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The gauge groups of principal G-bundles over low dimensional spaces have been extens-
ively studied in homotopy theory due to their connections to other areas in mathematics,
such as the Yang-Mills gauge theory in mathematical physics. In 2011 Donaldson and
Segal established the mathematical set-up to construct new gauge theories over high

dimensional spaces.

In this thesis we study the homotopy theory of gauge groups over 7-manifolds that arise
as total spaces of S3-bundles over S* and their connected sums. We classify principal

G-bundles over manifolds M up to isomorphism in the following cases:

(1) M is an S3-bundle over S* with torsion-free homology;
(2) M is an S3-bundle over S* with non-torsion-free homology and 76(G) = 0;

(3) M is a connected sum of S3-bundles over S* with torsion-free homology and 76(G) = 0.

We obtain integral homotopy decomposition of the gauge groups in the cases for which the
manifold is either a product of spheres, or a twisted product of spheres, or a connected
sum of those. We obtain p-local homotopy decompositions of the loop spaces of the
gauge groups in the cases for which the manifold has torsion in homology. Gauge groups
of principal G-bundles over manifolds homotopy equivalent to S7 are classified up to a

p-local homotopy equivalence.
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Chapter 1

Introduction

1.1 Motivation

The study of the homotopy theory of mapping spaces treated as topological spaces dates
back at least to the first half of the last century (see [FLS10]). The problem of classifying
the homotopy types of path components of mapping spaces was introduced for the first
time in 1946 by Whitehead. Some results on the classification of mapping spaces include
computation of homotopy groups, cellular decompositions, and computation of the ho-
mology and cohomology of the path components of mapping spaces. Besides the intrinsic
interest that exists from a homotopical point of view, the problem of the classification
of mapping spaces is nowadays a subject of extensive research due to the connections to

other areas of mathematics. One of these connections is provided by the gauge groups.

Let G be a topological group with classifying space BG. Given a principal G-bundle
p: P — X with a classifying map f : X — BG, the gauge group G;(X) is the group of
G-equivariant automorphisms ¢ : P — P covering the identity in X. We say G;(X) is a
gauge group of the bundle p : P — X or a gauge group over the manifold X. Gottlieb

|Got72| showed that there is a weak homotopy equivalence
BG(X) ~ Map, (X, BG),

where Map (X, BG) is the path component of Map(X, BG) containing the classifying
map f of the principal G-bundle. This result allows us to regard the gauge groups as a
link between the homotopy theory of mapping spaces and the more geometrical theory

of principal bundles.

One of the biggest interests in understanding the topology of gauge groups lies in math-
ematical physics. Gauge groups appear in the formulation of the so-called gauge theories,

which are physical theories mathematically formulated using the theory of fibre bundles.

1



2 Chapter 1 Introduction

A very simplified version of what a gauge theory consists of, from a mathematical per-
spective, is the following. Let P 2y M be a smooth principal G-bundle over M, where G
is a compact Lie group. The tangent bundle of P, denoted T'P, is a fibre bundle over P
whose fibres are vector spaces tangent to P at each point. There is a special vector sub-
bundle V' C TP, called the vertical bundle, consisting of all vectors tangent to the fibres
of P. A connection of a principal G-bundle is a choice of vector subbundle A C T'P that
is invariant under the action of G and such that TP =V ¢ A. Physical phenomena are
modelled by means of principal G-bundles P and certain functions F : Ap — R, where
Ap is the space of all connections of T'P. The gauge group Gp of the bundle P acts on
the space of connections Ap. The function F is defined to be invariant under the action
of the gauge group, and so induces F : Ap/Gp — R. The goal pursued in gauge theories
is to find the subspace of connections Mp C Ap/Gp that contains the critical points
of F. Gauge theories have succeeded in modelling several physical phenomena such as
electroweak force, however, the description of the dynamical behaviour of elementary
particles in a 4-dimensional space-time is still an open question. According to Atiyah
[Ati88], there is hope for gauge theories, such as the Yang-Mills gauge theory, to provide

an answer to this question.

Application of gauge theories in the study of 4-manifolds has been successful in differ-
ential geometry. Using ideas coming from the Yang-Mills theory, Donaldson [Don86]
obtained topological information of the classifying spaces of gauge groups of principal
SU(2)-bundles to define polynomial invariants over 4-manifolds. These invariants have

been used to distinguish differentiable structures on homeomorphic manifolds.

Understanding the topology of the gauge groups and their classifying spaces is crucial
in the context of gauge theories and their applications in mathematics. A less rigid
approximation to the study of these mapping spaces is the one provided by homotopy
theory. Therefore, at this point the classification of mapping spaces, such as the gauge

groups, becomes a primary problem in the context of homotopy theory.

Classification of gauge groups and their associated classifying spaces up to homotopy
equivalence has been an active research area in homotopy theory for at least the last
25 years. For example, in [Mas91] Masbaum studied the homotopy classification of the
path-components of Map(X, BSU(2)) where X is a 4-dimensional CW-complex. He
showed that there are infinitely many homotopy types amongst these mapping spaces.
In contrast, Kono [Kon91| proved the following result regarding the number of homotopy

types of the gauge groups of SU(2)-bundles over S*.

Theorem A (to appear as Theorem 4.24). Let Py — S* be the principal SU(2)-bundle
over S* classified by k € Z, and let Gy, be its gauge group. Then Gy, is homotopy equivalent
to G if and only if (12, k) = (12, k).

This result shows that there are finitely many homotopy types of gauge groups of prin-
cipal SU(2)-bundles over the 4-sphere. Crabb and Sutherland proved a general result
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on the number of homotopy types of gauge groups. In [CS00] it is proved that if the
base space of the principal G-bundle is a finite CW-complex X and G is compact con-
nected Lie group, then the number of homotopy types of gauge groups of the principal
G-bundles over X is finite. As a consequence of this result, considerable attention has
been paid to counting the number of homotopy types of gauge groups (see for instance

[HK06, KKKT07, CHMO08, CS09, Thel0b, Thel2, KKT14]).

Even though the theory of principal bundles is not limited by the dimension of the
base space of the principal bundles, most work has been carried out in the case of low
dimensional spaces. There are at least a couple of reasons that could explain this trend.
The first one is related to the fact that the main gauge theories, such as the Yang-
Mills theory are defined for principal bundles over low dimensional spaces. The second
reason is the big success that the application of gauge theories have had in differentiable
geometry. Gauge theories have substantially contributed to give some answers in the

classification problem of differentiable 4-manifolds.

New ideas coming from mathematical physics suggest that mathematical modelling of
physics of elementary particles might require the use of high dimensional spaces. In
[DT98] Donaldson and Thomas introduced some ideas to construct gauge theories where
the dimension of the base spaces of the principal G-bundles is higher than 4. A decade
later, these ideas were formalised in [DS11], creating in this way a new area of research
that has seen an accelerated development within differential geometry in recent years.
However, the homotopy theory of principal G-bundles over high dimensional spaces and

their gauge groups is largely unknown.

The aim of this work is to explore the homotopy theory of principal G-bundles over
certain 7-dimensional manifolds and their gauge groups, which might be of the interest
in other areas of mathematics such as mathematical physics. The family of 7-manifolds
we are primarily interested in are those arising as the total spaces of S3-bundles over S%.
We also are interested in the homotopy theory of gauge groups of principal G-bundles
over connected sums of the aforementioned sphere bundles. The main results of this
work are presented in the next section. We will keep the same numbering of the results

as the one that is given in the following chapters.

1.2 Main results

The classification of S3-bundles over S* goes back to the work of Steenrod on the clas-
sification of sphere bundles over spheres [Ste44, Ste51]. The following result is the clas-

sification of S3-bundles over S%.

Proposition B (to appear as Proposition 3.44). The equivalence classes of S>-bundles

over S* are in one-to-one correspondence with elements of 73(SO(4)) 2 Z @ Z.
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Let M, be the total space of the S3-bundle over S* classified by (I,m) € Z & Z and
let G be a simply connected simple compact Lie group. Let Pring(M;,,) be the set of
isomorphism classes of principal G-bundles over M; ,,,. Our first result is the classification

of principal G-bundles over manifolds M; ,,.

Proposition C (to appear as Proposition 5.6). Let G be a simply connected simple
compact Lie group such that mg(G) = 0. Then there is a one-to-one correspondence

between Pring (M) and Z,,. More precisely,

(1) if m =0 then Pring (M) L7,

(2) if m > 1 then Pring(M; ) N L.

Moreover, the projection M, 5 8% induces a map
s : [S*, BG] — [Mjn, BG]

which is a bijection if m = 0 and a surjection if m > 1.

Proposition C shows that, assuming 74(G) = 0, the number of isomorphism classes of
principal G-bundles is infinite if m = 0, and finite otherwise. Once the sets Pring(Mj )
have been computed the next step is to obtain a result that allows us to classify the
homotopy types of gauge groups of principal bundles over manifolds M; . Let G (M)
be the gauge group of the principal G-bundle classified by the integer k. The next result
concerns this task for the cases where M;,, has torsion-free homology and M;,, # ST
It is known that Pring(S?*) = Z. Let Gi(S*) denote the unpointed gauge group over S4
classified by k € Z. Given a map S° N 53, with & 2 *, we denote by Y its homotopy

cofibre.

Theorem D (to appear as Theorem 5.10). Let G be a simply connected simple compact
Lie group such that m¢(G) = 0 and let M;,, — S* be a sphere bundle with cross sec-
tion. Let P, — M, be a principal G-bundle classified by k € Z. There are homotopy
decompositions

Ge(Mi0) ~ Gi(S*) x Map*(¥;, G).

Moreover, if | =0 (mod 12) there are homotopy equivalences

Gr(My) ~ Gr(S*) x Q3G x Q7G.

Theorem D implies that the determination of the homotopy type of Gy (M) is reduced
to determining that of Gj(S*) using Lie groups G with 76(G) = 0. These gauge groups
have been computed for different groups G. For example, from [Thel5, Theorem 1.1]
we obtain the following corollary. Let (n,n2) denote the greatest common divisor of n;

and no.
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Corollary E (to appear as Corollary 5.11). Suppose M is either S3 x S* or any twisted
product S®x8*. Localised rationally or at any prime there are 16 homotopy types of

gauge groups of principal SU(5)-bundles over M.

The proof of Theorem D relies on the splitting of the cofibre C,(7) of the projection
map M;, 5 8%, For the case of manifolds with torsion in homology, it is not clear if
analogous splittings exist, however, we are able to obtain a splitting of ¥Cj (7). As
such, the results in Theorem F are stated in terms of the loops on gauge groups rather

than the gauge groups themselves.

The cofibration sequence S™ % S™ — P"+1(m) induces a fibration sequence
Map*(P"*(m), BG) — Map*(S", BG) ™ Map*(S", BG).

Let Q"BG{m} denote the space Map*(P""!(m), BG). If M, has torsion in homology
we have the following result on the homotopy decomposition of the loop space of the
gauge groups up to localisation at a prime p > 5. Let v,(m) denote the valuation of

m € Z at a prime p.

Theorem F (to appear as Theorem 5.15). Let m > 1 be an integer and p > 5 be a
prime. Let By, — M, ., be a principal G-bundle classified by k € Zy, where G is a simply
connected simple compact Lie group. Suppose all spaces are localised at p. There are

p-local homotopy equivalences

(1) Go(Mym) =~ Q"G x G if vy(m) = 0;

(2) QGL(M; ) ~ Q3G x Xy if vp(m) > 1, where Xy, fits into a homotopy fibration
Q'G{m} - X;, — QG.
Moreover, if v,(m) =1 > 1 and p" |k, then X) ~ QG x Q*G{m}.

Chapter 5 ends with the homotopy classification of gauge groups of principal G-bundles
over total spaces of S3-bundles over S* such that M, ~ S7 . In this case G is any
simply connected simple compact Lie group, in particular, the restriction to m4(G) = 0

is not needed.

Theorem G (to appear as Theorem 5.17). Let G be a simply connected simple compact
Lie group and let P, — S” and Py — S” be principal G-bundles. Then

(1) for G = SU(2) = Sp(1) or G = Gy, there is a homotopy equivalence G(S7) ~ G (S7)
when localised rationally or at any prime if and only if (3,k) = (3,k');

(2) for G = SU(3), there is a homotopy equivalence G(S7) ~ G/ (S7) when localised
rationally or at a prime p > 3 if and only if (3,k) = (3,k');
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(3) otherwise, the gauge group of the unique principal G-bundle decomposes as

Go(S) ~ Q"G x G.

Chapter 6 is an extension of the results of Chapter 5. Let o(G) be the order of mg(G).
In the previous chapter all the groups G were such that o(G) = 1. This assumption
simplifies the computation of the homotopy sets [M;,,, BG], since the action of 7(G)
on the homotopy set [M ,,,, BG] in this case is trivial. A new strategy is then required
working with groups G such that o(G) > 1.

Let Mo be the sphere bundle classified by (1,0) € Z @ Z. In the study of gauge groups
of principal G-bundles over M;y when o(G) # 1, the value of [ for each M is crucial.
The following result generalises Proposition C for the case of manifolds with torsion-free

homology.

Proposition H (to appear as Proposition 6.3). Let G be a simply connected simple

compact Lie group. Then

P?“int(Ml’o) =17 X Z(O(G),l)'
Moreover, the projection m : Mo — S* induces a bijection m, : m4(BG) — [M; o, BG] if
(1,o(G)) = 1.
For some manifolds M; g it is possible to extend the strategy used to obtain homotopy
decompositions of gauge groups when o(G) = 1, to the case when o(G) > 1.

Theorem I (to appear as Theorem 6.5). Let G be a simply connected simple compact Lie
group such that o(G) > 1. Given a principal G-bundle P, — S3x;84, if (I,0(G)) = 1,

then there is a homotopy equivalence
Gi(93%,8%) ~ QG x Map*(V;, G).
The case of manifolds obtained as a connected sum of spaces M is also studied in
Chapter 6. Let M be a manifold such that
M ~ M §--- M,
where M, = M;, o.

The manifold M has a cellular structure given by (\/gl:1 S3 v \/f:1 S Ug €. Define
m:M— \/gl:1 S} as the composite

) d a_ d
m: 0 25\ /g, YT\ / s,
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where the maps m; : M;, — S# are projections. The following is a classification of

principal G-bundles over connected sums of manifolds M, .

Proposition J (to appear as Proposition 6.11). If m6(G) = 0 then Pring(M) = Z4.

Moreover, the map
d

M. : @ 74(BG) — [M, BG]
=1

18 a bijection.

A homotopy decomposition of gauge groups is also obtained in the case when M is a

connected sum of torsion-free S3-bundles over S* and G satisfies 76(G) =2 0.

Theorem K (to appear as Theorem 6.12). Let Px — M be a principal G-bundle over a
manifold M ~ M §---4M;, classified by K = (k1,...,kq) € 7%, Suppose G is a simply
connected simple compact Lie group such that 7g(G) = 0. Then there exists a homotopy

decomposition
d

Gr (M) ~ QK(\/ SH x Map*(Cr, BG)

where Crp is the homotopy cofibre of the map I1 : M — \/d S,

1.3 Summary of contents

Chapter 2 contains elementary definitions and some well-known results in homotopy
theory. The material presented in this chapter is the basis for this work and it will be

used throughout the following discussion.

Chapter 3 is dedicated to the discussion of the topology and homotopy theory of
S3-bundles over S4. The classification of S3-bundles over S* is stated in Proposition
3.44. The works of James and Whitehead [JW54], Sasao [Sas65] and Crowley and Es-
cher [CEO03] are discussed in relation to the homotopy classification of the total spaces
of S3-bundles over S%.

In Chapter 4, the topology and homotopy theory of principal G-bundles and their associ-
ated gauge groups are discussed, including some aspects of the classification of principal
G-bundles. An important result on the homotopy theory of gauge groups is presented
in Theorem 4.16, which will be widely used throughout the subsequent chapters. Some
results on the homotopy theory of gauge groups of principal G-bundles over spaces of
dimension n < 4 are included. In the last section of this chapter we lay out some results

on gauge groups over high dimensional manifolds inside and outside of homotopy theory.

The last two chapters of this work contain the proofs of the results stated in Section

1.2. Chapter 5 is entirely dedicated to the homotopy theory of gauge groups related to
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S3-bundles over S*, whereas Chapter 6 contains some additional results for the sphere

bundles and the proofs of the results for connected sums.




Chapter 2

Elements of homotopy theory

In this chapter we present elementary definitions and results in homotopy theory that
will be used to discuss the homotopy theory of gauge groups. We start by looking at
the description of mapping spaces as topological spaces, as well as defining homotopy
sets. We also introduce the definition of an H-space and its dual, a co-H-space. Then
we define two more constructions, namely, fibrations and cofibrations. In the last two
sections of this chapter we discuss some of the more specific constructions that will
become important in the study of the homotopy theory of gauge groups. Theorems and
propositions presented in this chapter are well-known results and most of the proofs are
omitted. The material presented in this chapter is based on [AGPO08, Arkll, DKO1,
Sel08, Whi7g].

2.1 Mapping spaces and homotopy sets

Let X and Y be topological spaces. A map f: X — Y is a continuous function between
X and Y. We denote by Map(X,Y) the set of all maps from X to Y. We can endow
Map(X,Y') with the compact-open topology: take as a subbasis the family of sets w (K, U),
for K C X compact and U C Y open, defined by

w(K,U) = {f € Map(X,Y) | f(K) C U}. (2.1.1)

Given maps f: X — Y and ¢g: A — B, there exists an induced map
g’ : Map(Y, A) — Map(X, B)

defined by g/(a) = goa o f. This way we can obtain two functors F, F’ : Top — Top

in the category Top of topological spaces and continuous maps. For a topological space

9



10 Chapter 2 Elements of homotopy theory

Y, we denote the identity in Y by 1y : Y = Y, or by 1 : Y — Y if the space Y is clear

from the context.

(1) For a fixed topological space Z, let F(—) = Map(—, Z) : Top — Top be the contrav-
ariant functor such that if g : X — Y is any map then

F(g) = 1% : Map(Y, Z) — Map(X, Z). (2.1.2)

(2) For a fixed topological space X, let F'(—) = Map(X,—) : Top — Top be the

covariant functor such that if h : Y — Z is any map then
F'(h) = h'* : Map(X,Y) — Map(X, Z). (2.1.3)

We will usually denote F(g) and F'(h) by g« and h,, respectively, and we will call g,
and h, the maps induced by g and h, respectively.

Definition 2.1. Let X, Y be topological spaces. The product of X and Y, denoted
X xY, is a topological space along with two maps px : X XY — X and py : X XY — Y,
called the projections, that satisfies the following universal property: given two maps
f:Z — X and g : Z — Y, there exists a unique map h : Z — X x Y, denoted by
h = (f,g), such that the diagram

Z
f g

h
XEP x sy 3y
commutes. The diagonal map A : X — X x X is defined by A = (1x, 1x), that is,
Az) = (z, ).

Dually, we define the coproduct of X and Y, X I1Y, by the following universal property:
there exist maps ix : X - XY and 7y : Y — X I1'Y, called inclusions, such that
given two maps f: X — Z and g: Y — Z, there exists a unique map h: X IIY — Z,
denoted by h = {f, g}, making the diagram

XX Xy 2y
commute. The folding map V = X I X — X is defined by V = {1x,1x}.

The following proposition is a consequence of the universal properties of X x Y and
X1y.

Proposition 2.2. Let X, Y, Z be Hausdorff topological spaces such that X and Y are

Hausdorff. There exist homeomorphisms
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(1) Map(X 1Y, Z) = Map(X, Z) x Map(Y, Z),
(2) Map(X,Y x Z) = Map(X,Y) x Map(X, Z). 0

Theorem 2.3 (Exponential Law). Let X, Y, Z be topological spaces such that X and

Y are Hausdorff and Y is locally compact. There exists a homeomorphism
Map(X x Y, Z) = Map(X,Map(Y, Z)). O

Definition 2.4. A topological space X is pointed if it has a distinguished point xg € X
called the basepoint. A map f: X — Y is a pointed map if f(xg) = yo, with z¢ and yo
the basepoints of X and Y, respectively. We denote by Map*(X,Y’) the set of pointed
maps of X to Y. Given two pointed topological spaces X and Y, we define its wedge sum,

or simply wedge, as the quotient space
X VY =X1IY/{zo,y}

where xg and yg are the basepoints of X and Y, respectively. Notice that we can identify
X VY with a subspace of X x Y as

X VY ={(z,y)|lr =z or y = yo}.

Note that for pointed spaces X and Y, their product X xY and wedge sum X VY can be
defined in a categorical setting, as in Definition 2.1, if instead of the category of spaces

and maps we use the category of pointed spaces and pointed maps.

We may define three maps:

(1) given maps f: X — X’ and g : Y — Y’ between pointed or unpointed topological
spaces, define f x g: X xY — X' x Y’ by

(f x g)(x,y) = (f(2),9(y));

(2) given maps f: X — X’ and g : Y — Y’ between pointed topological spaces, define
fVg: XVY - X'VY' by

(fVa)z,y) = (f(x),9(y));

(3) given maps f: X — Z and g : Y — Z between pointed topological spaces, define
{f,9}: XVY = Z by

gy = T Ty =w
g(y) lffE:xO.
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Proposition 2.5. Let X, Y, Z be pointed topological spaces such that X and Y are

Hausdorff. There exist homeomorphisms

(1) Map*(X V'Y, Z) = Map*(X, Z) x Map*(Y, Z),

(2) Map*(X,Y x Z) = Map*(X,Y) x Map*(X, Z). O

Let X,Y be pointed topological spaces with basepoints xy and g, respectively. We
define the smash product of X and Y as the quotient space

X/\Y:XXY/XX{yo}U{ﬁo}XY

Notice that X ANY =X xY/X VY.

Theorem 2.6 (Pointed Exponential Law). Let X,Y, Z be pointed topological spaces such

that X and Y are Hausdorff. There exists a homeomorphism
Map*(X AY, Z) = Map* (X, Map*(Y, 2)). O

Definition 2.7. A Haussdorff topological space X is compactly generated if it satisfies
the following condition: a subset A of X is closed if and only if ANC for every compact
subset C of X.

Definition 2.7 implies that a space is compactly generated if its topology is the weak

topology generated by all of its compact subsets.

Most elementary homotopy theory can be developed in an arbitrary category of (pointed)
topological spaces. However, it becomes necessary to work in a category that is closed
under certain constructions such as product spaces, mapping spaces or identification
spaces, for instance. It is also desirable that properties of mapping spaces such as the
exponential law hold in complete generality. Thus, for now on we will assume that all
spaces are compactly generated. For a further discussion on the convenience of choosing
the category of compactly generated spaces and their continuous maps, we refer the
reader to [Ste67].

Let I denote the closed unit interval [0, 1]. A path on X is a map v € Map(/, X). Given
z,y € X we say that x is connected with y whenever there exists a path « such that
a(0) = z and a(1) = y. This definition is an equivalence relation which divides X into
subsets called path components. The set of path components of X is denoted by mo(X).
We say that X is path connected if mo(X) has a single element.

Definition 2.8. The maps f,g : X — Y are homotopic, denoted by f ~ g, if there exists
amap H : X xI — Y, called a homotopy, such that H(x,0) = f(z) and H(z,1) = g(z).
If X,Y are pointed spaces we say that the homotopy H preserves the basepoint if in
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addition H(xg,t) = yo for all t € I, where xy and yp are the basepoints of X and Y,

respectively.

The concept of homotopy defines an equivalence relation on the set Map(X,Y). Thus
given spaces X and Y we denote by [X, Y] the set of equivalence classes called homotopy
classes of maps from X to Y. We denote by [X,Y]. the set of basepoint preserving
homotopy classes of maps. If the spaces X,Y are locally compact Hausdorff spaces then

we have

[X’ Y] = 7TO(NIap(*X’ Y))

A based set is a set S with a fixed element sq called the basepoint. Let S and T' be based
sets with basepoints sg, to respectively. Then a function f :.S — T such that f(sg) = to
is called a based function or pointed function. The kernel of a based function f: S — T,
denoted ker f, is the set

ker f = f~'(to) = {z € S| f(z) = to}.
The image of a function f is
im f = f(S) ={f(z) |z € S}.

The concept of exact sequence is common in the context of abelian categories. There is a
useful generalisation that works in the category of pointed sets. Let A, B, C be pointed

sets with basepoints ag, by, cg, respectively. A sequence of functions
AL BS e (2.1.4)
such that f(ag) = by and g(bg) = ¢ is called ezact at B if
F(A) = g7 (co),
that is, im f = ker g. The sequence of based sets and based functions

Si 1 fic1 S, fi

is exact if it is exact at each .5;.

