All dielectric reconfigurable metamaterials
All dielectric reconfigurable metamaterials
This thesis reports on my research efforts towards all-dielectric metamaterials with reconfigurable functionalities:
• I have reported the first optomechanical nonlinear dielectric metamaterial. I have shown that such metamaterials provide extremely large optomechanical nonlinearities at near infrared, operating at intensities of only a few μW per unit cell and modulation frequencies as high as 152 MHz, thereby offering a path to fast, compact, and energy efficient all-optical metadevices.
• I have experimentally demonstrated the first all-dielectric electro-optical nanomechanical modulator based on all-dielectric nanomembrane metamaterial. Furthermore, I have shown the dynamical control of optical properties of this device, with modulation frequency up to 7 MHz. I have also establish an encapsulation technique where any nano-membrane can be embedded within a fiber setup with electrical feedthroughs and pressure control.
• I have studied for first time the optical properties of Diamond nano-membrane metamaterials. Diamond membranes after nanostructuring with Focus Ion Beam, present broadband, polarization-independent absorption that can be used as efficient coherent absorbers for optical pulses as short as 6 fs. This novel class of metamaterials have been used for coherent modulation with modulation contrast up to 40% at optical fluences of few nJ/cm2 across the visible spectrum.
• I have reported the first optically-switchable, all-chalcogenide phase-change metamaterial. Germanium antimony telluride alloys (GST) after nanostructuring subwavelength-thickness films of GST present high-quality resonances that are spectrally shifted by laser-induced structural transitions, providing reflectivity and transmission switching contrast ratios of up to 5:1 (7 dB) at near-infrared wavelengths selected by design, or strong colour contrast in visible due to its plasmonic nature.
• This work has introduced dielectric nano-membrane metamaterials, as a platform to provide optically switchable, nonlinear, reconfigurable responses. Due to nanomechanical actuation based on optical/electromagnetic forces, coherent modulation based on the diamond absorbers and phase change media of Chalcogenide glasses.
University of Southampton
Karvounis, Artemios
878c12bb-c30e-46f4-8c56-86423b41cdba
October 2017
Karvounis, Artemios
878c12bb-c30e-46f4-8c56-86423b41cdba
MacDonald, Kevin
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolai
32fb6af7-97e4-4d11-bca6-805745e40cc6
Karvounis, Artemios
(2017)
All dielectric reconfigurable metamaterials.
University of Southampton, Doctoral Thesis, 120pp.
Record type:
Thesis
(Doctoral)
Abstract
This thesis reports on my research efforts towards all-dielectric metamaterials with reconfigurable functionalities:
• I have reported the first optomechanical nonlinear dielectric metamaterial. I have shown that such metamaterials provide extremely large optomechanical nonlinearities at near infrared, operating at intensities of only a few μW per unit cell and modulation frequencies as high as 152 MHz, thereby offering a path to fast, compact, and energy efficient all-optical metadevices.
• I have experimentally demonstrated the first all-dielectric electro-optical nanomechanical modulator based on all-dielectric nanomembrane metamaterial. Furthermore, I have shown the dynamical control of optical properties of this device, with modulation frequency up to 7 MHz. I have also establish an encapsulation technique where any nano-membrane can be embedded within a fiber setup with electrical feedthroughs and pressure control.
• I have studied for first time the optical properties of Diamond nano-membrane metamaterials. Diamond membranes after nanostructuring with Focus Ion Beam, present broadband, polarization-independent absorption that can be used as efficient coherent absorbers for optical pulses as short as 6 fs. This novel class of metamaterials have been used for coherent modulation with modulation contrast up to 40% at optical fluences of few nJ/cm2 across the visible spectrum.
• I have reported the first optically-switchable, all-chalcogenide phase-change metamaterial. Germanium antimony telluride alloys (GST) after nanostructuring subwavelength-thickness films of GST present high-quality resonances that are spectrally shifted by laser-induced structural transitions, providing reflectivity and transmission switching contrast ratios of up to 5:1 (7 dB) at near-infrared wavelengths selected by design, or strong colour contrast in visible due to its plasmonic nature.
• This work has introduced dielectric nano-membrane metamaterials, as a platform to provide optically switchable, nonlinear, reconfigurable responses. Due to nanomechanical actuation based on optical/electromagnetic forces, coherent modulation based on the diamond absorbers and phase change media of Chalcogenide glasses.
Text
Final thesis
- Version of Record
More information
Published date: October 2017
Identifiers
Local EPrints ID: 424497
URI: http://eprints.soton.ac.uk/id/eprint/424497
PURE UUID: ec59eb9c-4e9a-408e-8635-c64f2fe7b325
Catalogue record
Date deposited: 05 Oct 2018 11:37
Last modified: 16 Mar 2024 07:02
Export record
Contributors
Author:
Artemios Karvounis
Thesis advisor:
Kevin MacDonald
Thesis advisor:
Nikolai Zheludev
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics