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The gauge groups of principal G-bundles over low dimensional spaces have been extens-
ively studied in homotopy theory due to their connections to other areas in mathematics,
such as the Yang-Mills gauge theory in mathematical physics. In 2011 Donaldson and
Segal established the mathematical set-up to construct new gauge theories over high
dimensional spaces.

In this thesis we study the homotopy theory of gauge groups over 7-manifolds that arise
as total spaces of S3-bundles over S4 and their connected sums. We classify principal
G-bundles over manifolds M up to isomorphism in the following cases:

(1) M is an S3-bundle over S4 with torsion-free homology;

(2) M is an S3-bundle over S4 with non-torsion-free homology and π6(G) = 0;

(3) M is a connected sum of S3-bundles over S4 with torsion-free homology and π6(G) = 0.

We obtain integral homotopy decomposition of the gauge groups in the cases for which the
manifold is either a product of spheres, or a twisted product of spheres, or a connected
sum of those. We obtain p-local homotopy decompositions of the loop spaces of the
gauge groups in the cases for which the manifold has torsion in homology. Gauge groups
of principal G-bundles over manifolds homotopy equivalent to S7 are classified up to a
p-local homotopy equivalence.
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Chapter 1

Introduction

1.1 Motivation

The study of the homotopy theory of mapping spaces treated as topological spaces dates
back at least to the first half of the last century (see [FLS10]). The problem of classifying
the homotopy types of path components of mapping spaces was introduced for the first
time in 1946 by Whitehead. Some results on the classification of mapping spaces include
computation of homotopy groups, cellular decompositions, and computation of the ho-
mology and cohomology of the path components of mapping spaces. Besides the intrinsic
interest that exists from a homotopical point of view, the problem of the classification
of mapping spaces is nowadays a subject of extensive research due to the connections to
other areas of mathematics. One of these connections is provided by the gauge groups.

Let G be a topological group with classifying space BG. Given a principal G-bundle
p : P → X with a classifying map f : X → BG, the gauge group Gf (X) is the group of
G-equivariant automorphisms φ : P → P covering the identity in X. We say Gf (X) is a
gauge group of the bundle p : P → X or a gauge group over the manifold X. Gottlieb
[Got72] showed that there is a weak homotopy equivalence

BGf (X) ' Mapf (X,BG),

where Mapf (X,BG) is the path component of Map(X,BG) containing the classifying
map f of the principal G-bundle. This result allows us to regard the gauge groups as a
link between the homotopy theory of mapping spaces and the more geometrical theory
of principal bundles.

One of the biggest interests in understanding the topology of gauge groups lies in math-
ematical physics. Gauge groups appear in the formulation of the so-called gauge theories,
which are physical theories mathematically formulated using the theory of fibre bundles.

1



2 Chapter 1 Introduction

A very simplified version of what a gauge theory consists of, from a mathematical per-
spective, is the following. Let P p−→M be a smooth principal G-bundle over M, where G
is a compact Lie group. The tangent bundle of P , denoted TP , is a fibre bundle over P
whose fibres are vector spaces tangent to P at each point. There is a special vector sub-
bundle V ⊂ TP , called the vertical bundle, consisting of all vectors tangent to the fibres
of P . A connection of a principal G-bundle is a choice of vector subbundle A ⊂ TP that
is invariant under the action of G and such that TP = V ⊕A. Physical phenomena are
modelled by means of principal G-bundles P and certain functions F : AP → R, where
AP is the space of all connections of TP . The gauge group GP of the bundle P acts on
the space of connections AP . The function F is defined to be invariant under the action
of the gauge group, and so induces F : AP /GP → R. The goal pursued in gauge theories
is to find the subspace of connections MP ⊂ AP /GP that contains the critical points
of F . Gauge theories have succeeded in modelling several physical phenomena such as
electroweak force, however, the description of the dynamical behaviour of elementary
particles in a 4-dimensional space-time is still an open question. According to Atiyah
[Ati88], there is hope for gauge theories, such as the Yang-Mills gauge theory, to provide
an answer to this question.

Application of gauge theories in the study of 4-manifolds has been successful in differ-
ential geometry. Using ideas coming from the Yang-Mills theory, Donaldson [Don86]
obtained topological information of the classifying spaces of gauge groups of principal
SU(2)-bundles to define polynomial invariants over 4-manifolds. These invariants have
been used to distinguish differentiable structures on homeomorphic manifolds.

Understanding the topology of the gauge groups and their classifying spaces is crucial
in the context of gauge theories and their applications in mathematics. A less rigid
approximation to the study of these mapping spaces is the one provided by homotopy
theory. Therefore, at this point the classification of mapping spaces, such as the gauge
groups, becomes a primary problem in the context of homotopy theory.

Classification of gauge groups and their associated classifying spaces up to homotopy
equivalence has been an active research area in homotopy theory for at least the last
25 years. For example, in [Mas91] Masbaum studied the homotopy classification of the
path-components of Map(X,BSU(2)) where X is a 4-dimensional CW -complex. He
showed that there are infinitely many homotopy types amongst these mapping spaces.
In contrast, Kono [Kon91] proved the following result regarding the number of homotopy
types of the gauge groups of SU(2)-bundles over S4.

Theorem A (to appear as Theorem 4.24). Let Pk → S4 be the principal SU(2)-bundle
over S4 classified by k ∈ Z, and let Gk be its gauge group. Then Gk is homotopy equivalent
to Gk′ if and only if (12, k) = (12, k′).

This result shows that there are finitely many homotopy types of gauge groups of prin-
cipal SU(2)-bundles over the 4-sphere. Crabb and Sutherland proved a general result
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on the number of homotopy types of gauge groups. In [CS00] it is proved that if the
base space of the principal G-bundle is a finite CW -complex X and G is compact con-
nected Lie group, then the number of homotopy types of gauge groups of the principal
G-bundles over X is finite. As a consequence of this result, considerable attention has
been paid to counting the number of homotopy types of gauge groups (see for instance
[HK06, KKKT07, CHM08, CS09, The10b, The12, KKT14]).

Even though the theory of principal bundles is not limited by the dimension of the
base space of the principal bundles, most work has been carried out in the case of low
dimensional spaces. There are at least a couple of reasons that could explain this trend.
The first one is related to the fact that the main gauge theories, such as the Yang-
Mills theory are defined for principal bundles over low dimensional spaces. The second
reason is the big success that the application of gauge theories have had in differentiable
geometry. Gauge theories have substantially contributed to give some answers in the
classification problem of differentiable 4-manifolds.

New ideas coming from mathematical physics suggest that mathematical modelling of
physics of elementary particles might require the use of high dimensional spaces. In
[DT98] Donaldson and Thomas introduced some ideas to construct gauge theories where
the dimension of the base spaces of the principal G-bundles is higher than 4. A decade
later, these ideas were formalised in [DS11], creating in this way a new area of research
that has seen an accelerated development within differential geometry in recent years.
However, the homotopy theory of principal G-bundles over high dimensional spaces and
their gauge groups is largely unknown.

The aim of this work is to explore the homotopy theory of principal G-bundles over
certain 7-dimensional manifolds and their gauge groups, which might be of the interest
in other areas of mathematics such as mathematical physics. The family of 7-manifolds
we are primarily interested in are those arising as the total spaces of S3-bundles over S4.
We also are interested in the homotopy theory of gauge groups of principal G-bundles
over connected sums of the aforementioned sphere bundles. The main results of this
work are presented in the next section. We will keep the same numbering of the results
as the one that is given in the following chapters.

1.2 Main results

The classification of S3-bundles over S4 goes back to the work of Steenrod on the clas-
sification of sphere bundles over spheres [Ste44, Ste51]. The following result is the clas-
sification of S3-bundles over S4.

Proposition B (to appear as Proposition 3.44). The equivalence classes of S3-bundles
over S4 are in one-to-one correspondence with elements of π3(SO(4)) ∼= Z⊕ Z.
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Let Ml,m be the total space of the S3-bundle over S4 classified by (l,m) ∈ Z ⊕ Z and
let G be a simply connected simple compact Lie group. Let PrinG(Ml,m) be the set of
isomorphism classes of principal G-bundles overMl,m. Our first result is the classification
of principal G-bundles over manifolds Ml,m.

Proposition C (to appear as Proposition 5.6). Let G be a simply connected simple
compact Lie group such that π6(G) ∼= 0. Then there is a one-to-one correspondence
between PrinG(Ml,m) and Zm. More precisely,

(1) if m = 0 then PrinG(Ml,m)
1-1−−→ Z;

(2) if m > 1 then PrinG(Ml,m)
1-1−−→ Zm.

Moreover, the projection Ml,m
π→ S4 induces a map

π∗ : [S4, BG]→ [Ml,m, BG]

which is a bijection if m = 0 and a surjection if m > 1.

Proposition C shows that, assuming π6(G) ∼= 0, the number of isomorphism classes of
principal G-bundles is infinite if m = 0, and finite otherwise. Once the sets PrinG(Ml,m)

have been computed the next step is to obtain a result that allows us to classify the
homotopy types of gauge groups of principal bundles over manifolds Ml,m. Let Gk(Ml,0)

be the gauge group of the principal G-bundle classified by the integer k. The next result
concerns this task for the cases where Ml,m has torsion-free homology and Ml,m 6' S7.
It is known that PrinG(S4) = Z. Let Gk(S4) denote the unpointed gauge group over S4

classified by k ∈ Z. Given a map S6 ξl−→ S3, with ξl 6' ∗, we denote by Yl its homotopy
cofibre.

Theorem D (to appear as Theorem 5.10). Let G be a simply connected simple compact
Lie group such that π6(G) ∼= 0 and let Ml,m → S4 be a sphere bundle with cross sec-
tion. Let Pk → Ml,m be a principal G-bundle classified by k ∈ Z. There are homotopy
decompositions

Gk(Ml,0) ' Gk(S4)×Map∗(Yl, G).

Moreover, if l ≡ 0 (mod 12) there are homotopy equivalences

Gk(Ml,0) ' Gk(S4)× Ω3G× Ω7G.

Theorem D implies that the determination of the homotopy type of Gk(Ml,0) is reduced
to determining that of Gk(S4) using Lie groups G with π6(G) = 0. These gauge groups
have been computed for different groups G. For example, from [The15, Theorem 1.1]
we obtain the following corollary. Let (n1, n2) denote the greatest common divisor of n1

and n2.
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Corollary E (to appear as Corollary 5.11). Suppose M is either S3×S4 or any twisted
product S3×̃S4. Localised rationally or at any prime there are 16 homotopy types of
gauge groups of principal SU(5)-bundles over M .

The proof of Theorem D relies on the splitting of the cofibre Cl,m(π) of the projection
map Ml,m

π−→ S4. For the case of manifolds with torsion in homology, it is not clear if
analogous splittings exist, however, we are able to obtain a splitting of ΣCl,m(π). As
such, the results in Theorem F are stated in terms of the loops on gauge groups rather
than the gauge groups themselves.

The cofibration sequence Sn m→ Sn → Pn+1(m) induces a fibration sequence

Map∗(Pn+1(m), BG)→ Map∗(Sn, BG)
m∗→ Map∗(Sn, BG).

Let ΩnBG{m} denote the space Map∗(Pn+1(m), BG). If Ml,m has torsion in homology
we have the following result on the homotopy decomposition of the loop space of the
gauge groups up to localisation at a prime p ≥ 5. Let vp(m) denote the valuation of
m ∈ Z at a prime p.

Theorem F (to appear as Theorem 5.15). Let m > 1 be an integer and p ≥ 5 be a
prime. Let Pk →Ml,m be a principal G-bundle classified by k ∈ Zm where G is a simply
connected simple compact Lie group. Suppose all spaces are localised at p. There are
p-local homotopy equivalences

(1) G0(Ml,m) ' Ω7G×G if vp(m) = 0;

(2) ΩGk(Ml,m) ' Ω8G ×Xk if vp(m) ≥ 1, where Xk fits into a homotopy fibration

Ω4G{m} → Xk → ΩG.

Moreover, if vp(m) = r ≥ 1 and pr|k, then Xk ' ΩG× Ω4G{m}.

Chapter 5 ends with the homotopy classification of gauge groups of principal G-bundles
over total spaces of S3-bundles over S4 such that Ml,m ' S7 . In this case G is any
simply connected simple compact Lie group, in particular, the restriction to π6(G) = 0

is not needed.

Theorem G (to appear as Theorem 5.17). Let G be a simply connected simple compact
Lie group and let Pk → S7 and Pk′ → S7 be principal G-bundles. Then

(1) for G = SU(2) ∼= Sp(1) or G = G2, there is a homotopy equivalence Gk(S7) ' Gk′(S7)

when localised rationally or at any prime if and only if (3, k) = (3, k′);

(2) for G = SU(3), there is a homotopy equivalence Gk(S7) ' Gk′(S7) when localised
rationally or at a prime p ≥ 3 if and only if (3, k) = (3, k′);
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(3) otherwise, the gauge group of the unique principal G-bundle decomposes as

G0(S7) ' Ω7G×G.

Chapter 6 is an extension of the results of Chapter 5. Let o(G) be the order of π6(G).
In the previous chapter all the groups G were such that o(G) = 1. This assumption
simplifies the computation of the homotopy sets [Ml,m, BG], since the action of π6(G)

on the homotopy set [Ml,m, BG] in this case is trivial. A new strategy is then required
working with groups G such that o(G) > 1.

Let Ml,0 be the sphere bundle classified by (l, 0) ∈ Z⊕ Z. In the study of gauge groups
of principal G-bundles over Ml,0 when o(G) 6= 1, the value of l for each Ml,0 is crucial.
The following result generalises Proposition C for the case of manifolds with torsion-free
homology.

Proposition H (to appear as Proposition 6.3). Let G be a simply connected simple
compact Lie group. Then

PrinG(Ml,0) = Z× Z(o(G),l).

Moreover, the projection π : Ml,0 → S4 induces a bijection π∗ : π4(BG) → [Ml,0, BG] if
(l, o(G)) = 1.

For some manifolds Ml,0 it is possible to extend the strategy used to obtain homotopy
decompositions of gauge groups when o(G) = 1, to the case when o(G) > 1.

Theorem I (to appear as Theorem 6.5). Let G be a simply connected simple compact Lie
group such that o(G) > 1. Given a principal G-bundle Pk → S3×̃lS4, if (l, o(G)) = 1,

then there is a homotopy equivalence

G∗k(S3×̃lS4) ' Ω4G×Map∗(Yl, G).

The case of manifolds obtained as a connected sum of spaces Ml,0 is also studied in
Chapter 6. Let M be a manifold such that

M 'Ml1] · · · ]Mld

where Mli = Mli,0.

The manifold M has a cellular structure given by (
∨d
i=1 S

3
i ∨

∨d
i=1 S

4
i ) ∪Φ e7. Define

Π : M →
∨d
i=1 S

4
i as the composite

Π : M
pinch−−−→

d∨
Mli

∨d πi−−−→
d∨
S4
i ,
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where the maps πi : Mli → S4
i are projections. The following is a classification of

principal G-bundles over connected sums of manifolds Mli .

Proposition J (to appear as Proposition 6.11). If π6(G) ∼= 0 then PrinG(M) = Zd.
Moreover, the map

Π∗ :
d⊕
i=1

π4(BG)→ [M,BG]

is a bijection.

A homotopy decomposition of gauge groups is also obtained in the case when M is a
connected sum of torsion-free S3-bundles over S4 and G satisfies π6(G) ∼= 0.

Theorem K (to appear as Theorem 6.12). Let PK →M be a principal G-bundle over a
manifold M ' Ml1] · · · ]Mld classified by K = (k1, . . . , kd) ∈ Zd. Suppose G is a simply
connected simple compact Lie group such that π6(G) ∼= 0. Then there exists a homotopy
decomposition

GK(M) ' GK(
d∨
S4
i )×Map∗(CΠ, BG)

where CΠ is the homotopy cofibre of the map Π : M →
∨d S4.

1.3 Summary of contents

Chapter 2 contains elementary definitions and some well-known results in homotopy
theory. The material presented in this chapter is the basis for this work and it will be
used throughout the following discussion.

Chapter 3 is dedicated to the discussion of the topology and homotopy theory of
S3-bundles over S4. The classification of S3-bundles over S4 is stated in Proposition
3.44. The works of James and Whitehead [JW54], Sasao [Sas65] and Crowley and Es-
cher [CE03] are discussed in relation to the homotopy classification of the total spaces
of S3-bundles over S4.

In Chapter 4, the topology and homotopy theory of principal G-bundles and their associ-
ated gauge groups are discussed, including some aspects of the classification of principal
G-bundles. An important result on the homotopy theory of gauge groups is presented
in Theorem 4.16, which will be widely used throughout the subsequent chapters. Some
results on the homotopy theory of gauge groups of principal G-bundles over spaces of
dimension n ≤ 4 are included. In the last section of this chapter we lay out some results
on gauge groups over high dimensional manifolds inside and outside of homotopy theory.

The last two chapters of this work contain the proofs of the results stated in Section
1.2. Chapter 5 is entirely dedicated to the homotopy theory of gauge groups related to
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S3-bundles over S4, whereas Chapter 6 contains some additional results for the sphere
bundles and the proofs of the results for connected sums.



Chapter 2

Elements of homotopy theory

In this chapter we present elementary definitions and results in homotopy theory that
will be used to discuss the homotopy theory of gauge groups. We start by looking at
the description of mapping spaces as topological spaces, as well as defining homotopy
sets. We also introduce the definition of an H-space and its dual, a co-H-space. Then
we define two more constructions, namely, fibrations and cofibrations. In the last two
sections of this chapter we discuss some of the more specific constructions that will
become important in the study of the homotopy theory of gauge groups. Theorems and
propositions presented in this chapter are well-known results and most of the proofs are
omitted. The material presented in this chapter is based on [AGP08, Ark11, DK01,
Sel08, Whi78].

2.1 Mapping spaces and homotopy sets

Let X and Y be topological spaces. A map f : X → Y is a continuous function between
X and Y . We denote by Map(X,Y ) the set of all maps from X to Y . We can endow
Map(X,Y ) with the compact-open topology : take as a subbasis the family of sets ω(K,U),
for K ⊂ X compact and U ⊂ Y open, defined by

ω(K,U) = {f ∈ Map(X,Y ) | f(K) ⊂ U}. (2.1.1)

Given maps f : X → Y and g : A→ B, there exists an induced map

gf : Map(Y,A)→ Map(X,B)

defined by gf (α) = g ◦ α ◦ f . This way we can obtain two functors F ,F ′ : Top → Top

in the category Top of topological spaces and continuous maps. For a topological space

9
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Y , we denote the identity in Y by 1Y : Y → Y , or by 1 : Y → Y if the space Y is clear
from the context.

(1) For a fixed topological space Z, let F(−) = Map(−, Z) : Top→ Top be the contrav-
ariant functor such that if g : X → Y is any map then

F(g) = 1
g
Z : Map(Y, Z)→ Map(X,Z). (2.1.2)

(2) For a fixed topological space X, let F ′(−) = Map(X,−) : Top → Top be the
covariant functor such that if h : Y → Z is any map then

F ′(h) = h1X : Map(X,Y )→ Map(X,Z). (2.1.3)

We will usually denote F(g) and F ′(h) by g∗ and h∗, respectively, and we will call g∗
and h∗ the maps induced by g and h, respectively.

Definition 2.1. Let X, Y be topological spaces. The product of X and Y , denoted
X×Y , is a topological space along with two maps pX : X×Y → X and pY : X×Y → Y ,
called the projections, that satisfies the following universal property: given two maps
f : Z → X and g : Z → Y , there exists a unique map h : Z → X × Y , denoted by
h = (f, g), such that the diagram

Z

h
��

f

{{

g

##
X X × Y pY //

pXoo Y

commutes. The diagonal map ∆ : X → X × X is defined by ∆ = (1X ,1X), that is,
∆(x) = (x, x).

Dually, we define the coproduct of X and Y , X qY , by the following universal property:
there exist maps iX : X → X q Y and iY : Y → X q Y , called inclusions, such that
given two maps f : X → Z and g : Y → Z, there exists a unique map h : X q Y → Z,
denoted by h = {f, g}, making the diagram

Z

X

f
;;

iX // X q Y

h

OO

Y
iYoo

g
cc

commute. The folding map ∇ = X qX → X is defined by ∇ = {1X ,1X}.

The following proposition is a consequence of the universal properties of X × Y and
X q Y.

Proposition 2.2. Let X, Y , Z be Hausdorff topological spaces such that X and Y are
Hausdorff. There exist homeomorphisms
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(1) Map(X q Y,Z) ∼= Map(X,Z)×Map(Y, Z),

(2) Map(X,Y × Z) ∼= Map(X,Y )×Map(X,Z).

Theorem 2.3 (Exponential Law). Let X, Y , Z be topological spaces such that X and
Y are Hausdorff and Y is locally compact. There exists a homeomorphism

Map(X × Y, Z) ∼= Map(X,Map(Y,Z)).

Definition 2.4. A topological space X is pointed if it has a distinguished point x0 ∈ X
called the basepoint. A map f : X → Y is a pointed map if f(x0) = y0, with x0 and y0

the basepoints of X and Y, respectively. We denote by Map∗(X,Y ) the set of pointed
maps of X to Y. Given two pointed topological spaces X and Y , we define its wedge sum,
or simply wedge, as the quotient space

X ∨ Y = X q Y/{x0, y0}

where x0 and y0 are the basepoints of X and Y , respectively. Notice that we can identify
X ∨ Y with a subspace of X × Y as

X ∨ Y = {(x, y)|x = x0 or y = y0}.

Note that for pointed spaces X and Y , their product X×Y and wedge sum X∨Y can be
defined in a categorical setting, as in Definition 2.1, if instead of the category of spaces
and maps we use the category of pointed spaces and pointed maps.

We may define three maps:

(1) given maps f : X → X ′ and g : Y → Y ′ between pointed or unpointed topological
spaces, define f × g : X × Y → X ′ × Y ′ by

(f × g)(x, y) = (f(x), g(y));

(2) given maps f : X → X ′ and g : Y → Y ′ between pointed topological spaces, define
f ∨ g : X ∨ Y → X ′ ∨ Y ′ by

(f ∨ g)(x, y) = (f(x), g(y));

(3) given maps f : X → Z and g : Y → Z between pointed topological spaces, define
{f, g} : X ∨ Y → Z by

{f, g}(x, y) =

f(x) if y = y0,

g(y) if x = x0.
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Proposition 2.5. Let X, Y , Z be pointed topological spaces such that X and Y are
Hausdorff. There exist homeomorphisms

(1) Map∗(X ∨ Y,Z) ∼= Map∗(X,Z)×Map∗(Y,Z),

(2) Map∗(X,Y × Z) ∼= Map∗(X,Y )×Map∗(X,Z).

Let X,Y be pointed topological spaces with basepoints x0 and y0, respectively. We
define the smash product of X and Y as the quotient space

X ∧ Y = X × Y / X × {y0} ∪ {x0} × Y.

Notice that X ∧ Y = X × Y/X ∨ Y .

Theorem 2.6 (Pointed Exponential Law). Let X,Y, Z be pointed topological spaces such
that X and Y are Hausdorff. There exists a homeomorphism

Map∗(X ∧ Y, Z) ∼= Map∗(X,Map∗(Y, Z)).

Definition 2.7. A Haussdorff topological space X is compactly generated if it satisfies
the following condition: a subset A of X is closed if and only if A∩C for every compact
subset C of X.

Definition 2.7 implies that a space is compactly generated if its topology is the weak
topology generated by all of its compact subsets.

Most elementary homotopy theory can be developed in an arbitrary category of (pointed)
topological spaces. However, it becomes necessary to work in a category that is closed
under certain constructions such as product spaces, mapping spaces or identification
spaces, for instance. It is also desirable that properties of mapping spaces such as the
exponential law hold in complete generality. Thus, for now on we will assume that all
spaces are compactly generated. For a further discussion on the convenience of choosing
the category of compactly generated spaces and their continuous maps, we refer the
reader to [Ste67].

Let I denote the closed unit interval [0, 1]. A path on X is a map γ ∈ Map(I,X). Given
x, y ∈ X we say that x is connected with y whenever there exists a path α such that
α(0) = x and α(1) = y. This definition is an equivalence relation which divides X into
subsets called path components. The set of path components of X is denoted by π0(X).
We say that X is path connected if π0(X) has a single element.

Definition 2.8. The maps f, g : X → Y are homotopic, denoted by f ' g, if there exists
a map H : X× I → Y , called a homotopy, such that H(x, 0) = f(x) and H(x, 1) = g(x).
If X,Y are pointed spaces we say that the homotopy H preserves the basepoint if in
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addition H(x0, t) = y0 for all t ∈ I, where x0 and y0 are the basepoints of X and Y ,
respectively.

The concept of homotopy defines an equivalence relation on the set Map(X,Y ). Thus
given spaces X and Y we denote by [X,Y ] the set of equivalence classes called homotopy
classes of maps from X to Y . We denote by [X,Y ]∗ the set of basepoint preserving
homotopy classes of maps. If the spaces X,Y are locally compact Hausdorff spaces then
we have

[X,Y ] = π0(Map(X,Y )).

A based set is a set S with a fixed element s0 called the basepoint. Let S and T be based
sets with basepoints s0, t0 respectively. Then a function f : S → T such that f(s0) = t0

is called a based function or pointed function. The kernel of a based function f : S → T ,
denoted ker f , is the set

ker f = f−1(t0) = {x ∈ S | f(x) = t0}.

The image of a function f is

im f = f(S) = {f(x) | x ∈ S}.

The concept of exact sequence is common in the context of abelian categories. There is a
useful generalisation that works in the category of pointed sets. Let A, B, C be pointed
sets with basepoints a0, b0, c0, respectively. A sequence of functions

A
f→ B

g→ C (2.1.4)

such that f(a0) = b0 and g(b0) = c0 is called exact at B if

f(A) = g−1(c0),

that is, im f = ker g. The sequence of based sets and based functions

· · · // Si−1
fi−1

// Si
fi // Si+1

// · · ·

is exact if it is exact at each Si.

We wish to highlight some subtleties that arise due to the lack of multiplicative structures
in pointed sets. In the category of groups for instance, it is well known that a sequence

1
h→ A

f→ B (2.1.5)

is exact if and only if f is injective. For pointed sets and pointed functions, exactness
of (2.1.5) does not necessarily imply that the map f is injective. We ilustrate this point
with two examples.
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Example 2.9. Consider the sequence (2.1.5) with A = {1, 2, 3} and B = {1, 2} (both
with basepoint 1), where f is defined by f(1) = 1 and f(2) = f(3) = 2. This is exact at
A since h({1}) = f−1(1) = {1}; however, the map f is not injective.

Example 2.10. For any m ∈ R, let bmc be the integer part of m. Suppose A = B = Z
and g : A→ B is defined by

g(a) =

b
√
ac if a ≥ 0,

−
⌊√
−a
⌋

if a < 0.

Then the sequence of sets 1 → A
g−→ B → 1 is exact and g is surjective, but it is not

injective: the set g−1(b) for b 6= 0 has cardinality 2|b|+ 1.

On the other hand, if in addition, the sets A, B and C in (2.1.4) are groups with
basepoints the identity elements, and f and g are homomorphisms, then the sequence of
sets is exact if and only if it is a exact sequence of groups. In particular, g induces an
isomorphism between g(B) and B/f(A).

If Y is path connected, then the set [X,Y ] has a unique homotopy class containing all
the constant maps. This class will be used as a basepoint of [X,Y ] if one is needed.

Definition 2.11. Let X be a topological space. If n ≥ 1, the n-th homotopy group of
X is

πn(X) = [Sn, X]∗.

A map f : X → Y induces a homomorphism f∗ : πn(X) → πn(Y ) for all n ≥ 1, and if
f ' g then f∗ = g∗ : πn(X)→ πn(Y ) for all n ≥ 0. A topological space Y is n-connected
if πn(Y ) = 0 for all i ≤ n. A 1-connected topological space is called simply connected.