We wish to highlight some subtleties that arise due to the lack of multiplicative structures

in pointed sets. In the category of groups for instance, it is well known that a sequence
h f
1-A>B (2.1.5)

is exact if and only if f is injective. For pointed sets and pointed functions, exactness
of (2.1.5) does not necessarily imply that the map f is injective. We ilustrate this point

with two examples.
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Example 2.9. Consider the sequence (2.1.5) with A = {1,2,3} and B = {1,2} (both
with basepoint 1), where f is defined by f(1) =1 and f(2) = f(3) = 2. This is exact at
A since h({1}) = f~1(1) = {1}; however, the map f is not injective.

Example 2.10. For any m € R, let |m] be the integer part of m. Suppose A = B =7
and g : A — B is defined by

\val  ifa>0,
—|vV=a] ifa<o.

Then the sequence of sets 1 — A % B — 1 is exact and g is surjective, but it is not
injective: the set g~1(b) for b # 0 has cardinality 2[b] + 1.

On the other hand, if in addition, the sets A, B and C in (2.1.4) are groups with
basepoints the identity elements, and f and g are homomorphisms, then the sequence of
sets is exact if and only if it is a exact sequence of groups. In particular, g induces an
isomorphism between g(B) and B/f(A).

If Y is path connected, then the set [X,Y] has a unique homotopy class containing all

the constant maps. This class will be used as a basepoint of [X, Y] if one is needed.

Definition 2.11. Let X be a topological space. If n > 1, the n-th homotopy group of
X is
Tn(X) = [9", X]..

A map f: X — Y induces a homomorphism f* : 7,(X) — 7, (Y) for all n > 1, and if
f~gthen f* = g* : 1, (X) — m,(Y) for all n > 0. A topological space Y is n-connected

if m,(Y) =0 for all i <n. A 1-connected topological space is called simply connected.

Definition 2.12. A map f : X — Y is a homotopy equivalence if there exists a map
g:Y — X such that fog~ 1y and go f ~ 1x. If there exists a homotopy equivalence
f: X — Y, the spaces X and Y are said to be homotopy equivalent.

A map f: X — Y is a weak homotopy equivalence if f* : mp(X) — m,(Y) is an
isomorphism for all n. Notice that a homotopy equivalence is also a weak homotopy

equivalence.

2.2 H-spaces and co-H-spaces

Definition 2.13. A pointed topolological space X is an H-space if there is a map
X x X = X such that if x : X — X is the constant map to the basepoint, then the
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diagrams

(1,%) (1)
X—=XxX and X—XxX

X
\ Ju \ P
1x 1x
X X
commute up to homotopy. We say that u is a multiplication. An H-space is homotopy
associative if the following diagram commutes up to homotopy

XxXx XL xxx

[ |»

XxX—"2 X
A map ¢ : X — X is a homotopy inverse of X if the diagrams

(t,1) (L)
X—>XxX and X—F-XxX

SO TN

homotopy commute. An H-group is a homotopy associative H-space X with a homotopy

inverse.

Example 2.14. A topological group G is a set G together with a group structure and a
topology on G such that the function (g, h) — gh™! is amap G x G — G. All topological

groups are H-groups.

Example 2.15. The unit spheres in C and H, S! and S3, are topological groups and
therefore H-groups. The unit sphere S7 in the division algebra Q is an H-space that is

not homotopy associative.
Definition 2.16. For a space X, the loop space QX is defined by
QX ={a: I - X |a(0)=x=a(l)}.
Notice that QX = Map*(S!, X). The map p: QX x QX — QX given by

a(2t) ifo<t<3,

plar, o) (t) = .
o2t —-1) if 5 <t <1,

defines a multiplication in Q.X.

Indeed, the spaces
Q"X = Map* (5", X)

are H-groups.
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Given two H-spaces X and X’ with multiplications p and pu/, respectively, a map
h : X — X' is called an H-map or an H-homomorphism if the following diagram
homotopy commutes

XxX—toXx

o |

X' x X' x

If Y is an H-space with multiplication m, and X is any space, then we can endow
Map*(X,Y) with a multiplication defined as follows. Let f,g € Map*(X,Y) and define
f+ g€ Map*(X,Y) as the composite

Frg: XA xxx % yxy ™y

This can be used to show the following result.

Theorem 2.17. Let Y be an H-group and X be any pointed topological space. Then
[X,Y]. has a group structure. O

Definition 2.18. A pointed topological space Y with basepoint yg is a co-H-space if
there ismap o0 : Y — Y VY, called a comultiplication, such that the diagrams

X—75XVX and X-—-7-XVX

X X

commute up to homotopy, where p; = {1x,*},ps = {*,1x}: X VX — X are the pro-
jection maps to the first and the second factors, respectively. A co-H-space is homotopy

associative if the following diagram commutes up to homotopy

X—72 sXvX

JU Jm

Xvx Yo xvXxvX.

A map j: X — X is a homotopy inverse of X if the diagrams
X725XVvX and X-—72-XVX

\ J{LJ‘} \ Jm}
X X

homotopy commute. A co-H-group is a homotopy associative co-H-space X with a

homotopy inverse.
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Definition 2.19. Let X any pointed space and let XX = X A S! be the reduced sus-
pension of X. Then the map o : ¥ X — XX V XX defined by

(x A 2s, %) if0<s<

olx ANs)= .
(k5,2 N (2s—1)) if 5 <s<

defines a comultiplication in ¥ X. In particular, by taking X = {xg,x1}, this gives a

comultiplication on S?.

Indeed, the spaces
X =XAS"

are co-H-groups.

Given two co-H-spaces X and X’ with comultiplications o and ¢/, respectively, a map

g: X — X' is called a co-H-map if the following diagram homotopy commutes

x—7% .x

xXvx-2Y,xvx

If X is a co-H-space and Y is any space then the mapping space Map*(X,Y’) has a
binary operation. Given f,g € Map*(X,Y) we define f+g=Vo(fVg)oo={f,g}oo,

Frg:xoxvxyvy Ly
The following theorem states that the co-H-structure of X induces a group structure in

homotopy sets.

Theorem 2.20. Let X be a co-H-group and Y be any pointed topological space. Then
[X, Y], has a group structure. O

2.3 Fibrations and cofibrations

Definition 2.21. Let f: X — A and g : Y — A be maps. The pullback of f and g
is a space @ along with two maps v : Q — X and v : Q — Y such that fou = gow.
Furthermore, the pullback satisfies the following universal property. If v’ : Z — X and
v' 1 Z — 'Y are maps such that fou' = go’, then there exists a unique map h: Z — Q
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such that v/ = woh and v =voh, i.e.

— A

commutes. The rectangular diagram above is called a pullback square. Explicitly, we

may take @) to be the space

Q={(z,y) e X xY [ f(z) =gy},

and the maps u and v to be restrictions to ) of the projections ¢; : X x Y — X and
q2: X XY =Y, respectively.

Definition 2.22. The map p : E — B has the homotopy lifting property with respect
to a space Y if, given a homotopy H : Y x I — B and a map h : Y — FE such that
po h(y) = H(y,0), there exists a homotopy H : Y x I — E with H(y,0) = h(y) and
poH = H. Diagrammatically, given any two maps h and H making the square in the
following diagram commute, there exists a map H making the whole of this diagram
commute:

y —" g

Y xI-2.B.

If the map p : £ — B has the homotopy lifting property with respect to Y for all Y then
we say that p is a fibration. We call B the base space, E the total space and the inverse
image of a point b € B, F = p~1({b}), is called the fibre over b. The sequence

FL5E% B,
where 7 is the inclusion, is called a fibration sequence.
Example 2.23. If ' and B are any spaces then the sequence

F— BxF B,

where p; is the projection onto the first factor, is a fibration sequence. The map p; is
called the trivial fibration.

Example 2.24. For any space Y, the path space of Y, denoted PY, is the subspace of
Map(Z,Y’) (with the compact open topology) defined by

PY =Map*(I,Y) = {l € Map(I,Y) | I(1) = yo},
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where g is the basepoint of Y. The map p : PY — Y defined by p(l) = [(0) is called the

path space fibration, and it defines the following fibration sequence
Qv - PY & v.

Proposition 2.25. Let F S ELBbea fibration sequence, and let Y be any space.

Then the sequence of sets

[Y,F], = [V, E]. &5 Y, B].

18 exact. 0

Let f : X — Y be a map. The mapping path space of f or the homotopy fibre of f,
denoted FY, is the space defined by the pullback square

where p is the path space fibration.
Notice that if X i> Y is a fibration with fibre F, then F' ~ F}.

Proposition 2.26. Let

be a pullback square. If f is a fibration, then so is v. In this case u induces a homeo-

morphism u : F, — Fy of fibres. O

Notice that by Proposition 2.26, there is a fibration sequence
QY — Fr — X,

called the principal fibration induced by f.

Theorem 2.27. Let Z be a topological space. For any pointed map f : X — Y the
following sequence is a long exact sequence of sets (i > 0), groups (i > 1), and abelian

groups (i > 2):
= (2,0 — (2,9 X, = (2,97, —

= (2,9 = (2, Ffly = [Z,X]) = [2,Y ). O

Let f: A— X and g : A — Y be maps. The pushout of f and ¢ is a space P along
with maps v : X — P and v : Y — P such that uo f = vog. Moreover, the pushout
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satisfies the following universal property. If v’ : X — Z and v’ : Y — Z are maps such
that v’ o f = v' o g, then there exists a unique map h : P — Z such that v’/ = how and

v/ =how:
A—L%X
p l"
Y%P_‘

The rectangular diagram above is called a pushout square.

An inclusion j : A — X has the homotopy extension property with respect to a space Y if
for every map f : X — Y and every homotopy H : AxI — Y such that H(a,0) = foj(a),
there exists a homotopy H : X x I — Y such that the following diagram commutes

A—

Jx1g

AXI%XX_I

where i4 and ix are inclusions. The map j is called a cofibration if it has homotopy
extension property with respect to any space Y. If j is a cofibration then C; = X/j(A)

is called the cofibre of j, and the sequence

is called a cofibration sequence, where ¢ is the projection onto the quotient space.

Example 2.28. Let X be a space and X x [ the cylinder over X. The cone on X,
denoted CX, is the space X A I obtained by identifying X x {1} U {*} x I in X x I
to a single point. The map j : X — CX given by j(x) = (x,0) defines the following
cofibration sequence

XL ox 55X

Example 2.29. Given any spaces X and Y, the inclusions 77 : X — X VY and
1o : Y — X VY define the cofibration sequences

XL Xvy oY,

Y 2 XVvY 5 X,
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Proposition 2.30. Let

ALX

g

.

Yy ‘> P
be a pushout square. If f is a cofibration, then so is i. In this case, j induces a homeo-

morphism j : Cy — C; of cofibres. O

Proposition 2.31. Let A ENS'GEN C; be a cofibration sequence, and let Y be any space.

Then the sequence of sets
C;, Y] 5 X, Y] 5[4, Y],

1s exact. U]

Given a map f : X — Y, the mapping cone of f or the homotopy cofibre of f is the space
C' defined by the following pushout square

X, cox

)

YéCf
We also write Cy =Y Uy CX.

Notice that if X %5 Y is a cofibration with cofibre C , then C' ~ (Y.

By Proposition 2.30, the sequence

is a cofibration sequence, called the principal cofibration induced by f, and the map J is

called the connecting map.

The next theorem states that the mapping cone construction generates a long exact

sequence of groups and sets.

Theorem 2.32. For any pointed map f : X — Y and space Z, the following sequence
is a long exact sequence of sets (i > 0), groups (i > 1), and abelian groups (i > 2):

= 210 Z) = (B, 2] — [BUX, 2k —
= X, Z] = [C, Z) = [V, Z)s = [ X, Z)s. O

Proposition 2.33. Ifi: X — Y is a cofibration and Z is any space, then the induced
map
ix : Map(Y, Z) — Map(X, Z)
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s a fibration. O

Definition 2.34. For topological spaces X and Y, the evaluation map,
ev:Map(X,Y) x X =Y,

is defined as ev(f,x) = f(z). Applying Proposition 2.33 to the case when X = x is a

point and Z is a based space we obtain the fibration sequence
Map*(Y, Z) < Map(Y, Z) <5 Z

called the evaluation fibration.

2.4 Homotopy actions and coactions

Given a space X and an H-space W with multiplication m, a (right homotopy) action of

Won X isamap ¢ : X x W — X such that the following diagrams homotopy commute

X2 oXxxW and XxWxW-2Lxxw

\ } X i ﬂvxvm# )?

where j is the inclusion. We say that W acts on X by ¢.

Example 2.35. If X is a homotopy-associative H-space, then X acts on itself by mul-

tiplication.

Example 2.36. Let f: X — Y be a map. Consider the principal fibration sequence
av L Fp B X,

where j is the inclusion and p; is the projection onto the first factor. Recall that the
loop space 2X is an H-space. Let m : QX x QX — QX be the multiplication in Q2X.
Notice that m can be extended to a map m’ : PY x QY — PY by

o(2t) ifo<t<i,

m/(a, ') (t) =
o/(2t—1) if$<t<1L

The map ¢ : Fy x QY — Fy defined by ((z,w),v) = (z,m/(w,v)), for (z,w) € Fy and
v € (1Y, is an action of QY on Fy.

Proposition 2.37. Let QY %P2 Xbea principal fibration and suppose there is a
map s: X — F such that pos >~ 1x. Then there is a weak homotopy equivalence

F~QY x X.
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Proof. Let ¢ : F'xQY — F be the homotopy action of QY on F. Consider the homotopy

commutative diagram

* X 1

*x QY QY x QY 25 QY (2.4.1)

.

XxQv 2L pwy —2 L F

Xxsk— s X xs—— 3 X

where m is the homotopy multiplication on Y and the columns are fibration sequences.
Notice that the first and the third rows are homotopy equivalences. Applying the functor
m«(—) to the diagram and the five lemma we get that the composite of the middle row
induces isomorphisms in homotopy groups. This implies that the middle row is a weak

homotopy equivalence, as asserted. O

Homotopy actions induce actions of a group of homotopy classes of maps on a homotopy
set as follows. Let W be an H-group and ¢ : X x W — X be a homotopy action of W
on a space X. If Z is any space and f : Z — X and o : Z — W are any maps, then
define f* to be the composite

fxa

758 725z xww 4 x.

Thus the function 6 : [Z, X|. x [Z, W], — [Z, X]. defined by 0(f,a) = f* € [Z, X], is
an action of the group [Z, W], on [Z, X]..

We can use the action of groups on homotopy sets to improve exactness of the end terms
of the exact sequence that appears in the statement of Theorem 2.27. Let f: X — Y

be a map and let
Qf) o* v* I
= [Z2,0X] ——= [Z,QY |« — [Z, Ffly — [Z, X — [Z,Y ]

be the exact sequence of homotopy sets induced by f. The proof of the next theorem can
be found in [Ark11].

Theorem 2.38.
(1) Let p,o € [Z, Ffly. Then v*(p) = v*(0) if and only if there exists v € [Z,QY ], such
that o = p7.

(2) Let~,6 € [Z,QY].. Then 0*(y) = 0*(0) if and only if there exists € € [Z,QX], such
that v = (Qf)*(e) + 0. O
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Given a space X and a co-H-space W with comultiplication o, a (right) coaction of W
on X isamap ¢ : X — X VW such that the diagrams

XY XVvW and X—% LXVW

b
Pv1

X
X XVW —XVWVW,
where p; is the projection onto the first factor, homotopy commute.

Example 2.39. We can define a coaction for a principal cofibration as follows. Let

f: X — Y be amap and consider the principal cofibration sequence
vy 4o 4 onx,

where j is the inclusion and ¢ is the projection. Recall that Cy = CX Uy Y is the
mapping cone of f. The map 1)y : Cy — Cy V EX defined by ¢(y) = (y,*) for y € Y and

((x,2t), %) ifo<t<i,
wo(l’,t) = 2
(%, (z,2t — 1)) if3<t<1

for z € X defines a coaction of XX on (Y.
A homotopy coaction induces an action of a group of homotopy classes of maps on a
homotopy set. Let @ be a co-H-group with comultiplication ¢, and ¢ : X — X V @ be

a coaction of Q on X. If Z is any space and g : X — Z and B : Q — Z are any maps,
then define ¢” : X — Z as the composite

x5 xvQ2 vz Yz,
An action of 0 : [X, Z]. x [Q, Z]« — [X, Z]. is defined by 0(g, ) = ¢° € [X, Z]...
Using the action 6 we can give a refinement of the last terms in Theorem 2.32 as follows.
Let f: X — Y be a map and let

be the exact sequence of homotopy sets induced by f. The proof of the following theorem
can be found in [Ark11].

Theorem 2.40.

(1) Let p,o € [Cy, Z]«. Then q*(p) = q*(0) if and only if there exists v € (XX, Z]« such
that o = p7.
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(2) Let v,§ € [£X, Z]«. Then §*(y) = 0*(§) if and only if there exists € € [XY, Z]« such
that v = (X f)*(e) + €. O

2.5 Samelson and Whitehead products

We define two maps that will be crucial in the following chapters. Let G be an H-group.
Given maps f € [X,G]« and g € [Y, G|, we define the map ¢(f,g) : X x Y — G as the
composite

XxYﬁ)GxGiG,

where [—, —] is the commutator map, which is defined pointwise as [z,y] = zyz 'y~
The restriction of [—, —] to G V G is nullhomotopic. Therefore, there exists an extension
[—,—]: GAG — G, and therefore [—, —] factors as
GxG-GAG TS G
(£.9)

Hence the map c(f, g) factors as X xY — X AY — G, where (f, g) is the composite
[~ Jo(fAg): XAY - GAG—G.

The map (f,g) : XAY — G is called the Samelson product of f : X - Gandg:Y — G.

From the cofibration sequence
XVY 5 XxY 5 XAY 5 EXVYY (2.5.1)
we obtain an exact sequence
0= [XAY,Gl. — [X xXY,G], — [X VY, G]..

Therefore, by Theorem 2.40, the Samelson product (f,g) is defined uniquely up to ho-
motopy.

Samelson products are natural with respect to maps f1 : X1 — X, g1 : Y1 — Y, and
H-maps of H-spaces ¢ : G — H, that is

(Yofofi,pogogr)~vo(f g)o(fing).

Observe that if G is homotopy commutative then the commutator is nullhomotopic and

then we have the following.

Proposition 2.41. The Samelson product vanishes if G is homotopy commutative. [
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Given maps f: XX — Z, §: XY — Z with respective adjoints
rxBorx¥az  g.vEBasvy¥az

where F is the suspension map, the Whitehead product [f,g] is defined to be the adjoint
of the Samelson product (f, g):

1.9 :=(x AY) Y sz < 7

where ev is the evaluation map. As with Samelson products, Whitehead products are
natural with respect to maps. That is, given f1 : X1 - X, g1: Yy =Y and h: Z — 7’
we get

[hofoXfi,hogoXg|~hol[f,gloX(fiAg).

Notice that if Z is an H-space then 27 is homotopy commutative. Then by Proposition
2.41 we have the following.

Proposition 2.42. If Z is an H-space then the Whitehead product [f, g] is trivial. O]




Chapter 3
Topology of S3-bundles over S4

In this chapter we discuss the topology and homotopy theory of S3-bundles over S%.
We start by defining the notions of C'W-complexes, manifolds and fibre bundles. We
introduce the definition of a Moore space and then we discuss briefly the theory of
localisation of spaces. The classification of S3-bundles over S* is stated in Proposition
3.44. Then we move towards the homotopy classification of the total spaces of the sphere
bundles M. In Theorem 3.45 we present a homotopy classification of the spaces M as it
was given in the work of James and Whitehead [JW54]. In Proposition 3.47, we present
a result due to Sasao regarding the homotopy theory of C'W-complexes with homology
groups isomorphic to some of those of the spaces M [Sas65]. We finish this chapter
by presenting a classification of total spaces of S3-bundles over S* due to Crowley and
Escher [CE03]. This result is stated in Theorem 3.48.

3.1 CW-complexes and Moore spaces

Throughout this thesis we will denote the n-th homology and cohomology groups of a
space X with the coefficient ring R by H,(X;R) and H"(X; R), respectively, and we
will use H,(X; R) and H"(X; R) for the reduced homology and cohomology groups. In
case the coefficient ring is R = Z, the ring R will be omitted from the notation. We will
also write H,(X,A), H*(X,A), H,(X,A) or H*(X, A) for the (co)homology groups of
a pair (X, A).

Definition 3.1. A CW-complez or a cellular complex is a topological space X construc-
ted inductively as follows:
(1) Start with a discrete space X°. The elements of X© are the 0-cells.

(2) Let D™ denote the n-disk and €™ denote the open n-disk. Let A = {e]'} be a (possibly
empty) collection of open n-disks indexed by i € I. If A = ), set X" = X" 1.

27
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Otherwise, form the n-skeleton X™ by attaching open n-disks e}, called simply n-
cells, to X"~ via maps ¢; : S"~! — X"~1. The maps ¢; are called attaching maps.
We define X as the quotient space

X" :Xn—l H”L DZL/ ~

where © ~ ¢;(x) for € 0D} and 9D! is the boundary of the n-disk D} = D".
Thus as sets X" = X", e?.

(3) This process can end at a finite stage, setting X = X" for some n < oo, or can

continue indefinitely, setting X = J,, X"

Each cell e in a CW-complex has a characteristic map ®; : D™ — X which extends the

attaching map ¢; and is a homeomorphism from the interior of D}* onto e'.
Alternatively, we can define a C'W-complex X as follows. Let the n-skeleton of X be
defined by the pushout square

n—1 10j;
msP—! — 11Dy

(2

1,

Xn—l J Xxn

where ¢|gn-1 = @; and the maps j,j; are inclusions. Then X™ or any space homeo-

morphic to X™ is a CW-complex of dimension at most n.

Example 3.2. The sphere S™ can be given the structure of a CW-complex with one cell
e? and one cell e,
Sn—l D"

1]

60:* S

where ¢ is the constant map.

Example 3.3. Given S® C R"*! —{0}, n > 1, the anitpodal map p : S™ — S™ is defined
by p(x) = —x. The real projective n-space RP™ can be obtained as the identification
space with the equivalence relation z ~ p(x). We can inductively construct RP™*! with
RP" as the n-skeleton

S" —— pntl

I

RP" —— RPH!
where the attaching map ¢,41 is an identification map. In this construction, RP" has
cells in dimensions 0,1,2,3,...,n. In this case it is not difficult to see that RP! is

homeomorphic to S!.
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Example 3.4. Similarly, for C and H we can define the complex projective n-space
CP"™ and the quaternionic projective n-space HP"™ and give them cellular structures.
For instance, CP? has a cellular structure e® U e? U e*, and the last attaching map
n:83 = 82 = CP! is a generator of the group 73(5?) = Z. The quaternionic projective
2-space HP? can be given the cellular structure e U e* U e®. The non-trivial attaching

map v : S7 — S§* =2 HP! is a generator of an infinite cyclic subgroup of m7(5*) = Z@®Z1s.

Theorem 3.5 and Theorem 3.7 are due to Whitehead [Whi49].

Theorem 3.5. If X and Y are CW-complexes and f : X — Y is a map, then f is a

weak homotopy equivalence if and only if f is a homotopy equivalence. O

For the next theorem, we need the following definition:

Definition 3.6. Let n > 1 be an integer or n = oo, and let f : X — Y be a map.
We say f is an n-equivalence if the induced map f* : m;(X) — m;(Y) is an isomorphism
for all ¢ < n and an epimorphism for ¢ = n. We say f is a homological n-equivalence if

f* 1 Hi(X) — H;(Y) is an isomorphism for all ¢« < n and an epimorphism for i = n.
Theorem 3.7. Let X and Y be path-connected CW -complexes, let f: X —Y be a map
and let n € Z U {oo} with n > 1.

(1) If f is an n-equivalence, then f is a homological n-equivalence.

(2) If f is a homological n-equivalence and X, Y are simply connected, then f is an

n-equivalence. ]

We use Theorem 3.7 to obtain the following.

Proposition 3.8. Let Y Yo% X bea principal cofibration where all spaces are
simply connected CW -complexes. Suppose there exists a map s : C — Y such that

soq >~ 1y. Then there is a homotopy equivalence
C~YVIX.

