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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematical Sciences

Doctor of Philosophy

CAPTURE-RECAPTURE ESTIMATION AND MODELLING FOR

ONE-INFLATED COUNT DATA

by Panicha Kaskasamkul

Capture-recapture methods are used to estimate the unknown size of a target population

whose size cannot be reasonably enumerated. This thesis proposes the estimators and

the models specifically designed to estimate the size of a population for one-inflated

capture-recapture count data allowing for heterogeneity. These estimators can assist

with overestimation problems occurring from one-inflation that can be seen in several

areas of researches. The estimators are developed under three approaches.

The first approach is based on a modification by truncating singletons and applying the

conventional Turing and maximum likelihood estimation approach to the one-truncated

geometric data for estimating the parameter p0. These p̂0 are applied to the Horvitz-

Thompson approach for the modified Turing estimator (T OT) and the modified maxi-

mum likelihood estimator (MLE OT).

The second approach is the model-based approach. It focuses on developing a statistical

model that describes the mechanism to generate the extra of count ones. The new

estimator MLE ZTOI is developed from a maximum likelihood approach by using the

nested EM algorithm based upon the zero-truncated one-inflated geometric distribution

The last approach focuses on modifying a classical Chao’s estimator to involve the

frequency of counts of twos and threes instead of the frequency of counts of ones and

twos. The modified Chao estimator (MC) is asymptotic unbiased estimator for a power

series distribution with and without one-inflation and provides a lower bound estimator

under a mixture of power series distributions with and without one-inflation. The three

bias-correction versions of the modified Chao estimator have been developed to reduce

the bias when the sample size is small. A variance approximation of MC and MC3 are

also constructed by using a conditioning technique.

All of the proposed estimators are assessed through simulation studies. The real data

sets are provided for understanding the methodologies.
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Chapter 1

Introduction

This chapter outlines the context of study and the objectives. The structure of thesis is

also shown in the final section.

1.1 Introduction

Estimation of the size of an elusive target population is of great interest in several areas

such as biology, ecology, epidemiology, public health and social science. For example,

ecologists and biologists might investigate the number of species in a wildlife population

as well as to estimate the animal abundance. In social science the interest is in deter-

mining the number of drug users and the number of violators of a law. In addition, there

is a great interest in estimating the number of outbreaks of disease in public health.

Capture-recapture methods have been applied to estimate the size of populations which

are difficult to approach. They have a long history and were traditionally applied in

wildlife, biology and ecology to estimate the animal abundance and the size of wildlife

populations. To estimate the population size N , capture-recapture surveys are con-

ducted by using an identifying mechanism. Each individual is noted of presence or

absence. For example, capture-recapture methods use the information available from

animal captured on a number of surveys. Animals in a trap are marked, released and

allowed to mix with the population. After a period of time, a second survey is taken

and the number of animals captured is counted and marked again. Repeated surveys

are carried out and the number of animals being marked from all surveys are obtained

as the capture-recapture history. This provides the observed frequency of identifying

individuals. Accordingly, the capture history is used to estimate the total population

size or the number of cases which are never caught at any occasion. Typically, the survey

is within a short period so that evolution of new cases or extinction of existing cases

1
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is unlikely to occur during the study period. This is referred to as the case of a closed

population. These concepts have been applied to human populations in social science

and criminology to estimate, for example, the size of an illicit drug-using population or

the number of violators of a law (see Van der Heijden et al. (2003b) and Hser (2001)), in

public health science for estimating the disease prevalence (see Gallay et al. (2000) and

Böhning et al. (2004)) and to estimate the number of unreported diseases, as well as

infection rate of AIDS in epidemiology (Brookmeyer and Gail (1988)), also estimating

the number of unknown errors in a software in system engineering (see Liu et al. (2015)).

In these situations, the population size can be determined by using a number of different

sources (lists) as a survey occasion or identifying mechanism such as hospital lists, treat-

ment center registries or pharmacy records. This similarity to wildlife capture-recapture

is in these cases that the role of the trap is taken by the register (cancer occurrence),

the police (violations of a law) or the reviewer (software error). Typically the number of

cases that does not appear in either list is unknown and need to be estimated (Brittain

and Böhning (2009)).

From the capture-recapture history, a count x as the number of individuals identified

exactly x times is obtained. A counting distribution arises when a frequency table is

constructed from summarizing how often a particular individual was identified. This is

usually referred to as capture-recapture data in the form of frequencies of frequencies.

However, some individuals do not appear since they have never been identified so the zero

count data are missing. According to Böhning and Kuhnert (2006), zero truncation arises

regularly in many practical situations. There are underlying two different categories of

zero truncation:

• Zero counts cannot occur because of the observational model such as counts of

occupants of passing cars. A telephone interviewing survey asking for the number

of telephones in the household will have only non-zero counts in a sample (Grogger

and Carson (1991); Cameron and Trivedi (2013); Winkelmann (2008)).

• Zero-truncated count models are normally used in capture-recapture studies. From

the capture-recapture history of the individual, we try to predict the frequency of

units missed by the sample. For example, suppose that the police is keeping

records on the number of times a person has been identified with deviant behavior

in a particular community. It is clear that deviant persons who have never been

identified will not be present in database. A truncated count model can be used

to predict this quantity. Furthermore, it can be found in other applications such

as the estimation of drug users in a community or the number of illegal workers in

labour studies. This situation has been investigated with emphasis on the Poisson

distribution (Böhning and Kuhnert (2006); Van der Heijden et al. (2003b); see also

the review of Bunge and Fitzpatrick (1993)).
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The frequency count data is {(x, fx) | x ≥ 1} where fx is the frequency of individuals

captured exactly x times. Consequently, the frequency distribution is a zero-truncated

count distribution. Based upon a zero-truncated model, it is assumed that all individ-

uals in the population of interest have the same parameter determining probabilities

to be captured once, twice and so on. This is defined as the case of homogeneity and

often modelled by the Poisson or binomial distribution (see the review of Bunge and

Fitzpatrick (1993)). The parameter is unknown and can be estimated by various meth-

ods. If an estimate of the parameter is derived, then the probability of zero counts is

obtained leading to an estimate of the hidden as well as of the total size of population.

However, the homogeneous model rarely holds in practice because of the fact that the

population frequently composes of various subpopulations. Each subpopulation has the

same distribution but different parameters. This case is the so-called heterogeneity case.

Capture probabilities under a heterogeneous model are likely to differ for each individ-

ual. Approaches that take into account heterogeneous models are introduced by Chao

(1987), Zelterman (1988) and Chao and Bunge (2002). The problem of heterogeneity

should not be ignored as it can cause severe underestimation of the true population size

(see Van der Heijden et al. (2003a) and Böhning and Schön (2005)).

There have been many statistical models developed for estimating the population size

N . The classical modelling approach stems from the Lincoln-Petersen approach which

uses the independent information of two identifying sources or lists in closed popula-

tions (Seber (2002)). In this model, each source provides a binary variable taking value

1 for presence and 0 for absence. Capture and recapture samples are then formed in a

2x2 contingency table. Finally, the Lincoln-Petersen’s estimator can be constructed by

multiplying the number of individuals found on each source and dividing the outcome

by the number of individuals identified by both sources. Throughout the years, the

numerous models and estimators were developed and proposed to improve inferences in

capture-recapture studies which always rely on certain assumptions but are violated in

real situations due to time effect, heterogeneity or behavioural response among others.

Some examples include the maximum likelihood estimator, Good-Turing estimator, Zel-

terman’s estimator (Zelterman (1988)) and Chao’s lower bound estimator (Chao (1987)).

In some capture-recapture studies, we can notice from the observed data that there is

some sort of one-inflation in the count distribution (see e.g. Farcomeni and Scacciatelli

(2013)). Some portion of the population is mostly captured only once. This may be a

consequence of the fact that the probability of recapturing the same individual is very

low, especially in large cities/areas and generally within a short period of survey. Sec-

ondly, the first capture can lead to a behavioral response for some individuals to no

longer be observed. For example, individuals are stressed from the first capture and

learn to avoid recapture further on. Under a serious law enforcement, more serious legal

penalties are expected after the second time an individual is reported as perpetrator.
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Individuals may be abrogated their driver’s licence, pay a fine and/or take part in treat-

ment programs or entry visa may be invoked for foreigners. In contrast, an individual

may get as consequence only a warning by the judge if they are identified the first time. It

is not surprising if individuals may show trap avoidance after the first capture. Thirdly,

the frequency of count one (singleton) may not be reliably observed in some applications

such as in microbial diversity. One-inflation arises, especially, in data derived from mod-

ern high-throughput DNA sequencing. A new taxa may be assigned incorrectly from

the error of sequences instead of being matched to the observed taxa. This leads to an

artificially inflated frequency of count one as shown in terms of one-inflation (see Bunge

et al. (2012)). As the result of one-inflation being present in the count data, some mod-

els suffer from a boundary problem when fitted and some estimators provide extreme

overestimation of the population size (see Godwin (2017)), particularly for Chao’s lower

bound estimator which seemingly adjusted for heterogeneity.

Research in this thesis focuses on models specifically designed to estimate the size of

a population for one-inflated capture-recapture count data allowing for heterogeneity.

This provides new estimators based upon their suitable distributions. The modified

Chao estimator and its variance are also presented as a new version of classical Chao’s

lower bound estimator based on non-parametric approach for one-inflation.

1.2 Basic assumptions for this thesis

1. The target population is in a closed system (closed population; no births, no deaths

and no migration).

2. Individuals are sampled independently.

3. Repeated identification occurs independently (This assumption will be relaxed in

certain cases).

1.3 Aims and objectives of the study

The aim of this research is to develop models and estimators to estimate population size

which take into account potential one-inflation. There are a number of objectives that

must be realized in order to achieve this aim.

1. To motivate the one-inflation problem in capture-recapture studies.

2. Using the ratio plot, to investigate the presence of one-inflation in the capture-

recapture count data.
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3. To investigate the performance of conventional estimators when prone to one-

inflation.

4. To show that conventional approaches, seemingly good approaches adjusting for

potential heterogeneity such as Chao’s lower bound estimator, fail drastically when

frequency counts of ones (singleton) is excess.

5. To develop a distributional model for counts with one-inflation.

6. To develop new estimators for estimating the size of population under the one-

truncated geometric distribution.

7. To develop a full distributional approach under the geometric with one-inflation

for estimating population size.

8. To develop a new modified Chao estimator and its variance approximation for the

case of one-inflated count data.

9. To develop bias-correction versions for the modified Chao estimator.

1.4 Outline of thesis

The thesis consists of seven chapters. The first chapter begins by introducing the context,

research objectives and the outline of the study. The remaining chapters are given

according to respective context as follows:

In Chapter 2, a literature review of the capture-recapture approach is presented, par-

ticularly with emphasis on well-known estimators of population size that are used in

capture-recapture methodology. Then, the examples of count data with one-inflation

and the ratio plots are given in the following section.

Chapter 3 shows the weak performance of some classical estimators under one-inflation.

The construction of new estimators based on the one-truncated geometric model is

examined. This chapter also provides an investigation of relative bias, relative variance

and relative mean square error of estimators under a variety of simulated conditions.

Several empirical applications are also considered in order to illustrate the use of the

new proposed estimators in real life situations.

In Chapter 4, the problem formulation and derivation of the proposed estimators based

upon zero-truncated one-inflated geometric distribution are presented. In addition, the

nested EM algorithm for estimating parameter of the model is also discussed. Finally, a

simulation study is included to study the performance of the proposed estimators under

a one-inflation problem and also illustrate these estimators in a variety of case studies.
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Chapter 5 shows the construction of the new proposed estimator for one-inflation count

data by extending the idea of Chao’s lower bound estimator. The bias correction versions

of the modified Chao estimator are given to improve the performance when the sample

size is small. A variance approximation of the modified Chao estimators is also presented

in Chapter 6. Performance evaluations of the new proposed estimators are undertaken

under the models of geometric and mixture of geometric with and without one-inflation.

This chapter ends with some applications.

Finally, Chapter 7 gives some concluding remarks and suggests potential directions for

related future research.

1.4.1 Notation and definitions

There are many parameters and statistics involved in statistical methods for capture-

recapture study using throughout in this thesis. Therefore, in order to easily under-

standing the statistical terms, some general notations and definitions are arranged as

follows:

N the unknown population size of the target population

N̂ the estimator of the size of the target population

m the total number of trapping occasions over the study period

n the total number of distinct observed individuals or the number of sample units

Xij the indicator variable of the ith unit being identified in the jth occasion,

where Xij =

{
1 if the ith individual is identified on the jth occasion

0 otherwise

Xi the number of times that the ith individual was identified over the study period

px the capture probability of individuals that were identified exactly x times

fx the frequency of identifying individuals exactly x times over the study period

f0 the frequency of unobserved individuals

S the total number of identification during study period



Chapter 2

Review of capture-recapture

In this chapter, a review of the general background of capture-recapture is provided. It

contains objective, basic idea, assumptions and characteristic of count data in capture-

recapture, including model classification and summary of estimating the size of a target

population. Some interesting estimators of population size are considered under homo-

geneous and heterogeneous Poisson models such as maximum likelihood, Chao’s lower

bound and Good-Turing estimator. This is followed by the examples of use and appli-

cation of capture-recapture method of which some may have one-inflation form. The

graphical device of the ratio plot as a tool to investigate the validity of the model is

shown in the last section.

2.1 Objective and basic idea of capture-recapture

The capture-recapture method has a long history. It was developed to improve the

limitation of census when we cannot take a complete census of the entire units in the

target population. Some units are detected but some remain hidden or undetected such

as sampling in a wildlife population, a human population with illicit habit or a human

population with a disease which is hard to detect. The capture-recapture approach

has been traditionally applied in wildlife, biology and ecology to estimate the animal

abundance and the size of a wildlife population. The basic idea of capture-recapture is

to sample or capture individuals, mark and identify, release and allow to mix with the

population and then, on a second survey, recapture individuals, count and mark again.

After that, the number of individuals are noted which have already been marked on the

first sampling occasion. This capture-recapture method can continue to m surveys. The

number of animals being marked from all surveys are obtained as the capture-recapture

history. This provides the observed frequency of identified units. Correspondingly, the

observed frequencies from the capture history are used to estimate the total population

size N or the number of units which are never caught at any occasion, f0. However,

7
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at present, the capture-recapture approach is widely applied in a variety of other fields

such as estimating the number of outbreaks of disease in public health and epidemiology,

estimating biodiversity in bioinformatics, estimating the number of drug users, the size

of homeless populations and the number of violators of a law in social science and

criminology, as well as estimating the number of unknown errors in a software in system

engineering (Böhning et al. (2013b)). Registration can be conducted to create a list

of units in the particular population of interest. In clinical studies, for example, AIDS

registries contain the number of contacts during diagnosis, treatment and after-care.

Recording might fail if patients keep away from the process of remedy. As a result, the

registries are incomplete and show only some part of the population. Questions arise

about the total number of units in the population and the number of missing units.

From this situation, under-reporting arises since the number of units reported is less

than the actual number. One might analyze under-reporting using a binomial approach

(see Cameron and Trivedi (2013)), regression approaches for the binomial model and

the beta-binomial model (see Neubauer and Friedl (2006)) or a beta-Poisson regression

model by Neubauer et al. (2011). However, the capture-recapture method is also an

efficient tool to estimate the population size for these cases. Some mechanisms are

used to identify a repeated unit such as register, surveillance system and life trapping.

Each source is treated as a survey occasion. For example, animals were repeatedly

captured using traps and the number of animals captured on trapping was reported

(Otis et al. (1978)). In case of human populations, a registration system could be used

as an identifying mechanism to identify units having a characteristic of interest such as

police database recorded the number of illegal immigrants in the Netherlands (Van der

Heijden et al. (2003a)) or drug treatment centre and arrest records collects the number

of illicit drug users (Hser (2001)). Moreover, this recapturing works either in time or

in cluster. In time, there is the period of observation in which each individual of the

target population can be detected on several occasions. On the other hand, in cluster,

recapturing base on multiple detection within a cluster such as a household, village, or

herd. In a fixed observational period, n sample units are independently observed by a

given registration. Finally, the capture-recapture history and the observed frequencies

are provided for estimating the size of population and the number of unobserved units.

From the capture-recapture history, a distribution of counts arises when a frequency

table is constructed from summarizing how often a particular unit was identified. This

is usually referred to as capture-recapture data in the form of frequencies of frequencies.

However, some units have never been identified so the zero count data are missing

and this is called zero-truncated count data. The frequency count data is {(x, fx) |
x ≥ 1} where fx is the frequency of units captured exactly x times. Consequently,

the frequency distribution is a zero-truncated count distribution which is defined by a

conditional probability function. It is frequently used to model frequency data (see

McCrea and Morgan (2014)). Let Pr(X = x) = px denote the capture probability for

random variable X to take on value x or the probability of a unit being caught exactly
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x times in any trap or appearing exactly x times on any registry. Pr(X|X > 0) or p+
x

is the conditional probability of X = x given X > 0. It can be formulated as

Pr(X = x|X > 0) =
Pr(X = x)

Pr(X > x)
=

Pr(X = x)

1− Pr(X = 0)
(2.1)

or it can be written as

p+
x =

px
1− p0

. (2.2)

For example, suppose that the random variable X has a Poisson distribution. As f0

is unknown and missing, the distribution is truncated at x = 0. Therefore, the zero-

truncated Poisson probability function is

Pr(X = x|X > 0, λ) =
Pr(X = x;λ)

Pr(X > 0;λ)
=

e−λλx

x!(1− e−λ)
. (2.3)

In practice, the capture probability is not necessary the same for all units. There are

possible sources of variation in the probability such as factors of age, social status or

effects of weather. Suppose that p0 is defined as the probability of a zero count (unob-

served units) and the probability of unit identified is given by 1− p0. It is assumed that

every unit has the same probability of being identified. The population size N composes

of the number of unobserved and observed units.

N = N(1− p0)︸ ︷︷ ︸
observed

+ Np0︸︷︷︸
unobserved

= n+Np0.

(2.4)

The observed part N(1−p0) can be estimated by the number of observed units n where

E(n) = N(1− p0). p0 is unknown and required to be estimated, thereby the population

size N in (2.4) can easily be solved and leads to the well-known Horvitz-Thompson

estimator in (2.5)

N̂ =
n

1− p̂0
. (2.5)

2.2 Assumption

Almost all statistical theories generally require some assumptions for their models. Also,

capture-recapture requires essential assumptions:

1. Closed population: It is assumed that there is no change to the population

during the investigation. That is no birth, no death and no migration. This

means that the population size remains constant throughout the study periods.
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2. Independence between subjects: All individuals have the same probability of

being captured in each trapping occasion. That is there is no dependence between

different subjects.

3. Independence between captures: Lists or sources identify independently and

repeated identification occurs independently. That is capture in the first sample

does not affect capture in the second sample: samples are independent.

4. Homogeneity of capture probability: For a given source, every case has the

same chance of being captured or it is called equal catchability.

These assumptions are important and should not be violated because it can affect esti-

mation.

• If the closed population assumption is violated, individuals found in the first sample

may not be possible to be found in the other sample. This reduces the probability

of recapture and will lead to an overestimation of N .

• In case of independence, if there is positive dependence, N will be underestimated.

Contrarily, if there is negative dependence, N will be overestimated.

• Individuals found in both samples must be reliably identified and matched. If true

matches are missed, the number of recaptured units is falsely reduced leading to

an overestimation of N . If false matches are created, the number of recaptured

units is falsely increased leading to an underestimation of N .

• In terms of equal catchability assumption, if some individuals have a low probability

of being found by either method, N will be underestimated.

2.3 Data structure of capture-recapture

Capture-recapture studies substantially need to sample observed units from a target

population at least two times. The raw data are the capture records of all units iden-

tified during the study periods. The classical model of capture-recapture is a single

marking study which has only two trapping occasions(two lists/samples). Furthermore,

the multiple marking and multiple sources study are more complex by allowing to cap-

ture units more than twice. For all models, the variable of interest is the frequency

count of identified units (fx) and the latter is used to estimate the total number of a

target population (N).
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2.3.1 Single mark or two sources

The simplest model of a capture-recapture methodology is the Lincoln-Petersen model,

also known as dual systems estimation used in the two sources situation. Based on

this model, the Lincoln-Petersen estimator for the unknown population size (N) can be

considered on the basis of the odds ratio (Brittain and Böhning (2009)) or the hyper-

geometric distribution (Seber (2002)). There are two trapping occasions and it can be

summarised in 2x2 contingency table with frequencies given in Table 2.1.

Table 2.1: The two-occasion situation

Occasion 1
1 0

Occasion 2 1 f11 f01 n2

0 f10 f00 =?
n1

where

• f11 denotes the frequency of individuals identified at both occasion.

• f10 denotes the frequency of individuals identified once at the 1st occasion.

• f01 denotes the frequency of individuals identified once at the 2nd occasion.

• f00 denotes the frequency of unobserved individuals.

• ni denotes the number observed in source i; i = 1, 2.

Two main steps of sampling:

1. At the 1st occasion, some units are caught as a first sample of size n1 from the

target population. Then, all of the sampled units are marked or indicated uniquely

for future recapturing occasion. After that they are released back to mix with the

population. So the marked proportion is
n1

N
.

2. After some time, has elapsed a second sample of size n2 is chosen and it is clear that

this second sample composes of a number of marked units (f11), and unmarked

units (f01), where f11 + f01 = n2. Hence, the second marked proportion is
f11

n2
.

Let m2 = f11 be the number of observed individuals in both occasions. Under the

assumption of independence, the proportion of marked individuals in the second sample

is equal to the population proportion of marked individuals
m2

n2
=

n1

N
, the Lincoln-

Petersen estimator of N , can be obtained as:
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N̂LP =
n1n2

m2
(2.6)

and the variance of this estimator is provided as:

V ar(N̂LP) =
n1n2(n1 −m2)(n2 −m2)

m3
2

(2.7)

Although the Lincoln-Petersen estimator is a simple approach, this method requires

essential assumptions as follows:

1. The population is closed. It means the number of target population (N) is con-

stant.

2. It does not matter that each individual is marked, all individuals have the same

chance of being captured in each trapping occasion.

3. Marks are not lost and each individual is correctly identified on both occasions

and successfully matched.

4. It does not matter that each individual is marked, there are no effects on in-

dividual’s chances of being caught, so capture sample and recapture sample are

independent.

However, the Lincoln-Petersen estimator has the drawback that if there is no overlap

between sources or no marked individuals are trapped on the second occasion (m2 = 0),

the Lincoln-Petersen estimator for population size cannot be computed. A modified

form of this estimator is the Chapman estimator, which is giving by:

N̂CPM =
(n1 + 1)(n2 + 1)

(m2 + 1)
− 1. (2.8)

This estimator is less affected by small value of m2 and less biased than the Lincoln-

Petersen estimator. A variance estimate of the estimator is given in (2.9):

V ar(N̂CPM) =
(n1 + 1)(n2 + 1)(n1 −m2)(n2 −m2)

(m2 + 1)2(m2 + 2)
. (2.9)

Example 1: Two sources. Sekar and Deming (1949) used the capture-recapture

method to estimate the birth and death rates for residents of an area known as the

Singur Health Centre, near Calcutta, India by using two lists; 1) the registration list

(R) and 2) the interviews list (I) obtained from a complete house to house canvass. The

data can be represented with 2x2 contingency table as in Table 2.2.
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Table 2.2: Number of death in the Singur Health Centre

I-List Total
R-List Present Absent

Present 439 427 866
Absent 421 f00

Total 860 N

The estimate of the total number of deaths is N̂LP =
(860)(866)

439
= 1, 596.

2.3.2 Multiple mark

Multiple mark capture-recapture methodology is simply defined by the fact that the

target population is sampled more than two times over the period of study, also known as

multiple systems estimation. Suppose that m denotes the number of trapping occasions

over a period of study and let N be the size of target population, so that each individual

is indexed from 1, 2, 3, ..., n, n + 1, ..., N . It is assumed that all trapping occasions j

have all individuals in the population available for trapping, j = 1, 2, 3, ...,m, due to

the assumption of closed population. Hence, Xij is the indicator variable of individual

i observed on occasion j where

Xij =

{
1 if the ith individual is identified on the jth occasion

0 otherwise.