Definition 2.12. A map f : X → Y is a homotopy equivalence if there exists a map
g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X . If there exists a homotopy equivalence
f : X → Y , the spaces X and Y are said to be homotopy equivalent.

A map f : X → Y is a weak homotopy equivalence if f∗ : πn(X) → πn(Y ) is an
isomorphism for all n. Notice that a homotopy equivalence is also a weak homotopy
equivalence.

2.2 H-spaces and co-H-spaces

Definition 2.13. A pointed topolological space X is an H-space if there is a map
µ : X ×X → X such that if ∗ : X → X is the constant map to the basepoint, then the
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diagrams

X
(1,∗)

//

1X
##

X ×X
µ

��

X

and X
(∗,1)

//

1X
##

X ×X
µ

��

X

commute up to homotopy. We say that µ is a multiplication. An H-space is homotopy
associative if the following diagram commutes up to homotopy

X ×X ×X µ×1
//

1×µ
��

X ×X
µ

��

X ×X µ
// X.

A map ι : X → X is a homotopy inverse of X if the diagrams

X
(ι,1)

//

∗
##

X ×X
µ

��

X

and X
(1,ι)

//

∗
##

X ×X
µ

��

X

homotopy commute. An H-group is a homotopy associative H-space X with a homotopy
inverse.

Example 2.14. A topological group G is a set G together with a group structure and a
topology on G such that the function (g, h) 7→ gh−1 is a map G×G→ G. All topological
groups are H-groups.

Example 2.15. The unit spheres in C and H, S1 and S3, are topological groups and
therefore H-groups. The unit sphere S7 in the division algebra O is an H-space that is
not homotopy associative.

Definition 2.16. For a space X, the loop space ΩX is defined by

ΩX = {α : I → X | α(0) = ∗ = α(1)}.

Notice that ΩX = Map∗(S1, X). The map µ : ΩX × ΩX → ΩX, given by

µ(α, α′)(t) =

α(2t) if 0 ≤ t ≤ 1
2 ,

α′(2t− 1) if 1
2 ≤ t ≤ 1,

defines a multiplication in ΩX.

Indeed, the spaces
ΩnX = Map∗(Sn, X)

are H-groups.
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Given two H-spaces X and X ′ with multiplications µ and µ′, respectively, a map
h : X → X ′ is called an H-map or an H-homomorphism if the following diagram
homotopy commutes

X ×X µ
//

h×h
��

X

h
��

X ′ ×X ′ µ′
// X ′.

If Y is an H-space with multiplication m, and X is any space, then we can endow
Map∗(X,Y ) with a multiplication defined as follows. Let f, g ∈ Map∗(X,Y ) and define
f + g ∈ Map∗(X,Y ) as the composite

f + g : X
∆−→ X ×X f×g−−→ Y × Y m−→ Y.

This can be used to show the following result.

Theorem 2.17. Let Y be an H-group and X be any pointed topological space. Then
[X,Y ]∗ has a group structure.

Definition 2.18. A pointed topological space Y with basepoint y0 is a co-H-space if
there is map σ : Y → Y ∨ Y , called a comultiplication, such that the diagrams

X
σ //

1X ##

X ∨X
p1
��

X

and X
σ //

1X ##

X ∨X
p2
��

X

commute up to homotopy, where p1 = {1X , ∗}, p2 = {∗,1X} : X ∨X → X are the pro-
jection maps to the first and the second factors, respectively. A co-H-space is homotopy
associative if the following diagram commutes up to homotopy

X
σ //

σ

��

X ∨X
σ∨1
��

X ∨X 1∨σ // X ∨X ∨X.

A map j : X → X is a homotopy inverse of X if the diagrams

X
σ //

∗
##

X ∨X
{1,j}
��

X

and X
σ //

∗
##

X ∨X
{j,1}
��

X

homotopy commute. A co-H-group is a homotopy associative co-H-space X with a
homotopy inverse.
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Definition 2.19. Let X any pointed space and let ΣX = X ∧ S1 be the reduced sus-
pension of X. Then the map σ : ΣX → ΣX ∨ ΣX defined by

σ(x ∧ s) =

(x ∧ 2s, ∗) if 0 ≤ s ≤ 1
2 ,

(∗, x ∧ (2s− 1)) if 1
2 ≤ s ≤ 1,

defines a comultiplication in ΣX. In particular, by taking X = {x0, x1}, this gives a
comultiplication on S1.

Indeed, the spaces
ΣnX = X ∧ Sn

are co-H-groups.

Given two co-H-spaces X and X ′ with comultiplications σ and σ′, respectively, a map
g : X → X ′ is called a co-H-map if the following diagram homotopy commutes

X
g

//

σ

��

X

σ′
��

X ∨X g∨g
// X ′ ∨X ′.

If X is a co-H-space and Y is any space then the mapping space Map∗(X,Y ) has a
binary operation. Given f, g ∈ Map∗(X,Y ) we define f + g = ∇◦ (f ∨ g)◦σ = {f, g}◦σ,

f + g : X
σ−→ X ∨X f∨g−−→ Y ∨ Y ∇−→ Y.

The following theorem states that the co-H-structure of X induces a group structure in
homotopy sets.

Theorem 2.20. Let X be a co-H-group and Y be any pointed topological space. Then
[X,Y ]∗ has a group structure.

2.3 Fibrations and cofibrations

Definition 2.21. Let f : X → A and g : Y → A be maps. The pullback of f and g

is a space Q along with two maps u : Q → X and v : Q → Y such that f ◦ u = g ◦ v.
Furthermore, the pullback satisfies the following universal property. If u′ : Z → X and
v′ : Z → Y are maps such that f ◦ u′ = g ◦ v′, then there exists a unique map h : Z → Q



18 Chapter 2 Elements of homotopy theory

such that u′ = u ◦ h and v′ = v ◦ h, i.e.

Z

v′

��

u′

""

h
��

Q
u //

v
��

X

f
��

Y
g
// A

commutes. The rectangular diagram above is called a pullback square. Explicitly, we
may take Q to be the space

Q = {(x, y) ∈ X × Y | f(x) = g(y)},

and the maps u and v to be restrictions to Q of the projections q1 : X × Y → X and
q2 : X × Y → Y , respectively.

Definition 2.22. The map p : E → B has the homotopy lifting property with respect
to a space Y if, given a homotopy H : Y × I → B and a map h : Y → E such that
p ◦ h(y) = H(y, 0), there exists a homotopy H̃ : Y × I → E with H̃(y, 0) = h(y) and
p ◦ H̃ = H. Diagrammatically, given any two maps h and H making the square in the
following diagram commute, there exists a map H̃ making the whole of this diagram
commute:

Y
h //

i
��

E

p

��

Y × I H //

H̃

;;

B.

If the map p : E → B has the homotopy lifting property with respect to Y for all Y then
we say that p is a fibration. We call B the base space, E the total space and the inverse
image of a point b ∈ B, F = p−1({b}), is called the fibre over b. The sequence

F
i−→ E

p−→ B,

where i is the inclusion, is called a fibration sequence.

Example 2.23. If F and B are any spaces then the sequence

F ↪→ B × F p1−→ B,

where p1 is the projection onto the first factor, is a fibration sequence. The map p1 is
called the trivial fibration.

Example 2.24. For any space Y , the path space of Y , denoted PY, is the subspace of
Map(I, Y ) (with the compact open topology) defined by

PY = Map∗(I, Y ) = {l ∈ Map(I, Y ) | l(1) = y0},
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where y0 is the basepoint of Y. The map p : PY → Y defined by p(l) = l(0) is called the
path space fibration, and it defines the following fibration sequence

ΩY → PY
p−→ Y.

Proposition 2.25. Let F i−→ E
p−→ B be a fibration sequence, and let Y be any space.

Then the sequence of sets
[Y, F ]∗

i∗→ [Y,E]∗
p∗→ [Y,B]∗

is exact.

Let f : X → Y be a map. The mapping path space of f or the homotopy fibre of f ,
denoted Ff , is the space defined by the pullback square

Ff
q2
//

q1
��

PY

p

��

X
f
// Y

where p is the path space fibration.

Notice that if X f−→ Y is a fibration with fibre F , then F ' Ff .

Proposition 2.26. Let
Q

u //

v
��

X

f

��

Z
g
// Y

be a pullback square. If f is a fibration, then so is v. In this case u induces a homeo-
morphism ũ : Fv → Ff of fibres.

Notice that by Proposition 2.26, there is a fibration sequence

ΩY → Ff → X,

called the principal fibration induced by f .

Theorem 2.27. Let Z be a topological space. For any pointed map f : X → Y the
following sequence is a long exact sequence of sets (i ≥ 0), groups (i ≥ 1), and abelian
groups (i ≥ 2):

· · · → [Z,ΩiFf ]∗ → [Z,ΩiX]∗ → [Z,ΩiY ]∗ →

· · · → [Z,ΩY ]∗ → [Z,Ff ]∗ → [Z,X]∗ → [Z, Y ]∗.

Let f : A → X and g : A → Y be maps. The pushout of f and g is a space P along
with maps u : X → P and v : Y → P such that u ◦ f = v ◦ g. Moreover, the pushout
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satisfies the following universal property. If u′ : X → Z and v′ : Y → Z are maps such
that u′ ◦ f = v′ ◦ g, then there exists a unique map h : P → Z such that u′ = h ◦ u and
v′ = h ◦ v:

A
f
//

g

��

X

u

��
u′

��

Y
v //

v′ ++

P

h
  

Z.

The rectangular diagram above is called a pushout square.

An inclusion j : A→ X has the homotopy extension property with respect to a space Y if
for every map f : X → Y and every homotopyH : A×I → Y such thatH(a, 0) = f◦j(a),
there exists a homotopy H̃ : X × I → Y such that the following diagram commutes

A
j

//

iA
��

X

iX
�� f

��

A× I j×1I //

H
,,

X × I

H̃
##
Y

where iA and iX are inclusions. The map j is called a cofibration if it has homotopy
extension property with respect to any space Y . If j is a cofibration then Cj = X/j(A)

is called the cofibre of j, and the sequence

A
j→ X

q→ Cj

is called a cofibration sequence, where q is the projection onto the quotient space.

Example 2.28. Let X be a space and X × I the cylinder over X. The cone on X,
denoted CX, is the space X ∧ I obtained by identifying X × {1} ∪ {∗} × I in X × I
to a single point. The map j : X → CX given by j(x) = (x, 0) defines the following
cofibration sequence

X
j−→ CX −→ ΣX.

Example 2.29. Given any spaces X and Y , the inclusions i1 : X → X ∨ Y and
i2 : Y → X ∨ Y define the cofibration sequences

X
i1−→ X ∨ Y → Y,

Y
i2−→ X ∨ Y → X.
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Proposition 2.30. Let

A
f
//

g

��

X

j

��

Y
i // P

be a pushout square. If f is a cofibration, then so is i. In this case, j induces a homeo-
morphism j̃ : Cf → Ci of cofibres.

Proposition 2.31. Let A j−→ X
q−→ Cj be a cofibration sequence, and let Y be any space.

Then the sequence of sets

[Cj , Y ]∗
q∗→ [X,Y ]∗

j∗→ [A, Y ]∗

is exact.

Given a map f : X → Y, the mapping cone of f or the homotopy cofibre of f is the space
Cf defined by the following pushout square

X

f

��

i // CX

j

��

Y
q
// Cf .

We also write Cf = Y ∪f CX.

Notice that if X f−→ Y is a cofibration with cofibre C, then C ' Cf .

By Proposition 2.30, the sequence

Y
q−→ Cf

δ−→ ΣX

is a cofibration sequence, called the principal cofibration induced by f , and the map δ is
called the connecting map.

The next theorem states that the mapping cone construction generates a long exact
sequence of groups and sets.

Theorem 2.32. For any pointed map f : X → Y and space Z, the following sequence
is a long exact sequence of sets (i ≥ 0), groups (i ≥ 1), and abelian groups (i ≥ 2):

· · · → [ΣiCf , Z]∗ → [ΣiY, Z]∗ → [ΣiX,Z]∗ →

· · · → [ΣX,Z]∗ → [Cf , Z]∗ → [Y,Z]∗ → [X,Z]∗.

Proposition 2.33. If i : X → Y is a cofibration and Z is any space, then the induced
map

i∗ : Map(Y, Z)→ Map(X,Z)
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is a fibration.

Definition 2.34. For topological spaces X and Y , the evaluation map,

ev : Map(X,Y )×X → Y,

is defined as ev(f, x) = f(x). Applying Proposition 2.33 to the case when X = ∗ is a
point and Z is a based space we obtain the fibration sequence

Map∗(Y,Z) ↪→ Map(Y,Z)
ev−→ Z

called the evaluation fibration.

2.4 Homotopy actions and coactions

Given a space X and an H-spaceW with multiplication m, a (right homotopy) action of
W on X is a map φ : X ×W → X such that the following diagrams homotopy commute

X
j
// X ×W

φ
��

X

and X ×W ×W φ×1
//

1×m
��

X ×W
φ

��

X ×W φ
// X,

where j is the inclusion. We say that W acts on X by φ.

Example 2.35. If X is a homotopy-associative H-space, then X acts on itself by mul-
tiplication.

Example 2.36. Let f : X → Y be a map. Consider the principal fibration sequence

ΩY
j−→ Ff

p1−→ X,

where j is the inclusion and p1 is the projection onto the first factor. Recall that the
loop space ΩX is an H-space. Let m : ΩX × ΩX → ΩX be the multiplication in ΩX.
Notice that m can be extended to a map m′ : PY × ΩY → PY by

m′(α, α′)(t) =

α(2t) if 0 ≤ t ≤ 1
2 ,

α′(2t− 1) if 1
2 ≤ t ≤ 1.

The map φ : Ff × ΩY → Ff defined by ((x, ω), ν) 7→ (x,m′(ω, ν)), for (x, ω) ∈ Ff and
ν ∈ ΩY, is an action of ΩY on Ff .

Proposition 2.37. Let ΩY
∂−→ F

p−→ X be a principal fibration and suppose there is a
map s : X → F such that p ◦ s ' 1X . Then there is a weak homotopy equivalence

F ' ΩY ×X.
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Proof. Let φ : F ×ΩY → F be the homotopy action of ΩY on F. Consider the homotopy
commutative diagram

∗ × ΩY
∗×1

//

��

ΩY × ΩY
m //

∂×1
��

ΩY

∂
��

X × ΩY
s×1

//

��

F × ΩY
φ
//

p×∗
��

F

p

��

X × ∗ ' // X × ∗ ' // X

(2.4.1)

where m is the homotopy multiplication on ΩY and the columns are fibration sequences.
Notice that the first and the third rows are homotopy equivalences. Applying the functor
π∗(−) to the diagram and the five lemma we get that the composite of the middle row
induces isomorphisms in homotopy groups. This implies that the middle row is a weak
homotopy equivalence, as asserted.

Homotopy actions induce actions of a group of homotopy classes of maps on a homotopy
set as follows. Let W be an H-group and φ : X ×W → X be a homotopy action of W
on a space X. If Z is any space and f : Z → X and α : Z → W are any maps, then
define fα to be the composite

Z
∆−→ Z × Z f×α−−−→ X ×W φ−→ X.

Thus the function θ : [Z,X]∗ × [Z,W ]∗ → [Z,X]∗ defined by θ(f, α) = fα ∈ [Z,X]∗ is
an action of the group [Z,W ]∗ on [Z,X]∗.

We can use the action of groups on homotopy sets to improve exactness of the end terms
of the exact sequence that appears in the statement of Theorem 2.27. Let f : X → Y

be a map and let

· · · → [Z,ΩX]∗
(Ωf)∗−−−→ [Z,ΩY ]∗

∂∗−→ [Z,Ff ]∗
v∗−→ [Z,X]∗

f∗−→ [Z, Y ]∗

be the exact sequence of homotopy sets induced by f. The proof of the next theorem can
be found in [Ark11].

Theorem 2.38.

(1) Let ρ, σ ∈ [Z,Ff ]∗. Then v∗(ρ) = v∗(σ) if and only if there exists γ ∈ [Z,ΩY ]∗ such
that σ = ργ .

(2) Let γ, δ ∈ [Z,ΩY ]∗. Then ∂∗(γ) = ∂∗(δ) if and only if there exists ε ∈ [Z,ΩX]∗ such
that γ = (Ωf)∗(ε) + δ.



24 Chapter 2 Elements of homotopy theory

Given a space X and a co-H-space W with comultiplication σ, a (right) coaction of W
on X is a map ψ : X → X ∨W such that the diagrams

X
ψ
//

1X
##

X ∨W
p1
��

X

and X
σ //

ψ

��

X ∨W
1∨σ
��

X ∨W ψ∨1
// X ∨W ∨W,

where p1 is the projection onto the first factor, homotopy commute.

Example 2.39. We can define a coaction for a principal cofibration as follows. Let
f : X → Y be a map and consider the principal cofibration sequence

Y
j−→ Cf

q−→ ΣX,

where j is the inclusion and q is the projection. Recall that Cf = CX ∪f Y is the
mapping cone of f. The map ψ0 : Cf → Cf ∨ΣX defined by ψ(y) = (y, ∗) for y ∈ Y and

ψ0(x, t) =

((x, 2t), ∗) if 0 ≤ t ≤ 1
2 ,

(∗, (x, 2t− 1)) if 1
2 ≤ t ≤ 1

for x ∈ X defines a coaction of ΣX on Cf .

A homotopy coaction induces an action of a group of homotopy classes of maps on a
homotopy set. Let Q be a co-H-group with comultiplication c, and ψ : X → X ∨Q be
a coaction of Q on X. If Z is any space and g : X → Z and β : Q → Z are any maps,
then define gβ : X → Z as the composite

X
ψ−→ X ∨Q g∨β−−→ Z ∨ Z ∇−→ Z.

An action of θ : [X,Z]∗ × [Q,Z]∗ → [X,Z]∗ is defined by θ(g, β) = gβ ∈ [X,Z]∗.

Using the action θ we can give a refinement of the last terms in Theorem 2.32 as follows.

Let f : X → Y be a map and let

· · · → [ΣY,Z]∗
(Σf)∗−−−→ [ΣX,Z]∗

δ∗−→ [Cf , Z]∗
q∗−→ [Y,Z]∗

f∗−→ [X,Z]∗

be the exact sequence of homotopy sets induced by f. The proof of the following theorem
can be found in [Ark11].

Theorem 2.40.

(1) Let ρ, σ ∈ [Cf , Z]∗. Then q∗(ρ) = q∗(σ) if and only if there exists γ ∈ [ΣX,Z]∗ such
that σ = ργ .
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(2) Let γ, ξ ∈ [ΣX,Z]∗. Then δ∗(γ) = δ∗(ξ) if and only if there exists ε ∈ [ΣY,Z]∗ such
that γ = (Σf)∗(ε) + ξ.

2.5 Samelson and Whitehead products

We define two maps that will be crucial in the following chapters. Let G be an H-group.
Given maps f ∈ [X,G]∗ and g ∈ [Y,G]∗, we define the map c(f, g) : X × Y → G as the
composite

X × Y f×g−−→ G×G [−,−]−−−→ G,

where [−,−] is the commutator map, which is defined pointwise as [x, y] = xyx−1y−1.

The restriction of [−,−] to G∨G is nullhomotopic. Therefore, there exists an extension
[−,−] : G ∧G→ G, and therefore [−,−] factors as

G×G→ G ∧G [−,−]−→ G.

Hence the map c(f, g) factors as X × Y → X ∧ Y 〈f,g〉−−−→ G, where 〈f, g〉 is the composite

[−,−] ◦ (f ∧ g) : X ∧ Y → G ∧G→ G.

The map 〈f, g〉 : X∧Y → G is called the Samelson product of f : X → G and g : Y → G.
From the cofibration sequence

X ∨ Y → X × Y → X ∧ Y ∗→ ΣX ∨ ΣY (2.5.1)

we obtain an exact sequence

0→ [X ∧ Y,G]∗ → [X × Y,G]∗ → [X ∨ Y,G]∗.

Therefore, by Theorem 2.40, the Samelson product 〈f, g〉 is defined uniquely up to ho-
motopy.

Samelson products are natural with respect to maps f1 : X1 → X, g1 : Y1 → Y , and
H-maps of H-spaces ψ : G→ H, that is

〈ψ ◦ f ◦ f1, ψ ◦ g ◦ g1〉 ' ψ ◦ 〈f, g〉 ◦ (f1 ∧ g1).

Observe that if G is homotopy commutative then the commutator is nullhomotopic and
then we have the following.

Proposition 2.41. The Samelson product vanishes if G is homotopy commutative.
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Given maps f̄ : ΣX → Z, ḡ : ΣY → Z with respective adjoints

f : X
E→ ΩΣX

Ωf̄→ ΩZ, g : Y
E→ ΩΣY

Ωḡ→ ΩZ,

where E is the suspension map, the Whitehead product [f̄ , ḡ] is defined to be the adjoint
of the Samelson product 〈f, g〉:

[f̄ , ḡ] : Σ(X ∧ Y )
Σ〈f,g〉−→ ΣΩZ

ev−→ Z,

where ev is the evaluation map. As with Samelson products, Whitehead products are
natural with respect to maps. That is, given f1 : X1 → X, g1 : Y1 → Y and h : Z → Z ′

we get
[h ◦ f̄ ◦ Σf1, h ◦ ḡ ◦ Σg1] ' h ◦ [f̄ , ḡ] ◦ Σ(f1 ∧ g1).

Notice that if Z is an H-space then ΩZ is homotopy commutative. Then by Proposition
2.41 we have the following.

Proposition 2.42. If Z is an H-space then the Whitehead product [f̄ , ḡ] is trivial.



Chapter 3

Topology of S3-bundles over S4

In this chapter we discuss the topology and homotopy theory of S3-bundles over S4.
We start by defining the notions of CW -complexes, manifolds and fibre bundles. We
introduce the definition of a Moore space and then we discuss briefly the theory of
localisation of spaces. The classification of S3-bundles over S4 is stated in Proposition
3.44. Then we move towards the homotopy classification of the total spaces of the sphere
bundles M . In Theorem 3.45 we present a homotopy classification of the spaces M as it
was given in the work of James and Whitehead [JW54]. In Proposition 3.47, we present
a result due to Sasao regarding the homotopy theory of CW -complexes with homology
groups isomorphic to some of those of the spaces M [Sas65]. We finish this chapter
by presenting a classification of total spaces of S3-bundles over S4 due to Crowley and
Escher [CE03]. This result is stated in Theorem 3.48.

3.1 CW -complexes and Moore spaces

Throughout this thesis we will denote the n-th homology and cohomology groups of a
space X with the coefficient ring R by Hn(X;R) and Hn(X;R), respectively, and we
will use H̃n(X;R) and H̃n(X;R) for the reduced homology and cohomology groups. In
case the coefficient ring is R = Z, the ring R will be omitted from the notation. We will
also write Hn(X,A), Hn(X,A), H̃n(X,A) or H̃n(X,A) for the (co)homology groups of
a pair (X,A).

Definition 3.1. A CW-complex or a cellular complex is a topological space X construc-
ted inductively as follows:

(1) Start with a discrete space X0. The elements of X0 are the 0-cells.

(2) LetDn denote the n-disk and en denote the open n-disk. Let A = {eni } be a (possibly
empty) collection of open n-disks indexed by i ∈ I. If A = ∅, set Xn = Xn−1.

27
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Otherwise, form the n-skeleton Xn by attaching open n-disks eni , called simply n-
cells, to Xn−1 via maps ϕi : Sn−1 → Xn−1. The maps ϕi are called attaching maps.
We define Xn as the quotient space

Xn = Xn−1 qi Dn
i / ∼

where x ∼ ϕi(x) for x ∈ ∂Dn
i and ∂Dn

i is the boundary of the n-disk Dn
i = Dn.

Thus as sets Xn = Xn−1
∐
i e
n
i .

(3) This process can end at a finite stage, setting X = Xn for some n < ∞, or can
continue indefinitely, setting X =

⋃
nX

n.

Each cell eni in a CW -complex has a characteristic map Φi : Dn → X which extends the
attaching map φi and is a homeomorphism from the interior of Dn

i onto eni .

Alternatively, we can define a CW -complex X as follows. Let the n-skeleton of X be
defined by the pushout square

qSn−1
i

qj′i //

ϕ

��

qDn
i

��

Xn−1 j
// Xn

where ϕ|Sn−1
i

= ϕi and the maps j, j′i are inclusions. Then Xn or any space homeo-
morphic to Xn is a CW -complex of dimension at most n.

Example 3.2. The sphere Sn can be given the structure of a CW-complex with one cell
e0 and one cell en,

Sn−1 //

ϕ
��

Dn

��

e0 = ∗ // Sn

where ϕ is the constant map.

Example 3.3. Given Sn ⊂ Rn+1−{0}, n ≥ 1, the anitpodal map ρ : Sn → Sn is defined
by ρ(x) = −x. The real projective n-space RPn can be obtained as the identification
space with the equivalence relation x ∼ ρ(x). We can inductively construct RPn+1 with
RPn as the n-skeleton

Sn //

ϕn+1

��

Dn+1

��

RPn // RPn+1

where the attaching map ϕn+1 is an identification map. In this construction, RPn has
cells in dimensions 0, 1, 2, 3, . . . , n. In this case it is not difficult to see that RP 1 is
homeomorphic to S1.
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Example 3.4. Similarly, for C and H we can define the complex projective n-space
CPn and the quaternionic projective n-space HPn and give them cellular structures.
For instance, CP 2 has a cellular structure e0 ∪ e2 ∪ e4, and the last attaching map
η : S3 → S2 ∼= CP 1 is a generator of the group π3(S2) ∼= Z. The quaternionic projective
2-space HP 2 can be given the cellular structure e0 ∪ e4 ∪ e8. The non-trivial attaching
map ν : S7 → S4 ∼= HP 1 is a generator of an infinite cyclic subgroup of π7(S4) ∼= Z⊕Z12.

Theorem 3.5 and Theorem 3.7 are due to Whitehead [Whi49].

Theorem 3.5. If X and Y are CW -complexes and f : X → Y is a map, then f is a
weak homotopy equivalence if and only if f is a homotopy equivalence.

For the next theorem, we need the following definition:

Definition 3.6. Let n ≥ 1 be an integer or n = ∞, and let f : X → Y be a map.
We say f is an n-equivalence if the induced map f∗ : πi(X)→ πi(Y ) is an isomorphism
for all i < n and an epimorphism for i = n. We say f is a homological n-equivalence if
f∗ : Hi(X)→ Hi(Y ) is an isomorphism for all i < n and an epimorphism for i = n.

Theorem 3.7. Let X and Y be path-connected CW -complexes, let f : X → Y be a map
and let n ∈ Z ∪ {∞} with n ≥ 1.

(1) If f is an n-equivalence, then f is a homological n-equivalence.

(2) If f is a homological n-equivalence and X, Y are simply connected, then f is an
n-equivalence.

We use Theorem 3.7 to obtain the following.

Proposition 3.8. Let Y q−→ C
δ−→ ΣX be a principal cofibration where all spaces are

simply connected CW -complexes. Suppose there exists a map s : C → Y such that
s ◦ q ' 1Y . Then there is a homotopy equivalence

C ' Y ∨ ΣX.

Proof. Let ψ : C → C∨ΣX be a homotopy coaction of ΣX on C. Consider the homotopy
commutative diagram

Y
' //

q

��

Y ∨ ∗ ' //

q∨∗
��

Y

��

C
ψ
//

δ
��

C ∨ ΣX
s∨1 //

δ∨1
��

Y ∨ ΣX

��

ΣX
σ // ΣX ∨ ΣX

p2
// ΣX.

(3.1.1)
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where σ is a comultiplication in ΣX, p2 is the projection and the columns are cofibration
sequences. The first and the third rows are homotopy equivalences. Applying the five
lemma to the extended commutative diagram of homology groups induced by (3.1.1)
we obtain that the middle row induces an isomorphism in homology. By Theorem 3.7,
as all spaces are simply connected CW -complexes it follows that the composite in the
middle row is a weak homotopy equivalence. And finally by Theorem 3.5 it is a homotopy
equivalence.

