerably. Thus this waveguide offers a convenient method

for generating “fast” light (vg < 0), “slow” light (vg � c) and perhaps to even

trap light (vg = 0). The possibility to slow or trap light has many potential

applications such as optical data storage, optical memories and quantum com-

puting. Furthermore, as the light-matter interaction is enhanced for low vg,

slow light can be used to observe nonlinear processes such as harmonic gener-

ation and four-wave mixing in even weakly nonlinear materials [114].

The group velocity dispersion (GVD) of the guided modes as calculated via:

β2 = d2β/dω2 [Eq. (3.16)] is then plotted for each of the modes in the bottom

curves of Fig. 11.6. In all cases the GVD parameter is quite large, particu-

larly for the degenerate modes where the frequency approaches νc (the region

of low vg), and can be either anomalous [(a,A) and (c,Γ)] or normal [(b,B)

and (d,Γ)]. Such large dispersion is typical behavior of the GVD at the band

edges of photonic crystals [115] and for these particular modes, the dispersion

can be around 9 orders of magnitude larger than that of conventional mate-

rials such as silica fibres (20 ps2km−1). This makes these waveguides idea for

dispersion management and particularly for use in integrated circuits where

short device lengths are favoured. In addition, by exploiting the reduced non-

3Although the strongly localised mode exists for frequencies below those plotted here, the

weakly localised mode does not as the right hand side of Eq. (11.10) crosses the x axis.
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linear threshold/large GVD combination it should be possible to investigate

nonlinear effects such as optical soliton formation (see Section 3.8.1).

The energy flux of the guided (degenerate) modes in Fig. 11.6(c), which is char-

acterised by the z component of the Poynting vector [Eq. (10.21)], has also been

calculated. Since for backwards waves the Poynting vector and the wave-

vector point in opposite directions, it is expected that the energy flux of the

modes will also have opposite signs [73]. The total power flux through the

core and cladding regions of the waveguide are calculated as,

Pcore =

∫ ∫
core

Szdxdy, Pclad =

∫ ∫
clad

Szdxdy. (11.15)

For both modes the power flux inside the core is opposite to that in the cladding

(see middle row of Fig. 11.5). However, on calculating the total normalised en-

ergy flux defined as:

P =
Pcore + Pclad

|Pcore| + |Pclad| , (11.16)

Fig. 11.7 shows that total energy flows in a positive direction for the weakly

localised mode and a negative direction for the strongly localised mode, in

agreement with the signs of vg. It is worth noting that by definition, |P | < 1

and P → 1 as the mode becomes poorly confined and P → −1 as the mode

becomes tightly confined. The significant feature of this result is that as the

solutions converge at νc, the energy fluxes inside and outside the guide exactly

cancel so that the total energy flux vanishes. Importantly, in their analysis for

a negative index planar waveguide, Shadrivov et al. showed that at P = 0 the

energy flowed in a double-vortex structure so that most of the energy remained

localised inside the wave packet [80]. Thus as the energy flux goes to zero, the

guided modes do not disintegrate and an analogous result for the modes of a

channel waveguide can be expected.
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Figure 11.7: Normalised energy flux as calculated for the Hy
3,1 solutions of Fig. 11.6(c).
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In Figs. 11.6 and 11.7 the dispersion and energy flux of typical modes have

been examined as functions of the frequency. Alternatively, it is also useful

to consider the dependence of the mode properties on the waveguide width

L. Fig. 11.8 shows (a) the propagation constant and (b) the normalised energy

flux for the Hy
3,1 modes at a fixed frequency, ω/2π = 5 GHz, where again the

solid line corresponds to the strongly localised mode (c,Γ) and the dashed line

is the weakly localised mode (d,Γ). As expected, these have similar forms to

the previous curves for varying frequency except that this time the two solu-

tions converge as L is decreased until they reach a cutoff length Lc. Thus these

results suggest that the propagating mode can be slowed simply by adiabati-

cally decreasing the waveguide width. Furthermore, by decreasing the width

to the critical length Lc it should be possible to stop the light completely. Thus

it is expected that a simple waveguide structure such as that shown in the inset

of Fig. 11.8 should act as an optical trap, where the frequency of light that can

be trapped is determined by the range of the waveguide width.
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Figure 11.8: (a) Propagation constant and (b) normalised energy flux of the H y
3,1 solu-

tions from Fig. 11.6(c) as functions of the waveguide width L. The solid and dashed
lines correspond to the strongly (c,Γ) and weakly (d,Γ) localised modes, respectively.
Inset: design for an optical trap.
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11.4 Fibre Modes

The previous section has shown that the guided mode solutions of a channel

waveguide with a negative index core possess a number of properties that

differed from those of a conventional positive index waveguide. In this section,

similar analysis is conducted to investigate the properties of the guided modes

of an optical fibre with a negative index (negative ε and µ) core. It will be

shown that in contrast to the channel waveguides, negative index core fibres

exhibit similar guiding characteristics to conventional fibres.

11.4.1 Wave Theory of Step-Index Fibres

Figure 11.9: Waveguide structure and parameters of an optical fibre.

The analysis is based on the wave theory of step-index fibres [99]. Although,

this approach ignores the complex refractive index profile of the negative index

fibre, it should nevertheless be sufficient to obtain a qualitative understanding

of the allowed modes. The analysis considers an axially symmetric fibre with

the geometry and parameters given in Fig. 11.9. Here, the fibre has been il-

lustrated as having a periodic cross sectional structure similar to that of the

microstructured fibres described in Section 6.2.1, however, the mathematical

analysis will be kept general so that it could equally apply to any fibre struc-

ture. In particular, if the fibre presented in Fig. 11.9 is to exhibit regions of

negative refractive index then the “air hole” regions, at least in the core, are

in fact likely to be regions of differing material. In this figure, the core, with a
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radius a, and the cladding are defined by regions of differing hole diameter d

and hole-to-hole spacing Λ. Again, it is assumed that the cladding has a posi-

tive index (ε1 > 0 and µ1 > 0 ) and the core has a negative index (ε2 < 0 and

µ2 < 0 ). In cylindrical coordinates, the guided modes in an optical fibre are

expressed as:

Ẽ (r, θ, z, t) = E (r, θ) e−i(ωt−βz), (11.17)

H̃ (r, θ, z, t) = H (r, θ) e−i(ωt−βz). (11.18)

Substituting Eqs. (11.17) and (11.18) into Maxwell’s equations [Eqs. (10.16) and

(10.17)], the well known wave equations are obtained as:

∂2Ez

∂r2
+

1

r

∂Ez

∂r
+

1

r2

∂2Ez

∂θ2
+
[
k2εiµi − β2

]
Ez = 0, (11.19)

∂2Hz

∂r2
+

1

r

∂Hz

∂r
+

1

r2

∂2Hz

∂θ2
+
[
k2εiµi − β2

]
Hz = 0, (11.20)

with the transverse fields related to Ez and Hz as follows:

Er = − i

[k2εiµi − β2]

(
β
∂Ez

∂r
+
ωµ

r

∂Hz

∂θ

)

Eθ = − i

[k2εiµi − β2]

(
β

r

∂Ez

∂θ
− ωµ

∂Hz

∂r

)

Hr = − i

[k2εiµi − β2]

(
β
∂Hz

∂r
− ωε

r

∂Ez

∂θ

)

Hθ = − i

[k2εiµi − β2]

(
β

r

∂Hz

∂θ
+ ωε

∂Ez

∂r

)
. (11.21)

11.4.2 TE and TM modes

The analysis begins by considering the TE modes (Ez = 0) for which the wave

equation is:
∂2Hz

∂r2
+

1

r

∂Hz

∂r
+

[
k2εiµi − β2 − n2

r2

]
Hz = 0, (11.22)

where n is an integer and the related fields can be found via:

Er =
−iωµ

(k2εiµi − β2)

1

r

∂Hz

∂θ
, Eθ =

iωµ

(k2εiµi − β2)

∂Hz

∂r
, (11.23)

Hr =
−iβ

(k2εiµi − β2)

∂Hz

∂r
, Hθ =

−iβ

(k2εiµi − β2)

1

r

∂Hz

∂θ
. (11.24)

161



Chapter 11 1D Negative Refractive Index Materials

Due to the cylindrical symmetry of the fibre, the magnetic field Hz in the core

and the cladding can be expressed as:

Hz =

{
g (r)

h (r)

}
cos (nθ + ψ)

(0 ≤ r ≤ a)

(r > a).
(11.25)

Applying the boundary condition that the tangential field components Hz and

Hθ should be continuous at r = a, it follows that:

g(a) = h(a),

iβ

k2ε2µ2 − β2

n

a
g(a) sin (nθ + ψ) =

iβ

k2ε1µ1 − β2

n

a
h(a) sin (nθ + ψ) . (11.26)

As µ2ε2 �= µ1ε1, for the bottom equation to hold for all angles θ, n must equal

zero which is referred to as the azimuthal condition. Thus ∂Hz/∂θ = 0 which

when substituted into the appropriate components of Eqs. (11.23) and (11.24)

yields: Er = Hθ = 0. Combining these results, the wave equation for the TE

modes reduces to:

∂2Hz

∂r2
+

1

r

∂Hz

∂r
+
[
k2εiµi − β2

]
Hz = 0, (11.27)

together with:

Eθ =
iωµ0µi

(k2εiµi − β2)

∂Hz

∂r
, Hr =

−iβ

(k2εiµi − β2)

∂Hz

∂r
. (11.28)

Defining the wavenumbers in the core and cladding along the transversal di-

rection as:

κ =
√
k2ε2µ2 − β2 and σ =

√
β2 − k2ε1µ1, (11.29)

the wave equation in the core [Hz = g(r)] can be written as:

∂2g

∂r2
+

1

r

∂g

∂r
+ κg = 0, (11.30)

and in the cladding [Hz = h(r)]:

∂2h

∂r2
+

1

r

∂h

∂r
− σh = 0. (11.31)

As εiµi > 0 in both the core and the cladding, Eqs. (11.30) and (11.31) have an

identical form to the wave equations found for a positive index core fibre and

thus, by analogy, the solution for the Hz mode is:

Hz =

{
AJ0 (κr) (0 ≤ r ≤ a)

BK0 (σr) (r > a).
(11.32)
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Applying the boundary conditions for Hz and Eθ at r = a:

AJ0(κa) = BK0(σa),

µ0µ2
A

κ
J ′

0 (κa) = −µ0µ1
B

σ
K ′

0 (σa) , (11.33)

yields the dispersion relation as:

µ2
J1 (u)

uJ0 (u)
= −µ1

K1 (w)

wK0 (w)
, (11.34)

where

u = aκ = a
√
k2ε2µ2 − β2 and w = aσ = a

√
β2 − k2ε1µ1. (11.35)

Finally, it is noted that the transverse wavenumbers u and w are related via:

u2 + w2 = k2 (ε2µ2 − ε1µ1) a
2 = v2, (11.36)

where v is referred to as the normalised frequency. Thus, once v is given, u and

w can be found from Eqs. (11.34) and (11.36) and the electromagnetic fields for

the TE modes are completely determined. The explicit forms of the electric and

magnetic fields can be summarised as:

Er = Ez = Hθ = 0, (11.37)

(a) core (0 ≤ r ≤ a) : Eθ = −iωµ0µ2
a

u
AJ1

(u
a
r
)

Hr = iβ
a

u
AJ1

(u
a
r
)

Hz = AJ0

(u
a
r
)
, (11.38)

(b) cladding (r > a) : Eθ = iωµ0µ1
a

w

J0 (u)

K0 (w)
AK1

(w
a
r
)

Hr = −iβ
a

w

J0 (u)

K0 (w)
AK1

(w
a
r
)

Hz =
J0 (u)

K0 (w)
AK0

(w
a
r
)
, (11.39)

and again the constant A is related to the mode power [Eq. (11.7)].

Applying the same procedure for the TM modes (Hz = 0), it follows that the

dispersion relation is:

ε2
J1 (u)

uJ0 (u)
= −ε1

K1 (w)

wK0 (w)
, (11.40)
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and the electromagnetic fields are given by:

Eθ = Hz = Hr = 0, (11.41)

(a) core (0 ≤ r ≤ a) : Er = iβ
a

u
AJ1

(u
a
r
)

Ez = AJ0

(u
a
r
)

Hθ = iωε0ε2
a

u
AJ1

(u
a
r
)
, (11.42)

(b) cladding (r > a) : Er = −iβ
a

w

J0 (u)

K0 (w)
AK1

(w
a
r
)

Ez =
J0 (u)

K0 (w)
AK0

(w
a
r
)

Hz = −iωε0ε1
a

w

J0 (u)

K0 (w)
AK1

(w
a
r
)
. (11.43)

The propagation constant β of the fibre can be calculated by solving the dis-

persion equations [Eq. (11.34) or Eq. (11.40)] under the condition u2 + w2 = v2,

using similar graphical techniques to those employed for the case of the chan-

nel waveguides (see Ref. [99]). Fig. 11.10 shows typical dispersion relations

for the (a) TE modes and (b) TM modes of a fibre with: ε1 = 1.46, µ1 = 1,

ε2 = −1.7, µ2 = −0.9, a = 2µm and v = 10.4 The similarity in the appearance

of these two figures can be explained by noting that the dispersion relations

only differ by the ratios µ1/µ2 = −1.11 and ε1/ε2 = −0.86, and in both cases

the mode boundaries are defined by the zero crossings of J0 and J1 (dotted

lines). For comparison, Fig. 11.10(c) shows an example of the dispersion rela-

tions for a fibre with identical parameters but a positive index core (ε2 = 1.7

and µ2 = 0.9). Significantly, it can be seen that the allowed modes of the neg-

ative index guide exist in the forbidden regions of the positive index guide.

Thus the negative guide permits modes at lower frequencies than the cutoff

frequency for the positive index guide. Furthermore, in accordance with the

observations of a channel guide, it can also be seen that for a given core radius

a, solutions of the first order mode of a negative index fibre only exist for a par-

ticular range of v. Possible solutions for the first order TE mode of the negative

guide are shown in Figs. 11.10(d) and (e).5 These figures illustrate solutions in

4The parameters were chosen so that n2 (= εµ) and a are close to that of a standard silica

fibre [4].
5The discontinuity in Fig. 11.10(e) is due to a discontinuity in K0 (w).
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Figure 11.10: u − w relationships for (a) TE and (b) TM modes with a negative index
core. (c) TE modes with a positive index core and (d)-(e) first order TE modes for a
negative index core.

two different regimes: (i) in (d) v = 2.5 and only one possible solution exists,

and (ii) in (e) v = 2.36 and two solutions can exist. Although this property

of degenerate modes (i.e., two modes with the same number of nodes coexist-

ing in the guide) was also established for the negative index channel guides,

unlike the situation here, those existed for the higher order modes.

Examples of typical profiles for the TE modes are shown in Fig. 11.11 where

Br = µHr is plotted [Eq. (10.14)], which is continuous in r. These correspond

to the solutions marked in Fig. 11.10. Here A is a first order mode, B is a third

order mode and Γ and ∆ are the tightly and weakly confined degenerate first

order modes, respectively. It is worth noting that as the appearance of the TM

modes are similar to the TE modes but with Hr interchanged for Er, examples

of the TM solutions will not be plotted here. The interesting feature of these

plots is that modes A, and to a lesser extent Γ, have the appearance of surface

waves. Such surface waves were also found for the case of negative index

channel guides and they also appeared in a region where propagating modes

were forbidden for positive guides.
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Figure 11.11: TE mode profiles corresponding to the marked solutions in Fig. 11.10
where A is a first order mode, B is a third order mode and Γ and ∆ are degenerate
first order modes.

Figs. 11.10 and 11.11 have illustrated a number of important properties of the

negative index fibre modes which are similar to those of the negative index

channel waveguide modes. Such similarities are not unexpected due to simi-

larities in the geometries. In additional, it has also been established that, like

the negative index channel guides, these fibres can only support propagating

modes in a high-index waveguide (i.e., ε2µ2 > ε1µ1).

It now remains to investigate the frequency dispersion of the guided modes.

