

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal

non-commercial research or study, without prior permission or charge. This thesis and the

accompanying data cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the copyright holder/s. The content of the thesis and accompanying

research data (where applicable) must not be changed in any way or sold commercially in any

format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given,

e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Towards Reliable and Secure Physical Unclonable Functions

by

Mohd Syafiq Mispan

Thesis for the degree of Doctor of Philosophy

July 2018

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

TOWARDS RELIABLE AND SECURE PHYSICAL UNCLONABLE FUNCTIONS

by Mohd Syafiq Mispan

Physical Unclonable Functions (PUFs) have emerged as a promising primitive that can

be used to provide a hardware root of trust for integrated circuit (IC) applications. PUFs

exploit the random intrinsic manufacturing process variations that map a set of chal-

lenges to a set of responses. The mapping of challenge-response pairs (CRPs) is unique

and random to each PUF instance, which makes PUFs a very promising technology

for robust security devices. PUFs have been proposed for lightweight IC identification

and authentication, and cryptographic key generation. However, as CMOS technology

scales down, device ageing becomes more pronounced and introduces reliability issues

for PUF circuits. When PUFs undergo ageing, the response changes. As a consequence,

the trustworthy identity of the ICs can be violated. The area overhead of an error cor-

rection code (ECC) in a PUF-based system needed to generate error-free cryptographic

keys also increases. Furthermore, a PUF is physically unclonable but its function is

susceptible to modelling attacks from machine learning (ML) techniques. Therefore,

providing reliable and secure PUFs for lightweight applications is a major challenge.

This thesis studies the reliability of PUFs for lightweight applications under ageing. It

also considers the susceptibility of PUFs to ML-based attacks.

This thesis presents three major contributions. The context of the first and second

contributions is within the lightweight IC identification and authentication, and the

third contribution is within the cryptographic key generation. The first contribution

presents an analysis of the impact of ageing on PUF-based differential architectures.

The simulation results demonstrate that a differential design technique to build a PUF

can be a mechanism to mitigate the first-order dependencies of ageing such as the duty

cycle and supply voltage. The second contribution proposes a challenge permutation

technique to increase the complexity of the CRP mapping. The technique has been

implemented on an Arbiter-PUF using a TSMC 65-nm technology. The simulation

results show that using a challenge permutation technique can alter the output transition

probability of Arbiter-PUF, resulting in the reduction of its predictability from ≈99%

to ≈65%. The challenge permutation technique introduces no extra overhead as it can

be implemented by routing obfuscation. Finally, the third contribution proposes a bit

selection technique in a dual use of SRAM as a memory and PUF to mitigate the ageing

impact and reduce the area overhead of the ECC. The results show that the proposed

technique can effectively reduce the bit errors due to ageing and the area overhead of

the ECC is reduced by about 6 times compared to that without bit selection.

Contents

Declaration of Authorship xv

Acknowledgements xvii

Abbreviations xix

Nomenclature xxi

1 Introduction 1

1.1 Cryptographic Key Storage Technologies 1

1.2 Physical Unclonable Function . 3

1.3 Motivations For Research . 4

1.4 Objectives . 5

1.5 Thesis Structure . 5

1.6 Publications . 6

2 Physical Unclonable Function 9

2.1 Definition of a PUF . 9

2.2 Variability in Integrated Circuits . 10

2.3 Types of PUFs . 11

2.3.1 Non-Silicon and Silicon PUFs . 11

2.3.2 Strong, Weak and Controlled PUFs 12

2.4 Silicon PUF Constructions . 13

2.4.1 Arbiter-PUF . 14

2.4.2 Ring Oscillator PUF . 17

2.4.3 SRAM-PUF . 18

2.4.4 Flip-flop, Latch and Buskeeper PUFs 20

2.4.5 Mixed-Signal PUFs . 21

2.4.6 Emerging Nanotechnology-based PUFs 23

2.5 PUF Quality Metrics . 24

2.5.1 Uniqueness . 24

2.5.2 Reliability . 25

2.5.3 Uniformity . 25

2.6 The Effect of Ageing on PUFs . 29

2.6.1 CMOS Device Ageing . 29

2.6.2 Related Works of Ageing on PUFs 31

2.7 PUF Applications . 33

2.7.1 Low-Cost Identification and Authentication 33

v

vi CONTENTS

2.7.2 Cryptographic Key Generation . 36

2.8 Known Attacks to PUFs . 38

2.8.1 Invasive Attacks . 38

2.8.2 Semi-invasive Attacks . 38

2.8.3 Non-invasive Attacks . 39

2.8.4 Challenges . 41

2.9 Advantages of PUFs . 42

2.10 Summary . 43

3 PUF Implementation and Evaluation 45

3.1 Motivation . 46

3.2 MOSFET in Subthreshold Region . 47

3.3 TCO-PUF Architecture . 49

3.3.1 Design of Transistor Arrays . 49

3.3.2 Design of Voltage Sense Amplifier 51

3.4 Simulation Results and Analysis . 53

3.4.1 Setup . 53

3.4.2 Analysis of Transistor Arrays . 54

3.4.3 PUF Metrics Evaluation . 54

3.4.3.1 Uniqueness . 54

3.4.3.2 Reliability . 55

3.4.3.3 Uniformity . 56

3.5 ML-Attack Susceptibility . 57

3.6 Impact of NBTI on PUFs . 59

3.6.1 Ageing Evaluation Methodology 59

3.6.2 NBTI Impact on RO-PUF . 60

3.6.3 NBTI Impact on PUF-based Differential Architectures 62

3.7 Summary . 69

4 A Lightweight Technique for ML-Attack Resistant PUFs 71

4.1 Motivation . 72

4.2 Methodology . 75

4.2.1 CRP Generation . 75

4.2.2 PUF Configuration . 76

4.2.3 Artificial Neural Network . 76

4.2.4 Threat Model . 78

4.3 Arbiter-PUF Properties . 79

4.3.1 Functionality Description . 79

4.3.2 Output Transition Probability . 80

4.4 Analysis . 82

4.4.1 ML-attack on Arbiter-PUF . 82

4.4.2 Challenge Permutation Technique 84

4.4.3 Random Challenge Permutation 86

4.4.4 Hardware Implementation . 89

4.4.5 Predictability Comparison . 91

4.5 Summary . 92

CONTENTS vii

5 A Reliable PUF in a Dual Function SRAM 95

5.1 Motivation . 96

5.1.1 A Dual Function SRAM . 96

5.1.2 Ageing Mitigation in SRAM-PUFs 97

5.1.3 Area Estimation of ECC . 98

5.2 Pre-processing Approaches . 99

5.3 Signal Probability Pattern in SRAM Caches 100

5.4 NBTI Impact on SUVs . 104

5.4.1 Simulation Setup . 104

5.4.2 Bit Error Analysis Under NBTI Effect 104

5.5 Bit Selections . 106

5.5.1 Temperature and Voltage Variations 110

5.5.2 Uniqueness and Uniformity . 111

5.6 Hardware Cost and Implementation . 113

5.6.1 Area Overhead of Bit Select Configurations 113

5.6.2 Area Overhead of ECC . 114

5.7 Summary . 116

6 Conclusions and Future Work 117

6.1 Conclusions . 117

6.2 Future Work . 119

A MATLAB Code 121

A.1 Uniqueness . 121

A.2 Uniformity . 122

A.3 Optimum Size of BCH scheme . 123

A.4 Linear Feedback Shift Register (LFSR) Fibonacci 124

A.5 Output Transition Probability . 126

A.5.1 Non-permutated and Permutated CRPs 126

A.5.2 Iterative Permutation . 128

A.6 ML-attack . 130

B Verilog Code 133

B.1 Hardware Implementation of Figure 4.13 133

C Miscellaneous 139

C.1 Reliability of 2-XOR Arbiter-PUF . 139

C.2 BCH code . 140

References 143

List of Figures

1.1 Plaintext encryption using a XOR function. 2

1.2 Security-cost positioning of permanent key storage technologies [9]. 2

2.1 Basic functionality of PUF. 10

2.2 Scaling trend of Vth variations due to RDF [20]. 11

2.3 The construction of Arbiter-PUF as proposed in [36]. 14

2.4 The construction of Feed-Forward Arbiter-PUF as proposed in [30]. . . . 15

2.5 The construction of Lightweight-PUF as proposed in [31] for l=4. 16

2.6 The construction of the l-XOR Arbiter-PUF as proposed in [22]. 17

2.7 The construction of an RO-PUF as proposed in [22]. 18

2.8 6-T SRAM cell circuit. 19

2.10 The construction of Butterfly PUF [25], D Flip-flop PUF [32], SR-NOR
latch PUF [33] and Buskeeper PUF [26]. 21

2.11 The construction of VTC-PUF [34]. 22

2.12 The construction of the current mirror circuit in the Current Mirror-PUF
[35]. 22

2.13 3-T pixel circuit. 23

2.14 The construction of n cascaded transistors of one block in TV-PUF [41] . 24

2.15 Threshold voltage degradation (4Vth) over the time for CMOS inverter
at different duty cycle due to NBTI effect. 30

2.16 Transient behaviour of CMOS inverter under NBTI (a) a chain of 11
inverters, (b) assertion of falling signal at the primary input, (c) assertion
of rising signal at the primary input. 31

2.17 Low-cost PUF-based identification and authentication [22, 10]. 34

2.18 Probability of rejection and misidentification at different bit error rates
and ε for n=128-bit and pinter=0.5. 35

2.19 The procedure of cryptographic key generation based on SRAM-PUF [26]. 37

3.1 I-V characterisation for nMOS using a low-k TSMC 65-nm CMOS tech-
nology node. 48

3.2 Top level of TCO-PUF architecture. 49

3.3 The construction of the transistor array of TCO-PUF. 50

3.4 The construction of the voltage sense amplifier. 52

3.5 Transient simulation of the voltage sense amplifier for input voltage dif-
ference ∆Vin = 5mV and Vdd = 1.2V. 53

3.6 Output voltages from transistor arrays of two TCO-PUF instances. 54

3.7 Uniqueness of 32-bit TCO-PUF for 100 instances. 55

3.8 Reliability for 32-bit TCO-PUF under temperature variations of −40oC
to 85oC and a supply voltage of 1.2V ±10%. 56

ix

x LIST OF FIGURES

3.9 Uniformity of 32-bit TCO-PUF for 100 instances. 56

3.10 ML-attack on 32-bit TCO-PUF and comparison with other PUFs. 57

3.11 Prediction error rate on the ratio of training CRPs and bit-length of the
challenge. 58

3.12 NBTI simulation strategy. 60

3.13 RO oscillation degradation under NBTI stress. 61

3.14 Distribution of bit errors due to NBTI for 100 RO-PUFs in 10 years with
20% activity factor. 62

3.15 Distribution of bit errors due to NBTI for 100 TCO-PUFs in 1, 5, and 10
years with 20% activity factor. 63

3.16 Distribution of bit errors due to NBTI for 100 Arbiter-PUFs in 1, 5, and
10 years with 20% activity factor. 64

3.17 Path propagation in switching component [3]. 65

3.18 Simplified circuit of Arbiter-PUF. 66

3.19 Arrival time of a rising pulse before the SR-latch under NBTI stress for
two Arbiter-PUF instances with a similar challenge. 67

3.20 Average bit error rates for 16-bit and 32-bit Arbiter-PUFs. 68

4.1 Reliability for 32-bit Arbiter-PUF under temperature and supply voltage
variations. 73

4.2 The concept of Controlled PUF [27]. 74

4.3 MLP feed-forward network structure for binary classification problem. . . 77

4.4 k-bit Arbiter-PUF. 79

4.5 Output transition probability for k-bit Arbiter-PUF. 81

4.6 ML-attack on 16-bit LFSR plus 16-bit Arbiter-PUF configuration using
ANN. 83

4.7 n-block permutation scheme. 84

4.8 Output transition probability for k-bit Arbiter-PUF with n-block permu-
tation. 85

4.9 Iteratively finding a random challenge permutation mapping. 87

4.10 Correlation between the ML prediction and the occurrence of condition 1
and 2 for k-bit Arbiter-PUF. 88

4.11 ML-attack on 16-bit LFSR plus 16-bit Arbiter-PUF configuration with
permutated challenge using ANN. 89

4.12 Top level architecture of k-bit Arbiter-PUF. 90

4.13 Example: 4-bit Fibonacci LFSR with 2-to-1 multiplexer. 91

5.1 NBTI impact on a 6-T SRAM cell circuit. 98

5.2 Area (GE) of the BCH scheme. 99

5.3 Overview of a bit selection technique. 100

5.4 Multiply and multiply-accumulate instruction format for 32-bit ARM [108].101

5.5 Mean and standard deviation values for the probability of storing a ‘1’ in
i-cache over 16 benchmarks. 102

5.6 Mean values for probability of storing ‘1’ in d-cache running four bench-
marks. 103

5.7 Distribution of ‘1’ and ‘0’ (a) fresh (b) 5 years ageing based on the mean
probability of storing ‘1’. 105

5.8 Average bit errors based on the mean probability of storing ‘1’. 106

LIST OF FIGURES xi

5.9 The relationship between the HW and the mean probability of storing ‘1’
for all 32 bits. 107

5.10 Average bit errors based on the ±3σ probability of storing ‘1’. 108

5.11 Bit error rate at different ramp-up time. 111

5.12 Uniqueness for S1 set (a) fresh (b) 5 years ageing at the -3σ probability. . 112

5.13 Uniformity for S1 set (a) fresh (b) 5 years ageing at the -3σ probability. . 113

5.14 Implementation of a bit selection technique. 114

List of Tables

2.1 Performance of surveyed silicon PUF constructions in Section 2.4 27

2.2 Summary of known attacks to PUFs. 42

3.1 Ageing impact comparison . 69

4.1 Area and power of hash function . 74

4.2 Generator polynomials for maximal-length sequences 76

4.3 Prediction accuracy of k-bit Arbiter-PUF with n-block permutation scheme 86

4.4 Area and power estimation . 91

4.5 Comparison of prediction accuracy . 92

5.1 Cache configuration . 102

5.2 Bit error (%) of bit selection combination based on mean probability of
storing ‘1’ . 108

5.3 Bit error (%) of bit selection combination based on mean and ±3σ prob-
ability of storing ‘1’ after 5 years . 109

5.4 Bit error (%) comparison at different temperatures and supply voltages . 110

5.5 Area comparison . 115

C.1 Simplification of input-output transition probability 139

C.2 Number of correctable errors in the BCH Code for n=127 140

C.3 Number of correctable errors in the BCH Code for n=255 141

C.4 Number of correctable errors in the BCH Code for n=511 142

xiii

Declaration of Authorship

I, Mohd Syafiq Mispan , declare that the thesis entitled Towards Reliable and Secure

Physical Unclonable Functions and the work presented in the thesis are both my own,

and have been generated by me as the result of my own original research. I confirm

that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: [1],[2],[3],[4],[5],[6],[7]

Signed:...

Date:..

xv

17/07/2018

Acknowledgements

I owe my deepest gratitude to my supervisors, Professor Mark Zwolinski and Dr. Basel

Halak, for their precious support and guidance through my research project. Their

vision and wisdom in approaching a problem is the greatest thing I have learned. They

have been a great mentor and a source of inspiration throughout my Ph.D. journey.

Also, I would like to thank Professor CH Kees De Groot and Dr. Jeff Reeve, for their

revision of my work and their valuable advice for my first-year and second-year reports.

I would also like to offer my thank to the Ministry of Education Malaysia and the

Technical University of Malaysia Malacca, for the financial support. This Ph.D. project

would not have been possible without this support.

Finally, my lovely wife, my daughters, my late parents, my parents-in-law and the rest

of my immediate family which have always been my strongest supporters. I am greatly

thankful for their love and faith in me, and I would like to dedicate this work to them.

xvii

Abbreviations

ADC Analogue-to-digital Converter.

ALU Arithmetic Logic Unit.

ANN Artificial Neural Network.

ASIC Application-specific Integrated Circuit.

BCH Bose-Chaudhuri-Hocquenghem.

BTI Bias Temperature Instability.

CPLD Complex Programmable Logic Device.

CRP Challenge-response Pair.

DAA Direct Accelerated Ageing.

DIBL Drain-Induced Barrier Lowering.

DOS Denial Of Service.

ECC Error Correction Code.

EEPROM Electrically Erasable Programmable Read-

only Memory.

ES Evolution Strategies.

FIB Focus Ion Beam.

FPGA Field-Programmable Gate Array.

GE Gate Equivalent.

HCI Hot Carrier Injection.

HD Hamming Distance.

HW Hamming Weight.

IC Integrated Circuit.

IOT Internet-of-Things.

IP Intellectual Property.

LFSR Linear Feedback Shift Register.

LR Logistic Regression.

LS Laser Stimulation.

MAC Message Authentication Code.

ML Machine Learning.

MLP Multilayer Perceptron.

MTP Multiple-Time Programmable.

NBTI Negative Bias Temperature Instability.

xix

xx Abbreviations

NVM Non-volatile Memory.

OTP One-Time Programmable.

PBTI Positive Bias Temperature Instability.

PEA Photonic Emission Analysis.

POWF Physical One-way Function.

PUF Physical Unclonable Function.

RDF Random Dopant Fluctuations.

RFID Radio Frequency Identification.

RNG Random Number Generator.

RO Ring Oscillator.

ROM Read-Only Memory.

SAC Strict Avalanche Criteria.

SEM Scanning Electron Microscope.

SLP Single-layer Perceptron.

SOC System-on-a-chip.

SRAM Static Random-access Memory.

SUV Start-up Value.

SVM Support Vector Machine.

T-D Trapping/de-trapping.

Nomenclature

Cox Gate-oxide capacitance

Cd Depletion layer capacitance

ε Hamming Distance threshold

kB Boltzmann constant

L Channel length

µo Electron or hole mobility

µ Mean

q Electrical charge of electron

σ Standard deviation

SiON Silicon oxynitride

T Absolute temperature

Vth Threshold voltage

Vt Thermal voltage

W Channel width

xxi

Chapter 1

Introduction

Nowadays, electronic devices are becoming ubiquitous. The inception of a network of

physical objects or the so-called Internet-of-Things (IoT) allows these electronic devices

to be interconnected, operated, and controlled remotely through the internet infrastruc-

ture. Examples of these applications include secure access, mobile payment, electronic

passports, smart meters, and smart homes. With this wide range of applications, they

process sensitive, user-specific data, by which if disclosed, may lead to loss of privacy

and other unwanted implications. Low-cost pervasive devices, such as Radio Frequency

Identification (RFID) devices and wireless sensor nodes are the foundations for build-

ing the next generation of ubiquitous networks, IoT [8]. Such devices typically have

limited area and energy resources which introduce a significant challenge in providing

fundamental security services, such as device authentication and cryptographic key stor-

age/generation.

1.1 Cryptographic Key Storage Technologies

Cryptography is the study and practice of securing communication in the presence of

adversaries or third parties. Cryptography can ensure the confidentiality, integrity, au-

thenticity, and acknowledgement of the user data. Cryptographic primitives are low-level

algorithms which are used to build secure protocols. These include but not limited to

the authentication, digital signatures, one-way functions, encryption, and decryption.

Figure 1.1 shows a basic cryptographic algorithm which is an encryption of a plaintext

XORed with a secret key.

1

2 Chapter 1 Introduction

plaintext

secret key

chipertext

Figure 1.1: Plaintext encryption using a XOR function.

Implementation of current security solutions relies on the secret keys stored in the on-chip

non-volatile memory (NVM) or battery-backed static random-access memory (SRAM)

[9, 10]. These approaches introduce critical security-related issues. By storing the secret

keys in NVM or battery-backed SRAM, the keys are always available. Therefore,

they are susceptible to read-out or tampering through invasive or semi-invasive attacks

based on techniques derived from integrated circuit (IC) failure analysis. The resilience

against these physical attacks can be improved through a tamper-sensing environment

which would further increase the cost of implementation. Moreover, the secret keys need

to be programmed which often relies on the IC manufacturer or system owner. Hence,

there is a possibility that the secret keys can be compromised by an untrusted third

party within the product supply chain.

ROM

OTP

Battery +

SRAM

EEPROM

Security

Cost

Figure 1.2: Security-cost positioning of permanent key storage technologies [9].

The relative cost of implementation of the aforementioned key storage solutions is de-

picted in Figure 1.2. Different technologies can be deployed for the key storage on NVM

Chapter 1 Introduction 3

such as Read-Only Memory (ROM), One-Time Programmable (OTP), and Multiple-

Time Programmable (MTP). A lightweight method of storing keys in NVM is by using

ROM when large-quantities and low-cost are required. However, this approach has

low security and is very inflexible as the secret keys are mask defined and shared by

each device [10]. The secret keys, however, can be programmed once through the OTP

NVM using fuse or anti-fuse technologies. Reprogramming can be emulated via the

partitioning of a large OTP NVM which further increases the cost. Instead, it is more

efficient to use MTP NVM, such as electrically erasable programmable read-only mem-

ory (EEPROM) which offer more flexibility as the secret keys can be re-programmed

many times but still, the cost is high. Battery-backed SRAM requires a standard CMOS

SRAM, but the battery that is needed to retain the secret keys in a volatile memory

is considered to be costly and bulky (i.e., space overhead), particularly for resource-

constrained applications.

1.2 Physical Unclonable Function

A Physical Unclonable Function (PUF) is an emerging technology which offers a promis-

ing solution to the critical security-related issues as discussed above with a relatively low

cost. PUF maps a set of challenges to a set of responses. Its challenge-response relation-

ship is determined by the intrinsic process variations in the transistor and interconnects

of a silicon chip. The intrinsic process variations are caused by uncontrollable deviations

in the chip manufacturing process, which are unique and random from die to die and

wafer to wafer. Therefore, a PUF can be used to generate a unique and random key or

identifier. Furthermore, the complex and random nature of the manufacturing process

variations makes a PUF practically and physically impossible to clone [11]. A PUF is

considered as secure and low-cost technology since the identifier or the key can only be

generated during power-on state and is wiped-out in the power-off state. A PUF can be

implemented using a standard CMOS circuit design technique which requires no special

fabrication process. Besides, a physically invasive attack to recover the identifier or key,

which is only available during the power-on state by a micro-probing technique, is most

likely to destroy the unique delay characteristics, effectively destroying the identifier or

key [12]. This makes a PUF a tamper-resistance solution.

All of the above show that PUFs provide uniqueness, randomness, unclonability, security,

low-cost, and tamper resistance which make them very suitable candidates for robust

hardware-based intrinsic security devices. With these advantages, PUFs have been

proposed for lightweight device identification and authentication, and cryptographic

key generation. Now, PUFs are transforming from research to commercial products as

the results of the huge potential of PUFs observed by the industry [13, 14].

4 Chapter 1 Introduction

1.3 Motivations For Research

In order for a PUF to be usable, the response of the PUF, which later will be used for

an identifier or a key must be reproducible and reliable over multiple authentication

or key generation processes. However, as the PUF is implemented using CMOS circuit

design techniques, it is susceptible to environmental variations such as temperature and

supply voltage, and also CMOS ageing effects. Although the environmental variation is a

concern, it is a reversible effect. For example, the operating frequency of a CMOS circuit

is slower than normal at an elevated temperature, but its normal operating frequency is

restored once it is cooled down to its normal operating temperature. On the contrary, the

impact of ageing is irreversible over an extended period, leading to a permanent shift in

the circuit behaviour. Generally, the effect of CMOS device ageing mechanisms such as

Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI) can be manifested

as a degradation in the threshold voltage, Vth [15]. This reduces the drive currents and

leads to a performance (e.g., speed) degradation of the CMOS circuit. When a PUF

ages, the response of the PUF is not 100% reliable. As a consequence, there may be two

possible errors in the device authentication, either a false negative or a false positive. A

false negative means that the response of a PUF deviates significantly from its initial

state, and it might be deemed as a different PUF and rejected during an authentication

process. On the other hand, a false positive occurs when the response of a PUF deviates

and become nearly same as another PUF’s response, and it might be accepted during an

authentication process as another device. For a cryptographic key generation, inherently

noisy PUF response must be corrected with an error correction mechanism before it can

be used as a secret key. Due to the impact of ageing, the number of errors in PUF

response increases. As a consequence, the complexity (i.e., area) of an error correction

code (ECC) to generate error-free cryptographic keys increases. An increase in the

area can be seen as a disadvantage for a PUF to be used in resource-constraint security

devices.

As discussed in Section 1.2, the mapping between the challenge-response pairs (CRPs)

of a given PUF is determined by its process variations. The impact of process variations

remains static. Therefore, although it is impossible to physically clone the PUF through

the fabrication process, the relationship of its CRPs can be modelled or software-cloned

using machine learning (ML) techniques. From all of the above, the two keywords

that summarise the open problems are reliability (i.e., due to ageing) and security (i.e.,

susceptibility to ML-attack). The aim of this project is to study the reliability and

security aspects of PUFs with regard to the ageing and susceptibility to ML-attack,

respectively, in the context of resource-constrained security devices.

Chapter 1 Introduction 5

1.4 Objectives

The objectives of the research presented in this thesis are summarised as follows:

• To implement and characterise a PUF using a 65-nm CMOS fabrication technology.

• To investigate the impact of ageing on PUFs and proposed mitigation techniques,

if necessary.

• To develop a lightweight technique to increase the robustness of PUFs against ML

attacks and to validate the technique using a suitable machine learning algorithm.

1.5 Thesis Structure

Chapter 2 provides an overview of the literature and the essential background related to

the work in this thesis. The types of PUFs, related PUFs construction, and PUF qual-

ity metrics are discussed. The CMOS ageing process is then described and its potential

impact on the reliability of PUFs is discussed. The proposed use of PUFs in crypto-

graphic key generation and low-cost identification and authentication are summarised.

The known attacks on PUFs are discussed, including invasive, semi-invasive, and non-

invasive attacks. Despite the potential issues in reliability and security, the advantages

of PUFs as compared to a conventional method of storing a key in NVM are discussed.

Chapter 3 presents the first contribution of the thesis. We demonstrate that a differential

design technique to build a PUF can be a mechanism to mitigate the first-order depen-

dencies of ageing, such as signal probability/duty cycle and supply voltage. A “Two

Chooses One” PUF or TCO-PUF is introduced and the circuit-level implementation is

detailed using a TSMC 65-nm CMOS technology. The quality metrics of TCO-PUF

such as the uniqueness, reliability, and uniformity are analysed. The susceptibility to

an ML-attack is further analysed. An evaluation of the impact of ageing on PUF-based

differential architectures which include TCO-PUF and Arbiter-PUF (both implemented

using a 65-nm CMOS fabrication technology) is carried out. The results show that a dif-

ferential design technique is desirable for PUF implementation to achieve high reliability

under device ageing.

Chapter 4 describes the second contribution, which is a challenge permutation technique

to increase the resiliency of an Arbiter-PUF against an ML-attack. An Arbiter-PUF has

been implemented using a TSMC 65-nm CMOS technology. An artificial neural network

(ANN) has been used to evaluate the vulnerability of the Arbiter-PUF to an ML-attack.

The results show that a challenge permutation technique can alter the output transition

probability of the Arbiter-PUF, resulting in an increase of the resilience to an ML-attack.

Moreover, the results show that a random challenge permutation is required to maximise

6 Chapter 1 Introduction

the complexity of the output transition probability of the Arbiter-PUF. Hence, a high

unpredictability for an Arbiter-PUF can be achieved. A challenge permutation technique

can be implemented by routing obfuscation which introduces no extra overhead.

Chapter 5 presents the third contribution. A bit selection technique is proposed to

reduce the bit error rates due to ageing in a dual function SRAM used as a memory

and PUF, which results in a reduction in the area overhead of the ECC. The effect of

ageing on SRAM used as a PUF is not uniform, but is dependent on the patterns of the

data stored in the memory. The distribution pattern of a 32-bit ARM instruction cache

(i-cache) is found to be predictable as in the impact of ageing. Based on these analyses,

a bit selection technique is proposed to select only SRAM cells that have close to a 50%

probability of storing a value of ‘1’. By using a bit selection technique, a reduction in

the bit error rates is achieved and the area overhead of the ECC is reduced by 6 times

compared to that without a bit selection technique. Meanwhile, the proposed technique

requires a negligible area overhead with respect to the reduction in the area overhead of

the ECC.

Chapter 6 concludes the findings and contributions of the work in this thesis. Suggestions

for future work directions are also provided.

1.6 Publications

A list of publications related to this research is as follows:

1. B. Halak, Y. Hu, and M. S. Mispan, “Area efficient configurable physical unclon-

able functions for FPGAs identification,” in IEEE International Symposium on

Circuits and Systems, 2015, pp. 946-949.

2. M. S. Mispan, B. Halak, Z. Chen, and M. Zwolinski, “TCO-PUF : A subthreshold

physical unclonable function,” in 11th Conference on Ph.D. Research in Microelec-

tronics and Electronics (PRIME), 2015, pp. 105-108.

3. M. S. Mispan, B. Halak, and M. Zwolinski, “NBTI aging evaluation of PUF-based

differential architectures,” in IEEE International Symposium on On-Line Testing

and Robust System Design, 2016, pp. 103-108.

4. B. Halak, M. Zwolinski, and M. S. Mispan, “Overview of PUF-based hardware

security solutions for the Internet of Things,” in IEEE Midwest Symposium on

Circuits and Systems, 2016, pp. 1-4.

5. M. S. Mispan, B. Halak, and M. Zwolinski, “Lightweight obfuscation techniques for

modeling attacks resistant PUFs,” in IEEE International Verification and Security

Workshop, 2017, pp. 19-24.

Chapter 1 Introduction 7

6. M. S. Mispan, B. Halak, and M. Zwolinski, “Extended abstract: SRAM-PUF based

on selective power-up and non-destructive scheme,” in International Workshop on

Microprocessor/SoC Test and Verification, 2016, pp. 1-2 (unpublished).

7. M. S. Mispan, H. Su, and M. Zwolinski, and B. Halak, “Cost-efficient designs

for modeling attacks resistant PUFs,” in Design, Automation & Test in Europe

Conference & Exhibition, 2018, pp. 467-472.

8. M. S. Mispan, S. Duan, B. Halak, and M. Zwolinski, “A reliable PUF in a dual

function SRAM,” in International Symposium on Power and Timing Modeling,

Optimization and Simulation, 2018, pp. 1-6.

Chapter 2

Physical Unclonable Function

This chapter provides a broad overview of the research related to the topic in this

thesis. The literature relevant to Chapters 3, 4, and 5 is separately introduced, to

describe the contributions in these chapters in the relevant research context. Section

2.1 describes the general definition of a PUF. Section 2.2 explains the process variations

in ICs which are exploited by a PUF. The types of PUFs are discussed in Section 2.3.

Section 2.4 summarises the existing proposed techniques of silicon PUFs, in which some

of the proposed PUFs are used as a case study in Chapter 3, 4, and 5. The metrics

to quantify the quality of PUFs are discussed in Section 2.5. Section 2.6 introduces

the effect of ageing on PUFs, which are related to the ageing evaluation on differential

PUF architecture discussed in Chapter 3 and the proposed ageing mitigation technique

described in Chapter 5. In addition, two primary applications of PUFs are discussed

in Section 2.7, while Section 2.8 describes the known attacks on PUFs, in which a

countermeasure for one of the known attacks is proposed in Chapter 4. Despite the

known attacks on PUFs, Section 2.9 describes the advantages of PUFs. Finally, Section

2.10 summarises the literature reviewed in this chapter.

2.1 Definition of a PUF

A PUF is defined as a function that maps challenges to responses and that function is

embodied by the physical material of the device [16]. As opposed to a mathematical

function which is deterministic in nature and that generates a fixed output for the same

input, a function embodied in a physical device is non-deterministic and varies from

one instance to another [17]. Based on this notion, in our study, we have focused on

silicon PUFs, which exploit the intrinsic and random variations in CMOS devices due to

the manufacturing process, as described briefly in Section 1.2. Nevertheless, generally a

PUF can be constructed using a non-silicon material, as described later in Section 2.3.

For a silicon PUF, the complex statistical variations of devices and interconnects can be

9

10 Chapter 2 Physical Unclonable Function

used to map a set of challenges to a set of responses in one instance of a PUF and the

mapping changes from one instance to another, stochastically. The set of CRPs for a

PUF can be defined as (Ci,Ri), i = 1,N . Depending on the types of PUFs, however,

generally a challenge C can be described as a k -bit input. Challenges are used to control

the behaviour of a PUF and based on the challenges applied, corresponding responses

are generated. As shown in Figure 2.1, when a challenge is applied to two different

PUFs (PUF A and PUF B), the respective responses were produced where Response A

6= Response B.

Figure 2.1: Basic functionality of PUF.

A unique response is like an electronic fingerprint which uniquely identifies each PUF.

Therefore, there is no need to store a secret key in any memory devices, unlike the

conventional method of IC security as discussed in Section 1.1. Instead, a secret key only

needs to be generated when it is required, by applying a challenge. Thus, a PUF provides

unclonable, random, and secure features, which make it a very promising technology as

a replacement for current security solutions.

2.2 Variability in Integrated Circuits

Manufacturing process variation is a fundamental limitation of the control of the device’s

physical features and interconnects during fabrication [18]. Process variations can be

divided into two categories [19]. The first category is inter-die variations where the

same device on a die can have different characteristics across various dies. The second

category is intra-die variations where similar transistors within a single die can have

different characteristics. The aggressive scaling of CMOS technology has led to a drastic

increase in process variations such as oxide thickness and random dopant fluctuations

(RDF) which causes a direct impact on the electrical behaviour of MOSFETs. One

of the fundamental challenges for CMOS device performance is RDF which is caused

Chapter 2 Physical Unclonable Function 11

by the randomness in the amount and position of dopants during dopant implantation,

resulting in a fluctuation of the total number of dopants in the transistor channel [20].

0 20 40 60 80 100 120
0

20

40

60

250-nm
180-nm

130-nm

90-nm

65-nm

45-nm

32-nm

(W/L)=2

Effective Channel Length [nm]

σ
V
th

[m
V

]

σVth

0

100

200

300

400

500

600

C
h
a
n
n
el

D
o
p
a
n
ts

σVth
Channel dopant numbers

Figure 2.2: Scaling trend of Vth variations due to RDF [20].

The Vth of MOSFETs is significantly determined by the dopant density in the transistor

channel. As devices scale down, the channel volume decreases and the total number of

channel dopants decreases. As a result, the relative effect of a single change in dopant

number increases and the variations in the Vth becomes significant [20]. The effect of

RDF on device scaling from 250-nm to 32-nm technology node can be seen in Figure 2.2.

Although process variation is an unwanted effect for CMOS circuitry, it is the desired

effect for PUFs.

2.3 Types of PUFs

2.3.1 Non-Silicon and Silicon PUFs

The idea of a PUF was introduced when Pappu et al. proposed the concept of physical

one-way functions (POWFs) which are based on an optical principle of operation [21].

The speckle patterns resulted from applying laser lights (at the different angle, distance,

and wavelength) on a transparent optical medium, which contains scattering particles,

are found to be unique and unpredictable. Following Pappu’s works, the concept of

a silicon PUF was first introduced [16]. In this study, Gassend et al. argued that

a complex IC can be viewed as a silicon PUF and described a technique to identify

12 Chapter 2 Physical Unclonable Function

and authenticate individual ICs. Further, the PUF was realized in a real silicon and

called an Arbiter-PUF [12]. The Arbiter-PUF exploits the delay mismatch between two

nominally identical delay paths. Another delay-based PUF called the Ring Oscillator-

PUF (RO-PUF) was proposed in [22], where the output response is generated based on

the frequency mismatch between a pair of ring oscillators (ROs). In [23], a memory-

based PUF, which is based on the random start-up values (SUVs) of SRAM cells was

proposed. The power-up SRAM state as an identifying fingerprint was also concurrently

proposed in [24]. A PUF based on cross-coupled latches was proposed in [25], namely

the Butterfly-PUF, targeted at protecting intellectual property (IP) designs in Field-

Programmable Gate Arrays (FPGAs). Another memory-based PUF was proposed in

[26] which uses a known cell structure of data bus keeper or data bus holder (i.e., cross-

coupled inverters) as a PUF, namely the Buskeeper-PUF.

2.3.2 Strong, Weak and Controlled PUFs

Silicon PUFs can be categorised into three sub-types according to the security properties

of their challenge-response behaviours, each with their own preferred applications. Three

established types are the Strong PUFs [23], the Weak PUFs [23], and the Controlled

PUFs [27].