The capture-recapture history can be arranged in a matrix X and X = [Xij ]N×m or it

can easily be presented in the form of Table 2.3

X =



x11 x12 x13 . . . x1m

x21 x22 x23 . . . x2m

...
...

...
. . .

...

xn1 xn2 xn3 . . . xnm

x(n+1)1 x(n+1)2 x(n+1)3 . . . x(n+1)m
...

...
...

. . .
...

xN1 xN2 xN3 . . . xNm


N×m .

The matrix X composes of N rows corresponding to the individuals and m columns

for all trapping occasions. It consists of only the values of zeros and ones indicating

unidentified and identified individuals, respectively, during the study period. The first

n rows relate to the capture-recapture history of each individual that is caught at least

once over the given study period. The remaining rows (n+1, n+2, ..., N), which contain

only zeros, are unobserved and the number of these rows is unknown.
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Table 2.3: Capture-recapture history

Individual Occasion j Xi =
∑m

j=1Xij

i 1 2 3 . . . m

1 x11 x12 x13 . . . x1m x1

2 x21 x22 x23 . . . x2m x2

3 x31 x32 x33 . . . x3m x3
...

...
...

...
. . .

...
...

n xn1 xn2 xn3 . . . xnm xn
n+ 1 x(n+1)1 x(n+1)2 x(n+1)3 . . . x(n+1)m xn+1

n+ 2 x(n+2)1 x(n+2)2 x(n+2)3 . . . x(n+2)m xn+2
...

...
...

...
. . .

...
...

N xN1 xN2 xN3 . . . xNm xN

Let Xi be the number of times that the ith individual was caught or identified over the

study period with m trapping occasions where Xi =
∑m

j=1Xij ; Xi = 0, 1, 2, ...,m as

can be seen from Table 2.3. The number of unobserved individuals remains to be the

unknown parameter of the study. Here, the random variable X is the main interest as

it generates the marginal frequency. Consequently, we let f1, f2, f3, ..., fm be the fre-

quencies of distinct individuals being identified exactly x times for over period of study,

x = 1, 2, 3, ...,m. Additionally, f0 denotes the frequency of unobserved individuals. The

population size N can be readily obtained as N = f0 + f1 + f2 + f3 + ...+ fm = f0 + n

when n =
∑m

j=1 fj is the total number of observed individuals.

Example 2: Multiple marks. Table 2.4 shows the example of the capture-recapture

history for each individual of 38 deer mice with six capture occasions (Amstrup et al.

(2005)). It seems that assuming a closed population is reasonable since the duration

of survey is short. It can be seen that the first individual was caught in all trapping

occasions leading to x1 = 6. The second individual was trapped in the first trapping,

and was recaptured again in the forth, fifth and sixth occasion; x2 = 4. Similarly, for

the remaining distinct individuals. Note that (0,0,0,0,0,0), representing an individual

not caught in any of the six trapping occasions, does not appear. Therefore, the number

of identifications with x = 0 is unknown. The frequency of counts is summarized in

Table 2.5. Since the number of trapping occasions is fixed and known prior to the

capture-recapture sampling, the largest observed countm is known. The observed counts

1, 2, 3, ...,m provide f1, f2, f3, ..., fm. However, the frequency of unidentified individuals

(f0) is unknown and becomes important part for estimation.

Generally, there are two types of structured data in capture-recapture studies; 1) the

discrete time data or capture-recapture data with different sources and 2) the continuous

time data or repeated counting data. In the first type, recaptured identifications can

occur only at specific time points within the study period, above is an example. The

Binomial distribution, B(m, p), is a reasonable option as a basic model for the capture
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Table 2.4: Capture-recapture history of 38 deer mice with six cature occasions

Individual Occasion Xi =
∑t

j=1Xij

i 1 2 3 4 5 6

1 1 1 1 1 1 1 6
2 1 0 0 1 1 1 4
3 1 1 0 0 1 1 4
4 1 1 0 1 1 1 5
5 1 1 1 1 1 1 6
6 1 1 0 1 1 1 5
7 1 1 1 1 1 0 5
8 1 1 1 0 0 1 4
9 1 1 1 1 1 1 6
10 1 1 0 1 1 1 5
11 1 1 0 1 1 1 5
12 1 1 1 0 1 1 5
13 1 1 1 1 1 1 6
14 1 0 1 1 1 0 4
15 1 0 0 1 0 0 2
16 0 1 0 0 1 0 2
17 0 1 1 0 0 1 3
18 0 1 0 0 0 1 2
19 0 1 0 1 0 1 3
20 0 1 1 0 1 0 3
21 0 1 0 1 0 1 3
22 0 1 0 0 0 1 2
23 0 1 0 0 1 1 3
24 0 0 1 0 0 0 1
25 0 0 1 1 1 1 4
26 0 0 1 0 1 1 3
27 0 0 1 1 1 1 4
28 0 0 1 0 1 0 2
29 0 0 1 0 0 0 1
30 0 0 0 1 0 0 1
31 0 0 0 1 1 1 3
32 0 0 0 1 1 0 2
33 0 0 0 0 1 0 1
34 0 0 0 0 1 0 1
35 0 0 0 0 1 0 1
36 0 0 0 0 0 1 1
37 0 0 0 0 0 1 1
38 0 0 0 0 0 1 1

Table 2.5: The frequency count of deer mice

x 0 1 2 3 4 5 6 n

fx ? 9 6 7 6 6 4 38
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probability of the random variable X. In this case, m is the number of trapping occasions

and p is the probability that each individual is identified on each trapping occasion.

Another structure of capture-recapture data occurs if recaptured identifications can

occur any time during the study period and individuals are identified with probability

1 − p0 repeatedly by the same mechanism. In this case, the number of times that an

individual is identified over a given period of the study takes the value 1, 2, 3, .... As a

consequence, it is impossible to know the largest possible count of identifications such

as how often patient coming to a treatment institution for the treatment of disease.

Patients can usually go to the treatment institution to receive the treatment any time.

It might be impossible to determine the largest contact count during the treatment

period (see more examples in Hay and Smit (2003) and Norris and Pollock (1996)). For

this particular type of data, the Poisson distribution is usually chosen to fit the capture

probability (Böhning (2008)).

2.3.3 Multiple sources

The capture-recapture data can be obtained from the listing and recording systems in

multiple sources (more than 2 sources) where the data are identified at different sources

and matched with each others. These are now widely used in several areas. The lists

of identified individuals from three sources can be merged and summarized as shown in

Table 2.6

Table 2.6: The three-source situation

Source 1 Source 3
1 0

Source 2 Source 2
1 0 1 0

1 f111 f101 f110 f100

0 f011 f001 f010 f000 =?

where 0 and 1 indicates an unidentified and identified individual, respectively. Similar

to two sources and multiple marks,

f0 = f000 is the unobserved frequency and unknown.

f1 = f100 + f010 + f001

f2 = f110 + f101 + f011

f3 = f111

n =
∑

i

∑
j

∑
k fijk − f000 = f1 + f2 + f3; i, j, k ≥ 0.

Therefore, the target population size can be calculated as:
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Figure 2.1: The numbers of hospitalizations captured and overlaps in the three
lists (R, H and T)

N = f0 + f1 + f2 + f3 = f0 + n.

Example 3: Three sources. Jouanjus et al. (2012) studied about addictive behaviours

that are often assorted with hidden characteristics. This target population is difficult

to detect, hence multiple sources were used to search these cases and crossed to identify

eligible hospitalizations. A capture-recapture method was used to estimate the frequency

of hospitalizations related to drug abuse. The data are shown in Figure 2.1, where

• Source 1 : Spontaneous reports of drug of abuserelated disorders (NotS), called R

list

• Source 2 : Computerised hospital database Programme de Medicalisation des Sys-

temes dInformation (PMSI), called H list

• Source 3 : Toxicological analyses (TA), called T list.

Table 2.7: Capture-recapture history with three sources of hospitalizations re-
lated to drug abuse study

Source Frequency count
NotS PMSI TA fRHT
(R) (H) (T)

0 0 0 ?
1 0 0 10
0 1 0 943
0 0 1 426
1 1 0 4
1 0 1 1
0 1 1 122
1 1 1 3

The capture-recapture history can be written as Table 2.7 and the associated frequency

counts of identified cases can be accounted as
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f0 = f000 is unknown.

f1 = f100 + f010 + f001 = 10 + 943 + 426 = 1, 379

f2 = f110 + f101 + f011 = 4 + 1 + 122 = 127

f3 = f111 = 3, where n = f1 + f2 + f3 = 1, 509

The frequency of these counts is summarized in Table 2.8 and it is clear that the number

of hospitalizations that were not seen f0 is unobservable.

Table 2.8: The frequency table of hospitalizations

x 0 1 2 3 n

fx ? 1,379 127 3 1,509

Example 4: Four sources. Bruno et al. (1994) used multiple sources to identify known

cases of diabetes among the residents of the area of Casale Monferrato in northern Italy

on October 1, 1988. There are four sources and the data are shown in Table 2.9, where

• Source 1 : Diabetic clinic and/or family physician

• Source 2 : Hospital discharges

• Source 3 : Prescriptions

• Source 4 : Reagent strips and insulin syringes.

Table 2.9: Data from prevalent cases of known diabetes mellitus for resident in
Italy

Ascertainment Source 1
yes no

Source 2 Source 2
yes no yes no

yes Source 4 yes 58 46 14 8
no 157 650 20 182

Source 3
no Source 4 yes 18 12 7 10

no 104 709 74 ?

From Table 2.9, the frequency counts of identified cases can be calculated as

f0 = f0000 is unknown.

f1 = f1000 + f0100 + f0010 + f0001 = 709 + 74 + 182 + 10 = 975

f2 = f1100 + f1010 + f1001 + f0110 + f0101 + f0011
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= 104 + 650 + 12 + 20 + 7 + 8 = 801

f3 = f1110 + f1101 + f1011 + f0111 = 157 + 18 + 46 + 14 = 235

f4 = f1111 = 58

n = f1 + f2 + f3 + f4 = 2, 069.

The frequency distribution for these counts is summarized in Table 2.10 and the number

of diabetes that were not seen f0 need to be estimated.

Table 2.10: The frequency count of diabetes

x 0 1 2 3 4 n

fx ? 975 801 235 58 2,069

Since the population size consists of observed and unobserved units, N = n + f0, the

estimate of f0 leads to the estimate of population size N . Modelling and estimating

p0 is one of major concern for estimating the size N of a population according to N̂ =

n/(1− p̂0). Let px be described by some model, e.g. px = px(θ). Then, an estimate θ̂ of

the model parameter is derived. Hence, p0(θ̂) is obtained and leads to the estimate of

the population size N̂ = n/(1− p0(θ̂)) as well as the estimate of the hidden f̂0 = N̂ −n.

Some methods to estimate p0 and N are reviewed in Section 2.5.

2.4 The geometric model with truncation

The geometric distribution is a remarkably simple and flexible distribution. Although it

has been often ignored for modelling count distributions, it is popular in survival analysis

for life time data and also interesting through its memoryless property. Moreover, the

geometric provides a more flexible model than the Poisson due to the fact that it arises

as a mixture of the Poisson when the Poisson parameter is mixed with an exponential

distribution that allows for some heterogeneity in the count data (see Niwitpong et al.

(2013)).

The geometric distribution has a major interesting property that turns out to be useful

for the truncated process.

• Let (1− p)xp be the geometric for x = 0, 1, .... Then the zero-truncated geometric

is again a geometric having the form

(1− p)xp
1− p

= (1− p)x−1p (2.10)

for x = 1, 2, ....
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There is suspicion that counts of one are inflated. Hence, it might be appropriate to

exclude ones from the estimation. The density is a geometric again.

• Let (1−p)x−1p be the geometric for x = 1, 2, .... Then the one-truncated geometric

is again a geometric of the form

(1− p)x−1p

1− p
= (1− p)x−2p (2.11)

for x = 2, 3, ....

This truncation process can be continued with higher counts also leading to a geometric

density. The first proposed model is based on the one-truncated geometric distribution

that excludes the count of ones for the estimation and uses only the other counts for

estimating p. Then use the estimate p̂ of p to find the estimate of population size:

N̂ =
n

1− p̂0
=

n

1− p̂
, since p0 = (1− p)0p = p. (2.12)

2.5 Overview of estimators

Classical capture-recapture methods usually focus on finding some appropriate models

for the count probability distribution. Various estimators for estimating the population

size have been proposed. Although there are two types of data sets as mentioned in

Section 2.3, the Poisson model is reasonably chosen for the probability density function

of the model because the binomial distribution can be widely approximated by a Pois-

son distribution if the number of trapping occasions m is large with the small success

probability. In this section, therefore, the majority of estimators based on homogeneous

Poisson, homogeneous geometric and heterogeneous models are examined. Maximum

likelihood estimator and Good-Turing estimator are estimators for the homogeneous

Poisson and geometric model whereas Chao’s lower bound estimator and Zelterman

estimator are proposed for heterogeneous models.

2.5.1 Horvitz-Thompson’s estimator (N̂HT)

Horvitz and Thompson (1952) introduced a basic technique for estimating means, to-

tals and proportions of a finite population for any sampling design, with or without

replacement. This approach is applied for capture-recapture studies to estimate the

size N of target population. Let Xi be the identifying indicator variable of the ith

unit in the population, where Xi = 1 if ith individual is identified, otherwise Xi = 0.

Consequently,
∑N

i=1Xi = n is the number of observed units. Suppose that each unit

is observed independently with identical probability 1 − p0 hence the probability of
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observing exactly n units is the Binomial distribution. Moreover, we can note that

N(1− p0) is the expected number of observed cases which can be estimated by n which

E(
∑N

i=1Xi) = N(1− p0) = n. This leads to the simple equation to estimate the popu-

lation size N . We can write

N = Np0 +N(1− p0) ≈ Np0 + n. (2.13)

This equation can be solved for estimating N . Consequently, the Horvitz-Thompson

Estimator is provided in the form:

N̂HT =
n

1− p0
. (2.14)

For more detail, see Bishop et al. (1975) and Van der Heijden et al. (2003a). However,

p0 is regularly unknown and need to be estimated for using in (2.14). There are many

ways to estimate p0 that will be discussed in following subsections.

2.5.2 Maximum likelihood estimator (N̂MLE)

The maximum likelihood method is the well-known traditional technique used to derive

estimators (see Casella and Berger (2008)). Let X1, X2, ..., Xn be a random sample with

probability density function f(x; θ), the likelihood function is defined as

L(θ) =
n∏
i=1

f(xi; θ). (2.15)

The maximum likelihood estimator (MLE) for unknown parameter θ can be obtained

by maximizing the function L(θ), differentiation L(θ) with respect to θ and equated to

zero. For capture-recapture study, the zero-truncated count data are considered because

zeroes have not been observed in the identifying systems as mentioned in Section 2.1.

Let Xi be the number of times that ith individual was identified over the study period,

where i = 1, 2, 3, ..., n. Count data X is often modelled by the Zero-truncated Poisson

Distribution with probability function

Po+(x;λ) =
exp(−λ)λx

x!(1− exp(−λ))
; λ > 0, x = 1, 2, 3, ... (2.16)

Additionally, in the sense of frequency data, let fx denotes the frequencies of units

observed x times over the study period, where x = 1, 2, . . . ,m and
∑m

x=1 fx = n. Then,

the likelihood function for this zero-truncated count density is

L (λ) =
m∏
x=1

(
Po (x, λ)

1− exp (−λ)

)fx
, x = 1, 2, 3, ...,m. (2.17)
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Therefore, the log-likelihood function of (2.17) is

l (λ) = −nλ+ log λ
m∑
x=1

xfx −
m∑
x=1

fx log(x!)− n log (1− exp (−λ)) . (2.18)

We equate the derivative of the log-likelihood to zero and get an expression for the

maximum likelihood estimate λ̂ of λ as

∂l

∂λ
= −n+

1

λ

m∑
x=1

xfx −
n exp(−λ)

1− exp(−λ)
= 0

1

n

m∑
x=1

xfx =
λ

1− exp(−λ)
.

x̄ =
λ̂

1− exp(−λ̂)
or λ̂ = x̄(1− exp(−λ̂)). (2.19)

Clearly, there is no close form solution for the maximum likelihood estimate λ̂ in (2.19).

We can find the approximate value of λ̂ by a Taylor series approximation as follows

λ̂ = 2

(
x̄− 1

x̄

)
. (2.20)

Another method to solve λ̂ is an iterative method via EM algorithm. The likelihood

function (2.17) can be maximized with algorithm between the E-Step and the M-Step:

(i) Expectation (E-Step)

The expected value of unobserved case f0 given the observed variables and the current

estimates of likelihood parameter are derived in this step.

f̂0 = E(f0|f1, f2, ..., fm;λ)

= p0N

= exp(−λ)(n+ f̂0)

(2.21)

Hence,

f̂0 =
np0

1− p0
=

n exp(−λ)

1− exp(−λ)
(2.22)

given λ and n.

(ii) Maximization (M-Step)

In this step, the unobserved, complete data likelihood function is maximized by using

observed cases (n) and unobserved cases (f0) that is imputed from initial value in first
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iteration and from using f̂0 from E-Step for next iteration. The estimate of λ in M-Step

is

λ̂MLE =
1

n+ f0
(0f0 + 1f1 + 2f2 + ...+mfm) =

1

N̂

m∑
x=0

xfx (2.23)

where n =
∑m

x=1 fx is the total number of all observed individuals and the conditional

upon f0 = f̂0. The EM-algorithm requires iterating between E-Step and M-Step until

convergence in λ̂MLE and f̂0. Moreover, the initial value is an important value to start

the procedure; so it should be selected suitably and carefully. Frequently, the initial value

is simply set by a sample mean. As a result of replacing λ̂MLE in Horvitz-Thompson

approach in (2.14), the population size estimator with regard to maximum likelihood is

N̂MLE P =
n

1− exp(−λ̂MLE)
. (2.24)

The variance of (2.24) can be estimated by

V̂ ar(N̂MLE P) =
N̂MLE P(

exp

( ∑
xfx

N̂MLE P

)
−
∑
xfx

N̂MLE P

− 1

) . (2.25)

(see Böhning et al. (2005); Chao and Lee (1992); Meng (1997); Viwatwongkasem et al.

(2008)).

Here, we consider maximum likelihood estimation under the geometric model. We as-

sume that count dataX is modelled by a geometric distribution with probability function

px = (1− p)xp ; x = 0, 1, 2, ...

and the zero-truncated geometric likelihood is of the form

L(p) =

m∏
x=1

(
(1− p)x−1p

)fx
.

The log-likelihood function is

logL(p) = log(1− p)
m∑
x=1

fx(x− 1) + log p

m∑
x=1

fx. (2.26)

To find the maximum likelihood estimator (MLE) of unknown parameter p, differentia-

tion of (2.26) with respect to p is equated to 0. This leads to

∂l

∂p
= −

∑m
x=1 fx(x− 1)

1− p
+

∑m
x=1 fx
p

= 0

p̂ =
n

S
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Hence, under the assumption of zero-truncated geometric model, the population size

estimator with the maximum likelihood approach is

N̂MLE G =
n

1− n/S
(2.27)

where S =
∑m

x=1 xfx. The variance estimation of the MLE G in (2.27) can be estimated

as

V̂ ar(N̂MLE G) =
S2n2

(S − n)3
. (2.28)

(see Niwitpong et al. (2013)).

2.5.3 Turing estimator (N̂T)

Initially, Turing estimation is formulated to estimate the number of classes or species of

animals which is defined as the sum of probabilities of observed classes. This estimator

can also be applied to estimate the total number of populations. Let fx be the frequency

of individuals detected exactly x times, x = 0, 1, 2, ...,m where m is the largest observed

count. The total number of observed cases in the sample is n =
∑m

x=1 fx and the total

number of captured cases can be defined as

S = f1 + 2f2 + 3f3 + . . .+mfm =
m∑
x=1

xfx.

Let px denote the probability that individual identified exactly x times. Assume that

X has a homogeneous Poisson distribution with parameter λ so p0 = exp(−λ) and

p1 = λ exp(−λ). We can write p0 as

p0 = e−λ =
e−λλ

λ
=

p1

E(X)
. (2.29)

The estimate of p0 can be calculated from observed frequency as follows

p̂0 =
f1/N

S/N
=
f1

S
. (2.30)

Thus, if we plug p̂0 into the Horvitz-Thompson estimator, Turing estimator for estimat-

ing the population size is given by

N̂T P =
n

1− f1/S
. (2.31)

The variance for Turing estimator can be estimated as

V̂ ar(N̂T P) =
nf1/S

(1− f1/S)2
+

n2

(1− f1/S)4

(
f1(1− f1/N)

S2
+
f2

1

S3

)
. (2.32)
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Here, Turing estimation under geometric homogeneity is considered. Let X have a

marginal pmf following the geometric distribution with parameter p where p0 = p, p1 =

(1− p)p and E(X) =
1− p
p

, so that

p1

E(X)
=

p(1− p)
(1− p)/p

= p2, (2.33)

√
p1

E(X)
= p = p0.

The estimate of p0 can be calculated from observed frequency as follows

p̂∗0 =

√
f1

S
(2.34)

Therefore, the extension of Turing estimator for estimating the population size under

geometric model is given by

N̂T G =
n

1−
√
f1/S

. (2.35)

The variance of N̂T G can be derived as

V̂ ar(N̂T G) =
n
√
f1/S(

1−
√
f1/S

)2 + n2

 S + f1

4S2
(

1−
√
f1/S

)4

 . (2.36)

2.5.4 Chao’s lower bound estimator (N̂C)

The previous estimators are developed under the homogeneous Poisson model. However,

it seems to be rarely met in practice and it is more suitable to incorporate heterogeneity.

It is more reasonable to assume that the target population may be composed of a variety

of subgroups. Chao (1987) proposed a lower bound for the population size N under

the heterogeneous Poisson population. The capture probability is assumed to follow a

Poisson mixture:

px =

∫ ∞
0

p (x|λ) q (λ) dλ,

px (x|λ) =

∫ ∞
0

e(−λ)λx

x!
q (λ) dλ, (2.37)

where q(λ) represents an arbitrary density of the model parameter λ in the population.

Chao’s estimator is derived in the sense of a nonparametric way by using the Cauchy-

Schwarz inequality of any two random variables X and Y

[E(XY )]2 ≤ E
(
X2
)
E
(
Y 2
)
. (2.38)

It is assumed that X = u(λ) and Y = v(λ) are function in λ where λ is assumed to be a

continuous random quantity with density q(λ) defined on the support (0,∞). We have
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that (∫ ∞
0

u(λ)v(λ)q(λ)dλ

)2

≤
(∫ ∞

0
u(λ)2q(λ)dλ

)(∫ ∞
0

v(λ)2q(λ)dλ

)
(2.39)

Let u(λ) = (e−λλx−1)
1
2 and v(λ) = (e−λλx+1)

1
2 . We have that u(λ)v(λ) = e−λλx. Then,

the inequality in (2.39) can be written as(∫ ∞
0

e−λλxq(λ)dλ

)2

≤
(∫ ∞

0
e−λλx−1q(λ)dλ

)(∫ ∞
0

e−λλx+1q(λ)dλ

)
,

or(
x!

x!

∫ ∞
0

e−λλxq(λ)dλ

)2

≤
(

(x− 1)!

(x− 1)!

∫ ∞
0

e−λλx−1q(λ)dλ

)(
(x+ 1)!

(x+ 1)!