Clearly, as the composite material described in Section 11.2.1 is not practical

for a fibre geometry, it is not possible to use the forms of the permittivity and

permeability as given in Section 11.3. Thus the following analysis will sim-

ply assume that εi(ω) and µi(ω) are constant over the frequency range being

investigated. This is a reasonable assumption as for the frequencies consid-

ered in Fig. 11.6, εi(ω) and µi(ω) varied by less than 2%. The dispersion curves

for modes A, B and ∆, as found from Eqs. (11.34) and (11.35), are plotted in

Figs. 11.12(a), (b) and (c), respectively. Again, the group velocity, vg = dω/dβ,

and the GVD, β2 = d2β/dω2 (middle and bottom curves, respectively) are also

calculated. From the curves for the first two modes it is clear that these exhibit
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dispersion characteristics similar to those of standard positive index fibres and

in particular, in both cases the slope of β is positive so that the group veloci-

ties are also positive. However, one difference is that the GVD parameter of

the first order mode is 3 orders of magnitude larger than a conventional fi-

bre (20 × 10−3 ps2m−1). Significantly, from the curves for the third mode it can

be noticed that although the group velocity of the mode ∆ is still positive,

this does in fact exhibit “fast” light as for the lower frequency range vg > c

(c = 300µm ps−1).
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Figure 11.12: Dispersion curves for the TE mode profiles given in Fig. 11.11.

Again, these results have indicated the ability of the negative index waveg-

uides to manipulate the propagation characteristics of the guided modes. Im-

portantly, although it has been shown that these negative index fibres can sup-

port fast light, in all cases vg > 0 and furthermore, there was no evidence of

them supporting slow (vg → 0) light. Thus for these reasons the normalised

power flow will not be calculated here as, for all the modes represented in

Fig. 11.12, it will simply fall in the range 0 < P < 1 [Eq. (11.16)].
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11.4.3 Hybrid modes

The following analysis will now consider the case of the hybrid modes where

both the axial electromagnetic field components Ez and Hz are non-zero. In

such instances, ∂Ez/∂r and ∂Hz/∂θ (or ∂Ez/∂θ and ∂Hz/∂r) should have the

same θ dependencies. Taking this into consideration, using Eq. (11.32) the z-

components of the electric field can be written as [116]:

Ez =

{
AJn

(
u
a
r
)
cos (nθ + φ) (0 ≤ r ≤ a)

CKn

(
w
a
r
)
cos (nθ + φ) (r > a),

(11.44)

Hz =

{
BJn

(
u
a
r
)
sin (nθ + φ) (0 ≤ r ≤ a)

DKn

(
w
a
r
)
sin (nθ + φ) (r > a),

(11.45)

where u and w are still given by Eq. (11.35). Substituting Eqs. (11.44) and

(11.45) into Eq. (11.21), it follows that the transverse components are,

(a) core (0 ≤ r ≤ a) :

Er = − ia2

u2

[
Aβ

u

a
J ′

n

(u
a
r
)

+Bωµ0µ2
n

r
Jn

(u
a
r
)]

cos (nθ + φ)

Eθ = − ia2

u2

[
−Aβn

r
Jn

(u
a
r
)
−Bωµ0µ2

u

a
J ′

n

(u
a
r
)]

sin (nθ + φ)

Hr = − ia2

u2

[
Aωε0ε2

n

r
Jn

(u
a
r
)

+Bβ
u

a
J ′

n

(u
a
r
)]

sin (nθ + φ)

Hθ = − ia2

u2

[
Aωε0ε2

u

a
J ′

n

(u
a
r
)

+Bβ
n

r
Jn

(u
a
r
)]

cos (nθ + φ) , (11.46)

(b) cladding (r > a) :

Er =
ia2

w2

[
Cβ

w

a
K ′

n

(w
a
r
)

+Dωµ0µ1
n

r
Kn

(w
a
r
)]

cos (nθ + φ)

Eθ =
ia2

w2

[
−Cβn

r
Kn

(w
a
r
)
−Dωµ0µ1

w

a
K ′

n

(w
a
r
)]

sin (nθ + φ)

Hr =
ia2

w2

[
Cωε0ε1

n

r
Kn

(w
a
r
)

+Dβ
w

a
K ′

n

(w
a
r
)]

sin (nθ + φ)

Hθ =
ia2

w2

[
Cωε0ε1

w

a
K ′

n

(w
a
r
)

+Dβ
n

r
Kn

(w
a
r
)]

cos (nθ + φ) . (11.47)

Continuity of the tangential components (Ez, Eθ, Hz and Hθ) at the boundary

r = a yields, for the E fields:

AJn (u) = CKn (w) , (11.48)
anβ

u2
AJn (u) +

aω

u
µ0µ2BJ

′
n (u) = −anβ

w2
CKn (w) − aω

w
µ0µ1DK

′
n (w) ,
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and for the H fields:

BJn (u) = DKn (w) , (11.49)

−aω
u
ε0ε2AJ

′
n (u) − anβ

u2
BJn (u) =

aω

w
ε0ε1CK

′
n (w) +

anβ

w2
DKn (w) .

For these four equations to be consistent the determinant of the coefficients

must vanish and this gives the dispersion relation as:(
µ0µ1

K ′
n (w)

wKn (w)
+ µ0µ2

J ′
n (u)

uJn (u)

)(
ε0ε1

K ′
n (w)

wKn (w)
+ ε0ε2

J ′
n (u)

uJn (u)

)

= n2

(
1

u2
+

1

w2

)(ε0ε2µ0µ2

u2
+
ε0ε1µ0µ1

w2

)
. (11.50)

As for the TE and TM modes, the propagation constant β of the hybrid modes

is calculated by solving Eq. (11.50) together with the u−w relation of Eq. (11.35).

In addition, using the continuity equations the constants B, C and D can be

written in terms of the usual amplitude coefficient A as:

C = A
Jn(u)

Kn(w)
,

D = B
Jn(u)

Kn(w)
,

B = −nβA
ω

[
1
u2 + 1

w2

][
J ′

n(u)
uJn(u)

+ K ′
n(w)

wKn(w)

] . (11.51)

Unlike the analysis for the TE and TM modes of Section 11.4.2, the dispersion

relation for the hybrid mode cannot be solved exactly via simple graphical

techniques. Instead to solve Eq. (11.50) it is necessary to employ Newton’s

method which states that after m+ 1 iterations,

βm+1 = βm − F (βm)

F ′ (βm)
, (m = 0, 1, 2, 3, . . .), (11.52)

where β0 is the initial guess for β and F is the differentiable function,

F (βm) =

(
µ0µ1K

′
n (wm)

wmKn (wm)
+
µ0µ2J

′
n (um)

umJn (um)

)(
ε0ε1K

′
n (wm)

wmKn (wm)
+
ε0ε2J

′
n (um)

umJn (um)

)

− n2

(
1

u2
m

+
1

w2
m

)(
ε0ε2µ0µ2

u2
m

+
ε0ε1µ0µ1

w2
m

)
, (11.53)

which depends on the current estimate of βm through um and wm. Calculation

of Eq. (11.52) is then repeated until the required accuracy of β is reached. How-

ever, in order for the solution to converge the initial guess for β must be quite
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accurate. Thus to obtain a first approximation for β0 the dispersion relation is

rewritten as:

w =



(
µ0µ1

K ′
n(w′)

w′Kn(w′) + µ0µ2
J ′

n(u)
uJn(u)

)(
ε0ε1

K ′
n(w′)

w′Kn(w′) + ε0ε2
J ′

n(u)
uJn(u)

)
n2
(

ε0ε2µ0µ2

u2 + ε0ε1µ0µ1

w′ 2
) − 1

u2




−1/2

,

(11.54)

where,

w′ =
√
v2 − u2, (11.55)

so that the graphical method of Section 11.4.2 can again be used to plot u vs w

curves.

Fig. 11.13 shows the u − w curves for: ε1 = 1.46, µ1 = 1, ε2 = −1.7, µ2 = −0.9,

a = 2µm, v = 10 and n = 1. From these curves it can be seen that there

exists two solutions within the boundaries of the allowed modes. By analogy

with the solutions found for a conventional positive index core fibre, these

solutions can be designated as EH and HE modes, where the EH solutions

appear to the immediate left of the mode boundaries (dotted lines) and the

HE solutions appear to the right. The three solutions found here give: (a)

β = 2.334µm, (b) β = 2.320µm and (c) β = 2.317µm. Using these as the initial

guesses for β, Newton’s method then yields: (a) β = 2.336µm, (b) β = 2.321µm

and β = 2.318µm. The corresponding mode profiles at θ = 0 are plotted in

Fig. 11.14 via Dr = εEr, which is continuous in r. These clearly illustrate the

differences between the EH and HE modes.
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Figure 11.13: u − w relationship for hybrid modes in a negative index core fibre with
n = 1.
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Figure 11.14: Hybrid mode profiles, at θ = 0, corresponding to the marked solutions
in Fig. 11.13 where (a) is a the first HE mode, (b) is the first EH mode and (c) is the
second HE mode.

The dispersion curves for these modes, as found from Eqs. (11.35) and (11.50),

are plotted in Fig. 11.15. Interestingly, despite the difference in the mode pro-

files, the frequency dispersion of the first EH mode and the second HE mode

(and even the first HE mode) are very similar. In addition, it can also be no-

ticed that the shapes of these curves are remarkably similar to the dispersion
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Figure 11.15: Dispersion curves for the hybrid mode profiles of Fig. 11.14.
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Figure 11.16: u − w relationship for hybrid modes in a negative index core fibre with
n = 3.

profiles of the TE modes and in particular, all of the modes exhibit a positive

vg. However, in contrast to the TE modes, it is clear that none of the modes

represented here exhibit fast light and that all of the GVD parameters are of a

similar order of magnitude to values obtained in positive index fibres.

Finally, the properties of some higher order modes (i.e., n > 1) are also inves-

tigated. Fig. 11.16 shows the u − w curves for: ε1 = 1.46, µ1 = 1, ε2 = −1.7,

µ2 = −0.9, a = 2µm, v = 10 and n = 3. Due to the similarity in the dispersion

curves of the first EH mode and the second HE mode, only the first (a) HE

and (b) EH modes are considered here. The propagation constants obtained

using Newton’s method are: (a) β = 28.07µm and (b) β = 27.75µm, and the

corresponding mode profiles at θ = 0 are plotted in Fig. 11.17. Calculating
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Figure 11.17: Hybrid mode profiles, at θ = 0, corresponding to the marked solutions
in Fig. 11.16 where (a) is the first HE mode and (b) is the first EH mode.
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Figure 11.18: Dispersion curves for the hybrid mode profiles of Fig. 11.17.

the frequency dispersion of these modes they are found to exhibit dispersion

characteristics similar to those of the n = 1 modes, and hence also of the stan-

dard positive index fibres. Significantly, a further reduction in the order of

magnitude of the GVD parameter can also be noticed which, by comparing

Figs. 11.12, 11.15 and 11.18, is in accordance with the trend that the GVD de-

creases for increasing mode order. Thus it appears that it is the lowest order

modes that exhibit the most unusual dispersion characteristics.

11.5 Coupling Between Guided Modes

If negative refractive index waveguides are to find practical application in opti-

cal systems it is necessary to establish ways in which to couple light into them.

Thus this section calculates the coupling coefficients between guided modes

of adjacent parallel waveguides with both positive and negative indices in the

core. In particular, the analysis is based on the guided mode solutions of nega-
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tive index channel waveguides which were shown to permit both forward and

backward propagating waves.

11.5.1 Formulation of the Problem

The analysis considers the case of two symmetric channel waveguides, as il-

lustrated in Fig. 11.19. The refractive index distributions for the two guides in

the absence of coupling are:

n2
p =

{
εpµp x± x0 ∈ [−L,L], y ∈ [−L,L]

ε1µ1 x± x0 ∈ [−Lm,−L) ∪ (L,Lm], y ∈ [−Lm,−L) ∪ (L,Lm],

(11.56)

where p = a, b (−x0 corresponds to p = a) and 2L and 2Lm are the widths of

the waveguides and the bulk material, respectively. The combined refractive

index profile is then given by:

n2
p (x, y) + ∆n2

p (x, y) = n2 (x, y) , (11.57)

where ∆n2
p are the perturbations to the refractive index of the waveguide due

to the neighbouring guide. The transverse electromagnetic field distributions

for a particular mode of waveguide p alone are denoted E
(p)
t and H

(p)
t , and the

propagation constant is βp.

Figure 11.19: Double channel waveguide geometry and parameters.

The first step to deriving the coupled mode equations is to restrict attention to

situations where each individual waveguide only supports one guided mode,
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and to assume that the field in the coupled guide structure can be approxi-

mated by a linear combination of the unperturbed fields as:

Et (x, y, z) = A(z)E
(a)
t (x, y) +B(z)E

(b)
t (x, y) , (11.58)

and

Ht (x, y, z) = A(z)H
(a)
t (x, y) +B(z)H

(b)
t (x, y) , (11.59)

whereA(z) andB(z) express the z-dependence of the individual guided modes

[117]. However, this approximation is only valid in situations where the cou-

pling between the modes is weak which typically requires that the guides are

well separated and also that they are not too dissimilar. Although it is easy to

satisfy the requirement that the guides are well separated, clearly when con-

sidering coupling between positive and negative index guides the similarity

condition of the guides will be violated. Thus before the standard coupled

mode theory can be applied to this problem, the validity of the approximation

of Eqs. (11.58) and (11.59) must first be established. To this end, the first step is

to consider solving for the exact electromagnetic field distribution of a coupled

mode system where one guide has a positive index and the other a negative

index. Provided the calculated solution has an intensity profile which is simi-

lar in appearance to the sum of the two unperturbed fields, it is reasonable to

expect that the superposition approximation will be valid.

To solve for the exact field distribution of a coupled mode system a numerical

technique known as the Shooting Method is employed [118]. The validity of

this technique has long been established in the field of Quantum mechanics

for determining the wave function of particles trapped in a system of square

Figure 11.20: Planar waveguide geometry and parameters.
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wells [119]. As the coupling between modes of two channel guides is a two di-

mensional problem, and is thus very computationally intensive, here the anal-

ysis is restricted to consider the reduced problem of coupling between modes

in adjacent slab waveguides. As mentioned in Section 11.1, the mode solu-

tions to the problem of a single negative refractive index slab waveguide have

been found previously by Shadrivov et al. [80]. From Maxwell’s equations

[Eqs. (10.16) and (10.17)] it follows that, for a waveguide geometry as given in

Fig. 11.20, the Ey component of the TE modes is described by:

∂2Ẽy

∂z2
+
∂2Ẽy

∂x2
+ ω2εµẼy − 1

µ

∂µ

∂x

∂Ẽy

∂x
= 0. (11.60)

Expressing the electric field distribution as [99]:

Ey =




A cos (κL− φ) e−σ(x−L) (x > L)

A cos (κx− φ) (−L ≤ x ≤ L)

A cos (κL− φ) eσ(x+L) (x < −L),

(11.61)

where κ and σ are given in Eq. (11.29), and following the analysis outlined in

Section 11.3, it is easy to show that continuity of the Ey and Hz components of

the field at x = ±L yield the dispersion relation as:

tan
(
κL− mπ

2

)
=
µ2σ

µ1κ
, (11.62)

where m is an integer. The guided mode solutions can then be found by solv-

ing the Eqs. (11.29) and (11.62) using the same graphical technique as em-

ployed for the channel waveguides [Section 11.3.1]. An example of a typical

mode profile obtained for: ω/2π = 5.29 GHz, ε1 = 0.86, µ1 = 0.44, ε2 = −0.75,

−50 0 50
−1

0

1

E
y (

ar
b.

)

x (cm)
−50 0 50

x (cm)

(a) (b) 

Figure 11.21: Example of a mode profile for a negative refractive index slab guide
where (a) is calculated using Eq. (11.61) and (b) is found via the Shooting method.
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µ2 = −0.51 and L = 8 cm is shown in Fig. 11.21(a), where the propagation

constant is calculated to be: β = 68.48 m−1.

The numerical analysis to find the exact field distribution begins by rewriting

Eq. (11.60) using the form of the electric field: Ẽy (x, z) = Ey (x) e−i(ωt−βz) to

obtain:
d2Ey

dx2
=
(
β2 − ω2εµ

)
Ey +

1

µ

dµ

dx

dEy

dx
. (11.63)

This system has the natural boundary conditions Ey(±∞) = 0, where infin-

ity is taken to be some value of x sufficiently far from the edge of the guide.

Eq. (11.63) can then be expressed as a coupled first order system:

X′ =

(
0 1

β2 − ω2εµ 1
µ

dµ
dx

)
X, (11.64)

where X = (X1 X2)
T = (Ey dEy/dx)

T together with the boundary conditions

X1 (−∞) = 0 and X2 (−∞) = α. Here α is the estimate of the initial slope of

the electric field, which should be close to but not equal to zero. The Shooting

method is then implemented as follows.

(1). Make an initial guess of the propagation constant βi.

(2). Solve the system of differential equations [Eq. (11.64)] using

a fourth order Runge-Kutta scheme [118].