1. Strong PUFs: Strong PUFs are PUFs with a very large number of CRPs (Ci,Ri),

i = 1,N [23]. The number of CRPs of the considered PUFs grows exponentially

as the number of bit challenges increases. The challenge-response interface is

directly accessible without a protection mechanism in which the CRPs can be

collected using a non-invasive CRPs measurement. Rührmair et al., [28] refined

the Strong PUF definition in which it must also be infeasible to be numerically

modelled with a high prediction accuracy based on the observed CRPs (i.e., the

PUF response is unpredictable).

2. Controlled PUFs: Controlled PUFs are improved Strong PUFs where the challenge-

response interface is not directly accessible but it is protected by a logic process-

ing unit using techniques such as random hash function, permutation, obfuscation

and etc. Gassend et al., [27] used random hash function technique for the pre-

processing of challenges before being input to the Strong PUF. In a similar way,

the responses of the Strong PUF are post-processed by the random hash function

before being output by the Controlled PUF.

A model-building attack is one of the plausible attacks on strong PUFs [28, 27],

where the adversary builds a numerical model of the PUF by measuring a number

of CRPs. The introduction of an extra pre and post-processing steps for the

Controlled PUFs increases the level of difficulty to measure and collect the CRPs.

Hence, this reduces the vulnerability to a model-building attack [27].

Chapter 2 Physical Unclonable Function 13

3. Weak PUFs: Weak PUFs are PUFs with a very small number of CRPs, fixed

challenges, and in the extreme case with just only a single challenge [23, 28].

Based on the above definition, the main distinction between Strong and Weak PUFs is

the number of generated CRPs. As Strong-PUFs can support a large number of CRPs,

they can provide authentication capabilities, particularly using a challenge-response pro-

tocol without having to store a secret key as a unique identifier. For Weak-PUFs, a

limited number of CRPs meant that these CRPs must be kept secret. For this reason,

Weak PUFs are well suited for a secret key generation for any cryptographic process

such as encryption/decryption and message authentication code (MAC). The preferred

applications based on the categorisation above are further discussed later in Section 2.7.

2.4 Silicon PUF Constructions

Since the first idea of silicon PUF, as been described in [16], which was motivated by

the Pappu’s works [29], an enormous number of PUF techniques have been proposed in

the past decade. In this section, silicon PUFs are classified based on their construction

and operating principles:

1. The first class of construction consists of delay-based PUFs, which are often con-

structed from simple digital circuit structures and exploit the intrinsic variations

in the logic gate and interconnect delays to produce device-specific random sig-

natures. Delay-based PUFs include Arbiter-PUFs [12, 30, 22, 31] and RO-PUFs

[16, 22].

2. The second class of construction is memory-based PUFs, which exploit intrinsic

variations in bi-stable memory elements such as SRAM PUFs [23, 24], D Flip-flop

PUF [32], Butterfly PUF [25], SR-NOR latch PUF [33], and Buskeeper PUF [26].

3. The third class of construction is mixed-signal PUFs in which the PUF behaviour is

inherently of an analogue nature and require analogue-to-digital converter (ADC)

to digitise the measured analogue responses. A mixed-signal PUF typically ex-

ploits the variability of minimum size MOSFETs to enhance the threshold voltage

mismatches, such as in the Voltage Transfer Characteristic PUF (VTC-PUF) [34]

and Current Mirror-PUF [35].

4. The final class of construction is PUF built from emerging nanotechnology devices

in order to further achieve secure, robust, and lightweight PUF designs [11].

The following sections discuss in detail the construction of each PUF that are mentioned

above. Though this is not a comprehensive discussion on different PUFs proposed so

far, it gives an overview of PUF development in general.

14 Chapter 2 Physical Unclonable Function

2.4.1 Arbiter-PUF

Lee et al. presented the first PUF which was fabricated on silicon using a TSMC 180-

nm CMOS technology, namely an Arbiter-PUF [12]. This PUF circuit exploits the logic

gate delays and interconnect variations which are affected by the process variations. The

Arbiter-PUF consists of k stages or switching component where each stage is composed

of two 2-to-1 multiplexers as shown in Figure 2.3 [36]. A rising pulse at an input

propagates through two nominally identical delay paths. The paths for the input pulse

are controlled by the switching elements, which are set by the bits of the challenge,

C ={c1, c0..., ck}. For ck = 0, the paths go straight through, while for ck = 1, they are

crossed. Because of manufacturing variations, there is a delay difference of 4t between

the paths. An arbiter at the end generates a random response, ‘0’ or ‘1’, depending on

the difference in arrival times.

Arbiter

A

B

Switching Component

Input

c1 = 0 c2 = 1 ck = 1ck-1 = 0

 t
Response

0 / 1

top0

bot0

top1

bot1

topk-1

botk-1

topk

botk

(a) k-bit Arbiter-PUF

in0

in1

o

in0

in1

s

i1

i0

ck

O0

O1

s

o

in0

in1

o

s

(b) Switching component

Figure 2.3: The construction of Arbiter-PUF as proposed in [36].

Ideally, an Arbiter-PUF response is equally likely to be ‘0’ or ‘1’ in which it is solely

dependent on the randomness in process variations. However, the response could be

Chapter 2 Physical Unclonable Function 15

biased to be either ‘0’ or ‘1’. A large bias reduces the uniqueness and randomness of

Arbiter-PUF responses. To avoid the bias, two important criteria must be fulfilled at

the design stage:

1. The highest degree of symmetry in the layout is required to ensure the unbiased

response of the Arbiter-PUF. The symmetry routing includes the routing before

the first switching element, inside the switching element, in between stages, before

and inside the arbiter circuit. Although it is non-trivial, it is possible to achieve a

symmetrical routing in application-specific integrated circuits (ASICs) [12], while

implementations on FPGAs seem to be difficult due to the placement and routing

constraints of the general FPGA hardware architecture [37].

2. An unbiased arbiter circuit must be used for digitisation of the delay difference.

According to [38], fair arbitration can be achieved by using an SR-latch which has

a symmetric circuit topology.

For an Arbiter-PUF, although the effect of process variations on the logic gates and in-

terconnect delays is random, there is a small yet non-negligible probability that metasta-

bility could happen if the rising edges at the inputs A and B of the arbiter circuit have

a very small timing difference. A fair arbiter circuit such as an SR-latch which has a

symmetric circuit topology is desired to minimise the arbiter bias and the metastability

effects [39].

Arbiter

Feed-Forward

Arbiter

Feed-Forward

Arbiter

Response 0/1

c1 c2 ckck-1ck-2c3

Figure 2.4: The construction of Feed-Forward Arbiter-PUF as proposed in [30].

The construction of an Arbiter-PUF, as in Figure 2.3, is based on additive delays caused

by the individual switching components which have linear characteristics [36]. Therefore,

the complexity of the CRPs mapping is minimal which enables the model building

attacks using ML techniques. A few derivatives of the Arbiter-PUF have been proposed

with the aim in introducing the non-linearity into it. Lim et al., [30] presented the Feed-

Forward Arbiter-PUF which uses the output of intermediate arbiters to configure the

subsequent switching components as depicted in Figure 2.4. However, the intermediate

arbiters increase the probability of metastability states, which would result in more

errors in the PUF response.

16 Chapter 2 Physical Unclonable Function

O1

O2

O3

Arbiter

Dk-2 Dk-1 Dk Dk-4 Dk-3

r2

r3

r4

r1
Arbiter

D1 D2 D3 Dk-1 Dk

Arbiter

Dk D1 D2 Dk-2 Dk-1

Arbiter

Dk-1 Dk D1 Dk-3 Dk-2

Figure 2.5: The construction of Lightweight-PUF as proposed in [31] for l=4.

Elsewhere, Majzoobi et al., [31] proposed a Lightweight-PUF which consists of l parallel

Arbiter-PUFs. The outputs of the Arbiter-PUFs are XORed to generate an overall

PUF response O1,O2, and O3 as shown in Figure 2.5. The input XOR network in

the Lightweight-PUF is expected to further increase the non-linearity in the CRPs

mapping. Earlier, l-XOR Arbiter-PUF was proposed in [22] which consists of l parallel

Arbiter-PUFs as illustrated in Figure 2.6. The susceptibility of the Arbiter-PUF and its

derivatives to ML-attacks will be discussed in detail in Section 2.8.3.

Chapter 2 Physical Unclonable Function 17

Arbiter

Arbiter

r1

`

rl

Response 0/1

c1 c2 ckck-1

ckck-1c1 c2

Figure 2.6: The construction of the l-XOR Arbiter-PUF as proposed in [22].

2.4.2 Ring Oscillator PUF

Another type of delay-based PUF is the ring oscillator PUF (RO-PUF). The working

principle of the RO-PUF is that by measuring the frequencies of digital oscillating circuits

that randomly vary due to the uncontrollable effects of silicon process variations on the

logic gates and interconnect delays. The notion of a PUF which uses an oscillating

circuit was first proposed by Gassend et al., [16]. Further, Suh et al., [22] proposed

an RO-PUF architecture which consists of an array of n nominally identical ROs. The

architecture also contains two frequency counters to count the number of rising edges at

the selected RO pairs. Two n-to-1 multiplexers control which pair of ROs is currently

applied to both counters. Hence, the selection signals of these multiplexers become

the PUF’s challenge. The construction of an RO-PUF is depicted in Figure 2.7. Both

frequency counters are enabled for a fixed time interval and the resulting counter values

are compared to generate a response, ‘0’ or ‘1’, based on which oscillator from the

selected RO pair is faster. Since the process variations affect the frequencies of the n

RO arrays, the resulting comparison bit will be random and device-specific.

Each comparison of a pair of oscillators generates a bit. Therefore, given an array of

n oscillators, a total of
(
n
2

)
= n(n−1)

2 pairs can be compared. However, the number of

independent bits that can be produced is less than n(n−1)
2 . For example, if oscillator A

is faster than B and B is faster than C, clearly that A will also be faster than C which

results in a correlated pair-wise comparison. Suh and Devadas [22] concluded that the

maximum number of uncorrelated comparisons is limited by the number of possible

orderings in which the oscillators can be ordered. Given n oscillator frequencies which

are independent and equally distributed, there exist n! equally likely possible orderings.

Hence, the maximum entropy (i.e., uncorrelated pair-wise comparisons) of an RO-PUF

is log2 n!. It is also possible to avoid any correlation by simply comparing a pair of ROs

once, resulting in only n
2 response bits.

18 Chapter 2 Physical Unclonable Function

>?

Counter

Counter

MUX

Response

0 / 1

Challenge

n ROs

Figure 2.7: The construction of an RO-PUF as proposed in [22].

2.4.3 SRAM-PUF

The previously discussed PUFs are all delay-based PUFs which require additional cir-

cuitry to use them as on-chip hardware security. Another idea is to use on-chip resources

as a PUF, particularly using SRAM, which is available in any computing system [23, 24].

Guajardo et al., [23] exploited SRAM memory as an intrinsic PUF for use as a secret

key generator for FPGA bitstream encryption/decryption to support an IP protection.

Holcomb et al. [24], targeted wider applications of SRAM as PUFs to support resource-

constrained security-critical applications such as contactless credit cards etc. Generally,

SRAM memory is constructed based on rows and columns of bit cells. The number

of available bit cells in an SRAM represents its storage size. Each bit cell of SRAM

is typically a six-transistor CMOS circuit which consists of two cross-coupled inverters

(MP1, MP2, MN1, and MN2) and two access transistors (MN3 and MN4), as illustrated

in Figure 2.8.

The transistors forming the cross-coupled inverters are also known as a bi-stable element,

in which each node Q and QB can be in either of two states, ’0’ or ’1’. The power-up

or SUVs of bi-stable elements depend on the device mismatches, which result from

process variations. During power-up of an SRAM cell, as the supply voltage increases,

the current flowing through MN1 and MN2 will slowly pull up the voltage at nodes Q

and QB. Because of the random process variations, transistor MP2 has a slightly higher

threshold voltage compared to that of MP1. Therefore, the current that flows through

MN1 is slightly higher than through MN2, thus turning ON the MN2 and pulling down

node QB to GND. At the same time when node QB is discharging, MP1 is turned ON

and pulls up node Q to Vdd. As shown in Figure 2.9, the nodes Q and QB settle at ‘0’

Chapter 2 Physical Unclonable Function 19

V dd

MP1

MN1

MP2

MN2

BL BLB

QBQ

WL

MN3 MN4

Figure 2.8: 6-T SRAM cell circuit.

0 0.5 1 1.5 2

·10−9

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

V
ol

ta
ge

[V
]

QB
Q

Figure 2.9: Bi-stable SRAM internal nodes, Q and QB resolving to ’1’ and ’0’
during power-up process.

and ‘1’, respectively. When powering-up the SRAM, the SUVs across different memory

blocks within an SRAM and across multiple SRAMs show device-specific and random

patterns, which are the desired qualities to be used as a PUF [23, 24].

20 Chapter 2 Physical Unclonable Function

2.4.4 Flip-flop, Latch and Buskeeper PUFs

PUFs based on flip-flops and latches are derived from the same working principles and

physical effects as SRAM-PUFs. Kumar et al., [25] proposed a Butterfly PUF which

consists of a pair of cross-coupled latches, forming a bi-stable circuit as illustrated in

Figure 2.10(a). When the preset (PRE) and clear (CLR) signals are simultaneously set

to high, the Butterfly PUF can be forced into an unstable state and converges into a

stable state when both signals are set low after a few clock cycles. The Butterfly PUF

was proposed to overcome the disadvantage of the SRAM-PUF on FPGA platforms,

whereby the SRAM on most commercial FPGAs is cleared after power-up. However, the

Butterfly PUF requires symmetrical routing to minimise the impact of design mismatch

which is not trivial to achieve due to the routing constraints on FPGAs [37]. Elsewhere,

a PUF based on the power-up behaviour (i.e., similar to the SRAM PUF) of clocked

D flip-flops is proposed by van der Leest et al., [32]. Most D flip-flops are based on

two latches as depicted in Figure 2.10(b). The advantage of D Flip-flop PUF is that

the location of the individual flip-flop can be randomly spread across a design and their

signal lines connecting them to the read-out circuitry can be obfuscated which increases

the defence against invasive attacks such as probing attacks.

Su et al., [33] proposed a device identification technique based on the two cross-coupled

NOR-gates which constitute a simple SR-NOR latch as shown in Figure 2.10(c). When

the reset signal is high, the SR-NOR latch enters an undefined state and converges to

a stable state depending on the internal mismatch between the NOR gates when the

reset signal is low. The SR-NOR latch uses the same working principle as SRAM-PUF,

however does not rely on a power-up state that depends on the supply voltage. There-

fore, it provides more flexibility because it can generate unpredictable and reproducible

responses when the reset signal is (re)asserted any time that the secret key is required

during the on-time of the device. Another variant of latch-based PUF is the Buskeeper

PUF, proposed in [26], which is constructed using bus keeper cells. The basic structure

of a bus keeper cell is a cross-coupled inverter with a weak drive-strength, connected to

a bus line, as shown in Figure 2.10(d). A bus keeper cell is used to maintain the last

driven state on the bus line and prevents the bus line from floating. Similar to SRAM

cells, the power-up state of bus keeper cells is determined by the device mismatches

which result from process variations. An advantage of the Buskeeper PUF is the low

area overhead in comparison to other types of memory based-PUFs such as D Flip-flop

PUFs.

Chapter 2 Physical Unclonable Function 21

D Q

PRE

CLR

CLK Latch 1

D Q

PRE

CLR

CLK Latch 2

Response

0

0

(a) Butterfly PUF

D Q

CLK Latch 1

D Q

Latch 2

Response

(b) D Flip-flop PUF

Reset

Response

(c) SR-NOR latch (d) Buskeeper PUF

Figure 2.10: The construction of Butterfly PUF [25], D Flip-flop PUF [32],
SR-NOR latch PUF [33] and Buskeeper PUF [26].

2.4.5 Mixed-Signal PUFs

A PUF with a mixed-signal structure, namely the VTC-PUF, was proposed by Vijayaku-

mar et al., [34], which exploits the variability in a voltage transfer characteristic (VTC)

circuit as shown in Figure 2.11(a). The VTC circuit has a non-linear relationship be-

tween input and output voltages in which the non-linearity is controlled by the feedback

transistor, M3. Adapted from the architecture of Arbiter-PUF, the VTC circuit is used

as a basic building block in which it is coupled with a switching component in each stage,

creating a cascaded circuit as depicted in Figure 2.11(b). The switching components are

created from a simple transmission gate based circuit. The input node is connected to
Vdd
2 . A voltage sense amplifier is used to sense the difference of the propagated input

voltages and generate a response, ‘1’ or ‘0’, based on the sign of the differential output

at the final stage.

22 Chapter 2 Physical Unclonable Function

Vdd

in out

M1 M3

M2

(a) VTC circuit

Sense

Amplifier

c1 c2 ck

VTCtop0

VTCbot0

VTCtop1

VTCbot1

VTCtopk

VTCbotk

Response

0 / 1
Vdd

2

switching

component

basic building

block

(b) Top level of VTC-PUF

Figure 2.11: The construction of VTC-PUF [34].

Kumar et al., [35] proposed a Current Mirror-PUF which is also adapted from the

Arbiter-PUF architecture, as in Figure 2.11. However, the basic building block is the

current mirror circuit illustrated in Figure 2.12. Iout is the mirrored current of Iref

which will be varied slightly due to the process variations experienced by the transistors,

M1-M4. Similar to the VTC-PUF, the switching components are created by a simple

transmission gate based circuit, but the input is connected to a constant current source.

A current sense amplifier is used to sense the difference of the propagated input currents

and generate a response, ‘1’ or ‘0’, based on the sign of the differential output at the

final stage.

Vdd

M2M1

M3 M4

Iref
Iout

Figure 2.12: The construction of the current mirror circuit in the Current
Mirror-PUF [35].

Chapter 2 Physical Unclonable Function 23

Elsewhere, Cao et al., [40] proposed a mixed-signal PUF based on a CMOS image sensor

circuit. The image sensor function is not affected when operated in a PUF mode. The

core of a CMOS image sensor is a pixel array, where its typical structure is depicted in

Figure 2.13. This PUF exploits the variations of the pixel output voltage during the

reset phase which varies due to the variations in the threshold voltages of transistors

MRS and MSF. The two reset voltages of two pixels are compared to generate a response,

‘0’ or ‘1’, based on which reset voltage is larger. A predefined threshold is introduced

during the comparison of reset voltages which effectively increases the reliability of the

response by about 10.8%.

Reset
MRS

MSF

MSE L

PD

Select

Vdd

C
olu

m
n

 line

Figure 2.13: 3-T pixel circuit.

Saha et al., [41] proposed a fast and lightweight mixed-signal PUF which exploits the

susceptibility of the threshold voltage of MOSFETs to process variations, hence, the

name “Threshold Voltage PUF” or TV-PUF. The core circuit in the TV-PUF is a

block consisting of n cascaded transistors as depicted in Figure 2.14. When VIN=Vdd,

the output voltage at the source terminal of the cascaded series of transistors becomes

Vout = Vdd − Vth1 − Vth2 − ..Vthn. Clearly, the output voltage depends on the threshold

voltages of n cascaded transistors which are susceptible to random process variations.

Due to this, the output voltages of two nominally identical blocks are different and are

compared using the sense amplifier to generate a 1-bit response. A decoder circuit is

used to set the level of VIN to HIGH (Vdd). For a unique challenge (i.e., an input

decoder), only one decoder output is HIGH, which is connected to two blocks of n

cascaded transistors.

2.4.6 Emerging Nanotechnology-based PUFs

All of the above PUF designs focus on exploiting process variations intrinsic to CMOS

technology. Recently, nanotechnology-based PUFs have made some progress since the

scaling down to the nano-region has resulted in an increased variability in nanoelectronic

devices. PUFs that have been proposed include the Carbon-nanotube field-effect tran-

sistors (CNFET) based PUF [42], the phase change memory (PCM) based PUF [43],

24 Chapter 2 Physical Unclonable Function

Vdd

Vdd

Vdd

VIN=Vdd

Vdd-Vth1

Vdd - Vth1 - Vth2

CL

M1

M2

Mn

Vout = Vdd - Vth1 - Vth2 - . . Vthn

Figure 2.14: The construction of n cascaded transistors of one block in TV-PUF
[41]

and the Memristor-based PUF [44]. Nanotechnology-based PUFs offer a few advan-

tages over CMOS based PUFs, such as substantial process variations, small foot-prints,

and lower energy consumption [11]. Since this study focuses on CMOS silicon-based

PUFs, one may refer to [11] for a comprehensive discussion on PUFs based on emerging

nanotechnology devices.

2.5 PUF Quality Metrics

All of the above discussed the proposed techniques for different types of PUFs imple-

mentations. Several parameters were defined to quantify the performance of the pro-

posed PUFs, but the parameter or evaluation criteria differ for each implementation.

Therefore, a standard set of parameters is needed to quantify the performance of these

PUFs. Maiti et al., [45] has systematically refined the quality parameters to evaluate

and compare the performance of PUFs. These parameters are uniqueness, reliability,

and uniformity. Next, the definition of these parameters are described and later in

this section, the quality metrics for PUFs discussed in Section 2.4 are summarised in a

performance table.

2.5.1 Uniqueness

Uniqueness is the ability of one PUF instance to be uniquely distinguished from another

PUF. The Hamming Distance (HD) is used to evaluate the uniqueness performance

and is called the ‘Inter-HD’. The HD between two binary strings of equal length is the

number of positions at which corresponding bits are different. If the same challenge C

is applied to two chips, i and j (i 6= j), and n-bit responses are generated, Ri(n) and

Rj(n), respectively, the average Inter-HD among k chips is defined as [45]:

Chapter 2 Physical Unclonable Function 25

Inter−HD =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(Ri(n), Rj(n))

n
× 100% (2.1)

To achieve a high probability of uniquely identifying a PUF from a group of PUFs of a

similar type, it is desirable to have truly random PUF responses, where the Inter-HD is

centred around 50%.

2.5.2 Reliability

The reliability of the PUF determines the consistency of the responses, given the same

challenge at different ambient temperatures and/or supply voltage fluctuations. The HD

is used to evaluate the reliability and is called the ‘Intra-HD’. For the challenge C, a

single chip, represented as i, has an n-bit reference response Ri(n) at room temperature

and a nominal supply voltage (i.e., the reference condition). The same challenge C is

applied to the chip i at different condition to obtain the n-bit response, R′i,j(n). Hence,

the average Intra-HD for m samples is defined as, [45]:

Intra−HD =
1

m

m∑
j=1

HD(Ri(n), R′i,j(n))

n
× 100% (2.2)

From the Intra-HD value, the reliability of a PUF can be defined as:

Reliability = 100%− Intra−HD (2.3)

From Eq. (2.3), a small Intra-HD is desired to achieve high reliability.

2.5.3 Uniformity

The uniformity of the PUF is the proportion of 0’s and 1’s in the response bits of a PUF.

In other words, the uniformity characterises the randomness of the PUF’s response and

the ideal value of uniformity is 50%. The Hamming Weight (HW) is used to evaluate

the uniformity which measures number ‘1’ bits in the binary sequence, and is described

as below, [45]:

(Uniformity)i =
1

n

n∑
j=1

ri,j × 100% (2.4)

where ri,j is the j-th binary bit of an n-bit response from a chip i.

26 Chapter 2 Physical Unclonable Function

Uniformity and uniqueness quality metrics as discussed above are independent param-

eters. For k chips of a similar type of PUF with an n-bit response from each chip, the

average uniformity which is 1
k

∑k
i=1(Uniformity)i, can be close to an ideal value of 50%

but that does not guarantee 50% uniqueness. For example, k chips of the worst PUF

could generate k similar n-bit responses which have a balanced distribution of 0’s and

1’s in their n-bit responses. On the other hand, k chips of a similar type of PUF with

an n-bit response from each chip can achieve a uniqueness close to an ideal value of

50% but the average uniformity is not necessarily at 50%. For example, one or more of

the k chips of the worst PUF could generate all 1’s or 0’s in their corresponding n-bit

responses.

All of the above quality metrics for a number of silicon PUFs discussed in Section 2.4

are summarised in Table 2.1.

Chapter 2 Physical Unclonable Function 27

T
ab

le
2.

1:
P

er
fo

rm
an

ce
of

su
rv

ey
ed

si
li

co
n

P
U

F
co

n
st

ru
ct

io
n
s

in
S

ec
ti

o
n

2
.4

P
U
F

C
la
ss

P
U
F

T
y
p
e

S
im

/
F
P
G
A
/

S
il
ic
o
n

T
e
ch

n
o
lo
g
y

#
P
U
F

In
st
a
n
c
e
s

N
o
m
in
a
l

C
o
n
d
it
io
n

U
n
iq
u
e
n
e
ss

(%
)

R
e
li
a
b
il
it
y

C
o
n
d
it
io
n

W
o
rs
t
c
a
se

b
it

e
rr
o
r

(%
)

U
n
if
o
rm

it
y

(%
)

D
el

ay
-b

a
se

d
A

rb
it

er
-P

U
F

[1
2
]

S
il
ic

o
n

1
8
0
-n

m
3
7

V
d
d
:

1
.8

V
2
3

V
d
d
:

1
.8

V
±

2
%

4
.8

N
R

T
n
o
m

:
2
7

o
C

T
e
n
v
:

2
7

o
C

to
6
7

o
C

A
rb

it
er

-P
U

F
[3

8
]

S
il
ic

o
n

4
5
-n

m
4
0

V
d
d
:

1
.0

V
3
8
.9

V
d
d
:

1
.0

V
±

1
0
%

9
N

R

T
n
o
m

:
2
5

o
C

T
e
n
v
:

2
5

o
C

to
7
5

o
C

R
O

-P
U

F
[2

2
]

X
il
in

x
V

ir
te

x
4

F
P

G
A

9
0
-n

m
1
5

V
d
d
:

1
.2

V
4
6
.1

5
V

d
d
:

1
.2

V
±

1
0
%

0
.4

8
1

N
R

T
n
o
m

:
2
0

o
C

T
e
n
v
:

2
0

o
C

to
1
2
0

o
C

R
O

-P
U

F
[4

6
]

S
im

u
la

ti
o
n

9
0
-n

m
1
0
0

V
d
d
:

1
.2

V
4
4

V
d
d
:

0
.8

V
to

1
.4

V
5
.5

2
N

R

T
n
o
m

:
2
5

o
C

T
e
n
v
:

0
o
C

to
1
0
0

o
C

M
em

o
ry

-b
a
se

d
S
R

A
M

-P
U

F
[2

3
]

F
P

G
A

N
R

1
7

V
d
d
:

N
R

4
9
.9

7
T

e
n
v
:

-2
0

o
C

to
8
0

o
C

1
2

N
R

T
n
o
m

:
2
0

o
C

S
R

A
M

-P
U

F
[4

7
]

S
il
ic

o
n

9
0
-n

m
6
8

V
d
d
:

1
.2

V
≈

5
0

V
d
d
:

1
.2

V
±

1
0
%

1
9

N
R

T
n
o
m

:
2
0

o
C

T
e
n
v
:

-4
0

o
C

to
8
0

o
C

S
R

A
M

-P
U

F
[3

9
]

S
il
ic

o
n

6
5
-n

m
4

V
d
d
:

1
.2

V
4
9
.7

T
e
n
v
:

-4
0

o
C

to
8
5

o
C

8
N

R

T
n
o
m

:
2
5

o
C

B
u
sk

ee
p

er
P

U
F

[2
6
]

S
il
ic

o
n

6
5
-n

m
1
9
2

V
d
d
:

1
.2

V
4
9
.0

2
V

d
d
:

1
.2

V
±

1
0
%

2
0

N
R

T
n
o
m

:
2
5

o
C

T
e
n
v
:

-4
0

o
C

to
8
5

o
C

B
u
tt

er
fl
y

P
U

F
[2

5
]

X
il
in

x
V

ir
te

x
5

F
P

G
A

N
R

3
6

V
d
d
:

N
R

≈
5
0

T
e
n
v
:

-2
0

o
C

to
8
0

o
C

6
N

R

T
n
o
m

:
2
0

o
C

D
F

li
p

fl
o
p

P
U

F
[3

2
]

S
il
ic

o
n

1
3
0
-n

m
4
0

V
d
d
:

N
R

3
6

T
e
n
v
:

-4
0

o
C

to
8
0

o
C

1
3

≈
7
5

T
n
o
m

:
2
0

o
C

1
1
-o

u
t-

o
f-

8
m

a
sk

sc
h
em

e
is

u
se

d
to

fo
r

re
li
a
b
il
it

y
en

h
a
n
ce

m
en

t.
N

R
=

n
o
t

re
p

o
rt

ed
.

28 Chapter 2 Physical Unclonable Function

C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

P
U
F

C
la
ss

P
U
F

T
y
p
e

S
im

/
F
P
G
A
/

S
il
ic
o
n

T
e
ch

n
o
lo
g
y

#
P
U
F

In
st
a
n
c
e
s

N
o
m
in
a
l

C
o
n
d
it
io
n

U
n
iq
u
e
n
e
ss

(%
)

R
e
li
a
b
il
it
y

C
o
n
d
it
io
n

W
o
rs
t
c
a
se

b
it

e
rr
o
r

(%
)

U
n
if
o
rm

it
y

(%
)

M
em

o
ry

-b
a
se

d
S
R

-N
O

R
L

a
tc

h
P

U
F

[3
3
]

S
il
ic

o
n

1
3
0
-n

m
1
9

V
d
d
:

1
.0

V
5
0
.1

3
V

d
d
:

0
.9

V
to

1
.2

V
5
.4

7
5
0
.1

6

T
n
o
m

:
2
0

o
C

T
e
n
v
:

0
o
C

to
8
0

o
C

M
ix

ed
-s

ig
n
a
l

V
T

C
-P

U
F

[3
4
]

S
im

u
la

ti
o
n

4
5
-n

m
1
0
0

V
d
d
:

1
.0

V
4
9
.8

0
V

d
d
:

1
.0

V
±

1
0
%

2
.1

5
0
.1

0

T
n
o
m

:
2
5

o
C

T
e
n
v
:

0
o
C

to
8
5

o
C

C
u
rr

en
t

M
ir

ro
r-

P
U

F
[3

5
]

S
im

u
la

ti
o
n

3
2
-n

m
1
0
0
0

V
d
d
:

1
.1

V
4
9

V
d
d
:

1
.0

V
±

0
.1

V
2

4
7

T
n
o
m

:2
5

o
C

T
e
n
v
:

0
o
C

to
7
5

o
C

C
M

O
S

Im
a
g
e

S
en

so
r

P
U

F
[4

0
]

S
il
ic

o
n

1
8
0
-n

m
5

V
d
d
:

3
.3

V
4
9
.3

7
V

d
d
:

3
V

to
3
.6

V
1
2

N
R

T
n
o
m

:
2
5

o
C

T
e
n
v
:

1
5

o
C

to
1
1
5

o
C

T
V

-P
U

F
[4

1
]

S
im

u
la

ti
o
n

4
5
-n

m
1
0
0

V
d
d
:

1
.0

V
5
0
.0

2
V

d
d
:

1
.0

V
±

2
0
%

4
4
9
.7

T
n
o
m

:
N

R
T

e
n
v
:

-5
5

o
C

to
1
2
5

o
C

N
a
n
o
te

ch
n
o
lo

g
y

C
N

P
U

F
[4

2
]

S
im

u
la

ti
o
n

1
4
-n

m
1
0
0

V
d
d
:

0
.8

V
4
9
.6

7
V

d
d
:

0
.8

V
±

2
2
.5

%
3
.5

N
R

T
n
o
m

:
N

R
T

e
n
v
:

-2
0

o
C

to
8
0

o
C

m
rP

U
F

[4
4
]

S
im

u
la

ti
o
n

9
0
-n

m
1
0
0

V
d
d
:

1
.0

V
5
0
.1

7
V

d
d
:

1
.0

V
±

2
0
%

4
.4

5
0
.3

4

T
n
o
m

:
2
7

o
C

T
e
n
v
:

-2
0

o
C

to
8
5

o
C

P
C

M
-b

a
se

d
rP

U
F

[4
3
]

S
il
ic

o
n

1
8
0
-n

m
1
0

V
d
d
:

N
R

≈
5
0

T
e
n
v
:

2
5

o
C

to
8
5

o
C

9
.7

N
R

T
n
o
m

:
N

R

N
R

=
n
o
t

re
p

o
rt

ed
.

Chapter 2 Physical Unclonable Function 29

2.6 The Effect of Ageing on PUFs

This section describes the CMOS device ageing mechanism. From our perspective, the

goal is to gain a concise understanding of the ageing mechanism which then allows us

to understand its impact on circuit level performance. Later in this section, a previous

ageing study of PUFs is discussed.

2.6.1 CMOS Device Ageing

In Section 2.5.2, the reliability metric was discussed, wherein the variations in operating

temperature and/or supply voltage affect the reproducibility of PUF response. The

errors in PUF responses introduced by these variations are considered as reversible

temporal variabilities in which the errors may disappear if the cause of variation is

withdrawn [48]. Nevertheless, there is another factor that can affect the reliability of a

PUF’s response, in particular, CMOS device ageing. Ageing causes irreversible changes

in circuit behaviour over an extended period, and thus leads to a permanent reliability

issue for a PUF [48]. If a CMOS device is used continuously, the device suffers from

ageing processes such as BTI and HCI. BTI is more dependent on the vertical electrical

field whereas HCI is more influenced by the lateral electrical field [15]. With CMOS

technology scaling, the distance between the drain and source junctions is reduced,

thus the impact of lateral and/or vertical electric fields is more significant. BTI affects

nMOS as Positive Bias Temperature Instability (PBTI) and pMOS as Negative Bias

Temperature Instability (NBTI). The ageing investigation of PUFs which is described

in Chapter 3 and 5 addresses the NBTI ageing mechanism, as that is more pronounced

in low-k or SiON dielectric materials [49].

According to the trapping/de-trapping (T-D) theory, when a pMOS device is negatively

biased, the amount of trapped charges in the gate dielectric increases and leads to NBTI

stress [50, 15]. When the stress is relieved such that the bias to a pMOS device is

relaxed, the trapped charges may be emitted, resulting in NBTI recovery [15]. NBTI

manifests itself as an increase in the Vth over time while the pMOS device is continuously

used. The Vth shift is a strong function of the duty cycle or stress time, supply voltage

and temperature [15, 46]. Figure 2.15 shows the effect of NBTI for a CMOS inverter

at different duty cycles, simulated by HSPICE MOSRA using a low-k TSMC 65-nm

technology at a nominal supply voltage, 1.2V, and an ambient temperature of 25oC.

In Figure 2.15, the duty cycle is referred to the time when the pMOS device is under

negative biased (i.e., Vgs=−Vdd). Vgs is the gate-to-source voltage and Vdd is the supply

voltage. A duty cycle close to 1 implies a larger amount of stress and a smaller amount

of recovery.

30 Chapter 2 Physical Unclonable Function

2 4 6 8 10
0

1

2

3

4

5
·10−2

Year

4
V
th

[V
]

α=0.1

α=0.2

α=0.5

α=0.75

α=0.9

Figure 2.15: Threshold voltage degradation (4Vth) over the time for CMOS
inverter at different duty cycle due to NBTI effect.

As the MOSFET current is a function of Vth, an increase in Vth due to NBTI stress

results in a reduction of the drive current of the pMOS transistor. An increase in Vth also

reduces the overdrive voltage of a pMOS transistor. Vth is the minimum voltage required

between the gate and source to allow the current to flow from the drain to source [51].

The overdrive voltage is defined as Vgs in excess of Vth, and is expressed as Vov = Vgs−Vth.

The reduction in the overdrive voltage, on one hand, causes the aged pMOS transistor

to turn ON slower than a fresh pMOS transistor. On the other hand, it will turn OFF

faster than a fresh pMOS transistor. The reduction in current and overdrive voltage

changes the switching behaviour of CMOS logic circuits. In combinational logic circuits,

a signal propagating through each path has to go through many logic inversions (i.e.,

NAND, NOR, etc). Therefore, to understand the impact of NBTI on signal propagation

in combinational logic circuits, 11 CMOS inverters were constructed, as shown in Figure

2.16(a). As the falling signal edge propagates through the inverters, the impact of NBTI

is magnified, resulting in a significant delay in the rising signal at the primary output,

as shown in Figure 2.16(b). A similar situation is observed when a rising signal edge is

asserted at the primary input as depicted in Figure 2.16(c). The increase in the delay of

both the rising and falling signal edges due to NBTI could potentially affect the timing,

thus leading to a catastrophic failure of the system.

