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Abstract—Controlling vehicle velocity, by coaching the driver
to eco-drive with an advanced driver assistance system (ADAS),
is a promising method to decrease fuel consumption and green-
house gas emissions for combustion engine-driven road vehicles.
By using optimal control techniques, such a system may find
velocity profiles in real-time that minimize fuel consumption.
This is particularly useful to recommend the optimal time to
initiate coasting, which is otherwise difficult to estimate by a
driver. However, this ADAS should not choose velocities and
accelerations that the driver will dislike, such as those that leave
too much or too little space to the preceding vehicle, or those
that take corners at high speed. To remedy this, we introduce
an optimal control model of acceleration that mimics drivers’
behavior and combine this with a model of fuel consumption to
trade-off driver preferences and fuel savings. We give examples
of the velocity profiles recommended in a typical driving scenario
to demonstrate the potential fuel savings. Finally, we give details
of a prototype system, which has recently been implemented in
the driving simulator at the University of Southampton.

I. INTRODUCTION

Driver behavior has a significant effect on fuel consumption,
a fact that was recognized as early as the 1970s [1]. In recent
years, concerns about climate change have led to efforts to
reduce anthropogenic greenhouse gas emissions, with several
interventions being suggested as ‘low-hanging fruit’ that can
produce a significant benefit at a low cost [2]. Economical
driving behavior, or ‘eco-driving’, has been suggested as such
a change, which could reduce fuel consumption and CO2

emissions from road vehicles by 10% with current technology.
This is accomplished by encouraging drivers to accelerate
moderately, anticipate signals and traffic flow to avoid stops,
maintain an even speed, and to avoid idling [3].

Training programs have been devised to encourage eco-
driving behaviors, with significant positive results [4]. How-
ever, the lowering of fuel consumption for commercial drivers
in such training courses is often not reflected in their driving
behavior after the end of the course [5]. In addition, some
drivers revert back to their original driving styles in the months
following the course [6], and conflicting goals such as reaching
the destination in minimum time may reduce the effectiveness
of encouraging drivers to save fuel [7]. Among untrained
individuals, attitudes to eco-driving are generally positive but
knowledge of specific fuel-saving behaviours is low [8].

A further complication for eco-driving is that avoiding
sudden stops in traffic and at intersections is recognized as
difficult for human drivers alone, as it requires prediction of

future traffic flow and signal changes [1]. Reducing vehicle
speed by coasting reduces fuel consumption, but this requires
knowledge of the timing of signal changes and an accurate
model of vehicle fuel consumption [9]. As such it is unrealistic
that an unaided human driver could achieve minimum fuel
usage. Similar coasting behaviors, termed ‘pulse-and-glide’
techniques, are known to reduce fuel consumption in vehicle-
following situations, but exploitation of this has required auto-
matic control systems [10]. On the other hand, techniques are
known to calculate optimal speed profiles when the problem
is formulated in an optimal control framework [11].

A potential remedy to the problem of reversion of drivers’
behavioral changes after eco-driving training is to provide
regular feedback to the driver on their behavior, for instance
by using auditory, visual or haptic interfaces placed within
a vehicle [12], [13]. These interfaces can be integrated with
optimization of fuel consumption in order to find fuel-optimal
behavior, which has been prototyped for the case that the
vehicle travels on a dedicated route free of traffic [14]. Such
eco-driving advanced driver assistance systems (ADAS) are
seen as useful by European drivers and their deployment
would likely be welcomed [15], but their user acceptance is
dependent on the perceived disturbance to the driver [16].

To minimize disturbance and hence maximize user ac-
ceptance, an eco-driving assistance system could adapt to a
particular user’s driving style, a concept that has already been
explored in the context of approaching intersections [17]. But
to the best of the author’s knowledge, no general eco-driving
assistance system, or ‘EDAS’, has been developed to date that
explicitly optimizes a model of driver preferences while also
minimizing fuel consumption in real time.