(3). Compare the solution of X1 (∞) with the known value:

Ey(∞) = 0.

(4). If X1 (∞) = 0 to within the required tolerance, then β = βi.

If not, adjust the value of βi (either bigger or smaller) and go

back to step (2).

To illustrate this technique it is used to solve for the mode solution plotted in

Fig. 11.21(a). With an initial guess of α = −1 × 10−7, following steps (1)–(4)

yields a propagation constant of β = 68.12 m−1, which is in good agreement

with that obtained using the graphical technique. Consequently, the mode

profile found via the Shooting method, as shown in Fig. 11.21(b), is also in

good agreement with that of Eq. (11.61).

This method is now used to solve for a coupled slab waveguide system as

illustrated in Fig. 11.22. With: α = −1 × 10−7, ε1 = 0.86, µ1 = 0.44, εa = −0.75,

µa = −0.51, εb = 0.90, µb = 0.44, L = 8 cm and a waveguide separation of

s = 72 cm, the propagation constant is found to be β = 68.47 m−1. TheEy mode
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Figure 11.22: Double slab waveguide geometry and parameters.

profile is then plotted in Fig. 11.23(a). The bottom curve shows a close up of the

profile in the region of the negative guide which is very similar to that found

for the single negative index guide [Fig. 11.21]. Comparing this with a linear

combination of the mode solutions for the two individual guides shown in

Fig. 11.23(b) it is clear that, with an appropriate choice of the coefficients A and

B, the mode profiles appear very similar. Thus despite the large dissimilarity

in the refractive indices of the two guides the approximations of Eqs. (11.58)

and (11.59) are nevertheless still valid.
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Figure 11.23: Top: mode profiles of the double slab waveguide of Fig. 11.22 obtained
via (a) the Shooting method and (b) a linear combination of the mode solutions of the
individual guides with A = 1 and B = 20. Bottom: close up of the profile in the region
of the negative guide. Dotted lines are the waveguide boundaries.
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11.5.2 Coupled Mode Theory

The coupled mode theory considered in the following was developed by Hardy

and Streifer [117]. Their derivation is based on solutions to Maxwell’s equa-

tions [Eqs. (10.16) and (10.17)] where the effect of a neighbouring guide can

be considered as a perturbation to the refractive index profile, as given by

Eq. (11.57). The coupled mode equations can then be written as:

dA

dz
= iγ(a)A + iκabB, (11.65)

dB

dz
= iγ(b)B + iκbaA, (11.66)

where γ(a) and γ(b) represent corrections to the propagation constants βa and

βb, respectively, and κab and κba are the coupling coefficients.

The equations (11.65) and (11.66) follow from the orthogonality condition of

the modes which, for a material with µ = µ0 over x, y ∈ (−∞,∞), is given

as [14]: ∫ ∞

−∞

∫ ∞

−∞
E

(l)
t E

(m)
t dxdy =

2ωµ0

βm
δl,m. (11.67)

However, if negative index waveguides, where µ �= µ0 over x, y ∈ (−∞,∞),

are to be considered, Eq. (11.67) must be modified as:

∫ ∞

−∞

∫ ∞

−∞

E
(l)
t E

(m)
t

µ
dxdy =

2ω

βm

δl,m. (11.68)

Although this will not alter the forms of Eqs. (11.65) and (11.66), it does have

to be accounted for in the coefficients γ(a), γ(b), κab and κba.

Defining the waveguide overlap as [120]:

Cpq = ẑ ·
∫ ∞

−∞

∫ ∞

−∞

[
E(p) × H(q) ∗ + E(q) ∗ ×H(p)

]
dxdy, (11.69)

the modes are normalised such that:

Caa = Cbb = 1. (11.70)

By analogy with the analysis of Hardy and Streifer, the modified propagation

constants can be written as:

γ(a) = β(a) +
[
κ̃aa − Cabκ̃ba + CabCba

(
β(a) − β(b)

)]
/(1 − CabCba), (11.71)
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γ(b) = β(b) +
[
κ̃bb − Cbaκ̃ab + CabCba

(
β(b) − β(a)

)]
/(1 − CabCba), (11.72)

and the coupling coefficients:

κab =
[
κ̃ab + Cab

(
β(a) − β(b) − κ̃bb

)]
/(1 − CabCba), (11.73)

κba =
[
κ̃ba + Cba

(
β(b) − β(a) − κ̃aa

)]
/(1 − CabCba). (11.74)

Using Eq. (11.68), the constants κ̃pq appearing in Eqs. (11.71)–(11.74), which

depend on the perturbations to the individual guides, can be expressed in a

modified form as:

κ̃pq = αp

∫ ∞

−∞

∫ ∞

−∞
∆n2 (p)

[
E

(p)
t ·E(p)

t − ε(q)

ε
E(p)

z E(p)
z

]
dxdy, (11.75)

where the coefficient,

αl =
k2/2βl∫ ∫ (
E

(l)
t

)2

dxdy
. (11.76)

Clearly, when µ = µ0 Eq. (11.67) can be used to reduce Eq. (11.75) to the form

given in Ref. [117]. It is important to note that, in contrast to what is often

claimed in the literature, in general κab �= κ∗ba [14]. Although the complex

conjugate relationship for the coupling coefficients follows from power con-

servation considerations, as it ignores cross terms between the two waveguide

fields it is only valid for lossless identical guides.

To calculate the power flow between the waveguides it is assumed that at z =

0, all of the power is in guide b and Eqs. (11.65) and (11.66) are solved subject to

the initial conditions A(0) = 0 and B(0) = B0. In a lossless system this yields:

B(z) = B0

[
cos (ξz) +

i∆

ξ
sin (ξz)

]
eiφz, (11.77)

A(z) = B0
iκab

ξ
sin (ξz) eiφz, (11.78)

where

φ =
[
γ(a) + γ(b)

]
/2,

∆ =
[
γ(b) − γ(a)

]
/2, (11.79)

and

ξ =
√

∆2 + κabκba. (11.80)
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From the equation for the average power flowing in z [Eq. (10.20)], it follows

that:

Pz =
1

4
|B0|2

{
1 +

κab

ξ2
[(κab − κba) + ∆ (Cab + Cba)] sin

2 (ξz)

}
. (11.81)

In Eq. (11.81), the coefficient of the term sin2 (ξz) is a measure of the power

conservation and thus should be negligibly small,

ε =
κab

ξ2
[(κab − κba) + ∆ (Cab + Cba)] ≈ 0. (11.82)

Consequently, to ensure that the weak coupling condition is satisfied so that

power will be conserved, in the following section the waveguide separation s

is chosen so that ε is sufficiently small that the maximum variation in Pz is less

than 1%.

11.5.3 Calculating the Mode Coupling

The calculations begin by considering the coupling between the lowest or-

der Hy
2,1 mode of a negative index guide, with a real kx (e.g., mode (b,B) in

Fig. 11.5), with a first order Hy
1,1 mode of a positive index guide. With the sys-

tem parameters: ω/2π = 5.29 GHz, ε1 = 0.86, µ1 = 0.44, εa = −0.97, µa = −0.51,

εb = 0.90, µb = 0.44 and L = 3 cm, the propagation constants of the modes for

the individual guides are found to be: βa = 65.600 m−1 and βb = 65.525 m−1.

To ensure power conservation, the separation between the guides is chosen to

be: s = 30 cm. To illustrate the qualitative features of the coupled mode profile,

the system is plotted with A = B = 1 [in Eq. (11.59)] in Fig. 11.24(a).

Under these conditions, Eqs. (11.71) and (11.74) yield the modified propaga-

tion constants: γ(a) = 65.601 m−1 and γ(b) = 66.532 m−1 and the coupling co-

efficients: κab = 0.015 m−1 and κba = 0.100 m−1. In both cases the coupling

coefficient is quite small so that the power transfer between the modes will

also be small. This is illustrated in Fig. 11.24(b) where the evolution of the co-

efficients of the mode fields A(z) and B(z) are plotted assuming that all of the

power is initially in the positive index guide b [Eqs. (11.77) and (11.78)]. Fur-

thermore, also from Fig. 11.24(b) it can be seen that the rate at which the power

is transferred between the modes is slow and again this can be attributed to the

small coupling efficiency through the value ξ which for these modes is only
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Figure 11.24: (a) The coupled mode profile for the H y
2,1 mode of a negative index guide

(kx real) and the Hy
1,1 of a positive index guide with A = B = 1. (b) Evolution of the

coefficients A and B.

ξ = 0.467 [Eq. (11.80)]. Significantly, however, although the power transfer

rate appears to be too slow for practical waveguide lengths, as these waves are

in the microwave regime (and not the optical), these distances are not unrea-

sonable.

Although the small efficiencies calculated here can be partially attributed to

the fact that the coupling is occurring between modes of a different order, more

significantly, as it was seen in Fig. 11.6, in a negative index guide theHy
2,1 mode

with real kx is in fact a backwards propagating mode. Consequently, despite

the small efficiencies, these results have nevertheless shown that light can be

coupled from a forwards propagating mode in a positive index guide to a back-

wards propagating mode in a negative index guide. In addition, the coupling

coefficients between the Hy
2,1 mode with an imaginary kx and a Hy

1,1 mode of a

positive index guide have also been calculated. However, in this instance the

coupling was found to be negligibly small.

The next step was to calculate the coupling coefficients between the higher or-

der Hy
3,1 modes (e.g., modes (c,Γ) and (d,Γ) in Fig. 11.5), with a first order Hy

1,1

mode of a positive index guide. It should be recalled that the Hy
3,1 mode of

a negative index guide was a degenerate mode where the strongly localised

modes are backwards propagating waves, whilst the weakly localised modes

are forward propagating waves. Thus these calculations will enable us to de-

termine the relative coupling strengths of the two different types of mode.
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Figure 11.25: Coupled mode profiles for the H y
3,1 modes of a negative index guide and

the Hy
1,1 of a positive index guide with A = B = 1, where (a) is the strongly localised

Hy
3,1 mode and (b) is the weakly localised Hy

3,1 mode.

Using the same system parameters as above, but increasing the waveguide

width to L = 8 cm, to ensure power conservation the separation between the

guides is increased to s = 40 cm. The propagation constants of the modes

are then found to be: βa = 69.070 m−1 for the strongly localised Hy
3,1 mode,

βa = 66.358 m−1 for the weakly localised Hy
3,1 mode, and βb = 67.701 m−1 for

the Hy
1,1 mode. The mode profiles of the coupled systems with A = B = 1 are

plotted in Fig. 11.24, where the mode in guide a is (a) the strongly localised

mode and (b) the weakly localised mode.

Calculating the coupling coefficients for these two systems yields: (a) κab =
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Figure 11.26: Evolution of the coefficients A and B for coupling between the H y
3,1

modes and the Hy
1,1 mode, where (a) is the strongly localised mode and (b) is the

weakly localised mode.
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0.002 m−1, κba = 0.001 m−1 and (b) κab = 0.099 m−1, κba = 0.039 m−1. On com-

paring the relative sizes of κab and κba for the two systems, these results indi-

cate that light propagating in a positive index guide is more likely to be cou-

pled into a forward propagating wave than a backwards propagating wave.

Calculation of the corresponding modified propagation constants: (a) γ(a) =

69.070 m−1, γ(b) = 67.7012 m−1 and (b) γ(a) = 66.360 m−1, γ(b) = 67.698 m−1

then yields the evolution of the mode coefficients A(z) and B(z) and these are

shown in Fig. 11.26. Interestingly, despite the difference in the coupling coef-

ficients and the modified propagation constants, the two systems yield similar

values of ξ: (a) ξ = 0.684 m−1 and (b) ξ = 0.674 m−1, so that in both cases the

rate at which the power is transferred between the modes is also similar. In

addition, in both cases the power transfer rate has increased slightly from the

previous case of coupling between the Hy
2,1 mode and the Hy

1,1 mode.

The results above have indicated that light in a positive index guide is more

likely to be coupled into a forward propagating wave than a backward propa-

gating wave. Thus it may in fact be more efficient to couple light into a back-

wards propagating mode after first coupling it into a forwards propagating

mode of a negative index guide. To this end, the final calculations consider the

coupling between the degenerate forward and backward propagating waves

of the Hy
3,1 modes in two identical negative index waveguides. Choosing the

system parameters as: ω/2π = 5.287 GHz, ε1 = 0.86, µ1 = 0.44, εa = εb = −0.97,
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Figure 11.27: (a) The coupled mode profile for the two H y
3,1 modes of a negative index

guide with A = B = 1. (b) Evolution of the coefficients A and B calculated via
Eqs. (11.77) and (11.78).
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µa = µb = −0.51, L = 8 cm and s = 40 cm, the propagation constants of the

modes are found to be: βa = 69.726 m−1 and βb = 66.098 m−1. The mode profile

of the coupled system with A = B = 1 is plotted in Fig. 11.27(a).

This system yields the coupling coefficients: κab = 0.807 m−1 and κba = 0.041 m−1

which, as it would be hoped, are an order of magnitude larger than the cou-

pling coefficients between modes of a positive and a negative index guide.

Furthermore, it follows from the calculation of the modified propagation con-

stants: γ(a) = 69.717 m−1 and γ(b) = 66.021 m−1, that ξ = 1.857. Thus the rate of

power transfer between the two modes is also more efficient than before and

this is illustrated in Fig. 11.27(b) where the evolution of A(z) and B(z) have

been plotted over the same propagation length (10 m) as considered for the

systems with guides of differing signs of the refractive indices. An interesting

feature of this result is that it suggests that once light has been coupled into a

negative index guide which permits degenerate modes with differing signs of

vg, it should be possible to excite a cyclic coupling with a second adjacent iden-

tical guide between the forwards and backwards propagating modes. This is

illustrated in Fig. 11.28 which shows how the light could be trapped between

the guides.

Figure 11.28: Coupling between forwards and backwards propagating waves in iden-
tical adjacent negative index waveguides.

11.6 Discussion

The results of this chapter have demonstrated a number of unusual proper-

ties of negative index core waveguides that differ considerably from those of
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conventional waveguides. Significantly, however, whilst the propagation char-

acteristics of the negative index channel waveguide modes were shown to ex-

hibit exotic effects such as low or negative group velocity, the negative index

fibres did not. Nevertheless, under certain conditions the modes of a negative

index fibre have still been shown to exhibit extremely large GVD and also to

support “fast light” (vg > c). Finally, the results of the mode coupling analysis

have shown that it is possible to couple light into both forwards and back-

wards propagating modes of a negative index waveguide.
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Chapter 12

2D HeXLN Planar Buried

Waveguides

12.1 Introduction

This chapter describes experiments to investigate efficient second harmonic

generation in a two dimensional periodic photonic crystal based on a hexag-

onal lattice in lithium niobate (HeXLN). To enhance the conversion efficiency

of the harmonic process a planar waveguide geometry is employed. After a

brief description of the design requirements and fabrication procedures of the

device, the efficiency of the second harmonic process is analysed via the inter-

action properties of the waveguide.

12.2 2D Photonic Crystals

Since the development of one dimensional nonlinear crystals to phase match

second harmonic generation (SHG), devices such as periodically poled lithium

niobate (PPLN) have generated considerable interest amongst research groups

around the world [97, 121, 122, 123]. Following on the success of these one

dimensional structures, in 1998 Berger set about investigating the possibility

of realising two dimensional crystals [71]. The results of his theoretical anal-

ysis showed that SHG could indeed occur over multiple angles in the plane
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of the crystal. Since this observation, SHG in HeXLN has been experimentally

demonstrated here at the ORC by Broderick et al. with internal conversion effi-

ciencies as high as 80% [90]. In addition, this work has recently been extended

to observe multiple harmonic generation, demonstrating the possibility of si-

multaneous phase matching in multiple directions, and the efficiencies of these

processes with respect to the operating temperature and wavelength have been

examined [124]. However, despite their success, all of these experiments were

performed in bulk crystals so that in general they suffered from relatively low

conversion efficiencies, particularly for the higher harmonics.

12.2.1 Phase Matching in HeXLN

The hexagonal domain pattern for the two dimensional HeXLN structure is

shown in Fig. 12.1. For a lattice with a period a and the basis vectors a1 =

a(1, 0) and a2 = a(1/2,
√

3/2), the corresponding reciprocal lattice vectors are:

Gn,m = nb1 + mb2 [Section 10.3]. Here b1 and b2 are the basis vectors for the

reciprocal space, which is another hexagonal lattice rotated by 90 ◦ with respect

to the real space, with a period of 4π/
(√

3a
)
, as illustrated by the first Brillouin

zone shown on the right hand side of Fig. 12.1. From these sketches it can be

seen that the possibilities of quasi-phase matching are six fold degenerate (due

to the symmetry of the triangular lattice).