Chapter 2 Physical Unclonable Function 31

n1 n2
VinVout

inv1 inv2 inv3 inv11

(a)

(a)

0.99 1 1.01 1.02

·10−8

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

V
ol

ta
ge

[V
]

Vin

Vout fresh

Vout aged

(b)

5 5.1 5.2 5.3

·10−9

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]
V

ol
ta

ge
[V

]

Vin

Vout fresh

Vout aged

(c)

Figure 2.16: Transient behaviour of CMOS inverter under NBTI (a) a chain of
11 inverters, (b) assertion of falling signal at the primary input, (c) assertion of
rising signal at the primary input.

In the context of a PUF, the reduction in the MOSFET current due to NBTI could

potentially generate unreliable PUF responses. Therefore, a similar approach can be

used to measure the impact of NBTI on the reliability of PUF responses, where the HD

is used to compare the fresh and aged responses and is given as:

Intra−HDNBTI =
1

m

m∑
i=1

HD(Ri.fresh(n), Ri.aged(n))

n
× 100% (2.5)

2.6.2 Related Works of Ageing on PUFs

In the early research of PUFs, Lim et al. briefly discussed the ageing of an Arbiter-PUF,

[30], but the ageing test was limited to one month under normal operating conditions

and no significant performance degradation was found. Guajardo et al., [23] performed

an ageing test on an SRAM-PUF in an FPGA under normal operating conditions by

continuously writing ones or zeros in the SRAM cells for over 10 minutes at a time. Sub-

sequently, the FPGA was restarted, followed by a reading of the SRAM-PUF responses

and compared with a reference measurement, which was taken prior to the ageing test.

No significant impact was observed on the reliability of the SRAM-PUF when it was

subjected to this ageing. Both studies [30, 23] indicate that within a limited time-frame

32 Chapter 2 Physical Unclonable Function

and under normal operating conditions, the impact of ageing on PUFs is inconclusive.

Hence, this led researchers to further study the impact of ageing on PUFs over a longer

period as compared to ageing studies in [30, 23].

Selimis et al., [47] conducted an extensive ageing study on an SRAM-PUF which was

fabricated using a 90-nm CMOS technology node. An accelerated ageing test was per-

formed by applying high temperatures and supply voltages to induce the NBTI effect

on the SRAM-PUF. Prior to the ageing test, one reference measurement (i.e., the PUF

response) was measured at a temperature of 20oC and a nominal supply voltage of 1.2V,

with which all other measurements taken during the ageing test are compared. From

the ageing test experiment, a 14% bit error was experienced by SRAM-PUF after 4.7

years. Elsewhere, Maes et al., [39] performed a similar accelerated ageing test to in-

duce NBTI effects on memory-based PUFs, including an SRAM-PUF, implemented in

a 65-nm technology ASIC. After 4.5 years, the SRAM-PUF suffers about 8% bit error.

In a recent study [48], an accelerated ageing test was performed on RO-PUFs imple-

mented on a Xilinx Spartan 3E FPGA. The total effective ageing period is about 13

years and within that time-frame, the RO-PUFs experienced 8.6% bit error. Rahman

et al., [46] discussed the impact of BTI and HCI on RO-PUFs at transistor level in a

90-nm technology node, simulated using HSPICE MOSRA. With the assumption that a

PUF will only be used 20% of the time, BTI and HCI caused about 12.76% bit error on

RO-PUFs after 10 years. An ageing-resistant RO-PUF (ARO-PUF) has been proposed

in [46] to mitigate the impact of ageing on RO-PUF and ARO-PUF, which successfully

reduces the bit error to 3.83% in 10 years. From the ageing analysis of RO-PUFs in [48]

and [46], both agreed that ageing caused different degradation on the RO frequencies. It

is an interesting observation because RO-PUFs are built from arrays of identically laid-

out ROs. The only difference is the process variations on each RO. Although no claim

has been made in [48], Rahman et al., [46] claims that because of the process variations,

each RO has a different degradation rate when the ROs are subjected to ageing.

All of the above studies focused on quantifying the bit error rates experienced by PUFs

when they are subject to ageing. Elsewhere, the device ageing effect is exploited to

improve the uniformity and reliability against environmental variations of SRAM-PUFs

[52]. Xu et al., [53] use a similar approach of device ageing to enhance the reliability

of an Arbiter-PUF under environmental variations. A processor-based PUF is proposed

in [54], which utilises the built-in arithmetic logic units (ALUs) such as n-bit ripple

carry adder in a two-core processor architecture as a PUF. The outputs (i.e., the sum)

of two ripple carry adders (i.e., one from each core) are fed to the arbiters to generate

n-bit response. Due to a limitation to achieve symmetric placement of the arbiters and

routing between each ALU to the arbiters, the PUF suffers bias responses. To overcome

this, a device ageing technique is applied to intentionally increase the gate delays of a

particular path which led to the bias response.

Chapter 2 Physical Unclonable Function 33

2.7 PUF Applications

Since PUFs were introduced in [21, 16, 12, 23, 24], they have been receiving a lot of

attention because of their potential for being robust and cost-efficient hardware-based

security devices. Based on the sub-types of silicon PUFs as discussed in Section 2.3.2,

PUFs have been proposed for use in two primary applications, [22], which are: 1) low-

cost identification and authentication; and 2) cryptographic key generation. The details

of these two applications are explained in the next sub-sections.

2.7.1 Low-Cost Identification and Authentication

Identification and authentication are two essential processes in any security field. Iden-

tification occurs when a subject claims an identity such as a username, a process ID,

or a smart card that can uniquely identify a subject. Authentication is the process of

proving an identity by providing appropriate credentials. In IC application which is

used to process sensitive and user-specific data, it is critical for an IC to be identified

and authenticated securely. As the PUF output is device-specific and unpredictable, it

is suitable for use by a challenge-and-response protocol to identify and authenticate an

IC. As explained in Section 2.3.2, a Strong PUF has an exponentially large number of

CRPs. Hence, it is the right type of PUF for a challenge-and-response protocol for IC

identification and authentication.

Figure 2.17 illustrates the PUF-based authentication process. An enrolment phase takes

place prior to the authentic device being deployed in the field. In the enrolment phase, a

verifier that a trusted party applies randomly chosen challenges to obtain unpredictable

responses of an authentic device and then stores these CRPs in a database j (dj) for

future identification and authentication. In the field, when device j, which contains a

PUF, is requested for authentication, a verifier selects a challenge from dj and obtains

the PUF response from the device j. To avoid an exhaustive comparison with all CRP

profiles in the database during the authentication process, the verifier performs a profile

match to retrieve a dj to which the response given by the device j is compared. The

device j passes the authentication process if the response matches or is less than the

HD threshold, ε, as compared to the stored value in the database. As the challenge-

response protocol does not require an ECC by forgiving bit errors which are less than ε,

it is extremely lightweight and suitable for resource-constrained devices such as RFID

tags. These extremely lightweight PUF-based RFID tags can be promoted as a secure

alternative to memory-based RFID tags and have been proposed as an anti-counterfeit

solution for medical drugs, supply chain control, and secure access [55].

34 Chapter 2 Physical Unclonable Function

Verifier −→ Prover j

〈cij, rij〉 with cij ← TRNG() ←→ rij ← PUF (cij)
}
1x Enrolment

dj ← d

〈c, r〉 ← 〈cij, rij〉 with i← dj
dx Authenticationdj ← dj − 1

c−→ r̃← PUF (c)

Abort if HD(r,̃r) > ε
r̃←−

Figure 2.17: Low-cost PUF-based identification and authentication [22, 10].

In the PUF-based identification and authentication scheme shown in Figure 2.17, two

types of error are possible to occur.

1. False negative - This occurs when the response of a valid PUF deviates signifi-

cantly from its initial state stored in the database. It might be deemed to be a

different PUF and rejected during an authentication process. The probability of

this rejection is given as preject and can be computed using, [30, 22]:

preject = 1−
ε∑
i=0

(
n

i

)
piintra(1− pintra)n−i (2.6)

where pintra denotes the bit error probability which is computed using Eq. (2.2),
Intra-HD

100 , n is the total number of bits in the response, and ε is the HD threshold.

2. False positive - This occurs when a wrong PUF is issued to a server, and the server

authenticates it by mistake. The probability of this misidentification is given as

pmis and can be computed using, [30, 22]:

pmis =

ε∑
i=0

(
n

i

)
piinter(1− pinter)n−i (2.7)

where pinter denotes the bit unique probability which is computed using Eq. (2.1),
Inter-HD

100 , n is the total number of bits in the response, and ε is the HD threshold.

Suh et al., [33] further described that the unreliable bits may have an impact on the

probability of misidentification. Given two chips, k and l, a misidentification will occur

when HD(rl ,̃rk) ≤ HD(rk ,̃rk) due to the effect of the unreliable bits. Assume that all

unreliable bits will always evaluate to the worst possible case such that:

HD(rl, r̃k) = HD(rk, rl)−HD(rk, r̃k), (2.8)

Chapter 2 Physical Unclonable Function 35

the condition of misidentification can be re-written as:

HD(rl, rk)−HD(rk, r̃k) ≤ HD(rk, r̃k) (2.9)

HD(rl, rk) ≤ 2×HD(rk, r̃k). (2.10)

Therefore, the probability of misidentification is the product between the probability of

a particular HD and the misidentification chance at that particular HD.

p′mis =
2·ε∑
i=0

(
n

i

)
piinter(1− pinter)n−i ·

[
1−

ε∑
i=0

(
2 · ε
i

)
piintra(1− pintra)2·ε−i

]
(2.11)

Based on Eq. (2.6) and (2.11), Figure 2.18 shows the probability of rejection and misiden-

tification at different bit error rates for a 128-bit identifier and the ideal uniqueness of

50%, under variations of ε. As can be seen from Figure 2.18, if ε is set too low, the prob-

ability of authentic PUFs being rejected increases, while setting ε too high increases the

probability of misidentification. The setting of ε further impacts the vulnerability to an

ML-attack [56]. An adversary only needs to achieve at least
(
1− ε

n

)
× 100% prediction

accuracy. It is always desirable for a PUF to achieve low bit error rates to reduce the

probability of rejection/misidentification and improve security.

0 5 10 15 20 25 30

10−16

10−12

10−8

10−4

100

Bit error rates:

ε [bits]

P
ro

b
ab

il
it

y
of

R
ej

ec
ti

on

4%

8%

10%

(a) Rejection

0 5 10 15 20 25 30
10−39

10−34

10−29

10−24

10−19

ε [bits]

P
ro

b
ab

il
it

y
of

M
is

id
en

ti
fi
ca

ti
on

(b) Misidentification

Figure 2.18: Probability of rejection and misidentification at different bit error
rates and ε for n=128-bit and pinter=0.5.

The above challenge-response protocol is targeted to low-cost applications, hence, during

the communication between the verifier and device j, the CRPs are clearly sent without

any additional protection. Therefore, a man in the middle can intercept the challenge

36 Chapter 2 Physical Unclonable Function

and get the response from the PUF. Subsequently, the obtained CRPs is used to spoof

device j. Therefore, it is suggested in [22], to never reuse the CRPs to avoid replay

or man-in-the-middle attacks. In an extreme case, it is also possible that the attacker

can get possession of device j and perform a non-invasive CRPs measurement. A low-

cost challenge-and-response protocol can only be realised with a very strong assumption

that Strong PUFs are resilient against ML-attacks. The susceptibility of Strong PUFs

against ML-attacks will be described in Section 2.8.3.

As mentioned earlier, a database is required to store the CRPs for a given PUF which

might pose a limitation in terms of the physical space overhead in the verifier. The

idea of using a compact or mathematical model for the verifier to save space has been

suggested but not described in detail [55, 8, 57]. Nevertheless, as argued in [55], several

key features of PUFs are lost if a compacted model is needed. For example, Strong PUFs

are no longer resilient against model-building and the verifier needs to be a trusted entity

to maintain the integrity.

2.7.2 Cryptographic Key Generation

Another class of applications for PUFs is cryptographic key generation. Memory-based

PUFs such as SRAM-PUF, Butterfly-PUF and Buskeeper-PUF are considered to be

Weak PUFs and they are typically used for generating cryptographic keys [58, 59, 60].

However, outputs from the PUF circuit are known to be noisy due to environmental

variations and ageing [48], hence, direct use of the secret key for cryptographic primitives

is not feasible since these security applications require that every bit of a key stays

constant [22]. Figure 2.19 shows the practical example of cryptographic key generation

based on an SRAM-PUF. An ECC with the helper data, h, is used to generate error-

free cryptographic keys. However, a partial information on the PUF response, k, could

be recovered by the attacker because of the information from the helper data. Hence,

privacy amplification is used to maximise the uncertainty of the generated keys [26].

Guajardo et al., [23] suggested a hash function to be used as a privacy amplification

module.

The procedure of cryptographic key generation is divided into two phases: Enrolment

and Reconstruction. Enrolment occurs just once when a new key is generated or

stored. The challenge to the SRAM-PUF is considered as an SRAM memory address

range, given as w. y is the extracted SUVs of the SRAM-PUF. During this phase, an

ECC receives k, which is a subset of the SUVs, y, and generates a codeword n. k is

input to the privacy amplification module to generate a key and the helper data, h,

is computed as n ⊕ y. At the end of this phase, the helper data, h, and the memory

address range, w, are stored in the memory. In the Reconstruction phase, the same PUF

is measured again (i.e., the noisy response y′) and a noisy codeword n′ is computed as

Chapter 2 Physical Unclonable Function 37

y′ ⊕ h. An ECC is used to correct n′ and the key that has been programmed during

the Enrolment phase is then recovered after privacy amplification.

Eval ()
Read start-up values

SRAM-PUF

ŵ =
Address ŷ = Data ECC

encoding

key

n

y

y

SRAM-PUF + Fuzzy Extractor

Privacy
Amplification

k
w

h

(a) Enrolment

Eval ()
Read start-up values

SRAM-PUF

w

ŵ =
Address

key

n

y

h

SRAM-PUF + Fuzzy Extractor

ECC
decoding

Privacy
Amplification

k

ŷ = Data

(b) Reconstruction

Figure 2.19: The procedure of cryptographic key generation based on SRAM-
PUF [26].

Unfortunately, ECC implementations require significant area overheads which increases

as the bit error rate increases [61, 62]. The increase in the area overhead can hinder

the widespread adoption of PUFs as a lightweight security entity. As mentioned earlier,

although temperature and supply voltage variations can cause bit errors, the bit errors

due to the ageing are more severe and worse for a prolonged time. In Chapter 5, we

explore the feasibility of using an SRAM as both memory and PUF. Further, we propose

a bit selection technique in a dual use SRAM to mitigate the ageing impact and reduce

the area overhead of the ECC.

Based on the proposed usage of PUFs as mentioned above, other potential applications of

PUFs such as IP protection in FPGAs [23, 25], remote activation of ICs [63], hardware-

software binding [64, 65], and hardware obfuscation [66] have been suggested. Today,

PUF-based hardware security has stepped out of the research labs into next-generation

security products. For example, NXP uses PUF as a secure key storage to improve the

security level of their incoming products [67].

38 Chapter 2 Physical Unclonable Function

2.8 Known Attacks to PUFs

As suggested by the name, a “Physical Unclonable Function”, in which the most impor-

tant feature is “Unclonable”, is considered as a promising solution to deal with insecure

key storage in NVM, hardware fingerprinting, and many other security problems. How-

ever, PUFs are threatened as many different successful attacks have already revealed

vulnerabilities in certain silicon PUFs, with attack techniques such as invasive, semi-

invasive, and non-invasive. Invasive attacks refer to attacks on physical systems where

the physical properties of the chip are irreversibly modified. Common techniques for

invasive attacks include micro-probing, Scanning Electron Microscope (SEM), and Fo-

cus Ion Beam (FIB), which require a sample preparation such as decapsulation and

depassivation. Non-invasive attacks, however, requires no sample preparation. Non-

invasive attacks only exploit the available information externally such as input and

output values, running time, power consumption etc. For semi-invasive attacks, partial

or complete removal of the device packaging is necessary. Unlike invasive attacks, no

destructive modifications are required in semi-invasive attacks. Recent attacks on PUFs

are discussed next and categorised based on the attack technique.

2.8.1 Invasive Attacks

Helfmeier et al., [68] successfully cloned an SRAM-PUF using an FIB circuit edit.

The cloning process has been performed on SRAM memory in the ATmega328P micro-

controller, with a feature size of approximately 600-nm. After the package and excess

bulk silicon of the device backside were removed, a Photonic Emission Analysis (PEA)

was deployed through the backside of the IC to capture extremely weak photo-emissions

from switching transistors during the power-up process. Based on the captured emission

image, an FIB circuit edit is performed to alter the transistor characteristics accord-

ing to the fingerprint of the target device. Although this shows that an SRAM-PUF

could be cloned, producing a physical clone with these techniques remains economically

infeasible for devices with limited financial value. Besides, modern ICs with small fea-

ture sizes require complex and expensive PEA techniques [69]. Elsewhere, an invasive

attack on an SRAM-PUF through device ageing has been analysed and evaluated [70].

The fingerprint generated from an SRAM-PUF could be erased through a device ageing

process, hence making it susceptible to a denial of service (DoS) attack.

2.8.2 Semi-invasive Attacks

A semi-invasive attack has been proposed in [71] wherein a laser stimulation (LS) tech-

nique is used to read-out the SUVs of SRAM-PUFs. The experiment has been conducted

on SRAM memory in AtMega328P and ATXMEga128A1 micro-controllers, with feature

Chapter 2 Physical Unclonable Function 39

sizes of around 600-nm and 300-nm respectively. The package and excess bulk silicon

of the device backside were removed prior to the LS process. The cloning of the PUF

can be continued further as in [68] using an FIB circuit edit method, however, only the

extraction method using the LS technique is discussed in which this technique could be

accomplished down to a 180-nm technology node [71].

Tajik et al., [72] use a PEA technique to physically characterise the Arbiter-PUF and

extract its delay parameters. The 8-bit Arbiter-PUF was implemented on a Complex

Programmable Logic Device (CPLD) manufactured in a 180-nm technology. Prior to

the PEA process, the device was decapsulated and the bulk silicon material of the device

was thinned down. The delay characterisation of the Arbiter-PUF was based on the time

difference measured between enabling the PUF and photon emission at the outputs of

the last stage (i.e., before the arbiter circuit) in which the challenge 00000000 was chosen

as a reference measurement. Subsequently, each challenge bit is flipped (HD=1) and the

procedure is repeated. Finally, the delay for each stage is revealed by subtracting the

delay of the reference measurement and the delay of each challenge with HD=1. As the

overall delay at the outputs of the last stage is the sum of the delay in each stage, the

measured delay parameters further can be used to compute the responses for arbitrary

challenges.

2.8.3 Non-invasive Attacks

Another attack model on a PUF is the non-invasive attacks. This type of attack is

believed to be the most plausible attack as it is financially inexpensive for an adversary

to perform an attack [16]. The attacker only has to access the interface of the device.

Therefore, an attacker is restricted to non-invasive CRPs measurement and can apply

a polynomial number of challenges to the device to collect the corresponding responses.

With the measured CRPs of a particular PUF in hand, the adversary tries to build a

numerical model of the PUF. Hence, a non-invasive attack is also known as a model-

building attack. Several techniques have been proposed in the literature to perform

model-building attacks such as ML [36, 73], side-channel [74, 60], and hybrid (i.e.,

combination of side-channel and ML) [75, 55].

An ML-attack is most applicable to Strong PUFs [73] and it was first demonstrated

in [36] to predict the response of an Arbiter-PUF by using a Support Vector Machine

(SVM). As mentioned in Section 2.4.1, the delay parameters of switching components in

an Arbiter-PUF can be modelled with an additive linear model. Hence, an Arbiter-PUF

can be predicted with high accuracy using an SVM as discussed in [36]. As countermea-

sures, the Feed-forward Arbiter-PUF, [30], XOR Arbiter-PUF, [22], and Lightweight-

PUFs, [31] were proposed to introduce a non-linearity into the Arbiter-PUF. Further,

Rührmair et al., [73] performed a comprehensive ML-attack using SVM, Logistic Re-

gression (LR), and Evolution Strategies (ES) on the aforementioned PUFs. Their initial

40 Chapter 2 Physical Unclonable Function

analysis was conducted on simulated data but they later verified the results by using

measurements taken from an FPGA and an ASIC, which showed that ML techniques

were able to model the Feed-Forward Arbiter-PUF, XOR Arbiter-PUF, and Lightweight-

PUF with high accuracy [73].

In a recent study, Becker, [55] shows that an attacker who is in possession (i.e., has

access to the primary inputs) of a PUF-based RFID tag can collect CRPs through a

non-invasive measurement and perform an ML-attack. The parameters derived by the

ML-attack was built into the software on a programmable RFID smart-card emulator

and used to successfully clone a PUF tag. However, prior to the ML-attack, software

reverse-engineering was performed to discover the configuration of the PUF model in the

reader such as the exact linear feedback shift register (LFSR) and XOR-ing functions.

As the internal configurations were known, the ML-attack was performed based on the

mapping of the internal CRPs by using LR.

Based on all the above, the ML techniques such as SVM, LR and ES were used to

perform an ML-attack on an Arbiter-PUF and its derivative. Elsewhere, Hospodar et

al., [56] compared an ML-attack performance between ANN and SVM on Arbiter-PUF

and XOR Arbiter-PUF and the results show that ANN outperforms SVM. Vijayakumar

et al., [76] explored the learn-ability of ML techniques such as SVM and LR as the

non-linearity element in PUF increases. Bagging and Boosting were also used for the

ML-attack analysis [76], since these techniques have the potential to generate a strong

classifier through the combination of several classifiers prediction. Based on previous

ML-attack analyses [30, 55, 56, 73, 76], ANN, LR, ES, and Boosting are the most

favourable to solve the non-linearity problem.

Delvaux et al., [74] exploited repeatability imperfections in Arbiter-PUF responses due

to CMOS device noise as side-channel information to perform a model-building attack.

The key insight is that repeatability measurements provide direct timing information. If

the delay difference, ∆t, for a given challenge is very large, it is unlikely that the noise

changes the sign of ∆t. In contrast, if ∆t is close to zero (i.e., entering the metastability

state as discussed in Section 2.4.1), the response of the Arbiter-PUF will be influenced

by the noise, resulting in the changes of ∆t sign. Although the timing information is

all relative, Delvaux et al., [74] successfully built the model of Arbiter-PUF with >85%

prediction accuracy.

Elsewhere, Zeitouni et al., [60] exploited remanence decay in volatile memory as side-

channel information to attack SRAM-PUFs, which were implemented in 65-nm CMOS

technology. The approach in this attack is to recover the PUF response in a device after

overwriting the SRAM-PUF with some data that are known to the adversary. In this

study [60], the assumptions that the adversary has the ability to initialise the memory

with a known values and that the adversary knows that the targeted PUF-based system

uses a MAC were made. With these assumptions, the adversary can recover the PUF

Chapter 2 Physical Unclonable Function 41

state, based on the encryption observed in a series of data remanence experiments. The

secret key is successfully recovered but this attack is likely to be impractical in terms of

the timescale as it takes approximately two CPU-months. Besides, this attack is limited

by the precision of the equipment to control the remanence decay in the SRAM.

Furthermore, a hybrid technique is proposed in which side-channel and ML techniques

are combined [75]. As the CRP mapping complexity of Strong PUFs increases, the ML

technique reaches its limit (i.e., the training time increases exponentially as the number

of XORs increase) when applied to Lightweight-PUFs or XOR Arbiter-PUFs with a

bit-length of 256 or more and with 6 XORs or more [73]. Rührmair et al. exploited the

power and timing traces of an XOR Arbiter-PUF and a Lightweight-PUF as side-channel

information to overcome the limitations in ML techniques [75]. Based on the power and

timing side-channels, the cumulative number of zeros and ones in the outputs of the

XOR Arbiter-PUF and Lightweight-PUF before the XOR gate is estimated. Further,

the adapted ML technique is used to exploit this information and used to successfully

attack the XOR Arbiter-PUFs and Lightweight PUFs for up to 16 XORs and for a

bit-length of up to 512 (timing side-channel) and 128 (power side-channel) with high

accuracy and polynomial training time.

2.8.4 Challenges

Thus far, the recent attacks on PUF which include invasive, semi-invasive, and non-

invasive attacks were discussed and they are summarised in Table 2.2. One of the

PUF core properties is that random process variations cannot be cloned, atom-by-atom,

with current fabrication technologies [75]. Therefore, generating a perfect clone is still

infeasible. Nevertheless, as discussed in Section 2.8.1, an SRAM-PUF can be physically

cloned by editing the circuit using a FIB method. To the best of our knowledge, none

other PUFs architectures have been physically cloned using the same method.

As can be seen in Table 2.2, invasive and semi-invasive attacks require complex tech-

niques to perform an attack such as PEA, FIB, LS, and burn-in. These techniques have

a relatively higher cost as compared to ML techniques used to perform non-invasive

attacks. Nevertheless, if sufficient financial and technical investments are offered, an

obvious threat to the PUF system is that its function is clonable using one of the attack

types in Table 2.2. An intense competition between code-makers and code-breakers in

the area of Strong PUFs and Weak PUFs is expected in the near future [73]. Never-

theless, proposing various attack methods help to validate the quality of a PUF and

motivates people to look for countermeasures in overcoming the weakness of that partic-

ular PUF. It is expected that at some point this competition will converge to solutions

that are resilient against the known attacks.

42 Chapter 2 Physical Unclonable Function

Table 2.2: Summary of known attacks to PUFs.

Attack Type PUF Type Platform Technology Technique

Invasive SRAM-PUF [68] ATmega328P 600-nm PEA and FIB

SRAM-PUF [70] AS6C6264 SRAM IC NR Burn-in

Semi-invasive SRAM-PUF [71] AtMega328P 600-nm LS

ATXMEga128A1 300-nm

Arbiter-PUF [72] Altera Max V CPLD 180-nm PEA

Non-invasive Arbiter-PUF [36] ASIC 180-nm SVM

5-XOR Arbiter-PUF [73] ASIC 45-nm LR

Lightweight-PUF (5 XORs) [73] Simulation NR LR

Feed-Forward Arbiter-PUF [73] Simulation NR ES

Arbiter-PUF [55] PUF-based RFID tag NR LR

Arbiter-PUF [74] ASIC 65-nm Side-channel

SRAM-PUF [60] ASIC 65-nm Side-channel

16-XOR Arbiter-PUF [75] Xilinx Spartan-6 FPGA NR Side-channel and LR

Lightweight-PUF (16 XORs) [75] Xilinx Spartan-6 FPGA NR Side-channel and LR

NR=not reported.

2.9 Advantages of PUFs

As discussed in Chapter 1, PUF technology is a promising solution to answer the weak-

ness of current cryptographic key storage technologies, which rely on storing secret keys

in NVMs, such as tampering, programming, and high cost. Despite the attacks on PUF

which have been discussed in Section 2.8, PUFs have a few advantages over current key

storage solutions. The keys generated from PUFs are not programmed by the IC manu-

facturer or system owner but randomly generated based on intrinsic process variations.

The key is device-specific and therefore, it is easy to manage and eliminates the poten-

tial threat of the key being compromised by an untrusted third party who is responsible

for key programming. Although the PUF is functionally clonable, due to the nature of

a device-specific key, an individual attack procedure is needed. In that context, mass-

cloning tends to become impractical and PUFs help in reducing the damage. Moreover,

a PUF does not require any special fabrication for storing the key. Hence, it is relatively

low cost compared to the current key storage technologies [9]. PUFs can also be seen

as scalable security entities, in which their size (i.e., the challenge bits) can be increased

to introduce more randomness due to process variations and the size of the key can be

increased as well.

Chapter 2 Physical Unclonable Function 43

2.10 Summary

This chapter has given an introduction to PUFs and has covered how these PUFs can

be used for hardware fingerprinting, the types of PUF which are available in the lit-

erature and important metrics to evaluate the PUF. The impact of ageing is further

discussed, which leads to a reliability issue for PUFs over an extended period. Two

applications have also been discussed: low-cost IC identification and authentication

through a challenge-and-response protocol, and cryptographic key generation. Never-

theless, the bit errors experienced by a PUF due to environmental variations and ageing

introduce a trade-off between security and reliability in challenge-and-response proto-

cols. In cryptographic key generation, the area overhead of ECC increases significantly

as the bit error rate increases. This can hinder the widespread adoption of PUFs, par-

ticularly for resource-constrained devices. Furthermore, the review of known attacks on

PUFs suggests that the most plausible attack is a non-invasive attack, as it is financially

inexpensive. Invasive and semi-invasive attacks seem very promising but are limited by

the precision and accuracy of the tools as CMOS technology scales down. The litera-

ture reviewed in this chapter suggests two open problems before PUF can be promoted

as lightweight security entities, which are reliability under ageing and susceptibility to

ML-attacks.

Chapter 3

PUF Implementation and

Evaluation

As discussed in Section 2.4, silicon-based PUF structures can be generally categorised

into four categories which are: delay-based PUFs, memory-based PUFs, mixed-signal

PUFs, and emerging nanotechnology-based PUFs. For all known silicon PUF structures,

there exists a performance trade-off between power, area, speed, and security. Since

PUFs are also suggested for energy and resource-constrained applications such as RFID,

as discussed in Section 2.7.1, some of the considered PUF structures focused on low-

power and/or lightweight design techniques. PUFs have been proposed in [35, 77, 78, 79]

to operate in the sub-threshold region instead of super-threshold region aiming to min-

imise the power consumption. Furthermore, the exponential current-voltage behaviour

in the sub-threshold region could be exploited to increase the security level or resilience

against an ML-attack, as in the sub-threshold current array PUF (SCA-PUF) [80]. Mo-

tivated by this potential, the “Two Chooses One” PUF (TCO-PUF) was proposed [81],

which exploits the non-linear current-voltage behaviour in the sub-threshold region, and

it has been implemented using a 180-nm predictive technology model. The process vari-

ation is modelled using a normal distribution with 10% tolerance in the transistor size.

The architecture of the TCO-PUF is adapted from the SCA-PUF, [80]. Hence, Zufu,

[81] claims that the resilience against an ML-attack is inherited, but this has never been

quantified. Therefore, to achieve the first objective, described in Section 1.4, the TCO-

PUF is used as a case study for PUF characterisation using a TSMC 65-nm technology

node. This includes the analysis of the susceptibility to an ML-attack. A 65-nm CMOS

technology has been used for our analysis as previous studies which are listed in Table

2.1 indicate that the process variations in 32-nm to 180-nm technology node could be

exploited to build a PUF. Additionally, the impact of ageing on a TCO-PUF is explored.

Since the TCO-PUF is based on a differential design similar to the Arbiter-PUF, it is

also interesting to analyse and compare the results with the Arbiter-PUF which was

proposed by Lee et al., [12]. Both PUFs are built in a 65-nm technology and the bit

45

46 Chapter 3 PUF Implementation and Evaluation

error rates due to ageing are compared with some of the reported data in the previous

literature. The main contributions of this chapter are:

1. We show that the exponential current-voltage behaviour in the sub-threshold re-

gion, which is exploited by TCO-PUF architecture, achieved an insignificant im-

provement of its resilience against an ML-attack. This also shows that the ex-

ponential current-voltage behaviour in the sub-threshold region has no impact in

increasing the complexity of the challenge to response mapping.

2. We show that PUFs based on a differential design technique such as the Arbiter-

PUF and the TCO-PUF can mitigate the first order effect of ageing (i.e., the duty

cycle and supply voltage). Nevertheless, a finite bit error still occurs, possibly as a

result of second-order effects such as the interaction of variations in the threshold

voltage due to the fabrication process and ageing phenomena.

This chapter is organised as follows: Section 3.1 describes the motivation to characterise

the TCO-PUF and to study the impact of ageing on PUFs. Section 3.2 describes the

fundamentals of MOSFET operation in the sub-threshold region. The implementation of

the TCO-PUF including the transistor array and the voltage sense amplifier is discussed

in Section 3.3. The experimental methodology and the evaluation of quality metrics

of the TCO-PUF which includes uniqueness, reliability, and uniformity are described in

Section 3.4. The susceptibility of TCO-PUF to ML-attack is discussed in Section 3.5. In

Section 3.6, the impact of ageing on PUFs is discussed. Finally, the chapter is concluded

in Section 3.7.

3.1 Motivation

Vivekraja et al., [82] were among the first to explore and study the impact of operating

PUFs in the sub-threshold region for a 90-nm technology node. An RO-PUF was used

as a case study in which the supply voltage and body bias were varied. The focus of [82]

is to exploit the high sensitivity of the circuit to process variations in the sub-threshold

region to improve the performance of PUF characteristic such as uniqueness. The study

is conducted in [38] for an Arbiter-PUF which was fabricated using a 45-nm CMOS

technology had a similar focus. While all the above studies used previously proposed

PUFs, elsewhere, new PUF architectures that work in the sub-threshold region were

proposed, such as the common-source-amplifier-based PUF, [77], the “nanokey” PUF,

[78], and the hybrid RO-PUF, [79]. The aim of the aforementioned PUFs is to minimise

the total power consumption. Li et al., [83], proposed a new PUF architecture which can

be classified as a mixed signal PUF and has the capability to be operated with a supply

voltage from 1.2V and below to the near sub-threshold region of 0.6V. This enables it

to be integrated into an energy-constrained IC without separate supply distribution.

Chapter 3 PUF Implementation and Evaluation 47

All the above PUFs are mainly aimed at improving the PUF quality metrics, such

as uniqueness, or minimising the power consumption by operating the PUFs in the

sub-threshold region. Mukund et al., [80] proposed an SCA-PUF to improve the PUF

performance in the aspect of security. The non-linear dependency of current and voltage

in the sub-threshold operating region is exploited to increase the unpredictability of the

SCA-PUF against an ML-attack. Mukund et al., [80] showed that the SCA-PUF achieves

lower predictability of about ≈92.5% over an Arbiter-PUF of about ≈99.3% prediction

accuracy at 1000 CRPs (i.e., training data). However, as the number of CRPs increases

up to 8000, the SCA-PUF can be predicted with a high accuracy of about 98%. As the

TCO-PUF architecture is adapted from the SCA-PUF, it raises a major concern about

the security level of the TCO-PUF against ML-attack which motivates us to investigate

and quantify the security performance of the TCO-PUF.

Furthermore, the reliability is an important aspect to investigate. As explained earlier

in Section 2.6, when an integrated CMOS device is used continuously the device ages

because of NBTI. This will gradually degrade the circuit performance. For a PUF to be

useful, it should reliably generate the same response for a given challenge. Unfortunately,

ageing has a similar effect on PUFs as on other integrated CMOS devices. Ageing may

flip a PUF response. Hence, this results in an increase in the bit error rate over time.

For low-cost authentication, as illustrated in Figure 2.17, NBTI can potentially degrade

the authentication capability after prolonged use, if the bit error rate goes beyond the

HD threshold, ε. A differential design technique has a potential to mitigate and cancel

out the first-order dependencies of ageing [84]. As the TCO-PUF is constructed based

on a differential design technique and is categorised as a Strong PUF (i.e., suitable for

low-cost identification and authentication), it is interesting to investigate its potential

to achieve low bit error rates (with ageing), which is desirable for low-cost identification

and authentication, as discussed in Section 2.7.1.

3.2 MOSFET in Subthreshold Region

As mentioned earlier in this chapter, the TCO-PUF architecture is based on the sub-

threshold operation region. Therefore, this section provides an overview of the non-linear

dependency of current and voltage in the sub-threshold region which is essential for the

TCO-PUF. Unlike the strong inversion region, in which the drift current dominates, in

the sub-threshold region, the channel of the transistor is not inverted and current flows

by diffusion, [85, 86].

The basic model of sub-threshold current can be expressed as [85]:

Id = Io exp

(
Vgs − Vth
nVt

)
(3.1)

48 Chapter 3 PUF Implementation and Evaluation

where Io is the drain current when Vgs = Vth, Io = µoCox
W
L (n−1)V 2

t , Vth is the transistor

threshold voltage, n is the sub-threshold slope factor (n = 1+ Cd
Cox

), and Vt is the thermal

voltage, Vt = kBT/q.

