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Abstract
Laplace approximations are commonly used to approximate high-dimensional integrals in statis-

tical applications, but the quality of such approximations as the dimension of the integral grows

is not well understood. In this paper, we provide a new result on the size of the error in first- and

higher-order Laplace approximations, in terms of the rate of growth of information about each of

the integrated variables. By contrast with many existing results, we allow for variation in the rate

of information growth among the different integrated variables. We apply our results to inves-

tigate the quality of Laplace approximations to the likelihood in some generalized linear mixed

models.
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1 INTRODUCTION

Integrals of the form
L =

∫
Rd

exp{−g(u)}du (1)

are frequently encountered in statistical applications, where g(.) is a smooth function with a unique minimum. For example, the likelihood function
for a generalized linear mixed model is of this form, where u is a vector of random effects. Integrals of this type are also common in Bayesian
applications, for example as marginal likelihoods used for model comparison.

Laplace approximations are often used to approximate integrals of form (1). For instance, Laplace approximations are used to approximate the
likelihood for a generalized linear mixed model in the lme4 R package (Bates, Mächler, Bolker, & Walker 2015), and to approximate posterior
moments or marginal likelihoods in Bayesian applications (Tierney & Kadane 1986). Laplace approximations are sometimes referred to as saddle-
point approximations: Goutis and Casella (1999) give a clear overview of the connection between saddlepoint and Laplace approximations, and
Reid (1988) and Butler (2007) provide extensive reviews of statistical applications of saddlepoint approximations.

First-order Laplace approximations have been found to be highly accurate in many cases. For instance, Friel and Wyse (2012) compare various
approximations to the marginal likelihood to choose between two possible logistic regression models for one particular dataset, and find that a
first-order Laplace approximation is much more accurate than many more computationally expensive approximations in that case. However, it is
difficult to generalise the results of numerical comparisons for specific cases to form broader conclusions about when we can expect a Laplace
approximation to be accurate and when it may perform more poorly.

In this paper, we develop asymptotic results about the accuracy of Laplace approximations. While asymptotic results do not tell us the size of
the error in the Laplace approximation in specific examples, they do provide guidance about the type of situations in which we might expect a
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Laplace approximation to perform well. Formally, we consider sequences of integrals

Ln =

∫
Rdn

exp{−gn(u)}du, n ≥ 1,

and consider the size of the error of Laplace approximations to Ln in the limit as n→∞. Typically g(u) is a sumwith one term for each observation,
so n is the sample size. For ease of notation, we often suppress the dependence on n, and write the integral in form (1), where L = Ln, g(.) = gn(.)

and d = dn are all implicitly allowed to vary with n. The case in which d remains fixed as n→∞ is well studied (see e.g. Small 2010), but relatively
few results are available about the more general case.

Shun and McCullagh (1995) provide a formal expansion for integrals of type (1). By studying the size of various terms in this expansion, they
find that the first-order Laplace approximation should be reliable if d = o(n1/3), under the assumption that all derivatives of g(.) grow at rate n.
This result has been applied in a variety of contexts, such as by Rue, Martino, and Chopin (2009) in their discussion of the asymptotic error in
the integrated nested Laplace approximation to the posterior distribution of parameters in a latent Gaussian model. From the result of Shun and
McCullagh (1995), we might expect a Laplace approximation to perform well in all cases where the sample size is sufficiently large relative to the
dimension of the integral. However, the assumption that all derivatives of g(.) grow at rate n is not realistic in many situations for which Laplace
approximations are commonly used, such as when approximating the likelihood for a generalized linear mixed model or other latent Gaussian
models. We give an example in which d = o(n1/3) but the error in the first-order Laplace approximation grows with n. There are situations in which
the sample size is very large relative to the dimension of the integral, but for which the Laplace approximation will still perform poorly.

In Section 2, assuming alternative conditions on g(.), we develop a new result on the error in Laplace approximations of various orders to
integrals of type (1). Our result is motivated by a two-level random intercept model with nj observations on items in the jth cluster, for which the
likelihood factorizes into a product of terms

L =

d∏
j=1

∞∫
−∞

exp{−gj(uj)}duj ,

where each gj(uj) is a sum over nj terms. In this case, we could use existing results on the error of Laplace approximations to one-dimensional
integrals to show that the error in the first-order Laplace approximation to the integral is O(

∑d
j=1 n−1

j ). We show that a version of this result also
holds more generally, and find similar expressions for the error in higher-order Laplace approximations. For our results to make sense, we first need
to definewhat nj means in the general case. Roughly, wemay think of nj as the rate of growth of information about uj provided by the integrand.We
measure the information about u via an integrand information matrix [g(2)]−1, the inverse of the Hessian matrix of g(.) evaluated at its minimizer û.