∫ ∞
0

e−λλx+1q(λ)dλ

)
,

or

(x!px)2 ≤ (x− 1)!px−1(x+ 1)!px+1,

and finally
xpx
px−1

≤ (x+ 1)px+1

px
. (2.40)

Replacing the probability px by their associated observed frequency specifically, for

x = 1, leads to Chao’s inequality p0 ≥
p2

1

2p2
. The lower bound for the estimate of the

number of unobserved units is provided as

f̂0 =
f2

1

2f2
(2.41)

where the inequality f̂0 ≤ f0 will hold on in its expected value asymptotically. Finally,

adding the estimator f̂0 to the number of observed cases n leads to Chao’s lower bound

estimator as

N̂C P = n+
f2

1

2f2
. (2.42)

Chao also provided an approximate variance formula for estimator in (2.42) which is

given as

V̂ ar(N̂C P) =

(
1

4

)
f4

1

f3
2

+
f3

1

f2
2

+

(
1

2

)
f2

1

f2
. (2.43)

It is interesting to note that Chao’s lower bound estimator is simple to calculate, uses

only f1 and f2. It represents lower bound estimates if heterogeniety based on Poisson

is present and a mixing distribution is not required to be specified and to be estimated.

Hence it is a truly non-parametric way (see Böhning (2010); Böhning et al. (2013b)).

However, model selection is difficult due to the absence of the likelihood-based goodness

of fit statistics.

Now Chao’s lower bound estimator is considered under a geometric heterogeneity to

estimate f0 (see Niwitpong et al. (2013)). Let g(x|p) be the geometric density with
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parameter p and k(p) is an arbitrary density of the model parameter p in the target

population. The mixture geometric probability density is

qx(p) =

∫ 1

0
g(x|p)k(p)dp =

∫ 1

0
{(1− p)xp} k(p)dp.

The moment inequality under the Cauchy-Schwarz inequality is

[E(XY )]2 ≤ E
(
X2
)
E
(
Y 2
)
.

Let X2 = p and Y 2 = p(1− p)2, so the inequality can be given as

[E(XY )]2 ≤ E
(
X2
)
E
(
Y 2
)

[E(p(1− p))]2 ≤ E(p)E
[
p(1− p)2

]
E(p) ≥ [E(p(1− p))]2

E [p(1− p)2]
.

Replacing expected values by frequencies leads to

f0 =
f2

1

f2
(2.44)

and to Chao’s lower bound estimate

N̂C G = n+
f2

1

f2
. (2.45)

A variance estimate of N̂C G in (2.45) can be found as

V̂ ar(N̂C G) =
f4

1

f3
2

+
4f3

1

f2
2

+
f2

1

f2
. (2.46)

2.5.5 Zelterman’s estimator (N̂Z)

Zelterman (1988) proposed a series of robust estimators of the parameter λ under the

zero-truncated Poisson probability, Po+(x;λ) = exp(−λ)λx

x!(1−exp(−λ)) . Zelterman’s estimator

is very popular and has a simple expression and is robust under potential unobserved

heterogeneity. It is frequently used in socio-economical applications and illicit drug use

research in the social sciences (see Navaratna et al. (2008); Böhning (2010); Farcomeni

(2017)). By using Horvitz-Thompson approach to estimate population size; N̂ = n
1−p̂0 =

n
1−exp(−λ) , the estimate of λ is required. Although the Poisson assumption is frequently

invalid in reality, it can be assumed that homogeneity of Poisson probability can hold

for small range of count variable from x to x + 1. For example, singletons (f1) and

doubletons (f2) follow a homogeneous Poisson distribution whereas other counts might

be arbitrarily distributed. Therefore, the neighbouring frequencies fx and fx+1 can be
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used to estimated a parameter λ by considering the ratio

Po+(x+ 1;λ)

Po+(x;λ)
=

exp(−λ)λx+1/(x+ 1)!(1− exp(−λ))

exp(−λ)λx/x!(1− exp(−λ))
=

λ

x+ 1
.

The parameter λ can be written as

λ =
(x+ 1)Po+(x+ 1;λ)

Po+(x;λ)
. (2.47)

Po+(x;λ) and Po+(x+1;λ) are replaced by the empirical relative frequencies fx/N and

fx+1/N , respectively to obtain an estimator for λ. Thus, we have that

λ̂ =
(x+ 1)fx+1/N

fx/N
=

(x+ 1)fx+1

fx
. (2.48)

Zelterman claimed that individuals never seen should be more similar to rarely seen

individuals than individuals captured many times hence he suggested to use x = 1 and

λ̂ =
2f2

f1
. In addition, Kuhnert and Böhning (2009) supported the idea of using x = 1

by giving 2 reasons. First is that using x = 1 gives the closest vicinal frequencies (f1 and

f2) to estimate the target parameter f0. Second is that the majority of counts usually

fall into count of ones and twos in many applications. Therefore, the counts larger than

two do not affect the estimator. As the result, Zelterman’s estimator for estimating the

population size is

N̂Z P =
n

1− exp(−2f2
f1

)
. (2.49)

The variance estimate for the Zelterman’s estimator in (2.49) is

V̂ ar(N̂Z P) = nG(λ̂)

[
1 + nG(λ̂)λ̂2

(
1

f1
+

1

f2

)]
, (2.50)

where G(λ̂) =
exp(−λ̂)

(1− exp(−λ̂))2
and λ̂ =

2f2

f1
(see Böhning (2008)).

Here, Zelterman’s estimator based on the geometric distribution is considered. Let

g(x|p) = gx = (1 − p)xp be the geometric distribution with parameter p where g0 = p.

The zero-truncated geometric distribution is

g+
x =

gx
1− g0

=
(1− p)xp

1− p
= (1− p)x−1p (2.51)

and the ratio of neighbouring zero-truncated geometric distribution can be calculated

as
g+
x+1

g+
x

=
(1− p)x+1p/(1− p)
(1− p)xp/(1− p)

= 1− p. (2.52)
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Replacing g+
x and g+

x+1 in (2.52) by the respective relative frequencies

fx+1/N

fx/N
= 1− p̂, (2.53)

and it can be written as

1− p̂ =
fx+1

fx
= 1− ĝ0. (2.54)

Using a similar reasoning as for the Poisson distribution above, x = 1 is chosen to

estimate g0 hence 1 − ĝ0 =
f2

f1
. Using Horvitz-Thompson approach, the Zelterman

estimator for estimating population size based on geometric distribution is given as

N̂Z G =
n

1− ĝ0
=

n

f2/f1
=
nf1

f2
. (2.55)

A variance estimate for the Zelterman estimator under geometric distribution in (2.55)

is

V̂ ar(N̂Z G) =
nf1(f1 − f2)

f2
2

+ n2

(
f1

f2
2

+
f2

1

f3
2

)
(2.56)

(see Anan (2016)).

2.6 Application concerning capture-recapture models

Capture-recapture methods are applied in many research areas to estimate the unknown

population size. In this section, some examples are examined in order to illustrate an

application of all estimators above, as well as to show that some data sets might have

the problem of one-inflation.

2.6.1 Snowshoe hares in north-central Alberta

Keith and Meslow (1968) present data on the number of times individual snowshoe

hares were captured and recaptured from live trapping at six different square mile study

areas during 1962-1967 in north-central Alberta. Regular trapping periods included

midwinter, spring and summer and the frequency counts are shown in Table 2.11.

Table 2.11: The frequency count of snowshoe hares

f1 f2 f3 f4 f5 f6 n

Midwinter 72 19 2 1 1 0 95
Spring 109 45 19 5 3 0 181
Summer 184 55 14 4 4 0 261

The estimators based on the Poisson and geometric model in Section 2.5 are applied to

estimate the abundance of snowshoe hares. The results are shown in Table 2.12. It can



30 Chapter 2 Review of capture-recapture

be seen that all estimators under the geometric distribution give larger population sizes

than estimators under the Poisson, while the smallest population size is given by Turing

under the Poisson model for all seasons.

Table 2.12: Estimated sizes of a snowshoe hares population in north-central
Alberta based on Poisson and geometric model

Estimator Poisson Geometric
Midwinter Spring Summer Midwinter Spring Summer

MLE 249 343 578 396 479 875
Turing 224 289 516 394 467 880
Chao 231 313 569 368 445 877
Zelterman 232 322 580 360 438 873

2.6.2 Cottontail rabbits: data from known size experiment

Edwards and Eberhardt (1967) study the capture-recapture data of cottontail rabbits

from an experiment with known size of population. They penned 135 wild cottontail

rabbits in a four-acre rabbit proof enclosure and conducted live trapping for 18 sequential

nights. The frequencies of capture-recapture were recorded as shown in Table 2.13 (see

more detail in Chao (1987)).

Table 2.13: The frequency count of cottontail rabbits

f1 f2 f3 f4 f5 f6 f7 f8 ... f18 n

43 16 8 6 0 2 1 0 ... 0 76

Table 2.14: Estimated sizes of cottontail rabbits population based on the Poisson
and geometric model

Estimator Estimated Population Size
Poisson Geometric

MLE 126 164
Turing 110 169
Chao 134 192
Zelterman 145 205

In this case of study, the target population size N is known; 135 cases. There were

only 76 caught individuals within 18 nights of trapping occasions; n = 76. It is clear

that 59 individuals were unobserved; f0 = 59. The estimated values of the population

size from estimators discussed in Section 2.5 are shown in Table 2.14. It is clearly seen

that Poisson model is more suitable than the geometric model. We now consider only

estimators based on the Poisson model and it is found that Chao’s estimator yields

a remarkable reasonable estimate which is almost equal to the true population size.

Zelterman’s estimator gives an overestimation whereas others show underestimation.
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2.6.3 Illegal immigrants in the Netherlands

Van der Heijden et al. (2003a) presented the capture-recapture data of illegal immigrants

in the Netherlands from police records in order to estimate population size by using the

truncated Poisson regression model. These records contain information on the number

of times each illegal immigrant was apprehended by the police according to Table 2.15.

Table 2.15: The frequency count of illegal immigrants

f1 f2 f3 f4 f5 f6 n

1,645 183 37 13 1 1 1,880

It can be seen from Table 2.16 that all estimators under the Poison model give smaller es-

timates than the geometric model. Additionally, Zelterman’s estimator gives the largest

population size for under both models whereas the smallest estimation is given by Turing

and MLE under the Poisson and geometric model, respectively.

Table 2.16: Estimated sizes of illegal immigrants population based on the Pois-
son and geometric model

Estimator Estimated Population Size
Poisson Geometric

MLE 7,722 13,469
Turing 7,608 14,208
Chao 9,274 16,668
Zelterman 9,425 16,900

2.6.4 Methamphetamine use in Thailand

Rocchetti et al. (2011) show the data of drug abuse for 61 health centers in the Bangkok

metropolitan region from the Office of the Narcotics Control Board (ONCB). Table 2.17

presents the number of methamphetamine users for each count of treatment episodes

(see more detail in Böhning et al. (2004)). In this study case, the maximum observed

frequency was 10 and the total number of methamphetamine users is estimated.

Table 2.17: The frequency of Methamphetamine use in Thailand

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 n

3,114 163 23 20 9 3 3 3 4 3 3,345

From Table 2.18, it can be seen that the MLE based on Poisson model gives the small-

est number of methamphetamine users whereas Zelterman’s estimator under geometric

model provides the largest number.
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Table 2.18: Estimated sizes of methamphetamine users in Bangkok based on
the Poisson and geometric model

Estimator Estimated Population Size
Poisson Geometric

MLE 16,802 30,113
Turing 19,395 37,039
Chao 33,091 62,836
Zelterman 33,654 63,904

2.6.5 Microbial diversity in the Gotland Deep

Rocchetti et al. (2011) show the data on microbial diversity that stem from a recent

count by Stock et al. (2009) as shown in Table 2.19. The maximum observed frequency

is 53 and the number of observed individuals (n) is 83. In this case the number of

different genes (DNA sequences) N in particular environments is estimated by a variety

of estimators under the Poisson and geometric model. The results are shown in Table

2.20.

Table 2.19: The frequency of Microbial diversity in the Gotland Deep

f1 f2 f3 f4 f6 f8 f9 f10 f11 f12 f13 f16 f17 f18 f20 f29 f42 f53

48 9 6 2 2 2 1 2 1 1 1 2 1 1 1 1 1 1

It is clear from Table 2.20 that Turing is estimator based on the Poisson gives the lowest

estimate of microbial diversity whereas Zelterman’s estimator under the geometric model

provides the highest number of microbial diversity.

Table 2.20: Estimated microbial diversity in the Gotland Deep based on the
Poisson and geometric model

Estimator Estimated Population Size
Poisson Geometric

MLE 105 105
Turing 95 128
Chao 211 399
Zelterman 266 443

It can be clearly noticed from above applications that there can be large differences

between the results of estimating population size from different estimators based on

different models. Therefore, the important key for estimating a target population size

is the capture-recapture model that we use to fit the data. As it is mentioned in the

previous section, the basis distributions for capture-recapture are Poisson and binomial

models. However, a violation of homogeneous modelling have been widely discussed as

it leads to bias in estimation. A variety of mixture models are offered for estimating
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population size with heterogeneity. As a consequence, the model selection plays a crucial

role for a process of estimation. The next section will provide a graphical device to

investigate count data modelling.

2.7 The ratio plot

Statistical graphics are a fundamental and essential tools for statistical data analysis

although they are often overlooked. Graphs are simple instruments for preliminary ex-

ploration of a dataset to perceive and understand the features and structure of data. It

also provides insight into influential aspects of statistical inference such as invalid dis-

tributional assumptions and latent patterns. Graphs can assess quickly and efficiently

these aspects. In capture-recapture study, the ratio plot has been developed as a graphi-

cal device for investigating models and choosing methods for estimating population size.

The basic concept is derived from a homogeneous Poisson distribution and expanded to

heterogeneous models by Böhning et al. (2013a).

Assume a count distribution px = px(λ) for the generation of fx. Here λ is reflecting

some parametric model such as the Poisson

px = P (X = x) =
e−λλx

x!

where λ > 0 is an unknown parameter. Then, using E(f0 | f1, ..., fm;λ) = Np0 and

a Horvitz-Thompson estimator of N in (2.5), we can find a Horvitz-Thompson-type

estimate of f0 via

f̂0 = n
p0(λ̂)

1− p0(λ̂)
.

In capture-recapture studies, the zero counts are truncated hence λ̂ is an estimate based

on the observed frequencies f1, ..., fm, potentially one of the estimates discussed in Sec-

tion 2.5, m being the largest observed count, and n = f1 + ... + fm. Consider the

ratios
px+1

px
=
px+1/(1− p0)

px/(1− p0)
=

λ

x+ 1
(2.57)

It can be seen from (2.57) that the ratio for the zero-truncated and non-truncated

distribution is identical and leading to

rx = (x+ 1)
px+1

px
= λ. (2.58)

The ratio rx is constant with varying count x. It is straightforward to estimate rx by r̂x

r̂x = (x+ 1)
fx+1

fx
(2.59)
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where fx is the frequency of count x and N = f0 + f1 + ... + fm. The graph x against

r̂x = (x + 1)
fx+1

fx
is called the ratio plot. It can be used as a diagnostic device for the

Poisson distribution. If the ratio plot shows a pattern of a horizontal line, it can be

taken as indicative for the presence of a Poisson distribution. Conversely, departures

from a horizontal line provide evidence for invalidation of Poisson homogeneity. For

constructing the ratio plot, both of fx+1 and fx should be positive. If any of the two is

zero, the ratio is undefined and we will give some blanks in ratio plot.

The occurrence of homogeneous Poisson distribution is rare in practice. If the ratio plot

is a monotone pattern, indeed λ is distributed with arbitrary density q(λ). Then

px =

∫ 1

0

e−λλx

x!
q(λ)dλ (2.60)

has the monotonicity property (Böhning et al. (2013a))

1
p1

p0
≤ 2

p2

p1
≤ 3

p3

p2
≤ ...

Hence, the ratio plot must be monotone increasing. If we consider as mixing density

q(λ) the exponential then

px =

∫ 1

0

e−λλx

x!

1

µ
e−λ/µdλ = (1− p)xp. (2.61)

The geometric distribution arises with event parameter p = 1/(1 + µ). For aspects of

heterogeneity modelling see also Dorazio and Royle (2003). Based on zero-truncated

and non-truncated geometric distribution, the ratio becomes

ŕx =
px+1

px
=
px+1/(1− p0)

px/(1− p0)
= 1− p (2.62)

which can be easily estimated by

r̂′x =
fx+1

fx
. (2.63)

Hence plotting r̂′x against x leads to the geometric ratio plot and would serve as a

diagnostic device for the geometric distribution.



Chapter 3

Estimators Based Upon

One-Truncated Geometric

Distribution

This chapter illustrates one-inflation and the ratio plot as a diagnostic device. It also

shows the inferior performance of classical estimators when data experience one-inflation.

To cope with this situation two new estimators of population size based on the one-

truncated geometric distribution are introduced. One is modified from Turing esti-

mation (T OT) and another one is developed from the maximum likelihood approach

(MLE OT). Simulation technique is applied to study the performance of proposed es-

timators. The simulation results show that the N̂T OT and N̂MLE OT can improve the

efficiency of the original estimators under one-inflation especially the N̂T OT has better

performance than N̂MLE OT. Overall, the proposed estimators give the smallest relative

bias, relative variance and relative mean square error for all conditions of study.

3.1 Introduction

Based on capture-recapture models, the identifying system generally provides a count

Xi > 0 of how many times the ith individual has been captured, for i = 1, 2, ..., n and

Xi = 0 denotes unobserved cases in the system for i = n+ 1, n+ 2, ..., N . Therefore, it

can be written that the total number of a target population (N) consists of an observed

part (zero-truncated) of size n and unobserved part of unknown size f0 = N −n as well

as N = n + f0. In order to investigate an estimate of N based on an available sample

X1, X2, ..., Xn, it is usually required to assume a model for the capture probability of X,

pi = Prob(X = i). Moreover, statistical models for biology and ecology assume that the

population can be divided into a finite number of classes. Each member of the population

is identified with one class. Here, we can say that the size of target population N is the

35
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total number of existing classes. A drawn sample from such a population will typically

have repeated observations of the various classes. That is, some may be observed only

once, other twice and so on, while many classes may not appear in the sample at all.

The frequency count data is {(x, fx) | x ≥ 1} where fx is the number of sample classes

of size x. For example the data set {(1, 10), (2, 4), (3, 2), ..., (7, 1)} has ten singletons,

four doubletons, ..., and one class occurring seven times in the sample. The problem is

how to estimate the total number of classes due to not all classes are observed. Some

classes remain undetected and the purpose is to provide an estimate of the frequency f0

of different classes that remain unobserved (see details in Bunge and Fitzpatrick (1993)

or Böhning and Vilas (2008)). The Poisson distribution is used as a basic model for

fitting capture-recapture data. However, it is recognised that many datasets in some

capture-recapture application have a large number of count ones or the data are in the

form of one-inflation. According to Farcomeni and Scacciatelli (2013) and Bunge et al.

(2012), this may be the results of the fact that: 1) the recapture probability of the same

individual is very low, 2) individuals may show trap avoidance after the first capture,

and 3) individuals may be assigned to incorrect class due to the error of matching leading

to an artificially inflated frequency of count one such as the data of microbial diversity.

As it was mentioned in Section 2.7, the ratio plot can be used as a diagnostic device

for the Poisson or geometric model. If the pattern of the ratio plot is a horizontal line,

it indicates the presence of the distribution of interest. The estimate for the Poisson

is r̂x = (x + 1)fx+1/fx whereas r̂′x = fx+1/fx is the estimate for the geometric. To

illustrate the ratio plot for one-inflation and the potential of large bias in the estimate

of Chao, we consider synthetic data of a population with size N = 15, 000 with 10, 000

counts generated from the Poisson with parameter 2 merged with 5, 000 extra-ones.

The frequency distribution is f0 = 1, 377, f1 = 7, 823, f2 = 2, 614, f3 = 1, 736, f4 =

894, f5 = 354, f6+ = 202. In this case, the observed sample size is n = 13, 623. We

ignore the fact that f0 is known and estimate it by the conventional Chao estimator

f̂0 = f2
1 /2f2 = 11, 706 and finally the population size estimate is N̂ = n+ f̂0 = 25, 329.

It can be seen clearly that Chao’s estimator gives a serious overestimate of the true

f0 = 1, 377 and N = 15, 000, respectively. The associated ratio plot and frequency chart

are presented in Figure 3.1. The ratio plot shows clear evidence of one-inflation since the

first point is far away from the best horizontal line. Here, the explanation is that there

are a lot more counts of one. Therefore, from this example, the ratio plot can be used

as a rough diagnostic device of one-inflation. Additionally, we can use the ratio plot for

the geometric to investigate the suitability of a geometric distribution with one-inflation

in a similar way. Note that the frequency chart (right panel in Figure 3.1) would not

allow an easy identification of one-inflation as the ratio plot does.
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Figure 3.1: Ratio plot (left panel) and corresponding frequency chart (right
panel) for N = 15, 000 simulated Poisson counts with mean 2 and 50% one-
inflation

3.2 Examples of applications with one-inflated count data

and ratio plot

Example 1 In the context of animal disease surveillance, the data on scrapie-infected

holdings in France are obtained from the French classical scrapie surveillance programme

(Vergne et al. (2012)). Here, we are interested in estimating the total number of hold-

ings with scrapie infection in France. Table 3.1 presents the frequency distribution of

detection among holdings where at least one infected animal was detected. Here fx rep-

resents the number of detected holdings with exactly x infected sheep. The total number

of detected holdings is n = 141. There are 121 holdings with exactly one infected sheep,

13 holdings with exactly two infected sheep and so forth.

Table 3.1: Zero-truncated count data of French scrapie-infected holding in 2006

x 1 2 3 4

fx 121 13 5 2

Figure 3.2 left panel shows the two ratio plots, the first one using r̂x = (x + 1)fx+1/fx

for the diagnosis of a Poisson and the second one using r̂′x = fx+1/fx for the diagnosis

of a geometric. It is clear that the ratio plot for a Poisson shows a monotone increasing

pattern, in particular, we can say that it does not show a horizontal line pattern. Hence
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Figure 3.2: Ratio plot (left panel) and corresponding frequency chart (right
panel) for the scrapie infected holding data

the Poisson model may not be suitable with this data whereas the ratio plot for a

geometric is much closer to a horizontal line. However, it should be noticed that the

first value of the geometric ratio plot r̂′1 = f2/f1 is very low if compared with the others

values in the graph. This could be explained by the fact that there are a lot more

counts of holding with one infected sheep due to one-inflation as corresponding with the

frequency chart in right panel. Therefore, it is indicated to use the geometric model

under one-inflation estimating the total number of holding with scrapie infection.

Example 2 Van der Heijden et al. (2014) study the prevalence of domestic violence

in the Netherlands for the year 2009 by using capture-recapture methods to estimate

the total population size of offenders. The perpetrator study is reported with the data

given in Table 3.2. The total number of observed offenders is n = 17, 662. There are

15,169 offenders identified exactly once in a domestic violence incident, 1,957 exactly

twice and so forth. From the data and the the frequency chart in Figure 3.3 right panel,

it is noticed that the observed data may be contaminated with errors due to inflation in

count one.

Table 3.2: The frequency count of a domestic violence incident in the Nether-
lands

x 1 2 3 4 5 6+

fx 15,169 1,957 393 99 28 16

In Figure 3.3 left panel, the two ratio plots are used to investigate the models appropriate

for the data, one using for the diagnosis of a Poisson and another using for the diagnosis

of a geometric. It appears to be clear that the Poisson model might not be appropriate

for these data due to the ratio plot for the Poisson does not show a horizontal line
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Figure 3.3: Ratio plot (left panel) and corresponding frequency chart (right
panel) for the domestic violence data

pattern. Contrarily, the ratio plot for the geometric is much closer to a horizontal line,

so it is interesting to use the geometric model fitting these data. Although, we cannot

see the signal of one-inflation from the ratio plot, it is suspected that the counts of ones

might be exceed due to the number of singletons is almost an amplitude higher than the

number of doubletons.

Example 3 Phage diversity analyses represent a new level of population diversity be-

yond what is encountered in other areas of microbial ecology. We illustrate the situation

for a contig spectrum from a swine fecal metagenome (Allen et al. (2011)). The contig

spectrum was generated using Circonspect via the CAMERA pipeline (Sun et al. (2011)).

Here, we are interested in estimating the taxonomic diversity of this metagenome. The

complete frequency count data is in Table 3.3.