By considering the short-channel effect, Vth roll-off and the coefficient of Drain-Induced

Barrier Lowering (DIBL), η, the current equation becomes:

Id = Io exp

(
Vgs − Vth + ηVds

nVt

)(
1− exp

−Vds
Vt

)
(3.2)

The sub-threshold slope of the transistor is defined as, S = nVtln10. Substitution into

Eq. (3.2) gives the sub-threshold current in the form of:

Id = Io10
Vgs−Vth+ηVds

S

(
1− 10

−nVds
S

)
(3.3)

Equation (3.3) shows that the sub-threshold current varies exponentially with Vth and

Vgs. As discussed in Section 2.2, as the transistor size scales down, the threshold voltage

variation increases due to RDF. This indicates that even small changes in Vth, result in

an exponential fluctuation in the sub-threshold current.

−1.5 −1 −0.5 0 0.5 1 1.5
10−12

10−10

10−8

10−6

10−4

Vth=0.36072V

Vgs [V]

I d
[A

]

I-V nMOS

Figure 3.1: I-V characterisation for nMOS using a low-k TSMC 65-nm CMOS
technology node.

Figure 3.1 shows the current-voltage (I-V) characterisation for an nMOS using a low-k

TSMC 65-nm CMOS technology node, plotted as a semi-log graph. The Vth for nMOS is

Chapter 3 PUF Implementation and Evaluation 49

0.36072V. As Vgs reduces slightly below Vth, the device enters the sub-threshold region

[86]. The exponential relationship of the current and voltage can be seen clearly in

the range of 0 ≤ Vgs ≤ Vth, in Figure 3.1. The device approaches the flat band voltage

region as Vgs becomes negative. In this region, there is no charge because of large energy

barriers and the current is no longer non-linearly dependent on Vgs and Vth [86].

3.3 TCO-PUF Architecture

The top-level architecture of the TCO-PUF is depicted in Figure 3.2. The top level

consists of two main blocks which are an analogue unit and an ADC unit. The analogue

unit consists of two identical transistor arrays, namely TCOA and TCOB, that are driven

by the same inputs, and thus in the absence of variability produce identical output

voltages. All the transistors in both arrays operated in the sub-threshold region are

subject to stochastic variability in their threshold voltages. The random variations in

analogue output voltages of the two transistor arrays are caused by current mismatches

resulting from the threshold voltage variations. A voltage sense amplifier is used as an

ADC that sense the difference between these two voltages and a response, ‘1’ or ‘0’ is

generated based on the sign of the differential output of the transistor arrays.

TCOA

TCOB

Analogue Unit: Transistor Arrays ADC Unit: Voltage Sense Amplifier

INN

INP

Response

Challenge

Figure 3.2: Top level of TCO-PUF architecture.

3.3.1 Design of Transistor Arrays

The details of the construction of the transistor array are shown in Figure 3.3. There

are two networks in the array, which are the nMOS network (upper) and pMOS network

(lower). In each network, the array is composed of k columns and n rows (k× n array).

A non-stochastic transistor, which is indicated by ‘x’ (e.g., P11x), is in parallel with a

stochastic transistor (e.g., P11). Each row in each column consists of two pairs of parallel

non-stochastic and stochastic transistors, where each pair is indicated with and without a

prime symbol (′), respectively. The prime symbol represents a challenge c′, the inversion

50 Chapter 3 PUF Implementation and Evaluation

V dd

N11 N11x N21 N21x Nk1 Nk1x
Vgn c11 Vgn c21 Vgn ck1

N11′ N11x′ N21′ N21x′ Nk1′ Nk1x′
Vgn c′11 Vgn c′21 Vgn c′k1

N1n N1nx N2n N2nx Nkn Nknx
Vgn c1n Vgn c2n Vgn ckn

N1n′ N1nx′ N2n′ N2nx′ Nkn′ Nknx′
Vgn c′1n Vgn c′2n Vgn c′kn

V out

P1n P1nx P2n P2nx Pkn Pknx
Vgp c1n Vgp c2n Vgp ckn

P1n′ P1nx′ P2n′ P2nx′ Pkn′ Pknx′
Vgp c′1n Vgp c′2n Vgp c′kn

P11 P11x P21 P21x Pk1 Pk1x
Vgp c11 Vgp c21 Vgp ck1

P11′ P11x′ P21′ P21x′ Pk1′ Pk1x′
Vgp c′11 Vgp c′21 Vgp c′k1

Figure 3.3: The construction of the transistor array of TCO-PUF.

Chapter 3 PUF Implementation and Evaluation 51

of c and all transistors related to c′ are marked with the (′) symbol. The term ‘stochastic

transistor’ refers to a transistor with high variability in the threshold voltage. According

to Ye et al., [20], the standard deviation of the threshold voltage is more pronounced

when the transistor width and length are minima. Hence, all stochastic transistors in the

transistor array have a minimum width and length. For the non-stochastic transistor,

the sub-threshold current needs to be negligible and at the same time, it has to provide

a small on-state resistance. Thus, the width and length of the non-stochastic transistors

are set to 10Wmin and 10Lmin [81], respectively. Increasing the width and length of

the non-stochastic transistors will also reduce the errors due to geometrical mismatches

[51, 78]. Therefore, there will be less variation in the electrical behaviour which is

desirable for the non-stochastic transistors. By performing a DC sweep analysis, a

proper bias is found for Vgn and Vgp to ensure the stochastic transistors always operate

in the sub-threshold region.

Based on the above configuration, the non-stochastic transistor acts as a switch either to

remove the effect of the stochastic transistor when ON, or to include it when OFF. For

this architecture, there is always a contribution from the stochastic transistor regardless

of whether the challenge bit is ‘0’ or ‘1’. This is because the non-inverted (c) and inverted

(c′) bits of the same challenge are each connected to a non-stochastic transistor. Thus,

in any condition, one out of two stochastic transistors will be selected and be part of the

network. Therefore, this architecture is known as “Two Chooses One” or TCO-PUF.

As can be seen from Figure 3.3, both nMOS and pMOS networks are connected to the

same bits of the challenge input. Therefore, the transistor array acts as a voltage divider

in which the Vout fluctuates within the range of half of the supply voltage, Vdd. For the

TCO-PUF architecture, the size of the CRP set is 2kn, which is one of the criteria for a

Strong PUF [28].

3.3.2 Design of Voltage Sense Amplifier

As mentioned earlier, a voltage sense amplifier is required to sense the difference of the

output voltages from the transistor arrays and digitise the response to ‘1’ or ‘0’. Figure

3.4 shows the construction of the latch-type voltage sense amplifier which is also known

as a dynamic comparator [87]. This structure offers rail-to-rail output swing and no

static power consumption [87]. Each of the transistor array outputs is connected to

INN or INP . During the reset phase when CLK = 0, both output nodes, outP and

outN , are pulled to Vdd by the reset transistors M7 and M8. The transistor Mtail is

OFF in the reset phase. In the comparison phase, when CLK = Vdd, the transistors

M7 and M8 are OFF and Mtail is ON. Also, in this phase, the transistors M1 and M2

sense the difference of the output voltages from the transistor arrays. Subsequently, the

output nodes, outP and outN , which have been pre-charged to Vdd, started to discharge

at different rates depending on the corresponding input voltage (INN/INP). When

52 Chapter 3 PUF Implementation and Evaluation

VINP > VINN , the drain current of the transistor M2 is higher than M1’s drain current.

Therefore, outP discharges faster (through transistors M2 and M4) than outN (through

transistors M1 and M3). When outP is pulled down and as it reaches Vdd−|Vthp| before

outN , the transistor M5 will turn on initiating the latch regeneration caused by the

back-to-back inverters (M3, M4, M5, and M6). Hence, output node outN is pulled

to Vdd and outP discharged to ground. The comparator circuits work in the opposite

manner if VINN > VINP . The above operation can be seen more clearly from the

transient behaviour as depicted in Figure 3.5, in which the sense amplifier in Figure 3.4

was simulated using a TSMC 65-nm technology. In this case, INP is 0.605V, and INN

is 0.6V, which gives a difference in the input voltage, ∆Vin of 5mV. As can be seen from

Figure 3.4, the outputs outN and outP are only valid during the comparison phase.

Hence, both outputs of the voltage sense amplifier are connected to an SR-latch which

is used to capture each output transition in the comparison phase and to hold the state

until the next comparison phase, such that a response, ‘1’ or ‘0’, is generated at every

clock cycle.

V dd

M7 M5

M3

M1

M6

M4

M2

M8

Mtail

CLK CLK

CLK

INN INP

outP

outN

Figure 3.4: The construction of the voltage sense amplifier.

Chapter 3 PUF Implementation and Evaluation 53

2 3 4 5 6 7 8 9

·10−9

0

0.5

1

1.5

Time[ns]

O
u

tp
u

t
V

ol
ta

ge
s

[V
]

outN

outP

CLK

Figure 3.5: Transient simulation of the voltage sense amplifier for input voltage
difference ∆Vin = 5mV and Vdd = 1.2V.

3.4 Simulation Results and Analysis

In this section, the simulation setup, the analysis of transistor arrays voltages and the

evaluation of PUF quality metrics such as uniqueness, reliability, and uniformity are

discussed.

3.4.1 Setup

A 32-bit (k=8 and n=4) TCO-PUF has been designed in a low-k TSMC 65-nm tech-

nology node and simulated using the BSIM4 (V4.5) transistor model with a nominal

supply voltage of 1.2V and a room temperature of 25oC. Intrinsic variations such as

oxide thickness and threshold voltage are modelled in Monte Carlo simulations using

the built-in fabrication standard statistical variation (3σ variations) in the technology

design kit. Based on the previous studies which were conducted in the simulation setting

(see Table 2.1), in our study, a Monte Carlo simulation was performed for 100 TCO-

PUF instances. A 32-bit response is generated from each of the 100 PUF instances.

Subsequently, MATLAB is used to post-process the responses.

54 Chapter 3 PUF Implementation and Evaluation

3.4.2 Analysis of Transistor Arrays

A transient analysis was performed on both transistor arrays in Figure 3.2 and their

output voltages are recorded. As mentioned in Section 3.3.1, a transistor array acts as

a voltage divider. As can be seen from Figure 3.6, the output voltages of the transistor

arrays always fluctuate within the range of 50% of the supply voltage. Effectively,

the non-stochastic transistors are used to set the voltage level (Vdd2) and the output

voltage fluctuations are caused by the random variations of the threshold voltage in the

stochastic transistors. As in the sub-threshold region relies heavily on leakage current for

charging and discharging the capacitance, a clock period of 1ms is used in this simulation

to obtain a stable and distinct output voltages from the transistor arrays as depicted

in Figure 3.61. These outputs are input to the voltage sense amplifier to generate a

response, ‘1’ or ‘0’.

0 0.2 0.4 0.6 0.8 1

·10−2

0.626

0.628

0.63

0.632

Time [s]

O
u
tp

u
t

V
ol

ta
ge

s
[V

]

Array 1

Array 2

(a) PUF instance 1

0 0.2 0.4 0.6 0.8 1

·10−2

0.628

0.63

0.632

0.634

Time [s]

O
u
tp

u
t

V
o
lt

ag
es

[V
]

Array 1

Array 2

(b) PUF instance 2

Figure 3.6: Output voltages from transistor arrays of two TCO-PUF instances.

3.4.3 PUF Metrics Evaluation

In order to quantify the quality of the PUF, several parameters, as discussed in Section

2.5, need to be evaluated. These parameters are uniqueness, reliability, and uniformity.

3.4.3.1 Uniqueness

Based on the 32-bit response generated from each of the 100 TCO-PUF instances at

a condition of 1.2V and 25oC, the uniqueness is measured by the Inter-HD using Eq.

(2.1). Figure 3.7 shows the Inter-HD distribution which has a mean of 0.50 and standard

deviation of 0.1466. Although the TCO-PUF has a mean value of uniqueness around

50%, it suffers from a large standard deviation. An HD close to 0 indicates that the

1The waveforms in Figure 3.6 have been recorded up to only 10ms for better visibility.

Chapter 3 PUF Implementation and Evaluation 55

PUF instances have almost similar responses which increases the possibility of misiden-

tification. Conversely, an HD close to 1 increases the susceptibility to a simple guessing

attack as the response of one PUF instance is opposite of the other. As mentioned in

Section 2.5.1, the ideal distribution of Inter-HD is centred around 50%.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

HD (normalized)

F
re

q
u

en
cy

of
o
cc

u
ra

n
ce

Figure 3.7: Uniqueness of 32-bit TCO-PUF for 100 instances.

3.4.3.2 Reliability

For the reliability evaluation, the temperature was varied within the range of −40oC

to 85oC and the supply voltage of 1.2V varied by ± 10%. These temperature and

supply voltage variations correspond to the corner values that are typically assumed for

consumer-grade IT products [88]. Within the specified range of the temperature and

the supply voltage, in total, 12 conditions were set as depicted in Figure 3.8. In each

condition, a 32-bit response is generated from each of the 100 TCO-PUF instances. A

measured response at a nominal supply voltage of 1.2V and a temperature of 25oC has

been used as a reference, to which all other measured responses have been compared.

Equation (2.2) is used to calculate the bit error rate due to the temperature and supply

voltage fluctuations. The reliability of the 32-bit TCO-PUF is depicted in Figure 3.8. As

can be seen from Figure 3.8, under temperature variations at a nominal supply voltage

of 1.2V, the reliability of TCO-PUF is above 93%. However, the reliability of TCO-PUF

reduces when it is subjected to both variations. Overall, the average reliability of TCO-

PUF under temperature variations of −40oC to 85oC and a supply voltage of 1.2V ±10%

is 92.38% (i.e., 7.62% bit error rate). It can be concluded that on average, 2 bits out of

a 32-bit response of TCO-PUF were flipped. An ideal value of the reliability is 100% in

which the response is stable across both temperature and supply voltage variations.

56 Chapter 3 PUF Implementation and Evaluation

-4
0
|1

.0
8

0|
1
.0

8

25
|1

.0
8

85
|1

.0
8

-4
0
|1

.2

0|
1
.2

25
|1

.2

85
|1

.2

-4
0
|1

.3
2

0|
1.

32

25
|1

.3
2

85
|1

.3
2

80

85

90

95

100

Condition [oC|Volt]

A
ve

ra
ge

R
el

ia
b
il
it

y
[%

]

Figure 3.8: Reliability for 32-bit TCO-PUF under temperature variations of
−40oC to 85oC and a supply voltage of 1.2V ±10%.

3.4.3.3 Uniformity

Based on the 32-bit response generated from each of the 100 TCO-PUF instances at the

conditions of 1.2V and 25oC, the uniformity is measured by using Eq. (2.4). Figure 3.9

shows the uniformity distribution which has a mean of 0.5281. As of uniqueness, the

uniformity metric also suffered from a dispersion which has a large standard deviation of

0.2494. An HW is defined as the number ‘1’ bits in the response. Therefore, the mean

and standard deviation for uniformity metric of TCO-PUF indicate a lack of randomness

in the responses.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

HW (normalized)

F
re

q
u

en
cy

of
o
cc

u
ra

n
ce

Figure 3.9: Uniformity of 32-bit TCO-PUF for 100 instances.

Chapter 3 PUF Implementation and Evaluation 57

3.5 ML-Attack Susceptibility

As defined in Section 2.3.2, a Strong PUF must be resilient against a model building

attack. Hence, the security of the TCO-PUF against an ML-attack is discussed in this

section. For the ML-attack evaluation, we employed an ANN, as it is one of the best

ML techniques able to solve non-linear problems, as discussed in Section 2.8.3. Although

the ML-attack analysis is introduced in this chapter, the details of the ANN setup are

described in Chapter 4 to align with the context of that chapter. For the ML-attack

analysis, 32000 randomly generated challenges were applied on a 32-bit TCO-PUF and

their corresponding responses are generated following the simulation setup as discussed

in Section 3.4.1. The test set for prediction accuracy computation, which consists of 2000

CRPs, has been chosen randomly, and it is not part of the training set. The number of

CRPs in the training set is incrementally increased (i.e., a step size of 1000 CRPs) and

for each training set, the ML-attack is performed using MATLAB (see Appendix A.6).

0 0.5 1 1.5 2 2.5 3

·104

0

20

40

60

80

100

CRPs

P
re

d
ic

ti
on

A
cc

u
ra

cy
[%

]

32-bit TCO-PUF

2-XOR 32-bit Arbiter-PUF

32-bit Arbiter-PUF

Figure 3.10: ML-attack on 32-bit TCO-PUF and comparison with other PUFs.

Figure 3.10 shows the prediction accuracy of the 32-bit TCO-PUF. The prediction ac-

curacy increases as the number of CRPs in the training set increases. As can be seen

from Figure 3.10, ANN was able to predict the CRP mapping of TCO-PUF with ≈96%

prediction accuracy at 30000 CRPs. The predictability of the TCO-PUF is slightly

lower than the SCA-PUF which has a prediction accuracy of 98% at 8000 CRPs [80].

For further comparison, the ML-attack results for the Arbiter-PUF and its derivative

(as discussed in detail in Chapter 4) are included in Figure 3.10. The prediction accu-

racy of TCO-PUF is about 3% lower than Arbiter-PUF and XOR Arbiter-PUF, which

is considered insignificant. Therefore, it can be concluded that the TCO-PUF which

exploits a non-linear current-voltage behaviour is not resilient against an ML-attack.

58 Chapter 3 PUF Implementation and Evaluation

It is always desired to extract the relevant parameters in order to have comparable

results among different PUFs such as the required number of training CRPs to achieve a

certain predictability value. One possible way is to find out the correlation of prediction

error rate, CRPs, and bit-length of the challenge [28]. Prediction error rate is given

as
(

1− Prediction Accuracy
100

)
. Figure 3.11 shows the prediction error rate on the ratio of

training CRPs and bit-length of the challenge for the aforementioned PUFs. Based

on the approximation linear functional dependency as depicted in Figure 3.11, one can

estimate the required number of training CRPs given a targeted prediction error rate

for a particular PUF.

101 102 103
10−3

10−2

10−1

100

y = 4.717x−1.158

CRPs/k

P
re

d
ic

ti
on

E
rr

or

(a) 32-bit Arbiter-PUF

101 102 103
10−3

10−2

10−1

100

y = 0.9016x−0.51

CRPs/k ∗ n

P
re

d
ic

ti
on

E
rr

or

(b) 32-bit TCO-PUF

101 102 103
10−3

10−2

10−1

100

y = 5.1198x−0.861

CRPs/k

P
re

d
ic

ti
on

E
rr

or

(c) 2-XOR 32-bit Arbiter-PUF

Figure 3.11: Prediction error rate on the ratio of training CRPs and bit-length
of the challenge.

Chapter 3 PUF Implementation and Evaluation 59

3.6 Impact of NBTI on PUFs

In Section 3.4.3.2, we have shown that the reliability of a PUF is affected by temperature

and supply voltage fluctuations. However, CMOS device ageing, particularly NBTI,

presents a more severe impact that can cause permanent reliability issues for a PUF

over a prolonged time. As mentioned in Section 2.6.1, the Vth degradation due to NBTI

is strongly dependent on the duty cycle, supply voltage and temperature. Herder et

al., [84] stated that a differential design technique can mitigate and cancel out the

aforementioned first-order dependencies of ageing. Recall that a TCO-PUF employs a

differential design technique which consists of two nominally identical transistor arrays

and a comparator. The principle of the TCO-PUF in generating random responses is

to compare voltage mismatches resulting from the threshold voltage variations of two

identical transistor arrays. Its principle is similar to that of the Arbiter-PUF, except

that the Arbiter-PUF compares the delay mismatch between two identical delay paths to

generate random responses. In this section, we investigate the robustness of PUFs with

differential architectures, such as the TCO-PUF and Arbiter-PUF, under the influence

of NBTI ageing. As the TCO-PUF and the Arbiter-PUF are categorised as Strong

PUFs (i.e., suitable for low-cost identification and authentication), it is interesting to

investigate their potential to achieve low bit error rates (with ageing) , which is desirable

for low-cost identification and authentication, as discussed in Section 2.7.1.

3.6.1 Ageing Evaluation Methodology

To evaluate the impact of NBTI, HSPICE MOSRA has been used to determine the

reliability for each PUF after 10 years [89]. The MOSRA analysis can be divided into

two phases, which are the pre-stress simulation phase and the post-stress simulation

phase. Both phases can be executed in the same simulator run or independently, as

needed. During the pre-stress simulation phase, MOSRA computes the stress (i.e.,

threshold voltage degradation (4Vth)) of every single pMOS in the circuit based on the

electrical simulation condition of each targeted device and its built-in T-D NBTI stress

model, [89]. Subsequently, the4Vth values are translated to performance degradation at

the circuit level during the post-stress phase. As explained in the Section, 3.4.1, Monte

Carlo analysis has been used to model the process variations for PUFs. However, due

to the limitations of the MOSRA flow, it is not possible to run Monte Carlo analysis

within the same simulator run during the pre and post-stress phases. Hence, a simulation

strategy has been implemented, as shown in Figure 3.12. In this strategy, the MOSRA

flow is employed in the pre-stress phase. For post-stress simulation phase, the 4Vth is

extracted from the degradation file generated by MOSRA during the pre-stress phase

and applied to the voltage source which is connected to the gate terminal of each pMOS

transistor. This is called the aged netlist. By reducing the gate-to-source voltage (Vgs),

we emulated the increase in Vth that is induced by NBTI. Then, the fresh and aged

60 Chapter 3 PUF Implementation and Evaluation

netlists are simulated with Monte Carlo transient analysis and the results are compared.

An important parameter that could influence the degradation rate during the pre-stress

phase simulation is the activity factor. As claimed in [46], PUFs are not highly active

in reality. For example, a PUF might be used only a few times in the IC identification

application over its lifetime. Following [46], therefore, a 20% activation time is used

throughout our analysis, unless otherwise stated.

Fresh netlist

NBTI pre-stress

HSPICE MOSRA

∆Vth for each

specified years

Aged netlist with

NBTI degradations

on selected year

Monte Carlo analysis

of aged netlist

Monte Carlo analysis

of fresh netlist

Pre-stress

Post-stress

∆Vth

+-

Figure 3.12: NBTI simulation strategy.

In the next section, we first validate our methodology by reproducing the bit error rate

due to ageing for the RO-PUF. We expect to get a similar observation and comparable

bit error rate as previously reported, [46, 48]. Then, we analyse and discuss the impact

of ageing on the reliability of the TCO-PUF and Arbiter-PUF. Finally, we compare the

results with the findings available in the literature.

3.6.2 NBTI Impact on RO-PUF

The RO-PUF circuit is implemented as in Figure 2.7, with 64×11-stage ROs, 2×64-to-1

multiplexer, 2×counter, and 1×8-bit comparator. A smaller number of RO pairs and

inverting stages has been chosen in our study, as compared to [46] to significantly reduce

the runtime, as we found that simulating an RO-PUF is time-consuming, mainly due to

the size of the ROs. Monte Carlo simulation is used to model 100 RO-PUF instances.

Chapter 3 PUF Implementation and Evaluation 61

A time interval of 50ns (i.e., the comparison time) is fixed, in which the counters count

the number of oscillations and their resulting counter values are compared to generate

a 1-bit response. In total, a 32-bit response is generated from each PUF instance.

In our study, the number of oscillations is used as a metric to quantify the effect of

ageing, as illustrated in Figure 3.13, which shows the number of oscillations for 20 ROs

(only 20 out of 64 ROs are shown for better visualisation) for a fixed time interval of

50ns. The gap between the two marks in the plot indicates the degraded number of

oscillations experienced by each RO due to NBTI. As can be seen from Figure 3.13,

generally, most of the ROs experience uniform degradation. Nevertheless, some of the

ROs experience different degradation rates. For example, at time t = 0, RO#15 has a

higher frequency compared to RO#14. However, after 10 years, RO#14 has a higher

frequency compared to RO#15. From our analysis of ageing on the RO-PUF, we found

that ageing causes different degradation rates of RO frequencies, as observed in previous

studies [46, 48]. Recall from Section 2.6.2, both studies [46, 48] agreed that ageing

causes different degradation on the RO frequencies. It is an interesting observation

because RO-PUFs are built from arrays of identically laid-out ROs. The only difference

is the process variations on each RO. Although no claim has been made in [48], Rahman

et al., [46] claims that because of process variations (i.e., second-order effect), each RO

has a different degradation rate when the ROs are subjected to ageing. This situation

leads to the generation of bit errors in the RO-PUF response.

5 10 15 20
160

170

180

190

200

RO# position

N
o
.

of
O

sc
il

la
ti

on
s

t = 0 (fresh)

10 year

Figure 3.13: RO oscillation degradation under NBTI stress.

To quantify the bit error of the RO-PUF due to NBTI, a reference response has been

measured at a room temperature of 25oC and a nominal supply voltage of 1.2V at time

62 Chapter 3 PUF Implementation and Evaluation

t = 0 (fresh) and again after 10 years. Equation (2.5) has been used to calculate the HD

between the two measurements, which indicates the total number of errors generated by

each PUF. Figure 3.14 shows the distribution of errors due to ageing for 100 RO-PUF

instances over 10 years. The average bit error rate is about 12.59% in 10 years and is

comparable with the findings in [46].

0 0.2 0.4 0.6 0.8 1
0

10

20

30

µ=0.1259

HD (Normalized)

O
cc

or
a
n

ce
F

re
q
u

en
cy

Figure 3.14: Distribution of bit errors due to NBTI for 100 RO-PUFs in 10
years with 20% activity factor.

3.6.3 NBTI Impact on PUF-based Differential Architectures

In Section 3.6.2, we have validated our methodology on the RO-PUF, and obtained

similar observation and comparable bit error rate as previously reported [48, 46]. In

this section, the impact of ageing on PUF-based differential architectures, namely the

TCO-PUF and the Arbiter-PUF are compared. A similar setup as defined in Section

3.4.1 has been used to study the impact of NBTI on the TCO-PUF. The TCO-PUF has

been subjected to ageing by using the methodology described in Figure 3.12. A 32-bit

response has been measured at time t = 0 (fresh) and again after 1, 5 and 10 years.

Equation (2.5) is used to measure the number of bit errors for 32-bit fresh and aged

responses for all 100 instances of the TCO-PUF. Figure 3.15 shows the distribution of

bit errors for the TCO-PUFs due to NBTI after 1, 5, and 10 years with 20% activity

factor. By taking the average error value in Figure 3.15(a), 3.15(b), and 3.15(c), the

effect of ageing on TCO-PUF over the years can be observed clearly in Figure 3.15(d).

On average, the bit error increases with time giving 2.66%, 4.41%, and 4.5% bit errors

after 1, 5, and 10 years, respectively.

Chapter 3 PUF Implementation and Evaluation 63

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

µ=0.0266

HD (normalized)

O
cc

u
ra

n
ce

F
re

q
u
en

cy

(a) 1 year

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

µ=0.0441

HD (normalized)

O
cc

u
ra

n
ce

F
re

q
u
en

cy

(b) 5 year

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

µ=0.0450

HD (normalized)

O
cc

u
ra

n
ce

F
re

q
u
en

cy

(c) 10 year

0 2 4 6 8 10

0

1

2

3

4

5

Year

A
ve

ra
ge

B
it

E
rr

or
s

[%
]

(d) Average bit error vs. Year

Figure 3.15: Distribution of bit errors due to NBTI for 100 TCO-PUFs in 1, 5,
and 10 years with 20% activity factor.

In both transistor arrays, TCOA and TCOB of the TCO-PUF, the common inputs or

challenges are applied to non-stochastic pMOS devices and a similar fixed bias voltage,

Vgp is applied to all stochastic pMOS devices. Therefore, all pMOS devices in both tran-

sistor arrays experience a similar duty cycle. In the comparator structure, pMOS devices

are used as reset transistors (M7 and M8) and as latch regeneration transistors (M5 and

M6) in cross-coupled inverters as shown in Figure 3.4. Both of the reset transistors

are driven by the same clock. For the latch regeneration transistors, the degradation

due to NBTI depends on the frequencies of 0’s at the outN and outP nodes. Section

3.4.3.3 has demonstrated that the uniformity of the TCO-PUF has an average value of

slightly higher than 50%. This indicates that both pMOS latch regeneration transistors

in the cross-coupled inverters experience an approximately symmetrical stress. All of

the above shows that all pMOS devices in the TCO-PUF, experience a similar duty

cycle, resulting in similar NBTI degradation. Hence, a differential design technique can

be a mechanism to cancel out first-order NBTI dependencies on the duty cycle. Ideally,

64 Chapter 3 PUF Implementation and Evaluation

it is expected that TCO-PUF will give the same response even after 10 years. However,

there is a second-order effect that caused bit errors for the TCO-PUF, as discussed in

Section 3.6.2. Overall, TCO-PUF shows good resiliency against NBTI effects.

Another PUF implementation that uses a differential design technique is an Arbiter-

PUF. To study the impact of NBTI, the Arbiter-PUF has been implemented as in

Figure 2.3 with k = 16 stages and a simulation setup as defined in Section 3.4.1. In

our simulation, an SR-latch has been used as the arbiter block. Figure 3.16 shows the

distribution of bit errors for 100 Arbiter-PUF instances when they are subject to NBTI

after 1, 5, and 10 years. The average bit error over 10 years is detailed in Figure 3.16(d)

which shows that the impact of NBTI becomes more significant with time, resulting in

an increase in the bit error rate. On average, the bit error rates are 1.03%, 1.84%, and

2.41% after 1, 5, and 10 years respectively.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

µ=0.0103

HD (normalized)

O
cc

u
ra

n
ce

F
re

q
u
en

cy

(a) 1 year

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

µ=0.0184

HD (normalized)

O
cc

u
ra

n
ce

F
re

q
u
en

cy

(b) 5 year

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

µ=0.0241

HD (normalized)

O
cc

u
ra

n
ce

F
re

q
u
en

cy

(c) 10 year

0 2 4 6 8 10

0

1

2

3

Year

A
ve

ra
ge

B
it

E
rr

or
s

[%
]

(d) Average bit error vs. Year

Figure 3.16: Distribution of bit errors due to NBTI for 100 Arbiter-PUFs in 1,
5, and 10 years with 20% activity factor.

Chapter 3 PUF Implementation and Evaluation 65

To analyse the impact of NBTI on every pMOS transistor in the Arbiter-PUF archi-

tecture, a single block of the switching component is considered, with the propagation

paths of the rising pulse as shown in Figure 3.17. For c1=0, the top0 and bot0 signal

propagations are indicated by the red path, whereas the blue path represents the signal

propagation when c1=1. In this simulation, random challenge inputs are generated with

a probability of 0.5. Therefore, the pMOS in each transmission gate in both multiplexers

experiences similar degradation due to NBTI. However, as far as the propagation paths

of top0 and bot0 are concerned, regardless of whether the probability of the challenge

inputs is 0.5 or not, both signals go through a similar path (i.e., either the red or blue

path), which experiences similar NBTI degradations with respect to the transmission

gates. The inputs for top0 and bot0 are common, therefore, inv2, inv3, and inv4 in

each multiplexer always experience similar degradation effects from NBTI. A similar

case exists for inv1 in both muxes.

top0

Input

c1

inv1

inv2

inv3

inv4

inv4

inv1

inv2

inv3

Mux1

Mux2

bot0

c1=0

c1=1

c1=0

c1=1

top1

bot1

Figure 3.17: Path propagation in switching component [3].

66 Chapter 3 PUF Implementation and Evaluation

Based on the path propagations in switching component blocks, the Arbiter-PUF circuit

can be further simplified, as shown in Figure 3.18. The basic structure of the Arbiter-

PUF is two parallel chains of inverters in series. Both inverter chains experience similar

NBTI degradation, therefore it is expected that the response of the Arbiter-PUF is

robust against NBTI effects.

Input

SR-Latch

S

R

Q

Q*
noconn

Response
top1top0

bot1bot0

top16

bot16

c1 c2 c16

∆t

Figure 3.18: Simplified circuit of Arbiter-PUF.

However, we observe different degradation rates in the propagation delays of the two

parallel signals under NBTI stress (i.e., a similar observation, as discussed in Section

3.6.2 and in [46, 48]), resulting in a delay difference at t = 0 and after ageing. Based on

our analysis, due to the different degradation rates, the degraded delay of the two parallel

signals can either increase or decrease the arbitration window of the SR-latch, given as

∆t in Figure 3.18. To illustrate this, Figures 3.19(a) and 3.19(b) show the rising pulses

before the SR-latch of two parallel signals of two PUF instances, respectively, under a

similar challenge at t = 0 and after ageing. While a majority of the occurrences show

an increase in ∆t, which also helps to increase the reliability of the response, a decrease

in ∆t occurs a few instances, which has the potential to generate a bit error in the

Arbiter-PUF response since the decrease can lead to a metastable state. Based on our

simulation, the setup time for the SR-latch is 5ps. As depicted in Figure 3.19(b), the

degraded arbitration window, ∆taged, is below the setup time of the SR-latch. Hence,

the PUF enters a metastable state. The error happens when a metastable state resolves

to a stable state which is opposed to the generated response at t = 0. We observed

only a few events of the type shown in Figure 3.19(b). Moreover, due to the symmetric

circuit topology of the SR-latch, it experiences symmetrical NBTI stress. All of the

above explains the low bit error rate due to NBTI stress for the Arbiter-PUF.

As reported in [28], increasing the delay stages, k, in the Arbiter-PUF has a positive

impact on the reliability of PUF’s responses. Based on this, we assume that as k

increases, the randomness due to process variations increases and reduces the probability

of the metastable state occurring. We proved the above claim in our ageing simulation,

by showing that the 32-bit Arbiter-PUF reduces the probability of the event of Figure

3.19(b) happening, therefore, it achieves on average low bit error rates as compared to

the 16-bit Arbiter-PUF, illustrated in Figure 3.20. Overall, an Arbiter-PUF shows good

resilience against NBTI effects.

Chapter 3 PUF Implementation and Evaluation 67

4.5 4.55 4.6 4.65 4.7 4.75

·10−9

0

0.2

0.4

0.6

0.8

1

1.2

∆tfresh=29.6ps ∆taged = 32ps

Time [s]

V
o
lt

ag
e

[V
]

fresh top16(set)

fresh bot16(reset)

aged top16(set)

aged bot16(reset)

(a) PUF instance 1

4.55 4.6 4.65 4.7

·10−9

0

0.2

0.4

0.6

0.8

1

1.2

∆tfresh=5.1ps ∆taged = 4.7ps

Time [s]

V
o
lt

ag
e

[V
]

fresh top16(set)

fresh bot16(reset)

aged top16(set)

aged bot16(reset)

(b) PUF instance 2

Figure 3.19: Arrival time of a rising pulse before the SR-latch under NBTI stress
for two Arbiter-PUF instances with a similar challenge.

68 Chapter 3 PUF Implementation and Evaluation

0 2 4 6 8 10

0

1

2

3

Year

A
ve

ra
g
e

B
it

E
rr

o
rs

[%
]

16-bit Arbiter-PUF

32-bit Arbiter-PUF

Figure 3.20: Average bit error rates for 16-bit and 32-bit Arbiter-PUFs.

Based on the findings for the bit error rate for the RO-PUF (Section 3.6.2), TCO-PUF

and Arbiter-PUF, the different degradation rates of the delay due to NBTI are the cause

of errors, but the errors produced are much higher in the case of the RO-PUF. Revisiting

the RO-PUF architecture, a single RO is built from a chain of inverters in series and

a feedback loop which makes it oscillate (see Figure 2.7). Figure 3.18 also shows that

an Arbiter-PUF can be simplified as a chain of inverters, similar to an RO circuit but

without a feedback loop. Hence, we infer that the significant bit error rates experienced

by the RO-PUF are due to the feedback loop, which magnifies the different degradation

rates of the delay due to NBTI.

Table 3.1 compares the average percentage of bit errors for the TCO-PUF and the

Arbiter-PUF with other types of PUF as reported in the literature. The comparison

shows that the TCO-PUF is ≈ 2.8× and the Arbiter-PUF is ≈ 5×, better than the

RO-PUF for a 20% activation time, after 10 years, as reported in [46]. In comparison

with the experimental ageing study on RO-PUF, [48], although the test parameters (i.e.,

activity factor and year) are more stringent, Maiti et al., [48] achieve lower bit errors

compared to the ageing simulation study on RO-PUF, [46]. A mitigation technique

to reduce the ageing impact on RO-PUF has been proposed, [46]. The architecture is

called an ageing-resistant RO-PUF (ARO-PUF) and has an average bit error rate of

3.83% over 10 years. However, the Arbiter-PUF and TCO-PUF are inherently ageing-

resilient because of the architecture which uses a differential design technique. The

experimental ageing findings, [47, 39], are also listed in Table 3.1. Though the ageing

test conditions are slightly different from ours, it is still appropriate to compare the

impact of ageing on the TCO-PUF and the Arbiter-PUF with that for a memory PUF.