Figure 12.1: Structure of the hexagonal domain pattern of the poled lithium niobate in
the x − y plane, together with the first Brillouin zone.

The complete reciprocal lattice structure of Fig. 12.1 is then plotted in Fig. 12.2.

Overlaid on this figure are two examples of quasi-phase matched processes.1

The first is the fundamental process which involves the shortest possible recip-

1Note that in this figure the phase matching processes are not represented to scale as typi-

cally |kω| >> |a|.
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rocal lattice vector G0,1. The second is a higher order process which involves

a momentum transfer that is in fact
√

3 times greater than the fundamental

process. Such a momentum transfer is not possible in a one dimensional struc-

ture and thus this shows that these two dimensional structures also open up

new quasi-phase matching orders. It is worth noting that the two dimensional

quasi-phase matching order can be labelled with two integer coordinates given

in the (G1,G2) basis of the reciprocal lattice. In Fig. 12.2, the two processes that

are represented are of orders [1, 0] and [1, 1].

Figure 12.2: Reciprocal lattice of a HeXLN structure showing two possible quasi-phase
matched processes.

12.2.2 Fabrication

The two dimensional nonlinear photonic crystals used in our experiments were

hexagonally poled by Dr C. Gawith, Dr K. Gallo and Mr L. Ming using a tech-

nique similar to that applied to pole PPLN [109]. In this technique, an electric

field is applied to macroscopic regions of the crystal to invert the spontaneous

electric polarisation Ps. The resulting effect is to create ferroelectric domains in

which the direction of Ps differs from that of the adjacent domain. A schematic

diagram of the electric poling process can be seen in Fig. 12.3. This process was

conducted at room temperature on a z-cut 500µm thick congruent lithium nio-

bate crystal. Firstly, the hexagonal array is defined photolithographically on a

thin layer of photoresist on the −z face.

The mask used in the photolithography was the same as that used for the ear-

lier HeXLN experiments described in Ref. [90], and so was designed for SHG
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Figure 12.3: Schematic diagram of electric poling for domain inversion in lithium nio-
bate.

in a bulk sample. With a 1.536µm fundamental beam (propagating along the x

axis) quasi-phase matched through the G1,0 reciprocal lattice vector, at 120 ◦C

the required spatial period was: Λ = 18.05µm. This was aligned carefully so

that the x − y orientation of the hexagonal structure coincided with the crys-

tals natural preferred domain wall orientation. For lithium niobate, which has

trigonal atomic symmetry (crystal class 3m), the tendency is for the domain

walls to form parallel to the y axis and at ±60 ◦.

A conductive gel is then applied to both faces of the crystal to act as electrodes

over which the electric field is applied. In order to invert the spontaneous

electric polarisation of lithium niobate at room temperature, an electric field

exceeding the coercive field
(
Ec = 21 kVmm−1

)
is required and thus the pho-

toresist must be sufficiently thick to block the applied field in the hexagonal

regions. Finally, the photoresist is removed using an acetone bath.

Fig. 12.4 shows the resulting hexagonal domain pattern of the poled lithium

Figure 12.4: Photograph showing the structure of the hexagonal domain pattern of
the poled lithium niobate crystal, in the x − y plane, together with the wavevectors
involved in the [1,0] order SHG process.
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niobate crystal, in the x − y plane, together with the wavevectors involved

in the first order [1,0] SHG process. In this sample, which is typical of the

HeXLN crystals used in our experiments, the hexagons constitute ∼ 30 % of

the total area. We note that the clarity of the hexagonal structure of the crystal

is reduced from that often displayed in the literature due to the fact that this

sample was not etched. The reason for this is because of the close proximity

of the waveguide to the surface of the crystal and thus it is likely that etching

would affect its guiding properties.

12.3 Planar Waveguides

As seen in Section 11.5.1, a planar waveguide is characterised by three semi-

infinite layers of differing refractive indices with respect to one direction (see

Fig. 12.5). In our investigations the significant feature of the planar geome-

try is that it preserves all the benefits of the two dimensional structure, whilst

providing tighter mode confinement. Thus the intensities and the modal over-

lap of the interacting fundamental and second harmonic fields are enhanced.

Although the top layer (n1) can simply be the air outside the crystal, in order

to symmetrise the mode profile of the guided fields the waveguide within the

bulk HeXLN crystal is buried.

Figure 12.5: Diagram of a basic three-layer planar waveguide.

In our experiments the fundamental beam was launched into the waveguide

in the TM configuration (see Section 12.4). The solutions for the TE modes of a

negative index slab waveguide have already been presented in Section 11.5.1

and similarly the TM modes can be obtained via equivalent analysis. However,

as we are now dealing with a positive index material, we can return to the

original definition of n (=
√
ε/ε0) as given by Eq. (3.1). It then follows from
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Maxwell’s equations [Eqs. (10.16) and (10.17)] that (for the coordinate system

given in Fig. 12.5) the Hy component of the TM modes is described by:

∂2Hy

∂x2
+
∂2Hy

∂z2
+ k2n2Hy − 1

ε

∂ε

∂z

∂Hy

∂z
= 0. (12.1)

Assuming a symmetric waveguide (n1 = n3), the magnetic field distribution

can be expressed as:

Hy =




A cos (κa− φ) e−σ(z−a) (z > a)

A cos (κz − φ) (−a ≤ z ≤ a)

A cos (κa− φ) eσ(z+a) (z < −a),
(12.2)

where κ and σ are now written as:

κ =
√
k2n2

2 − β2 and σ =
√
β2 − k2n2

1. (12.3)

Applying the boundary conditions that Hy and Ex should be continuous at

z = ±a, the dispersion relation is obtained as:

tan
(
κa− mπ

2

)
=
ε2σ

ε1κ
, (12.4)

where m is an integer. Solving Eqs. (12.3) and (12.4) using the graphical tech-

nique of Section 11.3.1 yields the guided modes and an example of a typical

profile is plotted in Fig. 12.6. This solution corresponds to the fundamen-

tal TM0 mode with the waveguide parameters: n1 = 2.130, n2 = 2.158 and

a = 2µm, calculated for a wavelength of λ = 1.536µm.

−6 −4 −2 0 2 4 6
0

0.5

1.0

H
y (

ar
b.

)

x (µm)

Figure 12.6: Example of a fundamental mode profile for a TM slab guide.

12.3.1 Fabrication

The planar buried waveguide was fabricated by Dr K. Gallo using a process

of annealed proton exchange followed by reverse-proton exchange [125]. The
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initial proton exchange involves immersion of the sample in molten benzoic

acid at a temperature of 160 ◦C. During this process H+ ions are exchanged

with Li+ ions in the crystal, resulting in a thin proton-rich layer with a higher

extraordinary refractive index. The sample is then annealed in air at 328 ◦C so

that the protons diffuse deeper into the substrate yielding an annealed-proton-

exchanged (APE) waveguide with a graded index profile that has a maximum

at the surface of the crystal. To impose symmetry to the waveguide, reverse-

proton exchange via immersion in a lithium-rich melt (LiNO3:KNO3:NaNO3)

is then performed again at 328 ◦C. This process removes protons from the sur-

face which in turn acts to move the peak of the refractive index profile into the

crystal. The resulting structure and refractive index profile of the crystal are

shown in Fig. 12.7, together with the profile of the surface waveguide before

the reverse exchange.

Figure 12.7: Cross section of the HeXLN crystal in the x− z plane. The right hand side
shows the extraordinary index profile of the buried waveguide (thick line), together
with the profile of the surface waveguide before the reverse proton exchange (thin
line).

12.4 Experimental Setup

A schematic diagram of the experimental setup to observe harmonic genera-

tion in a planar HeXLN waveguide is shown in Fig. 12.8. The pulse source used

in our experiments is the all fibre amplifier chain described in Section 6.4.1.

This produces 5 ns pulses at 1.536µm and the repetition rate is adjustable be-

tween 1 − 500 kHz so that peak powers of up to ∼ 20 kW can be achieved.

The HeXLN crystal was housed in a computer-driven oven where the tem-

perature could be controlled via the direction of the current through a ∼ 3 cm
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Figure 12.8: Schematic diagram of the experimental setup used to observe harmonic
generation in a planar HeXLN waveguide. L1 is the cylindrical lens and L2 and L3 are
spherical lenses.

long Peltier element.2 However, as the Peltier was considerably longer than

the length of a typical HeXLN crystal (∼ 1 cm), due to the large diffraction of

the exiting fields in the z direction, it was necessary to place the sample on a

copper coupling block whose base was the same size as the Peltier, but with a

top face whose x length was the same as the crystal’s. This enabled the output

coupling lens to be placed close enough to the exit face of the crystal so that

all of the generated second harmonic could be collected. A sketch of the oven

design is shown in Fig. 12.9. To avoid the photorefractive effects discussed in

Section 10.4, we ensured that the oven was maintained at a temperature above

∼ 100 ◦C when light was incident on the crystal.

Peltier
Element

Copper
Coupling Block

HeXLN
Crystal

Figure 12.9: Sketch of the Peltier oven design.

To assist with the coupling of the fundamental beam into the waveguide the

oven setup was then mounted on a series of adjustable stages (x, y, z and a

rotational stage θ). Efficient coupling into a planar waveguide requires a beam

with a narrow waist in the z direction but with a broad waist in the y direction

so that the diffraction effects in this direction are minimised. To achieve this the

beam was first shaped into an ellipse using a cylindrical lens (focal length: f =

2This oven was designed by Dr R. Bratfalean.
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Figure 12.10: Intensity profile of the TM0 mode at 1.536µm at the output of the waveg-
uide.

20 cm) before focusing through a spherical lens (10× objective). This resulted

in a spot size of 5.6µm × 80µm (FWHM) at the input face of the waveguide.

An image of the intensity profile of the TM0 mode at 1.536µm, at the output of

the waveguide, can be seen in Fig. 12.10.

Using this geometry a coupling efficiency of 36% into the waveguide was ob-

tained and significant generation of the second, third and fourth harmonics

(red, green and blue light) was achieved as shown in Fig. 12.11.

Figure 12.11: Output from the HeXLN planar waveguide showing the generated sec-
ond, third and fourth harmonics (red, green and blue light).

12.5 SHG in a HeXLN Planar Waveguide

Information on both the linear and nonlinear properties of HeXLN waveg-

uides can be obtained by studying the quadratic response of the waveguide.

This can be achieved by varying a number of parameters such as the infrared

pump power, the temperature, the wavelength of the fundamental beam and

the incident angle. In these preliminary experiments the variation of the gen-

erated second harmonic power with the operating temperature and input fun-

damental power are considered.

The HeXLN crystal used in these experiments was similar to that shown in

Fig. 12.4 with an x length of 14 mm. A typical temperature tuning curve for the

output second harmonic power of our waveguide is plotted in Fig. 12.12. This

curve was obtained using an automated system which takes a single measure-

ment of the fundamental and second harmonic powers at each temperature
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step. The most noticeable anomalies of this curve are the large oscillations in

the second harmonic power we scanned through the temperature. Although

it is possible that these oscillations are due to a lack of averaging of the second

harmonic power measurement, the fact that they occur with a regular spacing

suggests that they are actually a real feature of the crystal. A possible explana-

tion for these oscillations is that the quality of the polished ends of this crystal

were so good, the waveguide could act as a cavity. Indeed, on calculating the

average spacing of these fringes we have in fact found that they are the same

as that expected between the fringes of a Fabry-Perot resonator with a length

and refractive index equal to those of our waveguide. However, this particular

sample was unfortunately broken before this effect could be investigated any

further.
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Figure 12.12: Average second harmonic power at the output of the waveguide as a
function of temperature obtained with the Peltier oven design.

A further irregularity of this tuning curve is that it is asymmetric. This asym-

metry can be attributed to the thermal expansion of the copper coupling block

used in our oven design which led to a vertical displacement of the input beam

with respect to the waveguide as the temperature was varied. Thus we can ob-

serve that the peak at 138 ◦C corresponds to SHG in the waveguide, whilst the

low temperature shoulder corresponds to some of the fundamental beam be-

ing coupled into the bulk and the rapid decay at higher temperatures is due

to coupling into the air. As a result, we expect that the measured temperature

tuning bandwidth of 5.2 ◦C underestimates the true bandwidth of the interac-

tion.
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After reoptimising the coupling of the fundamental beam into the waveguide,

our next step was to consider the variation of the second harmonic power with

the input pump power. A plot of the internal second harmonic conversion

efficiency: ηint
SHG = POUT

2ω /P IN
ω , is shown in Fig. 12.13. Here POUT

2ω and P IN
ω are the

average powers of the second harmonic at the output and the fundamental at

the input, respectively. Although the peak power of the pulses can be adjusted

by changing the repetition rate at which the laser diode is modulated, the level

of amplified spontaneous emission (ASE) is higher for low repetition rates as

there is a longer time between the pulses for it to be amplified by the stored

energy. Thus to avoid spurious effects due to ASE, the repetition rate of the

source was fixed to be 1 kHz and the peak power of the pulses was adjusted

externally using a combination of a half-wave plate and a polarising beam

splitter.

0 2 4 6 8 10 12
10

15

20

25

30

Fundamental Power (mW)

In
te

rn
al

 S
H

G
 E

ffi
ci

en
cy

 η
 (

%
)

Figure 12.13: SHG internal efficiency as a function of the average input fundamental
power coupled into the waveguide obtained with the Peltier oven design.

These results show that as we increase the average power of the fundamental

beam at the input, the conversion efficiency approaches an asymptotic limit.

Although this curve is in qualitative agreement with results obtained in the

high conversion limit, the saturation effects occur at a much lower efficiency

than expected [126]. Initially it was thought that this reduced efficiency could

be due to the fact that the middle of the exit face (+x face) of the crystal was

damaged, thus forcing us to use a region off centre where we expect the poling

to be less effective. However, after re-cutting and polishing the damaged end

we found that there was no significant increase in the efficiency. Thus a more
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rigorous investigation was needed to establish the limitations to the conver-

sion efficiency and this will discussed in the following section.

12.6 Characterisation of HeXLN Waveguides

Following the success of the preliminary experiments presented in Section 12.5,

in this section we describe the improvements made to the oven and present the

subsequent results. The performance of this modified system is analysed via

calculation of the conversion efficiencies.

12.6.1 Modified Experimental Setup

As we saw in Fig. 12.12, the thermal expansion of the copper block affected

the coupling into the waveguide which led to inherent errors in our measure-

ments. Thus as a solution to this problem a new oven was designed that em-

ployed a flat resistor to heat a thin copper plate suspended via an aluminium

stand.3 A sketch of this new oven is shown in Fig. 12.14. Although this oven

did not allow for such accurate control of the temperature, the advantage of

using a resistor is that these can be purchased for a large range of lengths,

thus eliminating the need for the copper coupling block. The suspension de-

sign then allowed for closer placement of the focusing lenses, enhancing the

coupling efficiency both into and out of the waveguide. Thus it was expected

that this new design should produce a more accurate description of the tem-

3This oven was designed by Dr R. Bratfalean and Dr K. Gallo.

Resistor

HeXLN
Crystal

Figure 12.14: Sketch of the resistor oven design.
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perature tuning at the extreme temperatures as well as yielding larger second

harmonic output powers.

12.6.2 Interaction Properties of the HeXLN Waveguide

Using the oven described in the above section, our first step was to repeat the

temperature tuning curve of Fig. 12.12 in attempt to obtain a more accurate de-

scription of the bandwidth of the waveguide. Unlike our previous results, this

time the curve was measured manually, optimising the coupling and averag-

ing over the powers at each step. The new tuning curve is plotted in Fig. 12.15.

From this we see that the temperature curve is now quite symmetric indicat-

ing the success of the new oven design. In addition, the measured temperature

bandwidth is 19.5 ◦C so that it is much larger than that previously obtained in

Fig. 12.12.
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Figure 12.15: Average second harmonic power at the output of the waveguide, as a
function of temperature, obtained with the resistor oven design.

Our next task was to establish why the second harmonic conversion efficien-

cies obtained in Section 12.5 were lower than expected. Firstly we note that,

as mentioned in Section 12.2.2, the period of our crystal was designed for op-

timum collinear conversion of a 1.536µm fundamental field to the second har-

monic in bulk HeXLN at a temperature of 120 ◦C. Thus, as the dispersion prop-

erties of the waveguide differ slightly from those of the bulk [Section 12.3], we

will need to align the fundamental beam slightly off the x-axis in order to em-
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ploy the G1,0 reciprocal lattice vector.