Table 3.3: The frequency count data of phage metagenome

x 1 2 3 4 5 6 7 8 9 10 11 12 13
fx 4736 521 152 69 46 27 21 18 16 10 9 8 7

x 14 15 16 17 18 19 20 21 22 23 24 25 26
fx 6 5 4 4 3 3 3 3 2 2 3 3 1

x 27 28 29 30 31 32 33 34 35 36 37 38 39
fx 2 1 2 2 1 1 1 1 1 1 1 1 1

x 40 41 42 43 44 45 46 47 48 49 52 51 52
fx 1 1 0 1 0 1 0 0 0 0 0 0 1

The total number of observed taxa is n = 5, 703. Bunge et al. (2012) state: ”It is clear

even without graphing the data that the sample diversity is high: for instance, the num-

ber of singletons is almost an order of magnitude higher than the number of doubletons.
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Figure 3.4: Ratio plot (left panel) and corresponding frequency chart (right
panel) for the phage metagenome data

There is some basis to believe that the experimental and bioinformatic procedures that

generated these data are prone to erroneous inflation of the low frequency counts” (p.5).

Furthermore, it can be found in Figure 3.4 right panel that the number of singletons is

about nine times the number of doubletons and there is a long and sparse tail to the

right. This data shows an uncertainty in the low-frequency counts that is the salient

characteristics of data in microbial ecology. The ratio plots in Figure 3.4 left panel are

now considered and it is clear that the Poisson does not appear to be suitable with this

data as its plots depart from a horizontal line pattern whereas the geometric is much

closer to a horizontal line although some points are not that of a line pattern. Moreover,

one should notice that the lower counts such as count one, two, three and four are very

low when compared with other counts in the graph. Therefore, we can say that the ratio

plot shows evidence of one-inflation in these data. Besides one-inflation, another notice

should be considered that the error variance will increase with increasing counts.

The results of these examples show distinctly the effect of one-inflation in conventional

estimators. Hence, we should be concerned about how to cope with this problem. In this

chapter, we will focus on models specifically designed to estimate the size of a population

for one-inflated capture-recapture count data allowing for heterogeneity. We also provide

an inferential approach of estimators under one-inflation. These models and proposed

estimators are based upon the geometric distribution.

3.3 One-truncated geometric model

Under the assumption that the frequency of count one is inflated, some estimators are

developed under the one-truncated geometric model. The first proposed estimator is
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provided in form of a Turing estimator and another one is developed by the maximum

likelihood approach.

3.3.1 One-truncated Turing estimator (N̂T OT)

Let fx be the frequency of individuals identified exactly x times. Also, n =
∑m

x=1 fx is

the total number of observed cases in the sample, and S = f1 + 2f2 + 3f3 + . . .+mfm =∑m
x=1 xfx is the total number of captured cases. The estimate of p0 and population size

N can be calculated from the observed frequencies as follows:

p̂0 =
f1/N

S/N
=
f1

S

N̂T =
n

1− f1/S
.

This is the conventional Turing estimator developed under the Poisson model. Under

the geometric distribution, let px = (1 − p)xp ; x = 0, 1, 2, .... The Turing estimator of

p can be derived as follows:

p1

E(X)
=

(1− p)p
(1− p)/p

= p2,

or √
p1

E(X)
= p = p0.

It follows that

p̂ =

√
f1

S
. (3.1)

Consider the case of a one-truncated geometric distribution. Let us write

py = (1− p)y−1p ; y = 1, 2, 3, ...

in the form

px = (1− p)xp ; x = 0, 1, 2, ...

with x = y − 1. From formula in (3.1) follows that

p̂ =

√
p̂1

Ê(X)
=

√
fx=1

Sx
.



42 Chapter 3 Estimators Based Upon One-Truncated Geometric Distribution

Transform the random variable x to y so that

p̂ =

√
f2

0fx=0 + 1fx=1 + 2fx=2 + ...+ (m− 1)fx=m−1

=

√
f2

0f1 + 1f2 + 2f3 + ...+ (m− 1)fm
.

Hence, the estimate of p can be calculated from the observed frequencies as:

p̂T OT =

√
f2

f2 + 2f3 + 3f4 + ...+ (m− 1)fm
(3.2)

Thus, the one-truncated Turing estimator for estimating the population size is given by

N̂T OT =
n

1− p̂T OT

(3.3)

The formula in (3.3) is simply derived in terms of the Horvitz-Thompson estimator in

(2.12) by replacing p̂ by p̂T OT in (3.2) assuming there is one-inflation in the capture

probability. Expanding to k-truncated geometric distribution, the k-truncated Turing

estimator (T KT) for p is of the form:

p̂T KT =

√
fk+1∑m

y=k+1(y − k)fy
(3.4)

3.3.2 One-truncated maximum likelihood estimator (N̂MLE OT)

Let X be the number of times that a unit was identified over the study period. Count

X is modelled with a geometric distribution having probability function

px = (1− p)xp ; x = 0, 1, 2, ...

Since the observed sample from a capture-recapture study contains only non-zero counts,

the associated probability function becomes a zero-truncated geometric. Additionally,

in the sense of frequency data, the observed data are given as fx where x = 1, 2, 3, ...,m

where m is the largest observed count. The zero-truncated geometric likelihood is of the

form

L(p) =
m∏
x=1

[
(1− p)x−1p

]fx
.

The log-likelihood function is

logL(p) = log(1− p)
m∑
x=1

fx(x− 1) + log p
m∑
x=1

fx. (3.5)
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To find the maximum likelihood estimator (MLE) of the unknown parameter p, the

derivative of (3.5) with respect to p is equated to 0:

dl

dp
= −

∑m
x=1 fx(x− 1)

1− p
+

∑m
x=1 fx
p

= 0

This leads to

p̂MLE ZT =
n

S
.

Hence, under the assumption of a zero-truncated geometric model, the population size

estimator based on the maximum likelihood estimation is

N̂MLE ZT =
n

1− n/S
. (3.6)

Similarly, we assume that the count X is modelled as one-truncated geometric distribu-

tion with probability function

px = (1− p)x−2p ; x = 2, 3, 4, ....

The log-likelihood function is

logL(p) = log(1− p)
m∑
x=2

fx(x− 2) + log p
m∑
x=2

fx. (3.7)

To find the maximum likelihood estimator (MLE) of unknown parameter p, the deriva-

tive of (3.7) with respect to p is equated to 0:

dl

dp
= −

∑m
x=2 fx(x− 2)

1− p
+
n− f1

p
= 0

so that

p̂MLE OT =
n− f1

S − n

arises. Hence, under the assumption of one-truncated geometric model, the population

size estimator based on the maximum likelihood estimation is

N̂MLE OT =
n

1− (n− f1)/(S − n)
. (3.8)

In a similar way, the general form of maximum likelihood estimator for unknown pa-

rameter p under k-truncated geometric distribution is derived as

p̂MLE KT =
n−

∑k
x=1 fx

S − kn+
∑k−1

x=1(k − x)fx
. (3.9)
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3.4 Goodness of fit

The goodness of fit (GOF) of a statistical model describes how well it fits a set of obser-

vations. The measures of GOF regularly summarize the discrepancy between observed

values, which are the frequency of a class from a sample and the estimated or fitted fre-

quencies, which is calculated under the claimed model. In order to measure departure

of the observed data from the model, an asymptotic χ2 goodness of fit statistic is used.

Let G be

G =
m∑
x=1

(fx − êx)2

êx
, (3.10)

where fx and ex are the observed and fitted frequency in the xth class, respectively.

We can calculate the fitted frequency by

êx = nP (X = x)

for x = 1, ...,m− 1; and

fm+ =

∞∑
j=m

fj

and

êm+ = n

∞∑
j=m

P (X = j)

for the last cell.

The asymptotic distribution of G is χ2
ν where ν = m− p− 1 is the degree of freedom for

a model with p parameters. If any of the expected class frequencies are less than five,

classes are binned. Starting from the lowest class frequency, classes are binned one by

one until the expected frequency is greater than or equal to five.

3.5 Estimating an unknown population size

There is a large number of estimators which are derived under homogeneity and het-

erogeneity of the target population. Examples of estimators based on geometric ho-

mogeneity are N̂MLE = n/(1 − n/S), N̂T = n/(1 −
√
f1/S) where S = 0f0 + 1f1 +

... + mfm. Furthermore, the popular estimator which allow population heterogeneity

is Chao’s lower bound given by N̂C = n + f2
1 /f2 under geometric model. As pre-

sented in the previous section, the one-truncated Turing estimator N̂T OT = n
1−p̂T OT

where p̂T OT =
√

f2
f2+2f3+...+(m−1)fm

and the one-truncated maximum likelihood estima-

tor N̂MLE OT = n
1−(n−f1)/(S−n) allow for one-inflation.
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To compare the suggested estimators with existing estimators, we look at the synthetic

data of a population size N = 20 with 20% of one-inflation which generated from

geometric distribution with parameter 0.1 as shown in Table 3.4. Table 3.5 provides

population size estimated by conventional and proposed estimators, respectively. As

can be seen, the proposed estimators (T OT and MLE OT) can effectively improve the

estimates of population size from conventional estimators (Turing and MLE) and provide

values closest to the parameter of interest N = 20. Therefore, the proposed estimators

are viable and become candidates for use under one-inflation situation.

Table 3.4: The frequency of zero-truncated count data with 20% one-inflation
from Section 3.1

f0 f1 f2 f3 f4 f5 f6 f7 f8 f11 f13 f14 n

(1) 7 1 1 1 1 3 1 1 1 1 1 19

Table 3.5: Estimates for the data in Table 3.4

Estimator Estimated population size

Chao 68
Turing 26.24
MLE 23.95
T OT 21.52
MLE OT 22.74

Further simulation work is conducted to investigate how well these estimators are per-

forming in term of bias, variance and mean square error.

3.6 Simulation study

The main purpose of this section is to study the performance of proposed estimators

and to compare their behaviours with the other well-known estimators: Chao’s lower

bound estimator (C), Turing estimator (T) and maximum likelihood estimator (MLE).

3.6.1 Scope of study

1. The data were generated by the Monte Carlo technique using the program R, each

condition was repeated 1,000 times.

2. The target population data were generated from a geometric model.

3. The population size was N = 20, 50, 100, 500 and 1, 000 .

4. There were 2 levels of one-inflation: 20% and 50% represent low and high level of

one-inflation respectively.
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5. The criteria of comparing the performance of each estimator was relative bias

(RBias), relative variance (RVar) and relative mean square error (RMSE).

3.6.2 A simulation plan

This simulation study was undertaken to investigate the performance of two proposed

estimators and to compare these with other conventional estimators by means of the

Monte Carlo method. The total size of the target population for each level of one-

inflation was assumed to be 20, 50, 100, 500 and 1,000. The heterogeneity populations

were generated from geometric distribution (arising from the mixture of Poisson distri-

bution with an exponential distribution) with parameter p ∈ {0.1, 0.2, 0.3, ..., 0.6}. The

simulation procedure is as follows:

1. Generate random number for Xi from geometric distribution with 20% and 50%

of extra-ones for each (p); where i = 1, 2, ..., N . For example, 20% extra-ones with

a population of 500 is generated by N = 400 follows a geometric distribution and

the one-inflation has size 100.

2. Count the frequencies of each value of Xi begin with f0 the count of Xi = 0, until

fm the frequencies of maximum value of Xm, then f0 is dropped or truncated

before going to the next step of estimator computation.

3. Estimate the total number of population sizes by means of Chao, Turing, MLE

and the suggested estimators: one-truncated Turing (T OT) and one-truncated

MLE (MLE OT).

4. Repeat the procedure (1) to (3) for 1,000 times

5. Compute the relative bias, relative variance and relative mean square error of

population size estimator of each method

6. Rank the best performance of each condition by means of smallest relative bias,

relative variance and relative mean square error.

3.6.3 Statistical investigation

For each scenario, all estimates were computed. Expected values and variance were

determined as

Mean(N̂) = E(N̂) =
1

1000

1000∑
k=1

N̂k

V ar(N̂) =

∑1000
k=1 (N̂k − E(N̂))2

1000
.
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The performance of population size estimators is evaluated in terms of bias, variance

and mean square error. Due to the fact that the expected values and variance increase

with increasing N , we take the relative bias, relative variance and relative mean square

error as follows:

Relative Bias:

RBias(N̂) =
E(N̂)−N

N

=
( 1

1000

∑1000
k=1 N̂k)−N
N

(3.11)

Relative Variance:

RV ar(N̂) =
E(N̂ −N)2

N2

=
1

1000

∑1000
k=1 (N̂k −N)2

N2

(3.12)

Relative Mean Square Error:

RMSE(N̂) =
E(N̂ −N)2

N2

=
1

1000

∑1000
k=1 (N̂k −N)2

N2

(3.13)

3.6.4 Simulation results

The results of the simulation study are divided into two parts; 1) 20% one-inflation

and 2) 50% one-inflation. Each part reports the investigation of relative bias (Rbias),

relative variance (RVar) and relative mean square error (RMSE) for all conditions of

the study. Due to the fact that the results of two parts are similar, both parts will be

summarized together. To explore preliminary the behaviour of estimators, we consider

the mean of estimates of population size from all estimators.

According to the results provided in Table 3.6, it is noticeable that the results of two

parts are similar (20% and 50% one-inflation). Clearly, all of the conventional estimators

(Chao, Turing and MLE) show an overestimation of population size for all conditions

of the study particularly it is severe in Chao’s lower bound estimator. Turing and MLE

estimators are less affected by one-inflation than Chao’s lower bound. The proposed

estimators N̂T OT and N̂MLE OT yield satisfying outcomes which are close to the true

value of population size N . We can summarize the performance of estimators by ordering

them as N̂C > N̂T > N̂MLE > N̂MLE OT > N̂T OT. It is also clear that newly proposed

estimators N̂MLE OT and N̂MLE OT perform considerably better than the others. This

can indicate that the proposed estimators have a good performance under one-inflation,

for both low and high level. However, if comparing among new proposed estimators,
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N̂T OT performs better than N̂MLE OT. We can make a preliminary conclusion that the

proposed estimators can cope with one-inflation situation satisfactorily. Next, further

investigation will be provided.

Note ”-” in Table 3.6 - 3.9 is defined as no results from simulation study.

1) Investigate of relative bias (RBias)

The relative bias (RBias) is commonly defined as the difference between the estimated

value and true value of N , and then scaled by the true value. Consequently, a good

estimate of population size will have an associated relative bias close to zero. Addi-

tionally, the positive value of RBias presents an overestimation whereas the negative

value of RBias shows an underestimation. As can be seen from Table 3.7, almost all

estimators provide an overestimation for all conditions. There is only N̂T OT that gives

an underestimate in case of small population sizes (N = 20, 50, 100) under 20% one-

inflation. Furthermore, the proposed estimators N̂T OT and N̂MLE OT show the highest

performance of accuracy, respectively, by giving the smallest RBias among the other es-

timators for all the geometric parameter p and population sizes N . It is also found that

N̂C has the worst performance of accuracy as the difference between the expected value

of the estimator and the true value of N is largest for all conditions of study. This can

confirm in a severe overestimation of Chao’s lower bound estimator under one-inflation

situation as mentioned in beginning. In addition, consider an effect of the geometric

parameter and the population size. Certainly, increasing the geometric parameter leads

to a slight increase in bias for all estimators except N̂C which slightly decrease in the

beginning before increase. Conversely, an increase in population size lead to a slight

decrease in bias for all estimators except N̂T OT.

2) Investigate of relative variance (RVar)

Variance is the common measure of variation. Variance of each estimator is the squared

difference in average between an individual value of estimator and the expected value of

estimator. Hence, a small variance of estimator can indicate that most individual values

of estimators are close to their mean. To compare the variation among estimators for

different population sizes, the relative variance (RVar) is calculated as the ratio of the

variance and the expected value of estimator squared, see equation (3.12). As can be seen

from Table 3.8, the RVar of 20% and 50% one-inflation for all estimators are similar pat-

terns in the study. It is clearly seen that the suggested estimators N̂T OT and N̂MLE OT

perform the best with the smallest RVar where RVar(N̂MLE OT) > RVar(N̂T OT). Per-

formance of classical estimators N̂T and N̂MLE are fairly close to suggested estimators

whereas N̂C performs the worst with the largest RVar and significantly different from

other estimators. Additionally, similar to the results of RBias, increasing the geometric

parameter leads to a slight increase in RVar whereas an increase in population size leads
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Table 3.6: Monte Carlo means of the population size estimates (Mean(N̂))
based upon geometric distribution with 20% and 50% one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT

20% 20 0.1 43 23 21 20 21
0.2 44 25 23 19 22
0.3 50 28 26 19 -

50 0.1 127 57 53 49 51
0.2 113 62 57 49 53
0.3 113 67 61 47 56
0.4 123 75 69 45 -

100 0.1 237 114 105 100 103
0.2 207 122 112 99 105
0.3 207 133 122 97 110
0.4 221 148 136 95 117
0.5 245 170 158 90 129
0.6 296 208 194 83 -

500 0.1 1056 569 525 507 511
0.2 952 608 557 514 525
0.3 971 658 602 523 543
0.4 1014 725 665 530 572
0.5 1124 822 756 546 607
0.6 1303 985 913 530 671

1000 0.1 2082 1138 1051 1018 1022
0.2 1906 1220 1117 1040 1051
0.3 1922 1315 1203 1063 1087
0.4 2028 1446 1325 1098 1136
0.5 2225 1641 1509 1113 1208
0.6 2549 1943 1797 1153 1314

50% 20 0.1 123 30 25 20 22
0.2 124 40 32 20 -

50 0.1 501 72 60 51 53
0.2 403 89 72 50 57
0.3 392 115 94 51 64
0.4 409 152 127 51 -

100 0.1 1110 143 118 102 106
0.2 761 178 144 104 114
0.3 702 220 179 104 124
0.4 709 281 233 106 140
0.5 894 389 329 108 165
0.6 1160 578 506 109 -

500 0.1 4421 711 588 521 528
0.2 3169 871 705 547 563
0.3 2992 1073 872 581 609
0.4 3159 1370 1128 605 675
0.5 3605 1822 1530 648 764
0.6 4512 2585 2229 699 909

1000 0.1 8493 1420 1174 1047 1056
0.2 6214 1738 1408 1106 1126
0.3 5924 2149 1743 1173 1217
0.4 6214 2713 2231 1254 1340
0.5 7074 3584 3005 1377 1507
0.6 8926 5159 4437 1515 1779
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Table 3.7: Relative bias of five population size estimators based upon geometric
distribution with 20% and 50% one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT

20% 20 0.1 1.1651 0.1548 0.0687 -0.0132 0.0367
0.2 1.1924 0.2441 0.1490 -0.0547 0.0791
0.3 1.4577 0.3887 0.2813 -0.0997 -

50 0.1 1.5486 0.1423 0.0540 -0.0122 0.0234
0.2 1.2611 0.2308 0.1312 -0.0280 0.0643
0.3 1.2570 0.3359 0.2297 -0.0639 0.1160
0.4 1.4593 0.4921 0.3748 -0.0954 -

100 0.1 1.3569 0.1416 0.0543 -0.0015 0.0251
0.2 1.0700 0.2221 0.1202 -0.0120 0.0539
0.3 1.0685 0.3301 0.2179 -0.0295 0.0995
0.4 1.2093 0.4762 0.3563 -0.0506 0.1684
0.5 1.4593 0.7045 0.5771 -0.0951 0.2912
0.6 1.9613 1.0826 0.9449 -0.1671 -

500 0.1 1.1111 0.1383 0.0505 0.0146 0.0219
0.2 0.9036 0.2160 0.1147 0.0279 0.0500
0.3 0.9425 0.3167 0.2035 0.0453 0.0865
0.4 1.0284 0.4494 0.3301 0.0608 0.1433
0.5 1.2484 0.6446 0.5125 0.0918 0.2136
0.6 1.6052 0.9705 0.8251 0.0606 0.3417

1000 0.1 1.0817 0.1382 0.0507 0.0177 0.0223
0.2 0.9060 0.2199 0.1167 0.0397 0.0506
0.3 0.9225 0.3154 0.2033 0.0637 0.0873
0.4 1.0278 0.4464 0.3246 0.0981 0.1359
0.5 1.2251 0.6414 0.5088 0.1131 0.2079
0.6 1.5488 0.9433 0.7970 0.1531 0.3136

50% 20 0.1 5.1590 0.5061 0.2380 0.0157 0.0776
0.2 5.2127 0.9808 0.6178 0.0142 -

50 0.1 9.0240 0.4460 0.1910 0.0164 0.0602
0.2 7.0616 0.7890 0.4489 0.0081 0.1403
0.3 6.8339 1.2990 0.8843 0.0269 0.2812
0.4 7.1889 2.0316 1.5483 0.0165 -

100 0.1 10.1014 0.4310 0.1813 0.0220 0.0582
0.2 6.6093 0.7802 0.4417 0.0411 0.1384
0.3 6.0221 1.1979 0.7921 0.0441 0.2414
0.4 6.0930 1.8060 1.3315 0.0623 0.4024
0.5 7.9437 2.8877 2.2871 0.0801 0.6529
0.6 10.5987 4.7808 4.0617 0.0892 -

500 0.1 7.8420 0.4218 0.1753 0.0413 0.0567
0.2 5.3389 0.7414 0.4103 0.0938 0.1264
0.3 4.9847 1.1470 0.7434 0.1627 0.2185
0.4 5.3181 1.7420 1.2570 0.2107 0.3491
0.5 6.2104 2.6430 2.0597 0.2959 0.5270
0.6 8.0233 4.1704 3.4580 0.3992 0.8185

1000 0.1 7.4933 0.4198 0.1738 0.0470 0.0558
0.2 5.2137 0.7375 0.4078 0.1065 0.1259
0.3 4.9243 1.1487 0.7433 0.1729 0.2175
0.4 5.2138 1.7126 1.2313 0.2543 0.3397
0.5 6.0734 2.5844 2.0053 0.3774 0.5071
0.6 7.9257 4.1587 3.4367 0.5150 0.7790
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Table 3.8: Relative variance of five population size estimators based upon geo-
metric distribution with 20% and 50% one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT

20% 20 0.1 1.0832 0.0117 0.0068 0.0045 0.0057
0.2 1.5992 0.0515 0.0343 0.0109 0.0245
0.3 2.4632 0.1236 0.0891 0.0175 -

50 0.1 1.8850 0.0046 0.0028 0.0024 0.0024
0.2 1.5986 0.0139 0.0087 0.0050 0.0066
0.3 1.8110 0.0356 0.0262 0.0094 0.0214
0.4 2.2841 0.0948 0.0757 0.0157 -

100 0.1 1.0718 0.0023 0.0013 0.0012 0.0011
0.2 0.6283 0.0071 0.0046 0.0031 0.0034
0.3 0.4570 0.0166 0.0112 0.0057 0.0081
0.4 0.5752 0.0392 0.0288 0.0098 0.0228
0.5 1.2910 0.1087 0.0891 0.0147 0.0874
0.6 2.4855 0.3422 0.3100 0.0201 -

500 0.1 0.0904 0.0005 0.0003 0.0003 0.0002
0.2 0.0499 0.0013 0.0008 0.0007 0.0006
0.3 0.0489 0.0030 0.0021 0.0017 0.0016
0.4 0.0608 0.0068 0.0052 0.0036 0.0038
0.5 0.1112 0.0163 0.0128 0.0074 0.0100
0.6 0.2212 0.0496 0.0423 0.0125 0.0354

1000 0.1 0.0417 0.0002 0.0001 0.0001 0.0001
0.2 0.0255 0.0006 0.0004 0.0004 0.0003
0.3 0.0257 0.0016 0.0011 0.0010 0.0008
0.4 0.0369 0.0037 0.0027 0.0019 0.0018
0.5 0.0520 0.0077 0.0060 0.0039 0.0045
0.6 0.0966 0.0212 0.0180 0.0088 0.0156