Chapter 3 PUF Implementation and Evaluation 69

Table 3.1: Ageing impact comparison

PUF Type
Technology Ageing Measurement Activity

Year
Average

(nm) Mechanism Condition Factor (%) Bit Errors (%)

RO-PUF [46] 90 BTI and HCI 25oC, 1.2V 20 10 12.76

ARO-PUF [46] 90 BTI and HCI 25oC, 1.2V 20 10 3.83

RO-PUF [48] 90 NBTI 25oC, 1.2V ≈90 13 8.6

32-bit Arbiter-PUF 65 NBTI 25oC, 1.2V 20 10 2.41

32-bit TCO-PUF 65 NBTI 25oC, 1.2V 20 10 4.5

SRAM-PUF [39] 65 NBTI 25oC, 1.2V 100 4.5 min. 7 to max. 8

SRAM-PUF [47] 90 NBTI 20oC, 1.2V 100 4.7 <14

3.7 Summary

In this chapter, a sub-threshold PUF architecture known as TCO-PUF, which exploits

the non-linear dependency of current and voltage in the sub-threshold region, is charac-

terised. The characterisation results of the 32-bit TCO-PUF show that the mean values

of uniqueness and uniformity are close to 50% but it suffers from lack of randomness

in its response, hence it has a high standard deviation in the distribution of both met-

rics. On average, with temperature variations of −40oC to 85oC and a supply voltage

of 1.2V ± 10%, a 32-bit TCO-PUF achieves 92.38% reliability. An ML-attack has been

performed using ANN and the result shows that the response of the 32-bit TCO-PUF

can be predicted with a very high accuracy of about 96% at 30000 CRPs.

Moreover, the impact of CMOS device ageing, in particular, NBTI is investigated on

the TCO-PUF and the Arbiter-PUF. The results show that the reliability of the 32-bit

TCO-PUF and the 32-bit Arbiter-PUF decrease with age and they experience bit errors

of about 4.5% and 2.41%, respectively, after 10 years. In comparison with other types

of PUF such as RO-PUF and SRAM-PUF, TCO-PUF and Arbiter-PUF are inherently

ageing-resilient as they use a differential design technique.

Chapter 4

A Lightweight Technique for

ML-Attack Resistant PUFs

As discussed in Section 2.7.1, Strong PUF based authentication is suitable for RFID tags

in which a challenge-response protocol and an HD threshold, ε, are introduced to avoid

using ECC to reduce the area and power consumption. These extremely lightweight

PUF-based RFID tags can be promoted as a secure alternative to memory-based RFID

tags and are proposed as anti-counterfeiting for medical drugs and supply chain control

[55]. Also discussed in Section 2.7.1, to achieve an optimum value of ε, the Strong PUF

must be reliable and secure against an ML-attack. The reliability of Strong PUFs with

differential architecture under ageing has been analysed in Chapter 3. The Arbiter-PUF

has shown to be more robust against ageing in 10 years. Therefore, an Arbiter-PUF is

used as a case study in this chapter for ML-attack analysis. Besides, recent literature,

[8, 35, 34, 57, 73, 90, 91] were focused on increasing the resilience of an Arbiter-PUF and

its derivative against an ML-attack. Therefore, using an Arbiter-PUF as a case study

enables a good comparison of the ML-attack susceptibility with the previous studies,

which will be discussed later in Section 4.4.5. In this study, we focus on such commercial

resource-constrained PUF-based RFID tags in which the Arbiter-PUF combined with a

permutation technique is used to provide a certain level of security against an ML-attack.

Hence, it is not worthwhile for attackers to spend their resources counterfeiting these

products. Our goal is to improve the security of an Arbiter-PUF against an ML-attack

and to achieve a low-cost implementation. The Arbiter-PUF has been constructed as

previously proposed, [12], using a TSMC 65-nm technology. The main contributions of

this chapter are:

1. We show that using a challenge permutation technique can alter the output tran-

sition probability of the Arbiter-PUF, resulting in an increase of the resiliency

against an ML-attack. A challenge permutation technique can be implemented

by obfuscating the routing at the input and introduces no additional hardware.

71

72 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

Unlike the XOR technique, this technique has no impact on the reliability of the

Arbiter-PUF.

2. We also show that a random permutation is required to maximise the complexity of

the output transition probability of the Arbiter-PUF. Hence, higher unpredictabil-

ity for an Arbiter-PUF can be achieved.

This chapter is organised as follows: Section 4.1 describes the motivation to explore a new

technique against an ML-attack. The experimental methodology is discussed in Section

4.2. Section 4.3 presents the properties of the Arbiter-PUF. Section 4.4 describes in

detail the proposed permutation technique including the area, power, and predictability

compared to the previous techniques. Finally, this chapter is concluded in Section 4.5.

4.1 Motivation

As reviewed in Section 2.8, an ML-attack is the most plausible way to attack Strong

PUFs since it offers great advantages to the adversary in terms of cost efficiency and

high prediction accuracy. ML-attack resistance describes the complexity of the challenge

to response mapping for a particular PUF. As defined in Section 2.3.2, Strong PUFs

are a type of PUF that is able to generate an exponential number of CRPs, as in the

Arbiter-PUF. However, the Arbiter-PUF can be easily modelled by ML due to the linear

addition of the inherent delay values [36]. Several PUFs have been derived from the

Arbiter-PUF to introduce non-linearity into the mapping function of the CRPs, such as

the Feed-forward Arbiter-PUF [30], XOR Arbiter-PUF [22], and Lightweight-PUF [31].

However, ML techniques are still able to model them with high accuracy [73]. One might

disable the ML-attack by implementing the XOR Arbiter-PUF and Lightweight-PUFs

with l ≥ 8 (i.e, the number of XORs in output network) [28, 73]. Nevertheless, the

reliability of the Arbiter-PUF reduces as l increases. To demonstrate the reliability of

the XOR Arbiter-PUF, first, the average reliability of the Arbiter-PUF has to be found.

A simulation setup as in Section 3.4.1 is used to evaluate the reliability for the 32-bit

Arbiter-PUF under temperature variations from −40oC to 125oC and 1.2V±10% supply

voltage fluctuations; the result is depicted in Figure 4.1(a). The average reliability of

the 32-bit Arbiter-PUF (i.e., l=1) over temperature and supply voltage variations is

96.94%, as depicted in Figure 4.1(b).

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 73

-4
0
|1

.0
8

0
|1

.0
8

2
5
|1

.0
8

8
5
|1

.0
8

-4
0
|1

.2

0
|1

.2

2
5
|1

.2

8
5
|1

.2

-4
0
|1

.3
2

0
|1

.3
2

2
5
|1

.3
2

8
5
|1

.3
2

90

92

94

96

98

100

Condition [oC|Volt]

A
v
er

a
g
e

R
el

ia
b

il
it

y
[%

]

(a) 32-bit Arbiter-PUF

1 2 3 4 5 6 7 8

80

85

90

95

100

l-XOR

A
v
er

a
g
e

R
el

ia
b

il
it

y
[%

]

(b) l-XOR 32-bit Arbiter-PUF

Figure 4.1: Reliability for 32-bit Arbiter-PUF under temperature and supply
voltage variations.

As the average reliability for the 32-bit Arbiter-PUF is now known, the average reliability

of the XOR-Arbiter-PUF can be estimated using Eq. (4.1) (see Appendix C.1 for the

derivation).

P (tXOR = reliable) = 1− (P (A) + P (B)− 2P (A)P (B)) (4.1)

Figure 4.1 shows as l increases to 8, the average reliability reduces to ≈80%. To realise

the implementation of Strong PUF based authentication, as discussed in Section 2.7.1,

the HD threshold, ε must be as small as possible to avoid false positives and to reduce

the vulnerability against ML-attack. On the other hand, it must be large enough to

tolerate the bit error rates and reduce false negatives. Evidently, there is a trade-off

between security and reliable performance for an XOR network technique. To achieve

high security against an ML-attack, one has to use a large number of XORs but one

has to increase the ε value to reduce the probability of false negatives. However, the

high value of ε nullifies the high resilience against an ML-attack achieved using an XOR

network technique. The parallel architecture of the XOR network technique further

increases the total area. Similar considerations applied for Lightweight-PUFs.

Recently, Delvaux et al., [10] surveyed the previously proposed scheme of Strong PUF

based authentication. From their survey, most of the proposed schemes require a hash

function and/or NVM which obviously have a large area overhead. A few scheme used a

PUF to feed another PUF but suffers from reliability issues, similar to the XOR network

technique, since it is known that PUF outputs are susceptible to temperature and supply

74 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

voltage variations. The use of a hash function to increase the security of Strong PUFs

against ML-attacks started with the concept of the Controlled PUF, introduced by

Gassend et al., [27]. As explained in Section 2.3.2, a Controlled PUF uses a secure

one-way hash function to break the relationship between challenges and responses as

illustrated in Figure 4.2.

Strong PUF Hash

Hash
Reconstruction

helper data

challenge

response

Enrolment

Figure 4.2: The concept of Controlled PUF [27].

With the assumption of an adversary which is limited to non-invasive CRPs measure-

ment, the Controlled PUF successfully disables the ML-attack because it is known to be

hard or almost impossible to invert a one-way hash function [28]. However, a one-way

hash function consumes large area and is power-hungry. To demonstrate this, we com-

piled readily-available SHA-1 and SHA-256 Verilog code, [92], using Synopsys Design

Compiler. The area and power are listed in Table 4.1. Clearly, one-way hash functions

are too costly although they improve security for low-cost Strong PUF based authen-

tication. It is important to note that the SHA-1 has been broken [93]. The results in

Table 4.1 only prove that the hash functions are costly for resource-constrained devices.

If a PUF-based system needs to use the hash function, consider using safer alternatives

such as SHA-256, or SHA-3.

Table 4.1: Area and power of hash function

Type Area [GE] Power [mW]

SHA-1 9567 1.256

SHA-256 12980 1.688

Several works focus on how to increase the resilience of an Arbiter-PUF against an ML-

attack. In recent studies, Ye et al. proposed an obfuscation logic based PUF (OPUF)

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 75

[90] and randomised challenge PUF (RPUF) [91] to increase the resiliency of an Arbiter-

PUF against the ML-attack. However, an OPUF suffers reliability issues as described

above since it adapts the XOR network technique at the output stage. RPUF also

has a potential issue of bias in the random number generator (RNG), which is used

to randomise the challenge. Elsewhere, Gao et al., [8] proposed an Obfuscated-PUF

(OB-PUF) in which a partial challenge is sent by the verifier to the OB-PUF (i.e., the

prover). Subsequently, within an OB-PUF, a partial challenge is padded with a random

pattern generated by RNG to make up a full-length challenge. Earlier, Rostami et al.,

[57], proposed a sub-string matching technique in which only a subset of PUF response

strings is sent to the verifier during authentication. Generally, both works, [8, 57],

use the same technique by only exposing a subset of either challenges or responses.

However, this might increase the authentication time to run the matching algorithm, as

well as the area, on the verifier side. One might argue, however, that the area is not a

concern since the verifier has always been assumed to be resource rich. As discussed in

Section 2.4.5, mixed-signal PUFs which adapt the architecture of Arbiter-PUF have been

proposed, such as the Current Mirror-PUF, [35] and the VTC-PUF, [34]. Both exploit

the non-linearity in the current mirror and voltage transfer characteristics, respectively,

to increase the resilience against an ML-attack. Further, these studies, [35, 34] show

that the non-linearities introduced in the respective circuits reduce the predictability

by about 25% as compared to the Arbiter-PUF in which SVM has been used for the

ML-attack analysis.

From all of the above, the resilience of the Arbiter-PUF against an ML-attack can be

improved. However, the area and/or reliability need to be compromised, which under-

mines the realisation of low-cost Strong PUF based identification and authentication.

Motivated by this, we explore a simple yet effective technique, which is a challenge

permutation. This technique will be implemented and evaluated for an Arbiter-PUF.

4.2 Methodology

In this section, we discuss the simulation setup for CRP generation, the PUF configura-

tion, the ML algorithm, and the threat model used to evaluate the challenge permutation

technique.

4.2.1 CRP Generation

16-bit, 32-bit, and 64-bit Arbiter-PUFs have been implemented in a low-k 65-nm tech-

nology node and simulated using the BSIM4 (V4.5) transistor model, with a nominal

supply voltage of 1.2V and at room temperature of 25oC. An SR-latch has been used

as the arbiter block. Intrinsic variations such as oxide thickness and threshold voltage

76 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

are modelled in Monte Carlo simulations using the built-in fabrication standard statis-

tical variation (3σ variations) in the technology design kit. An arbitrary challenge is

further applied to the Arbiter-PUF to generate a corresponding response. For a 16-bit

Arbiter-PUF, a maximum length of 65534 CRPs (excluding all 0’s and 1’s) has been

generated for ML-attack analysis. A simulation of a maximal length for the 32-bit and

64-bit Arbiter-PUFs is prohibitive, and therefore, only a total of 32000 CRPs has been

generated for the ML-attack analysis.

4.2.2 PUF Configuration

There are two ways to construct an m-bit response from a 1-bit response from the

Arbiter-PUF:

1. A challenge is applied to m parallel Arbiter-PUFs; this could simply increase the

area overhead of the whole system.

2. A challenge is used as a seed for an LFSR and it generates m sub-challenges

sequentially to be applied to the underlying Arbiter-PUF. Hence, it improves the

area overhead significantly but the evaluation time increase by a factor of m.

In this study, we chose the second configuration because it offers area efficiency. An

increase in the evaluation time has no major impact as Lee et al., [12], shows that a

silicon implementation of a 64-bit Arbiter-PUF using a TSMC 180-nm has a potential

throughput of 20Mb/s. A Fibonacci LFSR configuration has been used in this study

and Table 4.2 lists the generator polynomials for maximal-length sequence generation.

Table 4.2: Generator polynomials for maximal-length sequences

Type Generator Polynomial

16-bit X16 +X15 +X13 +X4 + 1

32-bit X32 +X31 +X30 +X10 + 1

64-bit X64 +X63 +X61 +X60

4.2.3 Artificial Neural Network

As discussed earlier in Section 2.8.3, the ANN is one of the best performing ML al-

gorithms to solve non-linear problems. Therefore, the ANN has been chosen and the

built-in ANN algorithm in MATLAB (R2016b) (see Appendix A.6 for the MATLAB

script of an ML-attack) has been used in this study. Therefore, this section describes

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 77

an overview of the basic concepts of the ANN and how it is setup to perform an ML

analysis of a Strong PUF.

An ANN is an adaptive system formed from interconnected computing nodes called neu-

rons. A typical structure of an ANN is a feed-forward network which can be constructed

as a single-layer perceptron (SLP) or a multilayer perceptron (MLP). SLPs are the

simplest form of feed-forward network and are only capable of solving linearly separable

problems. MLPs are required for solving non-linear problems [94] and therefore have

been chosen for our ML analysis. The ML analysis of Strong PUF can be considered

as a binary classification problem since it has a single target, either 0 or 1. Hence, a

2-layer network structure of MLPs as illustrated in Figure 4.3 has been used in this

study. It consists of two layers with tunable weights and bias which are a hidden layer

and an output layer. Each node in one layer is connected to all nodes in the next layer

and there are neither connections between nodes in the same layer nor feedback between

different layers.

c1

c2

ci

y1

y2

yj

ok

Ʃ

Ʃ

Ʃ

Ʃ

Input

layer
Hidden

layer, l=1

Output

layer, l=2

j,iw (1)

w (2)

k,j

θ1

θ2

θj

θk

j,iw (l)

i = node i of layer l-1j = node j of layer l

l = layer no.

x

+1

-1

0

y

y=tansig(x)

x

+1

-1

0

y

y=tansig(x)

x

+1

-1

0

y

y=tansig(x)

0
x

y

y=purelin(x)

neuron

Figure 4.3: MLP feed-forward network structure for binary classification prob-
lem.

Except for the input nodes, each node is a neuron that uses an activation function, f(.)

to limit the output range. In the hidden layer, tan-sigmoid activation function is used

given as f(x) = 2
1+e−2x − 1. This function is bound to the range (-1,1), as shown in

Figure 4.3. The linear transfer function is used at the output layer. Based on Figure

4.3, the activation of node j in the hidden layer, Yj and node k in the output layer, ok,

respectively can be computed as:

78 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

Yj = f(
∑
i

W
(1)
j,i Ci + θj) (4.2)

ok = f(
∑
j

W
(2)
k,jYj + θk) (4.3)

where W is an assigned weight (i.e., the detail of the notation W can be seen in Figure

4.3) to every connection between nodes and θ is an additional bias. Following the rule of

thumb in [94] for selecting the number of neurons in the hidden layer, we found that 32

neurons is an optimal number and this is used throughout all the ML-analysis. During

training, an error resulting from the difference between a predicted and observed value

is propagated back through the network and the neuron’s weights and bias are adjusted

and updated. The training process stops when the prediction error reaches a predefined

value or a predetermined number of epochs (i.e., iteration) is completed. Once the MLP

is trained, the MLP is ready for use to compute the outputs of new input patterns. Based

on our ML experiments, resilient back-propagation has been chosen as the best training

algorithm considering the prediction accuracy and fast convergence time, consistent with

the explanation elsewhere, [56]. A test set has been chosen randomly and it is not part

of the training data. For the 16-bit Arbiter-PUF, a total of 2534 CRPs is used as a test

set. For the 32-bit and 64-bit Arbiter-PUFs, a total of 2000 CRPs is used as a test set.

4.2.4 Threat Model

An adversary may have several motives for attacking deployed low-end devices, such

as gaining secure access through RFID or to counterfeit products. Becker, [55], shows

that an attacker who is in possession of the PUF-based RFID tag and has an access to

the primary inputs can collect CRPs through non-invasive measurement and perform

an ML-attack. The parameters derived by the ML-attack are further programmed

on a programmable RFID smart-card emulator and a PUF tag was successfully cloned.

However, prior to the ML-attack, software reverse-engineering was performed to discover

the configuration of the PUF model in the reader, such as the exact LFSR and XOR-ing

functions. As the internal configurations are known, the ML-attack has been performed

based on the mapping of the internal CRPs.

Based on the above situation, we derive our threat model. In order to achieve one of

the adversary goals, we assume that the attacker is restricted to a non-invasive CRP

measurement. The attacker only has an access to the primary inputs of the PUF-based

RFID tag, and can apply a polynomial number of challenges to the device to collect the

corresponding responses. Subsequently, the attacker tries to derive a numerical model

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 79

from the CRPs data by using ML techniques, as described in Section 4.2.3. As opposed

to Becker’s study, we would like to emphasize that in our study, we assume that the

verifier/reader is a trusted party/tool and is capable of resisting any related attacks

concerning the PUF configuration, model, or database in the verifier/reader.

A man-in-the-middle or eavesdropping to collect CRPs during a communication between

verifier and prover could be one of the threats as well. However, both eavesdropping as

well as physical access to the PUF is part of the established, general attack model for

PUFs. Only one study , [55], performed a physical access attack on actual hardware

which contained a PUF. In addition, the type of PUF is not necessarily confidential as

revealed by NXP Semiconductors on the use of an SRAM-PUF as a hardware security

device, but the configuration of intrinsic key generation remains secret [14]. Therefore,

in this study, we also assume that the use of an Arbiter-PUF is publicly known and only

the exact configuration of the CRP generation is kept confidential.

4.3 Arbiter-PUF Properties

This section describes the functionality and output transition probability of the Arbiter-

PUF. In the subsequent sections, both will be used for the ML analysis.

4.3.1 Functionality Description

SR-latch

S

R

Switching Component

Input

c1 = 0 c2 = 1 ck = 1ck-1 = 0

∆t

Response

0 / 1
top0

bot0

top1

bot1

topk-1

botk-1

topk

botk

Q

Figure 4.4: k-bit Arbiter-PUF.

The functionality of the Arbiter-PUF as depicted in Figure 4.4 can be described by an

additive linear model, [36]. The total delays of both paths are modeled as the sum of the

delays in each stage (switch components) depending on the challenge C={c1, c2...ck}.
The final delay difference ∆t between the two paths in a k-bit Arbiter-PUF can be

expressed as:

∆t = ~wT ~Φ (4.4)

80 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

where parameter ~w is the delay-determined vector and ~Φ is the feature vector. Both

parameters are the functions of the applied k-bit challenge with dimension k + 1. As

described in [8], δ
1/0
i is denoted as the delay in stage i for the crossed (1) and uncrossed

(0), respectively. Hence, δ1
i is the delay of stage i when ci = 1, while δ0

i is the delay of

stage i when ci = 0. Then

~w = (w1, w2, ...wk, wk+1)T (4.5)

where w1 =
δ0
1−δ1

1
2 , wi =

δ0
i−1+δ1

i−1+δ0
i−δ1

i

2 for all i = 2, ..., k, and wk+1 =
δ0
k+δ1

k
2 . Further-

more,

~Φ(C) = (Φ1(C), ...,Φk(C), 1)T (4.6)

where ~Φj(C) =
∏k
i=j(1− 2ci) for j = 1, ..., k

From (4.5), the vector ~w encodes the delay in each stage of the Arbiter-PUF and via

~wT ~Φ = 0 determines the separating hyperplane in the space of all feature vectors, ~Φ.

The delay difference, ∆t, is the inner product of ~w and ~Φ. If ∆t > 0, the response bit is

‘1’, otherwise, the response bit is ‘0’. Determination of this hyperplane allows prediction

of the PUF.

4.3.2 Output Transition Probability

According to Nguyen et al., [95], a PUF with a k-bit challenge and a 1-bit response is

said to satisfy the strict avalanche criteria (SAC) if its output transition occurs with a

probability of 0.5 whenever a single challenge bit is complemented. The output transition

probability for the Arbiter-PUF can be estimated as described in Algorithm 1. The

CRP generation in steps c) and d) follows the setup as explained in Section 4.2.1.

Subsequently, these CRPs are input to the MATLAB script (see Appendix A.5.1) to

compute the output transition probability.

Figure 4.5 shows the computed output transition probabilities for 16-bit, 32-bit, and

64-bit Arbiter-PUFs. The challenge bit on the x-axis refers to the bit position (i.e.,

index) of the challenge which was flipped. As can be seen from Figure 4.5, all Arbiter-

PUFs produce a generic pattern, where the output transition probability increases as

the challenge bit index rises from 1 to k. However, the output transition probability for

the 64-bit Arbiter-PUF is closer to a probability of 1 as compared to the 16-bit Arbiter-

PUF for index=k. Following the discussion in Section 2.4.1, the effect of random process

variations comes from the logic gates and interconnects. For the 16-bit Arbiter-PUF,

as the rising pulse propagates through the delay stages, it experiences fewer random

process variations resulting in significantly smaller delay differences, as compared to

a 64-bit Arbiter-PUF. Due to this, the variations in the final delay stage are likely

to compensate the flip in the delay difference of index k. Hence, the output of 16-bit

Arbiter-PUF has a transition probability ≈ 0.54 when index=k, as can be seen in Figure

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 81

Algorithm 1 Computation of Output Transition Probability, N = 1000.

Input:
a) Generate N random challenges, c.
b) Generate N challenges, ĉ from c with HD=1 for every challenge bit index.
c) Simulate k-bit Arbiter-PUF using a TSMC 65-nm technology node.
d) Collect CRPs for r← PUF (c) and r̂← PUF (ĉ)

Output:
Value of output transition probability

1: count← 0
2: for index= 1 to k do
3: for i = 1 to N do
4: if r 6= r̂ then
5: count← count+ 1
6: end if
7: end for
8: probability[index] ← count/N
9: count← 0

10: end for

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Challenge Bit [index]

O
u
tp

u
t

T
ra

n
si

ti
on

P
ro

b
ab

il
it

y

(a) k = 16

0 4 8 12 16 20 24 28 32

0

0.2

0.4

0.6

0.8

1

Challenge Bit [index]

O
u
tp

u
t

T
ra

n
si

ti
on

P
ro

b
ab

il
it

y

(b) k=32

0 8 16 24 32 40 48 56 64

0.2

0.4

0.6

0.8

1

Challenge Bit [index]

O
u
tp

u
t

T
ra

n
si

ti
on

P
ro

b
ab

il
it

y

(c) k=64

Figure 4.5: Output transition probability for k-bit Arbiter-PUF.

82 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

4.5(a). Unlike the 64-bit Arbiter-PUF, the delay difference is more significant as the

rising pulse propagates closer to the final delay stage and arbiter circuit. Hence, a flip in

index=k will almost certainly flip the delay difference resulting in an output transition

probability of ≈ 0.8, as shown in Figure 4.5(c). The probability values for the index=1

are observed to be significantly low, very close to zero. Based on this observation, given

a set of CRPs, another set of CRPs can be generated by merely flipping the first-bit

position of all the challenges where the corresponding responses remain the same. It

can be concluded that an Arbiter-PUF does not fulfil SAC, resulting in CRP mapping

that can be predicted easily using the ML technique, as we discuss in detail in the next

section.

4.4 Analysis

In this section, the susceptibility of the Arbiter-PUF to an ML-attack is firstly dis-

cussed. Subsequently, the challenge permutation technique is introduced and the effect

on the output transition probability of the Arbiter-PUF is discussed. Next, a random

permutation required to further reduce the predictability of the Arbiter-PUF is proven.

4.4.1 ML-attack on Arbiter-PUF

As discussed in Section 4.2.4, we assume an attacker who has an access to primary

inputs and is capable of doing a non-invasive CRP measurement. Besides, as pointed

out in Section 4.2.2, the LFSR is used to generate an m-bit response from the Arbiter-

PUF. Therefore, an LFSR could provide a non-direct access to the sub-challenges and an

attacker can only map an input of the LFSR to an m-bit response of the Arbiter-PUF.

As discussed in [96], the LFSR is vulnerable to a back propagation MLP technique and

its internal sequence can be completely predicted. The seeds and their corresponding

sequences (i.e., the first LFSR states generated from a given seed) have been used as

a training set. As a result, the ANN was able to model the relationship between two

consecutive LFSR states [96]. Following this finding, which was successfully attacked

the standalone LFSR, it is interesting to see the ability of the ANN to learn our PUF

configuration. To demonstrate the effectiveness of our MLP network (see Section 4.2.3)

to attack our PUF configuration, a multi-label classification technique is used where

multiple target labels (i.e., an m-bit response) can be assigned to each observation

(i.e., a challenge to the LFSR). This is the simplest method of multi-label classification

technique, called binary relevance, and therefore has been chosen. Other methods could

be used such as label power set, random k-label set ensemble learning, etc., [97]. A

multi-label classification technique adopted in our study is further defined as follows:

Given challenge C = {0, 1}k, response R = {0, 1}m and a set of training examples

D = {(c(i), r(i))}Ni=1=,

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 83


c

(1)
1 c

(1)
2 · · · c

(1)
k

c
(2)
1 c

(2)
2 · · · c

(2)
k

...
...

. . .
...

c
(N)
1 c

(N)
2 · · · c

(N)
k



r

(1)
1 r

(1)
2 · · · r

(1)
m

r
(2)
1 r

(2)
2 · · · r

(2)
m

...
...

. . .
...

r
(N)
1 r

(N)
2 · · · r

(N)
m


︸ ︷︷ ︸

CRPs

where

c(i) = [c1, · · · , ck] ∈ C is the representation of a challenge to LFSR,

r(i) = [r1, · · · , rm] ∈ R is the representation of m-bit response of an Arbiter-PUF for a

given challenge, where

rj =

{
1, if ∆t > 0 to this challenge;

0, otherwise.

As explained in Section 4.2.4, the use of the Arbiter-PUF is openly known and therefore,

the attacker can describe the functionality of the Arbiter-PUF as in Section 4.3.1 and

use Eq. (4.6) to increase the efficiency of an ML-attack. For each bit of the response,

an ML-attack has been run with an incremental in the training set size (i.e., a step size

of 1000 CRPs) and the corresponding prediction accuracy is recorded.

0 1 2 3 4 5 6

·104

10

20

30

40

50

60

70

80

90

100

CRPs

P
re

d
ic

ti
o
n

A
cc

u
ra

cy
[%

]

r1

r2

r3

r4

r5

Figure 4.6: ML-attack on 16-bit LFSR plus 16-bit Arbiter-PUF configuration
using ANN.

Figure 4.6 shows the prediction accuracy for a 16-bit Arbiter-PUF with m = 5. r1 is

the first bit of response which is generated from the first sequence of the LFSR and

84 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

it has the highest prediction accuracy of ≈ 99%. As can be seen from Figure 4.6,

the prediction accuracy reduces for the next responses of the corresponding subsequent

LFSR sequences and the ML starts to show some learning difficulties for a smaller

training set size, particularly for r4 and r5. However, as the training size increases, the

ML achieves better prediction accuracy of about 97.55% and 96.45% respectively, for r4

and r5.

All of the above findings show that a non-direct access of internal sub-challenges provided

by an LFSR is not good enough to resist an ML-attack. In the next sections, we

show that the resilience of the Arbiter-PUF against an ML-attack can be increased

with a challenge permutation technique. From the analysis above, the most predictable

response is the response corresponding to the first LFSR sequence. As the simulation

run time for the 32-bit and 64-bit Arbiter-PUFs is huge, only the first sequence of the

LFSR will be evaluated and analysed for subsequent use.

4.4.2 Challenge Permutation Technique

In this section, the challenge permutation technique is introduced and applied on Arbiter-

PUFs. For a given size of an Arbiter-PUF, the challenge permutation space is huge. As

a starting point, we analyse the permutation as shown in Figure 4.7 and investigate the

impact on the output transition probability. k is the bit-length of the challenge and n

is the length of the bit challenge that forms an n-bit block. The value of n is a power of

two. This permutation scheme is known as an n-block permutation.

1 n

A

B

2n

B

A

n+1
(k-2n)

+ 1
k-n k

(k-n)

+1

n

bit challenge

position

permutation

Figure 4.7: n-block permutation scheme.

The n-block permutation is applied to the generated CRPs used to compute the output

transition probability in Figure 4.5. Next, the output transition probability based on

n-block permutation is computed using Algorithm 1 and the values are illustrated in

Figure 4.81 for 16-bit, 32-bit, and 64-bit Arbiter-PUFs. As can be seen from Figure

4.8, the probability for n-block where n = k
2 , is the probability in Figure 4.5 in which

1Challenge bit index is a discrete value. Figure 4.8 has been plotted with continuous lines, however
for better visibility.

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 85

the corresponding probability values of index 1 to k
2 and index (k2 + 1) to k have been

swapped. Similarly, it applies for other n values.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Challenge Bit [index]

O
u
tp

u
t

T
ra

n
si

ti
on

P
ro

b
ab

il
it

y 8-block

4-block

2-block

(a) k=16

0 4 8 12 16 20 24 28 32

0

0.2

0.4

0.6

0.8

1

Challenge Bit [index]

O
u
tp

u
t

T
ra

n
si

ti
on

P
ro

b
ab

il
it

y 16-block

8-block

4-block

2-block

(b) k=32

0 8 16 24 32 40 48 56 64

0.2

0.4

0.6

0.8

1

Challenge Bit [index]

O
u
tp

u
t

T
ra

n
si

ti
on

P
ro

b
ab

il
it

y

32-block

16-block

8-block

4-block

2-block

(c) k=64

Figure 4.8: Output transition probability for k-bit Arbiter-PUF with n-block
permutation.

Next, the n-block permutation is applied to randomly generated challenges given in

Section 4.2.1. Subsequently, the permutated challenges are applied to an Arbiter-PUF

to generate the corresponding responses. To ensure a fair comparison, only 32000 CRPs

are evaluated for the ML-attack analysis. The ML-attack is performed on 32000 CRPs

and the prediction accuracy is listed in Table 4.3. For each Arbiter-PUF configuration,

as n reduces, the predictability of the response reduces. For small n, 2-block for instance,

as the Arbiter-PUF size grows, the prediction accuracy is further reduced. Referring to

Figure 4.8, the output transition probability tends to fluctuate as n reduces and as a

consequence, the original probability pattern (see Figure 4.5) is not being preserved.

86 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

Indeed, this is correlated with the findings in Table 4.3 in which the fluctuation in the

output transition probability indicates that the CRP mapping has been disordered and

low prediction accuracy could be achieved.

Table 4.3: Prediction accuracy of k-bit Arbiter-PUF with n-block permutation
scheme

Permutation
k=16 k=32 k=64

Prediction Accuracy [%]

32-block NA NA 99.27

16-block NA 99.35 91.58

8-block 99.46 95.23 87.79

4-block 96.38 91.77 85.31

2-block 94.77 91.58 83.25

4.4.3 Random Challenge Permutation

The challenge permutation can alter the output transition probability of Arbiter-PUFs

as described in Section 4.4.2, resulting in an increase in the complexity of the CRP

mapping and reduce the susceptibility to an ML-attack. However, with the n-block

permutation scheme, the prediction accuracy can only be reduced to 83.25%, for the

64-bit Arbiter-PUF. In this section, the impact of the random permutation is explored,

with the aim to maximise the fluctuation in the output transition probability of an

Arbiter-PUF and further reduce its predictability.

To start with, we design a procedure to generate a random permutation mapping.

The output transition probabilities of Arbiter-PUFs in Figure 4.5 have been disordered

through n-block permutation scheme as depicted in Figure 4.8. Nevertheless, some of

the challenge bits still preserve the original probability pattern whereby the probabili-

ties of these challenge bits are linearly increased and notably adjacent to each other. To

break this pattern and to maximise the fluctuation in the output transition probability,

we define two sets of conditions to check the probabilities of three consecutive challenge

bits, as follows:

Condition 1: | Pr(index-1)−Pr(index) | ≤ ∆maxk

Condition 2: | Pr(index)−Pr(index+1)| ≤ ∆maxk

where Pr is the output transition probability. The above conditions are not applica-

ble for the very first and last bit challenge positions. A parameter called ∆maxk is

introduced to constraint both conditions which can be calculated as follows:

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 87

µk =
k−1∑

index=1

|Pr(index + 1)− Pr(index)|
k − 1

(4.7)

∆maxk = µk + σk (4.8)

where µk is the average difference between two consecutive output transition probabil-

ities and σk is the standard deviation. Both conditions must be avoided to ensure the

fluctuation in the output transition probability is maximised.

Apply random permutation

on c and ĉ

Compute output transition

probability, Pr using

Algorithm 1

Set Pr(index=2)

| Pr(index-1) - Pr(index) |

 ≤ ∆maxk

Count

| Pr(index) - Pr(index+1) |

 ≤ ∆maxk

No

Yes

Store random

permutation

mapping

Set target

No

Yes

No

Yes

Count ++index=(k-1)?

index ++

Yes

No

Count == target?

Reset counter

Figure 4.9: Iteratively finding a random challenge permutation mapping.

88 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

Figure 4.9 shows the iterative process for finding a good random challenge permutation

mapping (see Appendix A.5.2 for the MATLAB script), which maximises the fluctua-

tions in the output transition probability, based on the conditions explained above. The

target in Figure 4.9 indicates the number of occurrences of both conditions in the output

transition probability. Given an Arbiter-PUF with a k-bit challenge length, the maxi-

mum occurrence of both conditions is k − 2. To demonstrate the correlation between

the occurrence of both conditions and the ML prediction, the target is varied within the

range of 0≤target≤ k−2. Once the required challenge permutation mapping is found, it

is applied to 32000 randomly generated challenges and their corresponding responses are

generated following the methodology described in Section 4.2.1. Subsequently, the ML-

attack is performed on 32000 CRPs for 16-bit, 32-bit, and 64-bit Arbiter-PUF. Figure

4.10 illustrates the correlation between the ML prediction and the occurrence of both

conditions in the output transition probability for the aforementioned Arbiter-PUFs.

As can be seen from Figure 4.10, as the occurrence of condition 1 and 2 reduces, the

prediction accuracy reduces. The lowest prediction accuracy achieves for 16-bit, 32-bit,

and 64-bit are 86%, 65.13%, and 69.04%, respectively.