In Section 3, we apply these results to study the quality of Laplace approximations of the likelihood for some generalized linear mixed models,
including a multilevel random intercept model with any number of levels of hierarchy.

2 ERROR IN THE LOG-INTEGRAL APPROXIMATION

2.1 A series expansion for the log-integral
Shun and McCullagh (1995) give a series expansion for the log-integral ` = log L. We use their expansion here, expressed with slightly different
notation. We write

` = ˜̀
1 +

∞∑
l=1

el, (2)

where ˜̀
1 is the first-order Laplace approximation to the log-integral, and el are contributions to the error in this approximation of size decreasing

with l, which we will shortly define.
The first-order Laplace approximation to the log-integral is

˜̀
1 = −

1

2
log det(g(2)) +

d

2
log(2π)− g(û)

where û = arg minu∈Rd {g(u)} and g(2) = g′′(û) is the matrix of second derivatives of g(.) with respect to u, evaluated at û.
Based on the decomposition (2), we may also define an order-k Laplace approximation to the log-integral, for k ≥ 2, as

˜̀
k = ˜̀

1 +

k−1∑
l=1

el.

What is meant by the order of a Laplace approximation is not standard across the literature: our definition is made by grouping together terms in a
series expansion to the log-integral in terms of their asymptotic order. This is a different notion of order than that used by Raudenbush, Yang, and
Yosef (2000), who group together terms according to the number of derivatives required to compute them.
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In this paper, we study the errors in these Laplace approximations to the log-integral

εk = ˜̀
k − ` = −

∞∑
l=k

el.

Shun and McCullagh (1995) give a series expansion for the log-integral in terms of particular bipartitions. For positive integers v and m, define
the set of M-bipartitionsMv,m to be all (P,Q) such that P = (p1| . . . |pv) and Q = (q1| . . . |qm) are both partitions of {1, . . . , 2m}, such that each
block of P contains at least three elements and each block of Q contains exactly two elements.

For each (P,Q) ∈ Mv,m, define a corresponding graph G(P,Q) with vertices 1, . . . , 2m, and an edge between each pair of vertices contained
in the same block of either P or Q. If GP,Q is a connected graph, say that (P,Q) is a connected bipartition, and write (P,Q) ∈ MC

v,m. We define
the level of (P,Q) ∈Mv,m to be l = m− v, and writeMC

l for all connected level-l M-bipartitions.
For a vector of indices I, write gI(u) = ∇uI g(u) for the partial derivative of g with respect to the coordinates uI, and let gI = gI(û). Let g(k) be

the k-dimensional array with entries g
(k)
j1,...,jk

= gj1,...,jk , and write gjk =
(
g(2)

)−1

jk
. Then define

eP,Q =
(−1)v

(2m)!

∑
j∈[1:d]2m

gjp1 . . . gjpv g
jq1 . . . gjqm , (3)

where [1 : d]2m = {(j1, . . . , j2m) : jl ∈ {1, . . . , d}}, and jp is the sub-vector of j = (j1, . . . , j2m) corresponding to the indices in p.
We may write the level-l contribution to the log-integral el as a sum of contributions from each connected level-l M-bipartition, as

el =
∑

(P,Q)∈MC
l

eP,Q. (4)

To demonstrate these definitions, we find the level-1 contribution e1, used in the second-order Laplace approximation. There are three types of
bipartitions inMC

1 : (P1,Q1), where P1 = (1 2 3 4) and Q1 = (1 2 | 3 4); (P2,Q2), where P2 = (1 2 3 | 4 5 6) and Q2 = (1 2 | 3 4 | 5 6); and (P3,Q3)

where P3 = P2 and Q3 = (1 4 | 2 5 | 3 6). While there are other bipartitions inMC
1 , they are all similar to one of these three, in that they may be

obtained by rearranging the labels {1, . . . , 2m}, and so give the same contribution eP,Q. For example, the bipartition P∗1 = (1 2 3 4), Q∗1 = (1 3 | 2 4)

may be obtained from (P1,Q1) by exchanging 2 and 3, and eP∗1 ,Q
∗
1

= eP1,Q1
. From (3), we have

eP1,Q1
= −

1

4!

∑
j1,...,j4

gj1j2j3j4 gj1j2 gj3j4

eP2,Q2
=

1

6!

∑
j1,...,j6

gj1j2j3 gj4j5j6 gj1j2 gj3j4 gj5j6 (5)

eP3,Q3
=

1

6!

∑
j1,...,j6

gj1j2j3 gj4j5j6 gj1j4 gj2j5 gj3j6 .

McCullagh (1987) lists 4 bipartitions similar to (P1,Q1), 9 similar to (P2,Q2) and 6 similar to (P3,Q3), so the level-1 contribution is e1 =

3eP1,Q1
+ 9eP2,Q2

+ 6eP3,Q3
, and the second-order Laplace approximation to the log-likelihood is ˜̀

2 = ˜̀
1 + e1.