50% 20 0.1 8.5233 0.1108 0.0515 0.0031 0.0081
0.2 10.6954 0.6657 0.4525 0.0079 -

50 0.1 31.4384 0.0194 0.0074 0.0015 0.0021
0.2 25.9054 0.0804 0.0395 0.0040 0.0083
0.3 31.3470 0.4388 0.3094 0.0081 0.0577
0.4 31.0232 1.2350 1.0519 0.0119 -

100 0.1 57.6632 0.0086 0.0032 0.0010 0.0010
0.2 23.8094 0.0373 0.0187 0.0029 0.0039
0.3 22.0421 0.1134 0.0683 0.0062 0.0133
0.4 15.5799 0.3139 0.2355 0.0108 0.0608
0.5 37.1924 1.3921 1.0667 0.0185 0.3544
0.6 70.9817 6.9650 6.2770 0.0379 -

500 0.1 4.5555 0.0015 0.0005 0.0003 0.0002
0.2 1.5720 0.0060 0.0028 0.0009 0.0007
0.3 1.1085 0.0173 0.0103 0.0024 0.0022
0.4 1.2783 0.0578 0.0389 0.0048 0.0070
0.5 1.9032 0.1659 0.1225 0.0119 0.0210
0.6 4.1770 0.6265 0.5235 0.0333 0.1103

1000 0.1 1.9314 0.0007 0.0002 0.0001 0.0001
0.2 0.6574 0.0028 0.0014 0.0005 0.0003
0.3 0.5639 0.0094 0.0052 0.0013 0.0010
0.4 0.6431 0.0279 0.0182 0.0031 0.0033
0.5 0.9498 0.0767 0.0573 0.0082 0.0108
0.6 2.0447 0.3160 0.2499 0.0268 0.0386
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Table 3.9: Relative mean square error of five population size estimators based
upon geometric distribution with 20% and 50% one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT

20% 20 0.1 2.4394 0.0356 0.0115 0.0046 0.0071
0.2 3.0195 0.1110 0.0565 0.0139 0.0307
0.3 4.5856 0.2745 0.1682 0.0274 -

50 0.1 4.2813 0.0249 0.0057 0.0026 0.0030
0.2 3.1874 0.0671 0.0259 0.0058 0.0108
0.3 3.3891 0.1484 0.0789 0.0135 0.0348
0.4 4.4114 0.3368 0.2161 0.0248 -

100 0.1 2.9118 0.0224 0.0042 0.0012 0.0017
0.2 1.7724 0.0564 0.0190 0.0032 0.0063
0.3 1.5982 0.1256 0.0587 0.0066 0.0080
0.4 2.0372 0.2659 0.1557 0.0124 0.0511
0.5 3.4193 0.6050 0.4221 0.0238 0.1721
0.6 6.3297 1.5139 1.2024 0.0480 -

500 0.1 1.3250 0.0196 0.0028 0.0005 0.0007
0.2 0.8664 0.0479 0.0139 0.0015 0.0031
0.3 0.9371 0.1033 0.0436 0.0038 0.0091
0.4 1.1184 0.2087 0.1141 0.0073 0.0243
0.5 1.6695 0.4317 0.2754 0.0158 0.0556
0.6 2.7978 0.9913 0.7230 0.0162 0.1522

1000 0.1 1.2117 0.0193 0.0027 0.0005 0.0006
0.2 0.8463 0.0490 0.0140 0.0020 0.0028
0.3 0.8767 0.1011 0.0425 0.0050 0.0085
0.4 1.0932 0.2030 0.1080 0.0115 0.0203
0.5 1.5527 0.4192 0.2649 0.0167 0.0478
0.6 2.4953 0.9109 0.6533 0.0322 0.1139

50% 20 0.1 35.1301 0.3668 0.1081 0.0034 0.0141
0.2 37.8571 1.6271 0.8338 0.0080 -

50 0.1 112.8388 0.2183 0.0438 0.0018 0.0047
0.2 75.7459 0.7028 0.2410 0.0041 0.0279
0.3 78.0177 2.1259 1.0911 0.0088 0.1368
0.4 82.6723 5.3611 3.4481 0.0121 -

100 0.1 159.6436 0.1944 0.0361 0.0015 0.0044
0.2 67.4689 0.6460 0.2138 0.0046 0.0230
0.3 58.2859 1.5483 0.6956 0.0082 0.0716
0.4 52.6894 3.5753 2.0081 0.0147 0.2227
0.5 100.2575 9.7297 6.2962 0.0250 0.7803
0.6 183.2422 29.8142 22.7683 0.0458 -

500 0.1 66.0486 0.1794 0.0313 0.0020 0.0034
0.2 30.0747 0.5557 0.1712 0.0097 0.0167
0.3 25.9548 1.3329 0.5630 0.0289 0.0500
0.4 29.5591 3.0922 1.6189 0.0492 0.1289
0.5 40.4701 7.1514 4.3646 0.0995 0.2987
0.6 68.5455 18.0183 12.4810 0.1927 0.7802

1000 0.1 58.0789 0.1769 0.0305 0.0023 0.0032
0.2 27.8394 0.5468 0.1677 0.0118 0.0162
0.3 24.8117 1.3289 0.5577 0.0312 0.0483
0.4 27.8260 2.9607 1.5343 0.0678 0.1187
0.5 37.8369 6.7557 4.0783 0.1506 0.2679
0.6 64.8600 17.6102 12.0607 0.2920 0.6458
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to a slight decrease in RVar for all estimators except N̂C.

3) Investigate of relative mean square error (RMSE)

Relative mean square error (RMSE) shows the ratio of the squared difference between

each value of estimator and the true value of parameter over the true value of parameter,

averaged over the sample space. The estimator, which gives a smallest value of RMSE,

normally indicates that this estimator shows the highest efficient estimation, on average

is closest to the true value of parameter of interest. The RMSE of each estimator under

consideration are presented in Table 3.9. Similar to the results in the investigation of

RVar, the suggested estimators N̂T OT and N̂MLE OT also perform the best by giving

the smallest value of RMSE whereas N̂C performs the worst with the largest RMSE.

As a summary of performance with regard to relative mean square error, ordering of

the estimators is RMSE(N̂C) > RMSE(N̂T) > RMSE(N̂MLE) > RMSE(N̂MLE OT) >

RMSE(N̂T OT) for all studied cases. Moreover, increasing the geometric parameter leads

to an increase in RMSE whereas an increasing the population size leads to decreasing

in RMSE for all estimators except N̂C.

3.7 An application for estimating the population size

The aim of this section is to apply the proposed estimators (T OT and MLE OT) to

real data where we suspect one-inflation is ongoing, and compare their performance with

conventional estimators (Chao, Turing and MLE).

1) Estimating the total number of scrapie infected holding in France

According to the case study of estimating the total number of holdings with scrapie

infection in France (see Table 3.1 in Section 3.2 for the data and Figure 3.2 left panel

for the ratio plot of one-inflation), the results of estimation (f̂0 and N̂) from a variety of

methods are shown in Table 3.11. As we expect, due to an effect of one-inflation, there

is a large difference between the conventional estimators and those accounting for one-

inflation. Chao’s lower bound estimator yields with 1, 267 a huge number of estimated

scrapie-infected holdings. Next, the conventional Turing and MLE estimator give a more

moderate estimate; 902 and 827, respectively. Finally, the smallest estimates are given

by the proposed estimators N̂T OT = 427 and N̂MLE OT = 454. It can be seen clearly

that the proposed estimators can reduce the overestimation associated with conventional

estimators.

Although the simulation studies indicate that the suggested estimators can properly

deal with one-inflation, we should also consider goodness-of-fit in model fitting when we

apply these estimators in real situations. Figure 3.5 left panel shows the fitted values

for this data set with all estimators. It is clear that the estimated values from T OT
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Table 3.10: The data of French scrapie-infected holdings from section 3.2

x 1 2 3 4

fx 121 13 5 2

and MLE OT, represented by purple line and orange line on the graph, fit the data very

well and better than the conventional estimators. This agrees with the p-value from the

goodness of fit statistics in Table 3.11.

Table 3.11: Results for scrapie-infected holdings in France

Estimator f̂0 N̂ Chi-square p-value

Chao1 1,126 1,267 27.195 0.00000
Turing 761 902 8.487 0.01436
MLE 686 827 6.781 0.03369
T OT 286 427 0.283 0.59474
MLE OT 313 454 0.507 0.47644

2) Estimating the total number of domestic violence in the Netherlands

Coming back to the application of estimating the population size of domestic violence

offenders in Section 3.2, we show the data again in Table 3.12. The results of estimation

from the classical and proposed estimators are shown in Table 3.13. As we expect, the

pattern of results is similar to the previous application, N̂C > N̂T > N̂MLE > N̂T OT >

N̂MLE OT, but here estimators are very few in their magnitude which corresponds to

the unclear one-inflation signal of ratio plot in Figure 3.3. Nevertheless, it is clear that

the proposed estimators can reduce overestimation associated with the conventional

estimators.

Table 3.12: The data of domestic violence from Section 3.2

x 1 2 3 4 5 6+

fx 15,169 1,957 393 99 28 16

Table 3.13: Results for domestic violence study

Estimator f̂0 N̂ Chi-square p-value

Chao1 117,577 135,223 317.537 0.00000
Turing 103,233 120,879 166.795 0.00000
MLE 98,788 116,434 144.797 0.00000
T OT 65,573 83,219 7.227 0.02696
MLE OT 64,754 82,400 6.649 0.03599

1For GOF-test, p̂0 = f̂0
N̂

and p = p0 for geometric model
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Figure 3.5: Square root of goodness of fit test charts for all estimators for scrapie
infected holding data (left panel) and domestic violence data (right panel)

In terms of statistical model fitting, Figure 3.5 right panel shows the fitted values for

this data set by using standardized residuals with all estimators. The conventional

estimators are shown by blue, red and green lines, whereas the purple and orange lines

are for the proposed estimators. It can be clearly seen from the graph and the p-

value from the goodness of fit statistics in Table 3.13 that the estimated values from

proposed estimators can fit the data well and definitely improve upon the fitting of the

conventional estimators. Nonetheless, the p-values of the proposed estimators indicate

that the one-truncated geometric model may not be able to fit this data set good enough

if we consider the level of significance at 0.05 or 0.10.

3.8 Conclusion/Discussion

Chao’s lower bound, Turing and maximum likelihood estimator are some of the most

popular estimators used to estimate the elusive target population size in capture-recapture.

Turing and maximum likelihood estimation are developed under the Poisson homogene-

ity assumption whereas Chao’s lower bound is developed allowing heterogeneity. In this

chapter, it is shown that these estimators can show a weak performance by producing an

overestimation bias when these estimators experience one-inflation, particularly a severe

overestimation for a Chao’s lower bound. To cope with this problem two new estimators

are proposed based upon modified forms of Turing and maximum likelihood estimation

under the one-truncated geometric model.

To evaluate the performance of the proposed estimators, comparisons are done among ex-

isting conventional estimators. The simulation study considers the population generated

from geometric distribution with 20% and 50% one-inflation. The size of population is

20, 50, 100, 500 and 1,000. The simulation results provides evidence that the proposed

estimators show a good performance of accuracy and perform best with the smallest
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mean square error for all conditions of study. If we compare only between the two newly

proposed estimators, modified Turing is better than modified MLE all of case studies. As

an application, we illustrate two case studies with one-inflation which were investigated

previously by the ratio plot. The first case study looks at the total number of scrapie

infected holdings in France, while the second is interested in the size of domestic violence

in the Netherlands. Both examples show that the proposed estimators can cope with the

problem of one-inflation by providing smaller estimates than conventional estimators.

Nevertheless, only smaller estimates cannot confirm that the proposed estimators can

be viable in real situations. Hence it requires considering statistical model fitting. Here

the goodness of fit statistic is used for checking. It is found that the fitted values on

the basis of the proposed estimators can suit the data with one-inflation well and better

than conventional estimators in both of case studies.

To sum up, the proposed estimators under a one-truncated geometric distribution show

a good performance in both, simulation and applications. However, in this chapter we

applied the proposed estimators with only two case studies. It may not be appropriate

and good enough for other applications. Therefore, it cannot guarantee that the pro-

posed estimators will be practicable with one-inflation data in all real life situations.

Moreover, the proposed estimators are not developed by a model approach, it is just

based on modification by truncating counts of one and then applying the conventional

Turing and MLE approach to the one-truncated data. It does not involve a model mech-

anism that describes how extra ones are generated. This point will be the project for

Chapter 4 where we focus on developing a model that describes the mechanism for extra

one generation. Furthermore, the proposed estimators in this chapter will be included

in simulation experiment in Chapter 4 and we will see whether there are any benefits

of the model-based approach. The EM algorithm that will be used in Chapter 4 is also

more complex and more computational demanding so it would be beneficial if we could

also deal with simpler approach provided in this chapter. However, final conclusions can

only be reached after the results of Chapter 4 are available and we need to postpone

final assessments to the next chapter.



Chapter 4

Zero-Truncated One-Inflated

Geometric Distribution

This chapter focuses on developing a new model for capture-recapture estimation in

order to deal with a one-inflation. This model describes the statistical mechanism for

generating an extra of singletons. It is denoted as the zero-truncated one-inflated geo-

metric model (ZTOI). A new estimator of the population size is also developed by the

maximum likelihood approach based on the ZTOI geometric model (N̂MLE ZTOI). The

nested EM algorithm is discussed for maximum likelihood estimation as no closed form

solutions are available. As an evaluation, performance of the new proposed estimator

(N̂MLE ZTOI) is investigated and compared to the previously proposed estimators from

Chapter 3 (N̂T OT and N̂MLE OT) in a simulation study. The applications are illustrated

in the last section and the likelihood ratio test is used to check the presence of one-

inflation in real data. Success of the proposed estimators is shown by simulation and

applications.

4.1 Introduction

Knowledge of population size is of key importance in many fields of researches such as

animal ecology, evolution, conservation biology, public health, epidemiology and crim-

inology. For natural elusive populations, it is rarely possible to count all individuals.

Therefore, capture-recapture estimation approach usually is used for estimating popula-

tion size. The performance of capture-recapture models depends on their assumptions;

these assumptions can be violated in many fields as it was mentioned previously. Crit-

ical assumptions are whether capture probability remains constant, changes with time

or as behavioural response to previous experience, or varies among individuals. These

might affect to the data being in one-inflation form. Furthermore, the reliability of sta-

tistical inference in capture-recapture studies depends on the quality of observed data.

57
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This means that the correctness of the population size estimate depends on the initial

identification of the sampled individuals. If sample individuals are classified into wrong

classes, it can also cause the problem of one-inflation.

The variables of interest in a capture-recapture experiment are the frequency counts of

identified individuals (fx) and it was already defined in Chapter 2 that f1, f2, f3, ..., fm

represent the frequencies of different individuals identified exactly 1, 2, 3, ...,m times

during the study period. Moreover, f0 is the frequency of individuals that were not

identified or observed in the study. Therefore, the unknown population size (N) can be

calculated by N = f0+f1+f2+...+fm or we can say that N = f0+n where n =
∑m

x=1 fx.

In fact, estimating f0 leads to an estimate of population size N . Let px = P (X = x)

denote probability for identifying an individual exactly x times. Accordingly, p0 is the

probability of identifying an individual 0 times. As a result, the unknown population

size can be defined as N = Np0 + E(n), where we treat n as a random variable. It

can easily be solved for N and replacing E(n) by its moment estimator n leads to the

Horvitz-Thompson estimator

N̂ =
n

1− p0
. (4.1)

Generally, p0 is unknown and depends on model parameter so modelling for count prob-

ability px becomes one of main concerns. Maximum likelihood approach is a popular

statistical method for estimating unknown parameters of a probability model. A param-

eter is a descriptor of the model. Likelihood is defined to be a quantity proportional to

the probability of observing the data given the model. Thus, we can calculate the prob-

ability the observations which have actually been observed as a function of the model if

we have a model (general, specific or modified model). Maximum likelihood provides a

consistent approach to parameter estimation problems. This means that maximum likeli-

hood estimates can be developed for capture-recapture estimation situations. Maximum

likelihood methods have desirable mathematical and optimality properties. Specifically,

they become minimum variance unbiased estimators as the sample size increases. These

good properties are interesting and inducing to use for developing estimator. To cope

with the problem of one-inflation, hence, the basic idea of this chapter is that a statisti-

cal model is built that describes the mechanism to generate the extra of count ones. A

new estimator is developed from the maximum likelihood approach by using the nested

EM algorithm based upon the zero-truncated one-inflated geometric distribution.

4.2 Zero-truncated one-inflated geometric model

A one-inflation model is a statistical model based on a probability distribution which

allows for frequent one observations. A one-inflation model employs two components

that correspond to two one-generating processes. The first process is governed by a

binary distribution that generates structural ones. The second process is generated by
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a probability density function of model fx(θ) that generates counts, some of which may

be one. The two components of a one-inflation model for θ are described as follows:

px =

{
ωfx(θ) , if x 6= 1

(1− ω) + ωfx(θ) , if x = 1

where ω is an unknown weight parameter; 0 ≤ ω ≤ 1. Assume that x1, x2, ..., xn

are observed and drawn from a geometric distribution with mean (1 − θ)/θ, where

fx(θ) = (1 − θ)xθ ; x = 0, 1, 2, .... Thus, a one-inflation geometric probability density

function is

px =

{
ω(1− θ)xθ , if x 6= 1

(1− ω) + ω(1− θ)xθ , if x = 1.
(4.2)

The parameter 1− ω represents the proportion of extra-ones present in the population

which are not generated by the mechanism provided by fx(θ) or a geometric distribution.

However, due to the fact that over the study period of the capture-recapture experiment

all observed units were identified at least once, we need to incorporate zero-truncation

of the one-inflation geometric distribution and results in:

p1+
x =

{
ω(1− θ)xθ/[1− ωθ] , if x 6= 1

[(1− ω) + ω(1− θ)xθ] / [1− ωθ] , if x = 1.
(4.3)

The observed, incomplete data log-likelihood for a zero-truncation-one-inflation geomet-

ric distribution is

lA(ω, θ) =
m∑
x=1

fx log p1+
x

= f1 log

{
(1− ω) + ω(1− θ)θ)

1− ωθ

}
+

m∑
x=2

fx log

{
ω(1− θ)xθ

1− ωθ

}
= f1 log

{
(1− ω) + ω(1− θ)θ)

1− ωθ

}
+ (n− f1) {logω + log θ − log(1− ωθ)}

+ (S − f1) log(1− θ)

where S =
∑m

x=1 xfx.

4.3 Zero-truncated one-inflated maximum likelihood esti-

mator via an EM algorithm

The EM algorithm is a popular method for maximum likelihood estimation. McLachlan

and Krishnan (1997) stated that a general purpose of the EM algorithm is to cope with

incomplete-data problem for maximum likelihood estimation. In addition, it composes

of two steps, the Expectation (E-step) and the Maximization (M-step). In the E-step, we

replace all missing data by their expected values that are calculated from the observed
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data and the current estimates of likelihood parameters. In the M-step, we maximize the

likelihood function by using both the observed and imputed data. The EM algorithm

is an iterative method, so the procedure alternates between E-step and M-step until

estimates of the likelihood parameters converge.

Here, we wish to fit the zero-truncated one-inflated geometric distribution to the fre-

quency data in capture-recapture. The complete data log-likelihood is required. On

defining the complete data as fx, x = 0, 1, 2, ...,m, this situation can be viewed as a

missing data problem since f0 is unobserved. If f0 is given, the maximum likelihood

estimators are available. The EM algorithm can be used by imputing a value for f0 and

then maximize the non-zero-truncated distribution. Iterating through these two steps

gives us a maximum likelihood estimate for θ and ω. The likelihood for the one-inflated

distribution can be maximized by means of the EM algorithm. Embedding another EM

into the M-step of the outer EM algorithm gives us a nested EM.

4.3.1 EM algorithm for zero-truncated part (Outer part)

The first step is to specify an initial values by letting ω̂(0) = 1/2 and finding the initial

value for θ̂(0) from E(X) ; X ∼ Geo(θ)

E(X) =
1− θ
θ

=
1

θ
− 1

1

θ̂(0)

=

∑m
x=0 xfx
n

+ 1 =

∑m
x=0 xfx + n

n

θ̂(0) =
n∑m

x=0 xfx + n
=

1

1 + x̄

Thus, the estimated probability X = 0 given the observed data is

p̂0(0) = ω̂(0)θ̂(0) =
1

2(1 + x̄)
.

E-step: In order to estimate f0, the EM algorithm is used as an instrument to solve

this problem. By the E-step, the unobserved frequency f0 is replaced by its expected

value given observed frequencies, (n = f1 + f2 + ... + fm), and current estimates of

likelihood estimators. Let f̂0 denotes the estimate of the expected value of f0 which can
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be achieved as follows:

f̂0 = E(f0|observed data ; θ)

= E(f0|f1, f2, ..., fm ; θ)

= Np0

= (n+ f̂0)p0

= np0 + f̂0p0

The expected frequency of zero counts is

f̂0 =
np0

1− p0
,

where n =
∑m

x=1 fx is the number of observed units and N̂ = n+ f̂0.

M-step: The associated complete data log-likelihood is

l(ω, θ) =

m∑
x=0

fx log px

where px is a one-inflated geometric probability density function, see (4.2). We need

to find ω̂ and θ̂ that maximize l(ω, θ) to complete the M-step. Unfortunately, M-step

cannot be solved in closed form. Therefore, we use another EM algorithm to solve the

M-step.

4.3.2 EM algorithm for one-inflated part (Inner part)

This can be accomplished by introducing a binary indicator variable zi defined as

zi =

{
1 , if the sample value one is from the extra-ones population

0 , otherwise.

This leads to the unobserved, complete likelihood function given as:

L(x;ω, θ) =
∏
xi=1

(1− ω)zi [ω(1− θ)xiθ]1−zi
∏
xi 6=1

[ω(1− θ)xiθ]. (4.4)

The log-likelihood is

l(x;ω, θ) =
∑
xi=1

[zilog(1− ω) + (1− zi)logω + (1− zi)xilog(1− θ) + (1− zi)logθ]

+
∑
xi 6=1

[logω + xilog(1− θ) + logθ]
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which can be simplified to

l(x;ω, θ) =
∑
xi=1

zi[log(1− ω)− logω] +Nlogω +

N∑
i=1

xilog(1− θ) +Nlogθ

−
∑
xi=1

zi[xilog(1− θ) + logθ].

(4.5)

Nested E-step: The unobserved indicator zi is treated as missing data. In the E-step,

zi is replaced by its expected value ei conditional upon the observed data and current

values of ω and θ. Moreover, ei can be determined as the posterior probability that

observation i belongs to extra-ones and can be calculated by the following version of

Bayes’s theorem:

ei = E(zi | xi;ω, θ) = P (zi = 1 | xi = 1;ω, θ)

=
P (xi = 1 | zi = 1;ω, θ)P (zi = 1 | ω, θ)

[P (xi = 1 | zi = 1)P (zi = 1) + P (xi = 1 | zi = 0)P (zi = 0)]

=
1− ω

[(1− ω) + ωf1(θ)]
,

where f1(θ) is the geometric probability for a one, so

ei = P (zi = 1 | xi = 1;ω, θ) =
1− ω

[(1− ω) + ω(1− θ)θ]
. (4.6)

Now zi is replaced by its expected values ei.

Nested M-step: Let
∑

1 =
∑

xi=1 ei. To find MLEs of ω and θ, the log-likelihood

with zi replaced by ei in (4.5) is maximized by taking a derivative with respect to ω and

setting it equal to 0,
∂l

∂ω
= −

∑
1

1− ω
−
∑

1

ω
+
N̂

ω
= 0

N̂

ω
=

∑
1

1− ω
+

∑
1

ω

1− ω =

∑
1

N̂

Hence,

ω̂ = 1−
∑

1

N̂
(4.7)

Then taking a derivative with respect to θ and setting it equal to 0, we yield

∂l

∂θ
= −

∑N̂
i=1 xi

1− θ
+
N̂

θ
+

∑
1

1− θ
−
∑

1

θ
= 0,
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or

N̂

θ
−
∑

1

θ
=

∑N̂
i=1 xi

1− θ
−
∑

1

1− θ
,

or

1− θ
θ

=

∑N̂
i=1 xi −

∑
1

N̂ −
∑

1

,

finally

1

θ
− 1 =

∑N̂
i=1 xi −

∑
1

N̂ −
∑

1

.