For our waveguide experiments we found that the maximum SHG efficien-

cies in fact occurred at a higher operating temperature of 147.5 ◦C. Signifi-

cantly, however, at this temperature we observed that the guided wave inter-

action TM0(ω) →TM0(2ω) appeared at relatively high internal incidence an-

gles (θω ∼ 6◦ relative to the x-axis) thus implying that a higher order reciprocal

lattice vector was being employed. From this we could determine that this

interaction was in fact being phase matched via the G1,1 lattice vector. Interest-

ingly, we also noticed a second interaction which did occur at a smaller angle

(θω ∼ 3◦) so that it was being phase matched by the G1,0 lattice vector, and this

was determined to be the TM0(ω) →TM1(2ω) interaction. Thus we could con-

clude that the waveguide was multimodal. The observed low efficiencies can

then be explained by noting that because the TM0(ω) →TM1(2ω) interaction

yielded the larger conversion efficiencies (due to the lower non-collinearity

and reciprocal lattice vector order), it was this process that we had been us-

ing in our measurement processes of Section 12.5. However, as the overlap

between these two modes is smaller than between two fundamental modes,

the relative expected efficiency should be less. Nevertheless, due to the larger

SHG efficiencies, we still chose to use the latter process to further investigate

the properties of the waveguide.

With a better understanding of the processes occurring in the waveguide, we

optimised the setup for the TM0(ω) →TM1(2ω) interaction for the purpose of

evaluating the intrinsic efficiency. Fig. 12.16 shows the evolution of the exter-

nal second harmonic average power POUT
2ω as a function of the average input

pump power P IN
ω (circles).

To calculate the quadratic efficiency of our waveguide we use the standard

coupled mode equations (assuming no spatial walk-off or propagation losses)

in a quasi-stationary approximation [14]:

dAω

dx
= −i

κ

2
A2ωA

∗
ω, (12.5)

dA2ω

dx
= −i

κ

2
A2

ω, (12.6)

where here κ is the nonlinear coupling coefficient and the mode amplitudes Ai

(i = ω, 2ω) are in units of W1/2. After accounting for the coupling losses and
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Figure 12.16: Evolution of the external second harmonic average power (of the TM1

mode) as a function of the average input pump power (circles). The solid curve is a
numerical fit obtained from the coupled mode equations with η = 0.05% W−1cm−2.

the pulsed nature of the pump beam, the numerical fit given in Fig. 12.16 (solid

curve) was obtained from Eqs. (12.5) and (12.6) by adjusting κ. An estimate of

the normalised quadratic efficiency could then be obtained simply via κ2 as

ηnor = 0.05% W−1cm−2 [125].

For a full-nonlinearity preserving waveguide, the expected quadratic efficiency

is given by [87]:

ηnor = 2

√
µ0

ε0

(
3d2

33

π2

)
ω2

neff
ω

2neff
2ω

1

w

∫
E2

ω (z)E2ω (z) dz(∫
E2

ω (z) dz
)2 ∫

E2ω (z) dz
, (12.7)

where w is the average beam width along y. In this equation the mode profiles

Ei and effective indices neff
i = βi/ki are calculated for the index profile:

n(z) = nLiNbO3 +

{
∆n exp

[− (z − z0)
2 /z1
]

z ≥ z0

∆n exp
[− (z − z0)

2 /z2
2

]
z < z0

, (12.8)

where the defining parameters are estimated from the waveguide to be:

z0 = 1.6µm, z1 = 1.3µm, z2 = 1.3µm,

∆n (1536 nm) = 0.022, ∆n (768 nm) = 0.028,

and nLiNbO3 is given by the Sellmeier equations [Section 10.4]. With d33 =

27 pmV−1 and w = 100µm, the expected efficiency was calculated to be ηnor =

0.09% W−1cm−2. Thus this is in reasonable agreement (same order of magni-

tude) with our measured efficiency.
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12.6.3 Discussion

The results of this section have highlighted two key features of the device

design that have limited the efficiency of the second harmonic process. The

first is that the waveguide is multimodal so that interactions can occur be-

tween modes with a small overlap, which clearly have reduced efficiencies.

The second is that the poling pattern of the HeXLN structure needs to be op-

timised for the collinear interaction in the waveguide which requires an accu-

rate knowledge of the refractive index profile of the structure. Once this has

been established, the spatial period Λ required to phase match this process

can then be calculated. It is expected that by optimising the phase matching

of the TM0(ω) → TM0(2ω) interaction, it should be possible to increase the

quadratic efficiencies in the HeXLN waveguides to approach the theoretical

value of ηnor = 2.7% W−1cm−2, predicted by Eq. (12.7).

202



Chapter 13

2D Quasi-Photonic Crystals

In the previous chapter, a two dimensional nonlinear hexagonally poled lithium

niobate (HeXLN) crystal was used to demonstrate phase matching for sec-

ond harmonic generation (SHG) and higher order harmonic processes. In this

chapter these investigations are extended to consider phase matching in a two

dimensional quasi-crystal based on a Penrose tile pattern. The discussions be-

gin with a brief introduction to quasi-crystals and their use in harmonic gen-

eration. After describing the design and fabrication requirements, the prelimi-

nary experimental results to investigate SHG in a Penrose tile quasi-crystal are

presented. These results have not only enabled characterisation of the Fourier

space but they have also demonstrated the numerous possibilities for phase

matching SHG processes, emphasising the dense nature of the reciprocal lat-

tice space.

13.1 Quasi-Crystals for Harmonic Generation

In 1984, whilst investigating the diffraction properties of AlMn metal alloys,

Shechtman et al. made the first experimental observation of a quasi-crystalline

structure [127]. Since then, there have been numerous studies on the properties

of quasi-crystals in many other physical systems such as dielectric and nonlin-

ear structures. In particular, recently there has been considerable interest in

quasi-phase matching harmonic processes in one dimensional lattices based

on Fibonacci sequences [89, 91, 128].
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The benefits of using quasi-crystals over more conventional periodic structures

can immediately be seen by considering the problem of simultaneously phase

matching two nonlinear processes in one dimension. Since the only free pa-

rameter in a periodically poled lithium niobate (PPLN) structure is the domain

period a (see Section 10.2.1), simultaneous collinear phase matching of multi-

ple processes is, in general, not possible as phase mismatches are rarely integer

multiples of a constant. However, as a Fibonacci sequence is constructed via

the tiling of two lattice constants, a and b, this provides the necessary extra

degree of freedom.

An alternative approach to the problem of simultaneously phase matching

multiple nonlinear processes is to move to two dimensions whilst retaining

periodicity in the pattern. In this instance, the additional degree of freedom

arises from the fact that the reciprocal lattice vector is now a linear combina-

tion of two orthogonal vectors (see Section 10.3). Indeed, this was the approach

taken in the previous chapter which considered harmonic generation in a two

dimensional HeXLN crystal. With this in mind, a natural extension to the mul-

tiple phase matching problem, which should provide even more flexibility to

the design of the structures, is to combine the aperiodicity of the Fibonacci type

patterns with the two dimensionality of the HeXLN structures in the form of

a two dimensional quasi-crystal. It is worth noting that, although these quasi-

crystals are expected to be worse for single interactions such as SHG, they

should be better for multiple harmonic generation than strictly periodic crys-

tals due to the greater density of reciprocal lattice vectors.

13.2 Two Dimensional Quasi-Crystals

The principal two dimensional aperiodic patterns are Penrose tiles [129]. These

patterns are constructed out of a set of basic shapes that tile the plane only

aperiodically and are characterised by long range order1 and “forbidden” ro-

tational symmetries. Significantly, these patterns do not have any translational

symmetries.

1A structure is said to have long range order if the precise location of all lattice points can

be calculated once the location of two lattice points are known.
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(a) (b) (c)

Figure 13.1: Examples of Penrose tile patterns constructed from (a) two rhombi, (b)
kites and darts and (c) pentacles.

The classic Penrose tile consists of two rhombi of equal length sides but with

different angles (as already seen in Fig 10.3). However, there are an infinite

number of possible tilings and a sample of these are illustrated in Fig. 13.1.

13.2.1 Design Criteria

The first step to designing a two dimensional quasi-crystal is to decide on an

appropriate Penrose tile pattern. Although all Penrose tiles have roughly the

same properties, for the purpose of simplifying the fabrication process it is

useful to choose a pattern with an even distribution of lattice points. For this

reason the crystals used in the following experiments are designed based on

the classic double rhombi Penrose tile of Fig. 13.1(a).

The second step in the design process is to optimise the crystal for phase

matching SHG at the desired wavelength and temperature. This involves

choosing the correct lattice period, deciding where in the lattice to put the

poled regions (e.g., face centred or body centred) and the number of poled

regions required per unit cell. Finally, it is necessary to decide on the size of

the poled region and this is chosen such that it maximises the relevant Fourier

coefficient of the desired harmonic interaction.

13.2.2 Fabrication

The lithographic mask used to define the Penrose tile was designed specifically

for collinear quasi-phase matched SHG (aligned along the x axis) of a 1.536µm

fundamental beam at 140 ◦C. To ensure maximum efficiency, the pattern was
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arranged so that the Fourier coefficient with the largest magnitude was used

in the phase matching process. For a nonlinear lithium niobate crystal, with

the poled regions placed at the vertices of the Penrose pattern (i.e., face cen-

tred), these requirements translate to rhombi with sides of length 18.999µm.

Due to the trigonal atomic symmetry of lithium niobate [Section 12.2.2], the

natural shape for the poled regions are hexagons. It should be noted that the

dimensions of the hexagons on the mask were reduced with respect to the final

desired domain size to account for domain broadening beyond the electrodes

during the poling process. A schematic diagram of an expanded view of the

mask design used in the fabrication process is shown in Fig. 13.2, together with

the corresponding pattern in Fourier space. In particular, the five fold symme-

try of the Fourier space, which is forbidden in a periodic crystal, can clearly be

seen.

(a) (b)

Figure 13.2: Schematic diagrams of the (a) mask design and (b) Fourier space, showing
only the larger Fourier coefficients, for the Penrose tile domain pattern.

The two dimensional quasi-crystals used in our experiments were hexagonally

poled by Dr K. Gallo. The fabrication procedure for the Penrose pattern was

the same as that used for the HeXLN crystal described in Section 12.2.2, namely

electric field poling [109]. However, in contrast to the HeXLN case where the

mask consisted of a single bulk pattern, in the hope of minimising the poling

errors this time the mask was designed to pattern 5 identical regions of size

1 mm × 20 mm on each sample. In all the poled samples the Penrose patterns

were found to be uniform across the whole structure and were faithfully re-

produced throughout the crystal depth, thus confirming the validity of this

technique for fabricating two dimensional quasi-crystals. The resulting tile

pattern is shown in Fig. 13.3, as revealed by a light etch in HF acid. In this

sample the hexagons have a thickness of 8.7µm (between opposite corners)
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and constitute ∼ 25 % of the total patterned area. These images clearly illus-

trate the long range orientational order and the quasi-periodic translational

order of the structure.

Figure 13.3: Photographs of the structure of the Penrose tile domain pattern of the
poled lithium niobate crystal in the x − y plane.

13.2.3 Phase Matching in a Quasi-Crystal

The precise diffraction pattern for the Fourier space, as calculated for the mask

design given in Fig. 13.2(a), is shown in Fig. 13.4. Here Fig. 13.4(a) shows

the collinear second harmonic process for which the crystal was designed. To

illustrate the dense nature of the Fourier space, Fig. 13.4(b) then shows a sec-

ond possible phase matched process that is not collinear. However, as well

as being highly noncollinear, this second process employs a reciprocal lattice

Figure 13.4: Calculated diffraction pattern for the Penrose tile quasi-crystal together
with two possible phase matching conditions where (a) is the collinear case and (b) is
a noncollinear case.
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vector with a much smaller Fourier coefficient and so is unlikely to be seen.

The significance of the density of the Fourier space can be further emphasised

through the observation that even small adjustments in the angle of the propa-

gating fundamental beam, with respect to the crystal axis, will provide a large

number of additional phase matching conditions.

13.3 Experimental Setup

Figure 13.5: Schematic diagram of the experimental setup used to observe harmonic
generation in a Penrose tiled quasi-crystal.

A schematic diagram of the experimental setup to observe harmonic genera-

tion in the Penrose tile quasi-crystal is shown in Fig. 13.5. This setup is similar

to that used to investigate harmonic generation in a two dimensional HeXLN

crystal. The significant difference, however, is that in the HeXLN experiments

we employed a planar waveguide geometry to enhance the efficiency of the

nonlinear interaction, whereas here we simply consider harmonic generation

in the bulk sample. Thus coupling into the crystal was achieved by using a

single spherical lens (focal length: f = 13 cm) from which we could obtain a

minimum focused spot diameter of 40µm (FWHM) in the centre of the crystal.

The pulse source used in our experiments was the same all fibre amplifier

chain used in the HeXLN experiments, as described in Section 6.4.1. As be-

fore, to avoid photorefractive effects it was necessary to heat the sample to a

temperature elevated above ∼ 100 ◦C. Because in this experiment we are con-

sidering nonlinear interactions in the bulk, the diffraction effects are less signif-

icant than those of the waveguide setup. Thus the Penrose quasi-crystal could

be housed in the computer-driven Peltier oven, described in Section 12.4, but

without the coupling block shown in Fig. 12.9. A typical example of the out-

put from the Penrose tile quasi-crystal is given in Fig. 13.6 showing significant

generation of both the second (red) and third (green) harmonics.
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Figure 13.6: Output from the Penrose tile quasi-crystal showing the generated second
(red) and third (green) harmonics.

13.4 Second Harmonic Generation in a Quasi-Crystal

This section presents the preliminary experimental results to investigate sec-

ond harmonic generation in a two dimensional Penrose tile quasi-crystal. By

investigating the phase matched interactions, the Fourier space has been char-

acterised and the efficiency of the crystal established.

13.4.1 Temperature and Wavelength Tuning

We begin our investigations of the properties of the Penrose tiled quasi-crystal

by measuring the interaction bandwidth for which information can be ob-

tained by either measuring the second harmonic power as a function of tem-

perature or wavelength. The Penrose tiled quasi-crystal used in these experi-

ments was similar to that shown in Fig. 13.3. We start by considering the tem-

perature tuning of the second harmonic power. For this measurement, the fun-
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Figure 13.7: Average second harmonic power at the output of the Penrose tiled quasi-
crystal as a function of temperature.
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damental pump source was operated at a repetition rate of 100 kHz to produce

5 ns pulses with an average power of 200 mW incident on the crystal. With the

fundamental beam gently focused into the crystal, the incident power was suf-

ficiently low to ensure that we were in the low conversion regime. The crystal

was then aligned with respect to the incident beam to obtain phase matching

for the brightest single second harmonic spot at 140 ◦C. The resulting tempera-

ture tuning curve is plotted in Fig. 13.7 and this has a FWHM of 7.3 ◦C. Signif-

icantly, the distinctly non-sinc shape of this curve, which we would expect for

a collinear interaction [3], suggests that the interaction we are investigating is

in fact noncollinear [124]. Indeed, using the relation for the predicted intensity

of the second harmonic field:

I2ω ∝ sin2(∆kL/2)

(∆kL/2)2
, (13.1)

where ∆k = 2kω − k2ω and L is the length of the crystal, we have calculated

that the expected bandwidth for a corresponding collinear interaction in PPLN

is 3.6 ◦C, which is under half our measured width, also impling a noncollinear

interaction. However, before investigating this any further, we first measured

the second harmonic power as a function of wavelength using the same geom-

etry.

For these measurements the fundamental pump source was again operated at

a repetition rate of 100 kHz. However, as the available power from the source

is wavelength dependent, this time we used an external attenuator (consist-
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Figure 13.8: Average second harmonic power at the output of the Penrose tiled quasi-
crystal as a function of wavelength.
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ing of a half-wave plate and a polarising beam splitter combination) to ensure

that the average power incident on the crystal remained constant at 150 mW.

The resulting wavelength tuning curve is presented in Fig. 13.8 with a FWHM

of 1.39 nm. Again, using Eq. (13.1) the expected bandwidth for a collinear in-

teraction was calculated to be 0.55 nm, providing further evidence of the non-

collinearity of our interaction. We note that the tuning peaks seen on the edges

of this curve correspond to additional phase matching processes occurring si-

multaneously, and thus can be attributed to the dense nature of the reciprocal

lattice vectors.