There may be more efficient ways to compute e1 than direct computation of the sums in (5). For example, Zipunnikov and Booth (2011) describe
a more efficient method for computing these terms for a generalized linear mixed model.

2.2 Error in log-integral approximations
In order to establish our main result, we assume some conditions on g(.) in (1). To describe these conditions, we require some notation. Write
a = Θ(b) if a = O(b) and a−1 = O(b−1), so a grows at the same rate as b. For a random variable A, write A = Θp(b) if A = Op(b) and
A−1 = Op(b−1), so that A grows at rate b in probability.

We use a particular notion of a random array being order 1 in probability. Suppose A is a k-dimensional array, with entries Aj1,...,jk for each
ji ∈ {1, . . . , d}. If k = 1, say A = O∗p (1) if Aj = Op(1) for each j = 1, . . . , d. If k ≥ 2, let

Aij =

d∑
j1=1

. . .

d∑
ji−1=1

d∑
ji+1=1

. . .

d∑
jk=1

|Aj1, ..., ji−1, j, ji+1, ..., jk |,

and say A = O∗p (1) if Ai
j = Op(1) for each i = 1, . . . , k and j = 1, . . . , d. In the simple case where A is a diagonal array, A = O∗p (1) if the diagonal

entries Aj,j,...,j = Op(1).
For a given choice of normalizing terms n1, . . . , nd, and for each vector of indices I, define the normalized derivatives

fI = gI
∏
j∈I

n
−1/|I|
j ,

and write f(k) for the k-dimensional array with entries f
(k)
j1,...,jk

= fj1,...,jk . We write f jk = [(f(2))−1]jk.
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Having established this notation, we may now state the conditions required for our main result.

Condition 1. g(.) is a smooth function with a unique minimum.

Condition 2. There is some choice of normalizing terms n1, . . . , nd such that the normalized derivative arrays f(k) satisfy f(k) = O∗p (1) for all k ≥ 3,
and [f(2)]−1 = O∗p (1).

The normalizing terms are often chosen so that gjj = Θp(nj), and we may think of nj as an effective sample size for uj. We state here our main
result, which is proved in Appendix A.

Theorem 1. Suppose L is of form (1), where g(.) satisfies Conditions 1 and 2, for some choice of normalizing terms n1, . . . , nd. Then the error in
the order-k Laplace approximation to log L is εk = Op(

∑d
j=1 n−k

j ).

Laplace approximations are invariant to linear reparameterizations. That is, if v = Au, where A is an invertible d × d matrix, then writing
gA(v) = g(A−1v) + log det(A), and

L(A) =

∫
Rd

exp{−gA(v)}dv,

we have L(A) = L, and the order-k Laplace approximation of L is unchanged by the reparameterization, so that L̃
(A)
k = L̃k. In many situations,

Condition 2 does not hold in the original parameterization, but does hold after making a suitable linear reparameterization, so we may still apply
Theorem 1. We give an example of this in Section 3.3.

3 APPLICATION TO LIKELIHOOD APPROXIMATION FOR GENERALIZED LINEAR MIXEDMODELS

3.1 Generalized linear mixed models
In a generalized linear mixed model, the distribution of the response Y = (Y1, . . . ,Yn) is determined by a linear predictor η = (η1, . . . , ηn).
Conditional on η, the components Yi of the response are independent, with known density function f(yi|ηi). We assume an exponential family
with canonical link, so that

log f(yi|ηi) =
yiηi − b(ηi)

ai(φ)
,

where b(.) is a smooth and convex function, ai(φ) > 0, and φ is the dispersion parameter, which we assume here to be known. The linear predictor
is modelled as η = Xβ + Zu, where X ∈ Rn×p and Z ∈ Rn×d are design matrices, β ∈ Rp is a vector of fixed effects, and u ∈ Rd is a vector of
random effects. We assume that u ∼ Nd(0,Σ(ψ)), where ψ ∈ Rq is an unknown parameter, and write θ = (β, ψ) for the full vector of unknown
parameters.

The likelihood for this model is

L(θ) =

∫
Rd

exp{−g(u; θ)}du, (6)

where

g(u; θ) = h(u;β)− log φd(u; 0,Σ(ψ)), (7)

h(u;β) =

n∑
i=1

− log f(yi|ηi = Xi
T β + Zi

Tu) =

n∑
i=1

b(Xi
T β + Zi

Tu)− yi(XiT β + Zi
Tu)

ai(φ)
(8)

and φd(.;µ,Σ) is the Nd(µ,Σ) density function. The d-dimensional integral in (6) is typically intractable, except in the special case of a linear mixed
model where Yi|ηi are normally distributed. Because of this intractability, it is common to use some numerical approximation L̃(θ) to the likelihood,
and first-order Laplace approximation is often used. For example, by default the lme4 R package (Bates et al. 2015) uses a first-order Laplace
approximation to the likelihood for inference, and the integrated nested Laplace approximations of Rue et al. (2009) is a Bayesian approach based
on a Laplace approximation to the likelihood.