Hence,

θ̂ =
N̂ −

∑
1

N̂ +
∑N̂

i=1 xi − 2
∑

1

(4.8)

In summary, we have

ω̂ = 1− f1

N̂
(1− ω)/[(1− ω) + ω(1− θ)θ] (4.9)

and

θ̂ =
N̂ − f1(1− ω)/[(1− ω) + ω(1− θ)θ

N̂ +
∑N̂

i=1 xi − 2f1(1− ω)/[(1− ω) + ω(1− θ)θ]
. (4.10)

The equation (4.9) and (4.10) have to be interpreted in the way that ω represents the

current value and ω̂ is the solution from the M-step for the new iteration. Note also that

f1 is the frequency of ones. Also, N̂ refers to the current value of f̂0 leading to N̂ = f̂0+n.

Convergence Criterion determines when iterations are stopped. For the outer EM,

iterations are ceased when

| f̂0(k) − f̂0(k−1) |< ε

For the inner EM, iterations are ceased when all parameter estimates meet the criteria

| ω̂(l) − ω̂(l−1) |< ε

and

| θ̂(l) − θ̂(l−1) |< ε

Consequently, the population size estimator based upon zero-truncated one-inflated ge-

ometric model through the Horvitz-Thompson approach is

N̂ZTOI =
n

1− p̂0
where p̂0 = ω̂θ̂

In summary, the algorithm used to compute the estimate of population size is given as

follows.

Step 0 : choose initial values for ω̂(0) and θ̂(0), and set k = 0, l = 0.
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Table 4.1: The complete frequency table

x 0 1 2 3 ... m

fx f̂0 f1 f2 f3 ... fm

Here, we set ω̂(0) = 1/2 and using the complete frequency data to calculate initial value

of θ, where θ̂(0) = 1/(1 + x̄); x̄ =
∑m

x=0 xfx/n, hence p̂0(0) = 1/2(1 + x̄).

Step 1 : E-step

Set k = k + 1, compute f̂0(k) by using ω̂(k−1) and θ̂(k−1)

f̂0(k) =
np̂0(k−1)

1− p̂0(k−1)

N̂(k) = n+ f̂0(k)

Step 2 : M-step

Using the complete frequency table f̂0(k), f1, f2, ..., fm computes the new maximum like-

lihood estimator ω̂(k) and θ̂(k). The unobserved, complete likelihood function is

L(x;ω, θ) =
∏
Xi=1

(1− ω)zi [ω(1− θ)xiθ]1−zi
∏
Xi 6=1

[ω(1− θ)xiθ]

and the log-likelihood function is

l(x;ω, θ) =
∑
xi=1

zi[log(1− ω)− logω] +Nlogω +
N∑
i=1

xilog(1− θ) +Nlogθ

−
∑
xi=1

zi[xilog(1− θ) + logθ]

Finding updated ω and θ by maximizing this log-likelihood function

ω̂(k) = 1−
∑

1(k)

N̂(k)

;
∑
1(k)

=
∑
xi=1

zi(k)

θ̂(k) =
N̂(k) −

∑
1(k)

N̂(k) +
∑N

i=1 xi − 2
∑

1(k)

; N̂(k) = n+ f̂0(k)

Note that now we cannot calculate ω̂(k) and θ̂(k) because we do not know
∑

1(k), so we

have to do another EM step for zi.

Step 2.1 : Nested E-step
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Set l = l + 1 and ẑi(k) are computed by using their expected values.

E(zi | xi;ω, θ) = ei(l) =
1− ω̂(l−1)

[(1− ω̂(l−1)) + ω̂(l−1)(1− θ̂(l−1))θ̂(l−1)]

Step 2.2 : Nested M-step

Updated ω̂(k) and θ̂(k) are obtained by

ω̂(l) = 1−
f1ei(l)

N̂(k)

θ̂(l) =
N̂(k) − f1ei(l)

N̂(k) +
∑N

i=1 xi − 2f1ei(l)

lead to p̂0(l) = ω̂(l)θ̂(l).

Checking 1) | ω̂(l) − ω̂(l−1) | < ε

| θ̂(l) − θ̂(l−1) | < ε

2) | f̂0(k) − f̂0(k−1) | < ε

Then, going back to step 1. These steps alternate continuously until ω̂, θ̂ and f̂0 converge

to a MLE with an acceptable error. Here ε is set equal to 10−6.

4.4 Likelihood-ratio test (LRT)

The likelihood-ratio test is a test statistic used to compare the goodness of fit of two

models, one of which; the null model, is a special case of the other; the alternative model.

The test is based on the likelihood ratio, which expresses how many times more likely

the data are under one model than the other. The likelihood-ratio test can be presented

as a difference in the log-likelihood as follows:

LRT = −2 ln

(
L0

LA

)
= −2 ln(L0) + 2 ln(LA)

= −2l0 + 2lA

where l0 and lA denote the log-likelihood function under null and alternative hypothesis

respectively. Generally, the probability distribution of the test statistic is approximately

a chi-square distribution with degree of freedom equal to dfA − df0, where df0 and dfA
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represent the number of free parameters under the null model and the alternative model

respectively. Now, the hypothesis that we consider here is

H0 : data are from ZT geometric distribution (ω = 0)

HA : data are from ZTOI geometric distribution (ω > 0)

Hence, LRT is determined as:

LRT = −2l0(0, θ̃) + 2lA(ω̂, θ̂) (4.11)

where θ̃ is the MLE under a zero-truncated (ZT) geometric model, whereas ω̂ and θ̂

are the MLEs under a zero-truncated one-inflated (ZTOI) geometric model. It can be

seen from the null hypothesis that the true parameter value ω = 0 is on the boundary

of parameter space (0 ≤ ω ≤ 1). Therefore, the asymptotic distribution of the test

statistic LRT in (4.11) is the mixture of the one point distribution with all its mass

equal to zero (χ2
0) and the chi-square distribution with one degree of freedom (χ2

1) with

equal weights, LRT v 1
2χ

2
1 + 1

2χ
2
0, while the upper percentiles of the null distribution

of LRT are approximately equal to the (1 − 2α)100 percentiles of χ2
1 (see more details

in Böhning et al. (1994) and Self and Liang (1987)). The log-likelihood of null and

alternative models are shown in next subsection.

4.4.1 A zero-truncated geometric model

The probability density function of a zero-truncated geometric distribution is

px = (1− p)x−1p ; x = 1, 2, 3, ...

and the likelihood function is

L =

m∏
xi=1

(px)fx .

Hence, the observed, incomplete data log-likelihood based on null model is determined

as:

l0(θ) =

m∑
x=1

fx log[(1− p)x−1p]

=
m∑
x=1

fx(x− 1) log(1− θ) +
m∑
x=1

fx log θ

(4.12)
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4.4.2 A zero-truncated one-inflated geometric model

The probability density function of a zero-truncated one-inflated geometric distribution

is

p1+
x =

{
ω(1− θ)xθ/[1− ωθ] if x 6= 1

[(1− ω) + ω(1− θ)xθ] / [1− ωθ] if x = 1

and the likelihood function is

L(ω, θ) =

m∏
xi=1

(
p1+
x

)fx
.

The observed, incomplete data log-likelihood based on alternative model is shown as:

lA(ω, θ) =
m∑
x=1

fx log p1+
x

= f1 log

{
(1− ω) + ω(1− θ)θ)

1− ωθ

}
+

m∑
x=2

fx log

{
ω(1− θ)xθ

1− ωθ

}
= f1 log

{
(1− ω) + ω(1− θ)θ)

1− ωθ

}
+ (n− f1) {logω + log θ − log(1− ωθ)}

+ (S − f1) log(1− θ)
(4.13)

where S =
∑m

x=1 xfx.

4.5 The performance of the newly proposed estimator

The following examples are given to demonstrate finding the newly proposed maximum

likelihood estimator based on a zero-truncated one-inflated geometric model (MLE ZTOI)

under 20% and 50% one-inflation. Then, this newly proposed estimator is compared with

the conventional estimators and the formerly proposed estimators from Chapter 3.

Example 4.1 The data in Table 4.2 are generated from the zero-truncated geometric

distribution with parameter p = 0.2 and N = 100 under 20% of one-inflation.

Table 4.2: The data with 20% one-inflation

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f11 f12+ n

(13) 32 14 7 7 9 5 3 3 1 3 3 87

We consider only zero-truncated counts and n = 87. The computation of MLE ZTOI

starts with setting the initial values of ω and θ. The complete frequency table f0, f1, ..., fm

is used to calculate the maximum likelihood estimators of ω̂, θ̂ and f̂0 as following:
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Step 0 : Set ω̂(0) = 1/2, θ̂(0) = 1/(1 + x̄) = 0.2112 ,where x̄ = 3.7356. Hence,

p̂0(0) = ω̂(0)θ̂(0) = 0.5(0.2112) = 0.1056

First outer iteration (k = 1)

Step 1 : E-step

Computing f̂0(1) and N̂(1) by using ω̂(0) and θ̂(0), hence

f̂0(1) =
np̂0(0)

1− p̂0(0)
=

87(0.1056)

1− 0.1056
= 10.27

N̂(1) = n+ f̂0(1) = 87 + 10.27 = 97.27

Step 2 : M-step

Using the new complete frequency table f̂0(1), f1, f2, ..., fm computes the new maximum

likelihood estimator ω̂(1) = 1 −
∑

1(1)

N̂(1)
and θ̂(1) =

N̂(1)−
∑

1(1)

N̂(1)+
∑N

i=1 xi−2
∑

1(1)

. Now we do not

know the value of
∑

1(1);
∑

1(1) =
∑

xi=1 zi(1) so we need to do another EM-step.

First inner iteration (l = 1)

Step 2.1 : Nested E-step

Computing zi(1) by using their expected values

e1(1) =
1− ω̂(0)

[(1− ω̂(0)) + ω̂(0)(1− θ̂(0))θ̂(0)]
=

1− 0.5

[(1− 0.5) + 0.5(1− 0.2112)(0.2112)]
= 0.8572

Step 2.2 : Nested M-step

New update ω̂(1) and θ̂(1) are obtained by

ω̂1(1) = 1−
f1e1(1)

N̂(1)

= 1− 32(0.8572)

97.27
= 0.718

θ̂1(1) =
N̂(1) − f1e1(1)

N̂(1) +
∑N

i=1 xi − 2f1ei1(1)

=
97.27− 32(0.8572)

97.27 + 325− 2(32)(0.8572)
= 0.1901

Checking | ω̂1(1) − ω̂1(0) |=| 0.718− 0.5 |= 0.218 > 10−6

| θ̂1(1) − θ̂1(0) |=| 0.1901− 0.2112 |= 0.0211 > 10−6

Due to both estimates cannot meet the criteria so we need to go back to step 2.1 for the

second inner iteration.

Second inner iteration (l = 2)

Step 2.1 : Nested E-step



Chapter 4 Zero-Truncated One-Inflated Geometric Distribution 69

Computing zi(2) by using their expected values

e1(2) =
1− ω̂1(1)

[(1− ω̂1(1)) + ω̂1(1)(1− θ̂1(1))θ̂1(1)]

=
1− 0.718

[(1− 0.718) + 0.718(1− 0.1901)(0.1901)]

= 0.7184

Step 2.2 : Nested M-step

New maximum likelihood estimates ω̂(2) and θ̂(2) are obtained by

ω̂1(2) = 1−
f1e1(2)

N̂(1)

= 1− 32(0.7184)

97.27
= 0.7637

θ̂1(2) =
N̂(1) − f1e1(2)

N̂(1) +
∑N

i=1 xi − 2f1e1(2)

=
97.27− 32(0.7184)

97.27 + 325− 2(32)(0.7184)
= 0.1974

Checking | ω̂1(2) − ω̂1(1) |=| 0.7637− 0.718 |= 0.0458 > 10−6

| θ̂1(2) − θ̂1(1) |=| 0.1974− 0.1901 |= 0.0073 > 10−6

Go to step 2.1 for the third inner iteration (l = 3). Continue these inner steps until

ω̂ and θ̂ converge to a MLE. This example takes 20 inner iterations for the first outer

iteration. It provides ω̂(1) = 0.80058 and θ̂(1) = 0.20307 so p̂0(1) = ω̂(1)θ̂(1) = 0.16257.

Then we move on the second outer iteration.

Second outer iteration (k = 2)

Step 1 : E-step

Computing f̂0(2) and N̂(2) by using ω̂(1) and θ̂(1), hence

f̂0(2) =
np̂0(1)

1− p̂0(1)
=

87(0.16257)

1− 0.16257
= 16.8897

N̂(2) = n+ f̂0(2) = 87 + 16.8897 = 103.8897

Checking | f̂0(2)− f̂0(1) |=| 16.8897− 10.27001 |= 6.61969 > 10−6 go to step 2.

Step 2 : M-step

Using the new complete frequency table f̂0(2), f1, f2, ..., fm computes the new maximum

likelihood estimator ω̂(2) = 1 −
∑

1(2)

N̂(2)
and θ̂(2) =

N̂(2)−
∑

1(2)

N̂(2)+
∑N

i=1 xi−2
∑

1(2)

. Using another

EM-step calculates
∑

1(2);
∑

1(2) =
∑

xi=1 zi(2).

First inner iteration l = 1 for k = 2

Step 2.1 : Nested E-step
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Let ω̂2(0) = ω̂(1) and θ̂2(0) = θ̂(1). Computing zi(2) by using their expected values

e2(1) =
1− ω̂2(0)

[(1− ω̂2(0)) + ω̂2(0)(1− θ̂2(0))θ̂2(0)]

=
1− 0.80058

[(1− 0.80058) + 0.80058(1− 0.20307)(0.20307)]

= 0.60618

Step 2.2 : Nested M-step

New maximum likelihood estimates ω̂2(1) and θ̂2(1) are obtained by

ω̂2(1) = 1−
f1e2(1)

N̂(2)

= 1− 32(0.60618)

103.8897
= 0.81329

θ̂2(1) =
N̂2 − f1e2(1)

N̂(2) +
∑N

i=1 xi − 2f1e2(1)

=
103.8897− 32(0.60618)

103.8897 + 325− 2(32)(0.60618)
= 0.21659

Checking | ω̂2(1) − ω̂2(0) |=| 0.81329− 0.80058 |= 0.01271 > 10−6

| θ̂2(1) − θ̂2(0) |=| 0.21659− 0.20307 |= 0.01352 > 10−6

Go to step 2.1 for l = 2, These inner steps are repeated until ω̂ and θ̂ converge to a

constant. Finally, we get ω̂(2) = 0.83525 and θ̂(2) = 0.21987 so p̂0(2) = ω̂(2)θ̂(2) = 0.18365.

Then going on step 1 for iteration 3, we calculate f̂0(3) by using ω̂(2), θ̂(2) and checking

its convergence. Both outer and inner steps are repeated until ω̂, θ̂ and f̂0 converge to a

constant or the difference between present and previous values are less than 10−6. The

all iterations of EM-algorithm for maximum likelihood estimation of this example are

shown in Table 4.3.

Finally, the estimates of unobserved frequency (f̂0) and population size (N̂) from max-

imum likelihood estimation based on a zero-truncated one-inflated geometric model

(MLE ZTOI) are equal to 21.50 and 108.50 respectively. To compare this newly sug-

gested estimator with existing estimators, Table 4.4 provides the population size esti-

mated by the conventional estimators and the proposed estimators based on OT and

ZTOI model, respectively. It can be seen clearly that the newly suggested estimator

(N̂MLE ZTOI) yields value closest to the parameter of interest N = 100. Although the

Turing OT and MLE OT produce the overestimation more than MLE ZTOI, their esti-

mates are not much different. Therefore, we can say that the newly proposed estimator

can show the best performance and all proposed estimators can effectively cope with

one-inflation problem.



Chapter 4 Zero-Truncated One-Inflated Geometric Distribution 71

Table 4.3: The maximum likelihood estimation for Example 4.1

k f̂0(k) N̂(k) l ek(l) ω̂k(l) θ̂k(l) p̂0(k)

0 - - - - 0.5 0.21116 0.10558
1 10.27001 97.27001 1 0.857211 0.717994 0.1900861

2 0.718407 0.763658 0.1974025
3 0.661408 0.782409 0.2003079
...

...
...

...
19 0.6061827 0.8005773 0.2030701
20 0.6061808 0.8005780 0.2030702 0.16257

2 16.88972 103.88972 21 0.6061797 0.8132852 0.2165937
22 0.5750135 0.8228849 0.2180355
...

...
...

...
40 0.5348744 0.8352486 0.2198709 0.1836468

3 19.57152 106.57152 41 0.5348731 0.8393948 0.2251363
...

...
...

...
...

...
...

...
30 21.49810 108.49810 175 0.4834359 0.8574173 0.2310924 0.1981427

Table 4.4: Estimates for the data in Example 4.1 with true N = 100

Estimator Estimated population size

Chao 160.14
Turing 126.78
MLE 118.8
Turing OT 114.85
MLE OT 113.15
MLE ZTOI 108.50

Example 4.2 We also apply the newly proposed estimator with 50% one-inflation sit-

uation. Table 4.5 shows the data that are generated from the zero-truncated geometric

distribution with parameter p = 0.2 and N = 100 under 50% one-inflation.

Table 4.5: The data with 50% one-inflation

f0 f1 f2 f3 f4 f5 f6 f7 f8 f10 f12 f15 f17 n

(11) 67 5 3 2 4 1 1 1 2 1 1 1 89

The newly proposed estimator for this example can be calculated in same way with the

Example 4.1. It can be seen that the procedure of EM algorithm is repeated 24 rounds

for outer part and 104 rounds for inner part until reaching the constant of estimators

and it produces f̂0 = 6.88 and N̂MLE ZTOI = 95.88. The details and outcomes are

shown in Table 4.6.

As can be seen in Table 4.7, there is only one estimator, MLE ZTOI, which provides

an underestimation (N̂MLE ZTOI = 95.88) and closest to the parameter N = 100
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Table 4.6: The maximum likelihood estimation for Example 4.2

k f̂0(k) N̂(k) l ek(l) ω̂k(l) θ̂k(l) p̂0(k)

0 - - - - 0.5 0.3090278 0.1545139
1 16.26489 105.2649 1 0.8240425 0.4755056 0.2582192

2 0.8520416 0.4576844 0.2534471
...

...
...

...
13 0.8679196 0.4475783 0.2506563 0.1121883

2 11.246484 100.24648 14 0.8679199 0.4199235 0.2301009
15 0.8863331 0.4076169 0.2264110
...

...
...

...
34 0.9080619 0.3780488 0.2111513 0.09017878

3 8.821416 97.82142 35 0.9080621 0.3709712 0.2061625
...

...
...

...
...

...
...

...
24 6.875001 95.87500 104 0.9179104 0.3585398 0.2000000 0.07170796

whereas Turing OT and MLE OT produce the overestimation, N̂Turing OT = 113.12

and N̂MLE OT = 111.25, but they do not give the severe overestimation as much as the

conventional estimators. It can be shown that the all proposed estimators can improve

the overestimation associated with conventional estimators.

Table 4.7: Estimates for the data in Example 4.2

Estimator Estimated population size

Chao 986.8
Turing 212.03
MLE 161.01
Turing OT 113.12
MLE OT 111.25
MLE ZTOI 95.88

It is clear that the newly suggested estimator (MLE ZTOI) can perform effectively under

one-inflation and better than the previously proposed estimators from Chapter 3 (T OT

and MLE OT). However, these are only examples from two data sets, it is necessary to

do a further investigation in terms of bias, variance and mean square error by simulation

studies and it is shown in next section.

4.6 Simulation study

The simulation study was undertaken to investigate the performance of three pro-

posed estimators: the Turing estimator (N̂T OT), the maximum likelihood estimator

(N̂MLE OT) based on the one-truncated geometric model, and the maximum likelihood
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estimator based on zero-truncated one-inflated geometric model (N̂MLE ZTOI). In addi-

tion, three conventional estimators namely Chao’s lower bound, the conventional Turing

and maximum likelihood estimator are included to create a comprehensive comparison

of all estimators affected by the one-inflation problem. The heterogeneous populations

were generated from a geometric distribution (arising from the mixture of a Poisson dis-

tribution with an exponential distribution) with parameter θ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6

and population sizes N = 20, 50, 100, 500, 1000 for two levels of one-inflation (20% and

50%). Each case is repeated 1,000 times. To evaluate the performance of estimation,

the following criteria are used:

1) Relative bias (RBias(N̂) = E(N̂)−N
N )

2) Relative variance (RV ar(N̂) = E(N̂−E(N̂))2

N2 )

2) Relative mean square error (RMSE(N̂) = E(N̂−N)2

N2 )

The results of simulation study are presented in Table 4.8 - 4.11 and Figure 4.1 - 4.2.

Due to the fact that the results of two one-inflation levels are similar, both parts are sum-

marized together. To explore preliminary the behaviour of estimators, we consider the

mean of estimates of population size. According to the results provided in Table 4.8, all

of the conventional estimators (Chao, Turing and MLE) show clearly an overestimation

of population size for all conditions of the study, particularly, it is severe in Chao’s lower

bound estimator. Conventional Turing and MLE estimators are less affected by one-

inflation than Chao’s lower bound. All proposed estimators yield satisfying outcomes

which are close to the true value of population size N with a slight tendency of overes-

timating except N̂T OT which gives slight underestimates for the small population sizes

(N = 20, 50, 100) in the case of 20% one-inflation. In addition, N̂MLE ZTOI yields the

best estimation results for almost all studied conditions. Correspondingly, N̂MLE ZTOI

produces the smallest RBias in all studied cases as Table 4.9 and Figure 4.1 - 4.2 left

panel show. We can rank the performance of proposed estimators in terms of accuracy

as N̂MLE ZTOI, N̂T OT and N̂MLE OT. This could indicate that the N̂MLE ZTOI can cope

with the one-inflation situation better than N̂T OT and N̂MLE OT in both, low and high

level, one-inflation scenarios. According to RVar (see Table 4.10), the N̂T OT tends to

provide the minimum RVar in the case of small population size (N = 20, 50, 100) whereas

N̂MLE ZTOI yields the minimum RVar for the large size of population (N = 500, 1000).

However, all proposed estimators give relatively small RVar in all conditions if compared

with the conventional estimators as shown in Figure 4.1 - 4.2 middle panel. Similar to

the results of RVar, the N̂T OT seems to provide the smallest RMSE for the small popu-

lation size whereas N̂MLE ZTOI gives the smallest RMSE for the large size of population

as Table 4.11 and Figure 4.1 - 4.2 right panel show. However, overall the efficiency of

N̂T OT seems to be reduced if the level of one-inflation is increasing which is opposite

to N̂MLE ZTOI. Furthermore, it can be noticed that with increase of the population size,

there is a decline in the RBias, RVar and RMSE for all proposed estimators. On the
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other hand, with increasing geometric parameter θ there is an increase in the RBias,

RVar and RMSE for all proposed estimators.

Note ”-” in Table 4.8 - 4.11 is defined as no results from simulation study.