We now introduce Moore spaces.

Definition 3.9. Let X be a co-H-space. A map of degree k, k : X → X, is defined
as the composite X µk−→

∨k
i=1X

∇−→ X, where µk is a choice of k-fold comultiplication.
The n-dimensional Moore space Pn(k) is the homotopy cofibre of the degree k map on
Sn−1; that is, Pn(k) is obtained attaching an n-cell to an (n − 1)-sphere by a map of
degree k, so this space is defined by the following pushout square

Sn−1 //

k
��

Dn

��

Sn−1 // Pn(k).

The homology groups of the Moore space are given as follows:

H̃i(P
n(k)) =

Zk if i = n− 1,

0 if i 6= n− 1,

where Zk denotes the cyclic group of order k.

Example 3.10. The n-sphere Sn is an n-dimensional Moore space, Pn(1).

Example 3.11. The real projective space RP 2 is homotopy equivalent to the Moore
space P 2(2).

Let k = pr11 p
r2
2 · · · prmm with {pi}mi=1 distinct primes and {ri}mi=1 positive integers. Let

X = Pn(pr11 ) ∨ · · · ∨ Pn(prmm ), with n ≥ 2, then we have

H̃n−1(X) = H̃n−1(Pn(pr11 ))⊕ · · · ⊕ H̃n−1(Pn(prmm ) ∼= Zpr11 ⊕ · · · ⊕ Zprmm
∼= Zk.

Notice that H̃n−1(X) is the only non trivial reduced homology group of X. Now the
only non-trivial reduced homology group of the Moore space Pn(k) is H̃n−1(Pn(k)) ∼= Zk.
Indeed there is a homotopy equivalence

Pn(k) ' Pn(pr11 ) ∨ Pn(pr22 ) ∨ · · · ∨ Pn(prmm ).



Chapter 3 Topology of S3-bundles over S4 31

For n > 2, the Moore space Pn(r) of degree r is the suspension ΣPn−1(r). We use Moore
spaces to define homotopy groups with coefficients. If X is a pointed topological space,
then the n-th homotopy group of X with coefficients in Zr is

πn(X;Zr) = [Pn(r), X]∗.

Hence for n > 3, πn(X;Zr) is an abelian group since Pn(r) is a double suspension. If X
is an H-space, the homotopy set [Pn(r), X]∗ is a group for n > 1 and an abelian group
for n > 2.

Theorem 3.12. For n ≥ 2 there is a natural exact sequence

0→ πn(X)⊗ Zk → πn(X;Zk)→ TorZ(πn−1(X),Zk)→ 0.

3.2 Localisation of spaces

The material presented in this section is based mainly in [Nei10].

Definition 3.13. Let P ⊂ Z be the set of all primes, and let

P = S
⋃
T

be a partition. An abelian group A is called S-local if every element of A is uniquely
divisible by all elements of T , that is, multiplication by q, q : A→ A is an isomorphism
for all q ∈ T .

Example 3.14. Let T be the multiplicative monoid generated by T . The subring of the
rationals

Z[T−1] = Z(S) =

{
a

q
| a ∈ Z, q ∈ T

}
is an S-local abelian group, or equivalently, a Z(S)-module.

Definition 3.15. A map of abelian groups f : A → A′ is an S-local equivalence if
f∗ : Hom(A′, B) → Hom(A,B) is a bijection for all S-local abelian groups B. An S-
localisation of A is an S-local group A such that there is an S-local equivalence l : A→ A.

For any abelian group A, an S-localisation exists and is given by

A[T−1] = A(S) =

{
a

q
| a ∈ A, q ∈ T

}
.

Definition 3.16. A simply connected pointed space X is called an S-local space if the
homotopy groups πk(X) are S-local for all k ≥ 1. For simply connected spaces X the
universal coefficient theorem (Theorem 3.12) shows that X is S-local if and only if the
homotopy groups πk(X;Zq) are trivial for all k ≥ 2 and for all q ∈ T .
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Definition 3.17. A map f : A → B of simply connected spaces is an S-equivalence if
the map of S-local homology f∗ : H∗(A;Z(S))→ H∗(B;Z(S)) is an isomorphism.

Localisation of a space is obtained as a consequence of inverting a specific map α of
spaces. For simply connected spaces, the Farjoun-Bousfield localisation theory specialises
to the localisation of spaces at a set of primes S. This includes the rationalisation
X → X(0) = X ⊗ Q, localisation at a prime p, X → X(p) = X ⊗ Z(p), and localisation

away from a prime X → X
[

1
p

]
= X ⊗ Z

[
1
p

]
. This theory shows that S-localisation

exists and is unique up to homotopy equivalence. Thus given a simply connected space
X there is map λ : X → X(S) such that:

(1) X(S) is S-local.

(2) λ : X → X(S) is an S-equivalence.

(3) for all maps f : X → Y with Y and S-local space, there is up to homotopy a unique
extension f̃ : X(S) → Y of f .

Theorem 3.18. If X → Y is a map of simply connected spaces, the following are
equivalent:

(1) H∗(X)→ H∗(Y ) is an S-local equivalence

(2) π∗(X)→ π∗(Y ) is an S-local equivalence

(3) X(S) → Y(S) is a homotopy equivalence.

The following result shows that the homotopy type of a space may be decomposed into
those of its localisations. A proof of this result can be found in [MP11].

Let I be an indexing set and let Ti be a set of primes for each i ∈ I. Let T =
⋃
i∈I Ti,

and S =
⋂
i∈I Ti. Additionally, we assume that Ti ∩ Tj = S for all i 6= j and that Ti 6= S

for all i ∈ I. Let X be a pointed connected topological space such that π1(X) is abelian.
Let

φ : X → X(S),

φi : X → X(Ti),

ψi : X(Ti) → X(S)

be localisations of X such that ψiφi ' φ for each i ∈ I. Let

φS :
∏
i∈I

XTi → (
∏
i∈I

XTi)(S)

denote an S-localisation.
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Theorem 3.19. Let X be a T -local space. The following diagram is a homotopy pullback
square

X
(φi)

//

φ

��

∏
i∈I X(Ti)

φS
��

X(S)
((φi)(S))

// (
∏
i∈I X(Ti))(S).

We state now some results on the homotopy theory of Moore spaces as it is discussed in
[CMN79], which use localisation techniques.

Proposition 3.20. Let p be an odd prime. If m > 3 the maps pr : Pm(pr) → Pm(pr)

are all nullhomotopic.

Proposition 3.21. Let m,n ≥ 2 and suppose and p is an odd prime. Then there is a
homotopy equivalence

Pn+m(pr) ∨ Pn+m−1(pr) ' Pn(pr) ∧ Pm(pr).

Proposition 3.22. If p is an odd prime and n ≥ 1, then there is a homotopy equivalence

Ω

( ∞∨
k=0

P 4n+2kn+3(pr)

)
× S2n+1{pr} ' ΩP 2n+2(pr),

where Sn{pr} denotes the homotopy fibre of the map pr : Sn−→Sn.

3.3 Manifolds

In this section we give a brief introduction to the topology of manifolds. In addition to
the references mentioned at the beginning of this chapter, we use [Ark11, Hat02].

A manifold of dimension n or an n-manifold is a Hausdorff space M in which each point
has an open neighbourhood homeomorphic to Rn. By a result of Milnor [Mil59] any
compact manifold M is homotopy equivalent to a CW -complex.

The dimension of M is characterised by the fact that for x ∈ M , the homology group
Hi(M,M − {x}) is nonzero only for i = n:

Hi(M,M − {x}) ∼= Hi(Rn,Rn − {0})
∼= H̃i−1(Rn − {0})
∼= H̃i−1(Sn−1).
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An n-manifold with boundary is a Haussdorff space M in which each point has an open
neighbourhood homeomorphic either to Rn or to the space

Rn+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}.

Given a point x ∈ M , if an open neighbourhood of x is homeomorphic to Rn+, then
Hn(M,M − {x}) = 0, whereas if it is homeomorphic to Rn, then Hn(M,M − {x}) ∼= Z.
The subspace of points x with Hn(M,M − {x}) = 0 is called the boundary of M. A
compact manifold without boundary is called closed.

A local orientation of a manifold M without boundary at a point x is a choice of
generator µx of the infinite cyclic group Hn(M,M − {x}). An orientation of an n-
dimensional manifoldM is a function x 7→ µx assigning to each x ∈M a local orientation
µx ∈ Hn(M,M − x), satisfying the following local consistency condition: each x ∈ M
has a neighbourhood Rn ⊂ M containing an open ball B of finite radius about x such
that all the local orientations µy at points y ∈ B are the images of a generator µB of
Hn(M,M −B) ∼= Hn(Rn,Rn−B) under the maps Hn(M,M −B)→ Hn(M,M −{y}).
If an orientation exists for M , then M is called orientable.

A fundamental class for a closed orientable n-manifold M with coefficients in R is an
element of Hn(M ;R) whose image in Hn(M,M −{x};R) is a generator for all x. Given
a topological space X, let Cn(X;R) and Cn(X;R) be the group of singular n-chains and
n-cochains of X, respectively, with coefficient ring R. Define an R-bilinear cap product
_: Ck(X;R)× C l(X;R)→ Ck−l(X;R) for k ≥ l by setting

σ _ ϕ = ϕ(σ|[v0,...,vl])σ|[vl,...,vk]

for σ : ∆k → X and ϕ ∈ C l(X;R), where ∆k is a k-simplex. There is an induced cap
product

Hk(X;R)×H l(X;R)
_−→ Hk−l(X;R),

which is R-linear in each variable.

Poincaré Duality is stated below. A proof of this theorem can be found in [Hat02].

Theorem 3.23 (Poincaré Duality). Let M be a closed and oriented n-manifold with
fundamental class [M ] ∈ Hn(M ;R). The map φ : Hk(M ;R)→ Hn−k(M ;R) defined by

φ(α) = [M ] _ α

is an isomorphism for all k.

The rank of Hk(M ;Q), called the k-th Betti number, describes the number of k-cells in
M . Using the Universal coefficient theorem for cohomology it can be shown that

Hk(X) ∼= Zβk ⊕ Tk−1
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where βk is the k-th Betti number of X and Tk−1 is the torsion part of Hk−1(X). Thus
Hk(X) ∼= Hk(X) up to torsion. The Poincaré duality theorem states that the k-th
cohomology group of a closed, oriented n-dimensional manifold M is isomorphic to the
(n− k)-th homology group of M .

Definition 3.24. Let M1 and M2 be oriented closed connected n-manifolds. Their
connected sum M1]M2 is an oriented closed connected n-manifold defined by deleting
the interiors of n-cells B1 in M1 and B2 in M2 and attaching the resulted punctured
manifolds to each other by a homeomorphism h : ∂B1 → ∂B2, so that

M1]M2 = (M1 − IntB1) ∪h (M2 − IntB2). (3.3.1)

3.4 Fibre bundles

In Example 2.14, we defined a topological group as a group G together with a topology
on G such that the binary operation and the inverse functions are continuous respect to
the topology. Now we define an important family of topological groups.

Definition 3.25. A Lie group G is a group that is a differentiable manifold such that
the multiplication map

µ : G×G→ G, (g, h) 7→ gh

and the inversion map
ι : G→ G, g 7→ g−1

are differentiable. If the underlying manifold of a Lie group G is connected or compact
then we say that G is connected or compact. Two Lie groups are locally isomorphic if
there exists a homeomorphism between two neighborhoods of the identities compatible
with the product. A Lie group is orientable as manifold and, indeed, an orientation at
the identity can be translated to an arbitrary point by left translation. Any Lie group G
is homeomorphic to K ×Rn, with K a compact subgroup of G and n = dimG− dimK.

Example 3.26. Let GL(n,R) be the set of real invertible n×n matrices with the group
structure given by matrix multiplication and the topology given as follows. Using the
isomorphism as vector spaces GL(n) ∼= Rn2 , we can think of A ∈ GL(n,R) as an element
of Rn2 . In this way GL(n, (R)) can be regarded as an open subspace of Rn2 with the
relative topology. Now as Rn2 is a differentiable manifold, so is any open subset. Thus
GL(n,R) is a differentiable manifold. The map GL(n,R)×GL(n,R)→ GL(n,R) given
by (A,B) 7→ AB−1 is continuous since the entries of AB−1 are rational functions of A
and B. Then GL(n,R), called the general linear group of real n × n matrices, is a Lie
group. Analogously, it is easy to check that the group GL(n,C) of complex invertible
n× n matrices is also a Lie group.
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Example 3.27. Every subgroup H of a topological group G with the relative topology
is also a topological group. The following are subgroups of GL(n,R) :

(1) The special linear group SL(n,R) = {A ∈ GL(n,R) | det(A) = 1}, where det(A) is
the determinant of A.

(2) The orthogonal group O(n,R) = {A ∈ GL(n,R) | AAT = 1}, where AT denotes the
transpose of A.

(3) The special orthogonal group SO(n,R) = O(n,R) ∩ SL(n,R).

The following are subgroups of GL(n,C):

(1) SL(n,C) = {A | det(A) = 1}.

(2) O(n,C) = {A | AAT = 1}.

(3) The unitary group U(n) = {A | AAT = 1}, where A denotes the complex conjugate
of A.

(4) The special unitary group SU(n) = U(n) ∩ SL(n,C). In the case n = 2 it is also
known that S3 ∼= SU(2).

From now on we will omit R from our notation for the general linear groups of real
matrices and their subgroups.

Definition 3.28. A bundle consists of a topological space E called the total space, a
space B called the base space, a map

p : E → B

of E onto B called the projection, and a space F called the fibre, such that for each
element b ∈ B, the set p−1(b) is homeomorphic to F . Finally for each b ∈ B there is a
neighbourhood V of b and a homeomorphism φ : V×F → p−1(V) such that the diagram

V × F φ
//

p1
!!

p−1(V)

p
||

V

commutes, where p1 is a projection onto the first factor. Intuitively, we can think of a
bundle as a union of fibres parametrized by B and glued together by the topology of E.
If p : E → B is a projection with fibre F we say that

F → E
p−→ B

is a bundle.
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Example 3.29. The map p : F ×B → B given by the projection onto the second factor
is a bundle map and the bundle defined in this way is called trivial.

Example 3.30. Let F = R,C or H be a field and let d ∈ Z such that if F = R,C,H
then d = 1, 2, 4, respectively. Then the sphere Sd(n+1)−1 can be viewed as a subset of
Fn+1 for each n ≥ 0, as a subset of all elements of norm 1. In particular, Sd−1 ⊂ F.
Define an equivalence relation on Sd(n+1)−1 ⊂ Fn+1 by setting x ∼ y if x = cy for
some c ∈ Sd−1 ⊂ F. Then the equivalence classes are homeomorphic to Sd−1, and the
projective plane FPn is just the quotient space Sd(n+1)−1/ ∼. Thus we have a bundle

Sd−1 −→ Sd(n+1)−1 φ−→ FPn,

where maps φ, called Hopf maps, are just the projection maps Sd(n+1)−1 → Sd(n+1)−1/ ∼.

A cross section of a bundle (E, p,B) is a map s : B → E such that ps = 1B.

A bundle carries, as a part of its structure, a group G of transformations of the fibre F .
We will include this information in the definition of coordinate bundle.

Definition 3.31. Let G be a topological group. A (right) action of G on a topological
space Y is a map

θ : Y ×G→ Y

such that, denoting θ(y, g) by yg, the following hold:

(1) For each y ∈ Y , g, h ∈ G, y(gh) = (yg)h;

(2) For each y ∈ Y , y1 = y, where 1 is the identity of G.

In this case we say that G acts on Y and Y is a (right) G-space. Notice that for a
fixed g ∈ G, the map y 7→ yg is a homeomorphism of Y onto itself. Thus θ gives a
homeomorphism from G into the group of homeomorphisms of Y .

Similarly, a space X is a left G-space if there exists a map θ : G × Y → Y such that
θ(gh, y) = θ(g, θ(h, y)) and θ(1, y) = y for g, h ∈ G and y ∈ Y . Notice that for any left
action θ : G × Y → Y we can define a right action Y × G → Y by (y, g) 7→ θ(g−1, y).
Hence in general these concepts are equivalent and it is usually enough to consider only
right actions or only left actions.

Definition 3.32. We say that G acts

(1) effectively on Y if whenever yg = y for all y ∈ Y , we have g = 1;

(2) transitively on Y if for any y1, y2 ∈ Y there exists an element g ∈ G such that
y2 = y1g;
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(3) freely on Y if whenever yg = y for some y ∈ Y , we have g = 1.

Definition 3.33. Let E, B, F be topological spaces, p : E → B a projection, G a
topological group acting effectively on F , and {Vi}i∈I an open cover of B. Suppose that
for each i ∈ I we have a homeomorphism

φi : Vi × F → p−1(Vi)

such that the diagram

Vi × F
φi //

p1
""

p−1(Vi)

p
{{

Vi

commutes. For b ∈ Vi, define a homeomorphism φi,b : F → p−1(b) by φi,b(x) = φi(b, x).
Then the tuple ξ = (E, p,B, F,G) is said to be a coordinate bundle if in addition the
following two conditions are satisfied:

(1) for each pair i, j ∈ I and each b ∈ Vi ∩ Vj the homeomorphism

φ−1
j,bφi,b : F → F

coincides with the map f 7→ fg for some g = gji(b) ∈ G;

(2) for each pair i, j in I, the function

gji : Vi ∩ Vj → G

is continuous.

The maps φi are called the coordinate functions, the maps gji are called the coordinate
transformations, and G is called the structure group.

As in the definition of bundle, the spaces E, B and F are called the total space, the base
space and the fibre, respectively. Two coordinate bundles ξ and ξ′ are said to be strictly
equivalent if they have the same total space, base space, projection, fibre, and group,
and their coordinate functions {φj}, {φ′k} are such that

ḡkj(x) = φ′
−1
k,xφj,x,

with x ∈ Vj ∩ V ′k, coincides with the action of an element g ∈ G, and the map

ḡk,j : Vj ∩ V ′k → G
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is continuous. This equivalence condition can be stated just by saying that the union of
the two sets of coordinate functions is a set of coordinate functions of a bundle. We can
check that this indeed defines an equivalence relation.

Definition 3.34. A fibre bundle [ξ] is an equivalence class of coordinate bundles. Notice
that we can regard a fibre bundle as a maximal coordinate bundle with respect to all
possible coordinate functions.

In further discussions we will study fibre bundles through their representatives, coordin-
ate bundles. From now on by a bundle we will mean a coordinate bundle.

The real orthogonal linear group O(n+ 1) acts transitively on Sn, which is regarded as
the unit sphere in Rn+1.

Definition 3.35. A linear n-sphere bundle or an Sn-bundle is a bundle in which the fibre
is an n-sphere and the structure group is the orthogonal group O(n+ 1). An orientable
n-sphere bundle is a bundle in which the fibre is an n-sphere and the group is the special
orthogonal group SO(n+ 1).

Definition 3.36. A bundle ξ = (E, p,B, F,G) is called a principal G-bundle or a prin-
cipal bundle if F = G and G acts on F by left translations.

In the next chapter we reintroduce the definition of a principal G-bundle giving more
information on the properties of the spaces and maps involved. For the purpose of this
chapter we can keep Definition 3.36. Next, we give an example of a principal G-bundle
which we will use in further discussions.

Example 3.37. There is a principal Z2-bundle

Z2 → S3 ρ−→ SO(3).

To see this define the map ρ as follows. Regarding S3 as the group of quaternions of norm
1, the subset of S3 such that the real part is zero is a 2-sphere S2. Notice that this subset
is the intersection of S3 with the subspace of H orthogonal to 1. Let ρ : S3 → SO(4) be
the continuous homomorphism defined by

ρ(u)v = uvu−1

where u, v ∈ S3. We now show that ρ(u) ∈ SO(3). Clearly ρ(u) is a linear map, since
v 7→ uvu−1 is linear in the vα ∈ R, where v = v1 + iv2 + jv3 + kv4, and α ∈ {1, 2, 3, 4}.
The transformation is orthogonal as |uvu−1| = |u||v||u|−1 = |v|. Since u1u−1 = 1, and S2

is orthogonal to 1, it follows that ρ(u) fixes S2. Now since reals are the only quaternions
that commute with i, j and k, it follows that the kernel of ρ is the set {1,−1}. The
coset of this subgroup are the pairs, u and −u. Thus by Example 3.3 we obtain that
ρ(S3) is homeomorphic to RP 3. It is not hard to see that the one parameter subgroup
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of matrices leaving fixed the quaternions i, j and k are contained in ρ(S3), which implies
that SO(3) ⊂ ρ(S3). Therefore ρ is a projection map and Z2 acts on S3 with the
antipodal map.

Example 3.38. Let us consider the standard action of SO(n + 1) on Rn+1. We define
the map p : SO(n+ 1)→ Sn by

p(u) = ue0,

where u ∈ SO(n+1) and e0 = (1, 0, · · · , 0). The homomorphism h : SO(n)→ SO(n+1)

defined by

v 7→

(
1 0

0 v

)
allows to identify SO(n) with the subgroup of SO(n+1) that fixes e0. The multiplication
in SO(n + 1) defines an action of SO(n) on SO(n + 1), (u, v) 7→ uv for u ∈ SO(n + 1)

and v ∈ SO(n). Now let x ∈ S3. If u ∈ p−1(x) then ue0 = x and uve0 = ue0 = x.

The action of SO(n) on SO(n+ 1) is therefore fibre preserving and free. We can regard
SO(n+ 1) as the total space of a principal SO(n)-bundle over Sn,

SO(n)→ SO(n+ 1)
p−→ Sn.

Theorem 3.39. If G is the topological group of transformations of F , and {Vij}, {gij}
are sets of coordinate transformations in B, then there exists a bundle ξ with base space
B, fibre F, group G and the coordinate transformations {gij}.

Definition 3.40. Let ξ, ξ′ be two bundles having the same fibre and the same structure
group. A bundle map is a map f : E → E′ with the following properties:

(1) f maps each fibre p−1(b) = Fb of E homeomorphically onto a fibre Fb′ of E′ inducing
a continuous map u : B → B′ such that the diagram

E
f
//

p

��

E′

p′

��

B
u // B′

commutes;

(2) if b ∈ Vj ∩ u−1(V ′k), and fb : Fb → Fb′ is the map induced by f, then the map

ḡkj(b) = φ′
−1
k,b′fbφj,b : F → F

coincides with the operation of an element of G;

(3) the map ḡkj : Vj ∩ u−1(V ′k)→ G is continuous.
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It is not hard to verify that bundles and bundle maps form a category. Given two bundles
ξ and ξ′ having the same base space, fibre and group, a bundle map u : E → E′ is called
an equivalence over B if the diagram

E
u //

p

��

E′

p′

��

B B

commutes.

We can also replace the spaces B, F and G by homeomorphic spaces to reduce the
number of equivalence classes.

Definition 3.41. Given an arbitrary bundle ξ = (E, p,B, F,G), the associated principal
G-bundle of ξ is the bundle given by Theorem 3.39, where F = G.

The next theorem relates the classification of bundles to that of their associated principal
G-bundles. In Chapter 4 we will discuss the classification of principal G-bundles.

Theorem 3.42. Two bundles ξ = (E, p,B, F,G) and ξ′ = (E′, p′, B, F,G) are equivalent
if and only if their associated principal G-bundles are equivalent.

The next proposition states that bundles have the homotopy lifting property.

Proposition 3.43. If p : E → B is a bundle map with fibre F , then p is a fibration with
fibre homeomorphic to F.

3.5 Classification of S3-bundles over S4

The total spaces M of S3-bundles over S4 have been of interest in both topology and
geometry since the work of Milnor on exotic spheres. In [Mil56b] Milnor showed that
there exist total spaces of S3-bundles over S4 that are homeomorphic to S7 but not
diffeomorphic to it. In 1974 Gromoll and Meyer [GM74] showed that one of these exotic
spheres admits a metric with non-negative sectional curvature. Several decades later
Grove and Ziller [GZ00] showed that all total spaces of S3-bundles over S4 admit a metric
with non-negative sectional curvature. In 2003 Crowley and Escher gave a classification
of these manifolds up to diffeomorphism, homeomorphism and homotopy equivalence
[CE03].

The homotopy classification of these spaces started with the work of Steenrod on the
classification of sphere bundles over spheres [Ste44, Ste51]. Following the work of Steen-
rod on the classification of k-sphere bundles over n-spheres we give a classification of
S3-bundles over S4. Recall that an orientable n-sphere bundle is a bundle in which the
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fibre is an n-sphere and the group is the special orthogonal group SO(n + 1). Thus
S3-bundles over S4 have the group SO(4) as a structure group. The following result
requires additional results related to the theory of principal G-bundle so that the proof
will be presented in Chapter 4.

Proposition 3.44. The equivalence classes of S3-bundles over S4 are in one-to-one
correspondence with elements of π3(SO(4)).

We describe the generators of the group π3(SO(4)) ∼= Z ⊕ Z, following [Ste44]. In our
discussion we will consider actions on the left.

First, by Example 3.38 there is a principal SO(3)-bundle

SO(3)→ SO(4)
p−→ S3,

where p(u) = u1. Let σ : S3 → SO(4) be the homomorphism defined by

σ(u)v = uv.

Since p(r) = r(1), it follows that pσ(u) = u. Therefore pσ = 1S3 , implying that the long
exact sequence

· · · ∂∗ // πn(SO(3)) // πn(SO(4))
p∗
// πn(S3) // · · ·

splits and πn(SO(4)) ∼= πn(SO(3)) ⊕ πn(S3), n ≥ 0. Now, recall the setup in Example
3.37, where the map ρ : S3 → SO(3) ⊂ SO(4) given by ρ(u)v = uvu−1defines a principal
Z2-bundle

Z2 → S3 ρ−→ SO(3). (3.5.1)

From (3.5.1) we obtain an exact sequence of homotopy groups

πi(Z2) // πi(S
3))

ρ∗
// πi(SO(3)) // πi−1(Z2) (3.5.2)

which shows that ρ induces isomorphisms πi(S3) ∼= πi(SO(3)) for i ≥ 2. In particular
π3(S3) ∼= π3(SO(3)) ∼= Z. Therefore π3(SO(4)) ∼= π3(SO(3)) ⊕ π3(S3) ∼= Z ⊕ Z, with
generators ρ and σ.

By Proposition 3.44 we obtain a doubly indexed family of S3-bundles over S4, namely,
ξl,m = (M,π, S4, S3, SO(4)). Writing M = Ml,m for the total space of ξl,m with the
corresponding projection map π : M → S4 we have that the bundle

S3 →Ml,m
π−→ S4 (3.5.3)

is the S3-bundle over S4 classified by lρ + mσ ∈ π3(SO(4)). These bundles are not all
pairwise distinct since there is a non-trivial action of π0(O(4)) ∼= Z2 on π3(SO(4)) (see



Chapter 3 Topology of S3-bundles over S4 43

[Ste44]). Denoting α0 the non-trivial element of π0(O(4)) the action is given by

α0(ρ) = ρ

α0(σ) = ρ− σ

Changing orientation in the fibre bundles produces a equivalence between ξl,m and
ξl+m,−m. The bundles ξl,0 are reducible to the group SO(3). Since SO(3) fixes a 0-sphere
on S3, the fixed points provide subbundles which are cross-sections. Therefore, from the
exact sequence induced by (3.5.3),

· · · → πi+1(S4)
0−→ πi(S

3)→ πi(Ml,0)→ πi(S
4)

0−→ · · · , (3.5.4)

we obtain
πi(Ml,0) ∼= πi(S

3)× πi(S4) (3.5.5)

for i ≥ 1.