In order to apply Theorem 1 to the likelihood of a generalized linear mixed model, we will first have to show that g(.) as defined in (7) satisfies
Conditions 1 and 2. We drop θ from the notation, so that (6) is of form (1).

We can show Condition 1 holds in all cases. The proof is in Appendix B.

Proposition 1. Let g(u) be as defined in (7), where Σ is a positive definite matrix. Then g(.) satisfies Condition 1.

We need to show that Condition 2 holds on a case-by-case basis. In our examples, we choose the normalizing term nj to be the number of
observations which involve uj.
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3.2 A two-level random intercept model
We consider a two-level random intercept model, which is a special case of the generalized linear mixed model of Section 3.1 in which each
observation i is contained in a cluster c(i). Observations in the same cluster j are correlated by a shared random effect uj. The linear predictor is
ηi = xi

Tβ + uc(i) (i = 1, . . . , n), where we suppose the uj are independent N(0, σ2) random variables. In the notation of Section 3.1, we have
Zi,c(i) = 1, and Zi,j = 0 if j 6= c(i) and Σ = σ2I, where I is an identity matrix.

In this special case, the likelihood (6) simplifies into a product of one-dimensional integrals

L(θ) =

d∏
j=1

∫ ∏
i:c(i)=j

f(yi|ηi = xi
T β + uj)φ(uj ; 0, σ2)duj .

The log-likelihood may be written as a sum

`(θ) =

d∑
j=1

log

∫ ∏
i:c(i)=j

f(yi|ηi = xi
T β + uj)φ(uj ; 0, σ2)duj , (9)

so εk is a sum of separate error terms.

Proposition 2. Suppose we have a two-level random intercept model, with nj observations on cluster j, for j = 1, . . . d. The error in the order-k
Laplace approximation to the log-likelihood is

εk(θ) = ˜̀
k(θ)− `(θ) = Op

( d∑
j=1

n−kj

)
.

Proof. The derivative arrays g(k) are diagonal for all k, with diagonal entries gj...j = Θp(nj), so Condition 2 holds with normalizing terms n1, . . . , nd.
Theorem 1 gives that εk(θ) = Op(

∑d
j=1 n−k

j ), as required.

In the balanced case, where all nj = nd−1, εk = Op(dk+1n−k). This tends to zero as n → ∞ if d = o(nk/(k+1)). The error in the first-order
Laplace approximation tends to zero if d = o(n1/2).

In an unbalanced case, the result can be quite different. As an extreme example, suppose

nj =

log d if j = 1, . . . , d− 1

n− (d− 1) log d if j = d,

where n > d log d. Then

ε1 = Op
(
(d− 1)(log d)−1 + (n− (d− 1) log d)−1

)
= Op

(
d(log d)−1

)
.

This upper bound on the error in the first-order Laplace approximation tends to infinity as d → ∞, no matter how large n is relative to d. For
example, if n = d4, then d = o(n1/3), but d(log d)−1 →∞.

In Section 3.4, we investigate the error ε1 numerically. We find that the upper bound is met, so that ε1 scales as
∑d

j=1 n−1
j . In the unbalanced

case just described, this means that ε1 →∞, no matter how large n is relative to d.
We have shown that a large sample size relative to the dimension of the integral is no guarantee that a Laplace approximation will be accurate.

Instead, Theorem 1 tells us that we need to consider the amount of information provided by the integrand about each uj. This finding is important
in practice because in many cases where Laplace approximations are used, such as in likelihood approximation for generalised linear mixed models
and many other latent Gaussian models, the amount of information about each uj remains small even when the overall sample size, n, is large.

3.3 A multilevel random intercept model
Suppose that each observation i is contained in a level-2 cluster c2(i), and that each level-2 cluster j is itself contained within a hierarchy of higher-
level clusters, cl(j), j = 3, . . . , L. The clusters are nested within one another, so that if cl(j) = cl(k), then cl+1(j) = cl+1(k). The linear predictor
is

ηi = xi
T β + u

(2)
c2(i)

+

L∑
l=3

u
(l)
cl(c2(i))

(i = 1, . . . , n),

where we assume u
(l)
j ∼ N(0, σ2

l ), l = 2, . . . , L, with all the uj independent. Suppose that there are d level-2 clusters in total, and dl level-l
clusters, for each l = 3, . . . , L. It is no longer possible to write the log-likelihood as a sum of one-dimension log-integrals as in (9). Since an accurate
approximation to the exact log-likelihood is no longer readily available, it is important to understand the quality of the Laplace approximation in
this case.
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Condition 2 does not hold for this parameterization, sowe define a newparameterization of themodel. Let vj = u
(2)
j +