Table 4.8: Monte Carlo means of the population size estimates (Mean(N̂))
under 20% and 50% one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT MLE ZTOI

20% 20 0.1 42.89 22.96 21.26 19.61 20.63 20.18
0.2 46.31 25.27 23.24 18.90 21.74 20.66
0.3 47.28 27.78 25.73 17.89 - 21.63

50 0.1 127.70 57.04 52.73 49.23 51.25 50.14
0.2 112.46 61.63 56.61 48.98 53.22 50.75
0.3 113.43 67.04 61.52 47.45 55.54 51.33
0.4 122.31 75.12 69.20 45.54 59.93 53.31

100 0.1 231.04 113.93 105.26 99.30 102.37 100.15
0.2 205.59 122.04 111.86 98.73 105.22 100.29
0.3 210.15 132.64 121.53 97.50 109.82 101.52
0.4 216.72 146.61 135.11 95.24 117.00 104.62
0.5 242.10 168.66 156.12 91.22 128.72 109.93
0.6 300.93 206.86 192.18 83.27 - 118.53

500 0.1 1053.44 569.26 525.72 506.84 511.55 500.49
0.2 963.08 609.47 558.00 515.16 525.04 500.07
0.3 971.41 659.11 602.42 518.37 543.61 500.71
0.4 1020.69 724.57 663.84 532.26 569.39 503.55
0.5 1119.12 818.73 753.22 539.65 605.51 508.49
0.6 1303.91 981.44 907.65 545.36 666.00 521.65

1000 0.1 2092.53 1138.30 1050.46 1017.62 1021.92 999.64
0.2 1907.28 1218.46 1115.75 1038.31 1050.11 1000.22
0.3 1933.49 1316.74 1203.44 1057.25 1086.36 1000.56
0.4 2027.43 1445.50 1323.87 1094.42 1135.09 1002.55
0.5 2224.43 1642.99 1510.24 1132.57 1208.15 1008.72
0.6 2565.39 1953.83 1807.09 1180.50 1319.75 1024.08

50% 20 0.1 120.34 29.79 24.56 20.17 21.50 20.21
0.2 123.95 38.38 31.39 20.07 - 21.13

50 0.1 494.75 72.15 59.53 50.68 53.09 50.19
0.2 403.30 89.65 72.78 51.48 57.27 50.65
0.3 399.49 113.63 92.37 50.56 62.89 51.62
0.4 420.22 152.91 127.72 50.70 69.75 57.09

100 0.1 1038.28 143.13 118.28 102.20 105.94 100.21
0.2 742.85 176.13 142.85 104.76 113.43 100.62
0.3 684.94 219.17 178.15 106.47 123.40 101.50
0.4 742.94 282.58 233.44 109.48 138.51 103.77
0.5 898.43 387.43 327.56 108.30 - 113.77

500 0.1 4371.18 710.60 587.27 521.62 527.90 499.98
0.2 3182.76 872.46 706.55 547.70 563.69 500.56
0.3 2999.10 1074.84 872.24 578.09 609.01 501.27
0.4 3141.97 1361.50 1120.47 616.55 672.10 504.07
0.5 3610.54 1812.17 1521.01 648.45 761.10 507.99
0.6 4522.17 2613.77 2257.55 681.05 919.27 529.34

1000 0.1 8471.62 1419.90 1173.77 1047.30 1055.66 999.92
0.2 6278.96 1744.01 1412.57 1107.76 1127.99 1001.85
0.3 5872.90 2138.95 1736.09 1167.56 1215.55 1001.32
0.4 6253.75 2719.71 2235.84 1246.69 1339.53 1004.02
0.5 7120.06 3618.72 3034.65 1383.39 1514.05 1008.41
0.6 8869.88 5175.92 4463.78 1438.39 1803.81 1031.95
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Table 4.9: Relative bias of six population size estimators under 20% and 50%
one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT MLE ZTOI

20% 20 0.1 1.1447 0.1481 0.0629 -0.0197 0.0315 0.0090
0.2 1.3154 0.2636 0.1619 -0.0550 0.0870 0.0329
0.3 1.3641 0.3889 0.2867 -0.1053 - 0.0814

50 0.1 1.5541 0.1407 0.0546 -0.0154 0.0250 0.0027
0.2 1.2492 0.2326 0.1322 -0.0204 0.0643 0.0150
0.3 1.2687 0.3409 0.2304 -0.0510 0.1108 0.0267
0.4 1.4463 0.5024 0.3841 -0.0893 0.1985 0.0662

100 0.1 1.3104 0.1393 0.0526 -0.0070 0.0237 0.0015
0.2 1.0559 0.2204 0.1186 -0.0127 0.0522 0.0029
0.3 1.1015 0.3264 0.2153 -0.0250 0.0982 0.0152
0.4 1.1672 0.4661 0.3511 -0.0476 0.1700 0.0462
0.5 1.4210 0.6866 0.5612 -0.0878 0.2872 0.0993
0.6 2.0093 1.0686 0.9218 -0.1673 - 0.1853

500 0.1 1.1069 0.1385 0.0514 0.0137 0.0231 0.0010
0.2 0.9262 0.2189 0.1160 0.0303 0.0501 0.0001
0.3 0.9428 0.3182 0.2048 0.0367 0.0872 0.0014
0.4 1.0414 0.4491 0.3277 0.0645 0.1388 0.0071
0.5 1.2382 0.6375 0.5064 0.0793 0.2110 0.0170
0.6 1.6078 0.9629 0.8153 0.0907 0.3320 0.0433

1000 0.1 1.0925 0.1383 0.0505 0.0176 0.0219 -0.0004
0.2 0.9073 0.2185 0.1157 0.0383 0.0501 0.0002
0.3 0.9335 0.3167 0.2034 0.0572 0.0864 0.0006
0.4 1.0274 0.4455 0.3239 0.0944 0.1351 0.0025
0.5 1.2244 0.6430 0.5102 0.1326 0.2081 0.0087
0.6 1.5654 0.9538 0.8071 0.1805 0.3198 0.0241

50% 20 0.1 5.0169 0.4895 0.2281 0.0083 0.0748 0.0104
0.2 5.1975 0.9188 0.5693 0.0033 - 0.0565

50 0.1 8.8950 0.4430 0.1905 0.0137 0.0619 0.0039
0.2 7.0660 0.7930 0.4555 0.0296 0.1454 0.0130
0.3 6.9899 1.2726 0.8474 0.0112 0.2578 0.0325
0.4 7.4045 2.0582 1.5544 0.0140 0.4043 0.1419

100 0.1 9.3828 0.4313 0.1828 0.0220 0.0594 0.0021
0.2 6.4285 0.7613 0.4285 0.0476 0.1343 0.0062
0.3 5.8494 1.1917 0.7815 0.0647 0.2340 0.0150
0.4 6.4294 1.8258 1.3344 0.0948 0.3851 0.0377
0.5 7.9843 2.8743 2.2756 0.0830 - 0.1377

500 0.1 7.7424 0.4212 0.1745 0.0432 0.0558 0.0000
0.2 5.3655 0.7449 0.4131 0.0954 0.1274 0.0011
0.3 4.9982 1.1497 0.7445 0.1562 0.2180 0.0025
0.4 5.2839 1.7230 1.2409 0.2331 0.3442 0.0081
0.5 6.2211 2.6243 2.0420 0.2969 0.5222 0.0160
0.6 8.0443 4.2275 3.5151 0.3621 0.8385 0.0587

1000 0.1 7.4716 0.4199 0.1738 0.0473 0.0557 -0.0001
0.2 5.2790 0.7440 0.4126 0.1078 0.1280 0.0019
0.3 4.8729 1.1390 0.7361 0.1676 0.2156 0.0013
0.4 5.2537 1.7197 1.2358 0.2467 0.3395 0.0040
0.5 6.1201 2.6187 2.0346 0.3834 0.5141 0.0084
0.6 7.8699 4.1759 3.4638 0.4384 0.8038 0.0320
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Table 4.10: Relative variance of six population size estimators under 20% and
50% one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT MLE ZTOI

20% 20 0.1 1.2344 0.0126 0.0070 0.0043 0.0056 0.0052
0.2 1.6830 0.0476 0.0334 0.0108 0.0263 0.0235
0.3 2.1594 0.1152 0.0920 0.0160 - 0.0739

50 0.1 1.9136 0.0050 0.0030 0.0024 0.0025 0.0024
0.2 1.6089 0.0144 0.0092 0.0057 0.0069 0.0067
0.3 1.5709 0.0401 0.0280 0.0101 0.0219 0.0203
0.4 2.1363 0.0968 0.0709 0.0154 0.0570 0.0521

100 0.1 0.8588 0.0023 0.0013 0.0012 0.0011 0.0010
0.2 0.4538 0.0068 0.0045 0.0032 0.0036 0.0034
0.3 0.9350 0.0171 0.0119 0.0060 0.0086 0.0086
0.4 0.5790 0.0391 0.0292 0.0097 0.0225 0.0248
0.5 0.8630 0.1092 0.0885 0.0163 0.0966 0.0865
0.6 2.7078 0.2989 0.2624 0.0197 - 0.2931

500 0.1 0.0967 0.0004 0.0003 0.0003 0.0002 0.0002
0.2 0.0513 0.0013 0.0008 0.0007 0.0006 0.0006
0.3 0.0552 0.0031 0.0021 0.0016 0.0015 0.0015
0.4 0.0760 0.0078 0.0055 0.0035 0.0037 0.0040
0.5 0.1078 0.0153 0.0124 0.0078 0.0103 0.0116
0.6 0.2153 0.0490 0.0424 0.0141 0.0364 0.0420

1000 0.1 0.0409 0.0002 0.0001 0.0001 0.0001 0.0001
0.2 0.0252 0.0007 0.0004 0.0004 0.0003 0.0003
0.3 0.0261 0.0014 0.0010 0.0009 0.0007 0.0008
0.4 0.0352 0.0037 0.0027 0.0018 0.0018 0.0018
0.5 0.0589 0.0092 0.0072 0.0048 0.0048 0.0050
0.6 0.1025 0.0215 0.0183 0.0102 0.0161 0.0179

50% 20 0.1 7.4757 0.0797 0.0352 0.0033 0.0074 0.0040
0.2 10.1349 0.4444 0.2996 0.0073 - 0.0835

50 0.1 30.5648 0.0179 0.0067 0.0015 0.0018 0.0013
0.2 27.9088 0.0749 0.0399 0.0045 0.0092 0.0047
0.3 31.9849 0.2735 0.1637 0.0077 0.0366 0.0202
0.4 35.7446 1.5514 1.0792 0.0140 0.2580 0.2362

100 0.1 45.7641 0.0077 0.0028 0.0009 0.0009 0.0006
0.2 19.6035 0.0332 0.0168 0.0029 0.0038 0.0020
0.3 13.2992 0.1108 0.0627 0.0056 0.0119 0.0058
0.4 20.1043 0.3522 0.2379 0.0115 0.0443 0.0182
0.5 39.7080 1.3324 1.0135 0.0183 - 0.2355

500 0.1 4.5381 0.0015 0.0005 0.0003 0.0002 0.0001
0.2 1.4321 0.0058 0.0028 0.0010 0.0007 0.0004
0.3 1.1298 0.0192 0.0111 0.0023 0.0022 0.0010
0.4 1.3901 0.0519 0.0336 0.0051 0.0066 0.0027
0.5 2.0034 0.1663 0.1244 0.0106 0.0235 0.0078
0.6 4.3476 0.6947 0.5811 0.0231 0.1228 0.0424

1000 0.1 1.8840 0.0007 0.0003 0.0001 0.0001 0.0001
0.2 0.7029 0.0032 0.0015 0.0005 0.0003 0.0002
0.3 0.4896 0.0091 0.0053 0.0011 0.0010 0.0005
0.4 0.6253 0.0259 0.0175 0.0032 0.0034 0.0013
0.5 0.9114 0.0773 0.0572 0.0080 0.0102 0.0033
0.6 1.8886 0.3106 0.2568 0.0219 0.0486 0.0133
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Table 4.11: Relative mean square error of six population size estimators under
20% and 50% one-inflation

Extra-ones N p Chao Turing MLE T OT MLE OT MLE ZTOI

20% 20 0.1 2.5436 0.0345 0.0109 0.0047 0.0066 0.0053
0.2 3.4116 0.1170 0.0595 0.0138 0.0338 0.0246
0.3 4.0180 0.2663 0.1741 0.0271 - 0.0805

50 0.1 4.3268 0.0248 0.0059 0.0026 0.0031 0.0024
0.2 3.1679 0.0684 0.0267 0.0061 0.0111 0.0069
0.3 3.1788 0.1563 0.0811 0.0127 0.0341 0.0210
0.4 4.2258 0.3490 0.2184 0.0234 0.0963 0.0564

100 0.1 2.5751 0.0217 0.0041 0.0013 0.0017 0.0010
0.2 1.5682 0.0554 0.0186 0.0033 0.0063 0.0035
0.3 2.1474 0.1236 0.0582 0.0067 0.0182 0.0089
0.4 1.9408 0.2563 0.1525 0.0120 0.0514 0.0269
0.5 2.8814 0.5805 0.4034 0.0240 0.1790 0.0963
0.6 6.7422 1.4406 1.1118 0.0477 - 0.3272

500 0.1 1.3217 0.0196 0.0029 0.0005 0.0007 0.0002
0.2 0.9090 0.0492 0.0143 0.0017 0.0031 0.0006
0.3 0.9440 0.1043 0.0440 0.0029 0.0091 0.0015
0.4 1.1604 0.2095 0.1129 0.0077 0.0230 0.0040
0.5 1.6409 0.4216 0.2689 0.0140 0.0548 0.0119
0.6 2.8002 0.9761 0.7071 0.0223 0.1466 0.0439

1000 0.1 1.2345 0.0193 0.0027 0.0005 0.0006 0.0001
0.2 0.8483 0.0484 0.0138 0.0019 0.0028 0.0003
0.3 0.8975 0.1017 0.0424 0.0041 0.0082 0.0008
0.4 1.0908 0.2022 0.1076 0.0107 0.0200 0.0018
0.5 1.5580 0.4227 0.2675 0.0224 0.0481 0.0050
0.6 2.5529 0.9312 0.6697 0.0428 0.1184 0.0184

50% 20 0.1 32.6378 0.3192 0.0872 0.0034 0.0130 0.0041
0.2 37.1391 1.2882 0.6234 0.0073 - 0.0866

50 0.1 109.6550 0.2141 0.0430 0.0017 0.0057 0.0013
0.2 77.8097 0.7036 0.2473 0.0053 0.0303 0.0049
0.3 80.8113 1.8928 0.8817 0.0079 0.1030 0.0212
0.4 90.5354 5.7861 3.4944 0.0142 0.2645 0.2561

100 0.1 133.7561 0.1937 0.0362 0.0014 0.0044 0.0006
0.2 60.9101 0.6128 0.2004 0.0051 0.0219 0.0021
0.3 47.5016 1.5308 0.6734 0.0098 0.0667 0.0060
0.4 61.4216 3.6855 2.0182 0.0205 0.1925 0.0196
0.5 103.4174 9.5929 6.1908 0.0251 - 0.2542

500 0.1 64.4777 0.1789 0.0310 0.0021 0.0033 0.0001
0.2 30.2195 0.5607 0.1734 0.0101 0.0169 0.0004
0.3 26.1107 1.3410 0.5654 0.0267 0.0497 0.0010
0.4 29.3088 3.0206 1.5735 0.0594 0.1250 0.0027
0.5 40.7032 7.0533 4.2942 0.0987 0.2961 0.0081
0.6 69.0547 18.5662 12.9364 0.1542 0.8258 0.0458

1000 0.1 57.7072 0.1770 0.0305 0.0024 0.0032 0.0001
0.2 28.5697 0.5567 0.1717 0.0121 0.0167 0.0002
0.3 24.2343 1.3063 0.5471 0.0292 0.0475 0.0005
0.4 28.2265 2.9833 1.5448 0.0641 0.1187 0.0013
0.5 38.3656 6.9350 4.1970 0.1550 0.2744 0.0033
0.6 63.8217 17.7486 12.2543 0.2140 0.6947 0.0144
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Figure 4.1: RBias, RVar and RMSE of six estimators for counts drawn from
geometric(θ) with 20% one-inflation
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Figure 4.2: RBias, RVar and RMSE of six estimators for counts drawn from
geometric(θ) with 50% one-inflation
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4.7 Real-data examples

In this section, the two data sets of Section 3.7 and a new case study are used to

examined the newly proposed estimator in actual data of one-inflation and comparing

the estimate with other methods.

Example 4.3 Referring to the first case study in Chapter 3, we wish to estimate the

total number of scrapie-infected holdings in France. The details of observed counts are

presented again in Table 4.12.

Table 4.12: The data of French scrapie-infected holdings

x 1 2 3 4

fx 121 13 5 2

The ratio plot in Figure 3.2 left panel shows that this data may experience one-inflation

form. Now, we can check this suspicion again by using the likelihood ratio test as follows:

H0 : data are from zero-truncated geometric distribution

HA : data are from zero truncation one inflation geometric distribution

Set α = 0.05 and use the test statistic

LRT = −2l0(0, θ̃) + 2lA(ω̂, θ̂)

= −2(77.6590) + 2(75.5607)

= 4.1966.

with a critical value of χ2
.90,1 = 2.706. We come to the decision to reject H0 since

LRT > 2.706 and p−value
2 (0.02025) < α(0.05). We conclude that this data set are from

zero-truncated one-inflated geometric distribution at 0.05 significance level.

From the evidence provided by ratio plot and likelihood ratio test, the presence of one-

inflation can be conjectured. Therefore, all proposed estimators should be appropriate

for this data set, particularly the newly developed estimator. The results of estimat-

ing the total number of scrapie-infected holdings and the goodness of fit statistics from

all estimators are shown in Table 4.13. As we expect, the newly suggested estimator

N̂MLE ZTOI can definitely reduce the overestimation assorted with conventional estima-

tors by producing a distinctly smaller estimate. It clearly reveals that the MLE ZTOI

provides the smallest estimate while the estimate of T OT is in between the estimate of

MLE ZTOI and MLE OT but slightly more close to the proposed MLE OT estimator.

Moreover, the goodness of fit statistics and the graph in Figure 4.3 show that the esti-

mated values from MLE ZTOI, shown by the orange line on the graph, can fit the data

very well and as good as the T OT estimator.
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Table 4.13: Results for scrapie-infected holdings in France

Estimator f̂0 N̂ Chi-square p-value

Chao1 1126 1267 27.195 0.00000
Turing 761 902 8.487 0.01436
MLE 686 827 6.781 0.03369
T OT 286 427 0.283 0.59474
MLE OT 313 454 0.507 0.47644
MLE ZTOI 120 261 0.316 0.57402
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Figure 4.3: Residual plot with all estimators for scrapie infection data

Example 4.4 According to the case study of domestic violence in the Netherlands

which was previously discussed in Chapter 3, Section 3.7, the frequency of domestic

violence offenders can be seen in Table 3.12. The ratio plot is shown in Figure 3.3 left

panel and it shows unclear one-inflation so here we investigate again by the likelihood

ratio test and the result of testing shows the presence of one inflation; LRT = 98.9135

and p − value < 0.001. It can be assumed that the newly proposed estimator is viable

and suitable with this data set. The results of estimation from the classical and newly

proposed estimators are shown in Table 4.14. The pattern of results for all proposed

estimators is different from the example 1, N̂T OT > N̂MLE OT > N̂MLE ZTOI. It is

clearly seen that the estimate of MLE ZTOI is smallest and obviously different from the

estimate of T OT and MLE OT.

1For GOF-test, p̂0 = f̂0
N̂

and p = p0 for geometric model
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Table 4.14: Results for domestic violence study

Estimator f̂0 N̂ Chi-square p-value

Chao1 117,577 135,223 317.537 0.00000
Turing 103,233 120,879 166.795 0.00000
MLE 98,788 116,434 144.797 0.00000
T OT 65,573 83,219 7.227 0.02696
MLE OT 64,754 82,400 6.649 0.03599
MLE ZTOI 35,085 52,731 8.097 0.01745
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Figure 4.4: Residual plot with all estimators for domestic violence data

In terms of statistical model fitting, Figure 4.4 shows the standardized residual plot for

this data set with all estimators. The fitted values of MLE ZTOI are shown by the

orange line, whereas the purple and black lines are for T OT and MLE OT respectively.

It can be clearly seen from the graph and the p-value from the goodness of fit statistics

in Table 4.4 that the estimated values from newly proposed estimator can fit the data

well but it cannot clearly improve upon the fitting of the former proposed estimators.

Example 4.5 From the example of capture-recapture data in Section 2.6, the data of

illegal immigrants in the Netherlands from police records are shown again in Table 4.15

in order to estimate the population size by all proposed estimators comparing with the

classical estimators.

It can be noticed that the number of singletons is considerably higher than the number

of doubletons. This indicates that the data may experience one-inflation. Then, we
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Table 4.15: The data of illegal immigrants in the Netherlands

f1 f2 f3 f4 f5 f6 n

1645 183 37 13 1 1 1880
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Figure 4.5: Ratio plot for illegal immigrants data

look at the ratio plot as shown in Figure 4.5. We found that a geometric distribution

might be more suitable with this data than a Poisson distribution but we cannot see

the evidence of one-inflation. However, the likelihood ratio test indicates that this data

set undergoes one-inflation by LRT = 20.8471 and p − value = 4.97 × 10−6. Hence,

all proposed estimators are applied to this data and the results of estimation from all

estimators are shown in Table 4.16.

Table 4.16: Results for illegal immigrants study

Estimator f̂0 N̂ Chi-square p-value

Chao1 14,787 16,667 92.009 0.00000
Turing 12,327 14,270 43.811 0.00000
MLE 11,588 13,468 36.326 0.00000
T OT 6,461 8,341 3.085 0.37870
MLE OT 6,311 8,191 2.917 0.40460
MLE ZTOI 2,983 4,863 2.859 0.40779

As similar with previous examples, we consider the results in two parts; estimation and

model fitting. In terms of estimation, the estimates from conventional estimators are
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Figure 4.6: Residual plot with all estimators for illegal immigrants data

about double in size in comparison to the proposed estimators due to the effect of one-

inflation as we expect. Interestingly, the estimates of T OT and MLE OT are similar;

N̂T OT = 8, 341 and N̂MLE OT = 8, 191, whereas they are about double of MLE ZTOI

N̂MLE ZTOI = 4, 863. The estimation of MLE ZTOI seems to be the best in term of

model fitting with χ2 = 2.859 and p − value = 0.40779. This corresponds with the

graph in Figure 4.6. Nevertheless, it can be seen that the fitted values for count twos,

threes, fours and so on seem to be identical under the two models as shown in Table

4.17. The question arises why the estimate for count zeros are so different. The reason

is that the estimates of p0 from two models are different although the estimates of the

two models parameters are identical, p̂0(OT) = θ̂ whereas p̂0(ZTOI) = ω̂θ̂.

Table 4.17: Fitted frequencies under the MLE OT and MLE ZTOI estimators
for illegal immigrants data

x fx MLE OT MLE ZTOI

1 1,645 1,647.02
2 183 181.07 176.39
3 37 41.55 42.84
4 13 9.54 10.41
5 1 2.19 2.53
6 1 0.50 0.61
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4.8 Discussion and conclusion

In capture-recapture studies, the reliability of the population size estimate depends on

the correctness of initial identification of sample individuals. Some applications un-

dergo the situation of identifying individuals to wrong classes or some may face a trap-

avoidance situation and these can cause the problem of one-inflation. To estimate the

size N of an elusive population under one-inflation, two concepts are suggested to deal

with. The first is based on a modification by truncating singletons and applying the

conventional Turing and MLE approach to the one-truncated geometric data (N̂T OT

and N̂MLE OT). These are examined in Chapter 3. On the other hand, another concept,

the model-based approach, focuses on developing a statistical model that describes the

mechanism for extra one generation as shown in Chapter 4. In this chapter, a new es-

timator (N̂MLE ZTOI) is developed from the maximum likelihood approach by using the

nested EM algorithm based upon the zero-truncated one-inflated geometric distribution.

Chapter 3 shows that N̂T OT and N̂MLE OT can solve the problem of one-inflation and

N̂T OT performs better than N̂MLE OT. To evaluate the performance of the newly pro-

posed estimators N̂MLE ZTOI, simulation studies are done again in order to compare the

performance of all newly suggested and also existing conventional estimators. The sim-

ulation results provides evidence that N̂MLE ZTOI shows a good performance in accuracy

and perform best for all conditions under study. In addition, N̂MLE ZTOI provides the

smallest variance and mean square error for the big size of population (N = 500, 1000)

whereas N̂T OT provides the smallest for the small population size (N = 20, 50, 100).

Overall it can be concluded that N̂MLE ZTOI is better than N̂T OT especially in case of

high level of one-inflation and the large size of population.