O

Proof. Let ¢ : C — C'VXX be a homotopy coaction of XX on C. Consider the homotopy

commutative diagram

Yy — = YVs—— Y (3.1.1)

N

c—Y sovex YL, yvyx

N

YX . nXVvEX P L yX.
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where o is a comultiplication in ¥ X, py is the projection and the columns are cofibration
sequences. The first and the third rows are homotopy equivalences. Applying the five
lemma to the extended commutative diagram of homology groups induced by (3.1.1)
we obtain that the middle row induces an isomorphism in homology. By Theorem 3.7,
as all spaces are simply connected C'W-complexes it follows that the composite in the
middle row is a weak homotopy equivalence. And finally by Theorem 3.5 it is a homotopy

equivalence. O

We now introduce Moore spaces.

Definition 3.9. Let X be a co-H-space. A map of degree k, k : X — X, is defined
as the composite X LN \/f;:1 X Y x , where uy is a choice of k-fold comultiplication.
The n-dimensional Moore space P"(k) is the homotopy cofibre of the degree k£ map on
S™=1: that is, P"(k) is obtained attaching an n-cell to an (n — 1)-sphere by a map of
degree k, so this space is defined by the following pushout square

Sn—l Dn

| ]

Sn=t —— P (k).

The homology groups of the Moore space are given as follows:

~ n Zk ifi:n—l,
H;(P"(k)) = N
0 ifi#n-—1,

where Zj, denotes the cyclic group of order k.
Example 3.10. The n-sphere S™ is an n-dimensional Moore space, P"(1).
Example 3.11. The real projective space RP? is homotopy equivalent to the Moore

space P?(2).

Let k = pi'p? -+ pim with {p;}/, distinct primes and {r;}.; positive integers. Let
X =P"(p{*) V-V P"(pjm), with n > 2, then we have

Hn—l(X) = Hn—l(Pn(p?)) D---D Hn_l(Pn(p:)T) >~ Zp;l @D Zp:nm o~ Zk

Notice that H,_1(X) is the only non trivial reduced homology group of X. Now the
only non-trivial reduced homology group of the Moore space P" (k) is H,_ 4 (P™(k)) = Z.

Indeed there is a homotopy equivalence

P*(k) ~ P"(p") v P"(py?) V-V P™(pir).
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For n > 2, the Moore space P"(r) of degree r is the suspension X P"~*(r). We use Moore
spaces to define homotopy groups with coefficients. If X is a pointed topological space,

then the n-th homotopy group of X with coefficients in Z, is
(X Zy) = [P™(1), X]x.

Hence for n > 3, m,(X;Z,) is an abelian group since P"(r) is a double suspension. If X
is an H-space, the homotopy set [P"(r), X]. is a group for n > 1 and an abelian group
for n > 2.

Theorem 3.12. Forn > 2 there is a natural exact sequence

0 = mo(X) @ Zyy = mp(X; Zy) — Tor?(mp_1(X),Zs,) — 0. 0

3.2 Localisation of spaces

The material presented in this section is based mainly in [Neil0].

Definition 3.13. Let P C Z be the set of all primes, and let
P=sT

be a partition. An abelian group A is called S-local if every element of A is uniquely
divisible by all elements of T, that is, multiplication by ¢, ¢ : A — A is an isomorphism
forallgeT.

Example 3.14. Let T be the multiplicative monoid generated by 7. The subring of the

rationals

Zﬂ’ﬂzzwy:{Z\aEquT}
is an S-local abelian group, or equivalently, a Zg)-module.

Definition 3.15. A map of abelian groups f : A — A’ is an S-local equivalence if
f*: Hom(A',B) — Hom(A, B) is a bijection for all S-local abelian groups B. An S-

localisation of A is an S-local group A such that there is an S-local equivalence [ : A — A.

For any abelian group A, an S-localisation exists and is given by
1 a —
A[T ]:A(S): 5|a€A,q€T .

Definition 3.16. A simply connected pointed space X is called an S-local space if the
homotopy groups mx(X) are S-local for all k¥ > 1. For simply connected spaces X the
universal coefficient theorem (Theorem 3.12) shows that X is S-local if and only if the
homotopy groups 7 (X;Zg) are trivial for all £ > 2 and for all g € T'.
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Definition 3.17. A map f : A — B of simply connected spaces is an S-equivalence if
the map of S-local homology f. : Hi(A;Z(s)) — H.(B;Z(s)) is an isomorphism.

Localisation of a space is obtained as a consequence of inverting a specific map a of
spaces. For simply connected spaces, the Farjoun-Bousfield localisation theory specialises
to the localisation of spaces at a set of primes S. This includes the rationalisation
X = X9 = X ®Q, localisation at a prime p, X — X(,) = X ® Z(y), and localisation
away from a prime X — X [H =XQ®Z [ﬂ This theory shows that S-localisation
exists and is unique up to homotopy equivalence. Thus given a simply connected space
X there is map A : X — X(g) such that:

(1) X(g) is S-local.

(2) A: X — X(g) is an S-equivalence.

(3) for all maps f: X — Y with Y and S-local space, there is up to homotopy a unique
extension f 1 X(s) > Y of f.

Theorem 3.18. If X — Y is a map of simply connected spaces, the following are

equivalent:

(1) H(X) — H.(Y) is an S-local equivalence
(2) m(X) = (YY) is an S-local equivalence

(3) X(s) — Y(s) is a homotopy equivalence. O

The following result shows that the homotopy type of a space may be decomposed into

those of its localisations. A proof of this result can be found in [MP11].

Let I be an indexing set and let T; be a set of primes for each i € I. Let T' = (U, T3,
and S = ();c; T;. Additionally, we assume that T; N T; = S for all i # j and that T; # S
for all : € I. Let X be a pointed connected topological space such that 71 (X) is abelian.
Let

¢ X = Xg),

¢i X = X(Ti)a
Vi s Xy = X(s)

be localisations of X such that ;¢; ~ ¢ for each ¢ € I. Let

¢s: [[ Xz = (] X))

el i€l

denote an S-localisation.




Chapter 3 Topology of S®-bundles over S* 33

Theorem 3.19. Let X be a T-local space. The following diagram is a homotopy pullback

square

(¢4)
X ——— ILer Xy

‘R

We state now some results on the homotopy theory of Moore spaces as it is discussed in

[CMNT9], which use localisation techniques.

Proposition 3.20. Let p be an odd prime. If m > 3 the maps p" : P™(p") — P™(p")

are all nullhomotopic. ]

Proposition 3.21. Let m,n > 2 and suppose and p is an odd prime. Then there is a

homotopy equivalence
P (pr) v PP (pT) = PR (p") A P (p"). O

Proposition 3.22. Ifp is an odd prime and n > 1, then there is a homotopy equivalence

0 (\/P4n+2kn+3(pr)> % S2n+1{pr} ~ QP2n+2(pT),
k=0

where S™{p"} denotes the homotopy fibre of the map p" : S"—S". O

3.3 Manifolds

In this section we give a brief introduction to the topology of manifolds. In addition to

the references mentioned at the beginning of this chapter, we use [Ark11, Hat02].

A manifold of dimension n or an n-manifold is a Hausdorff space M in which each point
has an open neighbourhood homeomorphic to R™. By a result of Milnor [Mil59] any

compact manifold M is homotopy equivalent to a C'W-complex.

The dimension of M is characterised by the fact that for x € M, the homology group
H;(M,M — {z}) is nonzero only for i = n:

H;(M,M —{z}) = H;R",R"—-{0})
=~ H; 1 (R"—{0})

ﬁi_l(snil).

12
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An n-manifold with boundary is a Haussdorff space M in which each point has an open

neighbourhood homeomorphic either to R™ or to the space
RY = {(z1,...,2,) € R" | 2, > 0}.

Given a point z € M, if an open neighbourhood of x is homeomorphic to R”, then
H,(M,M — {z}) = 0, whereas if it is homeomorphic to R", then H, (M, M — {z}) = Z.
The subspace of points x with Hy,(M,M — {z}) = 0 is called the boundary of M. A

compact manifold without boundary is called closed.

A local orientation of a manifold M without boundary at a point = is a choice of
generator p, of the infinite cyclic group H,(M,M — {x}). An orientation of an n-
dimensional manifold M is a function x — p, assigning to each x € M a local orientation
e € Hp(M, M — x), satisfying the following local consistency condition: each x € M
has a neighbourhood R™ C M containing an open ball B of finite radius about x such
that all the local orientations p, at points y € B are the images of a generator pup of
H,(M,M — B) = H,(R",R"™ — B) under the maps H,(M,M — B) — H,(M, M —{y}).

If an orientation exists for M, then M is called orientable.

A fundamental class for a closed orientable n-manifold M with coefficients in R is an
element of H, (M; R) whose image in H, (M, M — {x}; R) is a generator for all z. Given
a topological space X, let C,(X; R) and C"(X; R) be the group of singular n-chains and
n-cochains of X, respectively, with coefficient ring R. Define an R-bilinear cap product
~: CL(X;R) x CY(X;R) — Cy_i(X;R) for k > [ by setting

g™ SO = SD(U|[U0,...,UZ])O-‘[Ul,.‘.,vk]

for 0 : A¥ — X and ¢ € CY(X;R), where A* is a k-simplex. There is an induced cap

product
Hy(X;R) x H'(X; R) = Hy_(X; R),

which is R-linear in each variable.

Poincaré Duality is stated below. A proof of this theorem can be found in [Hat02].

Theorem 3.23 (Poincaré Duality). Let M be a closed and oriented n-manifold with
fundamental class [M] € H,(M;R). The map ¢ : H*(M; R) — H,,_(M; R) defined by

s an isomorphism for all k. O

The rank of Hy(M;Q), called the k-th Betti number, describes the number of k-cells in

M. Using the Universal coefficient theorem for cohomology it can be shown that

H¥X) =7 & T,
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where [ is the k-th Betti number of X and Tj_; is the torsion part of Hy_1(X). Thus
Hi(X) = H*(X) up to torsion. The Poincaré duality theorem states that the k-th
cohomology group of a closed, oriented n-dimensional manifold M is isomorphic to the

(n — k)-th homology group of M.

Definition 3.24. Let M; and Ms be oriented closed connected n-manifolds. Their
connected sum MM, is an oriented closed connected n-manifold defined by deleting
the interiors of n-cells By in M7 and By in My and attaching the resulted punctured
manifolds to each other by a homeomorphism h : 0B; — dBs, so that

MMy = (Ml — IntBl) Up (M2 — Inth). (331)

3.4 Fibre bundles

In Example 2.14, we defined a topological group as a group G together with a topology
on G such that the binary operation and the inverse functions are continuous respect to

the topology. Now we define an important family of topological groups.

Definition 3.25. A Lie group G is a group that is a differentiable manifold such that
the multiplication map
uw:GxG—G, (g,h)— gh

and the inversion map

1:G—=G, g—g!

are differentiable. If the underlying manifold of a Lie group G is connected or compact
then we say that G is connected or compact. Two Lie groups are locally isomorphic if
there exists a homeomorphism between two neighborhoods of the identities compatible
with the product. A Lie group is orientable as manifold and, indeed, an orientation at
the identity can be translated to an arbitrary point by left translation. Any Lie group G
is homeomorphic to K x R™, with K a compact subgroup of G and n = dim G — dim K.

Example 3.26. Let GL(n,R) be the set of real invertible n x n matrices with the group
structure given by matrix multiplication and the topology given as follows. Using the
isomorphism as vector spaces GL(n) = R™, we can think of A € GL(n,R) as an element
of R"”. In this way GL(n,(R)) can be regarded as an open subspace of R"* with the
relative topology. Now as R"™ is a differentiable manifold, so is any open subset. Thus
GL(n,R) is a differentiable manifold. The map GL(n,R) x GL(n,R) — GL(n,R) given
by (A, B) — AB~! is continuous since the entries of AB~! are rational functions of A
and B. Then GL(n,R), called the general linear group of real n x n matrices, is a Lie
group. Analogously, it is easy to check that the group GL(n,C) of complex invertible

n X n matrices is also a Lie group.
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Example 3.27. Every subgroup H of a topological group G with the relative topology
is also a topological group. The following are subgroups of GL(n,R) :

(1) The special linear group SL(n,R) = {A € GL(n,R) | det(A) = 1}, where det(A) is
the determinant of A.

2) The orthogonal group O(n,R) = {A € GL(n,R) | AAT =1}, where AT denotes the
(2)

transpose of A.

(3) The special orthogonal group SO(n,R) = O(n,R) N SL(n,R).
The following are subgroups of GL(n,C):

(1) SL(n,C) = {A | det(A) = 1}.
(2) O(n,C) = {A | AAT = 1}.

(3) The unitary group U(n) = {A | AAT = 1}, where A denotes the complex conjugate
of A.

(4) The special unitary group SU(n) = U(n) N SL(n,C). In the case n = 2 it is also
known that S3 = SU(2).

From now on we will omit R from our notation for the general linear groups of real

matrices and their subgroups.

Definition 3.28. A bundle consists of a topological space E called the total space, a

space B called the base space, a map
p:EF—B

of F onto B called the projection, and a space F called the fibre, such that for each
element b € B, the set p~!(b) is homeomorphic to F. Finally for each b € B there is a
neighbourhood V' of b and a homeomorphism ¢ : V x F' — p~!(V) such that the diagram

VxF— W)

N

commutes, where p; is a projection onto the first factor. Intuitively, we can think of a
bundle as a union of fibres parametrized by B and glued together by the topology of E.
If p: F — B is a projection with fibre F' we say that

FSELB

is a bundle.
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Example 3.29. The map p : F' x B — B given by the projection onto the second factor

is a bundle map and the bundle defined in this way is called trivial.

Example 3.30. Let F = R,C or H be a field and let d € Z such that if F = R,C,H
then d = 1,2,4, respectively. Then the sphere Sdn+1)=1 can be viewed as a subset of
F*+1 for each n > 0, as a subset of all elements of norm 1. In particular, S% ! C F.
Define an equivalence relation on S¥mtD-1 < Frtl by setting z ~ y if @ = ey for
some ¢ € S C F. Then the equivalence classes are homeomorphic to S?~!, and the

projective plane FP" is just the quotient space S4m+1)—1 / ~. Thus we have a bundle
gd—1 __, gd(n+1)-1 i> Fp"

where maps ¢, called Hopf maps, are just the projection maps Sm+1-1 Sd("+1)_1/ ~.

A cross section of a bundle (E,p, B) is a map s : B — E such that ps = 1p.

A bundle carries, as a part of its structure, a group G of transformations of the fibre F'.

We will include this information in the definition of coordinate bundle.

Definition 3.31. Let G be a topological group. A (right) action of G on a topological
space Y is a map
0:Y xG—Y

such that, denoting 6(y, g) by yg, the following hold:

(1) Foreach y €Y, g,h € G, y(gh) = (yg)h;

(2) For each y € Y, yl =y, where 1 is the identity of G.

In this case we say that G acts on Y and Y is a (right) G-space. Notice that for a
fixed g € G, the map y +— yg is a homeomorphism of Y onto itself. Thus 6 gives a

homeomorphism from G into the group of homeomorphisms of Y.

Similarly, a space X is a left G-space if there exists a map 6 : G x Y — Y such that
O(gh,y) = 6(g,0(h,y)) and O(1,y) =y for g,h € G and y € Y. Notice that for any left
action  : G x Y — Y we can define a right action Y x G — Y by (y,9) — 0(¢7 %, v).
Hence in general these concepts are equivalent and it is usually enough to consider only

right actions or only left actions.

Definition 3.32. We say that G acts

(1) effectively on Y if whenever yg =y for all y € Y, we have g = 1;

(2) transitively on Y if for any y;,y2 € Y there exists an element g € G such that
Y2 = Y19;




38 Chapter 3 Topology of S®-bundles over S*

(3) freely on'Y if whenever yg = y for some y € Y, we have g = 1.

Definition 3.33. Let E, B, F be topological spaces, p : E — B a projection, G a
topological group acting effectively on F', and {V;};c; an open cover of B. Suppose that

for each ¢ € I we have a homeomorphism
¢i - Vix F—p H(V3)

such that the diagram

Vix F— 2 (W)

BN

commutes. For b € V;, define a homeomorphism ¢; : F — p~1(b) by ¢;p(x) = ¢i(b, x).
Then the tuple £ = (E,p, B, F,G) is said to be a coordinate bundle if in addition the

following two conditions are satisfied:

(1) for each pair ¢,j € I and each b € V; NV} the homeomorphism
¢ ybip: F—F
coincides with the map f +— fg for some g = g;(b) € G}
(2) for each pair 7,j in I, the function
9;::VinV; =G

18 continuous.

The maps ¢; are called the coordinate functions, the maps g;; are called the coordinate

transformations, and G is called the structure group.

As in the definition of bundle, the spaces E, B and F' are called the total space, the base
space and the fibre, respectively. Two coordinate bundles £ and £ are said to be strictly
equivalent if they have the same total space, base space, projection, fibre, and group,
and their coordinate functions {¢;}, {¢}.} are such that

_ -1
Grj(2) = &'} 1) e
with « € V; N V], coincides with the action of an element g € G, and the map

ng:V’jﬂVkI—}G
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is continuous. This equivalence condition can be stated just by saying that the union of
the two sets of coordinate functions is a set of coordinate functions of a bundle. We can

check that this indeed defines an equivalence relation.

Definition 3.34. A fibre bundle [£] is an equivalence class of coordinate bundles. Notice
that we can regard a fibre bundle as a maximal coordinate bundle with respect to all

possible coordinate functions.

In further discussions we will study fibre bundles through their representatives, coordin-

ate bundles. From now on by a bundle we will mean a coordinate bundle.

The real orthogonal linear group O(n + 1) acts transitively on S™, which is regarded as
the unit sphere in R**+1.

Definition 3.35. A linear n-sphere bundle or an S™-bundle is a bundle in which the fibre
is an n-sphere and the structure group is the orthogonal group O(n + 1). An orientable
n-sphere bundle is a bundle in which the fibre is an n-sphere and the group is the special

orthogonal group SO(n + 1).

Definition 3.36. A bundle £ = (E,p, B, F,G) is called a principal G-bundle or a prin-
cipal bundle if F' = G and G acts on F' by left translations.

In the next chapter we reintroduce the definition of a principal G-bundle giving more
information on the properties of the spaces and maps involved. For the purpose of this
chapter we can keep Definition 3.36. Next, we give an example of a principal G-bundle

which we will use in further discussions.

Example 3.37. There is a principal Zs-bundle
Zy — 5% 2 S0(3).

To see this define the map p as follows. Regarding S® as the group of quaternions of norm
1, the subset of S such that the real part is zero is a 2-sphere S2. Notice that this subset
is the intersection of S with the subspace of H orthogonal to 1. Let p : S® — SO(4) be

the continuous homomorphism defined by

p(u)v = uvu™?

where u,v € S3. We now show that p(u) € SO(3). Clearly p(u) is a linear map, since
v+ yvu~ ! is linear in the v, € R, where v = vy + ivo + jus + kvy, and « € {1,2,3,4}.
The transformation is orthogonal as [uvu™!| = |ul|v||u|~! = |v|. Since ulu~! = 1, and S?
is orthogonal to 1, it follows that p(u) fixes S?. Now since reals are the only quaternions
that commute with 4, j and k, it follows that the kernel of p is the set {1,—1}. The
coset of this subgroup are the pairs, v and —u. Thus by Example 3.3 we obtain that

p(S3) is homeomorphic to RP3. It is not hard to see that the one parameter subgroup
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of matrices leaving fixed the quaternions 4, j and k are contained in p(S®), which implies
that SO(3) C p(S3). Therefore p is a projection map and Zo acts on S3 with the

antipodal map.

Example 3.38. Let us consider the standard action of SO(n + 1) on R"*1. We define
the map p: SO(n+1) — S™ by

p(u) = uep,

where u € SO(n+1) and eg = (1,0, --- ,0). The homomorphism h : SO(n) — SO(n+1)

defined by
10
V=

allows to identify SO(n) with the subgroup of SO(n+1) that fixes eg. The multiplication
in SO(n + 1) defines an action of SO(n) on SO(n + 1), (u,v) — wv for u € SO(n + 1)
and v € SO(n). Now let € S3. If u € p~!(x) then uey = x and uvey = uey = z.
The action of SO(n) on SO(n + 1) is therefore fibre preserving and free. We can regard
SO(n + 1) as the total space of a principal SO(n)-bundle over S,

SO(n) — SO(n+1) & sm.

Theorem 3.39. If G is the topological group of transformations of F', and {Vi;}, {gi;}
are sets of coordinate transformations in B, then there exists a bundle £ with base space

B, fibre F, group G and the coordinate transformations {g;;}. O

Definition 3.40. Let £, £ be two bundles having the same fibre and the same structure
group. A bundle map is a map f: E — E’ with the following properties:

(1) f maps each fibre p~1(b) = F}, of E homeomorphically onto a fibre Fjy of E’ inducing

a continuous map u : B — B’ such that the diagram

cominutes;
(2) ifbeV;n u‘l(Vk’), and fp : F, = Fy is the map induced by f, then the map
gr;i(b) = ¢’/;11)/fb¢j,b :F = F
coincides with the operation of an element of G;

(3) the map gx; : V; Nu™! (V) — G is continuous.
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It is not hard to verify that bundles and bundle maps form a category. Given two bundles
¢ and ¢ having the same base space, fibre and group, a bundle map u : E — E’ is called

an equivalence over B if the diagram

E—25F
| b
B——8B

commutes.

We can also replace the spaces B, F' and G by homeomorphic spaces to reduce the

number of equivalence classes.

Definition 3.41. Given an arbitrary bundle £ = (E, p, B, F, G), the associated principal
G-bundle of £ is the bundle given by Theorem 3.39, where F' = G.

The next theorem relates the classification of bundles to that of their associated principal

G-bundles. In Chapter 4 we will discuss the classification of principal G-bundles.

Theorem 3.42. Two bundles ¢ = (E,p, B, F,G) and ¢’ = (E',p/, B, F, G) are equivalent

if and only if their associated principal G-bundles are equivalent. O

The next proposition states that bundles have the homotopy lifting property.

Proposition 3.43. Ifp: E — B is a bundle map with fibre F', then p is a fibration with
fibre homeomorphic to F. O

3.5 Classification of S*-bundles over S*

The total spaces M of S3-bundles over S* have been of interest in both topology and
geometry since the work of Milnor on exotic spheres. In [Mil56b| Milnor showed that
there exist total spaces of S3-bundles over S* that are homeomorphic to S7 but not
diffeomorphic to it. In 1974 Gromoll and Meyer [GM74] showed that one of these exotic
spheres admits a metric with non-negative sectional curvature. Several decades later
Grove and Ziller [GZ00] showed that all total spaces of S3-bundles over S* admit a metric
with non-negative sectional curvature. In 2003 Crowley and Escher gave a classification
of these manifolds up to diffeomorphism, homeomorphism and homotopy equivalence
[CE03].

The homotopy classification of these spaces started with the work of Steenrod on the
classification of sphere bundles over spheres [Ste44, Ste51|. Following the work of Steen-
rod on the classification of k-sphere bundles over n-spheres we give a classification of

S3-bundles over S%. Recall that an orientable n-sphere bundle is a bundle in which the
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fibre is an n-sphere and the group is the special orthogonal group SO(n + 1). Thus
S3-bundles over S* have the group SO(4) as a structure group. The following result
requires additional results related to the theory of principal G-bundle so that the proof
will be presented in Chapter 4.

Proposition 3.44. The equivalence classes of S3-bundles over S* are in one-to-one
correspondence with elements of m3(SO(4)).
We describe the generators of the group m3(SO(4)) = Z @ Z, following [Ste44|. In our

discussion we will consider actions on the left.

First, by Example 3.38 there is a principal SO(3)-bundle
S0(3) = SO(4) & §3,
where p(u) = ul. Let o : S — SO(4) be the homomorphism defined by
o(u)v = uv.

Since p(r) = r(1), it follows that po(u) = u. Therefore po = 1gs, implying that the long

exact sequence
T (SO(3)) —— T (SO(4)) L 1 (§3) —— - -

splits and 7,(SO(4)) = 7,(SO(3)) @ m,(S?), n > 0. Now, recall the setup in Example
3.37, where the map p : S3 — SO(3) C SO(4) given by p(u)v = uvu~!defines a principal
Zo-bundle

Zy — 5% L SO(3). (3.5.1)

From (3.5.1) we obtain an exact sequence of homotopy groups

71(Z) —— 11(5%) — s 1 (SO(3)) —— i1 (Zo) (3.5.2)

which shows that p induces isomorphisms 7;(S%) = 7;(SO(3)) for i > 2. In particular
73(93) = 73(SO(3)) = Z. Therefore m3(SO(4)) = m3(SO(3)) ® 73(S3) = Z @ Z, with

generators p and o.

