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1 Introduction

In the summer of 1998, shortly after the death of Sir Charles Frank, David Dunmur, in his
capacity as editor of Liquid Crystals Today, asked me to write a short biographical piece
on Sir Charles, whom I had known slightly when I was a young scientist in Bristol. The
effort of writing that article [1] led me into collaborative work with David and also Horst
Stegemeyer on the history of liquid crystals [2, 3]. I was thus, almost certainly, diverted
from more serious scientific study. If I had doubts as to whether this was a sensible route,
they were magnified when Epifanio Virga suggested to me at one of his quite excellent
meetings in Cortona that I would fall, so to speak, between two stools, respected neither
as a good historian nor as a good mathematician. But by then the die was cast, although
I now fear that Virga was on the right track.

All this is by way of excuse for the fact that this article is more of a historical sketch
than a serious scientific contribution. My first excuse is that the subject of these pages,
Claudio Zannoni, is one of Italy’s premier scientists, and that like serious scientists ev-
erywhere, he has a cultural hinterland which inspires interest not only in the intellectual
roots of his own subject, but more generally in all aspects of the world around us, whether
thought of in the Anglo-Saxon world as ‘science’ or ‘humanities’. My second is that history
has its own lessons, and is worthy of study in and of itself. It is a lesson upon which some
of our political leaders (and I specify Italy, UK and US in particular here) might also do
well to cogitate.

I shall discuss my own interaction with Sir Charles as well as some other personal mat-
ters directly apposite to my interaction with Claudio, toward the end of this article. In the
bulk of this article, I want mainly to trace back some of the roots of our understanding of
defects in liquid crystals, particularly in nematics. A subsidiary goal will be to place Clau-
dio in the grand tradition of Italian science. In doing so, I will note specifically two early
Italian liquid crystal pioneers, as well as spending some time with Vito Volterra, arguably
Italy’s greatest mathematician since the Middle Ages, and, as it happens, progenitor of
the idea of dislocations.

While writing the two major pieces on the history of liquid crystals, I enjoyed an ex-
tensive correspondence with Jacques Friedel (1921-2014). One is always shy to approach
the very distinguished, for fear either of wasting of their time, or of exposing one’s own
ignorance. But in this case I was encouraged by Maurice Kléman, who had been Friedel’s
graduate student. Friedel had known Charles Frank when he himself had been a graduate
student in Bristol, had in the 1970s contributed personally to the theory of liquid crys-
tal defects, and had later achieved greatness as the president of the French Academy of
Sciences. For our purposes, of course, all this is for nought compared to the singular fact
of his family pedigree: he was the grandson of the incomparable Georges Friedel (1865-
1933). For those who may have forgotten, it was Georges Friedel who first understood the
molecular organisation of the liquid crystal phases, and who baptised them as nematic,
smectic and cholesteric, in his famous 1922 article [4].

Jacques Friedel’s appreciation of our historical work was limited by what he felt (I
paraphrase) was a major lacuna. We told of all the progress toward a molecular picture,
and the key experiments, and all the different gadgets and devices and the relationship
with fluids in living organisms, and so on and so forth. But he felt that we had omitted
was the central place of structure in the disentanglement of the nature of liquid crystals.
The key point is that until relatively recently (maybe the 1960s), (almost) all you could do
with liquid crystals was to look at them, under a microscope, and with the aid of crossed
polars, it should of course be added.

What you saw under the microscope were the liquid crystal textures. The origin of the
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word ‘texture’ is lost in history. When I say ‘lost in history’, I mean that I have not been
able to find definitively the first time it is used in its present-day context. By 1922, the
term was well-established, because Georges Friedel uses it repeatedly in his classic work.
The different liquid crystal phases were connected to the different textures. Sometimes
more than one texture corresponded to a single phase, but if the phases were different, so
were the textures. Your job as an experimentalist was to figure out what the texture told
you about the phase.

Friedel was of course correct in his observation. The route from texture to phase
is complicated. In the case of Georges Friedel, the road was facilitated by the rigorous
mathematical training he received in the Ècole Polytechnique, allowing him to make some
serendipitous intellectual connections which would have escaped another less well educated
in the classical arts. Indeed, it did escape his German competitors for precisely that reason.
And, of course, those instructing the young Georges Friedel in the 1880s had no idea that
their insights would be used in an entirely different field of science more than thirty years
hence.

That route is somewhat more straightforward now as a result of the introduction of
ideas from topology and homotopy into condensed matter physics in the 1970s [5–7] (see
also the reviews [8, 9]). That it is only somewhat straightforward attests to the fact
that topology and homotopy are traditionally ideas from pure mathematics, associated
originally with knots and the connectedness of space, by contrast with the usual fare of
partial differential equations so beloved of applied mathematicians. I believe, but am not
yet in a position to develop the idea, that there are interesting parallels to be drawn from
the history of topology itself to that of the relationship of pattern to underlying structure
in liquid crystals.

One day I would like to fill in the gap which Jacques Friedel pointed out. This article
just touches the surface. For now, let me point out a few salient points. The first thing
one notices, say about one string wrapped around another (an easier caricature of a knot)
is how many times it is wrapped. Unless you move the whole wrapping rope to the end
and untie it, the number of times you have wound around is conserved. In the trade it is
known as a winding number, is easy to understand intuitively, and has direct application
in a number of fields of theoretical physics. Charles Frank used the idea when thinking
about liquid crystal defects, and so we shall return to it soon below.

There are somewhat analogous contexts in classical topology. The Italian mathemati-
cian Enrico Betti (1823-1892) introduced [10] a set of numbers which represented (sort of)
the number of holes and handles in a space of dimension d embedded in a nice simply-
connected space of dimension (d + 1). The numbers were later called Betti numbers by
Poincaré in 1895 , but are now regarded as surrogates for spaces of a particular type, and
the so-called fundamental group which describes classes of continuous maps from the space
of the surface to the embedding space (for a more comprehensive discussion, see [11]).

Analogously one could think about defects in a nematic liquid crystal in a similar way,
and classify them using a winding number. As it turns out, the classification is incorrect,
but it is not bad for a first attempt. We note the use of topology and homotopy in
performing the difficult task of pattern analysis in liquid crystals, and muse whether there
might be other pattern analysis contexts in which topology might be useful. Or is it only
in the case of liquid crystals that data analysis is most efficiently performed by resorting to
fancy pure mathematics? The answer, not surprisingly, is that no, liquid crystals are not
special in this regard. Indeed, in all sorts of data analysis, particularly in high dimensions,
topological ideas are turning out to be key in discerning pattern where intuition fails (see
e.g. [12]).

This article is arranged as follows. I apologise to the reader for the higgledy-piggledy
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temporal order in which concepts are discussed, adopted for strictly utilitarian reasons.
In §2, I recapitulate some of the early history of liquid crystals, treated more completely
elsewhere. From a historical point of view, I might add that “more completely elsewhere”
still means incompletely from an absolute point of view, at least in my opinion. An
important element of this story concerns the Italian contribution to early liquid crystal
history. In §3 I trace the development of the idea of a dislocation. This is crucial to our
ideas of orientational defects in liquid crystals. Again the key ideas come from Italy, in
this case from Vito Volterra.

Then in §4 I shall discuss Charles Frank. Material Scientists owe to Frank some of
the key ideas in dislocations physics, and we in liquid crystals are the beneficiaries of the
connections he made between these solid state ideas and defects in nematics. This and all
subsequent sections include some of my own recollections, as well as some stories I have
heard from colleagues. In §5, I try and connect these ideas with some more modern devel-
opments in understanding disclination structure in nematics. In §6 I pass to unashamedly
personal recollections of how I entered the liquid crystal field and how I first came across
Claudio Zannoni. Almost always I end my papers with a Conclusions section, and this is
what I tell my Science Communication students in Milan they must do. But this paper
is one in which I have to admit that there are no conclusions, although of course, all our
careers conclude eventually, when the Grim Reaper decides, if not before.