∑L
l=3 u

(l)
cl(j)

for j = 1, . . . , d.
We have ηi = xi

Tβ + vc2(i), where there are now a total of d random effects, rather than d + d3 + . . . + dL in the original parameterization. We
have reduced the structure to the two-level random intercept model of Section 3.2, except now v ∼ Nd(0,Σ), where

Σjk =



σ2
2 + σ2

3 + . . .+ σ2
L if j = k

σ2
3 + . . .+ σ2

L if j 6= k, but c3(j) = c3(k)

...
...

σ2
l + . . .+ σ2

L if cl−1(j) 6= cl−1(k), but cl(j) = cl(k)

...
...

σ2
L if cL−1(j) 6= cL−1(k), but cL(j) = cL(k)

0 if cL(j) 6= cL(k).

Proposition 3. Suppose we have an L-level random intercept model with independent random effects, with nj observations in level-2 cluster j, for
j = 1, . . . d. The error in the order-k Laplace approximation to the log-likelihood is

εk(θ) = ˜̀
k(θ)− `(θ) = Op

( d∑
j=1

n−kj

)
.

The proof is in Appendix B. The asymptotic order of the error in a Laplace approximation to the log-likelihood depends on the number of
observations in each of the level-2 clusters, but not on how these level-2 clusters are grouped into higher-level clusters.

3.4 Numerical demonstration
We simulate from a simple two-level random intercept model

Yi|uc(i) ∼ Bernoulli(pc(i)), logit(pj) = uj , uj ∼ N(0, σ2), j = 1, . . . , d.

Since the error in an approximation to the loglikelihoodmay be rewritten as a sum over clusters, it is sufficient to study the error in the log-likelihood
for a fixed d, allowing the number of observations nj on each cluster to vary. For this experiment, we will fix σ = 1 and d = 1000. For a range of
values of nj, we simulate a single dataset from the model, and calculate the error ε1 in the first-order Laplace approximation to the loglikelihood.
We choose a relatively large d in order to make the random error due to variations in the simulated data sets negligible. Figure 1 shows log |ε1|
plotted against log(nj). We see that ε1 scales approximately as n−1

j , meeting the upper bound derived theoretically in Proposition 2.

3.5 Impact on approximate likelihood inference
When an approximate likelihood L̃(θ) is used for inference, the impact of the error in the likelihood approximation on the resulting inference is of
more interest than the size of that error itself. If the error in the log-likelihood ε(θ) = log L̃(θ)− log L(θ) tends to zero in probability, uniformly in θ,
Douc, Moulines, and Rydén (2004) show that the approximate likelihood estimator θ̃will be fully efficient, and have the same first-order asymptotic
distribution as the maximum likelihood estimator. In our examples, if

d∑
j=1

n−kj → 0 as d→∞ (10)

we expect the order-k Laplace estimator to be fully efficient. In order to make the argument rigorous, we would need to show that the supremum
of the error in log-likelihood in some region around the true parameter value tends to zero.

However, condition (10) is likely to be stronger than necessary for a order-k Laplace estimator to be fully efficient. Ogden (2017) gives conditions
on the size of the error in the score function ∇θε(θ) which ensure that inference with an approximate likelihood retains the same first-order
properties as inference with the exact likelihood. By studying this error in score, it should be possible to show that the order-k Laplace estimator is
fully efficient under a weaker condition than (10). Some modification of the results of Ogden (2017) would be required before they could be used
in this case, as information on different components of the parameter vector may grow at different rates (Nie 2007).

While our asymptotic results provide guidance about the type of situations in which we might expect a Laplace approximation to perform well,
they do not directly tell us whether inference obtained by using a first-order Laplace approximation will be reliable for a given model and dataset.
In cases where it is feasible to compute the second-order Laplace approximation, one possibility would be to compare the inference obtained with
the first- and second-order approximations, deeming the inference reliable if the two sets of conclusions match one another closely. The ability of
this approach to detect situations in which the first-order Laplace approximation fails is worthy of future investigation.
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FIGURE 1 The log absolute error in the first-order Laplace approximation to the log-likelihood against the log of the number of observations in
each cluster (nj), for a range of choices of nj. The overlaid dashed line has intercept −1.05 and slope −1.

Data sharing statement
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

APPENDIX

A PROOF OF MAIN RESULT

To prove Theorem 1, we aim to find the size of the contribution from each bipartition (P,Q).

Lemma 1. Suppose Condition 2 holds. For each fixed bipartition (P,Q) ∈MC
l

eP,Q = Op
( d∑
j=1

n−lj

)
.