By Proposition 3.44 we obtain a doubly indexed family of S3-bundles over S*, namely,
&m = (M, m, S4,53,80(4)). Writing M = M, for the total space of &, with the
corresponding projection map 7 : M — S* we have that the bundle

S3 — My, = S* (3.5.3)

is the S3-bundle over S* classified by lp +mo € 73(S0(4)). These bundles are not all

pairwise distinct since there is a non-trivial action of my(O(4)) = Zgy on m3(SO(4)) (see
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[Ste44]). Denoting «p the non-trivial element of 7y(O(4)) the action is given by
ao(p) = p
ap(0) =p—o

Changing orientation in the fibre bundles produces a equivalence between & ,, and
&l4+m,—m- The bundles & ( are reducible to the group SO(3). Since SO(3) fixes a 0-sphere
on S3, the fixed points provide subbundles which are cross-sections. Therefore, from the

exact sequence induced by (3.5.3),
4y 0 3 4y O
e 7TZ'_|_1(S ) — 71'%(5 ) — 7Tz‘(M170) — WZ(S ) — e, (3.5.4)
we obtain
7Ti(Ml70) = 7Ti(S3) X 7TZ‘(S4) (355)
for ¢ > 1.

The structure group of the bundles &y, can be reduced to the group SU(2) = S3. Since
we may regard the bundles &, as principal SU(2)-bundles, it follows that in the long
exact sequence of homotopy groups induced by (3.5.3)

co o mg(5%) L w3(S3) — ma(Myg) — w3(SY) = - (3.5.6)

the connecting map 0* sends a generator of 74(S%) into m times a generator of 73(S%).
Since m3(5*) = 0, exactness of the homotopy sequence implies that w3(Mo,m) = L. If
|m| # |m’|, then the spaces Mom, My are not homeomorphic. From (3.5.5) we get
mw3(M; o) = Z. This shows that M;y and My, are not homeomorphic if m # 0. More
generally, according to Escher and Crowley [CE03| H3(Mj ) = Zy,.

As the manifolds M;,, are simply connected we can give them the following minimal
CW -structure
M, =eUueluetue. (3.5.7)

The 4-skeleton of M; ,, is then the pushout

S3 D4

|

S§3 —— Pi(m)

where m is the degree m map. James and Whitehead classified the manifolds M; o up
to homotopy. Let M;q, My o be the total spaces of S3-bundles over S* classified by the
elements (1,0), (I',0) € Z & Z, respectively.

Theorem 3.45. M is homotopy equivalent to My o if and only if | = £1' mod 12.
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Proof. See [JW54] Theorem 1.6. O

In [Sas65] Sasao investigated the homotopy type of complexes K such that

Z, ifi=3,
Hi(K)=X7 ifi=0,T,
0 ifi#0,3,7.

For m > 2, the total spaces M ,,, of S 3_bundles over S* belong to the family of complexes
K. Since any complex K has the homotopy type of a complex L which is obtained by
attaching a (2n + 1)-cell to P*(m), it is sufficient to consider the homotopy type of L.
In order to do this Sasao determined the homotopy groups ms(P*(m)).

If f: X — Y isamap and f(A) € B for A C X and B C Y, then we write

f:(X,A) — (Y, B) for the maps of pairs determined by f. Define P(X; A, B) by
P(X;A,B) = {y e Map(l,X)|~v(0) € Aand (1) € B}.

Thus if B = {*}, P(X; A, {*}) is the subspace of PX consisting of paths that begin in
A and end in {x}, so that P(X; A, {}) is just the homotopy fibre of the inclusion map
A—X.

Definition 3.46. For A C X and an abelian group G, the n-th relative homotopy group
of the pair (X, A4) is
(X, A) = mp—1(P(X; A, {*}),

for n > 1.

A map f: (X,A) — (Y, B) of pairs induces a map P(X;A,{x}) = P(Y;B,{x}), and
hence a homomorphism

fo (X, A) = (X, B)

for n > 2. Now the sequence of spaces
OX 5 P(X;A{+x}) S A (3.5.8)

is a fibration, where ¢(w) = w(0) for w € P(X; A, {*}). From (3.5.8) we obtain the

following exact sequence
o g1 (XL A) = m(A) = (X)) = m (X, A) = w1 (A) — -0 (3.5.9)

The sequence (3.5.9) is called the exact homotopy sequence of the pair (X, A).
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Now consider the exact sequence generated by (P*(m), S3):
o mr(PA(m), §%) —2 m6(S) — o mo(PH(m)) —L mg(PA(m), §%) —— -+

Thus we have

74(S%) " ma(PA(m)) —— ma(P(m), §%) — m3(S7) — w3 (P4 (m))

and the maps i, are surjective, as i is the inclusion of the bottom cell in P4(m). Therefore

we have a short exact sequence

0—— m(PY(m),S3) 2>z "7, 0

Therefore m4(P*(m), S3) = Z. Let x4 denote the generator of m4(P*(m),S?) and let
[t3, x4] be the Whitehead product of the generator 13 € m3(S%) and y4. By Lemma 2 in
[Sas65], we have ([t3, xa]) = 0. Let o be any element of 7(P*(m)) such that its image

under j, is [t3, x4].

Now we state a result concerning the attaching maps of CW-complexes with the homo-
topy types of S3-bundles over S*. Let (a,b) denote the greatest common divisor of two

integers a and b. Let v be the generator of mg(S?).

Proposition 3.47. The following hold:

(1) if m is odd, then
m6(PH(m)) & L2 {i(v)} © Zin{o};

(2) if m is even multiple of (m,12), then
6(P(m)) 2= Ly 12){ix(v)} © Zin {0} @ Lo;
(3) if m is even and an odd multiple of (m,12), then
m6(PY(m)) & Zn 12)/2{ A3} ® Zom{c} ® Zo,
where \3 = (772177"112)0 + i (V).

Proof. See the proof of Theorem in [Sas65]. O

The proof of Proposition 3.47 has many elaborate computations. In Chapter 4, we present
a simpler computation for the odd primary part considering the localisation of spaces at
an odd prime p. Crowley and Escher determined the homotopy classification of spaces

M, with m > 0, which happens to coincide with the homeomorphism classification.
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Theorem 3.48. Let m,m’' > 0.

(1) The manifolds My n,y and M, are orientation preserving homotopy equivalent if

and only if m =m’ and m’ = ol (mod (m,12)) where o®> =1 (mod (m, 12)).

(2) Orientation reversing homotopy equivalences between any My ., and My, can only
exist when m = 25pi --‘p;‘c’“, where p; is a prime, p; = 1 (mod 4), and € € {0,1}.
Furthermore, if n is of this form with € = 0, then the single oriented homotopy type
admits an orientation reversing self homotopy equivalence; if € = 1, then My p, is

orientation reversing homotopy equivalent to My, if and only if ' + 1% 0 (mod 2).

Proof. See the proof of Theorem 1.1 in [CE03]. O




Chapter 4
Homotopy theory of gauge groups

The topology and homotopy theory of principal G-bundles and their associated gauge
groups are presented in this chapter. In the first section we summarise information on
classical Lie groups. In Section 4.2 we describe the topology of principal G-bundles
and give some well-known results on their classification up to bundle isomorphism. We
introduce in Section 4.3 the definition of gauge groups and prove Theorem 4.16, which will
be widely used throughout the next chapters. In Section 4.4 we focus on the homotopy
theory of gauge groups of principal G-bundles over spaces of dimension n < 4 and
we present some results. We also mention some results for the classifying spaces of
gauge groups. In the last section we mention research related to gauge groups over high

dimensional manifolds that has been done inside and outside of homotopy theory.

4.1 Classical Lie groups

This section is based on [Mim95]. To study the homotopy theory of Lie groups it suffices
to consider compact Lie groups. Any abelian compact connected Lie group of dimension
n is isomorphic to an n-torus. A mazximal torus T of G is a subgroup which is a torus
such that if T'C U C G and U is a torus then T'= U. The rank of G is the dimension

of a maximal torus of G.

A compact connected Lie group G is called simple if it is non-abelian and has no proper
closed normal subgroups of dimension higher than 0. If the centre of G is finite we say
that G is semi-simple. Compact connected Lie groups are locally isomorphic to direct
products of tori and simple non-abelian Lie groups. Thus the classification of Lie groups,

up to local isomorphism, reduces to that of simple Lie groups.

Theorem 4.1 (Classification of simple Lie groups). The connected compact simple Lie

groups are exactly the following:

47
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dimension  linear group universal cover

Ay(n>1) nn+2) SUMN+1)
B,(n>2) n2n+1) SO@2n+1) Spin(2n+1)
Cn(n>3) ni2n+1) Sp(n)
Dp(n>2) n(2n-1) SO(2n) Spin(2n)
Gy 14
Fy 52
Es 78
Ey 1533
Fy 248

In the classification theorem, the first four families of groups are called the classical Lie

groups and the last five groups are called the exceptional Lie groups.

Let G be one of U, SU, O, SO, Sp, so that G(n) = U(n),SU(n),0(n),SO(n), Sp(n).
We can obtain an inclusion G(n) — G(n + 1) by the map A — A @ I;. The infinite

dimensional classical Lie group G (or G(c0)) is the group
G=|JGn)

which is endowed with the weak topology.

From the fibrations G(n +1)/G(n) = SU**D=1 (where d =4 if G = Sp, d =2if G =U
and d =1 if G = O) we obtain

m(Sp) = mr(Sp(n)) forn > (k—1)/4;
m(U) = m(U(n)) forn>(k+1)/2;
m(0) = m(O(n)) forn>k+2.

The homotopy groups of the classical Lie groups G can be obtained using the classific-
ation theorem and the homotopy exact sequences associated to each bundle where G is

involved. Table A.1 in the Appendix contains some relevant information on the higher

homotopy groups of simple Lie groups as it is presented in [Jam95].

4.2 Principal G-bundles

This section is based on [Hus66, Sel08, Ste51]. Let X be a right G-space. Two elements
z,7" € X are G-equivalent if there exists an element g € G such that xg = x’. This is an
equivalence relation, and the set of all xg for ¢ € G, denoted xG, is called the orbit of
x € X. Let X/G denote the set of all orbits G, for x € X. Thus X/G is a topological
space with the quotient topology defined by the quotient map p : X — X/G, p(z) = zG.
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Definition 4.2. A principal G-bundle, denoted & = {P,p, B} or P 2, B, is a bundle
with projection p : P — B and an action P x G — P, (z,g9) — zg, such that the
following hold:

(1) the map P x G — P x P given by
(z,9) — (x,z9) reP, geG
is a homeomorphism onto its image;
(2) B = P/G and the projection p is the quotient map;

(3) for all b € B there exists an open neighborhood V' together with a homeomorphism
¢:V x G — p~ (V) such that the diagram

VxG— Ly ()

RS

commutes, and for all z € p~1(V) and g € G, ¢~ (zg) = ¢~ (z)g, where the action
on V x G is given by (x,9)9 = (z,99").

Notice that property (1) in Definition 4.2 implies that the action @ is free, and properties
(1) and (2) imply that the fibre of the bundle is homeomorphic to G. The space P is the

total space, B is the base space and G is the structure group. We say that the sequence
G-prPLB

is a principal G-bundle over B. For simplicity we can also denote it by P — B.

Definition 4.3. Let £ = {F,p, B, F,G} be a bundle over B, and let f : B — B be a
map. The induced bundle of & under f, denoted by f*(&) = {f*(E), f*(p), B’, F,G}, is
defined by the pullback of f and p:

) ——

FE
f(p J
T B

f—

That is, f*(€) is a bundle that has B’ as the base space, the pullback

f1(EB) ={(br,x) € B' x E| f(b1) = p(x)}

as the total space, and the map f*(p) given by (b1, z) — by as the projection.
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Proposition 4.4. Let £ = {P,p, B} be a principal G-bundle. Given a map f : B’ — B,
the induced bundle f*(€) is a principal G-bundle.
Proof. See Proposition 4.1 in [Hus66]. O

Definition 4.5. Given two principal G-bundles £ = {P,p, B} and ¢ = {P',p/, B}
over a space B, a principal bundle map or principal bundle morphism over B is a map
f: P — P’ such that

(1) the diagram

|
|-

i)
«—

commutes, and

(2) f is G-equivariant, that is,

for all g € G and all x € P.

Since the composition of a principal morphisms is a principal morphism we can speak of

the category of principal G-bundles and principal bundle morphisms.

Theorem 4.6. Every principal bundle map over B is an isomorphism. O

A bundle isomorphism of principal G-bundles defines an equivalence relation. We denote

by Pring(B) the set of isomorphism classes of principal G-bundles over B.

An open cover {U;};er of a topological space is numerable if there exists a locally finite

partition of unity {u;};es such that u; *((0,1]) C U; for each i € I.

Definition 4.7. A principal G-bundle £ = { P, p, B} is numerable if there is a numerable
open cover {U;}ier of B such that the bundle &|y, = {p™ (U;), plp-11,), Ui} is trivial for
each i € I. Notice that each principal G-bundle over a paracompact Hausdorff space is

numerable.
Definition 4.8. A numerable principal G-bundle &y = {Ey, po, By} is called a universal
G-bundle if the following hold:

(1) For each numerable principal G-bundle £ over B there exists a map f : B — By such
that £ and f*(&y) are isomorphic over B.

(2) If f, g: B — By are two maps such that f*(£) and g*(&y) are isomorphic over B,

then f and g are homotopic.
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In other words, a numerable principal G-bundle & = {Ey,po, Bo} is a universal G-
bundle if, for any pointed space B with numerable covering, the pullback of pg and maps
f : B — By induces a bijection

[B, Bo] — Pring(B).

The next theorem gives a characterisation of universal G-bundles, and its proof can be
found in [Ste51].

Theorem 4.9. If ¢ = {P,p, B} is a principal G-bundle, then & is a universal bundle if

and only if P is contractible.

Now we consider the construction given by Milnor for a universal G-bundle. Let G be a

topological group. Let EG be the infinite join
EG:G*G*G*---:@G*".
Explicity, as a set,
EG = {(go,t0,g1,t1, -+ Gnstny---) € (G x 1) | {i | t; # 0} is finite, >, t; = 1}/ ~

where the equivalence relation ~ is generated by the relations

(907750, .. 7gn—17tn—1vgna Oagn+17tn+17 .. ) ~ (gﬂvtOJ CIEIE 7gn—17tn—1791/17 Ougn-i-l)tn-i-h .. )

for all g, g, € G. A G-action on EG is given by

(90510, 91515y Gnotny o< ) - 9 = (909, t0, 91951, -« oy GGy tny - - - ).

Let BG = EG/G. We also write E,G = G*"*Y and B,G = E,G/G, referring to
the inclusions ByG — B1G — B3G — -+ — B, G — --- as the Milnor filtration on
BG. Observe that G*» = G % --- G = " G A --- A G. Therefore EG = liglG*” is
oo-connected, implying that it is contractible. The following theorem is due to Milnor
[Mil56a].

Theorem 4.10. For every topological group G, the quotient map

FEG — BG

1s a unwersal G-bundle. O

The bundle G — EG — BG is called the universal G-bundle of G, and since homo-
topy classes of maps into BG classify numerable principal G-bundles, BG is called the
classifying space of the group G.
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Corollary 4.11. Let X be a space with the homotopy type of a CW -complex. There is

a one-to-one correspondence
Pring(X) < [X, BG|. O

Proposition 4.12. Let G be a topological group. Suppose that G has the homotopy type
of a CW complex. Then G is homotopy equivalent to the loop space QBG.

Proof. Given a fibration
F—-F—B

with E contractible, there is a homotopy equivalence F' ~ QB (see Proposition 2.37).

As EG is contractible, the universal bundle
G — EG - BG

gives a homotopy equivalence QBG — G. O

Proof of Proposition 3.44. By Theorem 3.42 there is a bijection between S3-bundles over
S4 and the associated principal SO(4)-bundles over S*. Thus it suffices to compute the
set of classes of principal SO(4)-bundles over S*. By Corollary 4.11, there is a one-to-one
correspondence

Pringo(S*) + [S*, BSO(4)].

As SO(4) is connected, the unpointed and pointed homotopy sets coincide so that we

have

[S*, BSO(4)] = [S*, BSO(4)]. = m4(BSO(4)).

Finally by Proposition 4.12 we obtain m4(BSO(4) = m3(SO(4)). O

4.3 Gauge groups

Let P 2 B be a principal G-bundle over B. A bundle isomorphism of P over B to
itself, f : P — P, is called an automorphism of P. We can endow Map(P, P) with the
compact-open topology (see Ch.1). For two right G-spaces X and Y, let Map®(X,Y)
be the subspace of maps f € Map(X,Y') such that f(xg) = f(x)g for all g € G and all
r e X.

Definition 4.13. Let P % B be a principal G-bundle over B. The gauge group of P,
denoted Gp(B), is the group of automorphisms of P endowed with the induced topology
from Map(P, P), with group multiplication given by composition. In particular, given a

principal G-bundle P & B, its gauge group Gp(B) is a subspace of Map® (P, P).
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For a topological group G we denote by Ad(G) the right G-space G with right action
(called the adjoint action) given by

s —1
, — = .
(l‘ 8) X S IS

Proposition 4.14. The gauge group Gp(B) can be identified with the mapping space

Map®(P,Ad(G)) = {¢: P = G | ¢(zg) = g~ ' d(x)g}.

Proof. Let u € Gp(B). Then for any z € P we have that p(x) = pu(x), where p is the
projection map. Thus z,u(x) are G-equivalent and so to each element u € Gp(B) we

can assign the continuous function ¢, : P — G defined by the relation
u(z) = xdy (). (4.3.1)
As u satisfies u(z)g = u(xg) we obtain
u(z)g = u(zg) = xgdu(rg).
This together with (4.3.1) gives
T¢u(r)g = zgdu(g).

Since the action of G is free, the last equation implies ¢, (x)g = gé,(zg) and therefore
#(xg) = g 1¢(x)g, for all z € P, g € G. Moreover, the function which assigns to each
automorphism u € Gp(B) the function ¢, € Map®(P, Ad(G)) is a continuous bijection.
Indeed, if ¢ € Map® (P, Ad(G)), then we define u = uy € Gp(B) by

u(z) = z¢(x) € Gp(B)
and, since the action of G on P is free, the map ¢ > uy is inverse to u — ¢y,. O

Proposition 4.15. Let P be a principal G-bundle over B. If either P is trivial or G is
abelian, then

Proof. By Proposition 4.14 we have Gp(B) = Map®(P, Ad(G)). Consider two cases:

(1) Suppose that P = B x G is trivial. Given f € Map®(B x G, Ad(G)), we may define
fB € Map(B, G) by fp(b) = f(b,1); and conversely, given f' € Map(B, G), we may
define f1, € Map®(Bx G, Ad(G)) by fi(b,g) = f'(b)9. Tt is not difficult to check that
the maps f +— fp and f’ +— f} are continuous maps between Map® (B x G, Ad(Q))
and Map(B, G) and that they are inverse to each other.
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(2) Suppose now that G is abelian. Then the action of G on Ad(G) is trivial and so
f(zg) = f(z) for all f € Map®(P,Ad(G)), z € P and g € G. Hence all such f
factor through some map B — G, and conversely, for every f' € Map(B, G) we have
f"op € Map®(P, Ad(G)), where p : P — B is the projection. Thus f’ — f’ op gives
a homeomorphism Map(B, G) — Map®(B x G, Ad(QG)). O

Let £ = (EG,m, BG) be the universal bundle of G. We use the following notation. For
a principal G-bundle p : P — B and a map f : B — BG, let Map¢(B, BG) denote
the subspace of Map(B, BG) consisting of maps g : B — BG such that ¢*(¢) and
f*(&) are isomorphic over B. In other words, the subscript f denotes the component of
Map(B, BG) which contains the map f : B — BG that induces P. Let Gf(B) = Gp(B).

The following theorem is crucial for this work. This result is proved in [Got72] and
[AB83|. Throughout this work we will consider principal G-bundles over manifolds with
G a Lie group, so that from now on by a principal G-bundle we will mean a numerable

principal G-bundle with structure group G a Lie group.

Theorem 4.16. Let { = {P,p, B} be a principal G-bundle classified by f : B — BG.

There is a homotopy equivalence

BGy(B) ~ Map;(B, BG).

Proof. Let
G - EG = BG

be the universal bundle of G. Consider the mapping space Map® (P, EG). The gauge
group G¢(B) acts on this space by composition on the right. By Proposition 4.14 we
have that given u € Gy(B), there exist a unique ¢, € Map®(P,Ad(G)) such that
u(x) = x¢y(z). Thus for w € Map® (P, EG) and u € G;(B), the action is given by

(wu)(z) = w(z)du(x)

and the action is free. We define a map  : Map® (P, EG) — Map (B, BG) by assigning
to each w € Map® (P, EG) the quotient map h € Map (B, BG) on the base space of the

bundles, as depicted in the following diagram

P, EG (4.3.2)

e

B—" Ba.

Thus if p(w') = p(w) then there is a u € G¢(B) such that w' = wu. This defines a

principal fibration

G¢(B) — Map® (P, EG) — Map (B, BG).
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As EG is contractible so is the space Map® (P, EG), which means that this is a universal
bundle for G;(B) and
BGy(B) ~ Map(B, BG)

as claimed. O

Definition 4.17. Let Py 2, B be a principal G-bundle and Py, be the fibre at the base
point by of B. The pointed gauge group, denoted G} (B), is the subgroup of G¢(B) which
fixes the fibre at by, that is,

GH(B) ={u € Gy(B) |u(z) =z for all € Py, }.
By Theorem 4.16 we have the following homotopy equivalence

BG}(B) ~ Map’(B, BG).

The study of the topology of gauge groups and their classifying spaces is strongly mo-
tivated by applications in other areas in mathematics such as differential geometry and
mathematical physics. For instance, Donaldson [Don86| used topological information of
gauge groups of principal SU(2)-bundles over 4-manifolds to distinguish differentiable
structures on homeomorphic manifolds. In mathematical physics, the description of the
dynamical behaviour of elementary particles in a 4-dimensional space-time is still an
open question. From a mathematical viewpoint, gauge theories correspond to the differ-
ential geometry and topology of fibre bundles (see for instance [CM94, Ati88]). Defining
concrete applications of the homotopy theory of the gauge groups in other areas of math-
ematics go beyond the scope of this work. However it is worth mentioning the links to

other areas for these are at the core of the motivations behind the present work.

4.4 Homotopy theory of gauge groups

For the next discussion we will assume that all spaces are pointed, compact, connected,
and have the homotopy type of a CW-complex. Let Py 2y B be a principal G-bundle
over B with gauge group G(B). The subindex in Py, G¢(B) and BGf(B) denotes the
classifying map f € [B, BG| of the principal G-bundle. It follows from Theorem 4.16

that there is a commutative diagram

BG;(B) ———— BGy(B) (4.4.1)

F ok

Map} (B, BG) —— Map(B, BG).
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Recall that the evaluation map ev : Map(X,Y) — Y is defined by ev(f) = f(xg), where
xo is the basepoint of X, with fibre Map*(X,Y"). Consider the evaluation fibration

Map*(B, BG) —— Map(B, BG) —— BG. (4.4.2)
The restriction of the evaluation map to path components induces evaluation fibrations
Map}(B, BG) —— Map(B, BG) —~ BG. (4.4.3)

Thus by (4.4.1), the gauge group G¢(B) and the classifying space BG¢(B) fit in the

following fibration sequence
Gi(B) — G4(B) — G —2~ BG}(B) — BG;(B) — BG, (4.4.4)

where ¢ is the inclusion and 0 is the connecting map. Thus the gauge group is the
homotopy fibre of the connecting map 9. Hence it is expected that the homotopy types

of the gauge groups are determined by the properties of the connecting map.

We present some useful results on the homotopy types of pointed mapping spaces. There
is a bijection between the set of homotopy classes of maps [X, Y], from X to Y and the
set of path components mo(Map*(X,Y)) of Map*(X,Y).

Proposition 4.18. Let Y be any space.

(1) If X is an H-group then Map}(Y, X) ~ Mapj(Y, X) for all [f] € [V, X]..