13.4.2 Efficiency Measurements

In the interest of obtaining a better understanding of the interactions occurring

in the crystal, our next step was to measure the maximum attainable conver-

sion efficiency to the second harmonic power. For this measurement, the setup

was optimised to provide 480 mW average power at a repetition rate of 100 kW,

corresponding to a fundamental peak power of 960 W. With the coupling ad-

justed for maximum focusing to the smallest spot size, the crystal was aligned

with respect to the incident beam to obtain the optimum phase matching at

140 ◦C. In this configuration we achieved a second harmonic peak power of

15.7 W, which corresponds to an external conversion efficiency of 1.63%. For a

collinear interaction, the expected internal conversion efficiency can be calcu-

lated via:

ηint = tanh (GL) , (13.2)

where L is the interaction length and

G =

√
2ω2

ε0c3
d2

eff

n3
Iω(0). (13.3)

Here Iω(0) is the input fundamental intensity, n ≈ nω ≈ n2ω and deff is the

effective nonlinear coefficient which is proportional to the size of the Fourier

coefficient [Eq. (10.54)]. Assuming that the interaction corresponds to that de-

picted in Fig. 13.4(a), where the peak has a Fourier coefficient of 0.1053, and

taking into account the Fresnel reflections at the input and output faces of the

crystal, Eq. (13.2) predicts an external efficiency of ∼ 27%. Significantly this is

considerably larger (by an order of magnitude) than our measured value and
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thus to establish the reason for this discrepancy a more careful investigation of

the setup was required.

Our first step was to establish the collinearity of the interaction and this was

achieved by measuring the angle between the pump beam and its back re-

flection from the front face of the crystal, which for a perfectly collinear case

should be zero. In doing this we noticed that there was actually a signifi-

cant angle between the normal of the crystal and the propagating fundamental

beam. Furthermore, by rotating the crystal back through the normal we found

that there was an identical spot on the other side at a corresponding negative

angle. Thus it was clear that at this temperature the crystal was not phase

matching the collinear process illustrated in Fig. 13.4(a), and that a higher or-

der reciprocal lattice vector was in fact being employed. As a result, the mask

design was rechecked and it was found that there was an error in the Pen-

rose pattern such that the sides of the rhombi were in fact 17.818µm, that is

1.172µm shorter than the calculated value [Section 13.2.2]. Thus in order to

establish the phase matching processes that we were observing in our crystal

it was necessary to characterise the Fourier space of our crystal.

So that we could make use of the expected symmetrical nature of the Fourier

space (see Fig. 13.4), we began our characterisation process by realigning the

crystal so that the fundamental beam was perpendicular to the input face. By

scanning through the temperature range 100− 160 ◦C we could then observe a

number of SHG interactions which were phase matched in this geometry and

these processes were associated with the appearance of two second harmonic

spots symmetric about the output fundamental, as illustrated in Fig. 13.9. The

two brightest sets of spots occurred at 105◦C and 148 ◦C and it was the set at

148 ◦C that we chose to use for our further investigations of the Fourier space.

Figure 13.9: Output from the Penrose tile quasi-crystal with the fundamental beam
perpendicular to the crystal face showing the two symmetric second harmonic spots.

To determine the phase matching processes occurring in this configuration we
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Figure 13.10: Fourier space overlaid with the Ewald sphere showing phase matching
for the symmetric second harmonic spots at 148 ◦C.

first recalculated the diffraction pattern for the Penrose tile pattern for rhombi

with sides of length 17.818µm at 148 ◦C. The recalculated diffraction pattern

is shown in Fig. 13.10 together with the Ewald sphere construction [71]. Al-

though the Ewald sphere was initially defined for investigating x-ray diffrac-

tion problems, it is also extremely useful for understanding two dimensional

quasi-phase matching processes. Here the sphere is constructed such that its

centre is located −2kω away from the origin of the reciprocal lattice with a

radius of k2ω. The relevant reciprocal lattice vectors and the corresponding

Fourier coefficients for the allowed phase matched processes can then be de-

termined from the peaks which are located on the Ewald sphere as indicated

on the figure. For these two spots the Fourier coefficients were calculated to be

0.019 which is an order of magnitude smaller than the Fourier coefficient for

the collinear interaction. By measuring the external angles of the pump and the

second harmonic beams for the spots in Fig. 13.9 we could confirm that these

were in fact being generated via the interactions represented in Fig. 13.10.
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Spot Pump Ang. SHG Ang. Spot Pump Ang. SHG Ang.

1 0.167 ◦ 2.624 ◦ 22 −21 ◦ −19.421 ◦

2 0.167 ◦ −2.290 ◦ 23 −24.333 ◦ −25.438 ◦

3 −1.5 ◦ −2.684 ◦ 24 2.167 ◦ 3.238 ◦

4 −2 ◦ −6.054 ◦ 25 2.75 ◦ 6.504 ◦

5 −2 ◦ −12.483 ◦ 26 2.75 ◦ 13.306 ◦

6 −3 ◦ −9.179 ◦ 27 3.583 ◦ 9.932 ◦

7 −5.5 ◦ −5.838 ◦ 28 6.083 ◦ 6.658 ◦

8 −6.5 ◦ −2.222 ◦ 29 7 ◦ 2.005 ◦

9 −6.5 ◦ 0.381 ◦ 30 8 ◦ 10.232 ◦

10 −7.75 ◦ −9.700 ◦ 31 8.583 ◦ 5.428 ◦

11 −8.167 ◦ −4.922 ◦ 32 11.333 ◦ 14.937 ◦

12 −10.833 ◦ −13.482 ◦ 33 11.333 ◦ 2.538 ◦

13 −10.833 ◦ −4.208 ◦ 34 11.75 ◦ 9.867 ◦

14 −11.167 ◦ −9.104 ◦ 35 12.583 ◦ 12.222 ◦

15 −12 ◦ −11.774 ◦ 36 13 ◦ 15.705 ◦

16 −12 ◦ −14.930 ◦ 37 15.333 ◦ 18.274 ◦

17 −14.75 ◦ −17.421 ◦ 38 15.333 ◦ 19.510 ◦

18 −14.75 ◦ −18.725 ◦ 39 16.583 ◦ 12.473 ◦

19 −16.083 ◦ −11.917 ◦ 40 18.583 ◦ 15.991 ◦

20 −17.833 ◦ −15.038 ◦ 41 18.583 ◦ 21.535 ◦

21 −17.833 ◦ −20.842 ◦

Table 13.1: Angular measurements for the SHG interactions in a Penrose tile quasi-
crystal.

To establish a more complete characterisation of the Fourier space, our next

step was to measure the angular dependence of the second harmonic pro-

cesses. For this measurement we simply rotated the crystal with respect to

the pump beam so that phase matching via different reciprocal lattice vectors

could be observed. As above, by measuring the external angles of the funda-

mental and second harmonic beams the corresponding Fourier peaks which

were responsible for the particular interaction could be determined. Using

an average pump power of ∼ 260 mW, and rotating the crystal through an

angular range of ±25 ◦, we observed 41 phase matched SHG processes. For

reference, the measured angles are given explicitly in Table 13.1, where both
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Figure 13.11: Fourier space showing the corresponding Fourier peaks for the mea-
sured second harmonic spots given in Table 13.1.
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Figure 13.12: External second harmonic angle as a function of the external pump angle
where 0 ◦ corresponds to propagation along the crystal axis. The green spots corre-
spond to the experimental measurements and the blue to the theoretical predictions.

the pump and second harmonic angles are given with respect to the normal of

the crystal. The corresponding Fourier peaks are then labelled in Fig. 13.11.

This data is summarised in Fig. 13.12 where the external second harmonic an-

gle is plotted as a function of the external pump angle, and 0 ◦ corresponds

to propagation along the crystal axis. In this figure the green and blue spots

correspond to the experimental measurements and theoretical predictions ob-

tained from the Fourier space of Fig. 13.11, respectively. We note that the two

red spots which appear at symmetric angles about 0 ◦ correspond to situa-
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tions where, for the measured pump angle, no Fourier peaks lay exactly on the

Ewald sphere. Unfortunately we have not been able to establish the reason for

this discrepancy. However, by choosing the Fourier peak closest to the sphere

it is clear that we can still obtain a reasonable match to the measured output

second harmonic angle so that it is likely that this can be attributed to exper-

imental error. Thus these results have demonstrated an excellent agreement

between the experimental and theoretical angles over the majority of interac-

tions, including those corresponding to higher order reciprocal lattice vectors,

indicating the high quality of the crystal.

Having satisfied ourselves that the diffraction patterns illustrated in Figs. 13.10

and 13.11 are indeed accurate representations of the Fourier space of the Pen-

rose tile quasi-crystal, our final task was to recalculate the expected efficiency

for the original single spot interaction. Again, by measuring the external an-

gles of the fundamental and the second harmonic beams we could determine

that the Fourier peak which was phase matching this process was the same

Fourier peak as used in the interaction which generated spot 28 in Fig. 13.11

and this has a Fourier coefficient of 0.026. Thus using this value in Eq. (13.2)

the expected external conversion efficiency is now only 2.06%, which is in rea-

sonable agreement with our measured value of 1.63%.

13.4.3 Discussion

The results presented in this section have provided the first preliminary demon-

stration of second harmonic generation in a two dimensional quasi-crystal. By

analysing the interaction processes occurring in the crystal, we have estab-

lished that the main limitation to our conversion efficiencies is the inability to

phase match the collinear interaction illustrated in Fig. 13.4(a), which involves

the largest Fourier peak. This was due to an error in the mask design which

resulted in a reduced phase matching period. Although in theory it should be

possible to access this particular interaction by simply considering a process

involving different wavelengths, we have calculated that the required wave-

length of the fundamental pump is ∼ 1.2µm, which is well outside the tuning

range of our source.2 Thus in order to utilise this particular interaction ge-

2The exact wavelength will depend on the choice of operating temperature.
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ometry, we would first need to redesign our lithographic mask for the correct

dimensions.

Despite the small observed conversion efficiencies, this crystal has neverthe-

less highlighted one of the most important features of a two dimensional quasi-

crystal which is the dense nature of the reciprocal lattice space. This increased

density of the reciprocal lattice vectors should provide greater flexibility to

phase matching processes in many novel devices, particularly for situations

where multiple nonlinear interactions are required.
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Conclusion

In Part 2 of this thesis I have numerically and experimentally investigated the

control and manipulation of light propagating in novel crystal structures.

The results of numerical calculations used to analyse the guided mode solu-

tions of one dimensional negative refractive index waveguides, presented in

Chapter 11, have demonstrated a number of unusual properties that differ

considerably from those of conventional waveguides. Typical features of these

waveguides include anomalies in the appearance of the mode orders, double

degeneracy of modes, superluminal propagation speeds as well as extraordi-

narily large group velocity dispersion. Calculation of the coupling coefficients

between modes of positive and negative index waveguides has shown that it

is possible to couple light into these structures.

The experimental investigations of Chapter 12 provided the first demonstra-

tion of second harmonic generation in a HeXLN buried planar waveguide. By

analysing the interaction between the guided fields it was established that the

waveguide was in fact multimodal. The low conversion efficiencies measured

for the second harmonic process were attributed to an incorrect phase match-

ing period in the waveguide, which led to the interaction occurring between

modes of differing order.

Finally, the measurements presented in Chapter 13 also provided another first

by demonstrating second harmonic generation in a two dimensional quasi-

crystal based on a Penrose tile pattern. Despite the low observed conversion

efficiencies, which were due to an error in the mask design, these are neverthe-
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less in good agreement with the expected efficiencies obtained via a Fourier

analysis of the crystal. These results have illustrated numerous possibilities

for phase matching SHG processes, emphasising the dense nature of the recip-

rocal lattice space and the flexibility of such crystals for use in novel devices

based on multiple nonlinear interactions.

The work presented in this part of the thesis has demonstrated many new con-

cepts which can be employed to control and manipulate the propagation of

light in modulated crystal structures. Although many of these results are pre-

liminary, they represent a number of “firsts” in their respective technological

areas and thus they should provide a basis on which to develop more refined

devices. It is hoped that the results presented in this second part of the thesis

will not only spark interest as novel curiosities, but also that they will benefit

many areas of optical technologies.
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Applications and Future Directions
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Introduction

The results presented in the proceeding chapters have demonstrated a num-

ber of important new results regarding the control and manipulation of light

in optical devices. In particular, in Part 1 I investigated self-similar pulse so-

lutions which offer unique distortion free propagation so that the pulses can

be amplified to high powers and compressed to ultrashort durations. Then in

Part 2 I considered novel crystal structures which can be used to control the

speed of light or to generate new, shorter, wavelengths via harmonic conver-

sion processes.

As mentioned in Chapter 1, it is hoped that an improved understanding of the

processes described in the first two parts of this thesis can be combined to aid

with the design of more efficient devices. Indeed, to some extent I have already

demonstrated this within the body of the thesis. For example, in Chapter 6 the

experiment to generate parabolic pulses in a highly nonlinear microstructured

fibre via Raman amplification was seeded using an optical parametric oscilla-

tor (OPO) based on a periodically poled lithium niobate (PPLN) crystal specif-

ically because this type of source could provide a signal beam at wavelengths

tunable under the Raman gain curve. Then in Chapter 11 the investigations of

the guided mode solutions for a fibre with a negative index core were based

on a structure with a periodic cross section similar to that of the conventional

air filled microstructured fibres.

In this final part of the thesis I will describe a novel oscillator design that com-

bines many of the interesting features of the earlier results to produce an effi-
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cient, widely tunable short pulse source. Although to date the widest tuning

ranges are still obtained in OPOs based on periodically poled crystals [130],

recently some attention has been focused on wavelength tuning in fibre based

sources [131]. However, to overcome restrictions in their tunability both these

source designs have typically required continuous cavity modifications such

as changing the grating period of the crystal and/or the cavity length. For

this reason the device described in the following chapter combines both the

large wavelength conversion obtained via frequency doubling in PPLN with

the tunability of fibre loops based on the Raman frequency shift. Due to the

flexibility of this oscillator design, it is expected to find wide application in

many areas of short pulse technologies.

To conclude this thesis, the final chapter in this part will discuss suggestions

for future research directions.
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Widely Tunable Self-Similar

Oscillator

16.1 Introduction

In this chapter a numerical model of a widely tunable oscillator, that operates

in the wavelength range of 1µm → 2µm, will be investigated. This oscillator

combines the large wavelength conversion obtained via frequency doubling in

solid state periodically poled lithium niobate (PPLN) devices with the tunabil-

ity of fibre loops based on the Raman frequency shift, and thus contains some

of the important results obtained in the first two parts of this thesis. Signifi-

cantly, it will be shown that despite the wide range of devices used in the sys-

tem the pulses evolve self-similarly in each stage of the oscillator, maintaining

a hyperbolic secant form, whilst their peak power and width scale according

to the device mechanism.

16.2 Oscillator Model

The oscillator is simulated based on the schematic diagram given in Fig. 16.1.

The seed pulses are first Raman shifted from 1.5µm to 2µm before being fre-

quency doubled via quasi-phase matched second harmonic generation (SHG)

back down to 1µm. After the pulses undergo regeneration in an amplifier/
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Figure 16.1: Schematic diagram of the oscillator model.

compressor combination they are then Raman shifted back up to 1.5µm where

again they are amplified and compressed before being relaunched into the first

Raman shifting stage. To ensure pulse stability in the oscillator, a saturable ab-

sorber with a power dependent transmission characteristic is included. This

ensures that the pulse energy does not become too great so that the correct

Raman shifts are maintained and is particularly important for the first Raman

stage as the efficiency of the subsequent PPLN stage is highly dependent on the

input wavelength. The resulting system can then be tailored to provide soli-

ton pulses potentially at any wavelength within the range 1µm − 2µm simply

by placing an output coupler at the required length along either of the Raman

shifting fibres.

16.3 Numerical Model and Device Parameters

16.3.1 Propagation Equations

Modelling of the pulse evolution in the oscillator of Fig. 16.1 can be considered

in two parts, one for the fibre stages and one for the PPLN stage. Propaga-

tion in the fibre stages can be described by an equation which combines the

generalised forms of the nonlinear Schrödinger equations (NLSE) presented in
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Section 3.10:

i
∂

∂z
Ψ =

β2 (ω0)

2

∂2

∂T 2
Ψ − γ (ω0)

(
1 +

i
ω0

∂

∂T

)
Ψ

∫ ∞

0

R (T ′) |Ψ (z, T − T ′)|2 dT ′

+
i

2
√

2π

∫ ∞

−∞
α (ω) Ψ̃ exp (−iωT ) dω. (16.1)

The important feature of this equation is the inclusion of the frequency de-

pendence of the fibre parameters. This is essential because of the large 0.5µm

wavelength shifts of the pulses in the Raman stages. As the dispersion and

nonlinearity profiles vary relatively slowly with frequency, in these terms the

frequency dependence is simply accounted for by updating their values for the

central frequency of the pulse ω0 at each propagation step. However, as both

the loss (α < 0) and gain (α > 0) profiles exhibit strong peaks, it is necessary

to include the full frequency dependence of these parameters [4]. It should

be noted that in the Raman term, R(T ) is the usual nonlinear response func-

tion expressed in the form: R (T ) = (1 − fR)δ (T ) + fRhR (T ) [Section 3.10.2].