Given Lemma 1, the proof of Theorem 1 is straightforward:

Proof of Theorem 1. By Lemma 1, we have eP,Q = Op(
∑d

j=1 n−l
j ) for each fixed bipartition (P,Q) ∈ MC

l . Combining the contributions from each
bipartition inMC

l , we have el = Op(
∑d

j=1 n−l
j ), so εk = −

∑∞
l=k ek = Op(

∑d
j=1 n−k

j ), as required.
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In order to prove Lemma 1, we need some auxiliary results.

Proposition 4. Let (P,Q) be a fixed (v, 2m) bipartition. For each j = (j1, . . . , j2m) ∈ [1 : d]2m, write AP,Q(j) = fjp1
. . . fjpv

f jq1 . . . f jqm . Then

eP,Q =
(−1)v

(2m)!

∑
j∈[1:d]2m

nc1j1 . . . n
c2m
j2m

AP,Q(j)

where
∑2m

j=1 cj = −l, and each cj < 0.

Proof. We may write

eP,Q =
(−1)v

(2m)!

∑
j∈[1:d]2m

∏
p∈P

∏
k∈jp

n
1/|p|
k fjp

∏
q∈Q

∏
l∈jq

n
−1/2
l fjq =

(−1)v

(2m)!

∑
j∈[1:d]2m

nc1j1 . . . n
c2m
j2m

∏
p∈P

fjp
∏
q∈Q

fjq

for some c1, . . . c2m. We have ci = − 1
2

+ 1
|p| , for whichever p contains i, so ci < 0 as |p| ≥ 3. We have

2m∑
i=1

ci = −m+
∑
p∈P

∑
i∈p

1

|p|
= −m+

∑
p∈P

1 = −m+ v = −l

which gives the result.

Proposition 5. Suppose A = O∗p (1) and B = O∗p (1), and C is the k-dimensional array with entries Cj = AjS BjT , where j = (j1, . . . , jk), and
S,T ⊆ {1, . . . , k}, such that S ∪ T = {1, . . . , k}. If S ∩ T 6= ∅, then C = O∗p (1).

Proof. We proceed by induction on k = dim(C) = |S ∪ T|. In the case k = 1, we have S = T, since S ∩ T 6= ∅. So Cj1 = Aj1 Bj1 = Op(1), so
C = O∗p (1). Now we suppose the hypothesis is true for dim(C) = k− 1, and consider dim(C) = k ≥ 2. We have

Ciji =
∑
jl:l 6=i

|Cj | =
∑

jl:l 6=i,a

∑
ja

|Cj |.

Writing j−a = (j1, . . . , ja−1, ja+1, . . . , jk) and C−a
j−a

=
∑

ja
|Cj|, if we can show that C−a = O∗p (1) for some a 6= i, then

Ciji =
∑

jl:l 6=i,a
C−aj−a

= Op(1),

so that C = O∗p (1).
C−a has entries

C−aj−a
=
∑
ja

|AjSBjT | =


|BjT |

∑
ja
|AjS | if a ∈ S, a 6∈ T

|AjS |
∑

ja
|BjT | if a 6∈ S, a ∈ T∑

ja
|AjS BjT | if a ∈ S, a ∈ T

In the first case, we must have dim(A) ≥ 2, otherwise S = {a} and S ∩ T = ∅, which would be a contradiction. Since A = O∗p (1), the array A−a

with entries A−a
jS\a

=
∑

ja
|AjS | must also be O∗p (1). So the array C−a with entries C−a

j−a
= |BjT |A

−a
jS\a

is O∗p (1), by the induction hypothesis, since
dim(C−a) = k− 1. Similarly, in the second case C−a = O∗p (1). In the third case,

C−aj−a
=
∑
ja

|AjSBjT | ≤
∑
ja

|AjS |
∑
ja

|BjT | = A−ajS\a
B−ajT\a

by the Cauchy–Schwarz inequality. So C−a = O∗p (1), by the induction hypothesis.
In all cases C−a = O∗p (1), so C = O∗p (1), as required.

Proposition 6. Suppose Condition 2 holds. Let (P,Q) be a fixed (v, 2m) bipartition. Then AP,Q = O∗p (1).

Proof. We have AP,Q(j) =
∏

p∈P fjp

∏
q∈Q f jq . Since f(k) = O∗p (1) for k ≥ 3 and [f(2)]−1 = O∗p (1), AP,Q is a product of O∗p (1) arrays.

We build up this product one term at a time, at each step applying Proposition 5 to show that the product remains O∗p (1).
We start with an arbitrary p1 ∈ P, and choose q1 ∈ Q such that one element of q1 is in p1, and the other is not in p1, and therefore must be in

some other block p2 ∈ P. If v > 1, it will always be possible to find such a q, because (P,Q) is a connected bipartition, so blocks of P (which form
disjoint clusters in GP,Q) are connected by blocks of Q.