0 10 20 30 40 50 60
50

60

70

80

90

100

Occurence of Condition 1 and 2

P
re

d
ic

ti
o
n

A
cc

u
ra

cy
[%

]

k=16

k=32

k=64

Figure 4.10: Correlation between the ML prediction and the occurrence of con-
dition 1 and 2 for k-bit Arbiter-PUF.

Generally, for an explicit frequency of occurrence (e.g., 10), it can be observed that as k

increases, the prediction accuracy reduces. Following this observation, considering the

worst case condition where given a k−bit challenge length with a total number of 1’s is

i = 1 (i.e., index=1) and (k − i) 0’s, a total unique permutation can be computed as(
k
i

)
= kCi. As mentioned in Section 4.3.2, without the challenge permutation technique,

by flipping the first index or bit challenge position, another set of CRPs can be derived

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 89

easily because the output transition probability is almost zero. However, with a challenge

permutation technique, the output transition probability is now
(
k
i

)
= kCi possible

values. As k increases, the possible values of output transition probability increases

accordingly and increase the resilience of the Arbiter-PUF against an ML-attack.

0 1 2 3 4 5 6

·104

50

60

70

80

90

100

CRPs

P
re

d
ic

ti
o
n

A
cc

u
ra

cy
[%

]

r1

r2

r3

r4

r5

Figure 4.11: ML-attack on 16-bit LFSR plus 16-bit Arbiter-PUF configuration
with permutated challenge using ANN.

For a fair comparison of the ML-attack before and after the challenge permutation is

applied, a challenge permutation mapping that produces the lowest prediction accuracy

for the 16-bit Arbiter-PUF in Figure 4.10 is applied to the CRPs that were used to gen-

erate the results in Figure 4.6. With a challenge permutation technique, the prediction

accuracy of the 16-bit Arbiter-PUF in Figure 4.6 is reduced on average to within 80%

to 90% as illustrated in Figure 4.11.

4.4.4 Hardware Implementation

In this section, we present a hardware implementation of the PUF configuration as de-

scribed in Section 4.2.2. Figure 4.12 shows the top level architecture of a k-bit Arbiter-

PUF to generate an m-bit response, which consists of a controller, k-bit LFSR, k-bit

Arbiter-PUF, and m-bit serial-in and parallel-out (SIPO) register. From Figure 4.12,

there is no functional unit block to implement the challenge permutation technique.

This technique can be implemented by routing obfuscation between the challenge in-

terface and internal ports of LFSR unit. Hence, a challenge permutation introduces no

additional logic gates. However, the random challenge permutation mapping shown in

Figure 4.9 must be conducted as part of the design.

90 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

LFSR

clk

rst

i[k-1:0]

o[k-1:0]

Arbiter-PUF

pulse

c[k-1:0]

out

SIPO

clk

rst

Shift In

o_shift[m-1:0]

clk

rst

done

Controller

pulse

clk_sipo

clk

rst

challenge

k

k

rst

clk

rst

done

response
m

sub_challenge

out

Figure 4.12: Top level architecture of k-bit Arbiter-PUF.

For an LFSR, it is desirable to be able to vary the challenge (seed) value since a different

challenge will be sent to the prover every time an authentication is initiated (see Figure

2.17). To achieve this, a 2-to-1 multiplexer is placed at the input of each register in

LFSR. As an example, Figure 4.13 illustrates the configuration for 4-bit LFSR which

is also applicable for 16-bit, 32-bit, and 64-bit LFSRs used in our study. Based on

this configuration, when rst=1, the sel=0 and the o[3:0] is reset to zero at the positive

edge clock. Simultaneously, the challenge that asserted at the i[3:0] is loaded to the

input of registers through the multiplexers, and the o temp[3] ⊕ o temp[0] is assigned

to the feedback signal. Subsequently, when rst=0, the next sequence of LFSR state or

sub-challenge is generated at every clock cycle.

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 91

QD

rst

QD

rst

o

i0

i1

sel

QD

rst

o

i0

i1

sel
i[
3
]

c lkclk clk

rst rst rs t

QD

rst

o

i0

i1

sel
clk

rs t

o

i0

i1

sel

QD

o[3]

clk

rs t

feedback

sel

i[
2
]

i[
1
]

i[
0
]

o[2] o[1] o[0]

o
_t
em

p[
3
]

o_tem p[0]

o
_
te
m
p[
2
]

o
_
te
m
p[
1
]

Figure 4.13: Example: 4-bit Fibonacci LFSR with 2-to-1 multiplexer.

All the functional unit blocks in Figure 4.12 have been implemented using Verilog (see

Appendix B.1). To estimate the area and power, the Verilog design is compiled using

Synopsys Design Compiler. Table 4.4 listed the area and power for different k and m

values which have been estimated based on the configuration in Figure 4.12. As discussed

in Section 4.4.3, the 32-bit and 64-bit Arbiter-PUFs exhibit better resilience against an

ML-attack as compared to the 16-bit Arbiter-PUF. Hence, the 16-bit Arbiter-PUF is

excluded from Table 4.4.

Table 4.4: Area and power estimation

k-bit Arbiter-PUF
Area [GE] Power [mW]

m=64 m=128 m=64 m=128

k=32 807 1130 0.2018 0.2492

k=64 1193 1512 0.3368 0.3949

4.4.5 Predictability Comparison

Our findings in Figure 4.10 are summarised in Table 4.5 and compared to the previ-

ously reported data. With a permutation challenge technique, the resistance of the

Arbiter-PUF to an ML-attack increases, and is better than the XOR Arbiter-PUF, the

Lightweight-PUF and the VTC-PUF. On the other hand, with this technique, the sus-

ceptibility of the Arbiter-PUF to an ML-attack is approximately the same as the Current

Mirror-PUF and the Lightweight OB-PUF. As mentioned in Section 4.1, a Controlled

PUF which uses a one-way hash function makes the input-output relations of a PUF

92 Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs

unpredictable and with the attacker model, as given in Section 4.2.4, a Controlled PUF

disables the ML-attack [28]. For area and power comparisons, a Controlled PUF con-

figuration, [27], is considered which uses two hash functions at the pre-processing and

post-processing stages. Without considering the ECC, and using SHA-1 as a hash func-

tion, a Controlled PUF already used 19134 gate equivalents (GEs) in area and 2.512 mW

of power. Clearly, the challenge permutation technique has much less area and power -

at least 12 times and 6 times smaller (for k=64 and m=128), respectively, as compared

to the Controlled PUF. The area and power comparison for other PUFs in Table 4.5

were not reported. Nevertheless, since the implementation of a challenge permutation

technique introduces no additional logic gates, it is fair to say that the Arbiter-PUF

combined with a challenge permutation technique has a relatively low area and power

compared to the other Arbiter-based PUFs in Table 4.5. In another perspective, with-

out a challenge permutation technique, increasing further the size (i.e., k > 64) of an

Arbiter-PUF does not increase the unpredictability of its response. A study, [73] shows

that the 128-bit Arbiter-PUF can be predicted with 99.9% prediction accuracy at about

39000 CRPs.

Table 4.5: Comparison of prediction accuracy

Type CRPs Prediction Accuracy [%]

32-bit Arbiter-PUF + proposed permutation 3× 104 65.13

64-bit Arbiter-PUF + proposed permutation 3× 104 69.04

4-XOR 64-bit Arbiter-PUF [28] 12× 104 99

4-XOR 64-bit Lightweight-PUF [28] 12× 104 99

80-bit Current-Mirror PUF [35] 3× 104 ≈68

Lightweight OB-PUF [8] 2× 104 63.27

64-bit RPUF [91] 2× 102 69.1

64-bit VTC-PUF [34] 3× 104 ≈75

Controlled PUF [27] NA unpredictable [28]

4.5 Summary

This chapter proposed a challenge permutation technique to improve the resilience of

Strong PUFs against an ML-attack, particularly on Arbiter-PUFs. The ML-attack

resistance of a particular PUF is reflected by the complexity of the challenge to response

mapping. In order to understand the impact of challenge permutations on the CRP

mapping of the Arbiter-PUF, the output transition probability when a flip occurs in the

challenge bits is computed and used for analysing the vulnerability of the Arbiter-PUF

against an ML-attack. The output transition probability of the Arbiter-PUF shows that

Chapter 4 A Lightweight Technique for ML-Attack Resistant PUFs 93

it is indeed predictable as the probability increases with the challenge bit position (i.e.,

the bit that gets flipped) increases from 1 to k. Furthermore, a flip in the first challenge

bit position produces an output transition probability that is very close to zero, which

further increases the vulnerability of an Arbiter-PUF even to a simple guessing attack.

The proposed technique has been evaluated on 16-bit, 32-bit, and 64-bit Arbiter-PUFs.

Those PUFs have been implemented using a TSMC 65-nm technology. The evaluation

results show that a challenge permutation technique alters the output transition prob-

ability of the Arbiter-PUF and disorders its CRPs mapping. As a consequence, the

resilience of the Arbiter-PUF against an ML-attack is increased. Moreover, a certain

level of unpredictability can be obtained by controlling the behaviour of the output tran-

sition probability through a random challenge permutation. Hence, this approach can

be used to find a good and random challenge permutation which produces the highest

unpredictability, given a certain configuration of the Arbiter-PUF. A challenge permu-

tation technique requires no additional hardware. Instead, it can be implemented by

routing obfuscation between the challenge interface and the internal ports of the LFSR

unit.

Chapter 5

A Reliable PUF in a Dual

Function SRAM

Chapter 3 and 4 focus on the reliability and security issues of Strong PUFs used for

low-cost identification and authentication. In this chapter, the reliability issues of Weak

PUFs used for cryptographic key generation is explored. Though a wide range of Weak

PUF techniques exists, the most investigated solutions are based on the use of random

SUVs of SRAM-PUFs to generate cryptographic keys [23, 24, 98, 99]. Hence, an SRAM-

PUF which has been proposed in [23], is used as a case study in this chapter. A

dedicated SRAM circuitry to enable security introduces an area overhead and hence

makes the cost unacceptable and can hinder the widespread adoption of PUFs. For

cost efficiency, several papers [65, 98, 64, 100] suggested reusing the existing on-chip

SRAM as a PUF to reduce the area overhead, hence, boosting the potential of an

SRAM-PUF for lightweight secure key generation and making it particularly suitable for

resource-constrained security devices. However, a dual function SRAM used as memory

and PUF has reliability limitations. When the SRAM is used as memory to store an

application’s instructions and data, the prolonged storage of the same bit patterns can

cause asymmetric degradation or stress of bit cells because of NBTI. For SRAM-PUFs,

this means that the SUVs may become unreliable [24, 101]. In order to use an SRAM-

PUF for cryptographic key generation, it must be able to generate error-free keys by

using ECC as discussed in Section 2.7.2. However, the area of the ECC increases as the

errors in the SUVs increase which is a disadvantage for SRAM-PUFs used in resource-

constrained security devices. Preprocessing the PUF’s response is one technique to

reduce the area of the ECC [102]. Such technique has been exploited by Maiti et al.,

[48] in which a pair of ROs is selected from a group of ROs such that they have the

maximum difference in frequency, in order to increase the robustness of the RO-PUF

against ageing. Motivated by the reliability issues of SRAM in dual use as memory and

PUF, and the cost of preprocessing techniques, we have analysed the effect of asymmetric

stress on the SUVs in both the instruction and data caches. We used a 32-bit ARMv8

95

96 Chapter 5 A Reliable PUF in a Dual Function SRAM

architecture as a case study. We show that we can predict the signal probability pattern

in a 32-bit ARM instruction cache (i-cache) and hence determine the appropriate bits

to use for reliable SUVs. Therefore, we suggest using the i-cache as both memory and a

PUF to save silicon area, and we propose bit selection as a preprocessing technique to

increase the reliability of the PUF. The main contributions of this chapter are:

1. We show that the effect of NBTI on the SUVs of the bits of an SRAM-PUF is not

uniform, but is dependent on the distribution patterns of the data stored in the

memory. The analysis of a 32-bit ARM i-cache shows that the distribution pattern

is predictable, as in the NBTI effect on the SUVs of SRAM-PUF.

2. We propose a bit selection technique to select only bit cells that have close to

a 50% probability of storing a value of ‘1’. We show that this technique can

significantly reduce the NBTI effect on SRAM-PUFs and yet still preserve the

PUF performance.

This chapter is organised as follows: Section 5.1 describes the motivation to explore a

preprocessing technique to increase the reliability of SRAM-PUFs in a dual functional

mode. An overview of preprocessing approaches is discussed in Section 5.2. Section 5.3

describes the signal probability patterns found in a 32-bit ARM i-cache and data cache

(d-cache). Section 5.4 investigates the data dependence of NBTI on SUVs based on

the signal probability patterns in i-cache. The bit selection technique is discussed in

detail in Section 5.5, including the PUF quality metrics. Section 5.6 describes the area

overhead of the bit selection technique and ECC. Finally, this chapter is concluded in

Section 5.7.

5.1 Motivation

5.1.1 A Dual Function SRAM

As mentioned earlier in this chapter, dual use of SRAM as memory and a PUF has

been suggested to reduce the area overhead and achieve cost efficiency for resource-

constrained devices. Schaller et al., [64] proposed reusing the available on-chip SRAM

in an ARM-based system-on-a-chip (SoC) as a PUF to protect the platform’s firmware.

The proof of concept has been successfully implemented on Level 3 on-chip RAM in

the OMAP 4 SoC platform which consists of two ARM Cortex-M3 processors. The

implementation of SRAM-PUF requires a modification to the boot-loader to extract a

device-specific cryptographic key to decrypt the firmware when the device is powered-

up. Elsewhere, Kohnhäuser et al., [65] implemented PUF-based software protection

by reusing the available on-chip SRAM resources in an ARM-based low-end embedded

system, the Stellaris EK-LM4F120XL micro-controller. A similar idea to protect the

Chapter 5 A Reliable PUF in a Dual Function SRAM 97

firmware authenticity and integrity have been proposed, in which the Level 1 cache

(L1-cache) is reused as a PUF [98]. While all the above focused on cryptographic key

generation, Bacha et al., [100] reused the Level 2 cache (L2-cache) in an Intel Itanium II

processor as a PUF for the challenge-response authentication protocol. The CRPs which

are used for server-client authentication process are generated by exploiting the errors

that occur in the cache line when the nominal supply voltage of L2-cache is reduced to

a few mV. All of the above studies show that a dual function SRAM as a memory and

PUF is feasible and most of them have been successfully implemented on the available

embedded systems and SoC platforms. However, the impact of NBTI on SUVs in a

dual function SRAM has not been discussed.

5.1.2 Ageing Mitigation in SRAM-PUFs

As reviewed in Section 2.6.2, the reliability of SUVs due to NBTI has been mainly

focused on SRAM as a PUF [47, 39]. In this section, an ageing mitigation technique

for SRAM-PUF is described. Figure 5.1 shows the data dependence of NBTI on a

6-T SRAM cell, [101]. As a ‘1’ is stored in the SRAM cell (Q = 1 and QB = 0), the

transistor MP1 is subjected to NBTI stress resulting in a slow increase in the Vth. Under

the prolonged storage of ‘1’, the Vth of MP1 increases significantly, whereas the Vth of

MP2 remains the same (i.e., asymmetric degradation or stress). As a consequence, after

the power-up process, the cell is less likely to power-up to a ‘1’ than it was before the

NBTI effect. Hence, the SUV becomes unreliable. Nevertheless, the SUV becomes

reliable when its opposite value is stored in the cell. Following this principle, Bhargava

et al., [101] propose direct accelerated ageing (DAA) to increase the reliability of an

SRAM-PUF. An SRAM cell would be written with the opposite value of its SUV and

reinforced through post-manufacturing burn-in stress (i.e., high temperature and high

voltage conditions). However, such a long burn-in is prohibitively expensive and time-

consuming in the manufacturing flow. Furthermore, in the field of application, if the

SRAM is used as memory and PUF, it will be subject to regular silicon ageing and may

deteriorate over time.

One study, [103], analysed 16 possible (anti-)ageing configurations. Of these, reinforc-

ing the power-up state using the long-term ageing data (the inverse of the corrected

enrolment state using ECC) was found to be the best solution. However, to use the

inverse of the corrected enrolment state as anti-ageing strategy is not really practical

as the SRAM is not solely dedicated to the PUF function. The spatial correlation of

reliable bit cells under random environmental conditions (temperature and voltage) has

also been studied, [104], and it was proposed to only select those fully-biased bit cells,

eliminating the partially-skewed and neutrally-skewed cells. The proposed bit select al-

gorithm is expected to increase the robustness of an SRAM-PUF against environmental

variations and ageing. However, it is still susceptible to reliability issues due to NBTI

98 Chapter 5 A Reliable PUF in a Dual Function SRAM

V dd

MP1

MN1

MP2

MN2

BL BLB

QB = 0Q = 1

WL

MN3 MN4

NBTI effect
increases Vth

Figure 5.1: NBTI impact on a 6-T SRAM cell circuit.

when used in the field as memory and PUF. It is notable that all of the above studies

are dedicated to the use of SRAM for the PUF only and not for regular memory.

5.1.3 Area Estimation of ECC

As discussed in Section 5.1.2, the SUVs may become unreliable as a result of NBTI.

Therefore, an ECC is required to generate error-free cryptographic keys from the noisy

SUVs of an SRAM-PUF (see Section 2.7.2). Bose-Chaudhuri-Hocquenghem (BCH) is

an ECC scheme that has been widely used for correcting errors of PUFs [23, 46, 62, 102].

The BCH scheme is given as [n, k, t] where n raw bits (codeword) are required for a k

bit message and the scheme can correct up to t bits in error. The GE area of the BCH

scheme has been calculated, [62], for 5 ≤ m ≤ 7 and 1 ≤ t ≤ 7, where the codeword

n = 2m − 1. Using this data, the lin-log plot of the area (y-axis) versus the codeword n

(x-axis) can be derived and extrapolated to estimate the area for 8 ≤ m ≤ 11. Figure

5.2 shows the calculated area (solid lines), [62], and the estimated area (dashed lines)

by extrapolation.

For the BCH scheme, each codeword has a maximum capability to fix a certain number

of errors (see Appendix C.2 for BCH code). For example, using a codeword n = 127, a

BCH scheme can fix up to t = 31 error bits for a message k = 8. For t > 31, one has

to choose the next available codeword that has the capability to fix more errors. Figure

5.2 only shows the area for 1 ≤ t ≤ 7. To estimate the area for t > 7, the relationship

between the area and the number of errors has to be found. Based on the data in Figure

5.2, the area increases linearly as the number of errors increases, which is also consistent

with the reported results, [105]. Therefore, the area for 5 ≤ m ≤ 11 can be estimated

for t > 7 by linear extrapolation. Although an ECC is very useful to improve the PUF

Chapter 5 A Reliable PUF in a Dual Function SRAM 99

reliability, it introduces significant extra overhead that increases with the number of

potential errors.

32 64 128 256 512 1,024 2,048

0

0.5

1

1.5

2
·104

Codeword, n = 2m − 1

A
re

a
(G

E
)

t=1

t=2

t=3

t=4

t=5

t=6

t=7

Figure 5.2: Area (GE) of the BCH scheme.

.

In this section, we have shown that a dual function SRAM for memory and PUF is

feasible and implementable on embedded systems and SoCs, such as the Stellaris and the

OMAP 4 platforms. However, the impact of ageing on SUVs of SRAM has been mainly

studied considering only a PUF. The SUVs may suffer a significant reliability issue due

to data dependence of ageing in a dual function SRAM. Moreover, the area overhead of

ECC increases as the number of unreliable SUVs increases. The aforementioned issues

motivate us to study the data dependence on ageing in a dual function SRAM and to

propose a bit selection technique to increase the reliability of SUVs and significantly

reduce the area overhead of an ECC.

5.2 Pre-processing Approaches

Reusing the on-chip SRAM in a system as a PUF, as discussed in Section 5.1.1, could be

cost-efficient, especially for resource-constrained devices. However, dual use of SRAM

as a memory and a PUF is not straightforward because NBTI causes asymmetric degra-

dation of memory bit cells and reduces the SUV reliability over time. In our work, the

on-chip memory, particularly, the i-cache in an ARMv8 architecture has been used as a

case study. The NBTI analysis, based on the signal probability pattern of the i-cache,

suggests that some of the bits experience nearly symmetric stress. Further, bit selection

100 Chapter 5 A Reliable PUF in a Dual Function SRAM

is used as a preprocessing technique to increase the SUV reliability for PUF usage. The

bit selection technique is most suitable for a system that runs a specific application such

as an embedded system. Figure 5.3 shows an overview of this technique which is divided

into three parts. These parts will be discussed in Section 5.3, Section 5.4 and Section

5.5, respectively.

Analyse 1's and 0's

distribution pattern

Analyse ageing stress

pattern effect on SUVs

Set initial selection

window

Tolerate

more error?

No

Increase

selection

window, ± 0.05 Yes

Bits selection and total

error estimation

Estimate error for each

bit position

DONE

Part 1

Part 3

Identify application

Part 2

Figure 5.3: Overview of a bit selection technique.

5.3 Signal Probability Pattern in SRAM Caches

In this section, the distribution of a signal probability for a 32-bit ARM i-cache and

d-cache are explored 1. As discussed previously, [106, 107], the instruction set usage

indicates only a small subset of instructions is executed by most applications. For an i-

cache, it is expected that the overall bit probabilities will be distributed unevenly across

all 32 bits. Figure 5.4 shows one of the 32-bit ARM instruction set formats for multiply

and multiply-accumulate instructions. The condition field (bits 31:28) determines the

1Data in Figure 5.5 and 5.6 were collected by Shengyu Duan.

Chapter 5 A Reliable PUF in a Dual Function SRAM 101

circumstances under which an instruction is to be executed. In the absence of a suffix,

the condition field of most instructions is set to “Always” (suffix AL). Therefore, it is

expected that bits 31:29 have a high probability of storing ‘1’ and bit 28 has a low

probability of storing ‘1’.

Figure 5.4: Multiply and multiply-accumulate instruction format for 32-bit
ARM [108].

To investigate the signal probability pattern of an i-cache in ARMv8 architecture, a

simulator, gem5, has been used, [109]. Table 5.1 gives the cache configurations. 16

benchmark programs were chosen from the MiBench [110] and llvm [111] benchmark

suites, covering a number of different functions. In our study, the gcc compiler has been

used and each cache access was dynamically traced during the program execution, such

that the bit probabilities for each cache line were updated each time that it was replaced.

The overall distribution was produced by averaging the final bit probabilities over the

whole cache. The results are shown in Figure 5.5, for two extreme cases of cache policy

namely the direct mapped cache and the fully associative cache, which give the least

and the most balanced block usage, respectively. In each case, some bits preserve the

same values in certain locations which also indicates that the probability of storing ‘1’

for bits 31:28 is as expected. As can be seen, the patterns are generally independent of

the programs and of associativity, and therefore the patterns are predictable.

102 Chapter 5 A Reliable PUF in a Dual Function SRAM

Table 5.1: Cache configuration

Cache size 8kB

Block size 16-Byte

Number of block 512

Addressing scheme Word (4-byte) addressing

Computer architecture 32-bit ARM

051015202530
0

20

40

60

80

100
stdev, σ29

mean, µ29

Bit Position

O
ve

ra
ll

P
ro

b
ab

il
it

y
of

S
to

ri
n

g
1

(%
)

(a) Direct mapped cache

051015202530
0

20

40

60

80

100

stdev, σ23

mean, µ23

Bit Position

O
ve

ra
ll

P
ro

b
ab

il
it

y
of

S
to

ri
n

g
1

(%
)

(b) Fully associative cache (replacement policy:most recently used)

Figure 5.5: Mean and standard deviation values for the probability of storing a
‘1’ in i-cache over 16 benchmarks.

Chapter 5 A Reliable PUF in a Dual Function SRAM 103

A similar experiment using the gem5 simulator has been conducted for the d-cache by

running four benchmark programs. The overall probability for each bit is observed by

tracing each cache access. Figure 5.6 depicts the probability patterns in a direct mapped

d-cache for four benchmarks such as bubblesort, basicmath, queens and susan. Ideally,

one would expect that d-cache stores random values, such that each bit has an overall

50% probability of storing ‘1’. Therefore, this would make d-caches more suitable as

PUFs, compared to i-caches. However, as can be seen from Figure 5.6, the distribution

is highly dependent on applications. Although the distributions are more balanced than

in the i-cache, the probabilities of storing a ‘1’ are less than 50% for all these benchmarks,

which indicate asymmetric degradation in the d-cache as well. It is possible that other

applications may produce different distributions (with bit probabilities equal to or higher

than 50%), but neither the reliability of a d-cache nor its performance as a PUF can be

easily predicted.

It is also worth to mention that previous studies, [112, 113] proposed a bit flipping

technique to mitigate the NBTI impact on SRAM cells or caches. This technique could

help to make the signal probabilities of the stored value in the SRAM cells close to a

50%, hence, leads to a symmetric NBTI stress. Kumar et al., [112] proposed a periodic

flipping of SRAM cells to the entire memory block which interrupts the normal operation

(i.e., read or write operation) by thousands of clock cycles. To avoid the interruption

of cache normal operation, Gebregiorgis et al., [113] proposed a flipping of SRAM cells

during write operations or “flip-on-access” scheme. Nevertheless, the “flip-on-access”

scheme does not guarantee that the signal probabilities of SRAM cells close to a 50% as

the stored data are not regularly flipped. Thus, a “flip-on-access” scheme is less effective

to balance the NBTI stress and the reliability of a cache or PUF would still degrade.

051015202530
0

20

40

60

80

Bit Position

O
ve

ra
ll

P
ro

b
ab

il
it

y
of

S
to

ri
n

g
1

(%
)

bubblesort

basicmath
queens
susan

Figure 5.6: Mean values for probability of storing ‘1’ in d-cache running four
benchmarks.

104 Chapter 5 A Reliable PUF in a Dual Function SRAM

From the analysis of the signal probability for a 32-bit ARM i-cache, Figure 5.5, some

of the bits have close to a 50% probability of storing ‘1’. For example, bits 12, 13, 16,

20, 23, and 25. This indicates that those bits will have a symmetric stress, and thus are

more reliable over time. On the other hand, bits 31:29 have a high probability of storing

‘1’ while bit 28, as well as bits 11:9, have a high probability of storing ‘0’. As explained

earlier, prolonged storage of the same bit value over time causes asymmetric stress, thus

those bits are likely to have reliability issues.

5.4 NBTI Impact on SUVs

5.4.1 Simulation Setup

Without the effect of NBTI, the randomness of SUVs in SRAM cells is determined by

the process-dependent variations in the cross-coupled inverters. To simulate the process

variations, an SRAM i-cache has been modelled in a low-k TSMC 65-nm technology.

To get a good distribution, a Monte Carlo simulation was performed for 100 SRAM

instances. However, to run a Monte Carlo simulation of the complete circuit of an 8kB

SRAM, as shown in Table 5.1, is time-consuming and therefore, for a proof of concept,

only 32 bits x 64 rows were simulated and analysed. The simulation was performed with

the BSIM4 (V4.5) transistor model, using the 3σ variation in the technology design

kit. Unless otherwise stated, the ramp-up time of the supply voltage is fixed at 1ms

throughout the simulation. To determine the ageing due to NBTI, the duty cycle for the

32-bit SRAM cells was defined according to the signal probabilities in Figure 5.5(a). As

a proof of concept, only a direct-mapped i-cache configuration is considered for analysis

as both i-cache configurations in Figure 5.5 have a quite similar signal probabilities.

Then, the Vth degradation for every bit cell was simulated following the methodology as

described in Section 3.6.1, for 5 years with 100% activity factor.

5.4.2 Bit Error Analysis Under NBTI Effect

Based on the Monte Carlo simulation of 100 SRAM instances, the randomness of SUVs

in SRAM cells is shown in Figure 5.7. Prior to the NBTI effect as shown in Figure

5.7(a), SRAM cells have an even distribution of ‘1’ and ‘0’ SUVs for all bit cells and

therefore, they are random. In other words, the HW for each bit is about 0.5. However,

when they undergo NBTI ageing with the signal probabilities given in Figure 5.5(a), the

distribution of ‘1’s and ‘0’s become uneven. Bits 31:29 have a high probability of storing

‘1’s. As a result of the prolonged storage of the same bit value, they are likely to power-

up to ‘0’ after 5 years as illustrated in Figure 5.7(b). In the opposite scenario, bits 11:9

and bit 28 are likely to power-up to ‘1’. The bits that have close to a 50% probability of

Chapter 5 A Reliable PUF in a Dual Function SRAM 105

storing ‘1’, such as bits 12, 13, 16, 20, 23 and 25, still show an even distribution of ‘1’s

and ‘0’s. Our ageing results in Figure 5.7(b) agree with the discussion in Section 5.1.2.

051015202530
0

0.2

0.4

0.6

0.8

1

Bit Position

H
a
m

m
in

g
W

ei
gh

t

(a)

051015202530
0

0.2

0.4

0.6

0.8

1

Bit Position

H
am

m
in

g
W

ei
gh

t

(b)

Figure 5.7: Distribution of ‘1’ and ‘0’ (a) fresh (b) 5 years ageing based on the
mean probability of storing ‘1’.

Based on the distribution of SUVs at fabrication time and after 5 years, the bit error

for every bit cell is calculated using the Intra-HDNBTI, Eq. (2.5), as shown in Figure 5.8.

As expected, because of the symmetric stress experienced by bits 12, 13, 16, 20, 23, and

25, the bit error count in those positions is much less than for the other bits. One might

argue that NBTI can be used to increase the reliability of SRAM-PUFs by storing the

inverse value of SUVs as in [101, 103]. However, that only works if the SRAM is used as a

PUF only. Here, we use the SRAM as both an i-cache and a PUF. Because of the random

SUVs and difficulties to control the data being stored in the i-cache, choosing the bit

cells that experience a balanced stress can retain the intrinsic mismatch of the inverters

in the cell. Nevertheless, these bit cells are exposed to environmental variations such as

temperature and/or supply voltage variations as will be discussed in Section 5.5.1. At

this point, we have discussed the first and second part of the preprocessing procedures

106 Chapter 5 A Reliable PUF in a Dual Function SRAM

(Figure 5.3). The remaining procedure for the preprocessing technique will be discussed

next.

051015202530
0

0.1

0.2

0.3

0.4

Bit PositionA
ve

ra
ge

B
it

E
rr

or
s

(N
or

m
al

iz
ed

)

Figure 5.8: Average bit errors based on the mean probability of storing ‘1’.

5.5 Bit Selections

As discussed in Section 2.7.2, in order to extract a key from a PUF, we need a certain

number of bits. Using all of an SRAM gives us the maximum number of bits to choose

from, but as we have seen from Section 5.4.2, the SUV of many bits becomes unreliable

over time. Therefore, the purpose of bit selection is to find as many reliable bits as

possible within an SRAM.

There are two important observations from the previous analysis: (i) the SUV reliability

of a cell depends on the evenness of the stress in the cross-coupled inverters; (ii) 6 of

the bit cells in this example have the fewest bit errors as the system ages. These are

bits 16, 13, 25, 20, 12, and 23 (ranked in ascending order of their bit error count). The

idea of a bit selection technique is to only select bits for the PUF that have close to a

50% probability of storing ‘1’ values. Ultimately, the selection of these bits reduces the

overall bit error rates. In Section 5.4, the second part of the preprocessing procedure has

been discussed in which the individual bit error rates have been estimated. To perform

the next part of the preprocessing procedure, which is the bit selection, the relationship

between the HW and the mean probability of storing ‘1’ has to be found. By taking the

HW from Figure 5.7(b) and the mean probability of storing ‘1’ from Figure 5.5(a), the

relationship between these two parameters for all 32 bits can be seen, Figure 5.9. The

ideal case is when a bit cell has a 50% probability of storing ‘1’, i.e., HW=0.5. In Figure

5.9, as the mean probability of storing ‘1’ reduces, the HW increases and vice versa. In

order to evaluate the increase/decrease in the bit error rate for a selection of bits as the

HW reduces or increases, first, we chose the lower boundary (LB) and upper boundary

Chapter 5 A Reliable PUF in a Dual Function SRAM 107

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

12,20,25,13

23
24

16

30,29,3130,29,31

28

15,27,5

11,9,10,8,7,6

22,1,4,14,26,3,0

19,21,18,2,17

Mean Probability of Storing ‘1’

H
a
m

m
in

g
W

ei
g
h
t

bit position

Figure 5.9: The relationship between the HW and the mean probability of
storing ‘1’ for all 32 bits.

(UB) at 0.4 and 0.6 (i.e., initial selection window), respectively, as highlighted by the

dashed lines in Figure 5.9.

Note that the six bits that have the fewest bit error rates after ageing are within these

two boundaries. These selected bits are represented as S1 and their corresponding bit

error rate is shown in Table 5.2. The bit error rate in Table 5.2 is calculated by taking

the sums of the average individual bit errors in Figure 5.8 and dividing by the total

number of bit cells. Next, the margin of the selection window is widened by ±0.05. The

aim is to maximise the number of bits while keeping the error below the maximum error

tolerance value. As can be seen from Table 5.2, as the margin of bit selection increases,

the total bit error rate increases. The selection set S7 represents all 32 bits (i.e., without

a bit selection technique) and has the highest bit error rate of 11.13%.

To determine which selection set is the most suitable for NBTI mitigation while fulfilling

the maximum error tolerance value, it is important to take into consideration the spread

of the probability of storing a ‘1’. Therefore, ±3σ is used to give the worst spread of

the probability of storing ‘1’ and to select the best selection set that fulfils the criterion.

The ±3σ probability of storing ‘1’ is calculated based on the probability of storing ‘1’

from Figure 5.5(a). Further, the procedure given in Section 5.4 is re-applied to calculate

the average bit error for every bit position at ±3σ. Figure 5.10 depicts an average bit

error rates computed based on ±3σ probability of storing ‘1’. Then, the total bit error

rates for selection sets S1-S7 are calculated as listed in Table 5.3.

108 Chapter 5 A Reliable PUF in a Dual Function SRAM

Table 5.2: Bit error (%) of bit selection combination based on mean probability
of storing ‘1’

Selection
Set

LB UB Selected Bits
Intra-HDNBTI

(%)

S1 0.40 0.60 12,13,16,20,23,25 3.30

S2 0.35 0.65 S1 + 2,17,18,19,21 4.98

S3 0.30 0.70 S2 + 0,3,24,26 6.28

S4 0.25 0.75 S3 + 1,4,5,14,22,27 8.01

S5 0.20 0.80 S4 + 6,15,30 8.93

S6 0.15 0.85 S5 + 7,8,9,10,11,29,31 10.83

S7 0.10 0.90 S6 + 28 11.13

051015202530
0

0.1

0.2

0.3

0.4

Bit PositionA
ve

ra
ge

B
it

E
rr

or
s

(N
or

m
al

iz
ed

)

(a) −3σ

051015202530
0

0.1

0.2

0.3

0.4

Bit PositionA
ve

ra
ge

B
it

E
rr

or
s

(N
or

m
al

iz
ed

)

(b) +3σ

Figure 5.10: Average bit errors based on the ±3σ probability of storing ‘1’.

Chapter 5 A Reliable PUF in a Dual Function SRAM 109

From Table 5.3, the overall bit error rate is worst at −3σ. In effect, all the bits would be

shifted to the left in Figure 5.9, away from the 50% probability of storing ‘1’. At +3σ,

all the bits are shifted to the right, closer to the 50% probability of storing ‘1’, making

the overall bit error rate better than the mean condition. A similar effect can also be

seen in Figure 5.10. Notice from Table 5.3 that the bit error rates for all 32 bits (S7) are

within the range of 8.35% to 14.18% after 5 years. Our ageing results are quite close to

the experimental analysis reported elsewhere, [39, 103], where their analyses show that

an SRAM-PUF suffers up to 8% bit error due to NBTI after 4.5 years using the same

65-nm technology. Elsewhere, NBTI causes up to 14% bit error on an SRAM-PUF after

4.7 years using a 90-nm technology [47]. We do not neglect the fact that the differences

might arise from the data dependency of NBTI stress and the ageing model differences.

Nevertheless, the effect of NBTI on SRAM cells and the overall trend still hold true.