(2) If X is a co-H-group then Map}(X,Y) ~ Mapj(X,Y) for all [f] € [X,Y]..

Proof. It suffices to prove only one part of the statement since we obtain similar results
dualising the arguments. Thus we prove part b). Suppose X is a co-H-group. Then
the comultiplication on X induces an H-group structure on Z = Map*(X,Y’), given by
homotopy-associative multiplication m : Z x Z — Z and homotopy inverse ¢ : Z — Z,
say. Let f € Z be a map, and let Zy and Zy be path components of Z containing the
map f and the trivial map * € Z, respectively. Consider maps © = m(f,—) : Z — Z,
defined by the composite

0): X 2sxvx Y yvy Yy,
and ¥ = m(i(f),—) : Z — Z, defined by the composite

i(f)Va v
—

V(o) X —2xvX 8y vy Y.

Note that the maps © and V satisfy ©(Zy) C Z¢ and ¥(Z¢) C Zp. We aim to show that

© and ¥ and homotopy inverses, thus inducing a homotopy equivalence Zy ~ Z;.
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We will show that Wo© ~ 14; the argument for @ o ¥ is similar. Consider the homotopy

commutative diagram

g 1D oy GlaXlz g g texm sy
J2 *x 1y mx1ly m
ZxZ ZxZ Ix 77— 7

where f : Z — Z is the constant map at f € Z and js : Z — Z x Z is the inclusion
into the second factor, given by ja(a) = (%, ). Here the square on the right homotopy
commutes because of homotopy associativity of the map m, and the one on its left
homotopy commutes because of properties of the homotopy inverse 7. The composite
of maps on the top and the right of the diagram is just ¥ o © = m(i(f), m(f, —)), and
the map m o jy along the left and the bottom of the diagram is homotopic to 1. Thus
VU oO ~ 1y, as required. 0

Recall that given a cofibration sequence

there is a coaction g : C, — C, V XA of ¥ A onto the cofibre C, (see Example 2.39).
This coaction defines an action on homotopy sets. We have already seen that closed

manifolds have the homotopy type of a CW-complex. Let
A VA Ny VN (4.4.5)

be the cofibration sequence induced by the attaching map ¢ onto the (n — 1)-skeleton
M"™ 1. Here M ~ Cy is a CW-complex. Consider the exact sequence induced by the

cofibration sequence (4.4.5),
157, Y] 55 (M, Y], S (ML Y] S (87 Y

By Theorem 2.40, the group m,(Y) induces an action on [M,Y], and the orbit of
f € [M,Y] under this action is the preimage (¢*) *(¢*f). We can use this action to
obtain homotopy equivalences between the path components of Map*(M,Y"), which in
turn gives equivalences between classifying spaces of the gauge groups and between gauge

groups.

Theorem 4.19. Let M be an n-dimensional closed manifold and Y a connected CW -

complex. Given a map f: M — Y there is a homotopy equivalence
Map}(M,Y) ~ Mapy., (M, Y)

where o € mp(Y') and f - «v is the image of the action of o on f.
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Proof. The proof is similar to that of Proposition 4.18. Given a map f: M — Y and ~
a representative of the class a € m,(Y’), we define O, : Map}(M,Y) — Map}.,(M,Y)
by the composite

0,(g): M- 5nv i Xy vy Yy

where 1 is the coaction of S™ onto M. It is not hard to see that the map ©5, where ¥

is a representative of —a € m,(Y"), is a homotopy inverse of ©,. O

Now if Y = BG, then from Theorem 4.19 we obtain results on the homotopy types of
the classifying spaces of gauge groups of principal G-bundles over M.

Corollary 4.20. Let Py — M be a principal G-bundle over an n-dimensional closed
manifold with classifying map f € [M, BG]. Then

BG}(M) ~ BG}.,(M).
Moreover, if the map 0* is a surjection then
BG;(M) = BG(M)

for any f € [M, BG]. O

It is clear that statements above can be extended to any finite n-dimensional C'W-
complex with one n-cell. In the case of the unpointed classifying spaces of the gauge
groups, BG¢(M) =~ Map (M, BG), the answer on the homotopy types might be different
in general. Masbaum [Mas91]| showed that when M = S* and G' = SU(2) the number
of homotopy types of spaces BG¢(M) is infinite. Kono and Tsukuda [KT00| found
similar results for the path components of Map(M, BSU(2)) for M a simply connected

4-manifold.

In contrast to the results obtained on the number of homotopy types of unpointed classi-
fying spaces of gauge groups, Crabb and Sutherland [CS00| proved that there are finitely
many homotopy types of gauge groups even when the number of isomorphism classes of
bundles is countable. If the number of isomorphism classes of principal G bundles over a
closed simply connected manifold is finite, it is clear that the number of homotopy types
of the gauge groups is also finite. It is expected that the homotopy types of gauge groups

depend on the properties of the connecting map 9 in the evaluation fibration

1s)
G — Map} (Y, BG) —— Map (B, BG). (4.4.6)

In [Lan73| Lang showed that if B = XY, then the adjoint of the connecting map 9 in
the fibration (4.4.6) is a Whitehead product. Notice that if B = XY then the pointed
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exponential law and Proposition 4.12 imply that there is a homotopy equivalence
Map* (XY, BG) ~ Map*(Y, G).
We restate the result of Lang in terms of Samelson products.

Lemma 4.21. The adjoint G AY — G of the composite
7] ~
G —5 Map}(Y, G) = Map}(Y, G)

is homotopic to the Samelson product (g, f). O

We present some results on the classification of gauge groups of principal G-bundles over
S4. We start by recalling the seminal work of Kono on the SU(2)-gauge groups over S*
[Kon91], proved in a slightly different manner.

The principal SU(2)-bundles over S* are classified by the set [S*, BSU(2)]. Since we
can identify SU(2) with S? we get [S*, BSU(2)] = m4(BS?) = 73(5%) < Z. Let P, — S4
be the principal G-bundle classified by k € Z and G, its gauge group. We will use the

notation

Ly, = Mapj, (5, BSU(2))
for the component of L = Map*(S4, BSU(2)) classified by k € Z. From the evaluation
fibration we obtain a homotopy fibration sequence

Ge — SU(2) 2 Ly — BGy, — BSU(2), (4.4.7)

where the gauge group G; appears as the homotopy fibre of the map Ji. Notice that
O € [SU(2), Ly] = [S3, Lgms(Ly) = m3(Lo), where the isomorphism is a consequence of
the fact that Lo ~ L (see Proposition 4.18).

Lemma 4.22. Let X be an H-space such that m(X) is finite for all k > 0. Then there

exists a homotopy equivalence
p

Proof. As X is an H-space then 71(X) is abelian. Then for each prime p, we consider

the localisation ¢;, : X — X(;,). By Theorem 3.19 there is a homotopy pullback square

)‘( _— E[X(p) (4.4.8)

Xy — (I;IX@))(O)
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By hypothesis 7 (X) is finite for all £ > 0. Thus m(X(g)) = 7 (X)(g) = 0, for all £ > 0.
Therefore X(g) and ([, X(p))0) are contractible. Hence using this fact in (4.4.8) we

obtain the homotopy equivalence as required. O
Given a map h : X — Y, let F}, denote its homotopy fibre. Let € : S — L be a map
that generates m3(L) = m3(Q*BS3) =2 m6(S3) = Zyo.

Lemma 4.23. F,,. ~ Fy,,. if and only if (12,n) = (12, m).

Proof. There is an isomorphism
(L) = mhy3(S7)

for any k > 1. Therefore, as all homotopy groups of L are finite and L is an H-space, by

Lemma 4.22 there is a homotopy equivalence

0:L—[[Ly: (4.4.9)
p

As m3(L) = Z12 we have
my(L) =y | Ly x Ly < ][ L
pé{23)

gﬂ'g(L@))@ﬂ'g(L(g))@ﬂ'g H L(p) > 74D Zs3.
p#{2,3}

Thus the map # induces an isomorphism

0 - 7T3(L) — Ly ® L3

by sending € to (1,1).

Let i : L — L and i(,) : L) — L) (for p = 2,3) be homotopy equivalences defined by

the rule = — 2~ 1. Using the maps i(p) we define

ﬂg = 7,( x1: L X HL (2) X HL(p), (4.4.10)
p#2 p#2

fis =i x 1: Ligy x [[ L) = L) x [[Lo)- (4.4.11)
p#3 p#3

These maps are homotopy equivalences and induce isomorphisms i*, i, : w3(L) — 73(L)

for p = 2,3), where p, = 671 o fi,, 0 §. Thus we obtain:
p P

i*(e) = —e = 11¢,
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p3(e) = (07)7H((=1,1)) = Te,

pi(e) = (07)7H((1, 1)) = Be.

We computed the images of the above isomorphism for 0 < n < 12. The results are
shown in the next table. In particular, this shows that two elements ne and me such that

(12,n) = (12,m) can be obtained from one another through some of the isomorphisms

% * *
0%, @3 or .

(12,n) mwith0<n <12 ne
1 1,57 11 €, be = pi(e), Te = p3(e), 11e = i*(e)
2 2,10 2¢, 10e = i*(2¢)
3 3,9 3¢€, 9e = i*(3¢)
4 4,8 de, 8¢ = i*(4e)
6 6 6e
12 0 0

Thus if (12,m) = (12,n) then there are homotopy commutative diagrams:

L
|
L

ne

Fpe ——— SU(2) —

JW

Fpe — SU(2) ——

(4.4.12)

where h is one of homotopy equivalences 1, 2, 3.
Finally, from the long exact sequence
s m3(SU(2)) — = m3(L) —— mo(Fpe) —— m2(SU(2)),

if Fj,c >~ F, then the orders of ne and me coincide, that is, 12/(12,n) = 12/(12,m). O

Let Gy denote the gauge group of the principal SU(2)-bundle with classifying map
ke 7T3(SU(2)).

Theorem 4.24. Gy, is homotopy equivalent to Gy if and only if (12, k) = (12, k).
Proof. Gy, is the homotopy fibre of the connecting map Jy in
SU2) 2 Q35U (2) — Map,(S3, BSU(2)). (4.4.13)

Identify SU(2) with S3 in (4.4.13). Thus by Lemma 4.21, the map Jj, is homotopic to
(1,ke) € [S3 A S3, 93], where the map ¢ = 1gs : S — S3 is a generator of 73(S%). The
Samelson product is bilinear so that (¢, ke) ~ ko (1,¢). In [Samb4]| it is shown that the
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Samelson product (t,:) is a generator of 74(S%) = Zjs. Thus € = (1,¢) and the result

follows from this fact and Lemma 4.23. ]

In [Ter05| Terzi¢ studied the rational homotopy types of gauge groups and classifying
spaces of principal G-bundles over simply connected 4-manifolds, with G' a compact

simply connected semi-simple Lie group. We present some results of this work.

Let M be a simply connected 4-manifold and G be a compact simply connected simple
Lie group. There exists a 7-equivalence 6 : BG — K (Z,4) (See Proposition 2.1 [Kaj06]).
Thus for any space X of dimension n < 6 we have [X, BG] = [X, K(Z,4)]. In par-
ticular, if X = M then [M,BG] = H*(M). As M is simply connected then it is
orientable. Hence by Poincaré duality we have that H*(M) = Z. Therefore we have
Pring(M) = H*(M) = Z. The element k € H*(M) = Z that classifies the bundle
P, — M is known as the Chern class of the bundle. Giving a cellular structure to M,

the attaching map of the top cell induces the following exact sequence

0

RN Ve NG LN S N 3/ Y ) (4.4.14)

From Table A.1 we have my(BG) = 73(G) = Z for all G. From (4.4.14) there is an action
of m4(BG) onto [M, BG]. The induced map §* is trivial and by Corollary 4.20 we have
homotopy equivalences

BGH(M) = BGj(M)

for all k& € Z. This implies G (M) ~ G5 (M) for all k € Z. By Proposition 4.15 we have
that Gg(M) ~ Map*(M, G). Recall that there is a fibration sequence

Gi(B) —— Go(B) —— G (4.4.15)

From the exact sequence induced by (4.4.14) after applying the functor [—, G|, and
the fibration in (4.4.15), Terzi¢ obtained information on the rational homotopy groups
7j(Go(M)) ® Q of the gauge groups when G is a semisimple Lie group. For the following
theorem we set ;(Go(M)) := m;(Go(M)) ® Q.

Theorem 4.25. Let tk(G) denote the rank of the group G and let b, (M) be the n-th
Betti number of M.

(1) The ranks of the rational homotopy groups of G§(M) are given by
rk(m;(Go(M))) = ba(M) rk(mj42(G)) + rk(m;14(G)),  jE€N.

(2) The ranks of the homotopy groups of the group G(M) are given by

I"k(ﬂ’j(go(M))) = bQ(M) I'k(ﬂ'jJrQ(G)) + I'k(ﬂ'j+4(G)) =+ I'k(ﬂ'j(G)), ] - N
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Proof. See Proposition 1 and Proposition 2 in [Ter05]. O

Studying the integral homotopy theory of path components and gauge groups is a com-
plicated task in many cases. An intermediate step between the integral and the rational
homotopy theories is studying the p-local homotopy theory of these mapping spaces one
prime at a time. There is a general result proved by Theriault that can be used to get
information on the p-local homotopy types of the gauge groups. Let Y be an H-space
with a homotopy inverse, let £ : ¥ — Y be the k-th power map, and let Fj be the
homotopy fibre of the map ko f, where f: X — Y is a map of finite order m.

Lemma 4.26. Let X be a space and Y be an H-space with a homotopy inverse. Suppose
there is a map X Iy of finite order m. If (m,k) = (m,k’) then Fy and Fy are

homotopy equivalent when localised rationally or at any prime.

Proof. See |ThelOa, Lemma 3.1]. O

4.5 Gauge groups over high dimensional manifolds

The homotopy theory of gauge groups of principal G-bundles P %> M when M is a low
dimensional manifold has been widely studied in homotopy theory due to the connections
to other areas in mathematics. In the last decade new formulations of gauge theories
have been developed which include high dimensional manifolds with special geometric
structures. In [DT98] Donaldson and Thomas exposed some ideas to construct gauge
theories in higher dimensions. These ideas were formalised later on in [DS11] and partic-
ular attention was paid in the case where dim M € {6,7,8}. Literature on gauge theories

for high dimensional manifolds has increased considerably in recent years.

The case when M is a 7-dimensional manifold has received attention in both differential
geometry and mathematical physics alike, and currently we can find a good amount of
literature for this particular case (see for instance [LL09, Wall3, SEW15]). The manifolds
that present the required geometric properties are called Ga-manifolds. Examples of
constructions of this kind of manifolds can be found in [CHNP15|, where it is showed
that there are Go-manifolds M such that

M = 83 x; §4*(53 x 8%,

where 82 x; S* denotes one of the manifolds M; 1, such that [ # 0 (mod 1)2 and #F s

the connected sum of k copies of the trivial sphere bundle S3 x S4.

In homotopy theory, the study of gauge groups over high dimensional manifolds is almost

unexplored. There are, however, some results when M is a high dimensional sphere and
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G is either SU(n) or Sp(2). In the case of G = SU(n), the principal G-bundles over S

are classified by elements of m,_1(G). These results are stated below.

Theorem 4.27. Forn € {7,8,9,10,15,16,17,18, 23,24, 25}, there is a unique homotopy
type of the gauge groups of all the principal SU(2)-bundles over S™, and it is the one of

the trivial bundle, namely,

Map(S™, §3) ~ QB S% x S3.

Proof. See |CS09] Proposition 2. O

Theorem 4.28. Denote by € a generator of m¢(BSU(3)) and by Gi(S®) the gauge group
of the principal SU(3)-bundle over S® classified by ke. Then Gy ~ Gy if and only if
(120, k) = (120, k).

Proof. See [HKO7| Theorem 1.1. O

Hamanaka, Kaji and Kono obtained a homotopy classification of the gauge groups of

principal Sp(2)-bundles over S&.

Theorem 4.29. Denote by €, a generator of m7(Sp(2)) = Z and by Gy, the gauge group
of principal Sp(2)-bundle over S® classified by ke- (k € Z). Then Gy ~ Gy) if and only
if (140, k) = (140, k'), where (a,b) denotes the GCD of a and b.

Proof. See |[HKKO08| Theorem 1. O




Chapter 5

Results for S°-bundles over S*

This chapter presents the main results on homotopy decomposition of gauge groups
over principal G-bundles. We consider the space Map* (M, BG) for a simply connected
simple compact Lie group G and a total space M of an S3-bundle over S*. In Section
5.1 we describe the set Pring(M) in the case m6(G) = 0 (Proposition 5.6). We give a
homotopy decomposition of pointed and unpointed gauge groups of principal G-bundles
over M with m(G) = 0, when M has torsion-free homology (Section 5.2, Theorems 5.9
and 5.10) and when M has torsion in homology (Section 5.3, Theorems 5.14 and 5.15). In
Section 5.4 we describe homotopy equivalences between unpointed gauge groups over S”
(Theorem 5.17). Throughout this chapter we assume that all spaces have the homotopy
type of CW complexes with a non-degenerate basepoint and finitely many cells in each

dimension.

5.1 Classification of principal G-bundles

Recall that, for given spaces X and Y, we denote by [X, Y] = mo(Map(X,Y)) and [X, Y].
the sets of homotopy classes of unpointed and pointed maps from X to Y, respectively.
Given a map f : X — Y, we denote its homotopy class by the same letter f. The
finite cyclic group of n elements is denoted Z,. The localisation of Z at a prime p is
denoted Zy).

Let M be the total space of an S3-bundle over S4,
S3— M5 S5

By Proposition 3.44, the spaces M are classified by elements lp+mo € m3(SO(4)) = ZXZ,
where p,o are generators of m3(SO(4)) which form a basis. Let M = M;,, be the
S3-bundle over S* classified by Ip +mo € m3(S0(4)). We want to classify, up to bundle

65
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isomorphism, the principal G-bundles over manifolds M; ,,, with G a simply connected

simple compact Lie group.

Given a compact topological space X and a topological group G, there is a one-to-one
correspondence between Pring(X) and [X, BG|, where BG is the classifying space of G
(see Corollary 4.11). The evaluation fibration

Map*(M; mm, BG) = Map(M ,, BG) <+ BG
induces an exact sequence of homotopy sets
m(BG) & (M, BGl, = [Mym, BG] 25 10(BG).

The induced map ev* is trivial as BG is connected, and the coset space of d(m(BG))
coincides with the orbit space of the action of m1(BG) = m9(G) on [M;,,, BG].. Since
all groups G considered in this work are connected, this action is trivial, therefore we
have [Mj,, BG]« = [M, BG]. Hence from now on we will drop the star symbol of
(M} 1, BG]..

In order to compute the sets [M ,,,, BG] we make use of cofibration sequences where the
spaces M, ,, and XM, are involved. In Chapter 3 we have described the topology of
the spaces M ,,,. We will recall some information on the structure of the spaces M, ,, to

obtain results on the suspensions XM ,.

There are homeomorphisms [Ste51] M, = M_; _,, and M, = My p, —p, so that we
will only consider the case m > 0. Since any space M ,, is a simply connected manifold,
we can give a minimal cellular structure by e3 Uy et Uy e’, where ¢/ and ¢ are the
attaching maps of the 4-cell and the 7-cells respectively. The 4-skeleton Ml‘fm is given by
the pushout

s D (5.1.1)

‘| |

3 3 4 ~ 4
S° —— 5 Ugo/D :Ml,m

From the discussion of Section 3.5, the map ¢’ is a degree m map, where m is the index
in Mj .

Lemma 5.1. The map «* : H*(SY) — H*(M,,,) induced by the projection map is an
isomorphism if m = 0, reduction mod m if m > 0 and, in particular, the constant map
ifm=1.

Proof. Consider the Serre spectral sequence of the sphere bundle

S My " S*




Chapter 5 Results for S3-bundles over S* 67

which converges to H*(M,,,), and let y3 and x4 be suitable generators of H3(S$%) & Z and
H 4(54) > 7, respectively. Then the EY'? page in the spectral sequence has the following

form

31 ys Y34

Iy

o~
.

Thus we have that Ey? = E"? = HP(S3) ® H1(S%), and for dimensional reasons there is
at most one non-trivial differential, namely d4(y3) = ma4. This implies the result. [
If m =0, then M* ~ §3 v S%. Therefore

Mg~ (S*Vv S U, e,
for ¢ € mg(S3 v S*).

All the sphere bundles M; o I, §* admit cross sections. In this case the exact sequences
of the fibre bundles show that the homotopy groups of the manifolds M; o are isomorphic
to those of the total space of the trivial bundle S x S4. The homology groups of M

are also isomorphic to the ones of the trivial bundle:

Z iti=0,3,4,7,

1

H;(M)
0 otherwise.

In [JW54| James and Whitehead classified the manifolds M;, up to homotopy equival-
ence. Theorem 3.45 states that M; o ~ My o if and only if | = £’ (mod 12).

If m > 0, then the 4-skeleton Mfm is the Moore space P%(m). In [CE03] Crowley and
Escher classified the homotopy types of manifolds M;,, for m > 0. They showed that
there is an orientation preserving homotopy equivalence M ,, ~ My .,/ if and only if
m =m' and I' = al (mod (m,12)) where a? =1 (mod (m, 12)) (see Theorem 3.48). In

the case m = 1 we have P*(1) ~ %, and from Theorem 3.48 we have
My ~ 87
for all I € Z. The homology groups of the manifolds M; ,, for m > 1 are

T ifi=3,
Hi(My,) =<7 ifi=0,7,

)

0 otherwise.
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Thus given M, and M; ./, if m # m’ then m3(M; ) % 73(M; ), and therefore these

spaces are not homotopy equivalent. A minimal cellular structure for M;,, is given by
M =~ P4(m) Uy e,

for some ¢ € mg(P*(m)). As 7 : M;,, — S* is a fibre bundle where the base space
is simply connected, we can use the Serre spectral sequence to obtain information on
the properties of the projection maps. Now we prove a general statement regarding the

suspension of the total spaces of S”~!-bundles over S™.

Lemma 5.2. Let 7 : X — S™ be an S"'-bundle over S™, n > 3, with a cross section.

Then X™ ~ S"~1 v/ 8" and there is a homotopy equivalence
X ~ XY v st

where Y is the homotopy cofibre of the composite S*"2 Ly g1y gn PLyogn—1 - Hepe
the map o : 8?2 — S"=1\/ S" is the attaching map of the top cell of X, and the map
p1: 8"V 8™ — S s the projection onto the first component.

XCW

Proof. The manifold X is homotopy equivalent to a CW-complex with the following

cellular structure
X ~ XCW — enfl Ue® Uap 627171'

Where ¢ is the attaching map of the top cell. Set X = X¢W_ Let X™ be the n-skeleton

of X. There is a homotopy commutative diagram

grlcy xn 4, gn (5.1.2)

S

where the top row is the cofibration sequence induced by the inclusion of the bottom cell
into the n-skeleton, the bottom row is the fibration sequence of the sphere bundle, and
q is the quotient map. Since X™ = X?"~2 by connectivity, the map ¢ also has a right

homotopy inverse, implying that there is a homotopy equivalence X" ~ §7~1 v 87
Now consider the cofibration sequence induced by §27~2 £, gn\/ gn—1.
an—2 _ ¥ n—1 n i P 2n—1 Xy n n+1 _ 2t
S — SV ST —— X —— S —— S"V ST —— ¥ X, (5.1.3)

where i is the inclusion and p is the pinch map to the (2n —1)-cell. By the Hilton-Milnor
Theorem [Hil55, Mil72| there is an isomorphism

71'2”_2(5”71 V Sn) = 7['271_2(527172) X an_g(Sn) X 772,1_2(5"*1).
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With this decomposition, the element [1,,_1, t5] € Ta_2(S" 71V S™), where 1,1 =~ Tgn
and t,, ~ 1 gn, factors through a generator of 7o, _2(S?"~2). For any a € ma,_2(S"!) and
B € m2n—2(S"), let @ and 3 be the elements of Ton_2(S™ 1 v S™) which are represented
by the maps

a: S5 gl gy gn

and
g5 B gney gnty gn

In this way any ¢ € 7, _2(S" "1 vV 8") can be expressed as

o =ttn-1,tn] +a+ 8 (5.1.4)
for some t € Z.
Consider the diagram

§m=2_% sgnygn-l_ L,y

Sn STL

The triangle homotopy commutes by definition of ¢ and 3, and the square homotopy
commutes by the commutativity of right square in (5.1.2). Thus f ~ moio ¢, but
i o ¢ is nullhomotopic since ¢ and ¢ are consecutive maps in a cofibration. Hence 3 is

nullhomotopic and therefore so is 3. Hence (5.1.4) is reduced to

Y = t[bn—ly [/n] + a.

