The University of Southampton
University of Southampton Institutional Repository

All dielectric reconfigurable metamaterials

All dielectric reconfigurable metamaterials
All dielectric reconfigurable metamaterials
This thesis reports on my research efforts towards all-dielectric metamaterials with reconfigurable functionalities:

• I have reported the first optomechanical nonlinear dielectric metamaterial. I have shown that such metamaterials provide extremely large optomechanical nonlinearities at near infrared, operating at intensities of only a few μW per unit cell and modulation frequencies as high as 152 MHz, thereby offering a path to fast, compact, and energy efficient all-optical metadevices.

• I have experimentally demonstrated the first all-dielectric electro-optical nanomechanical modulator based on all-dielectric nanomembrane metamaterial. Furthermore, I have shown the dynamical control of optical properties of this device, with modulation frequency up to 7 MHz. I have also establish an encapsulation technique where any nano-membrane can be embedded within a fiber setup with electrical feedthroughs and pressure control.

• I have studied for first time the optical properties of Diamond nano-membrane metamaterials. Diamond membranes after nanostructuring with Focus Ion Beam, present broadband, polarization-independent absorption that can be used as efficient coherent absorbers for optical pulses as short as 6 fs. This novel class of metamaterials have been used for coherent modulation with modulation contrast up to 40% at optical fluences of few nJ/cm2 across the visible spectrum.

• I have reported the first optically-switchable, all-chalcogenide phase-change metamaterial. Germanium antimony telluride alloys (GST) after nanostructuring subwavelength-thickness films of GST present high-quality resonances that are spectrally shifted by laser-induced structural transitions, providing reflectivity and transmission switching contrast ratios of up to 5:1 (7 dB) at near-infrared wavelengths selected by design, or strong colour contrast in visible due to its plasmonic nature.

• This work has introduced dielectric nano-membrane metamaterials, as a platform to provide optically switchable, nonlinear, reconfigurable responses. Due to nanomechanical actuation based on optical/electromagnetic forces, coherent modulation based on the diamond absorbers and phase change media of Chalcogenide glasses.
University of Southampton
Karvounis, Artemios
878c12bb-c30e-46f4-8c56-86423b41cdba
Karvounis, Artemios
878c12bb-c30e-46f4-8c56-86423b41cdba
MacDonald, Kevin
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolai
32fb6af7-97e4-4d11-bca6-805745e40cc6

Karvounis, Artemios (2017) All dielectric reconfigurable metamaterials. University of Southampton, Doctoral Thesis, 120pp.

Record type: Thesis (Doctoral)

Abstract

This thesis reports on my research efforts towards all-dielectric metamaterials with reconfigurable functionalities:

• I have reported the first optomechanical nonlinear dielectric metamaterial. I have shown that such metamaterials provide extremely large optomechanical nonlinearities at near infrared, operating at intensities of only a few μW per unit cell and modulation frequencies as high as 152 MHz, thereby offering a path to fast, compact, and energy efficient all-optical metadevices.

• I have experimentally demonstrated the first all-dielectric electro-optical nanomechanical modulator based on all-dielectric nanomembrane metamaterial. Furthermore, I have shown the dynamical control of optical properties of this device, with modulation frequency up to 7 MHz. I have also establish an encapsulation technique where any nano-membrane can be embedded within a fiber setup with electrical feedthroughs and pressure control.

• I have studied for first time the optical properties of Diamond nano-membrane metamaterials. Diamond membranes after nanostructuring with Focus Ion Beam, present broadband, polarization-independent absorption that can be used as efficient coherent absorbers for optical pulses as short as 6 fs. This novel class of metamaterials have been used for coherent modulation with modulation contrast up to 40% at optical fluences of few nJ/cm2 across the visible spectrum.

• I have reported the first optically-switchable, all-chalcogenide phase-change metamaterial. Germanium antimony telluride alloys (GST) after nanostructuring subwavelength-thickness films of GST present high-quality resonances that are spectrally shifted by laser-induced structural transitions, providing reflectivity and transmission switching contrast ratios of up to 5:1 (7 dB) at near-infrared wavelengths selected by design, or strong colour contrast in visible due to its plasmonic nature.

• This work has introduced dielectric nano-membrane metamaterials, as a platform to provide optically switchable, nonlinear, reconfigurable responses. Due to nanomechanical actuation based on optical/electromagnetic forces, coherent modulation based on the diamond absorbers and phase change media of Chalcogenide glasses.

Text
Final thesis - Version of Record
Available under License University of Southampton Thesis Licence.
Download (7MB)

More information

Published date: October 2017

Identifiers

Local EPrints ID: 424497
URI: http://eprints.soton.ac.uk/id/eprint/424497
PURE UUID: ec59eb9c-4e9a-408e-8635-c64f2fe7b325
ORCID for Kevin MacDonald: ORCID iD orcid.org/0000-0002-3877-2976
ORCID for Nikolai Zheludev: ORCID iD orcid.org/0000-0002-1013-6636

Catalogue record

Date deposited: 05 Oct 2018 11:37
Last modified: 16 Mar 2024 07:02

Export record

Contributors

Author: Artemios Karvounis
Thesis advisor: Kevin MacDonald ORCID iD
Thesis advisor: Nikolai Zheludev ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×