Table 5.3: Bit error (%) of bit selection combination based on mean and ±3σ
probability of storing ‘1’ after 5 years

Selection Set
Intra-HDNBTI (%)

Mean -3σ +3σ

S1 3.30 5.58 2.02

S2 4.98 8.39 2.23

S3 6.28 9.39 3.58

S4 8.01 11.43 4.88

S5 8.93 12.14 5.98

S6 10.83 13.77 8.12

S7 11.13 14.18 8.35

With a bit selection technique, the bit error rate varies depending on the selection

window. As mentioned earlier, the aim is to maximise the number of selected bits while

keeping the error well below the maximum error tolerance value. For a proof of concept

in our study, we set the maximum error tolerance due to NBTI at 6%. Therefore, we

have chosen selection set S1 since the bit error rate is < 6%, considering the probability

of storing ‘1’ for the mean and ±3σ conditions. As discussed in Section 5.1.3, a reduction

in the area of the ECC can be achieved if the error is minimised. Hence, it is expected

that S1 could reduce the area overhead of the ECC since the bit error rate is much

smaller than without a bit selection technique (i.e., using all 32 bits).

The above analysis shows that by selecting only those bits that experience balanced stress

when the SRAM is being used as a memory, we can reduce the overall bit error when the

SRAM is used as a PUF. However, there are other sources of variations that could cause

errors in the PUF’s response, in particular, temperature and voltage fluctuations, [48].

The size of the ECC has to be determined by the maximum error considering ageing,

110 Chapter 5 A Reliable PUF in a Dual Function SRAM

temperature and voltage variations. Therefore, the effect of environmental variations on

set S1 and on all 32 bits, S7, will be discussed next.

5.5.1 Temperature and Voltage Variations

The setup described in Section 5.4.1 is used to simulate the temperature and a supply

voltage variations. A measured response at a nominal supply voltage of 1.2V and a

temperature of 25◦C has been used as a reference. Equation (2.2) is used to calculate

the bit error due to the temperature and supply voltage fluctuations. Table 5.4 shows

the bit error percentage for the temperature ranging from −40◦C to 85◦C and a supply

voltage range of 1.2V± 10%. The maximum bit error caused by the temperature and

supply voltage fluctuations is 6.14%. The bit error value in our findings is comparable

to the experimental value reported elsewhere, [39, 114], where the maximum error rate

was about 8% with the same temperature range and at a nominal supply voltage of 1.2V

for a 65-nm technology node.

Table 5.4: Bit error (%) comparison at different temperatures and supply volt-
ages

Conditions
Selection Set

S7 S1

1.2V,−40◦C 5.91 5.90

1.2V, 85◦C 1.31 1.32

1.32V,−40◦C 6.14 6.12

1.32V, 85◦C 1.31 1.32

1.08V,−40◦C 5.65 5.67

1.08V, 85◦C 1.31 1.32

From our analysis, we observe that the variations (1.2V± 10% at nominal temperature of

25oC) in the final voltage to which the supply voltage is ramped have almost no impact

on the reliability of the SUVs; this is consistent with that seen elsewhere, [47, 104].

Instead, the reliability of SUVs is influenced by the ramp-up time of the supply voltage

[47, 101]. Figure 5.11 shows the bit error rates at different ramp-up times from 100µs

to 100ms with a nominal supply voltage of 1.2V at 25◦C. A measured response with a

ramp-up time of 50µs has been used as a reference, to which all other measured responses

have been compared. The bit error rates for both S7 and S1 configurations are about

the same for all ramp rates. As suggested elsewhere, [101], this analysis is useful when

the PUF is characterised at a particular ramp rate but evaluated at a different ramp

rate in the field.

Chapter 5 A Reliable PUF in a Dual Function SRAM 111

0.1 0.25 0.5 1 2.5 5 10 100
0

2

4

6

Ramp time (ms)

B
it

E
rr

or
(%

)

S7

S1

Figure 5.11: Bit error rate at different ramp-up time.

5.5.2 Uniqueness and Uniformity

As discussed earlier in Section 5.1.2, under prolonged storage of the same bit pattern,

NBTI causes unreliable SUVs in which the value is less likely to be preserved but flips

to the opposite value. Hence, the impact of unreliable SUVs on the uniqueness and

uniformity of an SRAM-PUF due to NBTI is discussed in this section. Based on Table

5.3, the highest bit error rate due to NBTI occurs at the condition of −3σ. Therefore,

the uniqueness and uniformity are compared between fresh SUVs and aged SUVs for the

−3σ probability of storing ‘1’. Uniqueness is measured by the Inter-HD using Eq. (2.1).

Figure 5.12 shows the uniqueness for the S1 set fresh and after 5 years ageing. It can

be seen from the value of the mean (µ) and standard deviation (σ) for both conditions,

that the Inter-HD values are distributed around 0.5. This shows that the flipping in the

SUVs due to NBTI is random. Our findings are consistent with [48] that ageing has a

negligible effect on the uniqueness of the PUF.

112 Chapter 5 A Reliable PUF in a Dual Function SRAM

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

µ=0.5004

σ=0.0252

HD (normalized)

F
re

q
.

of
O

cc
u

ra
n

ce

(a)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

µ=0.4935

σ=0.0255

HD (normalized)

F
re

q
.

of
O

cc
u

ra
n

ce

(b)

Figure 5.12: Uniqueness for S1 set (a) fresh (b) 5 years ageing at the -3σ
probability.

Figure 5.13 shows the mean and standard deviation for uniformity of the S1 set fresh

and after 5 years ageing which have been calculated using Eq. (2.4). As indicated, the

uniformity of S1 at fabrication time is well distributed around 0.5. However, after 5

years, the uniformity is shifted slightly to the right indicating that the number of 1’s in

the SUVs distribution has increased. As can be noted from Figure 5.5, all the bits in

the S1 set have a mean probability close to but lower than a 50% probability of storing

‘1’. By considering −3σ probability, means the probability of storing ‘1’ for S1 is further

reduced. Therefore, after NBTI, all the bits in an S1 set are likely to power-up to a ‘1’.

Hence, this explains an increase in the number of 1’s in the SUVs distribution and its

effect on the uniformity. On the other hand, from our analysis, the uniformity for aged

SUVs at the +3σ probability condition is shifted to the left with the mean of 0.4803 and

standard deviation of 0.0266, indicating less 1’s in the SUVs distribution. Overall, the

uniformity of the S1 set before and after ageing is still close to an ideal value of 50%.

A similar trend in the uniqueness and uniformity has been observed for the S7 set fresh

and after 5 years ageing.

Chapter 5 A Reliable PUF in a Dual Function SRAM 113

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

µ=0.4988
σ=0.0261

HW (normalized)

F
re

q
.

of
O

cc
u

ra
n

ce

(a)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

µ=0.5520
σ=0.0264

HW (normalized)

F
re

q
.

o
f

O
cc

u
ra

n
ce

(b)

Figure 5.13: Uniformity for S1 set (a) fresh (b) 5 years ageing at the -3σ prob-
ability.

All the above analysis leads to the conclusion that only selecting bits from the i-cache

that experience symmetric stress improves the overall bit error rates. However, the

selected bits are still susceptible to temperature and supply voltage variations. Our

analysis shows that generally, the bit errors due to NBTI are significant compared to

the bit errors caused by the temperature and supply voltage variations. In addition, the

uniqueness and uniformity of a bit selection technique before and after ageing remain

close to an ideal value of 50%.

5.6 Hardware Cost and Implementation

We have proposed a bit error reduction technique to overcome unreliable responses due

to NBTI, but there will still be a finite error rate. The reliability of SUVs is further

influenced by the environmental variations such as temperature and supply voltage as

investigated in Section 5.5.1. As mentioned in Section 5.1.3, ECC is one of the ways

to achieve error-free cryptographic keys. Bit errors from both NBTI and environmental

variations may impact the complexity of the error correction circuit. Therefore, in this

section, the area overhead to implement bit select configurations and the overhead of

ECC to overcome the bit errors are discussed and compared.

5.6.1 Area Overhead of Bit Select Configurations

The bit selection can be implemented using a multiplexer in which the select signals are

pre-configured depending on the target error rate and bit select configuration. A 32-to-1

multiplexer is required to select 1 bit out of 32 bits from the output bus of the i-cache.

114 Chapter 5 A Reliable PUF in a Dual Function SRAM

Thus, the bit select block can be constructed using a 6×32-to-1 multiplexer for selecting

the S1 bits: 16, 13, 25, 20, 12, and 23. In the procedure for cryptographic key generation

shown in Figure 5.14, the bit select block is inserted before the SUVs ŷ are input into

the evaluation block (or can be inserted within the evaluation block), highlighted in the

dashed trapezoid. 280 GEs are required for a 6×32-to-1 multiplexer, estimated using

Synopsys Design Compiler.

Eval ()
Read start-up values

i-cache

ŵ =
Address

ŷ = Data
BCH Encoder

key

n

y

y

SRAM-PUF + Fuzzy Extractor

Bit Select

Privacy
Amplification

k
w

h

(a)

Eval ()
Read start-up values

i-cache

w

ŵ =
Address

ŷ = Data

key

n’

y’

h

SRAM-PUF + Fuzzy Extractor

Bit Select

BCH Decoder

Privacy
Amplification

k

(b)

Figure 5.14: Implementation of a bit selection technique.

5.6.2 Area Overhead of ECC

As discussed in Section 5.1.3, a BCH scheme is used as an ECC to generate error-free

cryptographic keys. For a [n, k, t]-BCH, the probability of failure for a BCH scheme to

correct t errors is given as, [23]:

Chapter 5 A Reliable PUF in a Dual Function SRAM 115

Target Failure Rate = 1−
t∑
i=0

(
n

i

)
pib(1− pb)n−i (5.1)

where pb denotes the bit error probability. From the bit error analysis of the S1 set with

respect to NBTI, temperature and supply voltage variations (Sections 5.5 and 5.5.1), the

maximum bit error of 6.12% is caused by the temperature and supply voltage variations

and hence, will be used to determine the number of raw bits, n, required for the BCH

scheme. According to [23, 64], to ensure a sufficient entropy, an input to the privacy

amplification must be larger than the generated key. Therefore, for this calculation, we

refer to [23, 64], where the BCH scheme has to generate at least 171 error-free bits before

being used as the input to the privacy amplification to produce a 128-bit cryptographic

key (Figure 5.14). We assume a target failure rate of ≤ 10−6. An optimum size of

BCH scheme has been calculated using Eq. (5.1) with a MATLAB script (Appendix

A.3). 1524 raw bits are needed for the S1 selection set using a [127,15,27]-BCH. By

selecting 6 out of 32 bits for every cache line, the total number of reliable bits that can

be extracted from an 8kB SRAM i-cache is 12288. Thus, there are enough bits for an

ECC to generate a 128-bit key. The suggested minimum size of an i-cache to be used

with the S1 selection is 1kB.

Table 5.5: Area comparison

Technique BCH (GE) Bit Selection (GE) Total (GE)

Without Bit selection 226224 NA 226224

Bit selection 37050 280 37330

Without using a bit selection technique would require more area for the BCH scheme

because of an increase in the bit error rates. Considering the bit error rates due to

ageing and environmental variations (see Table 5.3 and 5.4), using all 32 bits would

yield a maximum error of 14.18%. This requires 4599 raw bits using the BCH scheme

of [511,19,119] for a target failure rate of ≤ 10−6 and a minimum i-cache size of 1kB.

The area for both BCH schemes above is estimated based on the extrapolated data of

Figure 5.2 and it is listed in Table 5.5, together with the area overhead of a bit selection

technique. As can be seen in Table 5.5, by using a bit selection technique, the total area

overhead is about 6× smaller compared to that without a bit selection technique. Notice

that the area overhead of the multiplexer (3rd column in Table 5.5) to perform a bit

selection technique is almost negligible. This comparison proves that the bit selection

technique helps in reducing the area overhead of the ECC.

116 Chapter 5 A Reliable PUF in a Dual Function SRAM

5.7 Summary

An SRAM-PUF is a potential solution for a hardware-based secure key generation.

Recent literature suggests reusing the on-chip SRAM in a system as a PUF to achieve

better cost efficiency and enables the widespread adoption of SRAM-PUFs. However,

dual use of SRAM as a memory and a PUF turns out to be less straightforward than

expected due to ageing-induced NBTI. When SRAM is used as a memory, NBTI causes

asymmetric Vth degradation, which impacts on the reliability of the SUVs. From our

analysis, NBTI stress is unevenly distributed in a 32-bit ARM i-cache, but there are

similar predictable patterns for different applications that can be exploited to generate

reliable SUVs.

In this chapter, we propose a bit selection technique to mitigate the NBTI effect. We

select bits that have close to a 50% probability of storing ‘1’ values. Thus, both pMOS

transistors in the SRAM cell age at the same rate and so keep the intrinsic mismatch.

Our experiments show that selecting 6 bits from the i-cache of an ARM architecture

reduced the bit error rate from 14.18% to 5.58% over 5 years. By using a bit selection

technique, the bit error rate reduces and the area overhead of the ECC is 6× smaller

compared to that without a bit selection technique, with a minimum size requirement

of a 1kB i-cache. The area overhead to implement the bit selection is negligible with

respect to the reduction in the area overhead of the ECC.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

PUFs have been proposed for lightweight IC identification and authentication through

a challenge-and-response protocol, and for cryptographic key generation. Nevertheless,

CMOS device ageing, particularly NBTI, presents a challenge for PUFs which has an

irreversible effect leading to a permanent reliability issue (i.e., bit errors) of a PUF’s

response. In a challenge-and-response protocol, an optimum value of the HD threshold,

ε, is required to balance the trade-off between reliability requirements and vulnerability

to an ML-attack. To achieve an optimum value of ε, one can either reduce the bit error

rates or reduce the vulnerability to an ML-attack. Nevertheless, it is always better to

achieve a reduction in both criteria. In cryptographic key generation application, an

ECC is required to generate error-free keys. However, the area of the ECC increases as

the bit error rates of PUF increases which can be seen as a disadvantage for lightweight

applications. Hence, it is desirable to achieve low bit errors for cost-efficient PUF-

based key generation. Following the above issues, three research objectives have been

established as described in Section 1.4, which focused on a reliable and secure PUFs for

lightweight applications.

The first and second objectives are fulfilled by the characterisation of PUF and the

analysis of the ageing impact on PUF-based differential architectures, as discussed in

Chapter 3. A TCO-PUF which exploits the non-linear current-voltage behaviour in the

sub-threshold region is implemented using a TSMC 65-nm technology and its quality

metrics are characterised. The simulation results show that the mean value of uniqueness

and uniformity are close to 50% but the TCO-PUF suffers from a lack of randomness in

its response, resulting in a high standard deviation in the distribution of both metrics.

On average, TCO-PUF achieves 92.38% reliability under the temperature variations of

−40oC to 85oC and a supply voltage variation of 1.2V ± 10%. As for the vulnerability to

an ML-attack, the TCO-PUF can be predicted with a very high accuracy of about 96%

117

118 Chapter 6 Conclusions and Future Work

using an ANN algorithm. Furthermore, we have investigated the impact of NBTI on

PUF-based differential architectures such as TCO-PUF and Arbiter-PUF. The results

show that the reliability of the TCO-PUF and Arbiter-PUF goes down with age and they

experience bit errors of about 4.5% and 2.41%, respectively after 10 years. Ageing has a

huge impact on both RO-PUF and SRAM-PUF. The RO-PUF degrades about 12.76%

in 10 years and the SRAM-PUF degrades about 7% in 4.5 years. In comparison with

the aforementioned PUFs, TCO-PUF and Arbiter-PUF are inherently ageing-resilient

as they adopted a differential architecture. Hence, a differential design technique is

preferred for the PUF implementation to increase the robustness to CMOS device ageing.

The second objective is also fulfilled in Chapter 5, in which a bit selection technique is

proposed to mitigate the ageing impact on SRAM-PUFs. As discussed in Chapter 5, a

better cost efficiency in a cryptographic key generation application can be achieved by

reusing SRAM as both a memory and PUF. However, dual use of SRAM as memory

and PUF is not straightforward because ageing-induced NBTI results in asymmetric

degradation of memory bit cells, which impacts on the reliability of the SUVs over time.

We have investigated the NBTI stress in a 32-bit ARM i-cache and found that there are

similar predictable patterns for different applications that can be exploited to generate

reliable SUVs. Hence, we proposed a bit selection technique to mitigate the NBTI effect

by selecting bits that have close to a 50% probability of storing ‘1’ values, such that both

pMOS transistors in the SRAM cell age at the same rate and the intrinsic mismatch

(e.g., Vth variations) are preserved. By using a bit selection technique, the bit error rate

reduces from 14.18% to 5.58% over 5 years. As a result, the area overhead of the ECC

reduces by 6 times compared to that without a bit selection technique, with a minimum

size requirement of a 1kB i-cache.

The third objective is achieved by the challenge permutation technique to increase the

Strong PUF resistant to an ML-attack, as proposed in Chapter 4. The technique has

been implemented on an Arbiter-PUF using a TSMC 65-nm technology. The simula-

tion results show that a challenge permutation technique alters the output transition

probability of the Arbiter-PUF. As a result, the CRP mapping complexity increases

and reduces the predictability of the Arbiter-PUF responses from ≈99% to ≈65%. For

a 128-bit identifier, a challenge permutation technique uses only 1130 and 1512 GEs

when implemented with the 32-bit and 64-bit Arbiter-PUFs, respectively. The power

consumption of the respective Arbiter-PUFs is 0.2492mW and 0.3949mW. Hence, this

technique is suitable for resource-constrained security devices.

Chapter 6 Conclusions and Future Work 119

6.2 Future Work

Based on the findings presented in this thesis, several directions for future research are

identified and described in this section:

1. We have analysed the impact of ageing on the TCO-PUF and the Arbiter-PUF in

Chapter 3. The analysis is based on the simulation using HSPICE MOSRA. The

simulation results show that a finite bit error still occurs, possibly as a result of

second order effect between Vth variations (i.e., due to the fabrication process) and

ageing phenomena. To support the simulation findings and further understand

the second order effect, the TCO-PUF and Arbiter-PUF have to be fabricated on

a silicon and an accelerated ageing test has to be performed. Next, both results

from simulation and experiment will be compared.

2. In Chapter 4, we have proposed a challenge permutation technique to increase

the resilience of an Arbiter-PUF against an ML-attack. Although this technique

successfully increases the unpredictability of an Arbiter-PUF, the challenge per-

mutation has to be implemented at the IC design stage. Hence, the integrity of

the IC manufacturer is of utmost importance. With no guarantee of the integrity,

a technique to detect a software cloned PUF (i.e., through an ML-attack) must

be developed. The exploration of this technique poses a great challenge to differ-

entiate a feature(s) between a software cloned and a genuine PUF. An effort along

this direction will complete the investigation of an ML-attack on Strong PUFs.

3. Chapter 3 and 4 focused on the reliability and security of Strong PUFs used for

lightweight IC identification and authentication. The findings in both chapters can

be used to achieve an optimum value of the HD threshold, ε, for the challenge-

and-response protocol to identify and authenticate an IC. However, as discussed

in Section 2.7.1, the scalability problem in the verifier database to record a sig-

nificantly large number of the CRPs for IC identification and authentication is

still an open challenge. It is an advantage for a PUF technology if the concept of

public verifiability can be deployed such that no CRP databases are required to

verify PUF responses.

Appendix A

MATLAB Code

A.1 Uniqueness

% Author: Mohd Syafiq Mispan

% Program: Compute the uniqueness (Inter -HD) for N PUF instances

% clear workspace and command window

clc;

clear;

% read the n-bit response stored in .csv file

M = dlmread(’.\ Response.csv’);

% N PUF instances , each PUF instance has n-bit response

[N,n]=size(M);

% count the combination nCk

C = combnk (1:N,2);

len = length(C);

% convert to string in order to perform HD operation

strData= strtrim(cellstr(num2str(M)));

% calculate HD

count =1;

HD{:}= zeros;

HD_norm {:}= zeros;

HD_percent {:}= zeros;

for i = 1:N-1

k=i;

for k = i:N-1

HD{count }=sum(strData{i}~= strData{k+1});

HD_norm{count }=HD{count}/n;

HD_percent{count }=((HD{count})/n)*100;

count=count +1;

end

end

% calculate inter -HD

mat_HD_percent=cell2mat(HD_percent);

121

122 Appendix A MATLAB Code

inter_HD =(2/(N*(N-1)))*sum(mat_HD_percent);

% calculate mean & std deviation of HD

mat_HD=cell2mat(HD);

mean_HD=mean2(mat_HD);

std_HD=std2(mat_HD);

% plot histogram

histogram(mat_HD);

% add title and axis labels

title(’Inter -HD (Uniqueness)’)

xlabel(’Hamming Distance (HD)’)

ylabel(’Frequency of Occurances ’)

% number of occurances

unqdis=unique(mat_HD);

countOCC=histc(mat_HD ,unqdis);

data = (vertcat(unqdis ,countOCC))’; %plot histogram in excel

% calculate mean & std deviation of NORMALIZE HD

mat_HD_norm=cell2mat(HD_norm);

mean_HD_norm=mean2(mat_HD_norm);

std_HD_norm=std2(mat_HD_norm);

% number of occurances of NORMALIZE HD

unqdis_norm=unique(mat_HD_norm);

countOCC_norm=histc(mat_HD_norm ,unqdis_norm);

data_norm = (vertcat(unqdis_norm ,countOCC_norm)) ’; %plot histogram in excel

A.2 Uniformity

% Author: Mohd Syafiq Mispan

% Program: Compute the uniformity (the distribution of 1’s and 0’s) for N PUF

↪→ instances

% clear command window & workspace

clc;

clear;

% read the n-bit response stored in .csv file

M = dlmread(’.\ Response.csv’);

% N PUF instances , each PUF instance has n-bit response

[N,n]=size(M);

% calculate the uniformity - Hamming Weight (HW)

HW{:}= zeros;

HW_norm {:}= zeros;

for i=1: N

HW{i}=sum(M(i,:));

HW_norm{i}=HW{i}/n;

end

% calculate mean & std deviation of HW

mat_HW=cell2mat(HW);

mean_HW=mean2(mat_HW);

std_HW=std2(mat_HW);

% calculate number of occurances

unqweight=unique(mat_HW);

Appendix A MATLAB Code 123

countOCC=histc(mat_HW ,unqweight);

data = (vertcat(unqweight ,countOCC)) ’; %plot histogram in excel

% plot histogram

histogram(mat_HW);

% add title and axis labels

title(’Uniformity ’)

xlabel(’Hamming Weight (HW)’)

ylabel(’Frequency of Occurances ’)

% calculate mean & std deviation of NORMALIZE HW

mat_HW_norm=cell2mat(HW_norm);

mean_HW_norm=mean2(mat_HW_norm);

std_HW_norm=std2(mat_HW_norm);

% calculate number of occurances

unqweight_norm=unique(mat_HW_norm);

countOCC_norm=histc(mat_HW_norm ,unqweight_norm);

data_norm = (vertcat(unqweight_norm ,countOCC_norm))’; %plot histogram in excel

A.3 Optimum Size of BCH scheme

% Author: Mohd Syafiq Mispan

% Program:Compute an optimum BCH scheme given the required key , BER and

↪→ probability error

% clear the command window and the workspace

clc;

clear;

% -----------------Start of User Inputs -----------------

% input to the privacy amplification or a key.

key = 171;

% maximum error considering aging , temp. and voltage variations

max_error = 0.0615;

% target failure rate , the probability that the system fails to generate error -

↪→ free key.

BER = 1E-6;

% set the file which contains [n,k,t]

M=dlmread(’../ Simulation of SRAM PUF/BCH_n =127. csv’);

% -----------------End of User Inputs -------------------

% extract n,k and t

[row_M ,col_M]=size(M);

n=M(:,1);

k=M(:,2);

t=M(:,3);

error=t/n;

error=error (:,1);

power {:}= zeros;

power_raw {:}= zeros;

for i=1: row_M

if(error(i,:)> max_error)

124 Appendix A MATLAB Code

power_raw{i}=key/k(i,:);

power{i}=ceil(power_raw{i}); %round up the value

else

power_raw{i}=0;

power{i}=0;

end

end

% calculate the failure rate , max failure rate or BER = 1E-6

failure_rate {:}= zeros;

for j=1: row_M

failure_rate{j}=1- binocdf(t(j,:),n(j,:),max_error)^power{j};

end

% calculate the # of raw bits

raw_bit {:}= zeros;

for x=1: row_M

if(failure_rate{x}<BER)

raw_bit{x}=n(x,:)*power{x};

else

raw_bit{x}=0;

end

end

% combine all the data

power_raw =(cell2mat(power_raw))’;

power=(cell2mat(power)) ’;

failure_rate =(cell2mat(failure_rate))’;

raw_bit =(cell2mat(raw_bit))’;

data=horzcat(power_raw ,power ,failure_rate ,raw_bit);

A.4 Linear Feedback Shift Register (LFSR) Fibonacci

% Author: Mohd Syafiq Mispan

% Program: 32-bit LFSR Fibonacci

% clear workspace and command window

clc;

clear;

% -------------User Inputs --------------------%

% set the generator polynomial (primitive)

% reference : https :// uk.mathworks .com/help/comm/ref/commsrc.pn.html

g = [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1];

% set the initial mask

% 1 = read value for current state/register

init_mask =[1 0];

% set the length of output , given maximal length LFSR (2^n) -1

NoOfOutBits = 10000;

% set the size of the seed

% the seed file contains > 10000 seeds

sz_seed =1;

Appendix A MATLAB Code 125

% read and open the file that contains seed for LFSR

filename=’seed.dat’;

% ------------End of User Inputs --------------%

fid1 = fopen (filename);

seedData = textscan(fid1 ,’%[^\n\r]’);

seedData = seedData {:};

% size of generator polynomial

sz_poly=size(g);

% pre -allocate array

seedMat {:}= zeros;

k{:}= zeros;

temp_k ={};

for i=1: sz_seed

seedMat{i} = seedData{i}-’0’;

end

% random number generation

for i=1: sz_seed

init = seedMat{i};

curr = init;

mask = init_mask;

for n=1:(sz_poly (2) -1)

h = commsrc.pn(’GenPoly ’,g,’InitialStates ’, init ,’CurrentStates ’, curr ,’Mask’

↪→ ,mask ,’NumBitsOut ’,NoOfOutBits);

k{n}=h.generate () ’;

% shift the masking bit - reading the value for each register

mask(n)=0;

mask(n+1) =1;

end

k_trans=k’;

temp_k =[temp_k ,k_trans];

end

% cell array to matrix array

challenge =(cell2mat(temp_k)) ’;

% numeric to string

[row_R ,col_R]=size(challenge);

str {:}= zeros;

for i=1: row_R

array_str=num2str(challenge(i,:));

array_str(isspace(array_str)) = ’’;

str{i}= array_str;

end

% test the uniqueness of LFSR ’s output

unq = unique(str);

% write the LFSR ’s output into .dat file

fid2=fopen(’LFSR_out.dat’,’w’);

for i=1: size(str ,2)

126 Appendix A MATLAB Code

fprintf(fid2 ,’%s\r\n’,str{i});

end

% write LFSR ’s output into .csv file

outfile=’LFSR_out.csv’;

dlmwrite(outfile ,challenge);

fclose(fid1);

fclose(fid2);

A.5 Output Transition Probability

A.5.1 Non-permutated and Permutated CRPs

% Author: Mohd Syafiq Mispan

% Program: Computation of output transition probability for non - permutated

% and permutated CRPs

% clear workspace and command window

clc;

clear;

% n-bit Arbiter -PUF

n=32;

% read file <n-bit challenge ><1-bit response >

% challenges start with Cn ,Cn -1 . . . C2 ,C1

% ref. challenges

infile1=’..\ CRPs.csv’;

% HD=1 for every challenge bit index compared to ref. challenges

% 1st 1000 CRPs correspond to HD=1 for Cn

% 2nd 1000 CRPs correspond to HD=1 for Cn -1

% and so on so forth

infile2=’..\ CRPs_HD1.csv’;

% save the permutated CRPs into a file

outfile=’CRPs_perm.csv’;

% original mapping

map=sort(randperm(n));

% pre -defined permutation mapping

% map = [5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12 21 22 23 24 17 18 19 20 29 30 31

↪→ 32 25 26 27 28];

% OMIT IF ORIGINAL MAPPING

% CRPs based on pre -defined permutation

G_CRPs=CRPs_Permutation_Func(infile1 ,map);

HD_CRPs=CRPs_Permutation_Func(infile2 ,map);

% compute output transition probability

prob=HDT_et_APUF_func(G_CRPs ,HD_CRPs ,map);

% plot the output transition probability

figure;

Appendix A MATLAB Code 127

index=sort(map);

plot(index ,prob ,’b--o’);

% write permutated CRPs to a file

dlmwrite(outfile ,G_CRPs);

% Author: Mohd Syafiq Mispan

% Program: CRPs generation for challenge permutation experiment

function [CRPs_perm] = CRPs_Permutation_Func(infile ,map)

% read file <n-bit challenge ><1-bit response >

% total n+1 column

disp(’Read non -permutated CRPs ...’);

M = dlmread(infile);

% define the challange and response

[row_M ,col_M]=size(M);

C=M(:,1:col_M -1);

R=M(:,col_M);

% permutate the challenge

disp(’Permutate the challenge ..’);

C_perm = zeros(row_M ,col_M -1);

fprintf(’----Expected Work done ...%%%6.2f’, 0);

for i = 1:row_M

C_perm(i,:) = permutation(C(i,:),map);

fprintf(’\b\b\b\b\b\b%6.2f’, i*100/ row_M);

end

fprintf(’\n’);

% permutated CRPs

CRPs_perm=horzcat(C_perm ,R);

end

% Author: Mohd Syafiq Mispan

% Program: Permutate the input vector (vec_org)

function [vec_per] = permutation(vec_org ,map)

vec_per = vec_org(map);

end

% Author: Mohd Syafiq Mispan

% Program: Computation of output transition probability w.r.t a flipping

% in every challenge bit index

function [prob_flip]= HDT_et_APUF_func(G_CRPs ,HD_CRPs ,map)

% initialize the counter

count =0;

% read golden CRPs

% only the first 1000 CRPs are selected

CG = G_CRPs (1:1000 ,1: end);

% read the CRPs in which HD=1 for every challenge bit index as compared to golden

↪→ CRPs

128 Appendix A MATLAB Code

CHD1=HD_CRPs;

% generate index C1 to Cn

% index 1 refer to Cn , index n refer to C1

index_init = zeros(1,size(CG ,2) -1);

for m=1:(size(CG ,2) -1) %excluded the response

index_init (:,m)=m;

end

% get the permutation mapping

mapping = permutation(index_init ,map);

% compute the output transition probability for each challenge bit index

prob=zeros((size(CG ,2) -1) ,1);

for k=1: size(CG ,2) -1 % n-bit Arbiter -PUF

j=mapping(k);

CHD1_index = CHD1 ((1+1000*(j-1)):1000*j,1: end);

C_COMB=vertcat(CG ,CHD1_index);

% sort ascending for each column/index given k

index=index_init;

index(k) = [];

C_COMB_sorted=sortrows(C_COMB ,index);

% ---------------------For debug ONLY -----------------

%sub=minus(C_COMB_sorted (1 ,1:end -1) ,C_COMB_sorted (2 ,1:end -1));

%sub(sub == -1) =1;

% index_HD_debug (k ,:) = find(sub);

%HD=sum(sub ,2);

% ---------------------End of debug ---------------------

% check the response

for i=1:(size(C_COMB_sorted ,1) /2)

if(C_COMB_sorted ((i+(i-1)),end)~= C_COMB_sorted (2*i,end))

count=count +1;

end

end

% output signal transition probability

prob(k,:)=count/(size(C_COMB_sorted ,1) /2);

% reset the counter after each index k

count =0;

end

% flipud is used because the challenges in .csv start with Cn

prob_flip=flipud(prob);

A.5.2 Iterative Permutation

% Author: Mohd Syafiq Mispan

% Program:Finding a good permutation

% clear workspace and command window

clc;

clear;

Appendix A MATLAB Code 129

% n-bit Arbiter -PUF

n=32;

% read file <n-bit challenge ><1-bit response >

% challenges start with Cn ,Cn -1 . . . C2 ,C1

% ref. challenges

infile1=’..\ CRPs.csv’;

% HD=1 for every challenge bit index compared to ref. challenges

% 1st 1000 CRPs correspond to HD=1 for Cn

% 2nd 1000 CRPs correspond to HD=1 for Cn -1

% and so on so forth

infile2=’..\ CRPs_HD1.csv’;

% save the permutated CRPs into a file

outfile=’CRPs_perm.csv’;

% save the random permutation mapping into a file

outmap=’perm_map ’;

% initial condition

target =100; %dummy value

G{:}= zeros;

while target ~=1

% bB random permutation

index=sort(randperm(n));

b=4; %set the # of bits to be grouped

if (b>1)

% group the challenge bit index

group = n/b;

for i=1: group

G{i} = index (: ,(1+b*(i-1)):b*i);

end

map_group=randperm(group);

map=cell2mat(G(map_group));

else

% 1B random permutation

map=randperm(n);

end

% CRPs based on random permutation

G_CRPs=CRPs_Permutation_Func(infile1 ,map);

HD_CRPs=CRPs_Permutation_Func(infile2 ,map);

% compute output transition probability

prob=HDT_et_APUF_func(G_CRPs ,HD_CRPs ,map);

% reset the counter

count =0;

for i=1:n-2 % exclude 1st and last index

prev_prob=prob(i,:);

curr_prob=prob(i+1,:);

next_prob=prob(i+2,:);

if((prev_prob <= curr_prob) && (curr_prob <= next_prob))

delta_CP=curr_prob -prev_prob;

delta_NC=next_prob -curr_prob;

if(delta_CP <=0.08 && delta_NC <=0.08)

130 Appendix A MATLAB Code

count=count +1;

end

elseif ((prev_prob >= curr_prob) && (curr_prob >= next_prob))

delta_PC=prev_prob -curr_prob;

delta_CN=curr_prob -next_prob;

if(delta_PC <=0.08 && delta_CN <=0.08)

count=count +1;

end

end

end

target=count;

end

% save the random permutation mapping

save(outmap ,’map’);

% plot the output transition probability

figure;

index=sort(map);

plot(index ,prob ,’b--o’);

% write permutated CRPs to a file

dlmwrite(outfile ,G_CRPs);

A.6 ML-attack

%Author: Mohd Syafiq Mispan

%Program: ML -attack using FeedForward Neural Network

%Clear the command window and workspace

clc;

clear;

% ------------------------start -of -user -input -----------------%

%Filename that contains challenge -response pairs (CRPs)

%Data in the file must be in the format <challenge ><response >

filename=’CRPs.csv’;

%Training algorithm : resilient backpropagation

training ={’trainrp ’};

%Size of the training and test set

test_size =2000;

training_size =10000;

%The training set incrementally increases with a pre -defined step_size

step_size = 1000;

% # of bit per challenge

bit_C =16;

% # of bit per response

bit_R =1;

% -------------------------end -of -user -input -----------------%

Appendix A MATLAB Code 131

%Read the data set

M = dlmread(filename);

[row_M ,col_M]=size(M);

%Check the pre -defined training_size , test_size and step_size

if((training_size+test_size)>row_M)

error(’The total of pre -defined training and test sets must be =< %d.’,row_M)

↪→ ;

elseif(mod(training_size ,step_size)~=0)

val=(floor(training_size/step_size))*step_size;

error(’For step_size =%d, please use training_size =%d.’,step_size ,val);

end

%Define the challenge from data set

M_challenge=M(:,1: bit_C);

% Transfrom the challenge input into feature vector , according to:

%D. Lim , MSc. Thesis , Massachusetts Institute of Technology , 2004

vector_mat =1-2*(M_challenge);

parity_array {:}= zeros;

for i=1: row_M

for k=1:(bit_C)

parity_array{i,k}=prod(vector_mat(i,k:bit_C));

end

end

M_challenge=cell2mat(parity_array);

M_challenge_T=M_challenge ’;

%Define the response from data set

M_response=M(:,(bit_C +1));

M_response_T=M_response ’;

%Test set

test_challenge=M_challenge_T (:,(row_M -test_size +1):row_M);

test_response=M_response_T (:,(row_M -test_size +1):row_M);

%Number of iteration

iter=(training_size)/step_size;

% Initialize array

c{:}= zeros;

cm{:}= zeros;

for i=1: size(training ,2)

for j=1: iter

%Training set

train_challenge=M_challenge_T (:,1: step_size*j);

train_response=M_response_T (:,1: step_size*j);