2 Some brief history

I want here to repeat some brief history which is more throughly treated in books by
myself and coworkers elsewhere [2, 3], as well as others who have taken slightly different
points of view or emphaised different aspects of the same story [13–15]. The purpose is
merely to make the present paper slightly more self-contained. Purists should note that
the following is a caricature, so please don’t quibble over detail.

Liquid crystals were first observed (or discovered, depending on your philosophical
point of view) by the biochemist Friedrich Reinitzer (1858-1927) in Prague in 1888. Unable
to make head or tail of his observations, he consulted the physicist Otto Lehmann (1855-
1922) in Aachen. Lehmann had invented a powerful polarising microscope with a hot
stage which was particuarly appropriate for studying these new materials. He named the
materials ‘liquid crystals’, and made the subject his life’s work. Most of his work was
carried out in Karlsruhe, where he moved to in 1890, and spent the whole of the rest of
his career.

More specifically Lehmann distinguished ‘flowing crystals’ and ‘liquid crystals’, the
former corresponding to what we recognise as smectics, and the latter to nematics. His
classification partly depended on the textures and partly on the fact that the flowing
crystals were more viscous than the liquid crystals (and therefore flowed more slowly).
Reinitzer had originally observed a cloudy phase interposed between crystalline and liquid
phases. Many contemporaries focussed on the turbidity, posing a host of thermodynamic
conjectures concerning the nature of the materials. A particular opponent of Lehmann’s
was the material scientist Gustav Tammann (1861-1938), who objected to the term ‘liquid
crystals’ on the ground that it was a contradiction in terms and inconsistent with the (then
unproven) lattice theory of crystals. Lehmann was able to show that the turbidity was
the result of spatial inhomogeneity of the principal axis in an optically biaxial material.

In his optical polarisation studies of liquid crystal droplets, Lehmann often found
pictures like that shown in Fig.1. He distinguished Kernpunkte (central points) and Kon-
vergenzpunkte (convergence points), depending on whether the central dark region seemed
circular or to possess 4-fold symmetry, and conjectured as to the principal axis configura-
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Figure 1: Liquid crystal droplet, as seen through Lehmann’s microscope, taken from
Lehmann’s own work [16]. When the polarisers are rotated, the pattern also rotates, but
the dark point at the centre remains fixed. The curved form of the brushes probably
indicates that the liquid crystal in question was chiral.

tion which would be consistent with these observations. His 1904 book [16], which repays
detailed reading even today, contains much else, in terms of details on his observational
technique and the beautiful pictures he observed under his microscope.

As to an explanation for his observations, although Lehmann had a better idea than
Reinitzer, he too was at a loss. Two interesting sets of observations have survived till the
present day for explanation. The first concerns the shape of liquid crystalline droplets,
which were not spherical as surface tension should have dictated them to be. Lehmann
put the departure from sphericity down to Gestaltungskraft (directional force). In modern
language this involves competition between anchoring and director elasticity, and is known
as the tactoid shape problem. Real progress in this area had to wait until the 21st century¿.
There are comprehensive studies by Prinsen and van der Schoot [17,18] , and indeed it is
a subject of contemporary research (see e.g. Zhang et. al. [19]).

A second set of interesting observations, also taken from Lehmann’s book, is shown in
Fig.2. The calculation of the full set of allowable configurations subject to a particular set
of boundary conditions is obviously a formidable computational challenge, and in addition
involves considerable topological insight. Current attempts in this direction can be found
e.g. in Machon and Alexander [20].

Of particular interest to readers of the present volume is the fact that the first papers
on liquid crystals not to be written in German were written in Italian. This was as early
as 1901, and thus barely a decade after the first observations had been made. Claudio thus
bears the weight of a long-standing tradition. One of the papers in question was written
by the crystallographer and mineralogist Carlo Maria Viola (1855-1925). Viola [21] was
trying to use crystallographic rules to investigate the crystalline structure of liquid crystals.
The attempt was (of course!) unsuccessful, but he seems nevertheless to have succeeded
in having a street named after him in Rome.

The second paper is more interesting, both in terms of its scientific content and the
scientific pedigree involved. The author was Alessandro Amerio (1876-1965). I might
mention that although Amerio was writing his liquid crystal paper from Florence, the
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Figure 2: A portfolio of liquid crystal droplets, as seen through Lehmann’s microscope,
drwan from [16]. The colours are real, but added after the fact, as colour photography
had not yet ben invented. The patterns obviously represent different configurations within
the droplet, but the description of which configurations are permitted is a topic of current
research.

bulk of his career was spent at the Politecnico di Milano, where his laboratory (now much
celebrated) was located mere metres from where I am writing these words. Amerio’s
optical skills enabled him later to become perhaps the leading observational astronomer
in Italy. His son Luigi Amerio (1912-2004), whose name is likewise linked indissolubly
with the Politecnico di Milano, was a distinguished mathematician, known particularly
for his work in quasi-periodic functions.

The title of Amerio’s paper is Sui cristalli liquidi del Lehmann (On the liquid crystals
of the Lehmann). Anglophone readers will find the article unnatural, but some other
European languages are able to bestow eminence by the subtle insertion of a suitable
article. In modern terminology, the key result of Amerio’s work is that the transition
between the liquid crystalline and liquid phases involves latent heat. Amerio is clear that
something real is going on inside the materials over and above the fact that there is a
change in appearance. His final section, entitled General observations: are the liquids
crystalline or anisotropic?, gets to heart of the matter.

The contrast between anisotropic and crystalline liquids is interesting because Amerio,
unlike his contemporaries at that stage, finds himself constrained to make a distinction
between the two. Lehmann, by contrast, had in some sense bullied the German-speaking
scientific community precisely into not drawing this distinction. Depending on one’s view-
point, at that time, one either thought of Lehmann as a madman or as a prophet. Amerio
was thus on the right track, more than decade before Georges Friedel cracked the puzzle
of the structural basis of liquid crystals. I speculate that had he been encouraged to con-
tinue, he might well have made major contributions. That he wasn’t, is in part a function
of the fact that he was writing in Italian, and hence would not be read by mainstream
scientists, whether operating in German, French or English. There are some advantages
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to all scientific communications being in the same language, although it is not for me, as
a native English speaker, to comment on which this language ought to be.

We pass onto the French contribution to the liquid crystal story. Lehmann had visited
France and Switzerland in 1909 on an unashamed propaganda tour designed to interest his
colleagues across the Rhine in his new materials. I would guess that part of his motivation
involved the hope that the French would be more generous and more accepting of his ideas
than his German colleagues. Georges Friedel, then at the School of Mines in St Étienne,
and his younger colleague François Grandjean were only two of several to start work in
liquid crystals. In his early studies, Friedel distinguished ‘Liquides à noyaux ’ (or ‘a fils’ )
and ‘Liquides à focaux ’, or to us ‘liquids with centres/lines’ and ‘liquid with focal conics’.

It was only toward the end of the First World War (we are not sure when) that he
realised that the focal conic and bâtonnet structures were consistent with grain bound-
aries in layered materials, while the centres (Lehmann’s Kernpunkte) were points (or more
usually lines) where the special liquid crystal direction was undefined. All these consider-
ations were combined into book form [4] in what was actually a D.Sc. thesis (I translate
into Anglo-Saxon terminology). The thesis gave him a degree which qualified him for a
professorship at the University of Strasbourg, which had been returned to France at the
end of the 1914-18 war. Interestingly the key basic term ‘director’ – despite the fact that
the underlying concept is already implicit in all of Oseen’s and Zocher’s works in the 1930s
– is much later and seems to derive from Frank Leslie in the 1960s.