After suspension we have ¢ = Ya since X[t,—1,tn] =~ *. Let Y be the homotopy cofibre
of the map a : §?"2 — S"~1. Thus if Ya ~ * then ¢ ~ *. Therefore the map i in
(5.1.3) has a left homotopy inverse, and ©X =~ $27 v §" v §"F1 If instead Yo is not
nullhomotopic, then 3¢ 2 x. Consider the following part of the homotopy cofibration
sequence (5.1.3)

g2n—1 22 gntly, gn i sy

Thus Yp = Ya = j o Ya, where j : S* — 8™ v S"H! is the inclusion into the
wedge. Therefore LX ~ XY v S"H where Y is defined by the cofibration sequence
§2n=2 2y gn—1 __ Y for o € Ton—2(S™71). O

Proposition 5.3. Let M;,, be the total space of an S3-bundle over S* classified by an
element lp + mo € w3(SO(4)) = Z & Z. Suppose M, has cross sections. There is a
homotopy equivalence

S M, = BY; VS5,
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where Y] is the homotopy cofibre of the composite S° 2 53 v st By 63 Moreover
XM = My 4, if and only if I = £1 (mod 12). In particular, if | =0 (mod 12), there
s a homotopy equivalence

SMp ., = S®v StV SP.

Proof. Let M, ,, be an S3-bundle with cross sections. This manifold satisfies the condi-

tions of Lemma 5.2. Thus there is a homotopy equivalence
SMj = SYim V S®, (5.1.5)

where Y7 ,, is the homotopy cofibre of the composite S8 2y g3y 64 Py 63 Recall that
all manifolds M ,,, with cross sections satisfy m = 0. Thus the homotopy type of XM,
and therefore, that of the space Y] ,,,, only depends on the integer I. Set Y; := Y] ,,. Let
' be a generator of 74(S%) = Z12 [Tod63]. We can write the attaching map of the top
cell as

© = 13, 4] + 11/,

where ¢; ~ 1gi, for i = 3,4 and ;v € 76(S> v S*) for some t; € Z1o such that the map
sending [ to t¢; is a surjective homomorphism, namely, the J-homomorphism [JW54].
After suspension we have Y ~ ;Y. The homotopy equivalence shows that the homo-
topy type of ¥ M; ., only depends on Y], which is homotopy equivalent to a CW-complex
obtained by attaching an 8-cell to S* via the map ;Xv' € 77(S*) = Z @ Z15. It is known
that the element ¥/ generates a subgroup of order 12 in m7(S%) [Tod63]. Observe that
two spaces XY}, XYy are homotopy equivalent if and only if there is a homotopy equi-
valence 0 : S* — S% such that
0* (X)) = ty X/,

where * is the automorphism of 77(S%) induced by . Thus we need to compute the set
of classes of self equivalences of S*. Since [S%, 54] = m4(5*) = Z, there are two classes of
self-equivalences, namely, £1g44. Since, t;,ty € Z12, we have that XY; ~ XY} if and only
if I = +1 (mod 12). In particular, when M is the product bundle we have that [ = 0
and X ~ . This implies that $M;,,, ~ S® v §% v §* if and only if I =0 (mod 12).

In order to obtain results on the gauge groups over manifolds M; ,,, with torsion in homo-
logy we will require localisation at a prime p > 5. The cofibration S” =5 S — P"*1(m)

induces a fibration
Map*(P"(m), BG) — Map*(S™, BG) ™ Map*(S", BG),

where m* is the m-th power map. Let Q"BG{m} denote the space Map*(P"*!(m), BG).

Let vp(m) be the p-adic valuation of m at p.
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Proposition 5.4. Let M, be the total space of an S3-bundle over S* with m > 1.

Localised at p > 5 there exists a local homotopy equivalence
S My, =~ P5(p") v S,
where r = vy(m).

Proof. There exists a cofibration sequence

S5 2y PA(m) —s My —2—s ST 225 P5(m) —= SIMy (5.1.6)

where ¢ is the attaching map of the top cell, ¢ is the inclusion and p is the pinch map.
Now suppose that all spaces are localised at a prime p > 5 with r = v,(m). Consider
the cofibration sequence

53 53 L Pi(m). (5.1.7)

We will split the argument into two cases: » =0 and r > 1.

If 7 = 0 then the degree map m is invertible in Z,), so the map m is a homotopy equival-
ence in the cofibration sequence (5.1.7), and therefore P4(m) ~ . From (5.1.6) we can see
that the attaching map ¢ is nullhomotopic and therefore M ,,, ~ S7. Moreover, we can
write P°(1) = P?(p”) ~ . Hence there is a homotopy equivalence ¥M,,,, ~ P°(p") v S®

for r = 0.

If » > 1 then the degree map m is not invertible. Localising at p we obtain
m3(PY(m)) = Ly @ L) = Lyr.
As P*(m) is 2-connected,
m3(P4(m)) = Hs(P*(m); Zy)) = Zyr,

and this is the only non-zero homology group of P*(m). Therefore P4(m) ~ P*(p"). In
[Sas65] Sasao computed the homotopy group 7g(P*(m)). He showed that

Z(m,l?) & Zm if ’Ug(m) = 0,
76(PH(m)) = < Zip 192 ® Lo & o if 1 < vp(m) < 2,
Z(m712) D Ly, © Zo if vo(m) > 3.

In all cases, localising at p > 5 we obtain
m6(P*(m)) = Zyr.

We now give an alternative construction of a generator of mg(P%(m)) to that given by

Sasao using localisation at a prime p > 5. Let & € mg(P*(m)) = Z,» be a generator. We
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can write the attaching map of the top cell as ¢ = t- & with t € Z,». Notice that if
Y ~ * then ¥i has a left homotopy inverse, implying XM, ,, ~ P*(p") v S8. We claim

that the generator & suspends trivially.

Let v : P4p") — P*{p") be the identity map. Since v is a suspension there is a
Whitehead product [v,v] : XP3(p") A P3(p") — P*(p"). By Proposition 3.21 there is a

p-local homotopy equivalence
P (p") AP (p") = PT(p") v P(p").

This homotopy equivalence precomposed with the inclusion of P7(p") into the wedge
determines a map [v,v] : P7(p") — P*(p"). By Proposition 3.22 there is a p-local
homotopy equivalence

¢:S3 P} x QA — QPY(p") (5.1.8)

where A = \/32, P 2643(p") and S™{p"} denotes the homotopy fibre of the degree map
p":S™ — S™. Using (5.1.8) we get

me(PH(p")) = w5 (QPY(p")) = 75(S°{p"}) @ 75(QA).
Notice that there is a homotopy fibration given by
Q83 — S3{p"} — S3.

As 2 and 3 are inverted we have 75(S%) = 0 and 75(025%) = 76(S3) = 0 and therefore
we obtain m5(S3{p"}) = 0. Now 75(QA) = 16(A) = 76(P7(p")) = Z,r, where the last
two isomorphisms are given by the high connectivity of the factors in the wedge defining
A and the Hurewicz isomorphism, respectively. Thus a generator & of mg(P*(p")) is

represented by the map
585 o Py 24 pigy

Since [/u,7] factors through the Whitehead product [v,v], which suspends trivially, we

obtain & ~ x, as claimed. 0

We now start computing the set of principal G-bundles over spaces M;,,. In order to
proceed with the classification of the principal G-bundles and the homotopy decomposi-
tion of the gauge groups, it will be necessary to study the cofibration sequence associated

to the inclusion i : S3 — M,

S3 s My, Crm(i) —2— 54, (5.1.9)

where Cj (%) is the homotopy cofibre of 4, ¢ is the pinch map and § is the connecting

map.
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Lemma 5.5. Form # 1, the projection 7 : My, — S* extends to a map 7 : C (i) — S*
such that the composite S* — Crm (1) 5 S* is a homotopy equivalence. Moreover,
Cim (i) ~ Sty ST,

Proof. Consider the following diagram

3 q
S3— Mym

R
j.\'

S,

Crm (i) — 54 (5.1.10)

Since 3(S5%) = 0, there is an extension 7 : Cy,, (i) — S*. Notice that the cofibre Cj ()
can be built as a CW-complex with one 7-cell attached to a 4-sphere. Thus Cj, (i) fits

into the following cofibration sequence
§6 5t (i), (5.1.11)

with g the inclusion and 6 € 76(S?) & Zs.

Suppose first m = 0. Then the map 7 : M; o — 5% has a cross section S* — M p. The
homotopy commutativity of (5.1.10) implies that the map 7 also has a right homotopy

inverse. Therefore the composite 7 o g is a homotopy equivalence, as claimed.

Now suppose m > 1. The map S* EN Ci.m (i) is the inclusion of the bottom cell and

induces an isomorphism g* : H*(Cj,,(i)) = H*(S%) = Z. Consider the commutative

diagram:
HA (M) < HA(Cpm (i) (5.1.12)
H4(S4)

By Lemma 5.1, 7* is reduction mod m. From (5.1.12) we obtain the following composite
.7~z 4 7.

which is reduction mod m. Thus 7* = £1 (mod m). Consider the homotopy commut-

ative diagram

S3L>S3*>P4(m)i>54 (5.1.13)
i |l
g1 2, 53 My —=— S

where the top row is a cofibration sequence and the bottom row is a fibration sequence.
We can apply the cohomology functor to the bottom row fibration producing an exact
sequence in low degrees. This shows that the connecting map  induces multiplication

by m. From the left square we obtain that £ is a degree one map, as it is the inclusion
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of the bottom cell. By the Peterson-Stein formula the adjoint of the map ¢ is homotopic

to 7. Therefore 7" is a homotopy equivalence.

Notice that in cohomology ¢* o 7* = (7’ 0 ¢')*. Therefore 7* is an isomorphism and the

map 7 o g is a homotopy equivalence as required.
Finally, as 7 o g is a homotopy equivalence, the map 6 in (5.1.11) is nullhomotopic,

implying that Cy (i) ~ S* v S7. O

There is a one-to-one correspondence between Pring(M;,,) and [M;,,, BG] (see Co-
rollary 4.11). Let m = 1. From the homotopy classification of M ,, we know that all

manifolds M; ; are homotopy equivalent to S7. Therefore we get
[M; 1, BG] =[S, BG] = 17(BG) = 76(G).

The following proposition is a classification of principal G-bundles over spaces M ,,, with

m # 1 and 7m(G) = 0, extending the result for the case m = 1.

Proposition 5.6. Let G be a simply connected simple compact Lie group such that
m6(G) = 0. Then
Pring(Mm) = L,

More precisely,

(1) if m =0 then Pring(M; ) = Z;

(2) if m > 1 then Pring(Mjm) = Zn,.

Moreover, the projection M, 5 8% induces a map
7 : [S*, BG] — My, BG|

which is a bijection if m = 0 and a surjection if m > 1.

Proof. By the classification theorem of principal G-bundles there is a one-to-one corres-
pondence between Pring(M,y,) and [M; ,, BG]. Thus we compute the set [M; ,, BG].

Let f : M;,, = BG be a map. From Table A.1 we have m3(BG) = mp(G) = 0 for all
simply connected simple compact Lie groups G. Hence the composite S3 < M i> BG
is nullhomotopic. Using Lemma 5.5 to identify the homotopy cofibre of i as S* Vv S7,

there is a homotopy commutative diagram

q

S8 — s My, StV ST §1 =L My, (5.1.14)

T

BdG
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where the top row is a cofibration sequence and f : 84 v ST — BG is an extension of f.

Let Mfm be the 4-skeleton of M ,,, so that Ml%m ~ 83V 8% or Ml%m ~ P*(m). In any
case, Mfm is a co-H-space. From the exact sequence induced by the attaching map of
the 4-cell,

53 s 58 M}, sS4, (5.1.15)
we obtain an exact sequence of groups
[$%, BG] " [$*, BG] —— [M}.,,, BG] —— 0 (5.1.16)

where 4(BG) = 73(G) = Z (from Table A.1) and m* : Z — Z is multiplication by m.
There is a coaction 1) = 9y, : S* — 5%V 5% associated to the cofibration (5.1.15) which

induces an action of homotopy sets,
Y* 1 [S*, BG] x [S*, BG] — [S*, BG].

Exactness of (5.1.16) implies that [M;! | BG] = Z,, and by construction the orbits under
the action 9* are equal to the cosets of the image of m*. The map 53 AN M ,, factors

through the 4-skeleton M, fjm. Therefore we have a homotopy commutative diagram

5% —— M}, st = 61 (5.1.17)
[
i 0

S3— My —— StV ST G4

where i; : S* — S§* Vv S7 is the inclusion of the first factor into the wedge. Let
Y St v ST = 84 v ST v 8% be the coaction of S* on S* Vv S7. From (5.1.17) we

obtain a homotopy commutative diagram as follows

L RV (5.1.18)

ill J/il\/]l

Siv ST Y, 51y STy St

Applying the functor [—, BG] we obtain a commutative diagram of homotopy groups

71(BG) x 11(BG) x ma(BG) L5 7y(BG) x 71(BG) (5.1.19)
qxnl li{
w*

7T4(BG) X 7T4(BG) 7T4(BG).

By hypothesis m7(BG) = m(G) = 0, implying that the vertical arrows in (5.1.19) are

isomorphisms. Therefore (¢')* = ¢*.
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From (5.1.14) we obtain an exact sequence of homotopy sets

(54, BG] -2 [$4V ST, BG] —— [ M}, BG] —— 0
Z.

Since the homotopy set [M,,, BG| might not be a group we will need to use the action
(¢")* to compute it. From Theorem 2.40 we have that [M;,,, BG] is the orbit space
of the action (¢')* on m4(BG) x m7(BG) = m4(BG). Therefore, since (¢')* = 1%,
[Mym, BG] = Z if m = 0, and [My,, BG] = Zy, if m > 1.

Finally we analyse the induced map
7™ : [Mym, BG] — [S*, BG].

By Lemma 5.5, the projection 7 : M;,, — S* extends to a map 7 : $* Vv S7 — S4 so that
the restriction to S* is the degree 1 map. Since 76(G) = 0,

[S*v ST, BG] = [S7, BG] x [S*, BG] = m6(G) x [S*, BG] = [S*, BG].

Consider the commutative diagram

[M} 1, BG) +—— [54 v 87, BG] (5.1.20)
(%, BG]

where the induced map 7* is an isomorphism. We have already shown that ¢* is an
isomorphism if m = 0 and a surjection if m > 1. Therefore 7* : [M,,, BG] — [S*, BG]

is an isomorphism if m = 0, and a surjection if m > 1. O

Let ¥/ be the suspension of a generator of 74(53). Let Y] be the homotopy cofibre of a
map ;X1 € 77(S4).

Lemma 5.7. There is a homotopy commutative diagram

e e L (5.1.21)

N

My — StV ST sS4 XM

L]

Ml,m T S4 C’l7m(7r) —_— EMl,m
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where each row and column is a cofibration sequence. Furthermore the map S* L Cpm(m)

1s identified with the composite
§* 0 5% s Cp ()
and there are homotopy equivalences

Cim(m) ~ XY].

Proof. By Lemma 5.5, there is a homotopy commutative diagram

S% 1y My —2— 54V 57 (5.1.22)

x

My —— 5%

where the top row i is the cofibration sequence induced by the inclusion of the bottom
cell and 7 is the homotopy extension of the projection map 7. We can extend the diagram
(5.1.22) to the right to generate the lower part in (5.1.21), where Cj ,,(7) is the cofibre of
the map 7. The inclusion S7 < S*V S7 generates the upper part of the diagram where
7 is homotopic to the restriction of § to S7. Therefore the whole diagram, where each
column and row is a cofibration, homotopy commutes. From the exact sequence induced
by the middle row

HY(SY —S HA(S* v ST) —Ls HY (M) —— 0 (5.1.23)

Z Z /.
we conclude that § restricted to S* is the degree m map. Suppose m = 0. Using

Proposition 5.3 we obtain a decomposition of the suspension
XMy, ~ XYV S5, (5.1.24)

where Y] is the homotopy cofibre of a map ;%1 € 77(S%) and t; depends on . Since 7
has a cross section, so does the map ¥7w. Therefore, from the commutative diagram we
have XM, ,, ~ S§°V Cj (7). Comparing this equivalence with (5.1.24) we conclude that
NC) () ~ DV, 0

5.2 Homotopy decompositions: torsion-free case

Let Map(X,Y’) be the mapping space of continuous maps from X to Y, and denote by
Map*(X,Y’) the space of pointed maps. Similarly let Map;(X,Y") and Map}(X,Y) be
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the path components of the corresponding mapping spaces containing the map f. Let
BG;(X,G) denote the classifying space of G¢(X,G). There are homotopy equivalences
(see Theorem 4.16)

BG;(X) ~ Map (X, BG), (5.2.1)

BG(X) ~ Map}(X, BG), (5.2.2)
Recall that for G connected, [X, BG] = mo(Map* (X, BG)) = mo(Map(X, BG)). By Pro-
position 5.6 if m,(G) = 0 and M, ,, with torsion-free homology and not homotopic to S7,
7 My, — S* induces a function 7* : [S*, BG] — [Mm, BG] = Z. In order to obtain
homotopy decomposition of the unpointed gauge groups, we have to study the cofibration

and fibration sequences induced by the projection map. Let M;,, be a manifold such

that m = 0. Notice that there is a one-to-one correspondence
mo(Map*(S*, BG)) — [Mj 1, BG| (5.2.3)

and the projection map induces homotopy fibrations

FY0 - Map*(S*, BG) Z>Map* (M, BG),
FEY = Mapj (5%, BG)“Map} (Mjm, BG),

where 7 is the restriction to the k-th component and F40 and F,i’o are the corresponding
homotopy fibres. Using the bottom row in the commutative diagram of Lemma 5.7 we

obtain the following fibration sequence for the k = 0 case
Map*(2Y;, BG) — Mapjj(S*, BG)~Mapj;(My,, BG),

where we can identify Map*(XY;, BG) ~ Map*(Y;, G). Next we state a general result on
the homotopy types of the spaces F li’o.

Lemma 5.8. Let Fé’o(ﬂ') be the homotopy fibre of 75 : Mapj (5S4, BG) — Mapj (M, BG).

There are homotopy equivalences
F,i’o(w) ~ Map* (Y}, G), for all k € Z.

In particular, if | =0 (mod 12), then F]i’o(ﬂ') ~BG x Q"G

Proof. The inclusion of the bottom cell into M ,, induces a fibration sequence

Map*(S*V 87, BG) L5 Map* (M, BG) = Map*(S3, BG) (5.2.4)
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Applying the functor Map*(—, BG) to the diagram in Lemma 5.7, we can fit the fibration

sequence (5.2.4) into a homotopy commutative diagram

Map*(2Yi, BG) — Map*(S*, BG) — s Map*(S7, BG) (5.2.5)

J (m+y)*

Map* (5%, BG) — Map*(S* v §7, BG) —2 Map*(S7, BG)
ﬂ*l q* l
Map* (M ,, BG) === Map* (M} s, BG) ———— *

i*

Map*(S3, BG)

where rows and columns are fibrations. Notice that the map ¢* induces bijection between
path components. Identifying Mapj.(S*V S7, BG) with Mapj (5%, BG) x Map*(S7, BG)
we see that p3 is the projection to the second factor. Restricting the map ¢* to the k-th

component we obtain the following homotopy commutative diagram

Map*(2Y], BQ) 0BG — . Q"BG (5.2.6)

]

OLBG — 5 Q!BG x 0BG —2— Q" BG

| 1]

Mapy (M m, BG) == Map}, (M}, BG) —— *

where each row and middle and right columns (and therefore the left column) are fibra-

tions. Here the map 6y, : QgBG — QiBG is the homotopy equivalence defined by
wi po(wxkp)oA,

where p is a homotopy multiplication in Q*BG and kq is a choice of base point in Q%BG.

Finally we have homotopy equivalences

FO(x) >~ Map* (2Y;, BG) ~ Map*(Y;, QBG) ~ Map* (Y}, G). O

If Y is an H-group, or if X is a co-H-group, then all the path components of Map*(X,Y)
are homotopy equivalent (see Proposition 4.18). Therefore in our case, if M;,, ~ ST,
given k, k' € [M; ,,, BG], the path components Map}, (M ,,,, BG) and Mapj, (M ,, BG)
are homotopy equivalent and, as a consequence, so are the pointed gauge groups. In the
case when M ,,, is not homotopy equivalent to .S 7 it is not known if the path components
of Map* (M, BG) have the same homotopy type. We prove a result on the homotopy
types of the pointed gauge groups over manifolds M;,, with torsion-free homology and
m # 1. Let P, — M, be a principal G-bundle classified by k € Z and let G};(M;,,) be
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its pointed gauge group. Let v : S® — S3 be the generator of 74(5%) = Z1 as it is given
in [Tod63]. For [ € Z with | # 0 (mod 12), let ¥; be the homotopy cofibre of § = lv.

Theorem 5.9. Let G be a simply connected simple compact Lie group with we(G) = 0.
Let My, be the total space of an S3-bundle over S* with torsion-free homology not ho-

motopy equivalent to ST. Then there are homotopy equivalences
Gr(Mp ) ~ QG x Map*(V;, G), for all k € Z.
In particular, if | =0 (mod 12) then there is a homotopy splitting.

Gr (M) ~ Q*G x Q3G x Q'G.

Proof. Let M, be a manifold with torsion-free homology, that is m = 0, and let G; (M )
be the gauge group classified by k& € Z. By Lemma 5.8 there is a fibration sequence

Map* (i, G) — Map} (5%, BG) ™ Map}, (M, BG). (5.2.7)

Extend the fibration sequence to the left. Consider the following part of the fibration

Q *
OMap;(S%, BG) ~ QMap}(S*, BG) —=% QMap;,(Mj 1, BG) —— Map* (Y}, G).
(5.2.8)
Since m = 0, M, has cross sections. Let s : M; ,,, — 5% be a map such that the diagram

St — My (5.2.9)

N

514

commutes. Applying the functor Map*(—, BG) to the diagram (5.2.9) we obtain the

following homotopy commutative diagram

Map* (5%, BG) +=— Map* (M, BG) (5.2.10)

\ }r*

Map*(S%, BG).

Thus the map €2s* is a homotopy retraction of Qz*, which implies that there is a homo-

topy splitting
OMapj (M 9, BG) ~ QMap};(S*, BG) x Map*(V;, G).

We can identify QMapf(S*, BG) ~ Q4G and Gi (M) ~ QMap} (M, BG). Putting
things together we obtain

Gi (M) = Q'G x Map*(V;, G).
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Finally, note that when [ = 0 (mod 12) we have XY; ~ %V S8 and therefore we get

Gr (M) ~ Q'G x Q3G x Q7G. O

We look at the evaluation map to obtain homotopy decomposition of the unpointed gauge
groups. The restriction of evaluation map to the k-th component defines a fibration

sequence

OMapy, (M, BG) — G -2 Map (M, BG) — Mapy, (M, BG) <% BG
(5.2.11)
where 0y, is the connecting map. Thus the gauge group Gi(M; ) ~ QMapy, (M, BG)
appears as the homotopy fibre of the connecting map Jx. Hence, it is expected that the

properties of J; determine the homotopy type of the gauge groups over the manifolds
M.

By Proposition 5.6, if m = 0 the projection M ,, %, % induces an bijection between path
components of Map(Ml,m,BG) and those of Map*(S*, BG). Therefore, the evaluation

map induces a commutative diagram

G*M\dapk(s4 BG) —— Map,, (5%, BG) —* B@ (5.2.12)

J I

G —) Mapy, (M) 1, BG) —— Mapy, (M} 1, BG) ——

which defines the map ¢,. We write QMap, (S, BG) ~ G(S*), where Gp(S%) is the
gauge group of the principal G-bundle classified by k € m3(G) = Z.

Theorem 5.10. Let G be a simply connected simple compact Lie group with trivial me(Q)
and let My, — S% be a sphere bundle with cross section. Let Py — My, be a principal
G-bundle classified by k € Z. There are homotopy decompositions

Gr(M; ) =~ Gr(S*) x Map*(V}, G).
Moreover, if | =0 (mod 12) there are homotopy equivalences

Gr(M; ) =~ Gp(S*) x Q3G x Q7G.