Let S1 be the array with entries S1
jp1∪q1

= fjp1
f jq1 . Then S1 = O∗p (1) by Proposition 5, as p1 ∩ q1 6= ∅. Let T1 be the array with entries

T1
jp1∪p2

= fjp2
S1

jp1∪q1
. Then T1 = O∗p (1), as p2 ∩ (p1 ∪ q1) = p2 ∩ q1 6= ∅.

We continue to choose alternating terms from blocks of Q and P, at step k choosing a block qk with one entry in p1 ∪ . . . ∪ pk, and the other
entry in a new block pk+1. At each stage k we have Sk

jp1∪...∪pk∪qk
= f jqk Tk−1

jp1∪...∪pk
and Tk

jp1∪...∪pk∪pk+1
= fjpk+1

Sk
jp1∪...∪pk∪qk

, where Sk = O∗p (1)

and Tk = O∗p (1).
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We continue until we have included all blocks of P, and have Tv−1
jp1∪p2∪...∪pv

= Tv−1
j where Tv−1 = O∗p (1). We have already included terms from

v− 1 blocks of Q. We may multiply in the remaining 2m− v + 1 blocks of Q while retaining an O∗p (1) array by Proposition 5 as Tv−1 is an array on
all indices j1, . . . , j2m, and q ∩ (1 : 2m) = q 6= ∅ for each q ∈ Q. So AP,Q = O∗p (1), as required.

Proof of Lemma 1. By Proposition 4

|eP,Q| =
1

(2m)!

∣∣∣∣∣ ∑
j∈[1:d]2m

nc1j1 . . . n
c2m
j2m

AP,Q(j)

∣∣∣∣∣ ≤ 1

(2m)!

∑
j∈[1:d]2m

nc1j1 . . . n
c2m
j2m
|AP,Q(j)|. (A1)

We apply the weighted form of the inequality of arithmetic and geometric means, which states that given non-negative numbers x1, . . . , xn and
non-negative weights w1, . . . ,wn with

∑
i wi = 1,

n∏
i=1

x
wi
i ≤

n∑
i=1

wixi.

Here, we let n = 2m, xi = n−l
ji

and wi = −ci/l, to give that

nc1j1 . . . n
c2m
j2m
≤

2m∑
i=1

win
−l
ji
. (A2)

Putting (A2) back into (A1) gives

|eP,Q| ≤
1

(2m)!

∑
j∈[1:d]2m

2m∑
i=1

win
−l
ji
|AP,Q(j)| =

1

(2m)!

2m∑
i=1

d∑
ji=1

win
−l
ji

∑
j1,...,ji−1,ji+1,...,j2m

|AP,Q(j)|

=
1

(2m)!

2m∑
i=1

d∑
ji=1

win
−1
ji

Ai
ji

=
1

(2m)!

2m∑
i=1

Op

( d∑
ji=1

n−l
ji

)
= Op

( d∑
j=1

n−l
j

)
since m is fixed as d→∞.

B PROOFS FOR EXAMPLES

Proof of Proposition 1. The matrix of second derivatives of g(.) with respect to u is g(2)(u) = h(2)(u) + Σ−1,where h(2)(u) is the matrix of second
derivatives of h(.) with respect to u, and h(.) is defined in (8). We have h(2)(u) = ZTW(u)Z,where W(u) is a diagonal matrix with diagonal entries

Wii(u) =
b′′(XT

i β + ZTi u)

ai(φ)
.

But ai(φ) > 0, and since b(.) is a convex function b′′(XT
i β + ZT

i u) ≥ 0, so Wii(u) ≥ 0 for all u. So W(u) is a non-negative definite matrix, and
for any x ∈ Rd, xTh(2)(u)x = (xZ)TW(Zx) ≥ 0, which means that h(2)(u) is non-negative definite. Since Σ−1 is positive definite, this means that
g(2)(u) is positive definite for all u, so g(.) is strictly convex, and therefore has a unique minimum. Since b(.) is a smooth function, so is g(.), so
Condition 1 holds.

Proof of Proposition 3. To prove the result, we need to show that after reparameterization Condition 2 holds with normalizing terms n1, . . . , nd, so
that we can apply Theorem 1. For k ≥ 3, g(k) is diagonal with diagonal terms gj...j = Θp(nj), so f(k) = O∗p (1) for k ≥ 3. It remains to show that
[f(2)]−1 = O∗p (1). Write

Σ
[l]
jk =



σ2
2 + σ2

3 + . . .+ σ2
l if j = k

σ2
3 + . . .+ σ2

l if j 6= k, but c3(j) = c3(k)

...
...