Friedel was much rooted in experiment, which is what made him doubt Lehmann’s
directional forces, which he regarded as mysticism. In some sense he was right; the direc-
tional forces were ill-defined. The Swedish theorist Carl Wilhelm Oseen (1879-1944), the
real creator of the continuum theory of liquid crystals, by contrast regarded an ill-defined
experimental concept as a challenge rather than an illogicality (see e.g. [22]). Thus when
explicitly asked by Oseen in 1930 what might be the molecular organisation in the ‘fils’
(i.e. in our language, on the defect line) in the nematic phase , Friedel replied that he had
no idea and he certainly didn’t have a mathematical formulation (see [2], p242).

I shall return below to this question, to which both I myself and Claudio have con-
tributed somewhat, below. For the moment, we merely note at this stage there was no
analogy with defects in solids. This is not least because the development of that theory
did not reach an equivalent stage for another 16 years. It is to this subject that we turn
in the next section.

3 Vito Volterra and dislocations

I anticipate slightly later parts of my story in order to justify my discussion of dislocation
theory. In the late 1950s, Charles Frank coined terms for defects in nematic liquid crystals
by drawing on analogy from the the theory of defects in solids. I want here to recapitulate
some of this story, by returning to development of the theory of dislocations, whose roots
are usually traced back to work by the distinguished Italian mathematician Vito Volterra
(1860-1940) in the early years of the last century. Volterra himself is of sufficient interest
that his intellectual story is worth a brief diversion.

3.1 Volterra and Italian mathematics

Vito Volterra (1860-1940) can justly be regarded as the most important Italian math-
ematician of the modern era. He has been the subject of numerous technical scientific
biographies in Italian (see e.g. [23]) and one recent major biography concentrating on his
human relationships [24] in English. This article concentrates on his foundational work
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in dislocations, but he was mathematician of many parts. In his early career he was the
doctoral student of Enrico Betti, whom we have already mentioned in connection with the
historical development of topology..

The polymathic nature of his abilities carries with it a less desirable side. Students
of Volterra’s mathematical papers rapidly observe the sheer power of his mathematical
analysis. Much of his work is not easy going, not even for a professional mathematician
a century or so forward from the time of writing. A further feature, which screens his
work from our easy perusal, is the change in mathematical notation since that period.
This change aids the intuition of the mathematically less able, although Volterra himself
was not at all challenged by the heavy mathematical formalism of the day. Remarkably,
however, when diverted to less technical matters, obituaries, for example, or essays on the
current status of some scientific area, or technical reports for the government, Volterra’s
prose adjusts to the needs of its audience. The technical gobbledygook is gone and replaced
by a model of clarity.

The mathematical sciences of the present day contain many references to Volterra’s
name. There are (different) Volterra processes in material science and in control theory,
as well as Volterra integral equations and integro-differential equations in the theory of
elastic media and indeed on the pages of every textbook on integral equations. The
Lotka-Volterra equations appear almost on the first page of any contemporary treatise on
theoretical ecology, sometimes disguised as the Volterra population equation. Elsewhere
we find Volterra systems, Volterra series, Volterra operators, Volterra kernels, Volterra
filters, Volterra spaces, and Volterra functionals. His astronomical work is celebrated by
the the Volterra crater in the northern hemisphere of the far side of the moon. His name
has even leaked out of the mathematical into the commercial world. For in London,
Volterra Consulting will (presumably for a suitably gigantic fee, although I have to admit
I have been too shy to ask) use mysterious quantitative methods to read the economic
runes and help you thereby to run your company.

Not only were Volterra’s professional contributions such as to place him in the scientific
forefront, but as a scientist, he became a public figure. In 1905 he was elected a life member
of the Italian Senate. He was elected a Foreign Member of the Royal Society of London
as early as 1910. During the Great War of 1914-18, his war work took him to England
(Italy was on the allied side in that war), and his organisational skills were used in balloon
manufacture. In 1931 he was (and remains!) distinguished for being one of only 12 senators
out of 1500 to have the courage to resist taking an oath of loyalty to Mussolini.

3.2 Distorsions and dislocations

Volterra’s work often had profound but unintended consequences. One such concerns
those discontinuities in crystal lattices which have come to be called dislocations. This
work dates initially from 1905. As the reader will be aware, in 1905, neither the fact that
most solids are built up from regular arrays of atoms (i.e. the lattice theory of crystals),
nor the connection between the regular facets of observable crystals and the lattice theory
of solids, had been established.

The definitive experiments proving the structure of crystals are due to von Laue and
the Braggs, father and son, and in 1905 were still eight years into the future. Even the
atomic nature of matter required Einstein’s famous insight into Brownian motion, and
Perrin’s subsequent experiment, rather than the mere spatial imagination of chemists.
And in any case, Volterra was a mathematician with interests in continuum mechanics.
There is no record of him pursuing mechanics at molecular length scales.

Nevertheless, curiously, there is an intellectual route leading directly from Volterra’s
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purely macroscopic studies of elastic continua, to the current profound understanding of
the molecular properties of materials. The observational key to the transfer of Volterra’s
ideas from everyday to atomic length scales lay thirty years ahead. The puzzle concerned
the flow of elastic solids when subject to extreme tension. In that sense Volterra’s most
enduring legacy to this kind of elasticity lay in the field of ‘soft solids’. But at what point
does a soft solid become a hard liquid? This is a question impossible to answer precisely.
All we can say is that, in a sense, both of these contributions have been fruitful in the
interregnum where the formal theory of elasticity has given out, but that of hydrodynamics
does not yet hold sway.

But all this was far from Volterra’s mind when, around 1904, he began to consider
the properties of elastic materials in multiply-connected bodies. The echo between these
studies and the pure mathematical considerations of Betti on how such mutiple connections
can be classified will be clear.

The property of connectedness in a region of space is much considered by pure mathe-
maticians and geometers. Let us briefly review the key ideas (I apologise to those already
familiar!). A region is simply connected if any closed curve or surface inside it can be
smoothly shrunk to a point. An example would be the inside of a sphere. A multiply con-
nected region does not share this property. The simplest example is the inside of a donut
(known as a torus to mathematicians). In this case a closed curve stretching around the
axis of the donut is unshrinkable. The study and classification of such objects is known
as topology. Topologists can divide all closed regions into classes, depending, roughly
speaking, on how many holes or handles the region encompasses.

The initiating step in Volterra’s study seems to have been a paper in 1901 [25] by the
prominent, if rather elderly, German geometer Julius Weingarten (1836-1908). Weingarten
at this time was in retirement from his job in Berlin and living in Freiburg-im-Breisgau,
teaching part-time at the university, and (presumably) sharing its research ethos. He was
a specialist in the geometric study of surfaces and his (rather short) paper was concerned
with surfaces of discontinuity in elastic theory. Weingarten spotted that if the region was
multiply connected something peculiar happens to elastic theory.

Weingarten published in an Italian journal because in 1899 he had been elected as
a Foreign Member of the Accademia Lincei, the Italian equivalent of the Royal Society.,
and this paper was read in Rome when the award was bestowed upon him. Volterra’s
attention was drawn to Weingarten’s paper. We know that he had some doubts over some
of Weingarten’s points. Moreover, Volterra realized that the four pages devoted to the
subject by Weingarten were insufficient to do the subject justice. And thus started his
researches in this area.

The peculiar elastic effect noticed by Weingarten concerned the internal state of stress
and strain within a body. To understand Weingarten’s point, we need first to ask what
would not be peculiar. What is not peculiar (i.e. consistent with intuition) is that if we
take a solid with free surfaces (and therefore subject to no external forces), then inside the
body each macroscopic point will go to its favourite point, that the favourite point will be
unique, and implicitly there will be no particle displacement. No displacement means no
strain inside the body, and from elastic theory, no strain means no stress.