In the current work, we introduce a framework in which the
driver preferences and fuel consumption are both incorporated
into the cost function of an optimal control problem. The
modeling of driver preferences takes into account acceleration,
velocity, spacing to other vehicles and cornering speed. Pref-
erences are represented as penalty functions characterized by
a small number of physically-meaningful parameters, and fuel
consumption is modeled by fitting a bivariate polynomial to a
known map. This optimal control problem is solved in real-
time using a receding-horizon approach and the results used
to update a visual interface on the speedometer of a vehicle to
promote eco-driving behavior. Importantly, the use of optimal
control as a mathematical framework allows for a trade-off



to be made between driver preferences and fuel savings by
altering a weighting factor in the optimal control problem.
The authors recently developed a prototype of this system in
a driving simulator, and we describe implementation details as
well as the preliminary results of a pilot study carried out to
evaluate the system.

II. METHOD

A. Optimal control

Optimal control is an extension of the calculus of variations
that considers optimization of a performance criterion for a
system by choosing its input. A good introduction to the
subject can be found in [18], with more modern developments
available in [19]. For the purposes of developing an eco-
driving assistance system, it is a mathematical framework
in which to formulate the problem of controlling vehicle
acceleration to achieve minimum fuel usage. It also provides
a straightforward way to achieve a trade-off between the ob-
jectives of minimizing fuel consumption and that of satisfying
driver preferences. To accomplish this we consider minimizing
a cost which is a weighted sum of a term Lf penalizing fuel
usage, and a term Ld which represents driver preferences on
speed and acceleration:

J =

∫ Tf

Ti

(Ld + αLf ) dt (1)

If the term Ld is chosen so that it is large when the driver is
dissatisfied with the vehicle motion, then choosing a small
value of α will prioritize driver preferences when (1) is
minimized, while choosing a large value of α will prioritize
fuel savings.

In receding horizon control, also known as model predictive
control (MPC), this cost function is minimized considering
a shorter time horizon T , and the optimization is repeated
periodically, updating the system input as new values are cal-
culated. A practical introduction to many MPC techniques may
be found in [20]. We also consider the possibility of adding
an additional term φT to the cost to partially compensate for
the effect of shortening the horizon. Typically in MPC, this
corresponds to the cost of some known, suboptimal control
policy over the time interval T to Tf . Denoting the time at
which an optimization is carried out as t = 0, this leads to the
alternative cost function

JMPC =

∫ T

0

(Ld + αLf ) dt + φT (2)

which is to be minimized subject to the dynamics and current
state of the vehicle. Considering this shortened horizon has
the advantage that the optimization becomes more computa-
tionally tractable, as well as providing feedback to unmodeled
dynamics and disturbances by repeating the optimization when
new information is available.

B. Vehicle dynamics

The vehicle is considered as a mass that accelerates in
response to four forces: the driving force provided by the

engine, fe, a negative retarding force given by the brakes,
fb, and air and rolling resistance. The driving force fe is
nonnegative, and we may ensure this by adding inequality
constraints to the optimal control formulation:

fe ≥ 0

Similarly, the braking force fb is nonpositive:

fb ≤ 0

By Newton’s second law, the acceleration can be expressed as

v̇ =
1

m

(
fe + fb − cdv

2 − crm
)

where v denotes vehicle velocity, cd = 1
2ρCdA and cr = Crg

denote coefficients of drag and rolling resistance respectively,
ρ is the density of air, and m and A are the mass and frontal
area of the vehicle respectively. The position of the vehicle is
denoted by x and varies in accordance with the velocity as:

ẋ = v

In addition to the position and velocity of the ego vehicle,
the model of driver preferences includes a term depending on
the distance to the vehicle in front of the driver, which we call
the lead vehicle. As such we also consider the position of the
lead vehicle as a state of the system that varies as

ẋl = vl

where the leader velocity vl is assumed constant and is updated
each time the optimization is solved. Including this term in our
system dynamics can be interpreted as forming a prediction of
the lead vehicle position under the assumption that it continues
at its current speed.

C. Fuel consumption model

The fuel consumption model is based on a map of instanta-
neous fuel consumption generated by the 1d combustion sim-
ulation software Ricardo Wave. The corresponding efficiency
map is shown in Figure 1 and incorporates a constraint on
maximum engine torque which depends on crankshaft speed.
The map was modified to include the effect of clutch slip
at crankshaft speeds of below 100rad/s by noting that for a
clutch in a manual transmission, we have an equilibrium of
torques and hence all power loss occurs due to clutch slip.
Therefore, if the clutch is allowed to slip at crankshaft speeds
of below 100rad/s, the fuel consumption will be equal to that at
100rad/s for a given torque. This causes the rapid deterioration
in efficiency at low engine speeds visible in Figure 1.