This equation can be solved using a combination of the techniques described

in Section 3.10.

The PPLN section of the system is modelled using the coupled equations for

SHG as given in Section 10.9.2:

∂2

∂z2
Ψ2ω − n2

2ω

c2
∂2

∂T 2
Ψ2ω =

1

c2
χ(2) (z)

∂2

∂T 2
(Ψω)2 , (16.2)

∂2

∂z2
Ψω − n2

ω

c2
∂2

∂T 2
Ψω =

2

c2
χ(2) (z)

∂2

∂T 2
(Ψ2ωΨ

∗
ω) . (16.3)

Here the fields Ψm are related to the slowly varying amplitude in Eq. (16.1)

via: Ψm = Ψm exp [i (kmz −mT )], and m = ω, 2ω for the fundamental and sec-

ond harmonic fields, respectively. Again nm are the refractive indices, km =

2πnm/λm are the wavenumbers, and the equations are solved using the finite

difference technique also described in Section 10.9.2.

16.3.2 Device Parameters

The specific design of the oscillator was chosen so that it could take advantage

of the efficient rare-earth doped fibre amplifiers at ∼ 1µm (Yb3+:doped) and

∼ 1.5µm (Er3+:doped). To obtain the large frequency shifts, small core highly

nonlinear microstructured fibres are used for the Raman shifting stages. In
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particular, the use of a microstructured fibre for the second Raman stage is

necessary as their dispersion properties can be tailored such that they exhibit

anomalous dispersion over the entire 1µm − 1.5µm wavelength range. Fur-

thermore, due to the strong OH-absorption peak in the loss profile of silica

fibres that appears at 1.37µm (see Ref. [4] and Fig. 16.2), a two stage Raman

shift was found to be more efficient in this section.

For each of the fibre stages the parameters used in the simulations are based

on realistic experimental values [12, 132, 133]. As mentioned above, due to

the large 0.5µm wavelength shifts of the pulses in the Raman stages, it is es-

sential to include the frequency dependence of the fibre parameters. For the

nonlinearity parameter, this simply requires calculating γ = n2ω0/cAeff at each

propagation step. However, for the dispersion, loss and gain terms the ex-

plicit forms of the parameter profiles need to be considered. The dispersion

and gain profiles for a standard SMF geometry have already been given in

Chapter 3 and it is these that are used for the amplifier stages. For the mi-

crostructured fibre stages, although the exact form of the fibre parameters will

depend on the specific structural design, here the calculations are simply based

on the shape of the dispersion and loss profiles for a pure silica fibre, but with

some slight modifications. In particular, for the second Raman stage the zero

dispersion wavelength needs to be shifted so that the fibres exhibit anomalous

dispersion over the entire wavelength range. Also, as the losses are greater

in a microstructured fibre than in a standard SMF, the magnitude of the loss

profile (as given in Ref. [4]) needs to be increased. The modified forms of the
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Figure 16.2: (a) Dispersion shifted profile for the second Raman shifting stage and (b)
the loss profile used for both the microstructured fibre stages.
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dispersion and loss profiles used in the simulations can be seen in Fig. 16.2.

For convenience, the relevant parameters are given explicitly in Table 16.1.

RAMAN 1 AMP 1 COMP 1 RAMAN 2 AMP 2 COMP 2

L (m) 85 3.9 2.2 45,50 2.45 1.15

β2 (ps2 km−1) silica 20 -31 DS silica 20 -31

Aeff (µm2) 13 35 0 8,5 23 0

α (m−1) silica 1 0 silica 0.3 0

Table 16.1: Device parameters for the fibre stages.

For the PPLN stage of the oscillator the crystal length was chosen to be 400µm

so that, whilst it is typical of that employed in real experimental configura-

tions [134], it is not too long that it results in impractical computation times.

Assuming an operating temperature of T = 120 ◦C (to avoid photorefractive

effects), the grating period for a 2µm → 1µm process is Λ = 29.3µm. The re-

fractive indices in Eqs. (16.2) and (16.3) are then calculated at each cycle for the

exact wavelength of the pulse exiting the first Raman stage. Typical conver-

sion efficiencies for this process are or the order of ∼ 8 %. The low efficiency

of this process is consistent with experimental observations [12] and, as dis-

cussed in Section 10.9.2, can be attributed to the phase mismatch due to the

broad bandwidth associated with the short input fundamental pulse.

Finally, the saturation energy Esat of the saturable absorber is chosen to be that

of the input pulse energy with a power dependent transmission characteristic,

as mentioned in Section 16.2.

16.4 Simulations Results

The oscillator is assumed to be initially seeded with 312 pJ, 350 fs (FWHM)

hyperbolic secant pulses, typical of those generated via compression of the

output from an Er3+:doped fibre laser (such as that described in Section 6.4.1).

The evolution of the pulses in the oscillator at 1.5µm is shown in Fig. 16.3.

Despite the slight variation in the pulse shape, especially near the peak, this

figure illustrates the ability of the oscillator to produce a consistent output of

uniform pulses.
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Figure 16.3: Evolution of the pulses in the oscillator at 1.5µm over 20 cycles.

The stability of the oscillator is then confirmed in Fig. 16.4 which shows the

evolution of the (a) FWHM width and (b) peak power of the pulses also at

1.5µm. Significantly, it is clear that after each loop the pulses have returned to

a form where their parameters are consistent with those of the seed pulse. It is

important to note that in Figs. 16.3 and 16.4 the number of oscillator cycles is

only restricted to 20 cycles due to the long computation time, particularly for

the PPLN stage.

Examples of the pulse profiles and chirps at the output of each stage of the

oscillator system are then plotted in Fig. 16.5, together with the original seed
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Figure 16.4: Evolution of the (a) FWHM width and (b) peak power of the pulses at
1.5µm.
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Figure 16.5: Pulse profiles (left axes) and chirps (right axes) of the output pulses after
each stage of the oscillator, together the seed pulse. The pulse profiles have been
normalised in power and time so that they have a peak intensity and FWHM width of
1. The circles are hyperbolic secant fits.

pulse. To allow for easy comparison between the pulses they have been nor-

malised in power and time with their physical parameters given explicitly in

Table 16.2. Significantly, by comparing the shape of the intensity profiles it can

be seen that the functional form of the pulse remains essentially unchanged

after each stage of the oscillator. This is particularly obvious in the early stages

of the loop before it is necessary for the pulses to undergo significant regenera-

tion to compensate for the large losses experienced in the second Raman stage.

However, despite the slightly noisy appearance of the pulses after this second

regeneration stage, in all cases the pulses exhibit a reasonable agreement with

RAMAN 1 PPLN AMP 1 COMP 1 RAMAN 2 AMP 2 COMP 2

∆T (fs) 180 130 1900 150 240 1400 360

P0 (W) 760 70 240 3150 530 230 820

E (pJ) 150 10 480 480 160 310 310

Table 16.2: Average pulse parameters after each oscillator stage.
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the hyperbolic secant fits to the intensity profiles (circles). In addition, it can

also be noticed that in most cases the pulses have a flat phase with only the

amplified pulses possessing a significant chirp. Importantly, as it has been

shown in the first part of this thesis, the development of a linear chirp is often

associated with self-similar evolution and furthermore, ensures efficient com-

pression of the pulses with minimal pulse distortions. Thus it appears that the

evolution of the pulses in the oscillator is, in a sense, self-similar.

To understand the self-similar nature of the pulses in this system, the evolution

of the pulses in the individual stages are considered. In the Raman stages, to

obtain the large frequency shifts a shifting mechanism based on the break up

of high power pulses into multiple fundamental solitons, at different Stokes

frequencies, is employed. These solitons then propagate under the influence

of the soliton self-frequency shift, which is clearly a self-similar process. The

final pulse is then obtained simply by placing a bandpass filter of the desired

wavelength at the output of the fibre.

In the amplifier stages, as only moderate amplification is required, the evolu-

tion occurs in a regime where the nonlinear effects are still small so that dis-

persion dominates the pulse propagation. Significantly, self-similar analysis

of the evolution of pulses in an amplifier has shown that in the early stages

of the propagation, where the dispersion does indeed dominate, intermediate

asymptotic solutions exist which will maintain their initial form whilst devel-

oping a linear chirp [135]. For a hyperbolic secant input pulse the form of the

solutions are:

Ψ(z, T ) =

√
P0

Γ(z)
sech

(
T

T0Γ(z)

)
exp

(
G(z)

2

)
exp [iΦ(z, T )] , (16.4)

where

Φ(z, T )=φ0 +
β2

2T 2
0

∫ z

0

1

Γ2(z′)
dz′ + γP0

∫ z

0

exp [G(z′)]
Γ(z′)

dz′ − T 2

2β2Γ(z)

dΓ(z)

dz
. (16.5)

Here the evolution of the pulse width, peak power and chirp are determined

by the amplifier parameters through:

G(z) =

∫ z

0

g(z′)dz′, (16.6)

231



Chapter 16 Widely Tunable Self-Similar Oscillator

and

Γ(z) =
√

1 + λ2z2 +
δ (λ2z2 − 1)√

1 + λ2z2

∫ z

0

z′ exp [G(z′)](
1 + λ2z′2

)3/2
dz′

− δz√
1 + λ2z2

∫ z

0

(
λ2z′2 − 1

)
exp [G(z′)](

1 + λ2z′2
)3/2

dz′, (16.7)

where λ = 2 |β2| /πT 2
0 and δ = 4γβ2P0/π

2T 2
0 .

Fig. 16.6 compares typical output pulses from the two amplifier stages with

Eqs. (16.4)–(16.7). Despite the noise on the output pulse from the second Er3+:

doped amplifier stage, both these pulses and their chirps are in good agree-

ment with the theoretical predictions (circles). Thus it can be concluded that

the pulses in the amplifier stages are also evolving self-similarly, maintaining

their hyperbolic secant form. An important feature of the self-similarity of

these pulses is that because of the linearity of the developed chirps, the output

pulses from the amplifier stages can be compressed via a simple linear com-

pressor (as described in Section 5.3.3) to yield transform limited pulses that

will also retain an approximate hyperbolic secant profile.
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Figure 16.6: Examples of the output intensities (left axes) and chirps (right axes) from
(a) the Yb3+ amplifier stage and (b) the Er3+ amplifier stage of the oscillator (solid
lines). The circles are the theoretical predictions for the intermediate asymptotic solu-
tions.

The final stage to consider is the pulse evolution in the PPLN crystal. As it can

be seen from Eqs. (16.2) and (16.3), the form of the SHG pulse is determined

by the fundamental so that this will again be generated to have an approxi-

mate hyperbolic secant form but with a reduced width: ∆T2ω ∼ ∆Tω/
√

2,1 as

1This is exact for a Gaussian pulse with the assumption of an undepleted pump.
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discussed in Section 10.9.2.

Thus these results have shown that the pulses evolve self-similarly in all stages

of the oscillator with their peak powers and widths scaling according to the

device mechanism. At this point it is important to emphasise that the self-

similar nature does not apply to the system as a whole, but only in the indi-

vidual stages. However, significantly, in all stages the self-similar propagation

evolves to a pulse with a hyperbolic secant form so that there is an overall

quasi-self-similar nature of the system.

16.4.1 Extension to Higher Energies

As a final test of the stability of this oscillator, a modified system is considered

where the oscillating pulses have higher energies than the previous system.

Importantly, this will establish the ability of the pulses to withstand deleterious

distortions associated with high energy propagation, and thus reinforce the

self-similar nature of the oscillator.

RAMAN 1 AMP 1 COMP 1 RAMAN 2 AMP 2 COMP 2

L (m) 45 3.75 2 5,50 2.2 1

β2 (ps2 km−1) silica 20 -31 DS silica 20 -31

Aeff (µm2) 13 35 0 8,5 23 0

α (m−1) silica 1 0 silica 0.5 0

Table 16.3: Modified device parameters for the fibre stages.

The modified system parameters are given explicitly in Table 16.3. In this sys-

tem the oscillator is now assumed to be seeded with a 380 pJ, 350 fs (FWHM)

hyperbolic secant pulse. The output pulses and chirps after each stage of the

oscillator are plotted in Fig. 16.7 where again, for comparison purposes, they

have been normalised in power and time. The corresponding pulse parame-

ters are given in Table 16.4. Clearly, despite the overall increase of the pulse

energies and peak powers in the system, these pulses have a very similar ap-

pearance to those of the previous system as seen in Fig. 16.5. Additional confir-

mation of the self-similar nature of this modified system is again provided by

the good agreement with the hyperbolic secant fits to the intensity profiles (cir-

cles). Thus it is reasonable to expect that these pulses are evolving in a similar
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Figure 16.7: Pulse profiles (left axes) and chirps (right axes) of the output pulses after
each stage of the modified oscillator, together the seed pulse. The pulse profiles have
been normalised in power and time so that they have a peak intensity and FWHM
width of 1. The circles are hyperbolic secant fits.

manner to those of the previous system.

Finally, to demonstrate the stability of this modified system, Fig. 16.8 plots the

evolution of the (a) FWHM width and (b) peak power at 1.5µm, as a function

of the oscillator cycle. Again, it is clear that after each loop the pulses have

returned to a form where their parameters are consistent with those of the

seed pulse.

RAMAN 1 PPLN AMP 1 COMP 1 RAMAN 2 AMP 2 COMP 2

∆T (fs) 146 107 2273 150 309 1226 342

P0 (W) 1020 130 270 3640 350 270 1110

E (pJ) 170 15 630 630 130 380 380

Table 16.4: Average pulse parameters after each oscillator stage for the modified sys-
tem.
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Figure 16.8: Evolution of the (a) FWHM width and (b) peak power of the pulses at
1.5µm in a higher energy oscillator.

16.5 Discussion

The results presented in this chapter have demonstrated a self-similar oscil-

lator, tunable over the wavelength range 1µm − 2µm, which is capable of

producing hyperbolic secant pulses with peak powers of the order of a kilo-

watt and sub-picosecond widths. Significantly, this oscillator has illustrated

how the various technologies described in the earlier parts of this thesis can be

combined to produce a novel short pulse source. In addition, it has also been

shown that with careful choice of the device parameters it is possible to scale

this oscillator to a system with higher pulse energies. Thus it is expected that

this oscillator could be tailored to yield a wide range of pulse widths and peak

powers depending on the system requirements.
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Future Directions

The work carried out in this thesis has identified many areas of research wor-

thy of further study.

The results presented in Part 1 to demonstrate high intensity self-similar pulse

solutions in optical fibres have left considerable scope for development and

could potentially spark many new directions for future research. In particular,

although the experimental demonstrations described in Chapters 5 and 6 have

indicated the early stages of parabolic pulse evolution, there is still plenty of

room for optimisation of the systems. As the main limiting feature of both

these experiments has been attributed to a lack of suitable fibres, most of the

recent efforts have been focused on developing new fibre designs.

Owing to the success of the theoretical and numerical investigations described

in Chapter 7, the next step in this project will be to conduct experiments to

provide the ultimate verification of these solutions. Because of the wide range

of fibres, pulse sources and pulse shaping techniques that are available within

the ORC it is likely that the experiments will be conducted here. Significantly,

in all likely experiments involving self-similar evolution it is highly important

that the measured pulses can be accurately characterised not only to allow for

rigorous comparisons with the predicted solutions, but also to aid in the op-

timisation of the systems. Thus it would be beneficial if parallel work was

carried out to improve the available pulse diagnostic techniques and this will

involve developing FROG pulse measurement devices optimised for the ap-

propriate wavelengths and design criteria of the experimental setups.

236



Chapter 17 Future Directions

The investigations into the use of novel crystal structures to control and ma-

nipulate the propagation of light, described in Part 2, have also exposed nu-

merous possible directions for further research. Although there are no imme-

diate plans to conduct any experiments involving the negative refractive index

guides discussed in Chapter 11, it is hoped that as the technologies involved

in the fabrication processes of these structures are advanced, this is something

that could be considered in the future. In contrast to this, the two dimensional

nonlinear structures used for harmonic frequency generation in Chapters 12

and 13 are still currently under considerable investigation in the pursuit of

improving the efficiency of the devices. Once this has been achieved, future

tasks will involve using these devices to investigate novel physical phenom-

ena, such as spatial solitons, as well as seeing them incorporated into practical

integrated systems.