σ2
l if cl−1(j) 6= cl−1(k), but cl(j) = cl(k),

so that Σ = Σ[L]. Σ[l] is a block-diagonal matrix, with dl blocks, one for each level-l cluster. We have

Σ
[l]
jk =

Σ
[l−1]
jk + σ2

l if cl(j) = cl(k)

0 otherwise

Write Σjk
[l]

= (Σ[l])−1
jk . Applying the Sherman–Morrison formula to invert each block of Σ[l] gives

Σjk
[l]

=


Σjk

[l−1]
− σ2

l rjrk

1+σ2
l scl(j)

if cl(j) = cl(k)

0 otherwise,
(B3)
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where

rj =
∑

k:cl(k)=cl(j)

Σjk
[l−1]

, sc =
∑

j:cl(j)=c

rj . (B4)

We hypothesize that

Σjk
[l]

=



Θ(1) if j = k

Θ
(
(d3

c3(j)
)−1
)

if j 6= k, but c3(j) = c3(k)

...
...

Θ
(
(dl

cl(j)
)−1
)

if cl−1(j) 6= cl−1(k), but cl(j) = cl(k)

0 otherwise,

(B5)

and prove this by induction on l. This claim is true for l = 2, as Σ−1
[2]

= σ−2
2 I. For l ≥ 2, applying the induction hypothesis to (B4), we find rj = Θ(1),

so sc = Θ(dl
c) and

σ2
l rjrk

1 + σ2
l scl(j)

= Θ
(
(dlc)

−1
)
. (B6)

Substituting (B6) into (B3) proves (B5).
Now write g

[l]
jk = hjk − Σjk

[l]
, so that gjk = g

[L]
jk . Again, g[l] is block-diagonal, and

g
[l]
jk = g

[l−1]
jk − (Σjk

[l]
− Σjk

[l−1]
) =


g
[l−1]
jk +

σ2
l rjrk

1+σ2
l scl(j)

if cl(j) = cl(k)

0 otherwise.

Write gjk
[l]

= (g[l])−1
jk . Applying the Sherman–Morrison formula to invert each block of g[l] gives

gjk
[l]

=


gjk
[l−1]

− αajak

1+αbcl(j)
if cl(j) = cl(k)

0 otherwise,
(B7)

where

α =
σ2
l

1 + σ2
l scl(j)

= Θ
(
(d
cl(j)
l )−1

)
, aj =

∑
k:cl(k)=cl(j)

rjg
jk
[l−1]

, bc =
∑

j,k:cl(j)=cl(k)=c

rjrkg
jk
[l−1]

. (B8)

We hypothesize that

gjk
[l]

=



Op(n−1
j ) if j = k

Op
(
(d3

c3(j)
)−1n−1

j n−1
k

)
if j 6= k, but c3(j) = c3(k)

...
...

Op
(
(dl

cl(j)
)−1n−1

j n−1
k

)
if cl−1(j) 6= cl−1(k), but cl(j) = cl(k)

0 otherwise,

(B9)

and prove this by induction on l. This claim is true for l = 2, as g[2] is diagonal, with diagonal entries hjj + σ−2
2 = Θp(nj). For l ≥ 2, applying the

induction hypothesis to (B8), recalling that rj = Θ(1), we find

aj =
∑

k:cl(k)=cl(j)

Op
(
(dlcl(j)

)−1n−1
j n−1

k

)
= Op(n−1

j )

and

bc =
∑

k:cl(k)=cl(j)=c

Op
(
(dlc)

−1n−1
j n−1

k

)
= Op(1),

so
αajak

1 + αbcl(j)
=

ajak

α−1 + bcl(j)
= Op

(
(d
cl(j)
l )−1n−1

j n−1
k

)
(B10)

Substituting (B10) into (B7) proves (B9). Normalizing,

fjk = n
1/2
j n

1/2
k gjk = n

1/2
j n

1/2
k gjk

[L]
=



Op(1) if j = k

Op
(
(dl

cl(j)
)−1n

−1/2
j n

−1/2
k

)
if cl−1(j) 6= cl−1(k), but cl(j) = cl(k),

for l = 3, . . . , L

0 otherwise.
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Then ∑
k

|f jk| = Op

1 +

L∑
l=3

∑
k:cl−1(j)6=cl−1(k),cl(j)=cl(k)

(
dl

cl(j)

)−1
n
−1/2
j n

−1/2
k


= Op

(
1 +

L∑
l=3

dl
cl(j)

(
dl

cl(j)

)−1
n
−1/2
j max

k
{n−1/2

k }

)
= Op(1 + n

−1/2
j ) = Op(1),

and
∑

j |f jk| =
∑

k |fkj| = Op(1), so f(2) = O∗p (1). So Condition 2 holds with normalizing terms n1, . . . , nd, and Theorem 1 gives that εk(θ) =

Op(
∑d

j=1 n−k
j ), as required.
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