Now, if we put some forces on the outside of the body (i.e. external forces), then
the elastic nature of the material transmits the forces to the inside of the body. The
articulation of the forces inside the body is that the stress tensor is non-zero. Non-zero
stresses imply non-zero strains, and non-zero strains can be integrated to determine the
local (unique) local displacement. The story is clear and unambiguous. External forces
imply displacements and vice-versa, whereas no external forces imply no displacements
and vice-versa.
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But Weingarten found that if the body is multiply-connected this no longer holds. And
once Weingarten had, so to speak, introduced a new ball into the game, Volterra picked
it up and ran with it. What Weingarten found, and Volterra elaborated in great detail,
was that a multiply connected body could sustain internal stresses and strains without any
external force being applied.

Once one thinks about it, this is not so surprising. Volterra’s explanation was a model
of clarity. Consider a cylinder. A nice ordinary cylinder, with no holes in it, and thus no
problems with connectedness. All particles in their proper places. Now, cut out a tiny
hole along the axis. Not a big hole, only one just large enough for the body no longer
to be simply connected. (In modern physics, we call this a short-range cut-off. It is a
common trick in continuum mechanics nowadays, to avoid singularities in the continuum
theory which are not there in an underlying molecular theory. But in Volterra’s time, it
was new. And if in doubt, it was fine to cut out a big hole, not a microscopically small
one. )

But we are not done yet. There were no stresses and strains before, and all we have
done is to cut out a hole in the middle. So still no stresses and strains, and still no
displacements. But now Volterra does something new. Next he cuts out a small slice, all
the way from the hole in the middle to the outside of the cylinder. Then he throws it away.
Still no stresses, still no strains, still no displacement. And now he takes what is left, pulls
it so that the cylinder is closed again (apart from the hole in the middle). And then he
glues it together (see Fig. 3). Glues it so that no-one could know that he ever cut the
material in the first place, glues it so that the elastic properties are the same everywhere,
even along the join, glues it so that we don’t realize that we were ever using glue. You can’t
do this in practise, of course, but this (at least to begin with) was a gedanken experiment,
the type theorists do, the type that exists in the mind of the beholder.

Now what happens? There were some surface forces, when we were pulling the cylinder
closed. But now we have glued the cylinder together. The external forces have gone; now
there are only internal forces. But in order to close the cylinder, we had to move some
points – in fact we probably had to move them all. So now we have a body with no external
forces, but still it has internal stresses, internal strains and internal displacements, which
depend, at least partly, on the way in which we glued the cylinder together.

Figure 3: Example of a Volterra cut. The dotted lines are then glued together, leaving a
multiply connected region.

So the peculiar elasticity is not so peculiar after all. The cuts and the gluing are like
the constructions, so beloved of Euclid, introduced to help him demonstrate the truth of
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an apparently ridiculous hypothesis. You need them in the middle of the argument, but at
the beginning and at the end they are superfluous. And this construction will in material
science forever be associated with Volterra’s name: it is the Volterra process; making a
Volterra cut with a Volterra knife.

But then, on further examination, it turns out that the elasticity theory is peculiar.
In usual elastic problems, if you integrate the strain from one point to another, you get
the relative displacement of the points as a result of the stress field. And if you integrate
the strain round a closed circuit, you get back to where you started, and (of course! ) the
relative displacement of a point with respect to itself is zero. But here, because of the way
that the strain fields have been set up, if you integrate round a circuit which includes the
hole, you don’t get back to where you started. You get back to where you started, minus
the initial displacement you made when you cut and glued.

And if you don’t get back to where you started, either the displacement is not a unique
solution of the equations (polydrome in Volterra’s language), or the displacement field is
discontinuous across a cut made somewhere from the hole to the outside. Either one,
or the other (you can choose whichever you prefer; they are mathematically equivalent).
But neither is quite what one expects in a well-behaved theory. Whenever you get this
phenomenon, Volterra says you have una distorsione (in Italian) or une distorsion (in
French).

It turned out that all this is not quite as unexpected as one might think, and follows
from the mathematical analogies between field theories for fluids, solids and electromag-
netism. If you invent a magnetic scalar potential you get something like this when you go
round a circuit along a line of force. And in a fluid, you can get a state of constant flow
in an annulus, even without forces to push the fluid, as pointed out by Lamb [26] in his
classic book on hydrodynamics.

Volterra presented this work originally in Italian in the Proceedings of Accademia
Lincei in a series of papers appearing in rapid succession in 1905 [27]. They were translated
with little change into French [28] (and therefore accessible to a much wider readership) in
1907, and published, together with some new material, in the Annals of the École Normale
Supérieure. The exposition is long and detailed. It is not helped by the fact that Volterra
does not always use the modern suffix notation; this notation, employed by Einstein in his
work on General Relativity, and by all modern workers in continuum mechanics, allows the
genius of Volterra (or Rayleigh, Maxwell, etc.) to be reproduced by the merely talented.

The length of the exposition is also partly explained by the need to consider system-
atically different kinds of distortion, i.e. different ways of gluing together the cut after
the material has been cut out. Each involves a different kind of solution for the internal
stresses and strains. A diagram showing the different types of distortion (Volterra called

them ‘distortions of the nth order’) can be found in Fig. 4, taken from the book on
the subject started by Vito Volterra in 1938 [29], but only finished by his son Enrico in
1960. There were originally six non-trivially different types of distortion, though by clever
argument, Volterra was able to prove the equivalence of some of these types.

Volterra was sufficiently excited by the possibilities inherent in his work that he en-
couraged a number of experimentalists to build apparatus to test his results. In the 1907
paper in French, he reports work by a Dr. Rolla, from the Physics Department at the
University of Genoa. The internal strains would manifest themselves by optical anisotropy,
and so a birefringence experiment should be able to detect them. Photographs of Rolla’s
apparatus (6cm tall, 5cm outer radius, 2 cm inner radius) are presented in the paper, and
the theory is declared confirmed.

I leave aside some other details of the original papers in order to pursue the later
history of the subject. The paper aroused considerable interest (partly perhaps a ripple
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Figure 4: Distorsioni of orders 1 to 6 (from Volterra and Volterra [29]).

effect due to Volterra’s own high prestige), and set off quite a little Italian cottage industry.
Already the 1907 paper reports parallel work on the same subject in a 1905 Göttingen
thesis by Timpe∗. There were also papers by Cesàro, Maggi, Corbino, Trabacchi, as well
as several by Colonnetti and Volterra’s distinguished close colleague Carlo Somigliana.

Perhaps it was these papers, or perhaps, more likely, it was Volterra’s visit to England
in the course of war work in 1917 or 1918, that attracted the interest of the English
mathematician A.E.H. Love to his distortions. Love, it will be recalled, was (perhaps one
should rather say is) the author of the Great Standard Work on elasticity [30]. Love was in
the process of revising his famous treatise. When the new edition finally appeared, in 1927,
it included an entirely new section entitled “Volterra’s theory of dislocations”. Apparently
arbitrarily, and with a light apology, Love, in his own words, “rendered (distorsioni) into
English as dislocations”. Why this apparently deliberate mistranslation? Perhaps it was
that “distorsione” is the opposite of ‘torsione”, and although there is a torsion in English,
there is only a distort ion, which is not quite the contrary concept. But one thing we do
know, which is that Love’s book is replete with distortions of one sort or another. Perhaps
this extra distortion would simply have been a twist too far. And, of course, for the liquid
crystal world, the linguistic translocation is a happy one, for we (like Volterra’s Italian
colleague Alessandro Amerio) draw a real distinction between dislocation and distortion.