%For reproducibility - fix the seed

setdemorandstream (491218382);

%Feed forward neural networks

net = feedforwardnet ([32], training{i});

%Training parameters

net.trainParam.epochs = 1000000; % Default value is 1000

132 Appendix A MATLAB Code

net.trainParam.max_fail = 15; % Default value is 6

%Default values

net.trainParam.goal = 0.0;

net.trainParam.min_grad = 1e-5;

% Initializes the weights and biases of the network

%Can also skip this step and go directly to train the network

%train command will automatically configure the network

net = configure(net ,train_challenge ,train_response);

%Divide the training set into training and validation

%to avoid overfitting

net.divideParam.trainRatio = 85/100;

net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 0/100;

%Building the feed forward network - use parallel computing

[net ,tr] = train(net ,train_challenge ,train_response ,’useParallel ’,’yes’,’

↪→ showResources ’,’yes’);

%Testing the network

predicted_response = net(test_challenge ,’useParallel ’,’yes’,’

↪→ showResources ’,’yes’);

testIndices = vec2ind(predicted_response);

%Measure the performance of the network

[c{j},cm{j}] = confusion(test_response ,predicted_response);

train_size (:,j)=size(tr.trainInd ,2);

val_size(:,j)=size(tr.valInd ,2);

cc(:,j) = 100*(1 -c{j});

end

end

%Plot the prediction accuracy vs # of training data

plot((train_size+val_size),cc,’c*’);

ylim ([0 100]);

title(’ML-attack on 16-bit Arbiter -PUF’);

xlabel(’# CRPs ’);

ylabel(’Prediction Accuracy [%]’);

Appendix B

Verilog Code

B.1 Hardware Implementation of Figure 4.13

// **

// Verilog file: top_level_apuf .v

// Program: Top level hierarchy consists of controller , 32-bit LFSR ,

// 32-bit Arbiter -PUF , and 128- bit SIPO

// ***

‘timescale 1ns/1ps

module top_level_apuf #(

parameter WIDTH_C =32,

parameter WIDTH_R =128,

parameter APUF_SIZE =32

)

(input clk ,

input rst ,

input [WIDTH_C -1:0] challenge ,

output [WIDTH_R -1:0] response ,

output reg done

);

wire [WIDTH_C -1:0] sub_challenge;

wire pulse;

wire clk_sipo;

wire out;

reg en_puf;

reg en_sipo;

reg [7:0] counter;

// instantiate 32-bit LFSR

lfsr_32bit uut_lfsr_32bit(

.rst (rst),

.clk (clk),

.i (challenge),

.o (sub_challenge)

);

// instantiate 64-bit LFSR

133

134 Appendix B Verilog Code

// lfsr_64bit uut_lfsr_64bit (

//.rst (rst),

//.clk (clk),

//.i (challenge),

//.o (sub_challenge)

//);

// instanstiate n-bit Arbiter -PUF

arbiter_puf #(APUF_SIZE) uut_apuf(

.c (sub_challenge),

.pulse0 (pulse),

.pulse1 (pulse),

.out (out)

);

// instantiate SIPO

sipo_async #(WIDTH_R) uut_sipo(

.clk (clk_sipo),

.rst (rst),

.ShiftIn (out),

.o_shift (response)

);

// --------------------Start of Controller ----------------

assign pulse = en_puf & clk;

assign clk_sipo = en_sipo & ~clk;

always@(posedge clk)

begin

if(rst)

begin

counter <= 0;

en_puf <= 0;

en_sipo <= 0;

done <= 0;

end

else if(!done)

begin

counter <= counter + 1’b1;

en_puf <= 1;

en_sipo <= 1;

if(counter == WIDTH_R) // max 128 clock cycles

begin

counter <= counter;

en_puf <= 0;

en_sipo <= 0;

done <=1;

end

end

end

// -------------------End of Controller --------------------

endmodule

// **

// Verilog file: arbiter_puf .v

// Program: Generate N-bit Arbiter -PUF

// ***

‘timescale 1ns/1ps

Appendix B Verilog Code 135

module arbiter_puf #(

parameter N=32

)

(input [N -1:0] c,

input pulse0 ,

input pulse1 ,

output out

);

wire [N-1:0] i0;

wire [N-1:0] i1;

wire [N-1:0] o0;

wire [N-1:0] o1;

// Instantiate switch_component

switch_component uut1[N -1:0](

.c(c),

.i0(i0),

.i1(i1),

.o0(o0),

.o1(o1));

//A rising pulse apply at the 1st switch_component

// pulse0 and pulse1 are coming from the same source at top level

assign {i0[0], i1[0]} = {pulse0 , pulse1 };

// Assign internal signals

assign {i0[N-1:1], i1[N -1:1]} = {o0[N-2:0] , o1[N -2:0]};

// Instantiate SR nand latch

SR_nand_latch uut2 (

.S(o0[N-1]),

.R(o1[N-1]),

.Q(out));

endmodule

// **

// Verilog file: switch_component .v

// Program: Delay component of Arbiter -PUF consists of 2x 2-to -1 muxes

// ***

‘timescale 1ns/1ns

module switch_component

(input c,

input i0 ,

input i1 ,

output o0,

output o1

);

assign {o0,o1} = c?{i1 ,i0}:{i0,i1};

endmodule

// **

// Verilog file: SR_nand_latch .v

// Program: Set -reset latch (nand type)

136 Appendix B Verilog Code

// ***

‘timescale 1ns/1ps

module SR_nand_latch

(input S,

input R,

output Q,

output Qbar

);

nand (Q, S, Qbar);

nand (Qbar , R, Q);

endmodule

// **

// Verilog file: lfsr_32bit .v

// Program: Generate 32-bit linear feedback shift register (LFSR)

// ***

‘timescale 1ns/1ps

module lfsr_32bit

(input clk ,

input rst ,

input [31:0] i,

output reg [31:0] o

);

wire feedback;

wire [31:0] o_temp;

reg sel;

// multiplexer

assign o_temp = sel? o:i;

// continous or concurrent assignment followed by a net

// always active and assignments occur whenever the right -hand side operands

↪→ changes

// tap configuration follows https :// uk.mathworks .com/help/comm/ref/commsrc.pn.

↪→ html

assign feedback = (o_temp [31]^ o_temp [30]^ o_temp [10]^ o_temp [0]);

always @(posedge clk)

begin

if(rst) begin

o <= 0;

sel <= 0; end

else begin

sel <= 1;

o <= {feedback ,o_temp [31:1]}; end

end

endmodule

// **

// Verilog file: lfsr_64bit .v

// Program: Generate 64-bit linear feedback shift register (LFSR)

// ***

‘timescale 1ns/1ps

Appendix B Verilog Code 137

module lfsr_64bit

(input clk ,

input rst ,

input [63:0] i,

output reg [63:0] o

);

wire feedback;

wire [63:0] o_temp;

reg sel;

// multiplexer

assign o_temp = sel? o:i;

// continous or concurrent assignment followed by a net

// always active and assignments occur whenever the right -hand side operands

↪→ changes

// tap configuration follows https :// uk.mathworks .com/help/comm/ref/commsrc.pn.

↪→ html

assign feedback = (o_temp [63]^ o_temp [61]^ o_temp [60]);

always @(posedge clk)

begin

if(rst) begin

o <= 0;

sel <= 0; end

else begin

sel <= 1;

o <= {feedback ,o_temp [63:1]}; end

end

endmodule

// **

// Verilog file: sipo_async .v

// Program: Asynchronous shift left register;

// serial in and parallel out

// ***

‘timescale 1ns/1ns

module sipo_async #(

// Parameterized value

parameter N = 32

)

(input clk ,

input rst ,

input ShiftIn ,

output [N -1:0] o_shift

);

reg [N-1:0] shift_reg;

always @(posedge clk or posedge rst)

begin

if (rst)

shift_reg <= {N{1’b0}};

else

shift_reg <= {shift_reg[N-2:0], ShiftIn };

end

138 Appendix B Verilog Code

// concurrent assignment .

assign o_shift = shift_reg;

endmodule

Appendix C

Miscellaneous

C.1 Reliability of 2-XOR Arbiter-PUF

Table C.1: Simplification of input-output transition probability

A B tXOR

0 → 0 0 → 0 0 → 0

0 → 0 0 → 1 0 → 1

0 → 0 1 → 0 1 → 0

0 → 0 1 → 1 1 → 1

0 → 1 0 → 0 0 → 1

0 → 1 0 → 1 0 → 0

0 → 1 1 → 0 1 → 1

0 → 1 1 → 1 1 → 0

1 → 0 0 → 0 1 → 0

1 → 0 0 → 1 1 → 1

1 → 0 1 → 0 0 → 0

1 → 0 1 → 1 0 → 1

1 → 1 0 → 0 1 → 1

1 → 1 0 → 1 1 → 0

1 → 1 1 → 0 0 → 1

1 → 1 1 → 1 0 → 0

=⇒

A B tXOR

0 → 1 0 → 1 0 → 0

0 → 1 1 → 0 1 → 1

1 → 0 0 → 1 1 → 1

1 → 0 1 → 0 0 → 0

0 → 1 0 → 0 0 → 1

1 → 0 0 → 0 1 → 0

0 → 1 1 → 1 1 → 0

1 → 0 1 → 1 0 → 1

0 → 0 0 → 1 0 → 1

0 → 0 1 → 0 1 → 0

1 → 1 0 → 1 1 → 0

1 → 1 1 → 0 0 → 1

0 → 0 0 → 0 0 → 0

0 → 0 1 → 1 1 → 1

1 → 1 0 → 0 1 → 1

1 → 1 1 → 1 0 → 0

=⇒

A B tXOR

U U R

U R U

R U U

R R R

“U” represents unreliable transitions of 0 → 1 or 1 → 0 and “R” represents reliable

transitions of 0 → 0 or 1 → 1. Given the average reliability of an Arbiter-PUF, the

reliability for 2-XOR Arbiter-PUF can be computed as:

139

140 Appendix C Miscellaneous

P (tXOR = reliable) = 1− P (tXOR = unreliable) (C.1)

= 1− (P (A ∪B)− P (A ∩B)) (C.2)

= 1− (P (A) + P (B)− P (A)P (B)− P (A)P (B)) (C.3)

= 1− (P (A) + P (B)− 2P (A)P (B)) (C.4)

C.2 BCH code

Table C.2: Number of correctable errors in the BCH Code for n=127

Index n k t

1 127 120 1

2 127 113 2

3 127 106 3

4 127 99 4

5 127 92 5

6 127 85 6

7 127 78 7

8 127 71 9

9 127 64 10

10 127 57 11

11 127 50 13

12 127 43 14

13 127 36 15

14 127 29 21

15 127 22 23

16 127 15 27

17 127 8 31

Appendix C Miscellaneous 141

Table C.3: Number of correctable errors in the BCH Code for n=255

Index n k t

1 255 247 1

2 255 239 2

3 255 231 3

4 255 223 4

5 255 215 5

6 255 207 6

7 255 199 7

8 255 191 8

9 255 187 9

10 255 179 10

11 255 171 11

12 255 163 12

13 255 155 13

14 255 147 14

15 255 139 15

16 255 131 18

17 255 123 19

18 255 115 21

19 255 107 22

20 255 99 23

21 255 91 25

22 255 87 26

23 255 79 27

24 255 71 29

25 255 63 30

26 255 55 31

27 255 47 42

28 255 45 43

29 255 37 45

30 255 29 47

31 255 21 55

32 255 13 59

33 255 9 63

142 Appendix C Miscellaneous

Table C.4: Number of correctable errors in the BCH Code for n=511

Index n k t Index n k t

1 511 502 1 30 511 241 36

2 511 493 2 31 511 238 37

3 511 484 3 32 511 229 38

4 511 475 4 33 511 220 39

5 511 466 5 34 511 211 41

6 511 457 6 35 511 202 42

7 511 448 7 36 511 193 43

8 511 439 8 37 511 184 45

9 511 430 9 38 511 175 46

10 511 421 10 39 511 166 47

11 511 412 11 40 511 157 51

12 511 403 12 41 511 148 53

13 511 394 13 42 511 139 54

14 511 385 14 43 511 130 55

15 511 376 15 44 511 121 58

16 511 367 16 45 511 112 59

17 511 358 18 46 511 103 61

18 511 349 19 47 511 94 62

19 511 340 20 48 511 85 63

20 511 331 21 49 511 76 85

21 511 322 22 50 511 67 87

22 511 313 23 51 511 58 91

23 511 304 25 52 511 49 93

24 511 295 26 53 511 40 95

25 511 286 27 54 511 31 109

26 511 277 28 55 511 28 111

27 511 268 29 56 511 19 119

28 511 259 30 57 511 10 121

29 511 250 31

References

[1] B. Halak, Y. Hu, and M. S. Mispan, “Area efficient configurable physical unclon-

able functions for FPGAs identification,” in IEEE International Symposium on

Circuits and Systems, 2015, pp. 946–949.

[2] M. S. Mispan, B. Halak, Z. Chen, and M. Zwolinski, “TCO-PUF: A subthreshold

physical unclonable function,” in IEEE PRIME, 2015, pp. 105–108.

[3] M. S. Mispan, B. Halak, and M. Zwolinski, “NBTI aging evaluation of PUF-based

differential architectures,” in IEEE International Symposium on On-Line Testing

and Robust System Design, 2016, pp. 103–108.

[4] B. Halak, M. Zwolinski, and M. S. Mispan, “Overview of PUF-based hardware

security solutions for the Internet of Things,” in IEEE Midwest Symposium on

Circuits and Systems, 2016, pp. 1–4.

[5] M. S. Mispan, B. Halak, and M. Zwolinski, “Lightweight obfuscation techniques for

modeling attacks resistant PUFs,” in IEEE International Verification and Security

Workshop, 2017, pp. 19–24.

[6] M. S. Mispan, H. Su, M. Zwolinski, and B. Halak, “Cost-efficient designs for mod-

eling attacks resistant PUFs,” in Design, Automation & Test in Europe Conference

& Exhibition, 2018, pp. 467–472.

[7] M. S. Mispan, S. Duan, M. Zwolinski, and B. Halak, “A reliable PUF in a dual

function SRAM,” in International Symposium on Power and Timing Modeling,

Optimization and Simulation, 2018, pp. 1–6.

[8] Y. Gao, G. Li, H. Ma, S. F. Al-Sarawi, O. Kavehei, D. Abbott, and D. C. Ranas-

inghe, “Obfuscated challenge-response: A secure lightweight authentication mech-

anism for PUF-based pervasive devices,” in IEEE International Conference on

Pervasive Computing and Communication Workshops, 2016, pp. 1–6.

[9] V. V. D. Leest, R. Maes, G.-J. S. Pim, and P. Tuyls, “Hardware intrinsic security

to protect value in the mobile market,” in Information Security Solutions Europe,

2014, pp. 188–198.

143

144 REFERENCES

[10] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on lightweight

entity authentication with strong PUFs,” ACM Computing Surveys, vol. 48, no. 2,

pp. 26:1–26:42, 2015.

[11] Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei, and D. Abbott, “Emerging

physical unclonable functions with nanotechnology,” IEEE Access, vol. 4, no. PP,

pp. 61–80, 2016.

[12] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A

technique to build a secret key in integrated circuits for identification and authen-

tication applications,” in Symposium on VLSI Circuits Digest of Technical Papers,

2004, pp. 176–179.

[13] Intrinsic ID., “Products,” 2016. [Online]. Available: http://www.intrinsicid.com/

products/

[14] NXP Semiconductors N.V., “PUF - Physical Unclonable Functions: Protecting

next-generation smart card ics with sram-based pufs,” 2013. [Online]. Available:

http://www.nxp.com/documents/other/75017366.pdf

[15] K. B. Sutaria, S. Member, J. B. Velamala, C. H. Kim, S. Member, T. Sato, and

Y. Cao, “Aging statistics based on trapping / detrapping : Compact modeling

and silicon validation,” IEEE Transactions on Device and Materials Reliability,

vol. 14, no. 2, pp. 607–615, 2014.

[16] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random

functions,” in ACM Conference on Computer and Communications Security, 2002,

pp. 148–160.

[17] A. Maiti, “A systematic approach to design an efficient physical unclonable func-

tion,” Ph.D. dissertation, Virginia Polytechnic Institute and Stage University,

2012.

[18] K. Verma, B. Kaushik, and R. Singh, “Effects of process variation in VLSI inter-

connects - a technical review,” Microelectronics International, vol. 26, no. 3, pp.

49–55, 2009.

[19] T. Siddiqua, S. Gurumurthi, and M. R. Stan, “Modeling and analyzing NBTI in

the presence of process variation,” in International Symposium on Quality Elec-

tronic Design, 2011, pp. 28–35.

[20] Y. Ye, F. Liu, M. Chen, S. Nassif, and Y. Cao, “Statistical modeling and simulation

of threshold variation under random dopant fluctuations and line-edge roughness,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19, no. 6,

pp. 987–996, 2011.

REFERENCES 145

[21] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,”

Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[22] G. E. Suh and S. Devadas, “Physical Unclonable Functions for device authentica-

tion and secret key generation,” in ACM/IEEE Design Automation Conference,

2007, pp. 9–14.

[23] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs

and their use for IP protection,” in International Conference on Cryptographic

Hardware and Embedded Systems, 2007, pp. 63–80.

[24] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM state as an iden-

tifying fingerprint and source of true random numbers,” IEEE Transactions on

Computers, vol. 58, no. 9, pp. 1198–1210, 2009.

[25] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “Extended ab-

stract : The Butterfly PUF protecting IP on every FPGA,” in IEEE International

Workshop on Hardware-Oriented Security and Trust, 2008, pp. 67–70.

[26] P. Simons, E. Van Der Sluis, and V. Van Der Leest, “Buskeeper PUFs, a promising

alternative to D Flip-Flop PUFs,” in IEEE International Symposium on Hardware-

Oriented Security and Trust, 2012, pp. 7–12.

[27] B. Gassend, M. van Dijk, D. Clarke, E. Torlak, and S. Devadas, “Controlled

physical random functions and applications,” ACM Transactions on Information

and System Security, vol. 10, no. 4, pp. 15:1 –15:22, 2008.

[28] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror,

J. Schmidhuber, W. Burleson, and S. Devadas, “PUF modeling attacks on simu-

lated and silicon data,” IEEE Transactions on Information Forensic and Security,

vol. 8, pp. 1876–1891, 2013.

[29] R. Pappu, “Physical one-way functions,” Ph.D. dissertation, Massachusetts Insti-

tute of Technology, 2001.

[30] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. V. Dijk, and S. Devadas, “Extract-

ing secret keys from integrated circuits,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–1205, 2005.

[31] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure PUFs,” in

IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 670–

673.

[32] V. van der Leest, G.-J. Schrijen, H. Handschuh, and P. Tuyls, “Hardware intrinsic

security from d flip-flops,” in ACM Workshop on Scalable Trusted Computing,

2010, pp. 53–62.

146 REFERENCES

[33] Y. Su, J. Holleman, S. Member, B. P. Otis, and A. Abstract, “A digital 1.6 pJ/bit

chip identification circuit using process variations,” IEEE Journal of Solid-State

Circuits, vol. 43, no. 1, pp. 69–77, 2008.

[34] A. Vijayakumar and S. Kundu, “A novel modeling attack resistant PUF design

based on non-linear voltage transfer characteristics,” in Design, Automation &

Test in Europe Conference & Exhibition, 2015, pp. 653–658.

[35] R. Kumar and W. Burleson, “On design of a highly secure PUF based on non-

linear current mirrors,” in IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), 2014, pp. 38–43.

[36] D. Lim, “Extracting secret keys from integrated circuits,” MSc. Thesis, Mas-

sachusetts Institute of Technology, 2004.

[37] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on the

state of the art and future research directions,” in Towards Hardware-Intrinsic

Security: Foundations and Practice, A.-R. Sadeghi and D. Naccache, Eds. Berlin,

Heidelberg: Springer, 2010, pp. 3–37.

[38] L. Lin, S. Srivathsa, D. K. Krishnappa, P. Shabadi, and W. Burleson, “Design and

validation of Arbiter-based PUFs for sub-45nm low-power security applications,”

IEEE Transactions on Information Forensic and Security, vol. 7, no. 4, pp. 1394–

1403, 2012.

[39] R. Maes, V. Rozic, I. Verbauwhede, P. Koeberl, E. V. D. Sluis, and V. Van

Der Leest, “Experimental evaluation of physically unclonable functions in 65 nm

CMOS,” in Proceedings of the European Solid-State Circuits Conference, 2012, pp.

486–489.

[40] Y. Cao, L. Zhang, S. S. Zalivaka, C.-h. Chang, and S. Chen, “CMOS image sensor

based physical unclonable function for coherent sensor-level authentication,” IEEE

Transactions on Circuits and Systems, vol. 62, no. 11, pp. 2629–2640, 2015.

[41] T. Saha and V. Sehwag, “TV-PUF: A fast lightweight analog physical unclonable

function,” in IEEE International Symposium on Nanoelectronic and Information

Systems, 2016, pp. 182–186.

[42] S. T. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. F. Wong, “CNPUF:

A carbon nanotube-based physically unclonable function for secure low-energy

hardware design,” in Asia and South Pacific Design Automation Conference, 2014,

pp. 73–78.

[43] L. Zhang, Z. H. Kong, C.-H. Chang, A. Cabrini, and G. Torelli, “Exploiting process

variations and programming sensitivity of phase change memory for reconfigurable

physical unclonable functions,” IEEE Transactions on Information Forensics and

Security, vol. 9, no. 6, pp. 921–932, 2014.

REFERENCES 147

[44] Y. Gao, D. C. Ranasinghe, S. F. Al-Sarawi, O. Kavehei, and D. Abbott, “mrPUF:

A novel memristive device based physical unclonable function,” in International

Conference Applied Cryptography Network Security, 2015, pp. 595–615.

[45] A. Maiti, V. Gunreddy, and P. Schaumont, “A systematic method to evaluate and

compare the performance of physical unclonable functions,” in Embedded Systems

Design with FPGAs, P. Athanas, D. Pnevmatikatos, and N. Sklavos, Eds. New

York: Springer New York, 2013, pp. 245–267.

[46] M. T. Rahman, F. Rahman, D. Forte, and M. Tehranipoor, “An aging-resistant

RO-PUF for reliable key generation,” IEEE Transactions on Emerging Topics in

Computing, vol. 4, no. 3, pp. 335–348, 2016.

[47] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken, H. De Groot, V. Van Der

Leest, G. J. Schrijen, M. Van Hulst, and P. Tuyls, “Evaluation of 90nm 6T-SRAM

as physical unclonable function for secure key generation in wireless sensor nodes,”

in IEEE International Symposium on Circuits and Systems, 2011, pp. 567–570.

[48] A. Maiti and P. Schaumont, “The impact of aging on a physical unclonable func-

tion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,

no. 9, pp. 1854–1864, 2014.

[49] S. Mukhopadhyay, N. Goel, and S. Mahapatra, “A comparative study of NBTI and

PBTI using different experimental techniques,” IEEE Transactions on Electron

Devices, vol. 63, no. 10, pp. 4038–4045, 2016.

[50] D. S. Ang, Z. Q. Teo, T. J. J. Ho, and C. M. Ng, “Reassessing the mechanisms of

negative-bias temperature instability by repetitive stress/relaxation experiments,”

IEEE Transactions on Device and Materials Reliability, vol. 11, no. 1, pp. 19–34,

2011.

[51] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. New York: Oxford

University Press, 2002.

[52] A. Garg and T. T. Kim, “Design of SRAM PUF with improved uniformity and

reliability utilizing device aging effect,” in IEEE International Symposium on Cir-

cuits and Systems, 2014, pp. 1941–1944.

[53] T. Xu and M. Potkonjak, “Stable and secure delay-based physical unclonable

functions using device aging,” in IEEE International Symposium on Circuits and

Systems, 2015, pp. 33–36.

[54] J. Kong and F. Koushanfar, “Processor-based strong physical unclonable functions

with aging-based response tuning,” IEEE Transactions on Emerging Topics in

Computing, vol. 2, pp. 16–29, 2014.

148 REFERENCES

[55] G. T. Becker, “The gap between promise and reality: On the insecurity of XOR

Arbiter PUFs,” in International Workshop on Cryptographic Hardware and Em-

bedded Systems, 2015, pp. 535–555.

[56] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine learning attacks on 65nm

Arbiter PUFs: Accurate modeling poses strict bounds on usability,” in IEEE

International Workshop on Information Forensics and Security, 2012, pp. 37–42.

[57] M. Rostami, M. Majzoobi, F. Koushanfar, D. Wallach, and S. Devadas, “Robust

and reverse-engineering resilient PUF authentication and key-exchange by sub-

string matching,” IEEE Transactions on Emerging Topics in Computing, vol. 2,

pp. 37–49, 2014.

[58] U. Rührmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmidhuber,

“Modeling attacks on physical unclonable functions,” in ACM Conference on Com-

puter and Communications Security, 2010, pp. 237–249.

[59] H. Handschuh, “Hardware-anchored security based on SRAM PUFs, Part 1,”

IEEE Security and Privacy, vol. 10, no. 3, pp. 80–83, 2012.

[60] S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A.-r. Sadeghi, “Remanence

decay side-channel: The PUF case,” IEEE Transactions on Information Forensics

and Security, vol. 11, no. 6, pp. 1106–1116, 2016.

[61] M. Bhargava and K. Mai, “An efficient reliable PUF-based cryptographic key

generator in 65nm CMOS,” in Design, Automation & Test in Europe Conference

& Exhibition, 2014, pp. 1–6.

[62] Y. Lao, B. Yuan, C. H. Kim, and K. K. Parhi, “Reliable PUF-based local authen-

tication with self-correction,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 36, no. 2, pp. 201–213, 2017.

[63] Y. Alkabani, “Remote activation of ICs for piracy prevention and digital right

management,” in IEEE/ACM International Conference on Computer-Aided De-

sign, 2007, pp. 674–677.

[64] A. Schaller, T. Arul, V. Van Der Leest, and S. Katzenbeisser, “Lightweight anti-

counterfeiting solution for low-end commodity hardware using inherent PUFs,” in

Trust and Trustworthy Computing. Springer International Publishing, 2014, pp.

83–100.

[65] F. Kohnhäuser, A. Schaller, and S. Katzenbeisser, “PUF-based software protection

for low-end embedded devices,” in Trust and Trustworthy Computing, M. Conti,

M. Schunter, and I. Askoxylakis, Eds. Springer International Publishing, 2015,

pp. 3–21.

REFERENCES 149

[66] J. B. Wendt and M. Potkonjak, “Hardware obfuscation using PUF-based logic,”

in IEEE/ACM International Conference on Computer-Aided Design, Digest of

Technical Papers, 2015, pp. 270–277.

[67] NXP Semiconductors N.V., “Step up security and innovation with next generation

SmartMX2 products,” 2016. [Online]. Available: https://cache.nxp.com/docs/

en/brochure/75017695.pdf

[68] C. Helfmeier, C. Boit, D. Nedospasov, and J. P. Seifert, “Cloning physically unclon-

able functions,” in IEEE International Symposium on Hardware-Oriented Security

and Trust, 2013, pp. 1–6.

[69] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert, “Simple Pho-

tonic Emission Analysis of AES,” in Cryptographic Hardware and Embedded Sys-

tems - CHES 2012, E. Prouff and P. Schaumont, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 41–57.

[70] A. Roelke and M. R. Stan, “Attacking an SRAM-based PUF through Wearout,”

in IEEE Computer Society Annual Symposium on VLSI, 2016, pp. 206–211.

[71] D. Nedospasov, J. P. Seifert, C. Helfmeier, and C. Boit, “Invasive PUF analysis,”

in Fault Diagnosis and Tolerance in Cryptography, 2013, pp. 30–38.

[72] S. Tajik, E. Dietz, S. Frohmann, J.-P. Seifert, D. Nedospasov, C. Helfmeier,

C. Boit, and H. Dittrich, “Physical characterization of Arbiter PUFs,” in In-

ternational Workshop on Cryptographic Hardware and Embedded Systems, 2014,

pp. 493–509.

[73] U. Ruhrmair and J. Solter, “PUF modeling attacks: An introduction and

overview,” in Design, Automation & Test in Europe Conference & Exhibition,

2014, pp. 1–6.

[74] J. Delvaux and I. Verbauwhede, “Fault injection modeling attacks on 65 nm arbiter

and RO Sum PUFs via environmental changes,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 61, no. 6, pp. 1701–1713, 2014.

[75] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushanfar, and

W. Burleson, “Efficient power and timing side channels for physical unclonable

functions,” in International Workshop on Cryptographic Hardware and Embedded

Systems, 2014, pp. 476–492.

[76] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine learning resis-

tant strong PUF : Possible or a pipe dream?” in IEEE International Symposium

on Hardware Oriented Security and Trust, 2016, pp. 19–24.

[77] S. Lin, X. Zhao, B. Li, and X. Pan, “An ultra-low power common-source-amplifier-

based physical unclonable function,” in IEEE International Conference on Elec-

tron Devices and Solid-State Circuits, 2015, pp. 269–272.

150 REFERENCES

[78] S. Stanzione, D. Puntin, and G. Iannaccone, “CMOS silicon physical unclonable

functions based on intrinsic process variability,” IEEE Journal of Solid-State Cir-

cuits, vol. 46, no. 6, pp. 1456–1463, 2011.

[79] Y. Cao, L. Zhang, C.-H. Chang, and S. Chen, “A low-power hybrid RO PUF

with improved thermal stability for lightweight applications,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 7, pp.

1143–1147, 2015.

[80] M. Kalyanaraman and M. Orshansky, “Novel strong PUF based on nonlinear-

ity of MOSFET subthreshold operation,” in IEEE International Symposium on

Hardware-Oriented Security and Trust, 2013, pp. 13–18.

[81] Z. Chen, “A sub-threshold physical unclonable function designed from circuit

level,” MSc. Thesis, University of Southampton, 2014.

[82] V. Vivekraja and L. Nazhandali, “Circuit-level techniques for reliable physically

uncloneable functions,” in IEEE International Symposium on Hardware-Oriented

Security and Trust, 2009, pp. 30–35.

[83] J. Li and M. Seok, “Ultra-compact and robust physically unclonable function

based on voltage-compensated proportional-to-absolute-temperature voltage gen-

erators,” IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2192–2202, 2016.

[84] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable func-

tions and applications: A tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp.

1126–1141, 2014.

[85] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-threshold Design for Ultra

Low-Power Systems. Springer, 2006.

[86] Y. Taur and T. Ning, Fundamentals of Modern VLSI Devices. Cambridge Uni-

versity Press, 2009.

[87] S. Babayan-Mashhadi and R. Lotfi, “Analysis and design of a low-voltage low-

power double-tail comparator,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 22, no. 2, pp. 343–352, 2014.

[88] S. Katzenbeisser, Ü. Kocaba, V. Rožić, A.-R. Sadeghi, Ingrid Verbauwhede, and

C. Wachsmann, “PUFs : Myth , fact or busted? A security evaluation of Physically

Unclonable Functions (PUFs) cast in Silicon,” in Cryptographic Hardware and

Embedded Systems – CHES 2012, E. Prouff and P. Schaumont, Eds. Springer

Berlin Heidelberg, 2012, pp. 283–301.

[89] B. Tudor, J. Wang, W. Liu, and Hany Elhak, “MOS Device Aging Analysis with

HSPICE and CustomSim,” California, USA, pp. 1–5, August 2011.

REFERENCES 151

[90] J. Ye, Y. Hu, and X. Li, “OPUF: Obfuscation logic based physical unclonable

function,” in IEEE International On-Line Testing Symposium, 2015, pp. 156–161.

[91] ——, “RPUF: Physical unclonable function with randomized challenge to resist

modeling attack,” in IEEE Asian Hardware Oriented Security and Trust Sympo-

sium, 2016, pp. 1–6.

[92] J. Strömbergson, “sha256,” https://github.com/secworks/sha256, 2013.

[93] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The first

collision for full SHA-1,” in International Cryptology Conference, 2017, pp. 570–

596.

[94] J. Heaton, Introduction to Neural Networks for Java, 2nd Edition, 2nd ed. Heaton

Research, Inc., 2008.

[95] P. H. Nguyen, D. P. Sahoo, R. S. Chakraborty, and D. Mukhopadhyay, “Security

analysis of Arbiter PUF and its lightweight compositions under predictibility test,”

ACM Transactions on Design Automation of Electronic Systems, vol. 22, no. 2,

pp. 1–28, 2016.

[96] A. Peinado and A. Ortiz, “Prediction of sequences generated by LFSR using

back propagation MLP,” in International Joint Conference SOCO’14-CISIS’14-

ICEUTE’14, 2014, pp. 407–412.

[97] G. Nasierding and A. Z. Kouzani, “Comparative evaluation of multi-label classi-

fication methods,” in International Conference on Fuzzy Systems and Knowledge

Discovery, 2012, pp. 679–683.

[98] C. Hoffman, M. Cortes, D. F. Aranha, and G. Araujo, “Computer security by

hardware-intrinsic authentication,” in International Conference on Hardware/-

Software Codesign and System Synthesis, 2015, pp. 143–152.

[99] Intrinsic ID, “SRAM PUF: The Secure Silicon Fingerprint,” Eindhoven, Nether-

lands, June 2016.

[100] A. Bacha and R. Teodorescu, “Authenticache: Harnessing cache ECC for system

authentication,” in International Symposium on Microarchitecture, 2015, pp. 128–

140.

[101] M. Bhargava, C. Cakir, and K. Mai, “Reliability enhancement of bi-stable PUFs

in 65nm bulk CMOS,” in IEEE International Symposium on Hardware-Oriented

Security and Trust, 2012, pp. 25–30.

[102] M. D. Yu and S. Devadas, “Secure and robust error correction for physical unclon-

able functions,” IEEE Design and Test of Computers, vol. 27, no. 1, pp. 48–65,

2010.

152 REFERENCES

[103] R. Maes and V. van der Leest, “Countering the effects of silicon aging on SRAM

PUFs,” in IEEE International Symposium on Hardware-Oriented Security and

Trust, 2014, pp. 148–153.

[104] K. Xiao, T. Rahman, D. Forte, Y. Huang, M. Su, and M. M. Tehranipoor, “Bit

selection algorithm suitable for high-volume production of SRAM-PUF,” in IEEE

International Symposium on Hardware-Oriented Security and Trust, 2014, pp.

101–106.

[105] E. Jamro, “The design of a VHDL based synthesis tool for BCH Codecs,” MSc.

Thesis, University of Huddersfield, UK, 1997.

[106] C. Mutigwe, J. Kinyua, and F. Aghdasi, “Instruction set usage analysis for

application-specific systems design,” International Journal of Information Tech-

nology & Computer Science, vol. 7, no. 2, pp. 99–103, 2013.

[107] A. H. Ibrahim, M. B. Abdelhalim, H. Hussein, and A. Fahmy, “An analysis of x86-

64 instruction set for optimization of system softwares,” International Journal of

Advanced Computer Science, vol. 1, no. 4, pp. 152–162, 2011.

[108] ARM Ltd., “Programmers Guide for ARMv8-A,” 2015. [Online]. Available:

http://infocenter.arm.com

[109] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-

ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill, and D. A. Wood, “The gem5 simulator,” ACM SIGARCH Computer

Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[110] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown, “MiBench: A free, commercially representative embedded benchmark

suite,” in IEEE International Workshop on Workload Characterization, 2001, pp.

3–14.

[111] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program

analysis & transformation,” in International Symposium on Code Generation and

Optimization, 2004, pp. 75–86.

[112] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An analytical model for

negatilve bias temperature instability,” in IEEE/ACM International Conference

on Computer-Aided Design, 2006, pp. 493–496.

[113] A. Gebregiorgis, M. Ebrahimi, S. Kiamehr, F. Oboril, S. Hamdioui, and M. B.

Tahoori, “Aging mitigation in memory arrays using self-controlled bit-flipping

technique,” in Asia and South Pacific Design Automation Conference, 2015, pp.

231–236.

REFERENCES 153

[114] M. Cortez, S. Hamdioui, V. Van Der Leest, R. Maes, and G. J. Schrijen, “Adapting

voltage ramp-up time for temperature noise reduction on memory-based PUFs,” in

IEEE International Symposium on Hardware-Oriented Security and Trust, 2013,

pp. 35–40.

	Thesis-copyright-declaration-text-3
	Final_Thesis_POST_VIVA_Submitted-signed