Linear regression was used to approximate the fuel usage
map by a polynomial, which is third order in engine torque
Te and first order in crankshaft speed ω:

qf (T, ω) = p01T + p10ω + p11Tω

+ p02T
2 + p12T

2ω + p03T
3 (3)

This provides a smooth approximation to the true fuel map
while requiring only 6 coefficients to be specified for im-
plementation. Although a simulated fuel map was used in



Fig. 1. Efficiency map for the engine model

Coefficient Value
p01 2.79× 100

p10 2.59× 10−3

p11 6.81× 10−2

p02 −2.27× 101

p12 −7.71× 10−2

p03 6.84× 10−1

TABLE I
COEFFICIENTS OF FUEL USAGE POLYNOMIAL

our implemetation, it would also be possible to fit the above
function to real-world engine data. The coefficients used in
our simulator implemetation are shown in Table I.

By considering the current gear ratio of the vehicle, N , and
the rolling radius r of the driven wheels, we can express the
engine torque and crankshaft speed in terms of the driving
force fe and vehicle velocity v:

T =
rfe
N
, ω =

Nv

r

This results in a stage cost for fuel consumption given by

Lf = qf

(
rfe
N
,
Nv

r

)
(4)

where qf , the function for instantaneous fuel mass flow rate,
is given by (3).

D. Driver modeling

We consider a model of driver preferences that considers
penalty functions for harsh accelerations, for deviating from
a desired velocity vd, for maintaining a spacing to the lead
vehicle that is too small or too large, and specifies a maximum
speed when cornering that is dependent on road curvature.
We denote the penalty functions for acceleration, velocity and
spacing by ψa, ψv and ψs respectively.

The penalty function for acceleration is chosen to be
quadratic, according to the formula,

ψa(u) = u2

where we denote vehicle acceleration by u. In addition to
this, a constraint is added to the model so that the vehicle
acceleration is bounded

b ≤ u ≤ a

Fig. 2. Penalty function for vehicle spacing

where the constants a and b are parameters characterizing the
driver. Similarly, we use a quadratic penalty for the velocity

ψv(v) = β(v − vd)
2

where a weighting factor β has been introduced. To choose the
weighting factor, simulations were performed and the resulting
vehicle accelerations compared with naturalistic driving data
collected as part of the G-ACTIVE project [21]. The value
β = 4/vd was found to give a good fit to real-world data and
was used in the simulator implementation.

To describe driver preferences on inter-vehicle spacing s =
xl − x, we introduce a penalty function that becomes large
for small spacing values, but tends to a constant value as the
spacing becomes large to represent the driver’s indifference to
far away vehicles. Considering the spacing relative to a desired
spacing value sd, a penalty that accomplishes this is shown in
Figure 2 and is given by

ψs

(
s

sd

)
=

(1− s/sd)
2

(s/sd)2 + 1

where the desired spacing is scaled according to the current
speed according to sd = Thv where Th is a driver parameter
denoting the desired time headway to lead vehicles. We
incorporate an additional constraint on the spacing

s ≥ 0

which avoids collisions in the optimized trajectory.
The overall penalty function for the driver preferences is

ψ(s, u, v) = u2 +
4

vd
(v − vd)

2 +
(1− s/sd)

2

(s/sd)2 + 1
(5)

but, for implementation, this must be rewritten in terms of the
system states and inputs. Therefore we define:

Ld = ψ

(
xl − x,

fe
m

+
fb
m

− cd
m
v2 − cr, v

)
(6)

Finally, we include a position-dependent speed limit in the
model by incorporating an inequality constraint

v ≤ vmax(x)

where the function vmax incorporates both the legal speed limit
for the road and also a maximum speed limit for cornering
adapted from the lateral acceleration margin model of [22].