3.3 Dislocation physics

Whatever the reason for coining the new term, it stuck, and thenceforth dislocations
it was. Now, the presence of one’s own private section in Love’s book is akin to the
elevation to Olympus of an ordinary mortal. The work achieves biblical status, and with
it the uncritical acclaim that goes with that status. And so, when in a different field
with different antecedents, there was a coincidence of interests that required a renewed
examination of the distorsioni, then the field of dislocation physics was born.

Dislocation physics, as we understand it, now almost a hundred years on, involves

∗Folk-history tends to report this work as 1905, but Volterra’s work as occurring only later in 1907, but
Folk-historians tend not to read either Italian or German, and so Timpe’s work tends to remain unread.
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microscopic scales and irregularities in the crystal lattice. The evidence, as opposed merely
to the suspicion, that the fundamental particles in a crystal are arranged in a regular
lattice, comes from X-ray scattering experiments [31,32] carried out in 1912-13.

For what it is worth, the suspicion is much older, and goes back, at least, to the French
crystallographer René-Just Haüy (1743-1822)]. Likewise chemists, from Dalton onward,
constructed a whole edifice of explanation requiring real molecular shapes, and hence real
atoms, which also provided circumstantial evidence for the lattice theory of solids (for a
discussion of some of these issues, see e.g. [33]).

Once the lattice structure had been established, it took some time for the implications
to sink in. One question concerns the temperature at which the forces between the atoms
are no longer strong enough to hold the lattice together. This would explain the melting
temperature. A second question concerns how hard you have to pull in order for this
to happen. This is the so-called yield stress S. A rough estimate, due to the Russian
physicist Yacov Frenkel (1894-1952) [34], suggests that this should be of the order of
the elastic modulus, which is itself the ratio of the stress to the strain (a stress has the
dimensions of pressure = force per unit area). If the strain is of order unity, then atoms are
roughly twice as far apart as they should be, and at twice as far apart, so the argument
goes, the crystal should fall apart. And although when this is the case, the stress will
no longer be responding linearly to the strain, the linear rule should give an order of
magnitude estimate.

It soon became clear that this estimate for the yield strength in metals was way too
high, perhaps by two orders of magnitude or more. The Frenkel estimate (technically of
the theoretical shear limit, which occurs when you try to set the crystal into shear flow,
rather than pull it apart by brute force, but the idea is the same). A shear field in a solid
creates stresses which in a fluid would cause shear flow, but in a solid usually only cause
a shear distortion. This distortion involves the first stage of slicing a material apart.

Now some materials are easily sheared apart but only yield under tension with dif-
ficulty. In other materials it is exactly the opposite. The estimate could be out by a
considerable factor and still not perturb our theoretical understanding, precisely because
it is just an estimate. But not more than two orders of magnitude wrong. The näıve
picture of crystal breakdown, in which the lattice is literally torn apart, must be wrong.
This observation was coupled with a further observation that when the crystal did slide,
it did so not smoothly, but in a series of little jumps.

Speculations as to why this might be were made in 1929 by the German theoretical
physicist Ulrich Dehlinger (1901-83) [35]. Dehlinger realized that in a shear field one layer
of the crystal must slide by the next, periodically getting stuck when the crystal is well-
ordered. He pictured this in terms of little hooks (Verhakungen) on one crystal plane
which grabbed hold of the next plane, only to let go again when the sliding force became
large enough again. But the real puzzle was why the shear force must be concentrated in
some places in such a way that it could yield locally, and hence globally by a series of little
slips.

The key idea was presented in three almost simultaneous papers in 1934 by the English
physicist G.I. Taylor (1886-1975) [36], and the Hungarian chemists Egon Orowan (1901-
89) [37] and Michael Polanyi (1891-1976) [38]. In Material Science, the story so far is
regarded as the prehistory of dislocations. The history, as properly understood, starts
with Taylor (later Sir Geoffrey, and the doyen of British fluid mechanics), Orowan (who
later emigrated to the U.K., and then in 1950 to the U.S., subsequently finishing his
career at M.I.T.) and Polanyi (who in 1934 had just arrived in Manchester, and later
had a distinguished career as a philosopher of science). All three contributions identified
irregularities in the crystal lattice as the fundamental elements of the solution.
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The idea was that inside a crystal there are regions where the lattice changes its point
of reference. All three papers identify lines along which an extra row of atoms is introduced
into the lattice, shown in Fig. 5.

b 

Figure 5: An edge dislocation, showing the Burgers circuit and Burgers vector b, the
glide plane, and the extra plane of atoms above the dislocation. Atoms are blue circles,
and the dislocation itself is shown as a red square. The edge dislocation corresponds to a
distorsione of order 6 in Fig. 4. The Burgers vector and circuit is discussed in more detail
in Section 4 below.

So now, in most of the crystal the lattice is regular and well-behaved, apart, maybe,
from a little strain, which you detect by a departure of the regular crystal cell from its
proper shape. In this case you take a circuit in the lattice: n atoms to the left, m atoms
up, n atoms to the right, and finally m atoms down again. Where do you finish up? Back
where you started, of course.

But if your circuit contains the line where you have added the extra row of atoms,
you don’t finish up where you started. You finish up one atom to the right. G.I. Taylor
recognized what was going on; he knew his Love, he was familiar with the new section on
Volterra’s dislocations, and in any case he had met Volterra during the first world war.
Taylor, unlike Polanyi and Orowan, cited Volterra, explaining that Volterra’s mathematics
held the key to understanding these new objects.

The full microscopic mathematical formalism was provided by the Dutch theoretical
physicist Johannes Martinus Burgers (1895-1981) [39,40]. Burgers borrowed copiously (as
he openly recorded in later life to those who might have mistaken – indeed, did mistake
– the required mathematical virtuosity for his own). The key element in mapping the
Volterra theory onto the molecular problem is the cutting-out process. Because the lattice
must match everywhere away from the dislocation line, only certain kinds of cuts can be
made before the Volterra gluing begins.

There are different kinds of possible processes, corresponding to Volterra’s distorsioni
of different order, or associated with different vectors which occur on making a circuit.
Thus we get different kinds of dislocation – the edge dislocation is the one appearing in
Taylor’s seminal 1934 paper, whereas Burgers also introduced the screw dislocation, in
which the vector shift on one circuit is parallel to the dislocation line.

And then, almost within the blink of an eye, dislocations were everywhere in material
science. They explain work-hardening, in which the yield strength increases after bashing
the material around a bit, because (roughly speaking) the dislocations become entangled,
and the crystal lattice gets stuck. And they explain crystal growth from the melt [41],
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because the there is always a spare misaligned layer at the crystal-melt interface for the
new atoms to attach to. Then it was realized that some old puzzling micrographs by
Menzies and Sloat [42] could easily be understood in terms of dislocations; they were
staring us literally in the eye, but we couldn’t see.

Nowadays, the study of dislocations is a central part of all undergraduate materials
science courses, leaking out into physics as well. All the standard textbooks, at least
all those who dare subject their readers to more than Mickey Mouse mathematics, lean
heavily on the treatment provided by Volterra to the readers of the Annales de l’École
Normale Supérieure. In geophysics too, the study of dislocation stress fields is central to
the understanding of earthquake genesis and dynamics.

And what of Volterra’s original distorsioni? Burgers’s application of Volterra’s theory
came just too late for Volterra to have a chance of perusing it (or indeed, pursuing it) in
his lifetime. Perhaps these new microscopic distorsioni would have excited his imagination
in new directions. In their book on the subject [29], Enrico Volterra is in two minds. On
the one hand it is clear that he shares some of what would have been his father’s pride at
the extensive application of his ideas in this new scientific area. On the other hand these
are no longer their distortions, but something else. Enrico is more interested in other
applications, particularly in his own speciality of civil engineering. Arches, he points out,
are primitive examples of non-simply connected structures which are maintained in a state
of stress without external forces. The well-known stability of arches is a consequence just
of distortion theory.