Proof. We argue along the lines of [ThelOb]. Consider the restriction of the map
7 : Map*(S*, BG) — Map* (M, BG) to the k-th component. By Lemma 5.8 there is

a fibration sequence

OMapy, (M; n, BG) — Map*(Y;, G) — Mapj,(S*, BG)~Mapj,(M;m, BG).  (5.2.13)
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We identify Mapy, (M}, BG) ~ G;;(Mj ). The left square in (5.2.12) along with 5.2.13

induce the following homotopy commutative diagram

Ny .7 iy pu— 1 Y (5.2.14)
| 6*

Gr(SY) ———— Gr(M, ) — F;i’o(ﬂ)

)
)

(S G O Map}(S*, BG)
Oy ﬁz
£ —— Map(My9, BG) —— Map}(My o, BG)

which defines the map h.

By Theorem 5.9 the map 6* has a right homotopy inverse which implies that the map h
also has a right homotopy inverse. The group structure on Gi(M; ) allows to multiply

to obtain a composite
Gr(S*) x Map*(2Y;, BG) — Gi(M0) % Gr(My0) — Gr(Mi),

which is a homotopy equivalence.

If | = 0 (mod 12) then by Lemma 5.8 we have that XY; ~ S* v S8 and therefore
Map* (XY}, BG) ~ Q3G x Q7G. O

Theorem 5.10 implies that the determination of the homotopy type of G (M ) is reduced
to determining that of G;(S*). These gauge groups have been computed for different Lie
groups. For example, from [Thel5, Theorem 1.1] we obtain the following corollary. Let
(n1,n2) denote the greatest common divisor of n; and ng, and notice that 120 is divisible

by 16 positive integers.

Corollary 5.11. Suppose M is either S3 x S* or any twisted product S>x%;S*. Let
P. — M and Py — M be principal SU(5)-bundles classified by k,k' € Z. Then
Gr(M) =~ Gp(M) if and only if (120,k) = (120, k") when localised rationally or at any
prime p. In particular, there are 16 distinct homotopy types of the groups Gi(M) for

k € 7 when localised rationally or at any prime.

5.3 Homotopy decompositions: non torsion-free case

Now we focus on the case of gauge groups of principal G-bundles over manifolds M ,
for m > 1, which have homology groups with torsion. We will require that all spaces are

localised at a prime p > 5. The statements and proofs are similar to those obtained in
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the previous section. However, in this case we will obtain results for the loop space of

the gauge group, QG (M ).

Lemma 5.12. There is a homotopy commutative diagram

e T 57 x G858 (5.3.1)
[ A e

My —2s 8y 872 g4 SMjy —— 85V 8 — 20, 65

My —"— 8t — L C () —— SMy S5 — 1 10 ()

where each row and column is a cofibration sequence. Furthermore, after localisation at

. P . . . .
a prime p > 5, the map S° =4, YC) () is identified with the composite
S5 1 8% <y BC) p(m)
and there are homotopy equivalences

YO () =~ S° Vv S°.

Proof. By Lemma 5.5, there is a homotopy commutative diagram

S8 s My —2 54V ST (5.3.2)

X

My ——— 54

where the top row is the cofibration sequence induced by the inclusion of the bottom
cell and 7 is the homotopy extension of the projection map 7. Arguing along the lines of
Lemma 5.7 we can extend (5.3.2) to the right to obtain a homotopy commutative diagram
as shown in (5.3.1). Note that § = 8 + v where 8 € m4(S*) and v € 77(S*) 2 Z © Z1.
Using the long exact sequence induced in homology by the middle row of (5.3.1), we can

see that (8 is the degree m map. Thus we can identify the map ¢ with the composite
S5 2 8% s B0 (7).

The homotopy group 7s(.S%) becomes trivial after localisation at a prime p > 5 [Tod63].
Since XCj () is the homotopy cofibre of the map Xy € mg(S°), after localisation at a

prime p > 5 there are homotopy equivalences

SCpm ~ S°V S O
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Lemma 5.13. After localisation at a prime p > 5, there is a fibration sequence

*Xm*

0BG x O°BG X" 0BG =5 OMap} (M), BG),

where m* is the m-th power map, and the map w; is identified with the composite
OMapi(S4, BG) 2% OMap; (5%, BG) 275 QMap)(Mm, BG),

where 0, QéBG — QﬁBG s a homotopy equivalence.

Proof. Applying the functor Map*(—, BG) to the diagram in Lemma 5.3.1, we obtain a

homotopy commutative diagram

Map*(Cy (7)), BG) — Map*(S%, BG) %Map (S7, BG) (5.3.3)

q*l (m+)*
Map*(S?*, BG) ——— Map*(5* v S7 BG)—M\/[ap (S7, BG)

Map* (M} m, BG) Map* (M}, BG) ———— %

o*

Map*(S3, BG)

where rows and columns are fibrations. We can identify Map*(S* v S7, BG) with
Map*(S?*, BG) x Map*(S”, BG) so that p} is the projection of the second factor. The
following diagram is obtained by restricting the map ¢* to the k-th component and com-
posing with the homotopy equivalence 6y, : Q*BG — Q*BG given by w + pro(w x kg)o A
for a fixed kg € QiBG:

Map*(Cym (), BG) —— Q*BG —— " QTBG (5.3.4)

| oy |

|_|i€Z sz+kBG 4> I_leZ zm—i—kBG X Q7BG Q7BG

| T

Mapy, (M; m, BG) === Mapj, (M n,, BG) ———— *

Here all rows and the middle and right columns, and hence the left column, are fibrations.
Note that since the projection map g* : Map*(S%, BG) — Map*(M;,, BG) induces a
surjection in path components, the homotopy fibre of i* restricted to the k-th component
is not path connected. Applying the functor Q(—) to the previous diagram we obtain

the following homotopy commutative diagram
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*

OMap* (Cpp (1), BG) —— QBG ——2 QSBG (5.3.5)

[ ]

PBG—— S OPBG x O8BG —2 5 O*BG

n:{ ngl J

QMapj (M m, BG) === QMap},(M, ,, BG) —— *

where we have identified QQ%BG with QQ3BG ~ Q°BG for all k; note that localised
away from p = 2 we have 74(G) = 0 and so Q°BG is connected. Note that the adjoint
of Qv* is homotopic to (Xv)*. Localise at a prime p > 5. Taking adjoints and using

Lemma 5.12 we obtain a string of homotopy equivalences
OMap*(C (1), BG) ~ Map*(XC;,,(7), BG) ~ Q°BG x Q°BG,

and g ~ * x m*, where m* is the m-th power map. 0

Now we give results on the homotopy decomposition of the pointed gauge groups. Recall
that for any space X, the cofibration sequence S™ ky gn _y prtl (k) induces the following
fibration sequence

Map*(P""(k), BG) — Q"X %5 Q"X

where k* is the k-th power map. Let Q"G{k} := Map*(P"*1(k), BG).

Theorem 5.14. Let G be a simply connected simple compact Lie group with m¢(G) = 0.
Let P, — M., be a principal G-bundle classified by k € [M,,, BG], and m > 1.

Localising at a prime p > 5 there are p-local homotopy equivalences
G (Mim) = Q*G{p"} x 976,

QG (M) = Q'G{p"} x Q°G,

where 1 = v,(m) is the valuation of m at p.

Proof. Localise at a prime p > 5 and let v,(m) = r. First suppose k = 0. Using Lemma

5.4, there is a homotopy equivalence
YMy,, ~ PYp") v SE.
Thus we obtain a string of homotopy equivalences

OMapg (M ;m, BG) ~ Map* (XM, BG) ~ Map*(P*(p") Vv S®, BG).
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Taking adjoints we obtain
Map*(P*(p") vV 88, BG) ~ Map*(P3(p") vV S7, G) ~ Map*(P3(p"), G) x Map*(S7,G).
Since G (Mj ) ~ QMapg(M,m, BG), we get G (Mym) ~ Q3G{p"} x Q7G.
Now suppose k # 0. By Lemma 5.13 there is a fibration sequence
Q?BG x Q°BG ™5 0BG T OMaph (Mim, BG),

where m™* is the m-th power map, and the map 7, is identified with the composite

Q *
OMapy(S*, BG) 2% QMap; (S*, BG) —% QMap},(Mym, BG),

where 0 : Q}BG — QﬁBG is a homotopy equivalence. Note that the homotopy fibre of

the map * x m* is homotopy equivalent to QQMap}:, (Mj m, BG), which can be identified

with QG (M;,,,). Now identifying Q3 BG with QJ BG x « it is easy to see that there is a

homotopy equivalence

QGi (M) ~ Q'G{p"} x 0BG

as required. O
Now by Proposition 5.6, M;,, - S* induces a surjection [S*, BG| *= [M,,,, BG] if
m > 1. Therefore, by the naturality of the evaluation map, we obtain a commutative
diagram

aG -2, QMapi(S*, BG) —— QMap,, (54, BG) —~ G (5.3.6)

I I

0G 2%, OMap? (Mym, BG) —— OMapg(Mym, BG) —% G

which defines the map ¢y,. More precisely, if m > 1 then Map (M ,,,, BG) has m com-
ponents and Map(S*, BG) , Map(M; rm,, BG) sends the k-th component of Map(S*, BG)
to the k-th component of Map(M; ,,, BG), where k is the mod m reduction of k.

Theorem 5.15. Let m > 1 be an integer and p > 5 be a prime. Let P, — M, be a
principal G-bundle classified by k € Zy,, where G is a simply connected simple compact

Lie group. There are p-local homotopy equivalences

(1) Go(Mym) ~ Q'G x G if vy(m) = 0;

(2) QGr(M, ) ~ QG x Xi if vy(m) > 1, where Xy, fits into a homotopy fibration
Q'G{m} — X — QG.

Moreover, if v,(m) =r > 1 and p"|k, then X}, ~ QG x Q1G{m}.
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Proof. Let K be a CW-complex such that M;,, ~ K. Then K is obtained attaching a
7-cell to a Moore space P*(m). Localise all spaces at a prime p > 5, so that 76(G) = 0
for any simply connected simple compact Lie group. Suppose that v,(m) = 0. Then
P*(m) ~  and therefore My ~ K~ S7. Thus in this case there is only one principal
G-bundle over M, up to isomorphism, namely, the trivial bundle. Since the map evg
in (5.2.11) has a section and this is a principal fibration we obtain a p-local homotopy

equivalence

Go(Mym) ~ Q'G x G.

Suppose now that v,(m) > 1. By Theorem 5.14, there is a p-local homotopy equivalence
QGi (M) ~ Q3G x Q*G{m}.

This implies that there is fibration sequence

3G x QG{m} —L 03G x Q4G 25 4G —2 QMap) (Mym, BG) ~ G (Myn,).
(5.3.7)
Therefore we have §* ~ 1 x j where j is the inclusion map. The evaluation fibration

along with (5.3.7) induce a homotopy commutative diagram

QBG x BBG{m} == 0BG x Q°BG{m}
i 1%
QG (5Y) —— QG (M) ———— Q°BG x Q5BG
4 Q9k 5
0GL(SY) G 0°BG
Q0% s
QMapj (M, BG) === QMap}. (M, ,, BG)

which defines the map h; here we identify Q°BG ~ QQ%BG o~ QQ%BG. Let h be the
composite
QG (M, ) —— Q9BG x O°BG - Q9BG,

where p; is the projection onto the first factor. The top square of (5.3.8) shows that h
has a right homotopy inverse. Let X be the homotopy fibre of the map h. Then there is

a homotopy equivalence

QGr(My) ~ X x Q'BG. (5.3.9)
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Finally from (5.3.8) and (5.3.9) there exists a homotopy pullback square

NG {m} =——= Q*'G{m}

|

ng(54) X STG
0G(S5%) 06— 04,

Let 7 = vy(m). Then, if p"|k then the map Q¢y, lifts through m*. Therefore, by the
properties of the pullback there is a map ¢ : QG — X which is a homotopy section.
Thus in this case we have a splitting X;, ~ QG x Q'G{m}. O

5.4 Homotopy types of gauge groups over S’

In this section we discuss the classification of the homotopy types of the gauge groups
over manifolds M) ;. As all manifolds M;; are homotopy equivalent to S7. the follow-
ing results will be expressed in terms of S7. Recall that Pring(S7) is in one-to-one
correspondence with the set [S7, BG]. In Table 5.1 we collect information on the sets
Pring(S™) = [S7, BG]. Here G* is any of the simply connected simple compact Lie
groups not isomorphic to SU(3), Gy or SU(2) = Sp(1).

TABLE 5.1

G SU(2) SUB) Gy G*
[ST,BG] | 72 Zg Lz O

Let P, — S” be a principal G-bundle classified by & € [S7, BG]. We have seen already
that as S7 is a co-H-space, Map}(S”, BG) ~ Map§(S7, BG), which implies that for any
k € [S7, BG] there exists a homotopy equivalence G;(S7) ~ G¢(S7). In what follows we

discuss the results on the homotopy classification of the unpointed gauge groups over S7.
Consider the fibration sequence
G(ST) —— G~ Map(S7, BG) —— Mapy(S7, BG) —% BG (5.4.1)
where ev is the evaluation map. Thus the connecting map 0 is an element of
(G, Map; (ST, BG)] = [G, Map}(S”, BG)] = [G, Q5G].

By Lemma 4.21 the adjoint of the connecting map, denoted 9*, is homotopic to the
Samelson product (kv, 1), where v is a generator of [S7, BG] = 74(G) and 1¢ is the
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identity map on G. It is clear that the order of J) is bounded by both the number of
principal G-bundles and the order of [G, Q5G].

Lemma 5.16. The set [SU(3),Q8SU(3)] is isomorphic to

Zy®I5D 73D L.

Proof. Taking the adjoint we get [SU(3),Q20SU(3)] = [XSU(3), SU(3)]. After suspen-

sion there is a homotopy equivalence [Mim69)]

¥0SU(3) ~ x'CP? v 14

Let p > 2 be a prime. There exists a p-local homotopy equivalence
»0SU(3) =, S9 v S v 51
Thus localized at p > 2 we get

[S0SU(3),SU(3)]peey = [S” VSV SM 8% x 89
= m9(S® x S%) @ mi1(S x S°) @ mi4(S? x S°)

Using the information on the homotopy groups of spheres [Tod63| we obtain

(205U (3), SU3)](p) = Z3 & Zr.

Now consider localization at p = 2. First by (5.4)

[EﬁSU(?)), SU(3)](2) = [EY(CPZ Vv 314, SU(B)]
= [27CP% SU(3)] @ ma(SU(3))
= [X'CP?%,8U(3)] ®Zy @ Zo

since m4(SU(3)) = Z4 ® Zz [MT63]. The next step is to determine the homotopy set
[X7CP?,SU(3)]. Consider the cofibration sequence

§10 M, g9 L, siep? 4, git My g (5.42)
where 7, = X" "2y : "1 — 8" with n: S3 — S? the Hopf map. Applying the functor
[—, SU(3)] we get the following sequence of homotopy sets

.
1o,

T0(SU3)) 1% 711 (SU(3)) L [RTCP2, SU(3)] = 19(SU(3)). (5.4.3)

As mo(SU(3)) = 0, the group [X'CP?, SU(3)| is isomorphic to the cokernel of nj,. It is

known that m0(S°) & Zg, generated by vsn3, and m11(S°) & Zs, generated by v2. In
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[MT63] it is shown that the projection map ¢ : SU(3) — S° induces an isomorphism
for 719 and an epimorphism for 71;. Thus there are maps [vn3] : S — SU(3) and
[v2] : S — SU(3) such that the following diagrams homotopy commute

SIO
[umgll \"g

SU(3) —1— 55,

Sll
[v3]

SU(3) —1— 5.

2
Vs

and the maps [v5n2] and [12] are the generators of 719(SU(3)) & Zg and 711 (SU(3)) & Zy
[MT63], respectively. Observe that the composite

g1 o, g1 Ll gy 4, g

is V57’]g. The map 1/517§ cannot be homotopic to yg since stably 1/5773 ~ % while Vg 2 x.
Thus g o [v5u2] o 19 is nullhomotopic and therefore nj, = 0. Thus the homomorphism
q* : m1(SU(3)) — [X'CP?, SU(3)] is an isomorphism and [STCP?, SU(3)] 0y = ZaBZ3.
Finally, putting things together we obtain [Z6SU(3),SU(3)| 2 Z3 ® Zo ® Z2 ® Z7. O

We give a result on the number of homotopy types of gauge groups of principal G-
bundles over S7. In the case of the 2-primary component for G = SU(3) this has not

been resolved so that we will state the result for the odd primary part.

Theorem 5.17. Let G be a simply connected simple compact Lie group and let P, — S”
and Py — ST be principal G-bundles. Then

(1) forG = SU(2) = Sp(1) or G = Ga, there is a homotopy equivalence Gi,(S7) ~ G (S7)
when localised rationally or at any prime if and only if (3,k) = (3,k');

(2) for G = SU(3), there is a homotopy equivalence Gi(S7) ~ G/ (S7) when localised
rationally or at a prime p > 3 if and only if (3,k) = (3,K');

(3) otherwise, the gauge group of the unique principal G-bundle decomposes as

Go(S) ~ Q"G x G.

Proof. Let 0F € [¥5G, G] be the adjoint of the connecting map 9y, in (5.4.1).
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(1) Suppose first that G = SU(2). We identify the Lie group SU(2) with the unit

quaternions S3. Thus there is an isomorphism
[XOSU(2), SU(2)] = [£8 A 83, 8%] =2 mg(S3).

According to [Tod63], m9(S®) = Zs3, and so the order of OF is at most 3. We also
know that the map 9% is homotopic to the Samelson product (kvy,t3), where v is a
generator of mg(SU(2)) and t3 : S — S = SU(2) is the identity map on S3. From

the fibration sequence
Map; (57, BG) —— Map,, (57, BG) -+ BG
we obtain the following commutative diagram of groups

7T3(S3) — 71'3(9(7)353) 4)7T3(Mapk(s7, BSS)) — O, (5.4.4)

o T

[S6 A 53, 53]

where 0% (f) := (kv, f) for any f € 73(S%) = Z. Thus 73(Map(S”, BS®)) = coker oF.
Linearity in the Samelson product implies that (k~, t3) ~ k{7, t3). Thus we only have
to determine the order of (v, t3).

Notice that if Gi(S7) ~ Gp(S7) then 7,(Gr(S7)) = 7, (Gr (ST)) for all n > 0. In

particular, from (5.4.4) we obtain

m2(Gr(ST)) 22 m3(Mapy (7)) = m3(Mapy, (S7)) = ma(Grr (S7)).

According to [Sam54], the Samelson product (i3, t3) € ms(S?) has order 12, therefore
this map is a generator of mg(S®) = Z12. Hence the adjoint of the map 9 is homotopic
to the iterated commutator map ((¢3,t3),t3). Observe that ((¢3,¢3),¢3) is an element
of [SU(2) A SU(2) A SU(2),SU(2)] = [S? A S2 A S3,83] =2 59,83 = mo(S3) = Zs,
thus the order of ((t3,t3),t3) is either 1 or 3. According to [KK10, Theorem 2],
SU(2) localised at p = 3 is not nilpotent of class 2, hence ((t3,t3),t3) is non-trivial.
Thus it must have order 3. Since this map is the adjoint of 9%, we have that the
order of 9! is 3. From (5.4.4) and information of the homotopy groups of spheres we

obtain an exact sequence

Z -2 7y T ry(Map,, (ST, BS?)) —— 0.

Therefore |coker %] = (3,k). Thus if m3(Map,(S7, BS®)) = m3(Map (S7, BS®))
then (3,k) = (3,%'). From the previous discussion we see that if G, (S7) ~ G/(S7)
then (3,k) = (3,k').
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Now suppose instead that G = Ga. Let ¢ : 3 25 83 <5 G be a generator of
m3(G). The map (i,¢) represents a generator of mg(Gz2) [Mim67]. Thus we have
o' ~ ((1,1),1g,) : S A Go — Go. Consider the following composite

L), 1
0. 56 A58 N g6 A Gy PO o

Thus 6 = ((¢,¢),¢). We claim that 6 is not nullhomotopic. Consider the inclusion

53 < G2. According to [Jam95], there exists a homotopy fibration
S8 Gy —s 1

after localisation at 3. Thus the induced map i* : 7,,,(S%) — 7, (G2) is an isomorph-
ism for m < 9. Recall that, localising at p = 3, the map ({t3,3,),t3) € 79(S?)
is essential. Therefore the map 6 has order 3. Thus 6 generates mg(G2) = Zs.
By definition, 6 is the restriction of ' to S C G. Thus the order of d' and
hence of its adjoint 01 is at least 3. Now, from Proposition 5.6 we know that
Pring,(S7) = 7m(G2) = Zs. Thus, as there are 3 isomorphism classes of prin-
cipal Go-bundles over S7, the order of the map 0; is at most 3. The upper and
the lower bounds of the order of 0; coincide and therefore the order of 07 is 3. We
also obtain an exact sequence as in (5.4.4) to show that if G(S”) ~ Gu/(S7) then
(3,k) = (3,K).

Finally a simple application of Lemma 4.26 shows that Gi(S7) ~ Gi/(S7) whenever
(3,k) = (3,k') for G = SU(2) = Sp(1) and G = Gs.

Suppose all spaces are localised at a prime p > 3. We can get an upper bound on the
order of 9! through Lemma 5.16. It was shown that 9% € [26SU(3), SU(3)] = Z3®Zs.
Let 3 be the order of 8. Then B divides |Z3 @ Z7;| = 63. We also have that
B < |Pringy ) (S7)| = 6. Therefore the order of 9" localised at a prime p > 3 is at

most 3.

Suppose all spaces are localise at p = 3. Then there is a p-local homotopy equivalence
SU(3) ~ 5% x S5 and the composite + : S3 2 §3 < SU(3) is a generator of
73(SU(3)). Let (1,1) be a generator of ms(S?) = 76(SU(3);3) = Z3. Consider the
composite

L), 1 3
8§92 86 p 58—, g6 p srr(3) ),

SU(3).

The element ((t,¢),¢) is non-trivial in mg(SU(3);3) = Zs. Therefore localised at
p = 3 the map ((¢,¢), ) has order 3. Thus using an exact sequence as in (5.4.4), we
see that if G,(S7) ~ G, (S7) then (3,k) = (3,k’). Finally, applying Lemma 4.26 we
complete the proof of (2).
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(3) If G # SU(2),SU(3),G2 or Sp(1), then m7(BG) = 0. Thus there is a single principal
G-bundle over S which must be the trivial bundle, implying that the map 0% is

nullhomotopic. Therefore the principal fibration
OMap*(S7, BG) — Go(S7) — G

splits and Go(S7) ~ Q7G x G. O
Remark 5.18. We want to point out that part (i) of Theorem 5.17 contrasts with a results

given in [CS09].

Proposition 5.19 ([Proposition 2 [CS09]). For n € {7,8,9,10,15,16,17,18,23,24, 25},
there is a unique homotopy type of the gauge groups of all the principal SU(2)-bundles

over S™, and it is the one of the trivial bundle, namely,
Map(S™, §3) ~ QP S3 x S3. O
According to Proposition 5.19, if G = S3 all gauge groups over S” are homotopy equi-

valent. However, Theorem 5.17 shows that given two elements k, k' € [S7, BS?], it is not
always true that Gy (S7) ~ G/ (S7).







Chapter 6

Connected sums and other

extensions

We extend our results on principal G-bundles over M, to some cases that were not
covered in Chapter 5. We also give results on the homotopy theory of gauge groups
of principal G-bundles over certain connected sums. In the first part of Chapter 6
we consider the homotopy theory of gauge groups over manifolds M for the cases
G = SU(2),SU(3),Ga. The main results of the first two sections of Chapter 6 are
Proposition 6.3 and Theorem 6.6. In the last three sections of this chapter we will study
the homotopy theory of some 2-connected 7-manifolds with torsion-free homology. We
will provide homotopy decomposition for certain connected sums of manifolds M; o. The
proofs are very similar to those presented in Chapter 5. The ultimate goal is to give
homotopy decompositions of gauge groups over certain connected sums. We present
some information on the classification of 2-connected 7-manifolds M. We then prove
Proposition 6.11 and Theorem 6.12.