E. The complete optimal control problem
Considering x, v, xl as system states, and fe, fb as system

inputs, the complete problem can now be expressed as

min
fe,fb

∫ T

0

[Ld(x, v, xl, fe, fb) + αLf (v, fe)] dt + φ(xT )

s. t. v̇ =
fe
m

+
fb
m

− cd
m
v2 − cr (7a)

ẋ = v, ẋl = vl (7b)

b ≤ fe
m

+
fb
m

− cd
m
v2 − cr ≤ a (7c)

v ≤ vmax(x), s ≥ 0 (7d)
fe ≥ 0, fb ≤ 0 (7e)

where (7a) and (7b) give the system dynamics while (7c), (7d),
and (7e) denote mixed state-input, state, and input constraints
respectively. This optimal control problem is solved at regular
intervals subject to the initial conditions for x, v, xl and vl
obtained from the simulator. The terminal cost is

φ(xT ) = γ(Tvav + x0 − xT )
2 (8)

where vav is a target average speed, and x0 and xT denote
the initial and final ego-position. This may be interpreted as
a penalty for saving fuel by reducing speed, since this would
increase the full cost (1) over the neglected part of the time
horizon from T to Tf . As an example, this target average
speed could be taken to be either the current legal speed limit,
or the velocity of the leader vehicle, whichever is lower.

III. IMPLEMENTATION

The authors recently implemented a prototype of the de-
scribed system within the Southampton University Driving
Simulator (SUDS), based at the University of Southampton
in the UK. We now describe some notable aspects of this
implementation.

A. Driving simulator
An image of the SUDS simulator is shown in Figure 3. In

SUDS, a study participant sits inside the cabin of a 2015 Land
Rover Discovery Sport, while viewing a simulated roadway
environment on three projector screens mounted in front of
the vehicle. A fourth projector screen is placed behind the
vehicle, and small LCD screens are placed on each side-view
mirror, in order to simulate the view in the rear-view and side-
view mirrors. Engine sounds are simulated using the vehicle’s
internal audio system. SUDS also has a separate control room
from which an operator can monitor the participant’s progress.

The simulator uses the software package STISIM, which
runs on a Windows 7 PC. The simulation software may be
extended using the ‘OpenModule’ system, which allows for
the definition of functions in an external shared library (a .dll)
that are called during the simulation. This external dynamic
link library (DLL) is programmed and compiled using Visual
Basic, and resides on the same PC used for solving the optimal
control problem. This capability was used to send data about
the vehicle and roadway state to an optimizer application to
solve the optimal control problem in real-time.

Fig. 3. The Southampton University Driving Simulator (SUDS)

B. Receding-horizon control

A receding-horizon control scheme was implemented by
formulating the optimal control problem using the ACADO
library [23]. This is incorporated into an optimizer application,
which is written in C++ and for this study was compiled
using Visual Studio 2013. At regular intervals, this opti-
mizer application receives the updated simulation state from
STISIM/OpenModule, solves the optimal control problem,
sends the updated velocity profile to the visual interface, and
logs the results. For simplicity, we neglected the terminal cost
(8) in the present implementation, as we found it to have little
effect on the first part of the computed optimal trajectory
if the prediction horizon length T was chosen greater than
approximately 20s.

The optimizer uses a BFGS approximation to the Hessian
of the control problem and solves the problem at each time
instant without any warm-starting, and in particular, does
not use the code-generated real-time iteration MPC schemes
that ACADO provides. This is due to incompatibility of the
stage cost function with the least-squares formulation assumed
by the ACADO nonlinear MPC code generation and results
in longer computation times than could be expected from
a well-designed nonlinear MPC implementation using real-
time iterations. Nonetheless, we found that it is possible to
solve the optimal control problem at a rate of 3–4Hz for a
60s time horizon and a 2s discretization time-interval, which
is sufficient for smooth updates to the recommended speed
profile. This discretization is carried out using a fixed-step,
4th-order Runge-Kutta integrator.

C. Visual interface design

A visual interface was designed and developed in C#
using Windows Forms as a graphical library. The resulting
application is executed on a Microsoft Surface Pro tablet,
which is placed behind the steering wheel of the car to
replace the physical instrument cluster. The visual design
of the interface is shown in Figure 4, and comprises of a
speed and RPM display augmented with a green and yellow
‘eco-band’ to recommend a near-optimal speed range to the
driver. The green-region provides the user with a range of



Fig. 4. The ‘Dashboard’ visual interface

Fig. 5. Communication in the simulator setup

speeds recommended for fuel-efficient driving based on the
current vehicle and road state. A further yellow region allows
some margin for error and has a width chosen to correspond
to typical speed variations observed in normal driving. A
similar ‘eco-speedometer’ design was rated highly in perceived
usefulness and user acceptance in a previous study [16].