The structure group of the bundles ξ0,m can be reduced to the group SU(2) ∼= S3. Since
we may regard the bundles ξ0,m as principal SU(2)-bundles, it follows that in the long
exact sequence of homotopy groups induced by (3.5.3)

· · · → π4(S4)
δ∗−→ π3(S3)→ π3(Ml,0)→ π3(S4) −→ · · · , (3.5.6)

the connecting map δ∗ sends a generator of π4(S4) into m times a generator of π3(S3).
Since π3(S4) ∼= 0, exactness of the homotopy sequence implies that π3(M0,m) ∼= Zm. If
|m| 6= |m′|, then the spaces M0,m, M0,m′ are not homeomorphic. From (3.5.5) we get
π3(Ml,0) ∼= Z. This shows that Ml,0 and M0,m are not homeomorphic if m 6= 0. More
generally, according to Escher and Crowley [CE03] H3(Ml,m) ∼= Zm.

As the manifolds Ml,m are simply connected we can give them the following minimal
CW -structure

Ml,m = e0 ∪ e3 ∪ e4 ∪ e7. (3.5.7)

The 4-skeleton of Ml,m is then the pushout

S3 //

m
��

D4

��

S3 // P 4(m)

where m is the degree m map. James and Whitehead classified the manifolds Ml,0 up
to homotopy. Let Ml,0,Ml′,0 be the total spaces of S3-bundles over S4 classified by the
elements (l, 0), (l′, 0) ∈ Z⊕ Z, respectively.

Theorem 3.45. Ml,0 is homotopy equivalent to Ml′,0 if and only if l ≡ ±l′ mod 12.
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Proof. See [JW54] Theorem 1.6.

In [Sas65] Sasao investigated the homotopy type of complexes K such that

Hi(K) =


Zk if i = 3,

Z if i = 0, 7,

0 if i 6= 0, 3, 7.

Form ≥ 2, the total spacesMl,m of S3-bundles over S4 belong to the family of complexes
K. Since any complex K has the homotopy type of a complex L which is obtained by
attaching a (2n + 1)-cell to P 4(m), it is sufficient to consider the homotopy type of L.
In order to do this Sasao determined the homotopy groups π6(P 4(m)).

If f : X → Y is a map and f(A) ⊆ B for A ⊂ X and B ⊆ Y , then we write
f̄ : (X,A)→ (Y,B) for the maps of pairs determined by f. Define P (X;A,B) by

P (X;A,B) = {γ ∈ Map(I,X) | γ(0) ∈ A and γ(1) ∈ B}.

Thus if B = {∗}, P (X;A, {∗}) is the subspace of PX consisting of paths that begin in
A and end in {∗}, so that P (X;A, {∗}) is just the homotopy fibre of the inclusion map
A→ X.

Definition 3.46. For A ⊆ X and an abelian group G, the n-th relative homotopy group
of the pair (X,A) is

πn(X,A) = πn−1(P (X;A, {∗}),

for n ≥ 1.

A map f : (X,A) → (Y,B) of pairs induces a map P (X;A, {∗}) → P (Y ;B, {∗}), and
hence a homomorphism

f∗ : πn(X,A)→ πn(X,B)

for n ≥ 2. Now the sequence of spaces

ΩX → P (X;A, {∗}) q−→ A (3.5.8)

is a fibration, where q(ω) = ω(0) for ω ∈ P (X;A, {∗}). From (3.5.8) we obtain the
following exact sequence

· · · → πn+1(X,A)→ πn(A)→ πn(X)→ πn(X,A)→ πn−1(A)→ · · · . (3.5.9)

The sequence (3.5.9) is called the exact homotopy sequence of the pair (X,A).
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Now consider the exact sequence generated by (P 4(m), S3):

· · · // π7(P 4(m), S3)
∂ // π6(S3)

i∗ // π6(P 4(m))
j∗
// π6(P 4(m), S3) // · · · .

Thus we have

π4(S3)
i∗ // π4(P 4(m)) // π4(P 4(m), S3)

∂ // π3(S3)
i∗ // π3(P 4(m))

and the maps i∗ are surjective, as i is the inclusion of the bottom cell in P 4(m). Therefore
we have a short exact sequence

0 // π4(P 4(m), S3)
∂ // Z i∗ // Zm // 0

Therefore π4(P 4(m), S3) ∼= Z. Let χ4 denote the generator of π4(P 4(m), S3) and let
[ι3, χ4] be the Whitehead product of the generator ι3 ∈ π3(S3) and χ4. By Lemma 2 in
[Sas65], we have ∂([ι3, χ4]) = 0. Let σ be any element of π6(P 4(m)) such that its image
under j∗ is [ι3, χ4].

Now we state a result concerning the attaching maps of CW -complexes with the homo-
topy types of S3-bundles over S4. Let (a, b) denote the greatest common divisor of two
integers a and b. Let ν be the generator of π6(S3).

Proposition 3.47. The following hold:

(1) if m is odd, then
π6(P 4(m)) ∼= Z(m,12){i∗(ν)} ⊕ Zm{σ};

(2) if m is even multiple of (m, 12), then

π6(P 4(m)) ∼= Z(m,12){i∗(ν)} ⊕ Zm{σ} ⊕ Z2;

(3) if m is even and an odd multiple of (m, 12), then

π6(P 4(m)) ∼= Z(m,12)/2{λ3} ⊕ Z2m{σ} ⊕ Z2,

where λ3 = 2m
(m,12)σ + i∗(ν).

Proof. See the proof of Theorem in [Sas65].

The proof of Proposition 3.47 has many elaborate computations. In Chapter 4, we present
a simpler computation for the odd primary part considering the localisation of spaces at
an odd prime p. Crowley and Escher determined the homotopy classification of spaces
Ml,m with m > 0, which happens to coincide with the homeomorphism classification.
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Theorem 3.48. Let m,m′ > 0.

(1) The manifolds Ml′,m′ and Ml,m are orientation preserving homotopy equivalent if
and only if m = m′ and m′ ≡ αl (mod (m, 12)) where α2 ≡ 1 (mod (m, 12)).

(2) Orientation reversing homotopy equivalences between any Ml′,m and Ml,m can only
exist when m = 2εpi11 · · · p

ik
k , where pi is a prime, pi ≡ 1 (mod 4), and ε ∈ {0, 1}.

Furthermore, if n is of this form with ε = 0, then the single oriented homotopy type
admits an orientation reversing self homotopy equivalence; if ε = 1, then Ml′,m is
orientation reversing homotopy equivalent to Ml,m if and only if l′ + l 6≡ 0 (mod 2).

Proof. See the proof of Theorem 1.1 in [CE03].



Chapter 4

Homotopy theory of gauge groups

The topology and homotopy theory of principal G-bundles and their associated gauge
groups are presented in this chapter. In the first section we summarise information on
classical Lie groups. In Section 4.2 we describe the topology of principal G-bundles
and give some well-known results on their classification up to bundle isomorphism. We
introduce in Section 4.3 the definition of gauge groups and prove Theorem 4.16, which will
be widely used throughout the next chapters. In Section 4.4 we focus on the homotopy
theory of gauge groups of principal G-bundles over spaces of dimension n ≤ 4 and
we present some results. We also mention some results for the classifying spaces of
gauge groups. In the last section we mention research related to gauge groups over high
dimensional manifolds that has been done inside and outside of homotopy theory.

4.1 Classical Lie groups

This section is based on [Mim95]. To study the homotopy theory of Lie groups it suffices
to consider compact Lie groups. Any abelian compact connected Lie group of dimension
n is isomorphic to an n-torus. A maximal torus T of G is a subgroup which is a torus
such that if T ⊂ U ⊂ G and U is a torus then T = U . The rank of G is the dimension
of a maximal torus of G.

A compact connected Lie group G is called simple if it is non-abelian and has no proper
closed normal subgroups of dimension higher than 0. If the centre of G is finite we say
that G is semi-simple. Compact connected Lie groups are locally isomorphic to direct
products of tori and simple non-abelian Lie groups. Thus the classification of Lie groups,
up to local isomorphism, reduces to that of simple Lie groups.

Theorem 4.1 (Classification of simple Lie groups). The connected compact simple Lie
groups are exactly the following:

47
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dimension linear group universal cover
An(n ≥ 1) n(n+ 2) SU(n+ 1)

Bn(n ≥ 2) n(2n+ 1) SO(2n+ 1) Spin(2n+ 1)

Cn(n ≥ 3) n(2n+ 1) Sp(n)

Dn(n ≥ 2) n(2n− 1) SO(2n) Spin(2n)

G2 14
F4 52
E6 78
E7 133
E8 248 .

In the classification theorem, the first four families of groups are called the classical Lie
groups and the last five groups are called the exceptional Lie groups.

Let G be one of U, SU, O, SO, Sp, so that G(n) = U(n), SU(n), O(n), SO(n), Sp(n).
We can obtain an inclusion G(n) → G(n + 1) by the map A 7→ A ⊕ I1. The infinite
dimensional classical Lie group G (or G(∞)) is the group

G =
⋃
n

G(n)

which is endowed with the weak topology.

From the fibrations G(n+ 1)/G(n) = Sd(n+1)−1 (where d = 4 if G = Sp, d = 2 if G = U

and d = 1 if G = O) we obtain

πk(Sp) = πk(Sp(n)) for n ≥ (k − 1)/4;

πk(U) = πk(U(n)) for n ≥ (k + 1)/2;

πk(O) = πk(O(n)) for n ≥ k + 2.

The homotopy groups of the classical Lie groups G can be obtained using the classific-
ation theorem and the homotopy exact sequences associated to each bundle where G is
involved. Table A.1 in the Appendix contains some relevant information on the higher
homotopy groups of simple Lie groups as it is presented in [Jam95].

4.2 Principal G-bundles

This section is based on [Hus66, Sel08, Ste51]. Let X be a right G-space. Two elements
x, x′ ∈ X are G-equivalent if there exists an element g ∈ G such that xg = x′. This is an
equivalence relation, and the set of all xg for g ∈ G, denoted xG, is called the orbit of
x ∈ X. Let X/G denote the set of all orbits xG, for x ∈ X. Thus X/G is a topological
space with the quotient topology defined by the quotient map p : X → X/G, p(x) = xG.
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Definition 4.2. A principal G-bundle, denoted ξ = {P, p,B} or P p−→ B, is a bundle
with projection p : P → B and an action P × G → P , (x, g) 7→ xg, such that the
following hold:

(1) the map P ×G→ P × P given by

(x, g) 7→ (x, xg) x ∈ P, g ∈ G

is a homeomorphism onto its image;

(2) B = P/G and the projection p is the quotient map;

(3) for all b ∈ B there exists an open neighborhood V together with a homeomorphism
φ : V ×G→ p−1(V ) such that the diagram

V ×G φ
//

p1
!!

p−1(V)

p
||

V

commutes, and for all x ∈ p−1(V ) and g ∈ G, φ−1(xg) = φ−1(x)g, where the action
on V ×G is given by (x, g)g′ = (x, gg′).

Notice that property (1) in Definition 4.2 implies that the action θ is free, and properties
(1) and (2) imply that the fibre of the bundle is homeomorphic to G. The space P is the
total space, B is the base space and G is the structure group. We say that the sequence

G→ P
p−→ B

is a principal G-bundle over B. For simplicity we can also denote it by P → B.

Definition 4.3. Let ξ = {E, p,B, F,G} be a bundle over B, and let f : B′ → B be a
map. The induced bundle of ξ under f , denoted by f∗(ξ) = {f∗(E), f∗(p), B′, F,G}, is
defined by the pullback of f and p:

f∗(E) //

f∗(p)
��

E

p

��

B′
f
// B.

That is, f∗(ξ) is a bundle that has B′ as the base space, the pullback

f∗(E) = {(b1, x) ∈ B′ × E | f(b1) = p(x)}

as the total space, and the map f∗(p) given by (b1, x) 7→ b1 as the projection.
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Proposition 4.4. Let ξ = {P, p,B} be a principal G-bundle. Given a map f : B′ → B,
the induced bundle f∗(ξ) is a principal G-bundle.

Proof. See Proposition 4.1 in [Hus66].

Definition 4.5. Given two principal G-bundles ξ = {P, p,B} and ξ′ = {P ′, p′, B}
over a space B, a principal bundle map or principal bundle morphism over B is a map
f : P → P ′ such that

(1) the diagram

P
f
//

p

��

P ′

p′

��

B B

commutes, and

(2) f is G-equivariant, that is,
f(xg) = f(x)g

for all g ∈ G and all x ∈ P .

Since the composition of a principal morphisms is a principal morphism we can speak of
the category of principal G-bundles and principal bundle morphisms.

Theorem 4.6. Every principal bundle map over B is an isomorphism.

A bundle isomorphism of principal G-bundles defines an equivalence relation. We denote
by PrinG(B) the set of isomorphism classes of principal G-bundles over B.

An open cover {Ui}i∈I of a topological space is numerable if there exists a locally finite
partition of unity {ui}i∈I such that u−1

i ((0, 1]) ⊂ Ui for each i ∈ I.

Definition 4.7. A principal G-bundle ξ = {P, p,B} is numerable if there is a numerable
open cover {Ui}i∈I of B such that the bundle ξ|Ui = {p−1(Ui), p|p−1(Ui), Ui} is trivial for
each i ∈ I. Notice that each principal G-bundle over a paracompact Hausdorff space is
numerable.

Definition 4.8. A numerable principal G-bundle ξ0 = {E0, p0, B0} is called a universal
G-bundle if the following hold:

(1) For each numerable principal G-bundle ξ over B there exists a map f : B → B0 such
that ξ and f∗(ξ0) are isomorphic over B.

(2) If f , g : B → B0 are two maps such that f∗(ξ0) and g∗(ξ0) are isomorphic over B,
then f and g are homotopic.
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In other words, a numerable principal G-bundle ξ0 = {E0, p0, B0} is a universal G-
bundle if, for any pointed space B with numerable covering, the pullback of p0 and maps
f : B → B0 induces a bijection

[B,B0]→ PrinG(B).

The next theorem gives a characterisation of universal G-bundles, and its proof can be
found in [Ste51].

Theorem 4.9. If ξ = {P, p,B} is a principal G-bundle, then ξ is a universal bundle if
and only if P is contractible.

Now we consider the construction given by Milnor for a universal G-bundle. Let G be a
topological group. Let EG be the infinite join

EG = G ∗G ∗G ∗ · · · = lim−→G∗n.

Explicity, as a set,

EG = {(g0, t0, g1, t1, . . . , gn, tn, . . . ) ∈ (G× I)∞ | {i | ti 6= 0} is finite,
∑

i ti = 1}/ ∼

where the equivalence relation ∼ is generated by the relations

(g0, t0, . . . , gn−1, tn−1, gn, 0, gn+1, tn+1, . . . ) ∼ (g0, t0, . . . , gn−1, tn−1, g
′
n, 0, gn+1, tn+1, . . . )

for all gn, g′n ∈ G. A G-action on EG is given by

(g0, t0, g1, t1, . . . , gn, tn, . . . ) · g = (g0g, t0, g1g, t1, . . . , gng, tn, . . . ).

Let BG = EG/G. We also write EnG = G∗(n+1) and BnG = EnG/G, referring to
the inclusions B0G ↪→ B1G ↪→ B2G ↪→ · · · ↪→ BnG ↪→ · · · as the Milnor filtration on
BG. Observe that G∗n = G ∗ · · · ∗ G = Σn−1G ∧ · · · ∧ G. Therefore EG = lim−→G∗n is
∞-connected, implying that it is contractible. The following theorem is due to Milnor
[Mil56a].

Theorem 4.10. For every topological group G, the quotient map

EG→ BG

is a universal G-bundle.

The bundle G → EG → BG is called the universal G-bundle of G, and since homo-
topy classes of maps into BG classify numerable principal G-bundles, BG is called the
classifying space of the group G.
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Corollary 4.11. Let X be a space with the homotopy type of a CW -complex. There is
a one-to-one correspondence

PrinG(X)↔ [X,BG].

Proposition 4.12. Let G be a topological group. Suppose that G has the homotopy type
of a CW complex. Then G is homotopy equivalent to the loop space ΩBG.

Proof. Given a fibration
F → E → B

with E contractible, there is a homotopy equivalence F ' ΩB (see Proposition 2.37).
As EG is contractible, the universal bundle

G→ EG→ BG

gives a homotopy equivalence ΩBG→ G.

Proof of Proposition 3.44. By Theorem 3.42 there is a bijection between S3-bundles over
S4 and the associated principal SO(4)-bundles over S4. Thus it suffices to compute the
set of classes of principal SO(4)-bundles over S4. By Corollary 4.11, there is a one-to-one
correspondence

PrinSO(4)(S
4)↔ [S4, BSO(4)].

As SO(4) is connected, the unpointed and pointed homotopy sets coincide so that we
have

[S4, BSO(4)] = [S4, BSO(4)]∗ = π4(BSO(4)).

Finally by Proposition 4.12 we obtain π4(BSO(4) ∼= π3(SO(4)).

4.3 Gauge groups

Let P p−→ B be a principal G-bundle over B. A bundle isomorphism of P over B to
itself, f : P → P , is called an automorphism of P. We can endow Map(P, P ) with the
compact-open topology (see Ch.1). For two right G-spaces X and Y, let MapG(X,Y )

be the subspace of maps f ∈ Map(X,Y ) such that f(xg) = f(x)g for all g ∈ G and all
x ∈ X.

Definition 4.13. Let P p−→ B be a principal G-bundle over B. The gauge group of P ,
denoted GP (B), is the group of automorphisms of P endowed with the induced topology
from Map(P, P ), with group multiplication given by composition. In particular, given a
principal G-bundle P p−→ B, its gauge group GP (B) is a subspace of MapG(P, P ).
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For a topological group G we denote by Ad(G) the right G-space G with right action
(called the adjoint action) given by

(x, s) 7→ xs = s−1xs.

Proposition 4.14. The gauge group GP (B) can be identified with the mapping space

MapG(P,Ad(G)) = {φ : P → G | φ(xg) = g−1φ(x)g}.

Proof. Let u ∈ GP (B). Then for any x ∈ P we have that p(x) = pu(x), where p is the
projection map. Thus x, u(x) are G-equivalent and so to each element u ∈ GP (B) we
can assign the continuous function φu : P → G defined by the relation

u(x) = xφu(x). (4.3.1)

As u satisfies u(x)g = u(xg) we obtain

u(x)g = u(xg) = xgφu(xg).

This together with (4.3.1) gives

xφu(x)g = xgφu(xg).

Since the action of G is free, the last equation implies φu(x)g = gφu(xg) and therefore
φ(xg) = g−1φ(x)g, for all x ∈ P , g ∈ G. Moreover, the function which assigns to each
automorphism u ∈ GP (B) the function φu ∈ MapG(P,Ad(G)) is a continuous bijection.
Indeed, if φ ∈ MapG(P,Ad(G)), then we define u = uφ ∈ GP (B) by

u(x) = xφ(x) ∈ GP (B)

and, since the action of G on P is free, the map φ 7→ uφ is inverse to u 7→ φu.

Proposition 4.15. Let P be a principal G-bundle over B. If either P is trivial or G is
abelian, then

GP (B) ∼= Map(B,G).

Proof. By Proposition 4.14 we have GP (B) = MapG(P,Ad(G)). Consider two cases:

(1) Suppose that P = B ×G is trivial. Given f ∈ MapG(B ×G,Ad(G)), we may define
fB ∈ Map(B,G) by fB(b) = f(b, 1); and conversely, given f ′ ∈ Map(B,G), we may
define f ′P ∈ MapG(B×G,Ad(G)) by f ′P (b, g) = f ′(b)g. It is not difficult to check that
the maps f 7→ fB and f ′ 7→ f ′P are continuous maps between MapG(B ×G,Ad(G))

and Map(B,G) and that they are inverse to each other.
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(2) Suppose now that G is abelian. Then the action of G on Ad(G) is trivial and so
f(xg) = f(x) for all f ∈ MapG(P,Ad(G)), x ∈ P and g ∈ G. Hence all such f

factor through some map B → G, and conversely, for every f ′ ∈ Map(B,G) we have
f ′ ◦ p ∈ MapG(P,Ad(G)), where p : P → B is the projection. Thus f ′ 7→ f ′ ◦ p gives
a homeomorphism Map(B,G)→ MapG(B ×G,Ad(G)).

Let ξ = (EG, π,BG) be the universal bundle of G. We use the following notation. For
a principal G-bundle p : P → B and a map f : B → BG, let Mapf (B,BG) denote
the subspace of Map(B,BG) consisting of maps g : B → BG such that g∗(ξ) and
f∗(ξ) are isomorphic over B. In other words, the subscript f denotes the component of
Map(B,BG) which contains the map f : B → BG that induces P . Let Gf (B) = GP (B).

The following theorem is crucial for this work. This result is proved in [Got72] and
[AB83]. Throughout this work we will consider principal G-bundles over manifolds with
G a Lie group, so that from now on by a principal G-bundle we will mean a numerable
principal G-bundle with structure group G a Lie group.

Theorem 4.16. Let ξ = {P, p,B} be a principal G-bundle classified by f : B → BG.
There is a homotopy equivalence

BGf (B) ' Mapf (B,BG).

Proof. Let
G→ EG→ BG

be the universal bundle of G. Consider the mapping space MapG(P,EG). The gauge
group Gf (B) acts on this space by composition on the right. By Proposition 4.14 we
have that given u ∈ Gf (B), there exist a unique φu ∈ MapG(P,Ad(G)) such that
u(x) = xφu(x). Thus for w ∈ MapG(P,EG) and u ∈ Gf (B), the action is given by

(wu)(x) = w(x)φu(x)

and the action is free. We define a map p̃ : MapG(P,EG)→ Mapf (B,BG) by assigning
to each w ∈ MapG(P,EG) the quotient map h ∈ Mapf (B,BG) on the base space of the
bundles, as depicted in the following diagram

P
w //

p

��

EG

p0
��

B
h // BG.

(4.3.2)

Thus if p̃(w′) = p̃(w) then there is a u ∈ Gf (B) such that w′ = wu. This defines a
principal fibration

Gf (B) −→ MapG(P,EG) −→ Mapf (B,BG).
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As EG is contractible so is the space MapG(P,EG), which means that this is a universal
bundle for Gf (B) and

BGf (B) ' Mapf (B,BG)

as claimed.

Definition 4.17. Let Pf
p−→ B be a principal G-bundle and Pb0 be the fibre at the base

point b0 of B. The pointed gauge group, denoted G∗f (B), is the subgroup of Gf (B) which
fixes the fibre at b0, that is,

G∗f (B) = {u ∈ Gf (B) | u(x) = x for all x ∈ Pb0}.

By Theorem 4.16 we have the following homotopy equivalence

BG∗f (B) ' Map∗f (B,BG).

The study of the topology of gauge groups and their classifying spaces is strongly mo-
tivated by applications in other areas in mathematics such as differential geometry and
mathematical physics. For instance, Donaldson [Don86] used topological information of
gauge groups of principal SU(2)-bundles over 4-manifolds to distinguish differentiable
structures on homeomorphic manifolds. In mathematical physics, the description of the
dynamical behaviour of elementary particles in a 4-dimensional space-time is still an
open question. From a mathematical viewpoint, gauge theories correspond to the differ-
ential geometry and topology of fibre bundles (see for instance [CM94, Ati88]). Defining
concrete applications of the homotopy theory of the gauge groups in other areas of math-
ematics go beyond the scope of this work. However it is worth mentioning the links to
other areas for these are at the core of the motivations behind the present work.

4.4 Homotopy theory of gauge groups

For the next discussion we will assume that all spaces are pointed, compact, connected,
and have the homotopy type of a CW -complex. Let Pf

p−→ B be a principal G-bundle
over B with gauge group Gf (B). The subindex in Pf , Gf (B) and BGf (B) denotes the
classifying map f ∈ [B,BG] of the principal G-bundle. It follows from Theorem 4.16
that there is a commutative diagram

BG∗f (B) //

'
��

BGf (B)

'
��

Map∗f (B,BG) //Mapf (B,BG).

(4.4.1)
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Recall that the evaluation map ev : Map(X,Y )→ Y is defined by ev(f) = f(x0), where
x0 is the basepoint of X, with fibre Map∗(X,Y ). Consider the evaluation fibration

Map∗(B,BG) //Map(B,BG)
ev // BG. (4.4.2)

The restriction of the evaluation map to path components induces evaluation fibrations

Map∗f (B,BG) //Mapf (B,BG)
ev // BG. (4.4.3)

Thus by (4.4.1), the gauge group Gf (B) and the classifying space BGf (B) fit in the
following fibration sequence

G∗f (B) // Gf (B) // G
∂ // BG∗f (B)

i // BGf (B)
ev // BG, (4.4.4)

where i is the inclusion and ∂ is the connecting map. Thus the gauge group is the
homotopy fibre of the connecting map ∂. Hence it is expected that the homotopy types
of the gauge groups are determined by the properties of the connecting map.

We present some useful results on the homotopy types of pointed mapping spaces. There
is a bijection between the set of homotopy classes of maps [X,Y ]∗ from X to Y and the
set of path components π0(Map∗(X,Y )) of Map∗(X,Y ).

Proposition 4.18. Let Y be any space.

(1) If X is an H-group then Map∗f (Y,X) ' Map∗0(Y,X) for all [f ] ∈ [Y,X]∗.

(2) If X is a co-H-group then Map∗f (X,Y ) ' Map∗0(X,Y ) for all [f ] ∈ [X,Y ]∗.

Proof. It suffices to prove only one part of the statement since we obtain similar results
dualising the arguments. Thus we prove part b). Suppose X is a co-H-group. Then
the comultiplication on X induces an H-group structure on Z = Map∗(X,Y ), given by
homotopy-associative multiplication m : Z × Z → Z and homotopy inverse i : Z → Z,
say. Let f ∈ Z be a map, and let Zf and Z0 be path components of Z containing the
map f and the trivial map ∗ ∈ Z, respectively. Consider maps Θ = m(f,−) : Z → Z,
defined by the composite

Θ(α) : X
σ // X ∨X f∨α

// Y ∨ Y ∇ // Y,

and Ψ = m(i(f),−) : Z → Z, defined by the composite

Ψ(α) : X
σ // X ∨X

i(f)∨α
// Y ∨ Y ∇ // Y.

Note that the maps Θ and Ψ satisfy Θ(Z0) ⊆ Zf and Ψ(Zf ) ⊆ Z0. We aim to show that
Θ and Ψ and homotopy inverses, thus inducing a homotopy equivalence Z0 ' Zf .
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We will show that Ψ◦Θ ' 1Z ; the argument for Θ◦Ψ is similar. Consider the homotopy
commutative diagram

Z
(f,1Z)

//

j2

��

Z × Z
(i,1Z)×1Z

//

∗×1Z

��

Z × Z × Z 1Z×m //

m×1Z

��

Z × Z

m

��

Z × Z Z × Z Z × Z m // Z,

where f : Z → Z is the constant map at f ∈ Z and j2 : Z → Z × Z is the inclusion
into the second factor, given by j2(α) = (∗, α). Here the square on the right homotopy
commutes because of homotopy associativity of the map m, and the one on its left
homotopy commutes because of properties of the homotopy inverse i. The composite
of maps on the top and the right of the diagram is just Ψ ◦ Θ = m(i(f),m(f,−)), and
the map m ◦ j2 along the left and the bottom of the diagram is homotopic to 1Z . Thus
Ψ ◦Θ ' 1Z , as required.

Recall that given a cofibration sequence

A
ϕ−→ X

q−→ Cϕ
δ−→ ΣA

there is a coaction ψ0 : Cϕ → Cϕ ∨ ΣA of ΣA onto the cofibre Cϕ (see Example 2.39).
This coaction defines an action on homotopy sets. We have already seen that closed
manifolds have the homotopy type of a CW -complex. Let

Sn−1 ϕ−→Mn−1 q−→M
δ−→ Sn (4.4.5)

be the cofibration sequence induced by the attaching map ϕ onto the (n − 1)-skeleton
Mn−1. Here M ' Cϕ is a CW -complex. Consider the exact sequence induced by the
cofibration sequence (4.4.5),

[Sn, Y ]∗
δ∗−→ [M,Y ]∗

q∗−→ [Mn−1, Y ]∗
ϕ∗−→ [Sn−1, Y ]∗.