But whether there are extensive applications or not of the dislocation ideas in their
original form, it is in their new microscopic guise that the concept has blossomed and
flourished. It is yet another example of how good ideas in science can be used opportunis-
tically and unexpectedly to build a better overall understanding of the world in which we
live.

4 Sir Charles Frank and disclinations

It was Charles Frank who, in an article published in 1951 entitled ‘Crystal dislocations:
Elementary concepts and definitions’ [43] finally drew the various ideas together. Fig.5
shows a circuit around the crystal defect line consisting of n steps up and down, and m
steps to the left and right. The anomalous nature of the crystal defect is articulated in the
fact that one does not return to the original position, and an extra vector b is required to
close the circuit. It was this vector (which had rather been defined by a triad of lattice
steps by Burgers) which Frank labelled as the Burgers vector.

Frank was extremely well-known in the material science field. Jacques Friedel in his
memoirs [44] went so far as to claim that so high was the quality of his work that he had
been unjustly denied a Nobel PrIze. Space prevents us from exploring his career in this
area. From his interest in hard solids came also an interest in softer solids (the Bristol
polymer group was a fruit of this interest), and hence also in liquid crystals.

In 1958 Frank was invited to introduce a Faraday Discussion meeting in Leeds on
liquid crystals and macromolecular systems. The resulting article [45] recapitulated points
made by Oseen in a similar Discussion Meeting in London in 1933. The article sets out,
with Frank’s usual clarity, his view of the continuum theory of liquid crystals. This was
essentially invented by Oseen in the 1920s (see e.g. [22]), but not completed until Frank
Leslie’s formulation of the Ericksen-Leslie theory in 1968 [46]. It also, significantly for our
purpose here, adumbrated types of nematic defect, as shown in Fig. 6.

Frank’s nomenclature of ‘disinclination’ was a deliberate analogy with dislocation.
For just as a dislocation involved going round a circuit and finding oneself, as it were,
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Figure 6: Frank’s sketches of nematic liquid crystal defect lines (from [45]), labelled by
winding number. He drew an immediate analogy between what he called ‘disinclinations’
and the dislocation theories which he had been developing in the decade preceding his
famous 1958 paper.

somewhere else, likewise Frank thought of a disinclination as going round a circuit and
finding oneself pointing, at least in some sense, “somewhere else”. With the benefit of
hindsight, we can notice what we might think of as ‘folk homology’. Frank correctly notices
that some disinclinations can be distorted into others (are we not glad that Love abolished
distortion from the solid defect literature!), his classification is incomplete because actually
all index ±1

2 defect lines are equivalent, in the sense that they can be deformed into each
other.

I have told the curious tale of the linguistic distortion of the disinclinations else-
where [1], but it is sufficently amusing that it bears repetition. In 1969, Jacques Friedel
and Pierre-Gilles De Gennes (what a powerful combination!) published a paper in the
Comptes Rendus de I’Académie des Sciences entitled Boucles de Disclination dans les
Cristaux Liquides’ (Disclination loops in liquid crystals). Well, the article was in French,
there is no translation of the neologism ‘disinclination’, so maybe this was just a piece
of imaginative translation. But at roughly the same time an article in the Journal de
Physique from the Orsay Liquid Crystal Group (these were revolutionary times, remem-
ber, and to avoid the cult of personality we all publish under a group pseudonym) [47],
was referring to dèsinclinaisons. But in the very next paper in the same journal Kléman
and Friedel [48] were referring to disinclinaisons. The following year, Kléman, this time
in collaboration with Yves Bouligand [49] in the same journal, and again publishing in
French, was still referring to disinclinaisons. But now he was constrained to provide an
abstract also in English, and his English translation is.... ‘disclination’. And disclination
it seems to have remained. Some time ago, I asked Maurice Kléman about this important
terminological question. He thought for a moment, searched back long in his memory,
hummed and hawed a bit, finally dredging up an uncertain:

“ I think it was de Gennes who said he was disinclined to be disinclined.”
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5 Some more modern developments, including some con-
cerning the Zannoni group

I want to pass to more recent developments which involve defects in nematic liquid crystals.
My main topic here concerns defect cores in nematic liquid crystals, specifically point
defects. However, I note that the Bologna group has also made significant progress in
understanding liquid crystals in porous media. It turns out that such media, at sufficiently
low temperatures, are threaded through with frozen disclination lines [50–54] which destroy
the long-range order and seem to govern all sorts of macroscopic properties. As I have
a competing (if somewhat similar) model [55, 56], I am particularly interested to know
whether there is a simple mapping between the two pictures. It is of some serendipitous
interest that these porpous media seem to be the only systems which actually stabilise,
from a thermodynamic point of view, nematic disclination lines. However, the ubiquity of
the disclination lines is apparent, not only from the pictures taken between crossed polars,
but because of the turbidity of the nematic phase (although this may also be a thermal
fluctuation effect).

I first give some cultural background. As is well-known, there are two key static theories
of nematic liquid crystals at length scales larger than the molecular. The continuum
version is that due to Oseen (see e.g. [22]), as rephrased by Frank [45]. This uses the
director n̂ as the key quantity. The other is due to de Gennes [57], and is in the spirit of
Landau, and is a kind of mesoscopic theory apprpriate on scales between the molecular
and the macroscopic. This expresses the free energy in terms of what we now call the
Q-tensor Qij (and what de Gennes called the Saupe ordering matrix).

They must in some sense (where we leave the meaning of in some sense fluid!) be
equivalent. In recent years real mathematicians have been busy going from Frank to de
Gennes, taking limits (correctly) in a manner only analysts can, and normal human beings
(the present author claiming for the present purposes to be in the latter category) cannot
(see e.g. [58] for a more complete description). Nevertheless in the early 1980s with my
post-doctoral colleague Poniewierski, I was foolish enough to attempt to construct a pro-
cedure which passed from one model to the other [59]. Our paper contains a mathematical
blunder, rapidly (and tactfully!) pointed out by Lech Longa and Rainer Trebin [60], who
in any case approached the problem from a more sophisticated mathematical angle. A
corollary of our approach was the identification of extra terms in the free energy of a
uniaxial nematic which coupled to biaxiality, and in particular induced biaxiality in a
non-uniform nematic.

Eager to demonstrate that our approach was not mere head-in-the-clouds-theorism,
we sought an example where inhomogeneity was obligatory. The obvious example was a
disclination line. The final section of our paper was thus devoted to calculating the induced
biaxiality in the outer reaches, so to speak, of a wedge disclination, using a perturbation
theory starting with the Frank solution. The inner core, where everything went haywire,
was obviously outside the perturbation limit, and (like Georges Friedel, of whom I had
at that time not heard) I expressed no opinion. The natural language, it seemd to me
to describe the departure of the Q-tensor from its uniaxial form seemed to me to be a
magnitude, and a set of directions, i.e.