When in use, the interface updates in real-time with the
green eco-band stretching from zero speed to the current
recommendation of the optimizer, which is taken as the ego-
vehicle speed at 10s into the horizon of the optimal control
problem. As data is received from the optimizer application,
this speed changes, which has the effect of smoothly interpo-
lating between recommended speed values in order to gently
‘coach’ the driver into following the optimal speed profile.

D. Networking and communication

Communication between the various applications is carried
out by sending TCP messages on the local WiFi network
within SUDS. TCP was selected over UDP as a transmission
protocol due to its error-checking capabilities and ability to
recover from packet loss. This allows the OpenModule DLL
to send the current simulator state, including vehicle positions
and velocities, to the dashboard and the optimizer, and for the
optimizer to send recommended velocities to the dashboard.
Figure 5 shows a diagram of the data transfer between the
different parts of the system.

The system has a modular design, and although the Open-
Module DLL resides on the same PC as the optimizer for this
simulator prototype, this would not be the case in a real-world
implementation where sensor data and a state estimator would

take the place of the simulator state data and OpenModule
DLL. This modularity enables the different parts of the system
to be reused and updated independently from one another. To
migrate to different simulation software or real-world testing,
only the DLL would have to be changed.

IV. EVALUATION

Figure 6 shows examples of optimal speed profiles for
the situation of accelerating from stationary and braking to
a halt for different values of the weighting parameter α.
The fuel usage per kilometer for these speed profiles is
shown in Table II. It is apparent that even small differences
in speed profile can make significant improvements to fuel
economy if coasting behavior is encouraged. Similar potential
fuel economy improvements are found in other situations,
with the largest potential for improvement occuring when
coasting down before corners and intersections, especially if
it is possible to avoid stopping by doing so.

For initial evaluation of the system, a pilot study was
carried out in the simulator with 5 participants, in which each
participant drove the same route in three different cases:

• A ‘control’ run in which the participant drove as they
normally would,

• An ‘eco-drive’ run in which the participant was instructed
to drive conserving fuel,

• An ‘eco-band’ run in which the participant drove with
the visual interface turned on,

This pilot study was designed to gather user feedback and
identify any problems with the system setup. We did not
attempt to draw any conclusions about the effectiveness of the
system from this pilot study as the sample size is too small to
do so, but this will be evaluated in future work by conducting
a larger-scale study involving 36 participants.

Study participants were asked, after each test run, to fill
in several questionnaires relating to system usability and
cognitive workload. In addition, several participants made
comments which led to improvements to the interface and
simulator setup, including:

• That the motion of the band in the interface was not
smooth and sometimes ‘jumped’ from one value to an-
other, especially before corners.

• That the simulated traffic on the test route sometimes
behaved in unexpected ways, such as by remaining sta-
tionary at an intersection rather than moving off.

These issues were addressed in work carried out after the
study, which included altering the traffic on the simulated
route, making some computational efficiency improvements
to the optimizer to allow for a longer prediction horizon (60s
instead of 30s), and interpolating the eco-band position to
provide smoother motion.

V. CONCLUSION AND FUTURE WORK

The present work presents a possible optimal control frame-
work for ADAS designed to promote eco-driving and fuel-
efficiency. This framework considers both a simplified model



Fig. 6. Example optimized speed profiles

α 1e2 1e4 3e4 6e4 1e5
Fuel use g/km 14.45 13.67 13.60 13.56 13.56
Improvement 0% 5.69% 6.26% 6.54% 6.57%

TABLE II
FUEL USAGE OF SPEED PROFILES

of the vehicle powertrain incorporating an engine map and a
model of driver behavior in order to effectively trade-off fuel
saving and driver preferences. Numerical simulations show
that even small changes in driving speed profiles can produce
large fuel savings if coasting behaviors are encouraged.

A prototype implementation of such an ADAS was made
in a driving simulator, and a pilot study carried out to assess
system performance. A key conclusion is that the real-time
optimization of the driver’s speed profile at a rate of 3–4Hz
is technically feasible. User feedback was used to improve
the implementation, with a focus on comments about the
smoothness of motion of the eco-band in the visual interface.

A larger-scale study will be carried out in future work
to assess the effectiveness of the system in promoting fuel-
efficient, eco-driving behaviors. Future work will also consider
other ways to present information about coasting to the driver.
A key issue is to discover an effective method to prompt
the driver when to start coasting down before intersections
for improved fuel economy, which likely requires further
development of the visual interface.
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