By Theorem 2.40, the group πn(Y ) induces an action on [M,Y ], and the orbit of
f ∈ [M,Y ] under this action is the preimage (q∗)−1(q∗f). We can use this action to
obtain homotopy equivalences between the path components of Map∗(M,Y ), which in
turn gives equivalences between classifying spaces of the gauge groups and between gauge
groups.

Theorem 4.19. Let M be an n-dimensional closed manifold and Y a connected CW -
complex. Given a map f : M → Y there is a homotopy equivalence

Map∗f (M,Y ) ' Map∗f ·α(M,Y )

where α ∈ πn(Y ) and f · α is the image of the action of α on f .
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Proof. The proof is similar to that of Proposition 4.18. Given a map f : M → Y and γ
a representative of the class α ∈ πn(Y ), we define Θγ : Map∗f (M,Y ) → Map∗f ·α(M,Y )

by the composite

Θγ(g) : M
ψ0
// Sn ∨M γ∨g

// Y ∨ Y ∇ // Y

where ψ0 is the coaction of Sn onto M . It is not hard to see that the map Θγ̃ , where γ̃
is a representative of −α ∈ πn(Y ), is a homotopy inverse of Θγ .

Now if Y = BG, then from Theorem 4.19 we obtain results on the homotopy types of
the classifying spaces of gauge groups of principal G-bundles over M .

Corollary 4.20. Let Pf → M be a principal G-bundle over an n-dimensional closed
manifold with classifying map f ∈ [M,BG]. Then

BG∗f (M) ' BG∗f ·α(M).

Moreover, if the map δ∗ is a surjection then

BG∗f (M) ' BG∗0(M)

for any f ∈ [M,BG].

It is clear that statements above can be extended to any finite n-dimensional CW -
complex with one n-cell. In the case of the unpointed classifying spaces of the gauge
groups, BGf (M) ' Mapf (M,BG), the answer on the homotopy types might be different
in general. Masbaum [Mas91] showed that when M = S4 and G = SU(2) the number
of homotopy types of spaces BGf (M) is infinite. Kono and Tsukuda [KT00] found
similar results for the path components of Map(M,BSU(2)) for M a simply connected
4-manifold.

In contrast to the results obtained on the number of homotopy types of unpointed classi-
fying spaces of gauge groups, Crabb and Sutherland [CS00] proved that there are finitely
many homotopy types of gauge groups even when the number of isomorphism classes of
bundles is countable. If the number of isomorphism classes of principal G bundles over a
closed simply connected manifold is finite, it is clear that the number of homotopy types
of the gauge groups is also finite. It is expected that the homotopy types of gauge groups
depend on the properties of the connecting map ∂ in the evaluation fibration

G
∂f
//Map∗f (ΣY,BG) //Mapf (B,BG). (4.4.6)

In [Lan73] Lang showed that if B = ΣY , then the adjoint of the connecting map ∂ in
the fibration (4.4.6) is a Whitehead product. Notice that if B = ΣY then the pointed
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exponential law and Proposition 4.12 imply that there is a homotopy equivalence

Map∗(ΣY,BG) ' Map∗(Y,G).

We restate the result of Lang in terms of Samelson products.

Lemma 4.21. The adjoint G ∧ Y → G of the composite

G
∂f−→ Map∗f (Y,G)

'−→ Map∗0(Y,G)

is homotopic to the Samelson product 〈1G, f〉.

We present some results on the classification of gauge groups of principal G-bundles over
S4. We start by recalling the seminal work of Kono on the SU(2)-gauge groups over S4

[Kon91], proved in a slightly different manner.

The principal SU(2)-bundles over S4 are classified by the set [S4, BSU(2)]. Since we
can identify SU(2) with S3 we get [S4, BSU(2)] ∼= π4(BS3) ∼= π3(S3) ∼= Z. Let Pk → S4

be the principal G-bundle classified by k ∈ Z and Gk its gauge group. We will use the
notation

Lk = Map∗k(S
4, BSU(2))

for the component of L = Map∗(S4, BSU(2)) classified by k ∈ Z. From the evaluation
fibration we obtain a homotopy fibration sequence

Gk → SU(2)
∂k−→ Lk → BGk → BSU(2), (4.4.7)

where the gauge group Gk appears as the homotopy fibre of the map ∂k. Notice that
∂k ∈ [SU(2), Lk] = [S3, Lkπ3(Lk) ∼= π3(L0), where the isomorphism is a consequence of
the fact that L0 ' Lk (see Proposition 4.18).

Lemma 4.22. Let X be an H-space such that πk(X) is finite for all k ≥ 0. Then there
exists a homotopy equivalence

X →
∏
p

X(p).

Proof. As X is an H-space then π1(X) is abelian. Then for each prime p, we consider
the localisation φip : X → X(p). By Theorem 3.19 there is a homotopy pullback square

X //

��

∏
p
X(p)

��

X(0)
// (
∏
p
X(p))(0)

(4.4.8)
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By hypothesis πk(X) is finite for all k ≥ 0. Thus πk(X(0)) ∼= πk(X)(0) = 0, for all k ≥ 0.
Therefore X(0) and (

∏
pX(p))(0) are contractible. Hence using this fact in (4.4.8) we

obtain the homotopy equivalence as required.

Given a map h : X → Y, let Fh denote its homotopy fibre. Let ε : S3 → L be a map
that generates π3(L) = π3(Ω4BS3) ∼= π6(S3) ∼= Z12.

Lemma 4.23. Fnε ' Fmε if and only if (12, n) = (12,m).

Proof. There is an isomorphism

πk(L) ∼= πk+3(S3)

for any k ≥ 1. Therefore, as all homotopy groups of L are finite and L is an H-space, by
Lemma 4.22 there is a homotopy equivalence

θ : L→
∏
p

L(p). (4.4.9)

As π3(L) ∼= Z12 we have

π3(L) ∼= π3

L(2) × L(3) ×
∏

p/∈{2,3}

L(p)


∼= π3(L(2))⊕ π3(L(3))⊕ π3

 ∏
p/∈{2,3}

L(p)

 ∼= Z4 ⊕ Z3.

Thus the map θ induces an isomorphism

θ∗ : π3(L)→ Z4 ⊕ Z3

by sending ε to (1, 1).

Let i : L → L and i(p) : L(p) → L(p) (for p = 2, 3) be homotopy equivalences defined by
the rule x 7→ x−1. Using the maps i(p) we define

µ̃2 = i(2) × 1 : L(2) ×
∏
p6=2

L(p) → L(2) ×
∏
p 6=2

L(p), (4.4.10)

µ̃3 = i(3) × 1 : L(3) ×
∏
p6=3

L(p) → L(3) ×
∏
p 6=3

L(p). (4.4.11)

These maps are homotopy equivalences and induce isomorphisms i∗, µ∗p : π3(L)→ π3(L)

(for p = 2, 3), where µp = θ−1 ◦ µ̃p ◦ θ. Thus we obtain:

i∗(ε) = −ε = 11ε,
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µ∗2(ε) = (θ∗)−1((−1, 1)) = 7ε,

µ∗3(ε) = (θ∗)−1((1,−1)) = 5ε.

We computed the images of the above isomorphism for 0 ≤ n < 12. The results are
shown in the next table. In particular, this shows that two elements nε and mε such that
(12, n) = (12,m) can be obtained from one another through some of the isomorphisms
i∗, µ∗2 or µ∗3.

(12, n) n with 0 ≤ n < 12 nε

1 1, 5, 7, 11 ε, 5ε = µ∗3(ε), 7ε = µ∗2(ε), 11ε = i∗(ε)

2 2, 10 2ε, 10ε = i∗(2ε)

3 3, 9 3ε, 9ε = i∗(3ε)

4 4, 8 4ε, 8ε = i∗(4ε)

6 6 6ε

12 0 0

Thus if (12,m) = (12, n) then there are homotopy commutative diagrams:

Fnε //

γ

��

SU(2)
nε // L

h

��

Fmε // SU(2)
mε // L

(4.4.12)

where h is one of homotopy equivalences i, µ2, µ3.

Finally, from the long exact sequence

· · · // π3(SU(2))
nε // π3(L) // π2(Fnε) // π2(SU(2)),

if Fnε ' Fmε, then the orders of nε and mε coincide, that is, 12/(12, n) = 12/(12,m).

Let Gk denote the gauge group of the principal SU(2)-bundle with classifying map
k ∈ π3(SU(2)).

Theorem 4.24. Gk is homotopy equivalent to Gk′ if and only if (12, k) = (12, k′).

Proof. Gk is the homotopy fibre of the connecting map ∂k in

SU(2)
∂k−→ Ω3SU(2)→ Mapk(S

3, BSU(2)). (4.4.13)

Identify SU(2) with S3 in (4.4.13). Thus by Lemma 4.21, the map ∂k is homotopic to
〈ι, kι〉 ∈ [S3 ∧ S3, S3], where the map ι = 1S3 : S3 → S3 is a generator of π3(S3). The
Samelson product is bilinear so that 〈ι, kι〉 ' k ◦ 〈ι, ι〉. In [Sam54] it is shown that the
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Samelson product 〈ι, ι〉 is a generator of π6(S3) ∼= Z12. Thus ε = 〈ι, ι〉 and the result
follows from this fact and Lemma 4.23.

In [Ter05] Terzić studied the rational homotopy types of gauge groups and classifying
spaces of principal G-bundles over simply connected 4-manifolds, with G a compact
simply connected semi-simple Lie group. We present some results of this work.

Let M be a simply connected 4-manifold and G be a compact simply connected simple
Lie group. There exists a 7-equivalence θ : BG→ K(Z, 4) (See Proposition 2.1 [Kaj06]).
Thus for any space X of dimension n ≤ 6 we have [X,BG] = [X,K(Z, 4)]. In par-
ticular, if X = M then [M,BG] = H4(M). As M is simply connected then it is
orientable. Hence by Poincaré duality we have that H4(M) = Z. Therefore we have
PrinG(M) = H4(M) = Z. The element k ∈ H4(M) = Z that classifies the bundle
Pk → M is known as the Chern class of the bundle. Giving a cellular structure to M ,
the attaching map of the top cell induces the following exact sequence

S3 ϕ
//M2 i //M

δ // S4 Σϕ
// ΣM2. (4.4.14)

From Table A.1 we have π4(BG) ∼= π3(G) ∼= Z for all G. From (4.4.14) there is an action
of π4(BG) onto [M,BG]. The induced map δ∗ is trivial and by Corollary 4.20 we have
homotopy equivalences

BG∗k(M) ' BG∗0(M)

for all k ∈ Z. This implies G∗k(M) ' G∗0(M) for all k ∈ Z. By Proposition 4.15 we have
that G∗0(M) ' Map∗(M,G). Recall that there is a fibration sequence

G∗0(B) // G0(B) // G (4.4.15)

From the exact sequence induced by (4.4.14) after applying the functor [−, G], and
the fibration in (4.4.15), Terzić obtained information on the rational homotopy groups
πj(G0(M))⊗Q of the gauge groups when G is a semisimple Lie group. For the following
theorem we set πj(G0(M)) := πj(G0(M))⊗Q.

Theorem 4.25. Let rk(G) denote the rank of the group G and let bn(M) be the n-th
Betti number of M .

(1) The ranks of the rational homotopy groups of G∗0(M) are given by

rk(πj(G∗0(M))) = b2(M) rk(πj+2(G)) + rk(πj+4(G)), j ∈ N.

(2) The ranks of the homotopy groups of the group G(M) are given by

rk(πj(G0(M))) = b2(M) rk(πj+2(G)) + rk(πj+4(G)) + rk(πj(G)), j ∈ N.
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Proof. See Proposition 1 and Proposition 2 in [Ter05].

Studying the integral homotopy theory of path components and gauge groups is a com-
plicated task in many cases. An intermediate step between the integral and the rational
homotopy theories is studying the p-local homotopy theory of these mapping spaces one
prime at a time. There is a general result proved by Theriault that can be used to get
information on the p-local homotopy types of the gauge groups. Let Y be an H-space
with a homotopy inverse, let k : Y → Y be the k-th power map, and let Fk be the
homotopy fibre of the map k ◦ f , where f : X → Y is a map of finite order m.

Lemma 4.26. Let X be a space and Y be an H-space with a homotopy inverse. Suppose
there is a map X

f→ Y of finite order m. If (m, k) = (m, k′) then Fk and Fk′ are
homotopy equivalent when localised rationally or at any prime.

Proof. See [The10a, Lemma 3.1].

4.5 Gauge groups over high dimensional manifolds

The homotopy theory of gauge groups of principal G-bundles P p−→M when M is a low
dimensional manifold has been widely studied in homotopy theory due to the connections
to other areas in mathematics. In the last decade new formulations of gauge theories
have been developed which include high dimensional manifolds with special geometric
structures. In [DT98] Donaldson and Thomas exposed some ideas to construct gauge
theories in higher dimensions. These ideas were formalised later on in [DS11] and partic-
ular attention was paid in the case where dimM ∈ {6, 7, 8}. Literature on gauge theories
for high dimensional manifolds has increased considerably in recent years.

The case when M is a 7-dimensional manifold has received attention in both differential
geometry and mathematical physics alike, and currently we can find a good amount of
literature for this particular case (see for instance [LL09, Wal13, SEW15]). The manifolds
that present the required geometric properties are called G2-manifolds. Examples of
constructions of this kind of manifolds can be found in [CHNP15], where it is showed
that there are G2-manifolds M such that

M = S3 ×l S4]k(S3 × S4),

where S3 ×l S4 denotes one of the manifolds Ml,m such that l 6= 0 (mod 1)2 and ]k is
the connected sum of k copies of the trivial sphere bundle S3 × S4.

In homotopy theory, the study of gauge groups over high dimensional manifolds is almost
unexplored. There are, however, some results when M is a high dimensional sphere and
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G is either SU(n) or Sp(2). In the case of G = SU(n), the principal G-bundles over Sn

are classified by elements of πn−1(G). These results are stated below.

Theorem 4.27. For n ∈ {7, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25}, there is a unique homotopy
type of the gauge groups of all the principal SU(2)-bundles over Sn, and it is the one of
the trivial bundle, namely,

Map(Sn, S3) ' Ωn
0S

3 × S3.

Proof. See [CS09] Proposition 2.

Theorem 4.28. Denote by ε a generator of π6(BSU(3)) and by Gk(S6) the gauge group
of the principal SU(3)-bundle over S6 classified by kε. Then Gk ' Gk′ if and only if
(120, k) = (120, k′).

Proof. See [HK07] Theorem 1.1.

Hamanaka, Kaji and Kono obtained a homotopy classification of the gauge groups of
principal Sp(2)-bundles over S8.

Theorem 4.29. Denote by ε′7 a generator of π7(Sp(2)) ∼= Z and by Gk the gauge group
of principal Sp(2)-bundle over S8 classified by kε′7 (k ∈ Z). Then Gk ' Gk′) if and only
if (140, k) = (140, k′), where (a, b) denotes the GCD of a and b.

Proof. See [HKK08] Theorem 1.



Chapter 5

Results for S3-bundles over S4

This chapter presents the main results on homotopy decomposition of gauge groups
over principal G-bundles. We consider the space Map∗(M,BG) for a simply connected
simple compact Lie group G and a total space M of an S3-bundle over S4. In Section
5.1 we describe the set PrinG(M) in the case π6(G) ∼= 0 (Proposition 5.6). We give a
homotopy decomposition of pointed and unpointed gauge groups of principal G-bundles
over M with π6(G) ∼= 0, when M has torsion-free homology (Section 5.2, Theorems 5.9
and 5.10) and whenM has torsion in homology (Section 5.3, Theorems 5.14 and 5.15). In
Section 5.4 we describe homotopy equivalences between unpointed gauge groups over S7

(Theorem 5.17). Throughout this chapter we assume that all spaces have the homotopy
type of CW complexes with a non-degenerate basepoint and finitely many cells in each
dimension.

5.1 Classification of principal G-bundles

Recall that, for given spaces X and Y, we denote by [X,Y ] = π0(Map(X,Y )) and [X,Y ]∗

the sets of homotopy classes of unpointed and pointed maps from X to Y , respectively.
Given a map f : X → Y , we denote its homotopy class by the same letter f . The
finite cyclic group of n elements is denoted Zn. The localisation of Z at a prime p is
denoted Z(p).

Let M be the total space of an S3-bundle over S4,

S3 →M
π−→ S3.

By Proposition 3.44, the spacesM are classified by elements lρ+mσ ∈ π3(SO(4)) ∼= Z×Z,
where ρ, σ are generators of π3(SO(4)) which form a basis. Let M = Ml,m be the
S3-bundle over S4 classified by lρ+mσ ∈ π3(SO(4)). We want to classify, up to bundle

65
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isomorphism, the principal G-bundles over manifolds Ml,m, with G a simply connected
simple compact Lie group.

Given a compact topological space X and a topological group G, there is a one-to-one
correspondence between PrinG(X) and [X,BG], where BG is the classifying space of G
(see Corollary 4.11). The evaluation fibration

Map∗(Ml,m, BG)→ Map(Ml,m, BG)
ev−→ BG

induces an exact sequence of homotopy sets

π1(BG)
∂−→ [Ml,m, BG]∗ → [Ml,m, BG]

ev∗−−→ π0(BG).

The induced map ev∗ is trivial as BG is connected, and the coset space of ∂(π1(BG))

coincides with the orbit space of the action of π1(BG) ∼= π0(G) on [Ml,m, BG]∗. Since
all groups G considered in this work are connected, this action is trivial, therefore we
have [Ml,m, BG]∗ ∼= [Ml,m, BG]. Hence from now on we will drop the star symbol of
[Ml,m, BG]∗.

In order to compute the sets [Ml,m, BG] we make use of cofibration sequences where the
spaces Ml,m and ΣMl,m are involved. In Chapter 3 we have described the topology of
the spaces Ml,m. We will recall some information on the structure of the spaces Ml,m to
obtain results on the suspensions ΣMl,m.

There are homeomorphisms [Ste51] Ml,m
∼= M−l,−m and Ml,m

∼= Ml+m,−m so that we
will only consider the case m ≥ 0. Since any space Ml,m is a simply connected manifold,
we can give a minimal cellular structure by e3 ∪ϕ′ e4 ∪ϕ e7, where ϕ′ and ϕ are the
attaching maps of the 4-cell and the 7-cells respectively. The 4-skeleton M4

l,m is given by
the pushout

S3 //

ϕ′

��

D4

��

S3 // S3 ∪ϕ′ D4 ∼= M4
l,m

(5.1.1)

From the discussion of Section 3.5, the map ϕ′ is a degree m map, where m is the index
in Ml,m.

Lemma 5.1. The map π∗ : H4(S4) → H4(Ml,m) induced by the projection map is an
isomorphism if m = 0, reduction mod m if m > 0 and, in particular, the constant map
if m = 1.

Proof. Consider the Serre spectral sequence of the sphere bundle

S3 //Ml,m
π // S4
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which converges toH∗(Ml,m), and let y3 and x4 be suitable generators ofH3(S3) ∼= Z and
H4(S4) ∼= Z respectively. Then the Ep,q2 page in the spectral sequence has the following
form

3 y3 y3x4

0 1 x4

0 4

Thus we have that Ep,q2 = Ep,q4 = Hp(S3)⊗Hq(S4), and for dimensional reasons there is
at most one non-trivial differential, namely d4(y3) = mx4. This implies the result.

If m = 0, then M4 ' S3 ∨ S4. Therefore

Ml,0 ' (S3 ∨ S4) ∪ϕ e7,

for ϕ ∈ π6(S3 ∨ S4).

All the sphere bundles Ml,0
π−→ S4 admit cross sections. In this case the exact sequences

of the fibre bundles show that the homotopy groups of the manifoldsMl,0 are isomorphic
to those of the total space of the trivial bundle S3 × S4. The homology groups of Ml,0

are also isomorphic to the ones of the trivial bundle:

Hi(Ml,0) ∼=

Z if i = 0, 3, 4, 7,

0 otherwise.

In [JW54] James and Whitehead classified the manifolds Ml,0 up to homotopy equival-
ence. Theorem 3.45 states that Ml,0 'Ml′,0 if and only if l ≡ ±l′ (mod 12).

If m > 0, then the 4-skeleton M4
l,m is the Moore space P 4(m). In [CE03] Crowley and

Escher classified the homotopy types of manifolds Ml,m for m > 0. They showed that
there is an orientation preserving homotopy equivalence Ml,m ' Ml′,m′ if and only if
m = m′ and l′ ≡ αl (mod (m, 12)) where α2 ≡ 1 (mod (m, 12)) (see Theorem 3.48). In
the case m = 1 we have P 4(1) ' ∗, and from Theorem 3.48 we have

Ml,1 ' S7

for all l ∈ Z. The homology groups of the manifolds Ml,m for m ≥ 1 are

Hi(Ml,m) =


Zm if i = 3,

Z if i = 0, 7,

0 otherwise.
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Thus given Ml,m and Ml,m′ , if m 6= m′ then π3(Ml,m) � π3(Ml,m′), and therefore these
spaces are not homotopy equivalent. A minimal cellular structure for Ml,m is given by

Ml,m ' P 4(m) ∪ϕ e7,

for some ϕ ∈ π6(P 4(m)). As π : Ml,m → S4 is a fibre bundle where the base space
is simply connected, we can use the Serre spectral sequence to obtain information on
the properties of the projection maps. Now we prove a general statement regarding the
suspension of the total spaces of Sn−1-bundles over Sn.

Lemma 5.2. Let π : X → Sn be an Sn−1-bundle over Sn, n ≥ 3, with a cross section.
Then Xn ' Sn−1 ∨ Sn and there is a homotopy equivalence

ΣX ' ΣY ∨ Sn+1,

where Y is the homotopy cofibre of the composite S2n−2 ϕ−→ Sn−1 ∨ Sn p1−→ Sn−1. Here
the map ϕ : S2n−2 → Sn−1 ∨ Sn is the attaching map of the top cell of X, and the map
p1 : Sn−1 ∨ Sn → Sn−1 is the projection onto the first component.

Proof. The manifoldX is homotopy equivalent to a CW -complexXCWwith the following
cellular structure

X ' XCW = en−1 ∪ en ∪ϕ e2n−1.

Where ϕ is the attaching map of the top cell. Set X = XCW . Let Xn be the n-skeleton
of X. There is a homotopy commutative diagram

Sn−1 � � // Xn q
//� _

��

Sn

Sn−1 � � // X
π // Sn

(5.1.2)

where the top row is the cofibration sequence induced by the inclusion of the bottom cell
into the n-skeleton, the bottom row is the fibration sequence of the sphere bundle, and
q is the quotient map. Since Xn = X2n−2 by connectivity, the map q also has a right
homotopy inverse, implying that there is a homotopy equivalence Xn ' Sn−1 ∨ Sn.

Now consider the cofibration sequence induced by S2n−2 ϕ−→ Sn ∨ Sn−1:

S2n−2 ϕ
// Sn−1 ∨ Sn i // X

ρ
// S2n−1 Σϕ

// Sn ∨ Sn+1 Σi // ΣX, (5.1.3)

where i is the inclusion and ρ is the pinch map to the (2n−1)-cell. By the Hilton-Milnor
Theorem [Hil55, Mil72] there is an isomorphism

π2n−2(Sn−1 ∨ Sn) ∼= π2n−2(S2n−2)× π2n−2(Sn)× π2n−2(Sn−1).
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With this decomposition, the element [ιn−1, ιn] ∈ π2n−2(Sn−1∨Sn), where ιn−1 ' 1Sn−1

and ιn ' 1Sn , factors through a generator of π2n−2(S2n−2). For any α ∈ π2n−2(Sn−1) and
β ∈ π2n−2(Sn), let α and β be the elements of π2n−2(Sn−1 ∨ Sn) which are represented
by the maps

α : S2n−2 α→ Sn−1 ↪→ Sn−1 ∨ Sn

and
β : S2n−2 β→ Sn ↪→ Sn−1 ∨ Sn.

In this way any ϕ ∈ π2n−2(Sn−1 ∨ Sn) can be expressed as

ϕ = t[ιn−1, ιn] + α+ β (5.1.4)

for some t ∈ Z.

Consider the diagram

S2n−2 ϕ
//

β
&&

Sn ∨ Sn−1 i //

p1
��

X

π
��

Sn Sn

The triangle homotopy commutes by definition of ϕ and β, and the square homotopy
commutes by the commutativity of right square in (5.1.2). Thus β ' π ◦ i ◦ ϕ, but
i ◦ ϕ is nullhomotopic since i and ϕ are consecutive maps in a cofibration. Hence β is
nullhomotopic and therefore so is β. Hence (5.1.4) is reduced to

ϕ = t[ιn−1, ιn] + α.

After suspension we have Σϕ = Σα since Σ[ιn−1, ιn] ' ∗. Let Y be the homotopy cofibre
of the map α : S2n−2 → Sn−1. Thus if Σα ' ∗ then Σϕ ' ∗. Therefore the map Σi in
(5.1.3) has a left homotopy inverse, and ΣX ' S2n ∨ Sn ∨ Sn+1. If instead Σα is not
nullhomotopic, then Σϕ 6' ∗. Consider the following part of the homotopy cofibration
sequence (5.1.3)

S2n−1 Σϕ
// Sn+1 ∨ Sn Σi // ΣX.

Thus Σϕ = Σα = j ◦ Σα, where j : Sn −→ Sn ∨ Sn+1 is the inclusion into the
wedge. Therefore ΣX ' ΣY ∨ Sn+1, where Y is defined by the cofibration sequence
S2n−2 α−→ Sn−1 −→ Y for α ∈ π2n−2(Sn−1).

Proposition 5.3. Let Ml,m be the total space of an S3-bundle over S4 classified by an
element lρ + mσ ∈ π3(SO(4)) ∼= Z ⊕ Z. Suppose Ml,m has cross sections. There is a
homotopy equivalence

ΣMl,m ' ΣYl ∨ S5,
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where Yl is the homotopy cofibre of the composite S6 ϕ−→ S3 ∨ S4 p1−→ S3. Moreover
ΣMl,m ' ΣMl′,m if and only if l′ ≡ ±l (mod 12). In particular, if l ≡ 0 (mod 12), there
is a homotopy equivalence

ΣMl,m ' S8 ∨ S4 ∨ S5.

Proof. Let Ml,m be an S3-bundle with cross sections. This manifold satisfies the condi-
tions of Lemma 5.2. Thus there is a homotopy equivalence

ΣMl,m ' ΣYl,m ∨ S5, (5.1.5)

where Yl,m is the homotopy cofibre of the composite S6 ϕ−→ S3 ∨ S4 p1−→ S3. Recall that
all manifolds Ml,m with cross sections satisfy m = 0. Thus the homotopy type of ΣMl,m

and therefore, that of the space Yl,m, only depends on the integer l. Set Yl := Yl,m. Let
ν ′ be a generator of π6(S3) ∼= Z12 [Tod63]. We can write the attaching map of the top
cell as

ϕ = [ι3, ι4] + tlν
′,

where ιi ' 1Si , for i = 3, 4 and tlν ′ ∈ π6(S3 ∨ S4) for some tl ∈ Z12 such that the map
sending l to tl is a surjective homomorphism, namely, the J-homomorphism [JW54].
After suspension we have Σϕ ' tlΣν ′. The homotopy equivalence shows that the homo-
topy type of ΣMl,m only depends on ΣYl, which is homotopy equivalent to a CW -complex
obtained by attaching an 8-cell to S4 via the map tlΣν ′ ∈ π7(S4) = Z⊕Z12. It is known
that the element Σν ′ generates a subgroup of order 12 in π7(S4) [Tod63]. Observe that
two spaces ΣYl, ΣYl′ are homotopy equivalent if and only if there is a homotopy equi-
valence θ : S4 → S4 such that

θ∗(tlΣν
′) = tl′Σν

′,

where θ∗ is the automorphism of π7(S4) induced by θ. Thus we need to compute the set
of classes of self equivalences of S4. Since [S4, S4] = π4(S4) ∼= Z, there are two classes of
self-equivalences, namely, ±1S4 . Since, tl, tl′ ∈ Z12, we have that ΣYl ' ΣYl′ if and only
if l′ ≡ ±l (mod 12). In particular, when Ml,0 is the product bundle we have that l = 0

and Σϕ ' ∗. This implies that ΣMl,m ' S8 ∨ S5 ∨ S4 if and only if l ≡ 0 (mod 12).