In addition to considering the future directions of the individual projects, as

discussed in Chapter 15, there is also the option to exploit the combined knowl-

edge of the various technologies to design and develop more efficient devices.

To this end it would be desirable to construct a single device which is based on

the different structures investigated in the two parts of this thesis (i.e., fibres

and modulated crystals). In the context of this thesis, ultimately this would

be in the form of the self-similar oscillator described in Chapter 16. However,

there are numerous other design possibilities for novel devices based on these

structures and thus it is hoped that the results presented in this thesis will con-

tribute to their development.
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Appendix A

Calculation of Spectral Phase in the

Transform Limit

The notion of a “transform-limited” pulse is widely used in ultrafast optics

to refer to a pulse whose temporal duration is the shortest possible, given the

available spectral width. In this Appendix, the precise form of the spectral

phase which corresponds to this condition will be determined.

Given the complex spectral amplitude: Ψ̃ (ν) = Ã (ν) exp
[
iΦ̃ (ν)

]
, where Ã (ν) =

|Ψ̃ (ν) |, the analysis is based on the search for the form of the spectral phase

Φ̃ (ν) such that the temporal duration of the pulse is minimised. Here the RMS

width is considered so that:

∆τ =
[〈
t2
〉− 〈t〉2]1/2

, (A.1)

where

〈tn〉 =

∫∞
−∞ tn |Ψ (z, t)|2 dt∫∞
−∞ |Ψ (z, t)|2 dt

. (A.2)

From Parseval’s theorem [136],∫ ∞

−∞
|Ψ (z, t)|2 dt =

∫ ∞

−∞

∣∣∣Ψ̃ (z, ν)
∣∣∣2 dν = U, (A.3)

so that the denominator in Eq. (A.2) is simply the pulse energy U.

From the definitions of the Fourier transform,

Ψ̃ (ν) =

∫ ∞

−∞
Ψ (t) ei2πνtdt, (A.4)
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and its inverse transform,

Ψ (t) =

∫ ∞

−∞
Ψ̃ (ν) e−i2πνtdν, (A.5)

it follows that
dΨ̃ (ν)

dν
= i2π

∫ ∞

−∞
tΨ (t) ei2πνtdt, (A.6)

and thus

tΨ (t) =
−i

2π

[∫ ∞

−∞

dΨ̃ (ν)

dν
e−i2πνtdν

]
. (A.7)

Using Eqs. (A.6) and (A.7), 〈t2〉 is related to Ψ̃ (ν) through:

〈
t2
〉

=
1

U

∫ ∞

−∞
t2 |Ψ (t)|2 dt

=
1

U

∫ ∞

−∞
[tΨ (t)] [tΨ∗ (t)] dt

=
−i

2πU

∫ ∞

−∞

[∫ ∞

−∞

dΨ̃ (ν)

dν
e−i2πνtdν

]
tΨ∗ (t) dt

=
−i

2πU

∫ ∞

−∞

dΨ̃ (ν)

dν

[∫ ∞

−∞
tΨ (t) ei2πνtdt

]∗
dν

=
1

(2π)2 U

∫ ∞

−∞

dΨ̃ (ν)

dν

dΨ̃∗ (ν)

dν
dν,

=
1

(2π)2 U

∫ ∞

−∞

∣∣∣∣∣dΨ̃ (ν)

dν

∣∣∣∣∣
2

dν.

Similarly, the relationship between 〈t〉 and Ψ̃ (ν) is:

〈t〉 =
1

U

∫ ∞

−∞
t |Ψ (t)|2 dt

=
1

U

∫ ∞

−∞
tΨ (t)Ψ∗ (t) dt

=
−i

2πU

∫ ∞

−∞

[∫ ∞

−∞

dΨ̃ (ν)

dν
e−i2πνtdν

]
Ψ∗ (t) dt

=
−i

2πU

∫ ∞

−∞

dΨ̃ (ν)

dν

[∫ ∞

−∞
Ψ (t) ei2πνtdt

]∗
dν

=
−i

2πU

∫ ∞

−∞

dΨ̃ (ν)

dν
Ψ̃∗ (ν) dν.

However, by writing the field Ψ̃ (ν) in terms of its amplitude and phase, then
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clearly,

dΨ̃ (ν)

dν
=

d

dν

[
Ã (ν) eiΦ̃(ν)

]
,

=

[
dÃ

dν
+ iÃ

dΦ̃

dν
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and
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Ã2 dΦ̃

dν
dν

=
1

2πU

∫ ∞

−∞
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Combining Eqs. (A.8) and (A.9) in Eq. (A.1) , the RMS width is obtained as

∆τ =
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. (A.10)

Using a variational approach it can be shown that this expression is minimised

when
dΦ̃

dν
= const, (A.11)

which implies that the transform limited pulse duration,

∆τTL =
1

2π
√
U


∫ ∞

−∞

(
dÃ

dν

)2

dν




1/2

, (A.12)

corresponds to a constant group delay [Eq. (3.11)]. In fact, since the only ef-

fect of this constant in the time domain is to introduce a shift in the temporal
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position of the pulse, without loss of generality, this constant can be set equal

to zero. Thus the physical interpretation that the minimum pulse duration is

associated with a flat spectral phase is obtained.
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Optical Wave Breaking

For a high intensity pulse propagating in an optical fibre the NLSE suggests

that nonlinear effects should dominate over dispersive effects, at least during

the initial stages of evolution. However, as it was seen in Section 3.9, the effects

of GVD are sufficiently large that they cannot simply be treated as a pertur-

bation to the dominant nonlinear evolution, because large nonlinearities lead

to a large SPM-induced frequency chirp across the pulse. Hence even weak

dispersive effects lead to significant pulse shaping. For a normal dispersion

fibre, a high intensity pulse broadens into a rectangular pulse with a linear

chirp across its entire width and self-steepened edges (see Fig. B.1). At these
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Figure B.1: Evolution of a high intensity Gaussian pulse, in the normal dispersion
regime, to show the effects of optical wave breaking on an initially unchirped pulse.
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Figure B.2: Temporal profile and spectrum of pulse from Fig. B.1, at z = 0.8 m. The
spectral side lobes and the temporal fine structure near the pulse edges are manifesta-
tions of optical wave breaking.

sharp edges the second derivative in the NLSE becomes large and as a result

the pulse develops oscillations on its edges. It was first suggested by Tomlin-

son et al. [137] that this phenomenon should be termed optical wave breaking

because of its similarity to the breaking of water waves.

The physical origin of these temporal oscillations stems from the chirp becom-

ing a nonmonotonic function in time, which implies that the inner, high in-

tensity, parts of the pulse expand more rapidly than the outer, low intensity,

parts. Here the red (blue) shifted light near the leading (trailing) edge travels

faster and overtakes the unshifted light in the front (end) tail of the pulse. The

leading and trailing edges of the pulse then contain light of different frequen-

cies whose interference results in the temporal oscillations seen near the pulse

edges. In the frequency domain this process represents itself in the form of

spectral side lobes consisting of the new frequency components. These effects

can be clearly seen in Fig. B.2, where (a) shows the oscillations on the temporal

profile and (b) shows the side lobes on the corresponding spectrum.

In the anomalous dispersion regime, pulse propagation is dominated by soli-

ton propagation. However, even for high intensity propagation of non-soliton

type pulses, optical wave breaking does not occur in the anomalous dispersion

regime. In this regime the red (blue) shifted part of the pulse cannot overtake

the faster (slower) moving tail and the energy in the pulse tails spreads. As

a consequence, there is no interference of the frequency components and the

pulse simply develops pedestals.
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[36] K. Drühl, R. G. Wenzel, and J. L. Carlsten. Observation of solitons in

stimulated Raman scattering. Phys. Rev. Lett., 51(13):1171–1174, 1983.

[37] C. R. Menyuk, D. Levi, and P. Winternitz. Self-similarity in transient

stimulated Raman scattering. Phys. Rev. Lett., 69(21):3048–3051, 1992.

[38] T. M. Monro, P. D. Miller, L. Poladian, and C. M. de Sterke. Self-similar

evolution of self-written waveguides. Opt. Lett., 23(4):268–270, 1998.

[39] K. Tamura and M. Nakazawa. Pulse compression by nonlinear pulse

evolution with reduced optical wave breaking in erbium-doped fiber

amplifiers. Opt. Lett., 21(1):68–70, 1996.

[40] V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley. Self-similar

propagation of parabolic pulses in normal-dispersion fiber amplifiers. J.

Opt. Soc. Am. B, 19(3):461–469, 2002.

[41] A. C. Peacock. Self-similar amplification and propagation of parabolic

pulses in optical fibres. Master’s thesis, The University of Auckland,

2001.

[42] M. E. Fermann, A. Galvanauskas, M. L. Stock, K. K. Wong, D. Harter,

and L. Goldberg. Ultrawide tunable erbium soliton fiber laser amplified

in ytterbium-doped fiber. Opt. Lett., 24(20):1428–1430, 1999.

[43] B. Desthieux, R. I. Laming, and D. N. Payne. 111 kW (0.5 mJ) pulse am-

plification at 1.5µm using a gated cascade of 3 erbium-doped fiber am-

plifiers. Appl. Phys. Lett., 63(5):586–588, 1993.

[44] J. H. V. Price. The development of high power, pulse fiber laser systems and

their applications. PhD thesis, Optoelectronics Research Centre, 2003.

[45] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson. 77-fs pulse gener-

ation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett.,

18(13):1080–1082, 1993.

[46] K. W. DeLong, R. Trebino, J. Hunter, and W. E. White. Frequency-

resolved optical gating with the use of second-harmonic generation. J.

Opt. Soc. Am. B, 11(11):2206–2215, 1994.

249



Appendix C BIBLIOGRAPHY

[47] S. Namiki and Y. Emori. Ultrabroad-band Raman amplifiers pumped

and gain-equalized by wavelength-division-multiplexed high-power

laser diodes. J. Sel. Topics in Quant. Electron., 7(1):3–16, 2001.

[48] M. Kuznetsov. Design of widely tunable semiconductor 3-branch lasers.

J. Lightwave Technol., 12(12):2100–2106, 1994.

[49] A. M. Melo, J. L. S. Lima, R. S. de Oliveira, and A. S. B. Sombra. Photonic

time-division multiplexing (OTDM) using ultrashort picosecond pulses

in a terahertz optical asymmetric demultiplexer (TOAD). Opt. Commun.,

205:299–312, 2002.

[50] G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, M. N. Islam, K. O.

Hill, and B. Malo. Soliton logic gate using low-birefringence fiber in a

nonlinear loop mirror. Opt. Lett., 20(16):1671–1673, 1995.

[51] C. Finot, G. Millot, C. Billet, and J. M. Dudley. Experimental generation

of parabolic pulses via Raman amplification. Opt. Express, 11(13):1547–

1552, 2003.

[52] Z.Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richard-

son. Raman effects in a highly nonlinear holey fiber: Amplification and

modulation. Opt. Lett., 27(6):424–426, 2002.

[53] M. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky. 200-

nm-bandwidth fiber optical amplifier combining parametric and Raman

gain. J. Lightwave Technol., 19(7):977–981, 2001.

[54] K. Furusawa. Development of rare-earth doped microstructured optical fibres.

PhD thesis, University of Southampton, 2003.

[55] T. M. Monro, N. G. R. Broderick, and D. J. Richardson. Exploring the

optical properties of holey fibres. Conference Proceedings: Nato Summer

School on Nanoscale Linear and Nonlinear Optics, July 2000.

[56] J. A. Nelder and R. Mead. A simplex method for function minimization.

Comput. J., 7(4):308–313, 1965.

[57] D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera. Noise sen-

sitivity in frequency-resolved optical-gating measurements of ultrashort

pulses. J. Opt. Soc. Am. B, 12(10):1955–1967, 1995.

250



Appendix C BIBLIOGRAPHY

[58] K. O. Hill and G. Meltz. Fiber Bragg gratings technology fundamentals

and overview. J. Lightwave Technol., 15(8):1263–1276, 1997.

[59] W. A. Watson, M. V. O’Connor, P. S. Lloyd, D. P. Shepherd, D. C. Hanna,

C. B. E. Gawith, L. Ming, P. G. R. Smith, and O. Balachninaite. Ex-

tended operation of synchronously pumped optical parametric oscilla-

tors to longer idler wavelengths. Opt. Lett., 27(23):2106–2108, 2002.

[60] D. Taverner, D. J. Richardson, L. Dong, J. E. Caplen, K. Williams, and

R. V. Penty. 158–mJ pulses from a single-transverse-mode, large-mode-

area erbium-doped fiber amplifier. Opt. Lett., 22(6):378–380, 1997.

[61] K. Furusawa. Personal communication. 2003.

[62] I. Cristiani, P. Franco, M. Midrio, and M. Romagnoli. Pulse generation

and propagation beyond the limit of soliton spectral resonances. Opt.

Commun., 146:241–244, 1998.

[63] S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Paye. Soliton

pulse-compression in dispersion-decreasing fiber. Opt. Lett., 18(7):476–

478, 1993.

[64] J. D. Moores. Nonlinear compression of chirped solitary waves with and

without phase modulation. Opt. Lett., 21(8):555–557, 1996.

[65] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover

Publications, 1964.

[66] S. S. Santos. On the Galilean transformations and the stationary frame of

reference for electromagnetic waves. Phys. Essays, 10(3):466–473, 1997.

[67] V. A. Bogatyrev, M. M. Bubnov, E. M. Dianov, A. S. Kurkov, P. V. Mamy-

shev, A. M. Prokhorov, S. D. Rumyantsev, V. A. Semenov, S. L. Semenov,

A. A. Sysoliatin, S. V. Chernikov, A. N. Gur’yanov, G. G. Devyatykh,

and S. I. Miroshnichenko. A single-mode fiber with chromatic disper-

sion varying along the length. J. Lightwave Technol., 9(5):561–565, 1991.

[68] The World Book encyclopedia. World Book, Inc., 1991.

[69] J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals : mold-

ing the flow of light. Princeton University Press, 1995.

251



Appendix C BIBLIOGRAPHY

[70] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz.

Composite medium with simultaneously negative permeability and per-

mittivity. Phys. Rev. Lett., 84(18):4184–4187, 2000.

[71] V. Berger. Nonlinear photonic crystals. Phys. Rev. Lett., 81(19):4136–4139,

1998.

[72] M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd. Superluminal and

slow light propagation in a room-temperature solid. Science, 301:200–

202, 2003.

[73] V. G. Veselago. The electrodynamics of substances with simultaneously

negative values of ε and µ. Sov. Phys. Usp., 10(4):509–514, 1968.

[74] P. M. Valanju, R. M. Walser, and A. P. Valanju. Wave refraction in

negative-index media: Always positive and very inhomogeneous. Phys.

Rev. Lett., 88(18):187401, 2002.

[75] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis. Refraction in

media with a negative refractive index. Phys. Rev. Lett., 90(10):107402,

2003.

[76] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs. Extremely

low frequency plasmons in metallic mesostructures. Phys. Rev. Lett.,

76(25):4773–4776, 1996.

[77] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart. Magnetism

from conductors and enhanced nonlinear phenomena. IEEE Trans. Mi-

crowave Theory Tech., 47(11):2075–2084, 1999.

[78] J. Marangos. Faster than a speeding photon. Nature, 406:243–244, 2000.

[79] L. J. Wang, A. Kuzmich, and A. Dogariu. Gain-assisted superluminal

light propagation. Nature, 406:277–2279, 2000.

[80] I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar. Guided modes in

negative-refractive-index waveguides. Phys. Rev. E, 67:057602, 2003.

[81] E. J. Lerner. Race is on to develop blue-green diode lasers. Laser Focus

World, April 1998.

252



Appendix C BIBLIOGRAPHY

[82] I. Suemune, K. Nakanishi, Y. Fujii, Y. Kuroda, M. Fujimoto, and M. Ya-

manishi. Photopumped ZnSe/ZnSSe blue semiconductor-lasers and a

theoretical calculation of the optical gain. J. Cryst. Growth, 117(1–4):1068–

1072, 1992.

[83] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of

optical harmonics. Phys. Rev. Lett., 7(4):118–119, 1961.

[84] J. A. Giordmaine. Mixing of light beams in crystals. Phys. Rev. Lett.,

8(1):19–20, 1962.

[85] P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage. Effects of

dispersion and focusing on the production of optical harmonics. Phys.

Rev. Lett., 8(1):21–22, 1962.

[86] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan. In-

teractions between light waves in a nonlinear dielectric. Phys. Rev.,

127(6):1918–1939, 1962.
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