Qij =
1

2
S (3ninj − δij) +B (lilj −mimj) , (1)

where S is the nematic order parameter we know and love, n̂ the director calculated in the
usual way neglecting any biaxiality, and the newer quantities B is the degree of biaxiality,
and l̂, m̂ = n̂ × l̂ are now the principal axes defining the biaxiality. So the question was,
what happened to the biaxial markers as one approached the disclination line?
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The further question of what happens inside the core of the disclination was too com-
plicated, not least because once we get there, the nematic director n̂ is no longer defined.
It was only after I arrived for a sabbatical period in Grenoble in early 1987 and started
to talk to Nils Schopohl that the next step became obvious. Schopohl had experience in
superconductivity, but none in liquid crystals. He could also write code much better than
me. And he asked why I had to use the biaxiality and not the fundamental Q-tensor to
do the calculations. I explained that my intuition worked in biaxiality but not with the
Q-tensor (it wasn’t a ‘Q-tensor’ yet, but never mind). Schopohl suggested that maybe it
was my intuition that was lacking and not the mathematics. So we began to calculate,
using the Landau-de Gennes approach, expressing our results for the disclination core in
terms of energy densities and Q-tensor eigenvalues, rather than degrees of biaxiality.

In the end we published two papers on this work. One dealt with disclination lines [61].
There had been speculations that the core might be isotropic, and our results suggested
that while this was sort of right, in detail it wasn’t, and inside the core the Q-tensor had
two positive eigenvalues and one negative (as opposed to in the bulk, where it was two
negative and one positive). The core line could be identified with a line on which the two
positive eigenvalues were equal, and the core region was bounded by a tube along which
one eigenvalue of Q is zero (also see [62] for a mathematical proof of this statement, my
only paper with a proof in it!).

The second paper concerned the structure of the hedgehog point defect [63]. We placed
the hedgehog inside a sphere with radial boundary conditions. My three-dimensional
intuition (i.e. closing my eyes and looking: my version of homotopy) was that there would
be a disclination ring somewhere, thus breaking the spherical symmetry. But try as we
might, the spherical symmetry remained uncompromisingly firm. Even when relaxing
the solution from an initial ring-like configuration, the ring dissolved leaving not even
the grin of Cheshire cat. So eventually we gave up, and solved a (much easier) radial
equation instead. To compensate for the lack of disclination ring, we investigated magnetic
hedgehogs and found a difference in the power law behaviour of the order parameter near
the origin. Once again it was Trebin [64] who was able to show that at least under
some circumstances we must have been in error. I was more than a little disappointed.
Interestingly, it was only more than a decade later that Mkaddem and Gartland [65]
showed that both configurations are possible. Perhaps we made no specific computational
error, other than look in the wrong part of phase space.

Let me now pass to computer simulation checks of these results using more microscopic
models. In 1993 Hudson and Larsen [66] studied a line defect of a hard-particle liquid
crystal, using the Monte Carlo method, and found a structure consistent with that we
predicted. Somewhat earlier I was able to obtain funds for a joint project with Claudio’s
group to investigate the structure of the nematic hedgehog. We used the Lebwohl-Lasher
lattice model. The interesting result [67], from my point of view, was that if one took a
spherical average over all configurations, our 1988 result was confirmed, but that a detailed
examination of the instantaneous configuration, it was clear that the symmetry was broken
and there was indeed a defect ring, as expected from Trebin’s work [64].

At about that time the subject took off somewhat. In 2000, Claudio and colleagues
organised an meeting in Erice entitled ‘Defects in liquid crystals, computer simulations,
theory and experiments’, the contents of which were published as a book [68]. Among
many interesting articles were several reports from the Bologna group simulating defect
properties and behaviour [69]. The subject has attracted further interest because of the
interactions between point defects in a nematic colloid and the colloidal particles them-
selves (see e.g. [70]), and the existence of knotted disclinations acting a kind of glue holding
colloidal particles together in this context. Unfortunately, we cannot do justice to recent
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progress, save to observe that the Bologna group has been very active [71–75]. As a final
postscript, given the renewed interest in biaxial liquid crystals [76] we mention very recent
work from the Bologna group on the structure of droplets of nematics which consist of
molecularly biaxial particles [77] . This shows that the core size seems to increase as a
function of the biaxiality of the molecules, although the precise implicaitons of this are
not clear at the moment.

6 Personal matters

I first came across the name ‘Claudio Zannoni’ several years before we met. The story
is somewhat contorted and bears retelling. Between 1978 and 1981 I was a postdoctoral
fellow with Bob Evans in the physics department at the University of Bristol. The project
involved calculating structure factors in simple liquids consisting of spherical molecules.
We were using the perturbation theory which had relatively recently been developed by
Weeks, Chandler and Anderson [78]. The structure factors in question were calculated
using the direct correlation function, an at first rather mysterious quantity first posited on
heuristic grounds in 1914 by Ornstein and Zernike [79] . It turns out that the mysterious
and difficult-to-calculate direct correlation functions are functional derivatives of the free
energy, a mathematical relation which much impressed the interviewing panel when I came
some years later to be interviewed in the Mathematics Department at the University of
Southampton. In reciprocal space, they are also, more or less, functional inverses of the
observable structure factor.

My part in the calculation involved some rather heavy computing, which in those days,
meant spending long hours into the night printing large number of punched cards. The
previous postdoc on the project had departed for Germany, leaving some code which didn’t
work unless you applied some kind of fix. It was something to do with convergence, and I
knew that we were going to consider binary fluids, I rewrote the code to include the general
case of an n-component fluid, and optimistically sent the cards off for processing. Older
(er... more senior) colleagues will remember the card-writing and card-reading machines,
which were not 100% reliable. The idea was that the computer compiled your cards, gave
you a printout, as well as a a traceback to the bug in your code. As it turned out, the
creator of the cards was much less than 100% reliable as well.

The first night my code didn’t work. Nor did it work after a week, nor after a month,
and truth to tell, nor after a year. There wasn’t an established method to explain what
I was doing wrong, and, well, I have to admit that probably it was in some considerable
degree my lack of talent. I know now, I tell all my students and junior colleagues. You
start with a simple program and make it work. Then you complicate. Your code may be
ugly and not optimised, but you’ll get there. All this printing out, and running between
buildings and having to work in the middle of the night surely didn’t help. But my biggest
error was that of the theoretician and specifically, that of the mathematician. I tried to
make the particular a special case of the general, whereas I should have generalised the
particular.

The result of my failure was that my mind wandered. Moments of the direct correlation
function yielded the coefficient of the gradient-squared term (i.e. of the (∇ρ)2) in a free
energy description of an inhomogeneous fluid. The then 22-year-old Margarida Telo da
Gama, who was Bob Evans’s new graduate student (I think I have remembered this right),
was using this to calculate surface tensions in terms of molecular parameters. So I became
interested in surface properties, first of ionic fluids, and then of simple fluids consisting of
diatomic molecules.

The specific motor of my interest in molecular fluids (I have told part of this story
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before in the pages of ‘Liquid Crystals’) was the arrival, some time in early 1979, of two
new books in the Bristol physics library. The books were brightly-coloured, hard-backed
and large-sized.

The first of the books was yellow and was entitled The Physics of Liquid Crystals and
was by Pierre-Gilles de Gennes [80], whose work in magnetism I was already familiar with.
The second was light green, was wrapped in cellophane, and was entitled The molecular
physics of liquid crystals. It turned out to be an edited compendium of tutorial papers by
two chemists with whose names I was not at all familiar: G.R. Luckhurst of the University
of Southampton and G.W. Gray of the University of Hull [81].

The paper of both books was smooth and virginal. Also, and I am sure that this was a
contributory factor, given that I had (by now...) abjured stronger stuff, they smelt great.
The misadventures in the project that was paying me allowed me to give myself permission
to explore. From them I learnt about the basics of liquid crystal physics. I know that the
Luckhurst-Gray book was the edited proceedings of a 1977 summer school in Cambridge
and that many of the participants were scarcely older than me. But somehow I missed it in
the search for an order parameter which would describe the surface order in the molecular
fluids.