In order to obtain results on the gauge groups over manifoldsMl,m with torsion in homo-
logy we will require localisation at a prime p ≥ 5. The cofibration Sn m−→ Sn → Pn+1(m)

induces a fibration

Map∗(Pn+1(m), BG)→ Map∗(Sn, BG)
m∗→ Map∗(Sn, BG),

wherem∗ is them-th power map. Let ΩnBG{m} denote the space Map∗(Pn+1(m), BG).
Let vp(m) be the p-adic valuation of m at p.
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Proposition 5.4. Let Ml,m be the total space of an S3-bundle over S4 with m > 1.
Localised at p ≥ 5 there exists a local homotopy equivalence

ΣMl,m ' P 5(pr) ∨ S8,

where r = vp(m).

Proof. There exists a cofibration sequence

S6 ϕ
// P 4(m)

i //Ml,m
ρ
// S7 Σϕ

// P 5(m)
Σi // ΣMl,m, (5.1.6)

where ϕ is the attaching map of the top cell, i is the inclusion and ρ is the pinch map.
Now suppose that all spaces are localised at a prime p ≥ 5 with r = vp(m). Consider
the cofibration sequence

S3 m // S3 q
// P 4(m). (5.1.7)

We will split the argument into two cases: r = 0 and r ≥ 1.

If r = 0 then the degree map m is invertible in Z(p), so the map m is a homotopy equival-
ence in the cofibration sequence (5.1.7), and therefore P 4(m) ' ∗. From (5.1.6) we can see
that the attaching map ϕ is nullhomotopic and therefore Ml,m ' S7. Moreover, we can
write P 5(1) = P 5(p0) ' ∗. Hence there is a homotopy equivalence ΣMl,m ' P 5(pr)∨S8

for r = 0.

If r ≥ 1 then the degree map m is not invertible. Localising at p we obtain

π3(P 4(m)) ∼= Zm ⊗ Z(p)
∼= Zpr .

As P 4(m) is 2-connected,

π3(P 4(m)) ∼= H3(P 4(m);Z(p)) ∼= Zpr ,

and this is the only non-zero homology group of P 4(m). Therefore P 4(m) ' P 4(pr). In
[Sas65] Sasao computed the homotopy group π6(P 4(m)). He showed that

π6(P 4(m)) ∼=


Z(m,12) ⊕ Zm if v2(m) = 0,

Z(m,12)/2 ⊕ Z2m ⊕ Z2 if 1 ≤ v2(m) ≤ 2,

Z(m,12) ⊕ Zm ⊕ Z2 if v2(m) ≥ 3.

In all cases, localising at p ≥ 5 we obtain

π6(P 4(m)) ∼= Zpr .

We now give an alternative construction of a generator of π6(P 4(m)) to that given by
Sasao using localisation at a prime p ≥ 5. Let σ̄ ∈ π6(P 4(m)) ∼= Zpr be a generator. We
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can write the attaching map of the top cell as ϕ = t · σ̄ with t ∈ Zpr . Notice that if
Σϕ ' ∗ then Σi has a left homotopy inverse, implying ΣMl,m ' P 4(pr) ∨ S8. We claim
that the generator σ̄ suspends trivially.

Let ν : P 4(pr) → P 4(pr) be the identity map. Since ν is a suspension there is a
Whitehead product [ν, ν] : ΣP 3(pr) ∧ P 3(pr) → P 4(pr). By Proposition 3.21 there is a
p-local homotopy equivalence

ΣP 3(pr) ∧ P 3(pr) ' P 7(pr) ∨ P 6(pr).

This homotopy equivalence precomposed with the inclusion of P 7(pr) into the wedge
determines a map [̂ν, ν] : P 7(pr) → P 4(pr). By Proposition 3.22 there is a p-local
homotopy equivalence

φ : S3{pr} × ΩA → ΩP 4(pr) (5.1.8)

where A =
∨∞
k=0 P

4+2k+3(pr) and Sn{pr} denotes the homotopy fibre of the degree map
pr : Sn → Sn. Using (5.1.8) we get

π6(P 4(pr)) ∼= π5(ΩP 4(pr)) ∼= π5(S3{pr})⊕ π5(ΩA).

Notice that there is a homotopy fibration given by

ΩS3 −→ S3{pr} −→ S3.

As 2 and 3 are inverted we have π5(S3) = 0 and π5(ΩS3) ∼= π6(S3) = 0 and therefore
we obtain π5(S3{pr}) = 0. Now π5(ΩA) ∼= π6(A) ∼= π6(P 7(pr)) ∼= Zpr , where the last
two isomorphisms are given by the high connectivity of the factors in the wedge defining
A and the Hurewicz isomorphism, respectively. Thus a generator σ̄ of π6(P 4(pr)) is
represented by the map

σ̄ : S6 ↪→ P 7(pr)
[̂ν,ν]−→ P 4(pr).

Since [̂ν, ν] factors through the Whitehead product [ν, ν], which suspends trivially, we
obtain Σσ̄ ' ∗, as claimed.

We now start computing the set of principal G-bundles over spaces Ml,m. In order to
proceed with the classification of the principal G-bundles and the homotopy decomposi-
tion of the gauge groups, it will be necessary to study the cofibration sequence associated
to the inclusion i : S3 →Ml,m

S3 i //Ml,m
// Cl,m(i)

δ // S4, (5.1.9)

where Cl,m(i) is the homotopy cofibre of i, q is the pinch map and δ is the connecting
map.



Chapter 5 Results for S3-bundles over S4 73

Lemma 5.5. Form 6= 1, the projection π : Ml,m → S4 extends to a map π̃ : Cl,m(i)→ S4

such that the composite S4 ↪→ Cl,m(i)
π̃→ S4 is a homotopy equivalence. Moreover,

Cl,m(i) ' S4 ∨ S7.

Proof. Consider the following diagram

S3 i //Ml,m
q
//

π
��

Cl,m(i)

π̃
zz

// S4

S4.

(5.1.10)

Since π3(S4) = 0, there is an extension π̃ : Cl,m(i)→ S4. Notice that the cofibre Cl,m(i)

can be built as a CW -complex with one 7-cell attached to a 4-sphere. Thus Cl,m(i) fits
into the following cofibration sequence

S6 θ // S4 g
// Cl,m(i), (5.1.11)

with g the inclusion and θ ∈ π6(S4) ∼= Z2.

Suppose first m = 0. Then the map π : Ml,0 → S4 has a cross section S4 → Ml,0. The
homotopy commutativity of (5.1.10) implies that the map π̃ also has a right homotopy
inverse. Therefore the composite π̃ ◦ g is a homotopy equivalence, as claimed.

Now suppose m > 1. The map S4 g→ Cl,m(i) is the inclusion of the bottom cell and
induces an isomorphism g∗ : H4(Cl,m(i))

∼=−→ H4(S4) ∼= Z. Consider the commutative
diagram:

H4(Ml,m) H4(Cl,m(i)).
q∗
oo

H4(S4)

π∗

OO

π̃∗

77
(5.1.12)

By Lemma 5.1, π∗ is reduction mod m. From (5.1.12) we obtain the following composite

π∗ : Z π̃∗ // Z q∗
// Zm,

which is reduction mod m. Thus π̃∗ = ±1 (mod m). Consider the homotopy commut-
ative diagram

S3 m //

ξ

��

S3 // P 4(m)
q′
//

i

��

S4

π′

��

ΩS4 δ // S3 //Ml,m
π // S4

(5.1.13)

where the top row is a cofibration sequence and the bottom row is a fibration sequence.
We can apply the cohomology functor to the bottom row fibration producing an exact
sequence in low degrees. This shows that the connecting map δ induces multiplication
by m. From the left square we obtain that ξ is a degree one map, as it is the inclusion
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of the bottom cell. By the Peterson-Stein formula the adjoint of the map ξ is homotopic
to π′. Therefore π′ is a homotopy equivalence.

Notice that in cohomology q∗ ◦ π̃∗ = (π′ ◦ q′)∗. Therefore π̃∗ is an isomorphism and the
map π̃ ◦ g is a homotopy equivalence as required.

Finally, as π̃ ◦ g is a homotopy equivalence, the map θ in (5.1.11) is nullhomotopic,
implying that Cl,m(i) ' S4 ∨ S7.

There is a one-to-one correspondence between PrinG(Ml,m) and [Ml,m, BG] (see Co-
rollary 4.11). Let m = 1. From the homotopy classification of Ml,m we know that all
manifolds Ml,1 are homotopy equivalent to S7. Therefore we get

[Ml,1, BG] ∼= [S7, BG] ∼= π7(BG) ∼= π6(G).

The following proposition is a classification of principal G-bundles over spacesMl,m with
m 6= 1 and π6(G) = 0, extending the result for the case m = 1.

Proposition 5.6. Let G be a simply connected simple compact Lie group such that
π6(G) ∼= 0. Then

PrinG(Ml,m) ∼= Zm.

More precisely,

(1) if m = 0 then PrinG(Ml,m) ∼= Z;

(2) if m > 1 then PrinG(Ml,m) ∼= Zm.

Moreover, the projection Ml,m
π→ S4 induces a map

π∗ : [S4, BG]→ [Ml,m, BG]

which is a bijection if m = 0 and a surjection if m > 1.

Proof. By the classification theorem of principal G-bundles there is a one-to-one corres-
pondence between PrinG(Ml,m) and [Ml,m, BG]. Thus we compute the set [Ml,m, BG].

Let f : Ml,m → BG be a map. From Table A.1 we have π3(BG) ∼= π2(G) ∼= 0 for all

simply connected simple compact Lie groups G. Hence the composite S3 ↪→Ml,m
f→ BG

is nullhomotopic. Using Lemma 5.5 to identify the homotopy cofibre of i as S4 ∨ S7,
there is a homotopy commutative diagram

S3 i //Ml,m
q
//

f

��

S4 ∨ S7 δ //

f̃zz

S4 Σi // ΣMl,m

BG

(5.1.14)
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where the top row is a cofibration sequence and f̃ : S4 ∨ S7 → BG is an extension of f .

Let M4
l,m be the 4-skeleton of Ml,m, so that M4

l,m ' S3 ∨ S4 or M4
l,m ' P 4(m). In any

case, M4
l,m is a co-H-space. From the exact sequence induced by the attaching map of

the 4-cell,
S3 m // S3 //M4

l,m
// S4, (5.1.15)

we obtain an exact sequence of groups

[S4, BG]
m∗ // [S4, BG] // [M4

l,m, BG] // 0 (5.1.16)

where π4(BG) ∼= π3(G) ∼= Z (from Table A.1) and m∗ : Z → Z is multiplication by m.
There is a coaction ψ = ψl,m : S4 → S4 ∨S4 associated to the cofibration (5.1.15) which
induces an action of homotopy sets,

ψ∗ : [S4, BG]× [S4, BG]→ [S4, BG].

Exactness of (5.1.16) implies that [M4
l,m, BG] = Zm, and by construction the orbits under

the action ψ∗ are equal to the cosets of the image of m∗. The map S3 i−→ Ml,m factors
through the 4-skeleton M4

l,m. Therefore we have a homotopy commutative diagram

S3 //M4
l,m

//

��

S4 m //

i1

��

S4

S3 i //Ml,m
// S4 ∨ S7 δ // S4

(5.1.17)

where i1 : S4 → S4 ∨ S7 is the inclusion of the first factor into the wedge. Let
ψ′ : S4 ∨ S7 → S4 ∨ S7 ∨ S4 be the coaction of S4 on S4 ∨ S7. From (5.1.17) we
obtain a homotopy commutative diagram as follows

S4 ψ
//

i1
��

S4 ∨ S4

i1∨1
��

S4 ∨ S7 ψ′
// S4 ∨ S7 ∨ S4.

(5.1.18)

Applying the functor [−, BG] we obtain a commutative diagram of homotopy groups

π4(BG)× π7(BG)× π4(BG)
(ψ′)∗

//

i∗1×1
��

π4(BG)× π7(BG)

i∗1
��

π4(BG)× π4(BG)
ψ∗

// π4(BG).

(5.1.19)

By hypothesis π7(BG) ∼= π6(G) = 0, implying that the vertical arrows in (5.1.19) are
isomorphisms. Therefore (ψ′)∗ = ψ∗.
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From (5.1.14) we obtain an exact sequence of homotopy sets

[S4, BG]
δ∗ // [S4 ∨ S7, BG]

q∗
// [Ml,m, BG] // 0

Z Z.

Since the homotopy set [Ml,m, BG] might not be a group we will need to use the action
(ψ′)∗ to compute it. From Theorem 2.40 we have that [Ml,m, BG] is the orbit space
of the action (ψ′)∗ on π4(BG) × π7(BG) ∼= π4(BG). Therefore, since (ψ′)∗ = ψ∗,
[Ml,m, BG] = Z if m = 0, and [Ml,m, BG] = Zm if m > 1.

Finally we analyse the induced map

π∗ : [Ml,m, BG]→ [S4, BG].

By Lemma 5.5, the projection π : Ml,m → S4 extends to a map π̃ : S4∨S7 → S4 so that
the restriction to S4 is the degree 1 map. Since π6(G) = 0,

[S4 ∨ S7, BG] = [S7, BG]× [S4, BG] ∼= π6(G)× [S4, BG] ∼= [S4, BG].

Consider the commutative diagram

[Ml,m, BG] [S4 ∨ S7, BG]
q∗

oo

[S4, BG]

π̃∗

77

π∗

OO
(5.1.20)

where the induced map π̃∗ is an isomorphism. We have already shown that q∗ is an
isomorphism if m = 0 and a surjection if m > 1. Therefore π∗ : [Ml,m, BG]→ [S4, BG]

is an isomorphism if m = 0, and a surjection if m > 1.

Let Σν ′ be the suspension of a generator of π6(S3). Let Yl be the homotopy cofibre of a
map tlΣν ′ ∈ π7(S4).

Lemma 5.7. There is a homotopy commutative diagram

∗ //

��

S7
� _

��

S7

γ

��

// ∗

��

Ml,m
// S4 ∨ S7 δ //

��

S4 //

��

ΣMl,m

Ml,m
π // S4 q

// Cl,m(π) // ΣMl,m

(5.1.21)
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where each row and column is a cofibration sequence. Furthermore the map S4 q−→ Cl,m(π)

is identified with the composite

S4 ∗+γ−−→ S4 ↪→ Cl,m(π)

and there are homotopy equivalences

Cl,m(π) ' ΣYl.

Proof. By Lemma 5.5, there is a homotopy commutative diagram

S3 i //Ml,m
g
// S4 ∨ S7

π̃

��

Ml,m
π // S4

(5.1.22)

where the top row i is the cofibration sequence induced by the inclusion of the bottom
cell and π̃ is the homotopy extension of the projection map π.We can extend the diagram
(5.1.22) to the right to generate the lower part in (5.1.21), where Cl,m(π) is the cofibre of
the map π. The inclusion S7 ↪→ S4 ∨ S7 generates the upper part of the diagram where
γ is homotopic to the restriction of δ to S7. Therefore the whole diagram, where each
column and row is a cofibration, homotopy commutes. From the exact sequence induced
by the middle row

H4(S4)
δ∗ // H4(S4 ∨ S7)

q∗
// H4(Ml,m) // 0

Z Z Zm

(5.1.23)

we conclude that δ restricted to S4 is the degree m map. Suppose m = 0. Using
Proposition 5.3 we obtain a decomposition of the suspension

ΣMl,m ' ΣYl ∨ S5, (5.1.24)

where Yl is the homotopy cofibre of a map tlΣν ′ ∈ π7(S4) and tl depends on l. Since π
has a cross section, so does the map Σπ. Therefore, from the commutative diagram we
have ΣMl,m ' S5 ∨Cl,m(π). Comparing this equivalence with (5.1.24) we conclude that
ΣCl,m(π) ' ΣYl.

5.2 Homotopy decompositions: torsion-free case

Let Map(X,Y ) be the mapping space of continuous maps from X to Y , and denote by
Map∗(X,Y ) the space of pointed maps. Similarly let Mapf (X,Y ) and Map∗f (X,Y ) be
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the path components of the corresponding mapping spaces containing the map f . Let
BGf (X,G) denote the classifying space of Gf (X,G). There are homotopy equivalences
(see Theorem 4.16)

BG∗f (X) ' Mapf (X,BG), (5.2.1)

BGf (X) ' Map∗f (X,BG), (5.2.2)

Recall that for G connected, [X,BG] = π0(Map∗(X,BG)) = π0(Map(X,BG)). By Pro-
position 5.6 if πg(G) ∼= 0 and Ml,m with torsion-free homology and not homotopic to S7,
π : Ml,m → S4 induces a function π∗ : [S4, BG] → [Ml,m, BG] = Z. In order to obtain
homotopy decomposition of the unpointed gauge groups, we have to study the cofibration
and fibration sequences induced by the projection map. Let Ml,m be a manifold such
that m = 0. Notice that there is a one-to-one correspondence

π0(Map∗(S4, BG))→ [Ml,m, BG] (5.2.3)

and the projection map induces homotopy fibrations

F l,0 → Map∗(S4, BG)
π∗−→Map∗(Ml,m, BG),

F l,0k → Map∗k(S
4, BG)

π∗k−→Map∗k(Ml,m, BG),

where π∗k is the restriction to the k-th component and F l,0 and F l,0k are the corresponding
homotopy fibres. Using the bottom row in the commutative diagram of Lemma 5.7 we
obtain the following fibration sequence for the k = 0 case

Map∗(ΣYl, BG)→ Map∗0(S4, BG)
π∗0−→Map∗0(Ml,m, BG),

where we can identify Map∗(ΣYl, BG) ' Map∗(Yl, G). Next we state a general result on
the homotopy types of the spaces F l,0k .

Lemma 5.8. Let F l,0k (π) be the homotopy fibre of π∗k : Map∗k(S
4, BG)→ Map∗k(Ml,m, BG).

There are homotopy equivalences

F l,0k (π) ' Map∗(Yl, G), for all k ∈ Z.

In particular, if l ≡ 0 (mod 12), then F l,0k (π) ' Ω3G× Ω7G.

Proof. The inclusion of the bottom cell into Ml,m induces a fibration sequence

Map∗(S4 ∨ S7, BG)
q∗−→ Map∗(Ml,m, BG)

i∗−→ Map∗(S3, BG) (5.2.4)
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Applying the functor Map∗(−, BG) to the diagram in Lemma 5.7, we can fit the fibration
sequence (5.2.4) into a homotopy commutative diagram

Map∗(ΣYl, BG) //

��

Map∗(S4, BG)
γ∗

//

(m+γ)∗

��

Map∗(S7, BG)

Map∗(S4, BG) //

π∗

��

Map∗(S4 ∨ S7, BG)
p∗2 //

q∗

��

Map∗(S7, BG)

��
Map∗(Ml,m, BG) Map∗(Ml,m, BG)

i∗

��

// ∗

Map∗(S3, BG)

(5.2.5)

where rows and columns are fibrations. Notice that the map q∗ induces bijection between
path components. Identifying Map∗k(S

4 ∨ S7, BG) with Map∗k(S
4, BG)×Map∗(S7, BG)

we see that p∗2 is the projection to the second factor. Restricting the map q∗ to the k-th
component we obtain the following homotopy commutative diagram

Map∗(ΣYl, BG) //

��

Ω4BG
γ∗

//

(θk◦m+γ)∗

��

Ω7BG

Ω4
kBG

π̃ //

π∗

��

Ω4
kBG× Ω7BG

p∗2 //

q∗

��

Ω7BG

��
Map∗k(Ml,m, BG) Map∗k(Ml,m, BG) // ∗

(5.2.6)

where each row and middle and right columns (and therefore the left column) are fibra-
tions. Here the map θk : Ω4

0BG→ Ω4
kBG is the homotopy equivalence defined by

ω 7→ µ ◦ (ω × k0) ◦∆,

where µ is a homotopy multiplication in Ω4BG and k0 is a choice of base point in Ω4
kBG.

Finally we have homotopy equivalences

F l,0k (π) ' Map∗(ΣYl, BG) ' Map∗(Yl,ΩBG) ' Map∗(Yl, G).

If Y is an H-group, or if X is a co-H-group, then all the path components of Map∗(X,Y )

are homotopy equivalent (see Proposition 4.18). Therefore in our case, if Ml,m ' S7,

given k, k′ ∈ [Ml,m, BG], the path components Map∗k(Ml,m, BG) and Map∗k′(Ml,m, BG)

are homotopy equivalent and, as a consequence, so are the pointed gauge groups. In the
case whenMl,m is not homotopy equivalent to S7, it is not known if the path components
of Map∗(Ml,m, BG) have the same homotopy type. We prove a result on the homotopy
types of the pointed gauge groups over manifolds Ml,m with torsion-free homology and
m 6= 1. Let Pk →Ml,m be a principal G-bundle classified by k ∈ Z and let G∗k(Ml,m) be
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its pointed gauge group. Let ν : S6 → S3 be the generator of π6(S3) ∼= Z12 as it is given
in [Tod63]. For l ∈ Z with l 6≡ 0 (mod 12), let Yl be the homotopy cofibre of ξl = lν.

Theorem 5.9. Let G be a simply connected simple compact Lie group with π6(G) ∼= 0.
Let Ml,m be the total space of an S3-bundle over S4 with torsion-free homology not ho-
motopy equivalent to S7. Then there are homotopy equivalences

G∗k(Ml,m) ' Ω4G×Map∗(Yl, G), for all k ∈ Z.

In particular, if l ≡ 0 (mod 12) then there is a homotopy splitting.

G∗k(Ml,0) ' Ω4G× Ω3G× Ω7G.

Proof. LetMl,m be a manifold with torsion-free homology, that ism = 0, and let G∗k(Ml,0)

be the gauge group classified by k ∈ Z. By Lemma 5.8 there is a fibration sequence

Map∗(Yl, G)→ Map∗k(S
4, BG)

π∗k−→Map∗k(Ml,m, BG). (5.2.7)

Extend the fibration sequence to the left. Consider the following part of the fibration

ΩMap∗0(S4, BG) ' ΩMap∗k(S
4, BG)

Ωπ∗k // ΩMap∗k(Ml,m, BG) //Map∗(Yl, G).

(5.2.8)
Since m = 0,Ml,m has cross sections. Let s : Ml,m → S4 be a map such that the diagram

S4 s //Ml,m

π
��

S4

(5.2.9)

commutes. Applying the functor Map∗(−, BG) to the diagram (5.2.9) we obtain the
following homotopy commutative diagram

Map∗(S4, BG) Map∗(Ml,m, BG)
s∗oo

Map∗(S4, BG).

π∗

OO
(5.2.10)

Thus the map Ωs∗ is a homotopy retraction of Ωπ∗, which implies that there is a homo-
topy splitting

ΩMap∗k(Ml,0, BG) ' ΩMap∗0(S4, BG)×Map∗(Yl, G).

We can identify ΩMap∗0(S4, BG) ' Ω4G and G∗k(Ml,m) ' ΩMap∗k(Ml,m, BG). Putting
things together we obtain

G∗k(Ml,0) ' Ω4G×Map∗(Yl, G).
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Finally, note that when l ≡ 0 (mod 12) we have ΣYl ' S4 ∨ S8 and therefore we get

G∗k(Ml,0) ' Ω4G× Ω3G× Ω7G.

We look at the evaluation map to obtain homotopy decomposition of the unpointed gauge
groups. The restriction of evaluation map to the k-th component defines a fibration
sequence

ΩMapk(Ml,m, BG) −→ G
∂k−→ Map∗k(Ml,m, BG) −→ Mapk(Ml,m, BG)

evk−→ BG

(5.2.11)
where ∂k is the connecting map. Thus the gauge group Gk(Ml,m) ' ΩMapk(Ml,m, BG)

appears as the homotopy fibre of the connecting map ∂k. Hence, it is expected that the
properties of ∂k determine the homotopy type of the gauge groups over the manifolds
Ml,m.

By Proposition 5.6, ifm = 0 the projectionMl,m
π−→ S4 induces an bijection between path

components of Map(Ml,m, BG) and those of Map∗(S4, BG). Therefore, the evaluation
map induces a commutative diagram

G
φk //Map∗k(S

4, BG) //

π∗k
��

Mapk(S
4, BG)

evk //

π∗

��

BG

G
∂k //Map∗k(Ml,m, BG) //Mapk(Ml,m, BG)

evk // BG

(5.2.12)

which defines the map φk. We write ΩMapk(S
4, BG) ' Gk(S4), where Gk(S4) is the

gauge group of the principal G-bundle classified by k ∈ π3(G) ∼= Z.

Theorem 5.10. Let G be a simply connected simple compact Lie group with trivial π6(G)

and let Ml,m → S4 be a sphere bundle with cross section. Let Pk → Ml,m be a principal
G-bundle classified by k ∈ Z. There are homotopy decompositions

Gk(Ml,0) ' Gk(S4)×Map∗(Yl, G).

Moreover, if l ≡ 0 (mod 12) there are homotopy equivalences

Gk(Ml,0) ' Gk(S4)× Ω3G× Ω7G.

Proof. We argue along the lines of [The10b]. Consider the restriction of the map
π∗ : Map∗(S4, BG)→ Map∗(Ml,m, BG) to the k-th component. By Lemma 5.8 there is
a fibration sequence

ΩMapk(Ml,m, BG)→ Map∗(Yl, G)→ Map∗k(S
4, BG)

π∗k−→Map∗k(Ml,m, BG). (5.2.13)
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We identify Mapk(Ml,m, BG) ' G∗k(Ml,m). The left square in (5.2.12) along with 5.2.13
induce the following homotopy commutative diagram

∗ //

��

G∗k(Ml,m)

��

G∗k(Ml,m)

δ∗

��

Gk(S4) // Gk(Ml,0)
h //

��

F l,0k (π)

q∗l,0
��

Gk(S4) //

��

G
φk //

∂k

��

Map∗k(S
4, BG)

π∗k
��

∗ //Map∗k(Ml,0, BG) Map∗k(Ml,0, BG)

(5.2.14)

which defines the map h.

By Theorem 5.9 the map δ∗ has a right homotopy inverse which implies that the map h
also has a right homotopy inverse. The group structure on Gk(Ml,0) allows to multiply
to obtain a composite

Gk(S4)×Map∗(ΣYl, BG)→ Gk(Ml,0)× Gk(Ml,0)→ Gk(Ml,0),

which is a homotopy equivalence.

If l ≡ 0 (mod 12) then by Lemma 5.8 we have that ΣYl ' S4 ∨ S8 and therefore
Map∗(ΣYl, BG) ' Ω3G× Ω7G.

Theorem 5.10 implies that the determination of the homotopy type of Gk(Ml,0) is reduced
to determining that of Gk(S4). These gauge groups have been computed for different Lie
groups. For example, from [The15, Theorem 1.1] we obtain the following corollary. Let
(n1, n2) denote the greatest common divisor of n1 and n2, and notice that 120 is divisible
by 16 positive integers.

Corollary 5.11. Suppose M is either S3 × S4 or any twisted product S3×̃lS4. Let
Pk → M and Pk′ → M be principal SU(5)-bundles classified by k, k′ ∈ Z. Then
Gk(M) ' Gk′(M) if and only if (120, k) = (120, k′) when localised rationally or at any
prime p. In particular, there are 16 distinct homotopy types of the groups Gk(M) for
k ∈ Z when localised rationally or at any prime.