6.1 Principal G-bundles: G = SU(2),SU(3), G2

Let M;,, be the sphere bundle classified by (I,m) € Z @ Z. In this section we restrict
to principal G-bundles over manifolds M;o and G = SU(2), SU(3) or G2. From the
classification of S3-bundles over S4, all the projection maps 7 : Mo — S% have cross

sections, and we have the following homotopy equivalences

o Mg~ My if and only if [ = £I' (mod 12);

o Mg~ S3x S*if and only if I =0 (mod 12).
95
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Let o(G) denote the order of 74(G). In the study of gauge groups of principal G-bundles
over M o, the value of [ for each My becomes important when working with Lie groups
G such that o(G) # 1. We write S3x,5% = M for the cases where [ # 0 (mod 12).

Given a manifold M; g, there is a homotopy cofibration sequence

§6 Y5 63y Sty My L ST 20 g1y 89, (6.1.1)

where ¢ is the attaching map of the top cell, ¢ is the inclusion of the 4-skeleton and ¢
is the pinch map to the top cell. We can express the attaching map as ¢ = [i3, t4] + ta,
where [13, 4] is the Whitehead product of the identity maps in S? and S*, and a is a
generator of mg(S%). We obtain an exact sequence

(Ze)"

[S4V S5, BG] =25 (ST, BG] —1— [My,0, BG] ——— [$3 v §4, BG] —2— S, BG).

(6.1.2)

Lemma 6.1. Let M, be an S®-bundle over S* classified by an element (1,0) € 7. @ 7,
and let G be a simply connected simple compact Lie group with o(G) # 1. Then the map

*

©* induced by the attaching map is trivial.

Proof. From the homotopy groups of Lie groups (Table A.1), for G = G2 we have
75(Ga) = 0. There is an isomorphism [S% BG5] = 715(G2), and therefore ¢* = 0.

Now suppose that G # Gj, that is, G = SU(n) for n € {2,3}. By connectivity of BG,
any map f : S Vv §* — BSU(n) factors as the composite

S$3v 8t 2, 61 s BSU(n)

where po : S3 v §% — S is the projection onto the second component. Thus there is a

commutative diagram induced by the attaching map ¢ as follows

§6— 2 gt
¥ J
f

S3v 8t —— BG.

As M is the total space of a sphere bundle over 5S4, the map p, factors as the com-
posite py : S3 v §4 AN Mo — S where i o ¢ is nullhomotopic, and therefore the
composite ¢ = py o ¢ is nullhomotopic. Hence given f € [S® Vv S* BG] we have
©*(f)=fop=joprop=jop. As ¢ is nullhomotopic, so is j o @, and therefore p* is

the zero map. O

Recall, (n,m) denotes the greatest common divisor of n and m.
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Lemma 6.2. The image of (Xp)* is equal to Zy,, where n = (OO(G) 0

Proof. First notice that if o(G) = 1 then (X¢)* : m3(G) & m5(G) — 76(G) is the zero

map. Therefore im(X¢p)* =7 1 =7Z; = 0. Now suppose o(G) > 1.

(1,1

If I =0 (mod 12) then we have that M; ~ S3 x S* with attaching map ¢ a Whitehead
product. In this case, 3¢ is nullhomotopic, implying that (X¢)* is the trivial map. Thus
im(Xe)* =2Z o =7 =0.

(o(G),1)

Now if [ # 0 (mod 12) then from the exact sequence (6.1.2) we have im(Xp)* = ker ¢*.
A map f : S — BG is in the kernel of ¢* if and only if there is an extension
f:8%Vv S5 = BG, such that the diagram

Mg —1 5722, g4y 50 (6.1.3)

o f

BG
homotopy commutes.

As 76(S3) =2 Z9 is generated by the Samelson product (z,t), the generator 7 of mg(G)
factors as 7 : S8 M S3 <+ @. The adjoint of 7,

yAd g7 2, g1 o, B,

is a generator of m7(BG).

For G = SU(3), consider the exact sequence of homotopy groups induced by the fibre
bundle S3 — SU(3) — S,

76(5%) L w6 (SU3)) 2o m6(5%) 2 75(5%) — 15(SU(3)). (6.1.4)

From Table A.1 we have 7s(S°) = 75(5%) = Zs and 75(SU(3)) = Z. This implies that
the last map in (6.1.4) is the zero map. Therefore 0* is surjective, and as 0* is a map
between two copies of Zsg, it must be an isomorphism. In turn, pj is the zero map. Thus

any map S® — SU(3) factors as a composite

S8 5 53 1 SU(3).

For G = G3, note that localised at p = 3 there is an exact sequence [Mim95]
mo(5%) = m5(G2) 3 mo(S™).

Since mg(S'!) = 0, the map i} is surjective when localised at 3. Since mg(Ga) = Z3 is

invariant under localisation at 3, the map 45 is surjective integrally as well. Thus any
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map S® — G5 factors as a composite

56 53 2 g,

In the next table we collect this information on the generators of the non-trivial groups
m6(G), that is, when G = SU(2), SU(3) or G2 (alternatively, see [Mim67]).

G 7m6(G) | generator

SU((2) = S3 | Zis (ty0)
SU(3) Zg i1 0 (L, 0)
Go Zs ig 0 (L)

Since | Z 0 (mod 12), we have that p; o X ~ I%(s, ) (where p; : S* Vv S5 — S% is the
pinch onto the first wedge summand), and this map is not nullhomotopic. Consider the
diagram
My —"— BG (6.1.5)
q i
pet 1S {u,0) g

Y k

G4y g P, g4

where k is the degree k map. The maps i o (kX (¢, ) are therefore in the kernel of ¢*.
Thus the result follows from the exact sequence (6.1.2), the diagram and the table of the
homotopy groups 7s(G). O

Now we present a classification of principal G-bundles which generalises Proposition 5.6
(1) for the torsion-free case. The next result includes the groups G such that o(G) > 1:
SU(2), SU(3) and Gy. We will therefore give a different proof to the one given for
Proposition 5.6.

Proposition 6.3. Let G be a simply connected simple compact Lie group. Then
Pring(Ml’g) =17 X Z(O(G),l)'

Moreover, the projection m: Mo — S* induces a bijection 7 : m4( BG) — [M; 0, BG] if
(1,0(G)) = 1.

Proof. Recall the exact sequence given by (6.1.2),

(Ze)"

[S4V S5, BG] =25 (ST, BG] —1— [My,0, BG] ——— [$3 v §4, BG] —2— [S%, BG).

(6.1.6)
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First, if o(G) = 1 then by Theorem 2.40, the map i* is injective and by Lemma 6.1 it is
surjective. Therefore we obtain a one-to-one correspondence between Pring(M;) and

m4(BG) = Z, recovering the conclusion of Proposition 5.6 in the case m = 0.

Now suppose o(G) > 1. Since [M;o, BG] is not a group, more care is needed when
discussing exactness: for instance, ¢* = 0 in (6.1.6) would not necessarily imply that
i* is injective. For j € Z, let aj € m4(BG) be the map corresponding to j under the
isomorphism 74(BG) = Z. According to Theorem 3.2.1 in [Rut67], we can define maps
D(aj, ) : [S*V S5, BG] — [S7, BG] for each j € Z such that

(M, BG] = U coker I'(a, ).
JEZ

Moreover, from Theorem 3.3.3 in [Rut67| we have that if ¢* is a homomorphism then
I(aj,¢) = (Xp)". (6.1.7)

By Lemma 6.1, the map ¢* : m3(BG) x m4(BG) — m6(BG) is the zero map. Therefore,
equality in (6.1.7) holds and we have

[M; 0, BG] = Z x coker(¥¢p)*. (6.1.8)
Using Lemma 6.2 we obtain

coker(Xp)* = m6(G)/im(Xp)" = Zo(a 1)-

Finally, suppose that ¢* = 0: equivalently, coker(X¢)* = 0, that is, (o(G),l) = 1. Then
[My0, BG] & Z and i* : [M o, BG] — [S* V $3, BG] & m4(BG) is a bijection. Now the
map 7 : Mo — 5% has a section so that the composite S* — M o % 84 is a homotopy

equivalence. Therefore the composite
Sty 3y st My 5 5t (6.1.9)
is a homotopy equivalence. Thus applying the functor [—, BG| to (6.1.9) shows that map
1 my(BG) — [M o, BG]

is a bijection. O

6.2 Gauge groups: G = SU(2),SU(3), G,

In this section we use a similar strategy to that of the previous chapter to give a homotopy

decomposition of the gauge groups over certain manifolds S$®x;S4 when o(G) # 1.
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Let Mo = S3x;S* be such that (I,0(G)) = 1. By Proposition 6.3, the projection map
T Mg — 5% induces a map

T Map*(S4,BG) — Map* (M, BG)
that gives a bijection between path components of mapping spaces. Let
F}, — Map}(S*, BG) LN Mapy, (M, 0, BG)

be the fibration sequence of the restriction of 7* to the k-th component. By an application

of Lemma 5.2 to the bundle M; % S* we obtain a homotopy decomposition
YMy~ XYV S5, (6.2.1)

where the homotopy type of the space Y; depends on the attaching map of the top cell
of M; . By a similar argument as the one given in the proof of Lemma 5.8 we obtain the

following result.

Lemma 6.4. Let o(G) > 1. Given a manifold S*x;S* such that (o(G),1) = 1, there are
homotopy equivalences

FIO ~ Map*(v;,G), keZ O

Arguing as in the proof of Theorem 5.9 we obtain the following homotopy equivalence.

Theorem 6.5. Let G be a simply connected simple compact Lie group such that o(G) > 1.
Given a principal G-bundle P, — S3%;8%, if (I,0(G)) = 1, then there is a homotopy
equivalence

Gi(93%,8%) ~ Q'G x Map*(V;, G). O

The next theorem is a result on the homotopy decomposition of gauge groups. Although

the proof is similar to the one given for Theorem 5.10, we give a sketch of the proof.

Theorem 6.6. Let M, such that (I,0(G)) =1 and o(G) > 1. Then there is a homotopy
equivalence

Gie(5%%,8%) ~ G(S*) x Map*(V;, G), kel
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Proof. As in Theorem 5.10, we use the evaluation fibration along with Proposition 6.3

and Lemma 6.4 to obtain the following commutative diagram

OMapj (S3%,5%, BG) == QOMapj(S®x,5%, BG) (6.2.2)
5
Gr(SY) — 5 GR(S3%,84) —— s Map*(V;, G)
:
Gr(S%) a o Mapi (S, BG)
O vr;
Mapj (S3x;5%, BG) === Mapj(5*x,5%, BG)

which defines the map h. By hypothesis the map 7 : $2%;S* — S has a cross section,
so that the map ¢ in the cofibration

S§3%,9% I g4 % vy,

is nullhomotopic. This implies that the map ¢g* : Map;(V;,G) — Map; (5%, BG) in
(6.2.2) is also nullhomotopic. Therefore the map §* has a right homotopy inverse and so

does h. The group structure on Gi(M; ) allows to multiply to obtain a composite
Ge(S*) x Map*(¥;, G) — Gr(S®%;S") x Gr(S®%18%) — Gr(S?%,8%),

which is a homotopy equivalence. O

6.3 Classification of closed 2-connected 7-manifolds

In Chapter 4 we discussed some applications of the study of principal G-bundles over high
dimensional manifolds, such as those of dimension 7. All the spaces M; are 2-connected
7-manifolds, so we wanted to extend the study of the homotopy theory of gauge groups of
principal bundles over some other closed 2-connected 7-manifolds. We start by presenting

some information on the classification of these manifolds.

Let M be a closed 2-connected 7-manifold. Then M is orientable, and by the Poincaré

duality theorem, the non-trivial homology groups of M are given as follows

Z if k=0,7,
Hp(M) = 24 if k= 4, (6.3.1)
i @_,Z,, ifk=3,
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where d,t,{r;}!_, are positive integers. Let M; and M be closed oriented connec-
ted 7-manifolds. Recall that their connected sum M;§Ms is an oriented closed connected
7-manifold defined by deleting the interiors of 7-cells D1 in M7 and Ds in M, and attach-
ing the resulted punctured manifolds to each other by a homeomorphism A : 9D — 0Ds,
so that

MigMy = (My — IntDy) Up, (Mo — IntDs). (6.3.2)

Let TH*(M) = T H3(M) denote the torsion subgroup of H*(M). There is a nonsingular

symmetric bilinear map, called the torsion linking form
b: THY(M)® TH*(M) - Q/Z,

defined in [Wal67].

Consider the triple of invariants of M given by (H*(M),b,pyr), where pyy € 2H*(M).
From the definition of the invariants it follows that the invariants of the connected sum
of two manifolds are the direct sum of the two sets of invariants. That is, if M7 and My
have invariants (H*(M), b1, par,) and (H*(M3), bz, par,) the connected sum Mi#Ms has
invariants (H*(My) © H*(Ms), b, (pary, par,)) where

b((z1,22), (y1,92)) = ba(w1, 1) + ba(z2,92)

for x1,y1 € TH*(My), x9,y2 € TH*(M>).

The proofs of Proposition 6.7, Theorem 6.8 and Theorem 6.9 are found in [Wil72].

Proposition 6.7. The invariants (H*(M),b,par) for the manifolds M can assume the
following values: the group H*(M) can be any finitely generated abelian group, the map
b: TH*(M) x TH*M) — Q/Z can be any non-singular symmetric bilinear map, and
py € HY(M) can be any even element. O

The linking form is called irreducible if it cannot be expressed as a proper sum of two
maps, and we say that a manifold M with invariants (H*(M), b, pys) is indecomposable
if either H*(M) is finite and b is irreducible, or H*(M) = Z.

Theorem 6.8. Any 2-connected 7-manifold M is a connected sum of indecomposable
manifolds. O

In Theorem 4 of [Wal63], Wall determines that if b is an irreducible map, then TH*(M)
is one of 0, Z, for a prime p, and Zyr @ Zgr. Hence for indecomposable manifolds M,
the group H*(M) is isomorphic to 0, Z, Ly OF Lok D Lok

Theorem 6.9. For an indecomposable manifold M, let G = H*(M).

(1) The indecomposable manifolds M with G = 7Z or Ly, for p an odd prime, are
classified by the invariants (G, b, 3).
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(2) For the indecomposable manifolds M with G = Zqgx or Lok & Lok there are two cases:

(a) If |G| < 4 then the manifolds with B not divisible by 4 are classified by the
invariants (G, b, B); there are two distinct manifolds for each value of (G,b, 3)
if B divisible by 4.

(b) If |G| > 4 then the manifolds with [ divisible by 4 are classified by the invariants
(G,b,3); there are two distinct manifolds for each value of (G,b, ) if B is not
divisible by 4. O

By [Hat02, Proposition 4C.1] we can give M a minimal cellular structure so that the

4-skeleton of M has the following homotopy type

d t
Mt =\/(S}v s v P

i=1 =1

The cellular structure of M is given by

i=1 i=1

d t
M = (\/(53 v Sh v \/P4(p?)> U €7 (6.3.3)

where ® : S — M* is the attaching map of the top cell e’. Thus by Theorem 6.9 any

closed 2-connected 7-manifold M is a connected sum
M = MMt - - 4My (6.3.4)

where the manifold M;, for 1 < ¢ < d, belongs to one of the following families of

indecomposable 2-connected 7-manifolds:

(A) My~ ST,
(B) Mp ~ (SS V 54) U el ~ §3 X1 S4,
(C) Mg ~ P*(p") Ug €” for a prime p, and

(D) Mp ~ (P*(2") VvV P*(2")) Ug €.

Notice that the manifolds M; ,, belong to the families (A), (B) and (C).

6.4 Principal G-bundles over connected sums

In this section we classify principal G-bundles over 2-connected 7-manifolds M which are

connected sums of S3-bundles over S* with torsion-free homology. Thus we can write

MﬁMllﬁ---ﬁMld
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where I; = (1;,0) € Z ® Z, so that M, is the S3-bundle over S* with an attaching map
;8% — Ml‘i. There is a homotopy cofibration sequence

LRI SR, /L NN ool B 30V A= 5),V (6.4.1)

where M* = \/¢ S v V& S} is the 4-skeleton of M. According to [Ish81], the attaching

map P can be expressed as
¢ = Z‘Pz = Z + [t 13]) (6.4.2)
=1

where for each 4, the maps ¢4 ~ 1 g3 and o~ 1 g4 are generators of 73(S3) and 74(S}),

respectively, and the map «a; : S® — S? is an element of 76(S?).

Lemma 6.10. Let M be a connected sum of sphere bundles M, for 1 < i < d. Then

the map
®* : [M*, BG] — 76(BG)

18 trivial.

d d d
Proof. By connectivity we have [M*, BG] = [\/S? v \/S%, BG] = [\/S#, BG]. Therefore
any map f : M* — BG, factors as the composite

Mt P\ /549y BG.

for some j € [\/* S#, BG]. Thus there is a commutative diagram

6 & 4y
$6—2 s

pinch

Mi—1 . Ba.

where ® = pinch o ®. We have & = Z _1 i, and for each ¢, the composite

i h
§6 iy g3 g4 Pnchy ga

3 4

Z”L

i € m6(S3), and both pinchoa; and pincho[3, (4] are nullhomotopic. Therefore pincho®
is nullhomotopic, and given any f € [M*, BG] we have ®*(f) = fo ® = x. O

is nullhomotopic. Indeed, just notice that by (6.4.2) we have ¢; = a; + [¢7, ;] for some
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The manifold M has a cellular structure given by (\/?l:1 S3v \/f-l:1 S} Ug €. Define
Im: M — \/gl:1 S} as the composite

H.Mm\d/M Vs ‘ 4
: li—>\/Sz

where the maps m; : M;, — S# are projections.

Proposition 6.11. If 76(G) = 0 then Pring(M) = Z%. Moreover, the map
@m (BG) — [M, BG|
s a bijection.

Proof. The set Pring(M) is in one-to-one correspondence with [M, BG|. Hence it suf-
fices to compute [M, BG]. The cofibration sequence (6.4.1) induces an exact sequence of

sets

(Z0)”

(=M%, BG] =25 (87, BG) —L (M, BG] -2 [M*, BG] -2+ [$5, BG).  (6.4.3)

By Lemma 6.10 the map ®* is trivial, implying that ¢* is onto. As 77(BG) = m6(G) = 0,
the action of 74(G) on [M, BG] is trivial and therefore the map i* is injective. Hence
the map 4* is a bijection and Pring(M) = [M*, BG] = [\V¢ 54, BG] =
Now consider the composite

d d

d d
\/ st \/siv\/st S mt S v B \/ s, (6.4.4)

and consider the diagram

V4 sh ——\/4 54 (6.4.5)
Tven
MA——— \/4 My,
M ——— M.

The bottom square homotopy commutes because of the cellular structure of M, and the

top square homotopy commutes since the composite
St Stvs = M M, T 8

is homotopic to the identity map.

In particular, commutativity of (6.4.5) implies that the composite (6.4.4) is a homotopy
equivalence. Thus applying the functor [—, BG| to the composite (6.4.4) we obtain a
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composite

o7

d d
@m (BG) L (M, BG) 5 [M*, BG] = @ [Si v 5%, BG) = @D ma(BG)

that is an isomorphism, and since the last two maps are isomorphisms and ¢* is a bijection,
it follows that the map IT* : [\/ 4, BG] — [M, BG] is also a bijection. O

6.5 Gauge groups of principal G-bundles over connected

sums

Let M be a manifold satisfying the condition of Proposition 6.11. Then there is a one-
to-one correspondence between the sets Pring(M) and [M, BG] = Z¢, where 2 < d € N,
Thus every principal G-bundle over M is classified by an element K = (k1,...,ky) € Z<.
Let Pg denote the prinicipal G-bundle classified by K. Let

Map* (V¢ S%, BG) —— Map(\/* 54, BG) — BG. (6.5.1)

be the evaluation fibration associated with the mapping space Map(\/d S;l,BG). The
restriction of the evaluation map to the component MapK(\/d S’f, BG), where K € Z,
defines the fibration

evg

G 25 Mapi (V9 %, BG) —— Mapy (V' 824, BG) - BG. (6.5.2)

Denote by Gx(\/* S}) the homotopy fibre of the connecting map ¢x of the fibration
sequence (6.5.2).

Theorem 6.12. Let P — M be a principal G-bundle over M ~ M §---§M;, classified
by K = (ki,...,kg) € Z%. Suppose G is a simply connected simple compact Lie group
such that m6(G) = 0. Then there exists a homotopy decomposition

d
Gr (M) ~ G (\/ S}') x Map*(C1, BG)

where Crp is the homotopy cofibre of the map 11 : M — \/d S,

Proof. Let ® : S — M* be the attaching map of the top cell. The map II defines a

homotopy cofibration sequence

d d
M-t yst— sop— w2\ 88 (6.5.3)
=1 =1
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with Cp the homotopy cofibre of II. Consider the evaluation fibration
Map’; (M, BG) — Mapy (M, BG) &% BG, (6.5.4)

The evaluation map is natural, and by Proposition 6.3, the map II: M — \/?:1 S* makes
the homotopy fibration diagram

EVK

d
G~ Mapi (VS', BG) —— Map (V' BG)—s BG

G — 2 s Map’ (M, BG) —— Mapy (M, BG) —* s BG

commute. There is a homotopy commutative diagram

Map¥ (XM, BG) == Map} (XM, BG)
6*

d
G (VS4) ———— G (M) —— Map*(Cy1, BG)

*

d
Gre (VS G—2  Mapi (VS BG)

IT* 1I*

Map’ (M, BG) =——

Map’, (M, BG)

which defines the map h. The map ¢ is nullhomotopic, hence the induced map ¢g* is also
nullhomotopic. Therefore the map §* has a right homotopy inverse, which implies that h
has a homotopy inverse. The group structure on Gy (M) allows us to multiply to obtain

a homotopy equivalence
d
k(\/ §*) x Map*(Cri, BG) — Gr(M) x Gr(M) — Gp(M)

as required. O

Theorem 6.12 shows that the homotopy types of gauge groups over connected sums

G (M) depend on the homotopy types of the mapping spaces

d
x(\/ 5}) ~ QMap, \/54 BG).
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We will try to obtain some information on the homotopy type of these mapping spaces.
Let K = (k1,...,kq) € Z%. Consider the following fibration

eV

Gie (VL1 1) —— G =5 Mapj (Vi 51, BG) —— Mapg (VL 51, BG) " BG
(6.5.5)

which by the pointed exponential law and Proposition 4.12 can be rewritten as
0
Gic (Vi S1) — G =2 Mapi (VL 52,6). (6.5.6)

The space G K(\/d S;l) is the homotopy fibre of Jx so that the properties of dx determine
the homotopy types of the fibre. Taking the adjoint of dx we obtain

G A (v;l:1 Sf’) AN (6.5.7)

d akl

\/?:1 (G/\S?)L)G

where . 4
of ¢ (GASH) .Gl =EPIG A S} G (6.5.8)
i=1 i=1
and
ok ~ (g, kiys) € [G A S3,G; (6.5.9)

here ~; is a generator of [Sf’ ,G| =2 Z. Let H denote the set of distinct homotopy types of
the spaces G (\/? S4), for K € 7.

Proposition 6.13. The order of H is bounded by
H] < [{Ta, )]

where 7y is a generator of w(G). O




Table of homotopy groups

X m(X) m(X) m(X) m(X) w(X) we(X)  m(X)
Sp(l) 0 0 Z ZQ ZQ Zlg Zg
Sp(n), n>2 0 0 Y/ Z2 Z2 0 Z
SU(3) 0 0 Z 0 Z Zg 0
SU(n),n >4 0 0 Y/ 0 Y/ 0 Z
Spin(7) 0 0 Z 0 0 0 Z
Spin(8) 0 0 Z 0 0 0 YASY/
Spin(n),n > 9 0 0 Z 0 0 0 Z
SO(3) Lo 0 A Lo Zo Zo Zio
SO(5) Lo 0 Y/ Zs Zo 0 Z
SO(6) Lo 0 A 0 Z 0 7
SO(7) Zs 0 Y/ 0 0 0 Z
SO(8) Zo 0 Z 0 0 0 YASY/
SO(n),n>9 Zo 0 Y/ 0 0 0 Z
Gy 0 0 Z 0 0 Zs 0
Fy, Eg, E7, Eg 0 0 Y/ 0 0 0 0
S2 0 Z Z Zs Za Z1o Zo
S3 0 0 Z Zo Zo YAD) Lo
St 0 0 0 Z Zo Zo  7.® 7o
S5 0 0 0 0 Z Zo Zo

TABLE A.l: Homotopy groups of connected compact simple Lie groups [Jam95]
and spheres S™ for 2 < n < 5 [Tod63]. Notice that there are isomorphisms
Sp(1) = SU(2) = Spin(3), Sp(2) = Spin(5) and SU(4) = Spin(6)
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