I wanted to know whether the Nitrogen or Oxygen molecules would stick up at the
surface, or lie flat. Chapter 3 of the Luckhurst-Gray book had a long and detailed chapter
on liquid crystalline order parameters by an obviously distinguished and mature scientist
by the name of Zannoni [82]. de Gennes told me about what he called the Saupe ordering
matrix, and Zannoni’s chapter gave a more comprehensive exposition.

I will omit what happened to my doomed computer code, and also the details of
molecular ordering at the surface of simple molecular fluids, which readers can look up
themselves. They may, however, also be interested in another personal detail. The Bristol
theoretical physics group had a powerful pedigree. Between 1933 and 1954 the guiding
spirit had been N.F. Mott, and in the late 1940s one of his research students had been
Jacques Friedel. The head of department at the time I was there was J.M. Ziman, whose
work in solid state physics had been legendary, but who at the time was begining to move
toward the sociology of science. Mott had hired Charles Frank, following his distinguished
war work. It was an amzing hire, and Frank went on to an extremely distinguished career
in material science with (as we have seen) contributions in particular to dislocations in
solids, although actually he was a polymath. Of the members of the solid state group when
I was there, the Hungarian emigré Balazs Györffy was a one of the leading band theorists
in the UK, Bob Evans was later to become FRS for his work in liquid-state physics, while
Michael Berry (first FRS and then also knighted) is known the world over for his work on
optical structures.

At the time I arrived (in September 1978), Frank had recently retired. By reputation
he was a daunting intellectual figure, and one who did not suffer fools gladly. I have to
say that in all my interactions with him, he was nothing but polite and not in the least
frightening. On his retirement, he had been relegated to a small office just across the
corridor from that which I shared with two other postdocs. I am not known as a shrinking
violet, but I have to report that the boom of Sir Charles’s voice reached from one end of
a very long corrridor to the other. He had a slight limp, and seemed very old; very very
old. It is with some shame that I can report that at the time of my arrival in Bristol he
was actually almost exactly the same age as I am now.

Sir Charles seemed to be a figure from another era. His only teaching work involved
final year projects, in which the student had to discuss/interpret/translate papers from
French or German. His German dated from his time as a postdoc, just before the war, in
the laboratory of Peter Debye in Berlin. Indeed his first (somewhat unsuccessful) liquid
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crystal paper is in German and dates from that period [83]. He would accompany the
other members of the group to lunch. It was not only the volume of his utterances which
struck one. His clipped upper class tones are now almost extinct and the pipe on which
he ostentatiously and continuously sucked would now be forbidden. And there was an
interesting asymmetry in the form of his interaction with colleagues. They addressed
him as ‘Charles’, by his first name, as they did each other, for anything else would have
been unnatural, and ‘Sir Charles’ would have been excessively unctuous. But Sir Charles
grew up in a period in which first name address implied great intimacy. In his youth
one addressed one’s peers by their surnames. To use a prefix: ‘Mr.’, ‘Dr.’ and so forth,
indicated a degree of distance. And so it remained; his juniors using their customary form
of intimate address, and he, while not objecting formally, indicating their status by the
use of surnames.

I will fast forward to my appointment in the Mathematics Department in Southampton.
At my interview in June 1981, they had asked me whether there would be anyone in the
university outside Mathematics with whom I could collaborate. Spurred by the Beautiful
Big Green Book (BBBG), I mentioned Geoffrey Luckhurst in Chemistry. For various
reasons, some good, some not so good, it took several months for me to make contact
with Geoffrey. As a point of interest, in early 1982 there had been a copy of the BBBG in
the Southampton University library, but when a year or so later, I wanted to consult it, I
found that someone had stolen it ! In our day, when copyright law seems fluid and everyone
is consulting a site-that-cannot-be named in Central Asia, even the idea of stealing a book
seems rather unlikely. When in 2011, there was outbreak of rioting in London and a
shopping centre was first looted and then burnt down, the one venue left untouched by
the stuff-luvvin yoof was, yes you guessed it, the bookshop.

I hadn’t quite realised that Claudio was an alumnus of the Luckhurst group. Geoffrey’s
tutoring has spawned a good number of professors in universities across the world. But
my first awareness that Claudio was one of us came from an unlikely source. In the early
1980s British politics was in ferment. The Labour Party had lost the British general
election in 1979, and been replaced by Mrs Thatcher’s Conservatives. As we all know Mrs
T was a tough cookie, and she was shifting Britian to the right. Many of the unspoken
assumptions of the British post-war political consensus were changing. In reaction to this,
for some reason that I don’t quite understand, but as it is a repeating fashion, leftists
across the world obviously do, there was pressure to push the Labour party leadership
further to the left, as this was obviously what the people wanted.

I used to hang around in political circles. I was a ‘right-wing’ rebel in the Labour Party,
and joined the newly-formed – and eventually ill-fated – centrist Social Democratic Party.
But friends of mine remained members of the Labour Party. At a social event (i think
this would have been in the summer of 1982), I met a young man called John Denham,
who was an up-and-coming Labour party politician, and who had just been adopted as
the Labour Party candidate for the neighbouring Southampton Itchen constituency (i.e.
parliamentary district). We were discussing politics (or rather not discussing, because
the social implications of the rift in the Labour Party at that time rivalled the current
Brexit-induced animosity).

So it was with some surprise that I learned that he too had been a post-graduate
student of Geoffrey’s, but had withdrawn without obtaining a Ph.D. It did seem that his
mind was still returning to liquid crystal problems (although truth to tell, not with great
facility). I was still dead keen on science, and somewhat curious. Why, I asked, had he
stopped doing science? The Luckhurst group was such a great place to work, and a leading
lab in the world. Why on earth? Well, he explained somewhat sadly, there was another
contemporary graduate student, an Italian called Claudio Zannoni. Apparently Claudio
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was so much smarter than John that he felt that he could not compete. He wanted to
excel, but Claudio just eclipsed him. And rather than take second place, he changed
subject.

As a politician, John Denham had a somewhat slow start. In the 1983 election he was
placed third behind two other candidates. By the time another election came along in
1987 he managed to improve to second. In the meantime, he was active in local politics
as a councillor. Finally in 1992, he was elected to parliament, a mere 1% ahead of the
previous member of parliament. He had an extremely successful career, including a spell
as the minister in charge of the universities, and achieved high cabinet rank.

Sometime around this time, Claudio actually came to visit in Southampton, and Ge-
offrey sent him over to my rather small office in maths. I must have discussed my direct
correlation functions. I have to admit I underestimated the power of computer simulation,
as a route to understanding, as opposed to a brute force method of checking what was
going on. By the time I went on leave to France in the spring and summer of 1985, I knew
Claudio well enough to visit Bologna. I came again in 1988, again from France, and in
the early 1990 set up a project to study the internal structure of disclinations.

The contents of the rest of this article should convince you that Claudio will be re-
membered as one of the most distinguished contributors to liquid crystal science, and real
pioneer in their computational study, from Italy if not from the whole world. But the
most important lesson I remember from one of these visits does not concern science at all.

One needs to remember that the English are always struggling to get their children
into bed. His younger son was then about four years old. The time must have been in the
early 1990s. I was staying in Ravenna and we were working late. Suddenly, it must have
been about 10pm, the small boy announces that he is tired and is going to bed. Claudio
turned with a smile, and with the lightest of light hints, suggested that maybe the English
child battles are in vain, for usually children have a good feel for when they need to sleep.

The courtesy in expressing what might be a controversial opinion is an enduring feature
of Claudio’s relationships, both within and beyond science. It is a stage in life to be 70.
Time was when it was a stage to hang up one’s boots and enjoy a quiet retirement. There
is, of course, another school of folk thought, that of ‘use it or lose it’. Whichever of these
life strategies Claudio chooses to follow in the future, or even if it is a linear combination
(as we mathematicians say), we wish him luck, good fortune and a long life.
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28