5.3 Homotopy decompositions: non torsion-free case

Now we focus on the case of gauge groups of principal G-bundles over manifolds Ml,m

for m > 1, which have homology groups with torsion. We will require that all spaces are
localised at a prime p ≥ 5. The statements and proofs are similar to those obtained in
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the previous section. However, in this case we will obtain results for the loop space of
the gauge group, ΩGk(Ml,m).

Lemma 5.12. There is a homotopy commutative diagram

∗ //

��

S7
� _

��

S7

γ

��

// ∗

��

// S8

��

S8

Σγ
��

Ml,m
g
// S4 ∨ S7 δ //

��

S4 //

��

ΣMl,m
// S5 ∨ S8 Σδ //

��

S5

��

Ml,m
π // S4 q

// Cl,m(π) // ΣMl,m
// S5 Σq

// ΣCl,m(π)

(5.3.1)

where each row and column is a cofibration sequence. Furthermore, after localisation at
a prime p ≥ 5, the map S5 Σq−→ ΣCl,m(π) is identified with the composite

S5 m−→ S5 ↪→ ΣCl,m(π)

and there are homotopy equivalences

ΣCl,m(π) ' S5 ∨ S9.

Proof. By Lemma 5.5, there is a homotopy commutative diagram

S3 i //Ml,m
g
// S4 ∨ S7

π̃

��

Ml,m
π // S4

(5.3.2)

where the top row is the cofibration sequence induced by the inclusion of the bottom
cell and π̃ is the homotopy extension of the projection map π. Arguing along the lines of
Lemma 5.7 we can extend (5.3.2) to the right to obtain a homotopy commutative diagram
as shown in (5.3.1). Note that δ = β + γ where β ∈ π4(S4) and γ ∈ π7(S4) ∼= Z ⊕ Z12.
Using the long exact sequence induced in homology by the middle row of (5.3.1), we can
see that β is the degree m map. Thus we can identify the map Σq with the composite

S5 m−→ S5 ↪→ ΣCl,m(π).

The homotopy group π8(S5) becomes trivial after localisation at a prime p ≥ 5 [Tod63].
Since ΣCl,m(π) is the homotopy cofibre of the map Σγ ∈ π8(S5), after localisation at a
prime p ≥ 5 there are homotopy equivalences

ΣCl,m ' S5 ∨ S9.
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Lemma 5.13. After localisation at a prime p ≥ 5, there is a fibration sequence

Ω9BG× Ω5BG
∗×m∗−−−−→ Ω5BG

π∗k−→ ΩMap∗k(Ml,m, BG),

where m∗ is the m-th power map, and the map π∗k is identified with the composite

ΩMap∗0(S4, BG)
Ωθk−−→ ΩMap∗k(S

4, BG)
Ωπ∗k−−→ ΩMap∗k(Ml,m, BG),

where θk : Ω4
0BG→ Ω4

kBG is a homotopy equivalence.

Proof. Applying the functor Map∗(−, BG) to the diagram in Lemma 5.3.1, we obtain a
homotopy commutative diagram

Map∗(Cl,m(π), BG) //

q∗

��

Map∗(S4, BG)
γ∗

//

(m+γ)∗

��

Map∗(S7, BG)

Map∗(S4, BG) //

π∗

��

Map∗(S4 ∨ S7, BG)
p∗2 //

g∗

��

Map∗(S7, BG)

��
Map∗(Ml,m, BG) Map∗(Ml,m, BG)

i∗

��

// ∗

Map∗(S3, BG)

(5.3.3)

where rows and columns are fibrations. We can identify Map∗(S4 ∨ S7, BG) with
Map∗(S4, BG) ×Map∗(S7, BG) so that p∗2 is the projection of the second factor. The
following diagram is obtained by restricting the map i∗ to the k-th component and com-
posing with the homotopy equivalence θk : Ω4BG→ Ω4BG given by ω 7→ µ◦(ω×k0)◦∆

for a fixed k0 ∈ Ω4
kBG:

Map∗(Cl,m(π), BG) //

��

Ω4BG
γ∗

//

(θk◦m+γ)∗

��

Ω7BG

⊔
i∈Z Ω4

im+kBG
π̃ //

π∗k
��

⊔
i∈Z Ω4

im+kBG× Ω7BG
p∗2 //

g∗k
��

Ω7BG

��
Map∗k(Ml,m, BG) Map∗k(Ml,m, BG) // ∗

(5.3.4)

Here all rows and the middle and right columns, and hence the left column, are fibrations.
Note that since the projection map g∗ : Map∗(S4, BG) → Map∗(Ml,m, BG) induces a
surjection in path components, the homotopy fibre of i∗ restricted to the k-th component
is not path connected. Applying the functor Ω(−) to the previous diagram we obtain
the following homotopy commutative diagram
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ΩMap∗(Cl,m(π), BG) //

q̃∗k
��

Ω5BG
Ωγ∗

//

Ω(m+γ)∗

��

Ω8BG

Ω5BG //

π∗k
��

Ω5BG× Ω8BG
p∗2 //

Ωg∗k
��

Ω8BG

��
ΩMap∗k(Ml,m, BG) ΩMap∗k(Ml,m, BG) // ∗

(5.3.5)

where we have identified ΩΩ4
kBG with ΩΩ4

0BG ' Ω5BG for all k; note that localised
away from p = 2 we have π4(G) = 0 and so Ω5BG is connected. Note that the adjoint
of Ωγ∗ is homotopic to (Σγ)∗. Localise at a prime p ≥ 5. Taking adjoints and using
Lemma 5.12 we obtain a string of homotopy equivalences

ΩMap∗(Cl,m(π), BG) ' Map∗(ΣCl,m(π), BG) ' Ω9BG× Ω5BG,

and q̃∗k ' ∗ ×m∗, where m∗ is the m-th power map.

Now we give results on the homotopy decomposition of the pointed gauge groups. Recall
that for any spaceX, the cofibration sequence Sn k−→ Sn → Pn+1(k) induces the following
fibration sequence

Map∗(Pn+1(k), BG)→ ΩnX
k∗−→ ΩnX,

where k∗ is the k-th power map. Let ΩnG{k} := Map∗(Pn+1(k), BG).

Theorem 5.14. Let G be a simply connected simple compact Lie group with π6(G) ∼= 0.
Let Pk → Ml,m be a principal G-bundle classified by k ∈ [Ml,m, BG], and m > 1.

Localising at a prime p ≥ 5 there are p-local homotopy equivalences

G∗0(Ml,m) ' Ω3G{pr} × Ω7G,

ΩG∗k(Ml,m) ' Ω4G{pr} × Ω8G,

where r = vp(m) is the valuation of m at p.

Proof. Localise at a prime p ≥ 5 and let vp(m) = r. First suppose k = 0. Using Lemma
5.4, there is a homotopy equivalence

ΣMl,m ' P 4(pr) ∨ S8.

Thus we obtain a string of homotopy equivalences

ΩMap∗0(Ml,m, BG) ' Map∗(ΣMl,m, BG) ' Map∗(P 4(pr) ∨ S8, BG).
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Taking adjoints we obtain

Map∗(P 4(pr) ∨ S8, BG) ' Map∗(P 3(pr) ∨ S7, G) ' Map∗(P 3(pr), G)×Map∗(S7, G).

Since G∗0(Ml,m) ' ΩMap∗0(Ml,m, BG), we get G∗0(Ml,m) ' Ω3G{pr} × Ω7G.

Now suppose k 6= 0. By Lemma 5.13 there is a fibration sequence

Ω9BG× Ω5BG
∗×m∗−−−−→ Ω5BG

π∗k−→ ΩMap∗k(Ml,m, BG),

where m∗ is the m-th power map, and the map π∗k is identified with the composite

ΩMap∗0(S4, BG)
Ωθk−−→ ΩMap∗k(S

4, BG)
Ωπ∗k−−→ ΩMap∗k(Ml,m, BG),

where θk : Ω4
0BG→ Ω4

kBG is a homotopy equivalence. Note that the homotopy fibre of
the map ∗ ×m∗ is homotopy equivalent to Ω2Map∗k(Ml,m, BG), which can be identified
with ΩG∗k(Ml,m). Now identifying Ω5

0BG with Ω5
0BG× ∗ it is easy to see that there is a

homotopy equivalence
ΩG∗k(Ml,m) ' Ω4G{pr} × Ω8G,

as required.

Now by Proposition 5.6, Ml,m
π−→ S4 induces a surjection [S4, BG]

π∗−→ [Ml,m, BG] if
m > 1. Therefore, by the naturality of the evaluation map, we obtain a commutative
diagram

ΩG
Ωφk // ΩMap∗k(S

4, BG) //

π∗

��

ΩMapk(S
4, BG)

evk //

π∗

��

G

ΩG
Ω∂k // ΩMap∗k(Ml,m, BG) // ΩMapk(Ml,m, BG)

evk // G

(5.3.6)

which defines the map Ωφk. More precisely, if m > 1 then Map(Ml,m, BG) has m com-
ponents and Map(S4, BG)

π∗−→ Map(Ml,m, BG) sends the k-th component of Map(S4, BG)

to the k̄-th component of Map(Ml,m, BG), where k̄ is the mod m reduction of k.

Theorem 5.15. Let m > 1 be an integer and p ≥ 5 be a prime. Let Pk → Ml,m be a
principal G-bundle classified by k ∈ Zm, where G is a simply connected simple compact
Lie group. There are p-local homotopy equivalences

(1) G0(Ml,m) ' Ω7G×G if vp(m) = 0;

(2) ΩGk(Ml,m) ' Ω8G ×Xk if vp(m) ≥ 1, where Xk fits into a homotopy fibration

Ω4G{m} → Xk → ΩG.

Moreover, if vp(m) = r ≥ 1 and pr|k, then Xk ' ΩG× Ω4G{m}.
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Proof. Let K be a CW -complex such that Ml,m ' K. Then K is obtained attaching a
7-cell to a Moore space P 4(m). Localise all spaces at a prime p ≥ 5, so that π6(G) ∼= 0

for any simply connected simple compact Lie group. Suppose that vp(m) = 0. Then
P 4(m) ' ∗ and therefore Ml,m ' K ' S7. Thus in this case there is only one principal
G-bundle over Ml,m up to isomorphism, namely, the trivial bundle. Since the map ev0

in (5.2.11) has a section and this is a principal fibration we obtain a p-local homotopy
equivalence

G0(Ml,m) ' Ω7G×G.

Suppose now that vp(m) ≥ 1. By Theorem 5.14, there is a p-local homotopy equivalence

ΩG∗k(Ml,m) ' Ω8G× Ω4G{m}.

This implies that there is fibration sequence

Ω8G× Ω4G{m} δ∗ // Ω8G× Ω4G
∗×m∗

// Ω4G
π∗k // ΩMap∗k(Ml,m, BG) ' G∗k(Ml,m).

(5.3.7)
Therefore we have δ∗ ' 1 × j where j is the inclusion map. The evaluation fibration
along with (5.3.7) induce a homotopy commutative diagram

Ω9BG× Ω5BG{m}

j′

��

Ω9BG× Ω5BG{m}

1×j
��

ΩGk(S4) // ΩGk(Ml,m)
h //

��

Ω9BG× Ω5BG

∗×m∗
��

ΩGk(S4) // ΩG
Ωφk //

Ω∂k

��

Ω5BG

π∗k
��

ΩMap∗k(Ml,m, BG) ΩMap∗k(Ml,m, BG)

(5.3.8)

which defines the map h; here we identify Ω5BG ' ΩΩ4
0BG ' ΩΩ4

kBG. Let h̄ be the
composite

ΩGk(Ml,m)
h // Ω9BG× Ω5BG

p1
// Ω9BG,

where p1 is the projection onto the first factor. The top square of (5.3.8) shows that h̄
has a right homotopy inverse. Let X be the homotopy fibre of the map h̄. Then there is
a homotopy equivalence

ΩGk(Ml,m) ' X × Ω9BG. (5.3.9)
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Finally from (5.3.8) and (5.3.9) there exists a homotopy pullback square

Ω4G{m}

��

Ω4G{m}

��

ΩGk(S4) // Xk
//

��

Ω4G

m∗

��

ΩGk(S4) // ΩG
Ωφk // Ω4G.

Let r = vp(m). Then, if pr|k then the map Ωφk lifts through m∗. Therefore, by the
properties of the pullback there is a map ζ : ΩG → Xk which is a homotopy section.
Thus in this case we have a splitting Xk ' ΩG× Ω4G{m}.

5.4 Homotopy types of gauge groups over S7

In this section we discuss the classification of the homotopy types of the gauge groups
over manifolds Ml,1. As all manifolds Ml,1 are homotopy equivalent to S7, the follow-
ing results will be expressed in terms of S7. Recall that PrinG(S7) is in one-to-one
correspondence with the set [S7, BG]. In Table 5.1 we collect information on the sets
PrinG(S7) = [S7, BG]. Here G∗ is any of the simply connected simple compact Lie
groups not isomorphic to SU(3), G2 or SU(2) ∼= Sp(1).

Table 5.1

G SU(2) SU(3) G2 G∗

[S7, BG] Z12 Z6 Z3 0

Let Pk → S7 be a principal G-bundle classified by k ∈ [S7, BG]. We have seen already
that as S7 is a co-H-space, Map∗k(S

7, BG) ' Map∗0(S7, BG), which implies that for any
k ∈ [S7, BG] there exists a homotopy equivalence G∗k(S7) ' G∗0(S7). In what follows we
discuss the results on the homotopy classification of the unpointed gauge groups over S7.

Consider the fibration sequence

Gk(S7) // G
∂k //Map∗k(S

7, BG) //Mapk(S
7, BG)

ev // BG (5.4.1)

where ev is the evaluation map. Thus the connecting map ∂k is an element of

[G,Map∗k(S
7, BG)] ∼= [G,Map∗0(S7, BG)] = [G,Ω6

0G].

By Lemma 4.21 the adjoint of the connecting map, denoted ∂k, is homotopic to the
Samelson product 〈kγ,1G〉, where γ is a generator of [S7, BG] ∼= π6(G) and 1G is the



Chapter 5 Results for S3-bundles over S4 89

identity map on G. It is clear that the order of ∂k is bounded by both the number of
principal G-bundles and the order of [G,Ω6

0G].

Lemma 5.16. The set [SU(3),Ω6
0SU(3)] is isomorphic to

Z4 ⊕ Z2
2 ⊕ Z2

3 ⊕ Z7.

Proof. Taking the adjoint we get [SU(3),Ω6SU(3)] ∼= [Σ6SU(3), SU(3)]. After suspen-
sion there is a homotopy equivalence [Mim69]

Σ6SU(3) ' Σ7CP 2 ∨ S14.

Let p > 2 be a prime. There exists a p-local homotopy equivalence

Σ6SU(3) 'p S9 ∨ S11 ∨ S14

Thus localized at p > 2 we get

[Σ6SU(3), SU(3)](p>2) = [S9 ∨ S11 ∨ S14, S3 × S5]

= π9(S3 × S5)⊕ π11(S3 × S5)⊕ π14(S3 × S5)

Using the information on the homotopy groups of spheres [Tod63] we obtain

[Σ6SU(3), SU(3)](p) = Z2
3 ⊕ Z7.

Now consider localization at p = 2. First by (5.4)

[Σ6SU(3), SU(3)](2) = [Σ7CP 2 ∨ S14, SU(3)]

= [Σ7CP 2, SU(3)]⊕ π14(SU(3))

= [Σ7CP 2, SU(3)]⊕ Z4 ⊕ Z2

since π14(SU(3)) ∼= Z4 ⊕ Z2 [MT63]. The next step is to determine the homotopy set
[Σ7CP 2, SU(3)]. Consider the cofibration sequence

S10 η9−→ S9 i−→ Σ7CP 2 q−→ S11 η10−→ S10 (5.4.2)

where ηn = Σn−2η : Sn+1 → Sn with η : S3 → S2 the Hopf map. Applying the functor
[−, SU(3)] we get the following sequence of homotopy sets

π10(SU(3))
η∗10−→ π11(SU(3))

q∗−→ [Σ7CP 2, SU(3)]
i∗−→ π9(SU(3)). (5.4.3)

As π9(SU(3)) = 0, the group [Σ7CP 2, SU(3)] is isomorphic to the cokernel of η∗10. It is
known that π10(S5) ∼= Z2, generated by ν5η

2
8, and π11(S5) ∼= Z2, generated by ν2

5 . In
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[MT63] it is shown that the projection map q : SU(3) → S5 induces an isomorphism
for π10 and an epimorphism for π11. Thus there are maps [ν5η

2
8] : S10 → SU(3) and

[ν2
5 ] : S11 → SU(3) such that the following diagrams homotopy commute

S10

[ν5η28 ]
��

ν5η28

##

SU(3)
q
// S5,

S11

[ν25 ]
��

ν25

##

SU(3)
q
// S5.

and the maps [ν5η
2
8] and [ν2

5 ] are the generators of π10(SU(3)) ∼= Z2 and π11(SU(3)) ∼= Z4

[MT63], respectively. Observe that the composite

S11 η10−−→ S10 [ν5η28 ]
−−−→ SU(3)

q−→ S5

is ν5η
3
8. The map ν5η

3
8 cannot be homotopic to ν2

5 since stably ν5η
3
8 ' ∗ while ν2

5 6' ∗.
Thus q ◦ [ν5µ

2
8] ◦ η10 is nullhomotopic and therefore η∗10 = 0. Thus the homomorphism

q∗ : π11(SU(3))→ [Σ7CP 2, SU(3)] is an isomorphism and [Σ7CP 2, SU(3)](p=2) = Z4⊕Z2
2.

Finally, putting things together we obtain [Σ6SU(3), SU(3)] ∼= Z2
4 ⊕ Z2 ⊕ Z2

3 ⊕ Z7.

We give a result on the number of homotopy types of gauge groups of principal G-
bundles over S7. In the case of the 2-primary component for G = SU(3) this has not
been resolved so that we will state the result for the odd primary part.

Theorem 5.17. Let G be a simply connected simple compact Lie group and let Pk → S7

and Pk′ → S7 be principal G-bundles. Then

(1) for G = SU(2) ∼= Sp(1) or G = G2, there is a homotopy equivalence Gk(S7) ' Gk′(S7)

when localised rationally or at any prime if and only if (3, k) = (3, k′);

(2) for G = SU(3), there is a homotopy equivalence Gk(S7) ' Gk′(S7) when localised
rationally or at a prime p ≥ 3 if and only if (3, k) = (3, k′);

(3) otherwise, the gauge group of the unique principal G-bundle decomposes as

G0(S7) ' Ω7G×G.

Proof. Let ∂k ∈ [Σ6G,G] be the adjoint of the connecting map ∂k in (5.4.1).
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(1) Suppose first that G = SU(2). We identify the Lie group SU(2) with the unit
quaternions S3. Thus there is an isomorphism

[Σ6SU(2), SU(2)] ∼= [Σ6 ∧ S3, S3] ∼= π9(S3).

According to [Tod63], π9(S3) ∼= Z3, and so the order of ∂k is at most 3. We also
know that the map ∂k is homotopic to the Samelson product 〈kγ, ι3〉, where γ is a
generator of π6(SU(2)) and ι3 : S3 → S3 ∼= SU(2) is the identity map on S3. From
the fibration sequence

Map∗k(S
7, BG)

i //Mapk(S
7, BG)

ev // BG

we obtain the following commutative diagram of groups

π3(S3) //

∂k &&

π3(Ω7
0BS

3) //

∼=
��

π3(Mapk(S
7, BS3)) // 0,

[S6 ∧ S3, S3]

55
(5.4.4)

where ∂k(f) := 〈kγ, f〉 for any f ∈ π3(S3) ∼= Z. Thus π3(Mapk(S
7, BS3)) ∼= coker ∂k.

Linearity in the Samelson product implies that 〈kγ, ι3〉 ' k〈γ, ι3〉. Thus we only have
to determine the order of 〈γ, ι3〉.

Notice that if Gk(S7) ' Gk′(S7) then πn(Gk(S7)) ∼= πn(Gk′(S7)) for all n ≥ 0. In
particular, from (5.4.4) we obtain

π2(Gk(S7)) ∼= π3(Mapk(S
7)) ∼= π3(Mapk′(S

7)) ∼= π2(Gk′(S7)).

According to [Sam54], the Samelson product 〈ι3, ι3〉 ∈ π6(S3) has order 12, therefore
this map is a generator of π6(S3) ∼= Z12. Hence the adjoint of the map ∂1 is homotopic
to the iterated commutator map 〈〈ι3, ι3〉, ι3〉. Observe that 〈〈ι3, ι3〉, ι3〉 is an element
of [SU(2) ∧ SU(2) ∧ SU(2), SU(2)] = [S3 ∧ S3 ∧ S3, S3] ∼= [S9, S3] ∼= π9(S3) ∼= Z3,

thus the order of 〈〈ι3, ι3〉, ι3〉 is either 1 or 3. According to [KK10, Theorem 2],
SU(2) localised at p = 3 is not nilpotent of class 2, hence 〈〈ι3, ι3〉, ι3〉 is non-trivial.
Thus it must have order 3. Since this map is the adjoint of ∂1, we have that the
order of ∂1 is 3. From (5.4.4) and information of the homotopy groups of spheres we
obtain an exact sequence

Z ∂k // Z3
i∗ // π3(Mapk(S

7, BS3)) // 0.

Therefore | coker ∂k| = (3, k). Thus if π3(Mapk(S
7, BS3)) ∼= π3(Mapk′(S

7, BS3))

then (3, k) = (3, k′). From the previous discussion we see that if Gk(S7) ' Gk′(S7)

then (3, k) = (3, k′).
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Now suppose instead that G = G2. Let ι : S3 ι3−→ S3 ↪→ G be a generator of
π3(G). The map 〈ι, ι〉 represents a generator of π6(G2) [Mim67]. Thus we have
∂1 ' 〈〈ι, ι〉,1G2〉 : S6 ∧G2 −→ G2. Consider the following composite

θ : S6 ∧ S3 1∧ι // S6 ∧G2

〈〈ι,ι〉,1G2
〉
// G2.

Thus θ = 〈〈ι, ι〉, ι〉. We claim that θ is not nullhomotopic. Consider the inclusion
S3 i

↪→ G2. According to [Jam95], there exists a homotopy fibration

S3 i
↪→ G2 −→ S11

after localisation at 3. Thus the induced map i∗ : πm(S3)→ πm(G2) is an isomorph-
ism for m ≤ 9. Recall that, localising at p = 3, the map 〈〈ι3, ι3, 〉, ι3〉 ∈ π9(S3)

is essential. Therefore the map θ has order 3. Thus θ generates π9(G2) ∼= Z3.
By definition, θ is the restriction of ∂1 to S3 ⊂ G2. Thus the order of ∂1 and
hence of its adjoint ∂1 is at least 3. Now, from Proposition 5.6 we know that
PrinG2(S7) = π6(G2) ∼= Z3. Thus, as there are 3 isomorphism classes of prin-
cipal G2-bundles over S7, the order of the map ∂1 is at most 3. The upper and
the lower bounds of the order of ∂1 coincide and therefore the order of ∂1 is 3. We
also obtain an exact sequence as in (5.4.4) to show that if Gk(S7) ' Gk′(S7) then
(3, k) = (3, k′).

Finally a simple application of Lemma 4.26 shows that Gk(S7) ' Gk′(S7) whenever
(3, k) = (3, k′) for G = SU(2) ∼= Sp(1) and G = G2.

(2) Suppose all spaces are localised at a prime p ≥ 3. We can get an upper bound on the
order of ∂1 through Lemma 5.16. It was shown that ∂k ∈ [Σ6SU(3), SU(3)] ∼= Z2

3⊕Z7.

Let β be the order of ∂1. Then β divides |Z2
3 ⊕ Z7| = 63. We also have that

β ≤ |PrinSU(3)(S
7)| = 6. Therefore the order of ∂1 localised at a prime p ≥ 3 is at

most 3.

Suppose all spaces are localise at p = 3. Then there is a p-local homotopy equivalence
SU(3) ' S3 × S5, and the composite ι : S3 ι3−→ S3 ↪→ SU(3) is a generator of
π3(SU(3)). Let 〈ι, ι〉 be a generator of π6(S3) ∼= π6(SU(3); 3) ∼= Z3. Consider the
composite

S9 ∼= S6 ∧ S3 1∧ι // S6 ∧ SU(3)
〈〈ι,ι〉,1SU(3)〉

// SU(3).

The element 〈〈ι, ι〉, ι〉 is non-trivial in π9(SU(3); 3) ∼= Z3. Therefore localised at
p = 3 the map 〈〈ι, ι〉, ι〉 has order 3. Thus using an exact sequence as in (5.4.4), we
see that if Gk(S7) ' G′k(S7) then (3, k) = (3, k′). Finally, applying Lemma 4.26 we
complete the proof of (2).
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(3) If G 6= SU(2), SU(3), G2 or Sp(1), then π7(BG) ∼= 0. Thus there is a single principal
G-bundle over S7 which must be the trivial bundle, implying that the map ∂k is
nullhomotopic. Therefore the principal fibration

ΩMap∗(S7, BG)→ G0(S7)→ G

splits and G0(S7) ' Ω7G×G.

Remark 5.18. We want to point out that part (i) of Theorem 5.17 contrasts with a results
given in [CS09].

Proposition 5.19 ([Proposition 2 [CS09]). For n ∈ {7, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25},
there is a unique homotopy type of the gauge groups of all the principal SU(2)-bundles
over Sn, and it is the one of the trivial bundle, namely,

Map(Sn, S3) ' Ωn
0S

3 × S3.

According to Proposition 5.19, if G = S3 all gauge groups over S7 are homotopy equi-
valent. However, Theorem 5.17 shows that given two elements k, k′ ∈ [S7, BS3], it is not
always true that Gk(S7) ' Gk′(S7).





Chapter 6

Connected sums and other
extensions

We extend our results on principal G-bundles over Ml,m to some cases that were not
covered in Chapter 5. We also give results on the homotopy theory of gauge groups
of principal G-bundles over certain connected sums. In the first part of Chapter 6
we consider the homotopy theory of gauge groups over manifolds Ml,0 for the cases
G = SU(2), SU(3), G2. The main results of the first two sections of Chapter 6 are
Proposition 6.3 and Theorem 6.6. In the last three sections of this chapter we will study
the homotopy theory of some 2-connected 7-manifolds with torsion-free homology. We
will provide homotopy decomposition for certain connected sums of manifolds Ml,0. The
proofs are very similar to those presented in Chapter 5. The ultimate goal is to give
homotopy decompositions of gauge groups over certain connected sums. We present
some information on the classification of 2-connected 7-manifolds M . We then prove
Proposition 6.11 and Theorem 6.12.

6.1 Principal G-bundles: G = SU(2), SU(3), G2

Let Ml,m be the sphere bundle classified by (l,m) ∈ Z ⊕ Z. In this section we restrict
to principal G-bundles over manifolds Ml,0 and G = SU(2), SU(3) or G2. From the
classification of S3-bundles over S4, all the projection maps π : Ml,0 → S4 have cross
sections, and we have the following homotopy equivalences

• Ml,0 'Ml′,0 if and only if l ≡ ±l′ (mod 12);

• Ml,0 ' S3 × S4 if and only if l ≡ 0 (mod 12).

95
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Let o(G) denote the order of π6(G). In the study of gauge groups of principal G-bundles
over Ml,0, the value of l for each Ml,0 becomes important when working with Lie groups
G such that o(G) 6= 1. We write S3×̃lS4 = Ml,0 for the cases where l 6≡ 0 (mod 12).

Given a manifold Ml,0, there is a homotopy cofibration sequence

S6 ϕ
// S3 ∨ S4 i //Ml,0

q
// S7 Σϕ

// S4 ∨ S5, (6.1.1)

where ϕ is the attaching map of the top cell, i is the inclusion of the 4-skeleton and q
is the pinch map to the top cell. We can express the attaching map as ϕ = [ι3, ι4] + tα,
where [ι3, ι4] is the Whitehead product of the identity maps in S3 and S4, and α is a
generator of π6(S3). We obtain an exact sequence

[S4 ∨ S5, BG]
(Σϕ)∗

// [S7, BG]
q∗
// [Ml,0, BG]

i∗ // [S3 ∨ S4, BG]
ϕ∗
// [S6, BG].

(6.1.2)

Lemma 6.1. Let Ml,0 be an S3-bundle over S4 classified by an element (l, 0) ∈ Z ⊕ Z,
and let G be a simply connected simple compact Lie group with o(G) 6= 1. Then the map
ϕ∗ induced by the attaching map is trivial.

Proof. From the homotopy groups of Lie groups (Table A.1), for G = G2 we have
π5(G2) = 0. There is an isomorphism [S6, BG2] ∼= π5(G2), and therefore ϕ∗ = 0.

Now suppose that G 6= G2, that is, G = SU(n) for n ∈ {2, 3}. By connectivity of BG,
any map f : S3 ∨ S4 −→ BSU(n) factors as the composite

S3 ∨ S4 p2−→ S4 ↪→ BSU(n)

where p2 : S3 ∨ S4 → S4 is the projection onto the second component. Thus there is a
commutative diagram induced by the attaching map ϕ as follows

S6 ϕ̃
//

ϕ

��

S4

j

��

S3 ∨ S4 f
//

p2

;;

BG.

As Ml,0 is the total space of a sphere bundle over S4, the map p2 factors as the com-
posite p2 : S3 ∨ S4 i−→ Ml,0 → S4 where i ◦ ϕ is nullhomotopic, and therefore the
composite ϕ̃ = p2 ◦ ϕ is nullhomotopic. Hence given f ∈ [S3 ∨ S4, BG] we have
ϕ∗(f) = f ◦ϕ = j ◦ p2 ◦ϕ = j ◦ ϕ̃. As ϕ̃ is nullhomotopic, so is j ◦ ϕ̃, and therefore ϕ∗ is
the zero map.

Recall, (n,m) denotes the greatest common divisor of n and m.
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Lemma 6.2. The image of (Σϕ)∗ is equal to Zn, where n = o(G)
(o(G),l) .

Proof. First notice that if o(G) = 1 then (Σϕ)∗ : π3(G) ⊕ π5(G) → π6(G) is the zero
map. Therefore im(Σϕ)∗ ∼= Z 1

(1,l)

∼= Z1
∼= 0. Now suppose o(G) > 1.

If l ≡ 0 (mod 12) then we have that Ml,0 ' S3×S4 with attaching map ϕ a Whitehead
product. In this case, Σϕ is nullhomotopic, implying that (Σϕ)∗ is the trivial map. Thus
im(Σϕ)∗ ∼= Z o(G)

(o(G),l)

∼= Z1
∼= 0.

Now if l 6≡ 0 (mod 12) then from the exact sequence (6.1.2) we have im(Σϕ)∗ = ker q∗.
A map f : S7 → BG is in the kernel of q∗ if and only if there is an extension
f̃ : S4 ∨ S5 → BG, such that the diagram

Ml,0
q
// S7 Σϕ

//

f

��

S4 ∨ S5

f̃zz

BG

(6.1.3)

homotopy commutes.

As π6(S3) ∼= Z12 is generated by the Samelson product 〈ι, ι〉, the generator γ̃ of π6(G)

factors as γ̃ : S6 〈ι,ι〉−−→ S3 ↪→ G. The adjoint of γ̃,

γ̃Ad : S7 Σ〈ι,ι〉−−−→ S4 ↪→ BG,

is a generator of π7(BG).

For G = SU(3), consider the exact sequence of homotopy groups induced by the fibre
bundle S3 → SU(3)→ S5,

π6(S3)
i∗1−→ π6(SU(3))

p∗1−→ π6(S5)
δ∗−→ π5(S3)→ π5(SU(3)). (6.1.4)

From Table A.1 we have π6(S5) ∼= π5(S3) ∼= Z2 and π5(SU(3)) ∼= Z. This implies that
the last map in (6.1.4) is the zero map. Therefore δ∗ is surjective, and as δ∗ is a map
between two copies of Z2, it must be an isomorphism. In turn, p∗1 is the zero map. Thus
any map S6 → SU(3) factors as a composite

S6 → S3 i1→ SU(3).

For G = G2, note that localised at p = 3 there is an exact sequence [Mim95]

π6(S3)
i∗2→ π6(G2)

p∗2→ π6(S11).

Since π6(S11) ∼= 0, the map i∗2 is surjective when localised at 3. Since π6(G2) ∼= Z3 is
invariant under localisation at 3, the map i∗2 is surjective integrally as well. Thus any
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map S6 → G2 factors as a composite

S6 → S3 i2−→ G2.

In the next table we collect this information on the generators of the non-trivial groups
π6(G), that is, when G = SU(2), SU(3) or G2 (alternatively, see [Mim67]).

G π6(G) generator
SU(2) ∼= S3 Z12 〈ι, ι〉
SU(3) Z6 i1 ◦ 〈ι, ι〉
G2 Z3 i2 ◦ 〈ι, ι〉

Since l 6≡ 0 (mod 12), we have that p1 ◦ Σϕ ' lΣ〈ι, ι〉 (where p1 : S4 ∨ S5 → S4 is the
pinch onto the first wedge summand), and this map is not nullhomotopic. Consider the
diagram

Ml,0
h //

q

��

BG

S7 lkΣ〈ι,ι〉
//

Σϕ

��

S4

i

OO

S4 ∨ S5 p1
// S4

k

OO

(6.1.5)

where k is the degree k map. The maps i ◦ lkΣ〈ι, ι〉 are therefore in the kernel of q∗.
Thus the result follows from the exact sequence (6.1.2), the diagram and the table of the
homotopy groups π6(G).

Now we present a classification of principal G-bundles which generalises Proposition 5.6
(1) for the torsion-free case. The next result includes the groups G such that o(G) > 1:
SU(2), SU(3) and G2. We will therefore give a different proof to the one given for
Proposition 5.6.

Proposition 6.3. Let G be a simply connected simple compact Lie group. Then

PrinG(Ml,0) = Z× Z(o(G),l).

Moreover, the projection π : Ml,0 → S4 induces a bijection π∗ : π4(BG) → [Ml,0, BG] if
(l, o(G)) = 1.

Proof. Recall the exact sequence given by (6.1.2),

[S4 ∨ S5, BG]
(Σϕ)∗

// [S7, BG]
q∗
// [Ml,0, BG]

i∗ // [S3 ∨ S4, BG]
ϕ∗
// [S6, BG].

(6.1.6)
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First, if o(G) = 1 then by Theorem 2.40, the map i∗ is injective and by Lemma 6.1 it is
surjective. Therefore we obtain a one-to-one correspondence between PrinG(Ml,0) and
π4(BG) ∼= Z, recovering the conclusion of Proposition 5.6 in the case m = 0.

Now suppose o(G) > 1. Since [Ml,0, BG] is not a group, more care is needed when
discussing exactness: for instance, q∗ = 0 in (6.1.6) would not necessarily imply that
i∗ is injective. For j ∈ Z, let αj ∈ π4(BG) be the map corresponding to j under the
isomorphism π4(BG) ∼= Z. According to Theorem 3.2.1 in [Rut67], we can define maps
Γ(αj , ϕ) : [S4 ∨ S5, BG]→ [S7, BG] for each j ∈ Z such that

[Ml,0, BG] =
⋃
j∈Z

coker Γ(αj , ϕ).

Moreover, from Theorem 3.3.3 in [Rut67] we have that if ϕ∗ is a homomorphism then

Γ(αj , ϕ) = (Σϕ)∗. (6.1.7)

By Lemma 6.1, the map ϕ∗ : π3(BG)× π4(BG)→ π6(BG) is the zero map. Therefore,
equality in (6.1.7) holds and we have

[Ml,0, BG] = Z× coker(Σϕ)∗. (6.1.8)

Using Lemma 6.2 we obtain

coker(Σϕ)∗ = π6(G)/ im(Σϕ)∗ ∼= Z(o(G),l).

Finally, suppose that q∗ = 0: equivalently, coker(Σϕ)∗ = 0, that is, (o(G), l) = 1. Then
[Ml,0, BG] ∼= Z and i∗ : [Ml,0, BG] → [S4 ∨ S3, BG] ∼= π4(BG) is a bijection. Now the
map π : Ml,0 → S4 has a section so that the composite S4 ↪→Ml,0

π→ S4 is a homotopy
equivalence. Therefore the composite

S4 ↪→ S3 ∨ S4 i−→Ml,0
π→ S4 (6.1.9)

is a homotopy equivalence. Thus applying the functor [−, BG] to (6.1.9) shows that map

π∗ : π4(BG)→ [Ml,0, BG]

is a bijection.

6.2 Gauge groups: G = SU(2), SU(3), G2

In this section we use a similar strategy to that of the previous chapter to give a homotopy
decomposition of the gauge groups over certain manifolds S3×̃lS4 when o(G) 6= 1.
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Let Ml,0 = S3×̃lS4 be such that (l, o(G)) = 1. By Proposition 6.3, the projection map
π : Ml,0 → S4 induces a map

π∗ : Map∗(S4, BG)→ Map∗(Ml,0, BG)

that gives a bijection between path components of mapping spaces. Let

Fk → Map∗k(S
4, BG)

π∗k−→ Map∗k(Ml,0, BG)

be the fibration sequence of the restriction of π∗ to the k-th component. By an application
of Lemma 5.2 to the bundle Ml,0

π−→ S4 we obtain a homotopy decomposition

ΣMl,0 ' ΣYl ∨ S5, (6.2.1)

where the homotopy type of the space Yl depends on the attaching map of the top cell
of Ml,0. By a similar argument as the one given in the proof of Lemma 5.8 we obtain the
following result.

Lemma 6.4. Let o(G) > 1. Given a manifold S3×̃lS4 such that (o(G), l) = 1, there are
homotopy equivalences

F l,0k ' Map∗(Yl, G), k ∈ Z.

Arguing as in the proof of Theorem 5.9 we obtain the following homotopy equivalence.

Theorem 6.5. Let G be a simply connected simple compact Lie group such that o(G) > 1.
Given a principal G-bundle Pk → S3×̃lS4, if (l, o(G)) = 1, then there is a homotopy
equivalence

G∗k(S3×̃lS4) ' Ω4G×Map∗(Yl, G).

The next theorem is a result on the homotopy decomposition of gauge groups. Although
the proof is similar to the one given for Theorem 5.10, we give a sketch of the proof.

Theorem 6.6. Let Ml,0 such that (l, o(G)) = 1 and o(G) > 1. Then there is a homotopy
equivalence

Gk(S3×̃lS4) ' Gk(S4)×Map∗(Yl, G), k ∈ Z.
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Proof. As in Theorem 5.10, we use the evaluation fibration along with Proposition 6.3
and Lemma 6.4 to obtain the following commutative diagram

ΩMap∗k(S
3×̃lS4, BG)

��

ΩMap∗k(S
3×̃lS4, BG)

δ∗

��

Gk(S4) // Gk(S3×̃lS4)
h //

��

Map∗(Yl, G)

g∗

��

Gk(S4) // G
φk //

∂k

��

Map∗k(S
4, BG)

π∗k
��

Map∗k(S
3×̃lS4, BG) Map∗k(S

3×̃lS4, BG)

(6.2.2)

which defines the map h. By hypothesis the map π : S3×̃lS4 → S4 has a cross section,
so that the map g in the cofibration

S3×̃lS4 π−→ S4 g−→ ΣYl

is nullhomotopic. This implies that the map g∗ : Map∗k(Yl, G) → Map∗k(S
4, BG) in

(6.2.2) is also nullhomotopic. Therefore the map δ∗ has a right homotopy inverse and so
does h. The group structure on Gk(Ml,0) allows to multiply to obtain a composite

Gk(S4)×Map∗(Yl, G)→ Gk(S3×̃lS4)× Gk(S3×̃lS4)→ Gk(S3×̃lS4),

which is a homotopy equivalence.

6.3 Classification of closed 2-connected 7-manifolds

In Chapter 4 we discussed some applications of the study of principal G-bundles over high
dimensional manifolds, such as those of dimension 7. All the spacesMl,0 are 2-connected
7-manifolds, so we wanted to extend the study of the homotopy theory of gauge groups of
principal bundles over some other closed 2-connected 7-manifolds. We start by presenting
some information on the classification of these manifolds.

Let M be a closed 2-connected 7-manifold. Then M is orientable, and by the Poincaré
duality theorem, the non-trivial homology groups of M are given as follows

Hk(M) =


Z if k = 0, 7,

Zd if k = 4,

Zd ⊕
⊕t

i=1 Zri if k = 3,

(6.3.1)
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where d, t, {ri}ti=1 are positive integers. Let M1 and M2 be closed oriented connec-
ted 7-manifolds. Recall that their connected sumM1]M2 is an oriented closed connected
7-manifold defined by deleting the interiors of 7-cells D1 inM1 and D2 inM2 and attach-
ing the resulted punctured manifolds to each other by a homeomorphism h : ∂D1 → ∂D2,
so that

M1]M2 = (M1 − IntD1) ∪h (M2 − IntD2). (6.3.2)

Let TH4(M) ∼= TH3(M) denote the torsion subgroup of H4(M). There is a nonsingular
symmetric bilinear map, called the torsion linking form

b : TH4(M)⊗ TH4(M)→ Q/Z,

defined in [Wal67].

Consider the triple of invariants of M given by (H4(M), b, pM ), where pM ∈ 2H4(M).
From the definition of the invariants it follows that the invariants of the connected sum
of two manifolds are the direct sum of the two sets of invariants. That is, if M1 and M2

have invariants (H4(M1), b1, pM1) and (H4(M2), b2, pM2) the connected sum M1]M2 has
invariants (H4(M1)⊕H4(M2), b, (pM1 , pM2)) where

b((x1, x2), (y1, y2)) = b1(x1, y1) + b2(x2, y2)

for x1, y1 ∈ TH4(M1), x2, y2 ∈ TH4(M2).

The proofs of Proposition 6.7, Theorem 6.8 and Theorem 6.9 are found in [Wil72].

Proposition 6.7. The invariants (H4(M), b, pM ) for the manifolds M can assume the
following values: the group H4(M) can be any finitely generated abelian group, the map
b : TH4(M) × TH4(M) → Q/Z can be any non-singular symmetric bilinear map, and
pM ∈ H4(M) can be any even element.

The linking form is called irreducible if it cannot be expressed as a proper sum of two
maps, and we say that a manifold M with invariants (H4(M), b, pM ) is indecomposable
if either H4(M) is finite and b is irreducible, or H4(M) ∼= Z.

Theorem 6.8. Any 2-connected 7-manifold M is a connected sum of indecomposable
manifolds.

In Theorem 4 of [Wal63], Wall determines that if b is an irreducible map, then TH4(M)

is one of 0, Zpk for a prime p, and Z2k ⊕ Z2k . Hence for indecomposable manifolds M ,
the group H4(M) is isomorphic to 0, Z, Zpk or Z2k ⊕ Z2k .

Theorem 6.9. For an indecomposable manifold M , let G = H4(M).

(1) The indecomposable manifolds M with G ∼= Z or Zpk , for p an odd prime, are
classified by the invariants (G, b, β).
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(2) For the indecomposable manifolds M with G ∼= Z2k or Z2k ⊕Z2k there are two cases:

(a) If |G| ≤ 4 then the manifolds with β not divisible by 4 are classified by the
invariants (G, b, β); there are two distinct manifolds for each value of (G, b, β)

if β divisible by 4.

(b) If |G| > 4 then the manifolds with β divisible by 4 are classified by the invariants
(G, b, β); there are two distinct manifolds for each value of (G, b, β) if β is not
divisible by 4.

By [Hat02, Proposition 4C.1] we can give M a minimal cellular structure so that the
4-skeleton of M has the following homotopy type

M4 =
d∨
i=1

(S3
i ∨ S4

i ) ∨
t∨
i=1

P 4(prii ).

The cellular structure of M is given by

M =

(
d∨
i=1

(S3 ∨ S4) ∨
t∨
i=1

P 4(prii )

)
∪Φ e

7 (6.3.3)

where Φ : S6 −→M4 is the attaching map of the top cell e7. Thus by Theorem 6.9 any
closed 2-connected 7-manifold M is a connected sum

M ∼= M1]M2] · · · ]Md (6.3.4)

where the manifold Mi, for 1 ≤ i ≤ d, belongs to one of the following families of
indecomposable 2-connected 7-manifolds:

(A) MA ' S7,

(B) MB ' (S3 ∨ S4) ∪Φ e
7 ' S3 ×l S4,

(C) MC ' P 4(pr) ∪Φ e
7 for a prime p, and

(D) MD ' (P 4(2r) ∨ P 4(2r)) ∪Φ e
7.

Notice that the manifolds Ml,m belong to the families (A), (B) and (C).

6.4 Principal G-bundles over connected sums

In this section we classify principal G-bundles over 2-connected 7-manifoldsM which are
connected sums of S3-bundles over S4 with torsion-free homology. Thus we can write

M 'Ml1] · · · ]Mld
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where li = (li, 0) ∈ Z ⊕ Z, so that Mli is the S
3-bundle over S4 with an attaching map

ϕi : S6 →M4
li
. There is a homotopy cofibration sequence

S6 Φ //M4 i //M
q
// S7 ΣΦ // ΣM4 Σi // ΣM (6.4.1)

where M4 =
∨d S3

i ∨
∨d S4

i is the 4-skeleton of M . According to [Ish81], the attaching
map Φ can be expressed as

Φ =
d∑
i=1

ϕi =
d∑
i=1

(αi + [ιi4, ι
i
3]) (6.4.2)

where for each i, the maps ιi3 ' 1S3
i
and ιi4 ' 1S4

i
are generators of π3(S3

i ) and π4(S4
i ),

respectively, and the map αi : S6 → S3
i is an element of π6(S3

i ).

Lemma 6.10. Let M be a connected sum of sphere bundles Mli , for 1 ≤ i ≤ d. Then
the map

Φ∗ : [M4, BG]→ π6(BG)

is trivial.

Proof. By connectivity we have [M4, BG] = [
d∨
S3
i ∨

d∨
S4
i , BG] = [

d∨
S4
i , BG]. Therefore

any map f : M4 → BG, factors as the composite

M4 pinch−−−→
d∨
S4
i

j−→ BG.

for some j ∈ [
∨d S4

i , BG]. Thus there is a commutative diagram

S6 Φ̃ //

Φ

��

d∨
S4
i

j

��

M4 f
//

pinch

>>

BG.

where Φ̃ = pinch ◦ Φ. We have Φ =
∑d

i=1 ϕi, and for each i, the composite

S6 ϕi−→ S3
i ∨ S4

i
pinch−−−→ S4

i

is nullhomotopic. Indeed, just notice that by (6.4.2) we have ϕi = αi + [ι3i , ι
4
i ] for some

αi ∈ π6(S3
i ), and both pinch◦αi and pinch◦[ι3i , ι4i ] are nullhomotopic. Therefore pinch◦Φ

is nullhomotopic, and given any f ∈ [M4, BG] we have Φ∗(f) = f ◦ Φ = ∗.
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The manifold M has a cellular structure given by (
∨d
i=1 S

3
i ∨

∨d
i=1 S

4
i ) ∪Φ e7. Define

Π : M →
∨d
i=1 S

4
i as the composite

Π : M
pinch−−−→

d∨
Mli

∨d πi−−−→
d∨
S4
i ,

where the maps πi : Mli → S4
i are projections.

Proposition 6.11. If π6(G) ∼= 0 then PrinG(M) = Zd. Moreover, the map

Π∗ :

d⊕
i=1

π4(BG)→ [M,BG]

is a bijection.

Proof. The set PrinG(M) is in one-to-one correspondence with [M,BG]. Hence it suf-
fices to compute [M,BG]. The cofibration sequence (6.4.1) induces an exact sequence of
sets

[ΣM4, BG]
(ΣΦ)∗

// [S7, BG]
q∗
// [M,BG]

i∗ // [M4, BG]
Φ∗ // [S6, BG]. (6.4.3)

By Lemma 6.10 the map Φ∗ is trivial, implying that i∗ is onto. As π7(BG) ∼= π6(G) = 0,
the action of π6(G) on [M,BG] is trivial and therefore the map i∗ is injective. Hence
the map i∗ is a bijection and PrinG(M) = [M4, BG] = [

∨d S4
i , BG] = Zd.

Now consider the composite

d∨
S4
i ↪→

d∨
S3
i ∨

d∨
S4
i
'−→M4 i−→M

Π−→
d∨
S4
i , (6.4.4)

and consider the diagram ∨d S4
i� _

��

∨d S4
i

M4 � � //

i

��

∨dMli

∨d πi

OO

M M.

pinch

OO

(6.4.5)

The bottom square homotopy commutes because of the cellular structure of M , and the
top square homotopy commutes since the composite

S4
i ↪→ S4

i ∨ S3
i
'−→M4

li
↪→Mli

πi−→ S4

is homotopic to the identity map.

In particular, commutativity of (6.4.5) implies that the composite (6.4.4) is a homotopy
equivalence. Thus applying the functor [−, BG] to the composite (6.4.4) we obtain a
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composite

d⊕
i=1

π4(BG)
Π∗−−→ [M,BG]

i∗−→ [M4, BG]
∼=−→

d⊕
i=1

[S4
i ∨ S3

i , BG]→
d⊕
i=1

π4(BG)

that is an isomorphism, and since the last two maps are isomorphisms and i∗ is a bijection,
it follows that the map Π∗ : [

∨d S4, BG]→ [M,BG] is also a bijection.

6.5 Gauge groups of principal G-bundles over connected
sums

Let M be a manifold satisfying the condition of Proposition 6.11. Then there is a one-
to-one correspondence between the sets PrinG(M) and [M,BG] = Zd, where 2 ≤ d ∈ N.
Thus every principal G-bundle over M is classified by an element K = (k1, . . . , kd) ∈ Zd.
Let PK denote the prinicipal G-bundle classified by K. Let

Map∗(
∨d S4

i , BG) //Map(
∨d S4

i , BG)
ev // BG. (6.5.1)

be the evaluation fibration associated with the mapping space Map(
∨d S4

i , BG). The
restriction of the evaluation map to the component MapK(

∨d S4
i , BG), where K ∈ Zd,

defines the fibration

G
φK //Map∗K(

∨d S4
i , BG) //MapK(

∨d S4
i , BG)

evK // BG. (6.5.2)

Denote by GK(
∨d S4

i ) the homotopy fibre of the connecting map φK of the fibration
sequence (6.5.2).

Theorem 6.12. Let PK →M be a principal G-bundle over M 'Ml1] · · · ]Mld classified
by K = (k1, . . . , kd) ∈ Zd. Suppose G is a simply connected simple compact Lie group
such that π6(G) = 0. Then there exists a homotopy decomposition

GK(M) ' GK(

d∨
S4
i )×Map∗(CΠ, BG)

where CΠ is the homotopy cofibre of the map Π : M →
∨d S4.

Proof. Let Φ : S6 → M4 be the attaching map of the top cell. The map Π defines a
homotopy cofibration sequence

M
Π //

d∨
i=1
S4 g

// CΠ
δ // ΣM

ΣΠ //
d∨
i=1
S5 (6.5.3)
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with CΠ the homotopy cofibre of Π. Consider the evaluation fibration

Map∗K(M,BG)→ MapK(M,BG)
evK−→ BG, (6.5.4)

The evaluation map is natural, and by Proposition 6.3, the map Π : M →
∨d
i=1 S

4 makes
the homotopy fibration diagram

G
φK //Map∗K(

d∨
S4, BG) //

Π∗

��

MapK(
d∨
S4, BG)

evK //

Π∗

��

BG

G
∂K //Map∗K(M,BG) //MapK(M,BG)

evK // BG

commute. There is a homotopy commutative diagram

Map∗K(ΣM,BG)

��

Map∗K(ΣM,BG)

δ∗

��

GK(
d∨
S4) // GK(M)

h //

��

Map∗(CΠ, BG)

g∗

��

GK(
d∨
S4) // G

φK //

Π∗

��

Map∗K(
∨dS4, BG)

Π∗

��

Map∗K(M,BG) Map∗K(M,BG)

which defines the map h. The map g is nullhomotopic, hence the induced map g∗ is also
nullhomotopic. Therefore the map δ∗ has a right homotopy inverse, which implies that h
has a homotopy inverse. The group structure on Gk(M) allows us to multiply to obtain
a homotopy equivalence

Gk(
d∨
S4)×Map∗(CΠ, BG)→ Gk(M)× Gk(M)→ Gk(M)

as required.

Theorem 6.12 shows that the homotopy types of gauge groups over connected sums
GK(M) depend on the homotopy types of the mapping spaces

GK(
d∨
S4
i ) ' ΩMapK(

d∨
S4
i , BG).
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We will try to obtain some information on the homotopy type of these mapping spaces.
Let K = (k1, . . . , kd) ∈ Zd. Consider the following fibration

GK
(∨d

i=1 S
4
i

)
// G

∂K //Map∗K(
∨d
i=1 S

4
i , BG) //MapK(

∨d
i=1 S

4
i , BG)

evK // BG

(6.5.5)
which by the pointed exponential law and Proposition 4.12 can be rewritten as

GK
(∨d

i=1 S
4
i

)
// G

∂K //Map∗K(
∨d
i=1 S

3
i , G). (6.5.6)

The space GK(
∨d S4

i ) is the homotopy fibre of ∂K so that the properties of ∂K determine
the homotopy types of the fibre. Taking the adjoint of ∂K we obtain

G ∧
(∨d

i=1 S
3
i

)
∂K // G

∨d
i=1

(
G ∧ S3

i

) ∨d
i=1 ∂

ki
// G

(6.5.7)

where

∂K ∈

[
d∨
i=1

(
G ∧ S3

i

)
, G

]
∼=

d⊕
i=1

[G ∧ S3
i , G] (6.5.8)

and
∂ki ' 〈1G, kiγi〉 ∈ [G ∧ S3

i , G]; (6.5.9)

here γi is a generator of [S3
i , G] ∼= Z. Let H denote the set of distinct homotopy types of

the spaces GK(
∨d S4

i ), for K ∈ Zd.

Proposition 6.13. The order of H is bounded by

|H| ≤ |〈1G, γ〉|d

where γ is a generator of π3(G).



Table of homotopy groups

X π1(X) π2(X) π3(X) π4(X) π5(X) π6(X) π7(X)

Sp(1) 0 0 Z Z2 Z2 Z12 Z2

Sp(n), n ≥ 2 0 0 Z Z2 Z2 0 Z
SU(3) 0 0 Z 0 Z Z6 0

SU(n), n ≥ 4 0 0 Z 0 Z 0 Z
Spin(7) 0 0 Z 0 0 0 Z
Spin(8) 0 0 Z 0 0 0 Z⊕ Z

Spin(n), n ≥ 9 0 0 Z 0 0 0 Z
SO(3) Z2 0 Z Z2 Z2 Z12 Z2

SO(5) Z2 0 Z Z2 Z2 0 Z
SO(6) Z2 0 Z 0 Z 0 Z
SO(7) Z2 0 Z 0 0 0 Z
SO(8) Z2 0 Z 0 0 0 Z⊕ Z

SO(n), n ≥ 9 Z2 0 Z 0 0 0 Z
G2 0 0 Z 0 0 Z3 0

F4, E6, E7, E8 0 0 Z 0 0 0 0
S2 0 Z Z Z2 Z2 Z12 Z2

S3 0 0 Z Z2 Z2 Z12 Z2

S4 0 0 0 Z Z2 Z2 Z⊕ Z12

S5 0 0 0 0 Z Z2 Z2

Table A.1: Homotopy groups of connected compact simple Lie groups [Jam95]
and spheres Sn for 2 ≤ n ≤ 5 [Tod63]. Notice that there are isomorphisms

Sp(1) ∼= SU(2) ∼= Spin(3), Sp(2) ∼= Spin(5) and SU(4) ∼= Spin(6)
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