Furthermore, we applied the newly proposed estimator with the two data sets from

Chapter 3 and a new data set of illegal immigrants in the Netherlands. Also we com-

pare the estimate with other estimators. All examples show that the newly proposed

estimators can cope with the problem of one-inflation by providing smaller estimates

than conventional estimators and also smaller than the previous suggested estimators

except example 1. In term of statistical model fitting, it is found that the fitted values

of the newly developed estimator can fit the data with one-inflation well and better than

the conventional estimators in all of the cases studies particularly in the last example.

To sum up, it can be seen clearly that both concepts can solve the problem of one-

inflation and each concept has a different strength. The first concept is simpler whereas

the second concept uses a model-based approach to explain the extra-ones. Although

the latter approach is more complex and more computational demanding, it produces

the best estimates, especially for the large population size and high level of one-inflation.

However, in case of a small size of population, although the first approach seems to be

better than the second approach, the differences between the two are almost negligible.
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Hence, both approaches seem reasonable to use with a slight benefit to the first one as

it is the simpler concept.



Chapter 5

A Modified Chao Estimator for

Zero-Truncated One-Inflated

Count Distribution

As it is shown in Chapter 2, Chao’s lower bound estimator is widely used to estimate

population size in capture-recapture. One reason is that its formula is easy to calcu-

late. It involves only the frequency of counts one and two. Moreover, it is not only

asymptotically unbiased if the count distribution is a member of the power series family

such as Poisson, binomial, exponential and geometric distribution but also provides a

lower bound estimator if the count distribution is a mixture of the power series family.

Nevertheless, Chao’s lower bound estimator can severely overestimate if the count data

have an excess number of ones, called one-inflation. To avoid the overestimation caused

by one-inflation, Chao’s estimator is modified to involve the frequency of counts of twos

and threes instead of the frequency of counts of ones and twos. The modified Chao

estimator shows a good performance in simulation studies under the geometric model,

geometric model with one-inflation, mixture of geometric model, mixture of geometric

with one-inflation, and it is reasonable to use in applications. Furthermore, it retains its

good properties; asymptotically it is an unbiased estimator for a power series distribution

with and without one-inflation and provides a lower bound estimator under a mixture of

power series distributions with and without one-inflation. However, all Chao estimators

are biased estimators when the sample size is small, so the bias-reduction versions of all

Chao estimators have been developed that can reduce the bias considerably.

87
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5.1 Introduction

The estimation of the size N of a closed elusive population using capture-recapture

techniques is an important topic in many research areas. The problem consists in ex-

trapolating a value for the number of units that have been missed, using the information

gathered on the captured units at m occasions where m might be known or not. The

data set for analysis consists of the empirical frequencies f1, f2, ..., fm where fx is the fre-

quency of distinct units identified exactly x times during the study period and m is the

largest count observed in the sample. The predicted value of f0 depends on the model

for the capture of units based on a zero-truncated count distribution. The typical model

is the Poisson or the binomial. However, heterogeneity in the capture probabilities is a

common occurrence. It appears to be general agreement that a simple model p(x|λ) is

not flexible enough to capture the variation in the recapture probability for the distinct

units of real-life population (see e.g. Pledger (2005) for the discrete mixture model and

Dorazio and Royle (2003) for the continuous mixture model). It can be seen that in fact

the mixture px =
∫∞

0 p(x|λ)f(λ)dλ is a natural model for modelling a heterogeneous

population. Nevertheless, there has also been discussion on the problem of identifiabil-

ity of the mixture model (see Link (2003)). Several models for the individual capture

probabilities have been investigated by several researchers. Huggins (2001) and Link

(2003), for example, showed that the population size is not estimable in the presence

of heterogeneity. Even though m is large, two models fitting the data evenly well can

give entirely different estimates for N . In addition, boundary problems may occur in

the maximum likelihood approach for finite mixture models (Wang and Lindsay (2005)).

These emphasize the importance of Chao’s lower bound estimator; a lower bound es-

timate on the population size might be the best result achievable for a heterogeneous

population. Moreover, the lower bound approach has neither an identifiability problem,

nor is there need to specify a mixing distribution; it is completely nonparametric. For

these advantages the conventional estimators f2
1 /(2f2) for the unobserved frequency f0

of zero-counts and n+ f2
1 /(2f2) of the population size N (Chao (1987)) are popular and

frequently used. It is asymptotically unbiased if count X follows a Poisson distribution

and represents a lower bound if X follows a mixture of Poisson distributions. The pur-

pose of this chapter is to present a modification of the Chao’s estimator in the case of

one-inflation as it can severely overestimate as shown in previous chapters. This effect

is in contrast to the expectation of users of the estimator as it is expected to provide a

lower bound that is relatively close to the true population size.

5.2 Power Series and Mixture of Power Series Distribution

The family of power series distribution is important due to the fact that it provides a very

elegant and perceptive formulation of several classical discrete distributions that are used
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in statistical research including the capture-recapture area. Most of the special, discrete

distributions are included such as Poisson, binomial, geometric, negative-binomial with

known shape parameter and others. The discrete random variable X is said to have a

power series distribution if

px(θ) = bxθ
x/g(θ), (5.1)

where bx > 0 is a known, non-negative coefficient, θ is a positive parameter and x

ranges over the set of non-negative integers. Here g(θ) =
∑∞

x=0 bxθ
x is the normalizing

constant. The specific member of the power series is defined by the coefficient bx, for

example, the Poisson is defined by bx = 1/x! whereas bx =
(
m
x

)
for x = 0, 1, ...,m defines

the binomial with positive integer m (bx = 0 for x > m). The geometric is defined as

bx = 1. In case of the negative binomial, px = Γ(x+k)
Γ(x+1)Γ(k)θ

x(1 − θ)k is also a member

of the power series family with bx = Γ(x+k)
Γ(x+1)Γ(k) for a known value of shape parameter

k > 0 and θ ∈ (0, 1) is the event parameter. For k = 1 the negative binomial becomes

the geometric distribution, conversely, for k →∞ the negative binomial approaches the

Poisson distribution. However, a model which is a member of the power series distri-

bution cannot adequately describe the target population of interest with heterogeneity

especially when heterogeneity is unobserved. Hence, the mixture of power series distri-

bution is considered in the sense that the unobserved heterogeneity is described by a

latent variable T . The joint probability density of the count random variable X and

the latent variable T is given by f(x, t) = f(x|t)f(t) and f(x|t) = f(x, t)/f(t) where

f(t) =
∫
x f(x, t)dx. The marginal density

∫
t f(x|t)f(t)dt of the count x is considered

instead of the joint density because the information of latent variable is unknown. If

we define the conditional density f(x|t) by a power series density px(θ) and identify the

latent variable t by the parameter θ, the mixture model for the power series family is

obtained by

mx =

∫
θ
px(θ)f(θ)dθ (5.2)

where px(θ) is the mixture kernel and f(θ) is the mixing distribution. The mixture

of power series distribution seems to be more flexible but it also involves a lack of

identifiability or the boundary problem in maximum likelihood estimation. Hence, the

lower bound estimation might be the better choice to avoid these problems. The original

concept of lower bound estimation is to apply nonparametric statistical inference based

upon the Cauchy-Schwarz inequality in the context of zero-truncated count mixture

modelling by keeping the mixture distribution unspecified. To give some ideas of the

lower bound approach by consider the Poisson mixture kernel exp(−λ)λx/x!, the Cauchy-

Schwarz inequality can be written as(∫ ∞
0

e−λλq(λ)dλ

)2

≤
(∫ ∞

0
e−λq(λ)dλ

)(∫ ∞
0

e−λλ2q(λ)dλ

)
and it is equivalent to p2

1 ≤ p0(2p2). Replacing the theoretical probabilities pi by their

sample estimates fi/N for i = 1, 2, leads to Chao’s estimator for f0 and N as f2
1 /(2f2)
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and n + f2
1 /(2f2), respectively. This idea is taken up again and developed further for

the one-inflated count distributions in Section 5.3.

5.2.1 The Monotonicity of the Mixed Power Series Probability Ratio

The power series in (5.1) has an interesting property. If we consider the ratios of neigh-

bouring probabilities for the power series multiplied by a known factor over the range of

x, they provide a constant value which is equal to the unknown parameter θ as follows:

px
px+1

=
bxθ

x/g(θ)

bx+1θx+1/g(θ)

=
bx
bx+1

1

θ

and

px−1

px
=
bx−1θ

x−1/g(θ)

bxθx/g(θ)

=
bx−1

bx

1

θ

so

θ =
bx
bx+1

px+1

px
=
bx−1

bx

px
px−1

= rx. (5.3)

In capture-recapture studies, zero-counts are truncated. Let p+
x (θ) = px(θ)/ [1− p0(θ)]

and m+
x (θ) = mx(θ)/ [1−m0(θ)] are the zero-truncated density for the power series and

the mixture of power series distributions, respectively. The ratio rx is also identical to

the zero-truncated power series distribution since

rx =
bx
bx+1

p+
x+1

p+
x

=
bx
bx+1

px+1/[1− p0(θ)]

px/[1− p0(θ)]
=

bx
bx+1

px+1

px
.

The ratio rx is estimated by r̂x =
bx
bx+1

fx+1

fx
where fx is the frequency of observed

value of count x. Böhning et al. (2013a) developed the graph of x against r̂x as a

diagnostic device for departure of a distribution and it is called the ratio plot (see also

Chapter 2, Section 2.7). The horizontal line is consistent with homogeneous power series

distributional observations whereas departures from a horizontal line provide evidence

for the occurrence of unobserved heterogeneity leading to a mixture of power series

distribution. Similarly, we can consider the ratio plot for mixtures

rx =
bx
bx+1

mx+1

mx
, (5.4)

where the coefficients bx is associated with the mixture kernel px(θ). It can be seen that

the estimate of rx will not change but the observed pattern in the ratio plot will change
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and it will be interpreted in a different way due to the property of monotonicity in the

mixture of power series as follows (see Chao (1987) and more general detail in Böhning

(2008) and Böhning (2015)).

Theorem 1. Let mx =
∫
θ px(θ)f(θ)dθ where px(θ) is a member of the power series

family and f(θ) is an arbitrary density. Then, for rx =
bx
bx+1

mx+1

mx
we have the following

monotonicity:

rx ≤ rx+1

for all x = 0, 1, ....

The result from Theorem 1 shows that the ratio plot will no longer show a horizontal

line pattern in the case of a mixture of power series distributions but it will display a

monotone non-decreasing pattern with an increase in x. Therefore, the ratio plot can

be taken as an indicator for presence of heterogeneity if a monotone increasing pattern

occurs in the ratio plot.

5.3 Modified Chao Estimation

From the ratio in (5.4) and a consequence of the result in Theorem 1, we obtain

bx−1

bx

mx

mx−1
≤ bx
bx+1

mx+1

mx
.

For x = 1 we have that
b0
b1

m1

m0
≤ b1
b2

m2

m1

or

m0 ≥
b0b2
b21

m2
1

m2
. (5.5)

Replacing the theoretical quantities mx by their sample estimates fx/N leads to the

lower bound of Chao estimate for f0 and N as (Chao (1987) and Chao (1989))

f̂0 =
b0b2
b21

f2
1

f2
and N̂C = n+

b0b2
b21

f2
1

f2
, (5.6)

respectively. It can be seen that the estimate in (5.6) provides a lower bound of the num-

ber of missing units in population and a lower bound of the population size if compares

with the interpretation in (5.5). This estimate is the most popular and frequently used,

particularly, when the assumption is based on a Poisson distribution, where bx = 1/x!

then f̂0 = f2
1 /2f2 and N̂C = n+f2

1 /2f2. However, if we apply the monotonicity property

in Theorem 1 with all possible ratios of x, we get

b0
b1

m1

m0
≤ b1
b2

m2

m1
≤ b2
b3

m3

m2
≤ b3
b4

m4

m3
≤ b4
b5

m5

m4
...
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As a consequence many other lower bounds for m0 are possible:

m0 ≥
b0b2
b21

m2
1

m2
(For Chao estimation)

m0 ≥
b0b3
b1b2

m1m2

m3

m0 ≥
b0b4
b1b3

m1m3

m4

m0 ≥
b0b5
b1b4

m1m4

m5

...

It can be seen clearly that the lower bound of Chao is the largest, hence it is the best

lower bound estimate of f0 and N . Indeed, for example

from
b1
b2

m2

m1
6
b2
b3

m3

m2

follows
b2
b1

m1

m2
≥ b3
b2

m2

m3

and finally
b0b2
b21

m2
1

m2
≥ b0b3
b1b2

m1m2

m3
.

Nevertheless, Chao’s estimator can experience a severe problem of overestimation when

there is one-inflation occurrence due to its form involves f2
1 as shown in Chapter 3. Let

m
′
x be the one-inflated model described as follows:

m
′
x =

{
ωmx for x 6= 1

(1− ω) + ωmx for x = 1
(5.7)

where mx is the mixture of a power series member and 1− ω represents the proportion

of one-inflation. Note that m
′
x in (5.7) can be written as m

′
x = (1− ω)δ1(x) + ωmx for

x = 0, 1, 2, ... and δ1(x) = 1 for x = 1 and zero otherwise. For a one-inflation model,

counts of one will be no more compatible with the non-parametric mixture model as it

is outside the class of non-parametric mixtures. Hence, Chao’s estimator is no longer

a lower bound estimator as Theorem 1 no longer holds. This point is different from

a zero-inflated model as every zero-inflated power series distribution can be written as

the mixture (1− ω)δ0(x) + ωmx = (1− ω)bx0x/g(θ) + ωmx which is within the class of

non-parametric mixtures of power series distribution.

To cope with this problem and avoid using f1 for estimation, the monotonicity property

is considered in the following another way:

b1
b2

m2

m1
≤ b2
b3

m3

m2
(5.8)
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So

m1 ≥
b1b3
b22

m2
2

m3
. (5.9)

This bound has never been used nor enlarged on since it seems aimless as the counts of

ones are observed and its bound is not required. However, if we replace m1 in (5.5) with

the bound of counts one given in (5.9), we yield

m0 ≥
b0b2
b21

(
b1b3
b22

m2
2

m3

)2
1

m2
. (5.10)

The bound can be simplified to

m0 ≥
b0b

2
3

b32

m3
2

m2
3

, (5.11)

then plugging the relative frequencies leads to

f̂∗0 =
b0b

2
3

b32

f3
2

f2
3

(5.12)

and

N̂MC = n+
b0b

2
3

b32

f3
2

f2
3

. (5.13)

From the Theorem 1, f̂∗0 can be expected to be smaller than f̂0 as

f̂0 ≥
b0b2
b21

f2
1

f2
≥ b0b

2
3

b32

f3
2

f2
3

. (5.14)

Here inequalities are meant w.r.t. expected values. The generalised modified Chao

estimator in (5.11) and (5.12) can be transformed to the specific forms for the mixture

of particular power series member by substituting associated coefficients. For example,

if mx is

a Poisson mixture then f̂∗0 =
2

9

f3
2

f2
3

,

a geometric mixture then f̂∗0 =
f3

2

f2
3

,

a binomial mixture then f̂∗0 =
(m− 2)2

m(m− 1)

2

9

f3
2

f2
3

.

Note that f̂∗0 for a binomial mixture and a Poisson mixture is identical if m becomes

large. Additionally, both f̂0 and f̂∗0 are asymptotically unbiased under a power series

distribution, in the sense of no mixing involved.

According to (5.14), the bound f̂∗0 could be of interest as it will typically provide an

even lower bound than the conventional Chao lower bound estimator f̂0. The advantage

of the new lower bound estimator is shown here.
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Theorem 2. Assume a one-inflation modelm
′
x as given in (5.7), wheremx =

∫
θ px(θ)f(θ)dθ

where px(θ) is a member of the power series family and f(θ) is an arbitrary density. Then

m
′
0 ≥

b0b
2
3

b32

m
′
2

3

m
′
3

2 . (5.15)

Proof. For the non-inflated component we have that

m0 ≥
b0b

2
3

b32

m3
2

m2
3

and multiplying both sides with ω gives

ωm0 ≥
b0b

2
3

b32

(ωm2)3

(ωm3)2

which is the result as m
′
x = ωmx for x 6= 1. This ends the proof.

As a consequence of this theorem, we can expect that f̂∗0 is a lower bound estimator in

the mean under heterogeneity of the power series distribution and under one-inflation.

Consider the case of power series distribution with one-inflation, in other words

m
′
x = (1− ω)δ1(x) + ωpx.

Then, the conventional Chao estimator has asymptotic bias

b0b2
b21

[(1− ω) + ωp1]2

ωp2
N − b0/g(θ)N

Proof.

We have from (5.11) that

E(N̂C) = E

(
n+

b0b2
b21

f2
1

f2

)
= E(n) +

b0b2
b21

E(f2
1 /f2)

= N(1− p0) +
b0b2
b21

E(f2
1 /f2)

= N [1− b0/g(θ)] +
b0b2
b21

[(1− ω) + ωp1]2

ωp2
N

= N +

{
b0b2
b21

[(1− ω) + ωp1]2

ωp2
N − b0/g(θ)N

}
,

which ends the proof.
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In contrast, the suggested modified Chao estimator is asymptotically unbiased, even

if the power series distribution is contaminated by one-inflation as can be seen in the

following:

E(N̂MC) = E

(
n+

b0b
2
3

b32

f3
2

f2
3

)
= E(n) +

b0b
2
3

b32
E(f3

2 /f
2
3 )

= N(1−m0) +
b0b

2
3

b32
E(f3

2 /f
2
3 )

= N(1− ωp0) +
b0b

2
3

b32

(ωp2)3

(ωp3)2
N

= N [1− ωb0/g(θ)] +
b0b

2
3

b32

[
ω3(b2θ

2/g(θ))3

ω2(b3θ3/g(θ))2

]
N

= N [1− ωb0/g(θ)] + [ωb0/g(θ)]N

= N

5.4 Bias Correction

The limitation of Chao’s estimator is that it can have severe bias when the sample size is

small. To reduce the bias of the modified Chao estimator, we need, firstly, to understand

the occurrence of bias and the idea of bias-reduction for classical Chao estimator, then

apply to the newly modified Chao estimator so we go back to consider the original Chao

estimator in (5.5) again.

5.4.1 Classical Chao estimator with bias correction

As the arguments used to reduce bias are not easily available in the published literature,

it is presented here. The idea is to attempt to estimate Nm2
1/m2 = [E(f1)]2/E(f2) by

using f2
1 /f2 but E(f2

1 /f2) is not necessarily close to [E(f1)]2/E(f2) except that f1/N

and f2/N are close to m1 and m2, respectively; say if N is large enough. If N is small,

hence, we cannot use f2
1 to estimate [E(f1)]2 directly as [E(f1)]2 will not equate to

E(f2
1 ). Indeed, we use an equidispersion property of Poisson assumption: ”Mean =

Variance”,

V ar(f1) = E(f2
1 )− [E(f1)]2 = E(f1). (5.16)

It follows that [E(f1)]2 = E(f2
1 ) − E(f1) which can be estimated as f2

1 − f1 leading to

the numerator of the bias-corrected Chao estimator. Turning to the denominator, we

also notice that the interest is in 1/λ = 1/E(f2), but we can use 1/f2 estimate E(1/f2)

only if the latter exists or f2 6= 0. Alternatively, 1/(f2 + 1) will estimate E[1/(f2 + 1)]
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which can be evaluated using the Poisson assumption for f2 as

E

(
1

f2 + 1

)
=
∞∑
f2=0

1

f2 + 1

exp(−λ)λf2

f2!

=

∞∑
f2=0

exp(−λ)λf2

(f2 + 1)!

λ

λ

=
1

λ

∞∑
f2=0

exp(−λ)λf2+1

(f2 + 1)!

=
exp(−λ)

λ
(exp(λ)− 1)

= 1/λ− exp(−λ)/λ

≈ 1

E(f2)
,

(5.17)

with the approximation error less than 0.001 for λ > 5. This leads to the bias-corrected

classical Chao estimator

N̂CC = n+
b0b2
b21

f1(f1 − 1)

f2 + 1
. (5.18)

5.4.2 Modified Chao estimator with bias correction 1

In a similar way, the modified Chao estimator in (5.11) is considered again by separating

m3
2/m

2
3 into 2 parts as (m2

2/m3)(m2/m3). We apply the Poisson assumptions in (5.16)

and (5.17) for the numerator and denominator in the first part, respectively and use the

property in (5.17) again for the denominator in the second part as follows

Nm3
2

m2
3

=

(
Nm2

2

m3

)(
m2

m3

)
=

(
[E(f2)]2

E(f3)

)(
E(f2)

E(f3)

)
≈
(
E(f2

2 )− E(f2)

E(f3 + 1)

)(
E(f2)

E(f3 + 1)

)

which can be estimated by

(
f2

2 − f2

f3 + 1

)(
f2

f3 + 1

)
or

f2
2 (f2 − 1)

(f3 + 1)2
. This provides the first

version of bias correction for the modified Chao estimator

N̂MC1 = n+
b0b

2
3

b32

f2
2 (f2 − 1)

(f3 + 1)2
. (5.19)
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5.4.3 Modified Chao estimator with bias correction 2

Here we give some details of developing another version for the bias-reduction of the

modified Chao estimator. We use the property of third moment of the Poisson distribu-

tion to estimate m3
2 = E(f2)3 for the numerator and keep the denominator identical as

in the bias correction 1 in (5.19). We note that

E[f2 − E(f2)]3 = E[f3
2 − 3f2

2E(f2) + 3f2E(f2)2 − E(f2)3]

= E(f3
2 )− 3E(f2

2 )E(f2) + 3E(f2)E(f2)2 − E(f2)3

= E(f3
2 )− 3E(f2

2 )E(f2) + 2E(f2)3.

Using a Poisson assumption for f2, E[f2 − E(f2)]3 = E(f2), we yield

E(f2) = E(f3
2 )− 3E(f2

2 )E(f2) + 2E(f2)3

Using the Poisson assumption of variance once more, we have that E(f2
2 ) = E(f2) +

E(f2)2 so that

E(f2) = E[f3
2 ]− 3[E(f2) + E(f2)2]E(f2) + 2E(f2)3

2E(f2)3 = E(f2)− E(f3
2 ) + 3E(f2)2 + 3E(f2)3

E(f2)3 = E(f3
2 )− E(f2)− 3E(f2)2

using the Poisson assumption for E(f2)2 = E(f2)2 − E(f2) again

E(f2)3 = E(f3
2 )− E(f2)− 3E(f2

2 ) + 3E(f2)

= E(f3
2 ) + 2E(f2)− 3E(f2

2 )

which can be estimated by f3
2 − 3f2

2 + 2f2. Finally, we obtain the second version of bias

correction for modified Chao estimator

N̂MC2 = n+
b0b

2
3

b32

f3
2 − 3f2

2 + 2f2

(f3 + 1)2
. (5.20)

5.4.4 Modified Chao estimator with bias correction 3

The last version of bias reduction, the numerator is maintained identical as in the bias

correction version 2 in (5.20). For the denominator we note that E[1/(f3 + 1)(f3 + 2)]
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can be evaluated using the Poisson assumption as

E

(
1

(f3 + 1)(f3 + 2)

)
=
∞∑
f3=0

1

(f3 + 1)(f3 + 2)

exp(−λ)λf3

f3!

=

∞∑
f3=0

exp(−λ)λf3

(f3 + 2)!

λ2

λ2

=
1

λ2

∞∑
f3=0

exp(−λ)λf3+2

(f3 + 2)!

=
exp(−λ)

λ2

∞∑
f3=0

λf3+2

(f3 + 2)!

=
exp(−λ)

λ2
(exp(λ)− 1− λ)

=
1

λ2
− exp(−λ)

λ2
− exp(−λ)

λ

≈ 1

λ2
=

1

E(f3)2
,

which is giving an excellent approximation if λ ≥ 5. Hence we derived the modified

Chao estimator with bias correction version 3

N̂MC3 = n+
b0b

2
3

b32

f3
2 − 3f2

2 + 2f2

(f3 + 1)(f3 + 2)
. (5.21)

5.5 Simulation study

A simulation experiment is undertaken to study the performance of all proposed esti-

mators. To demonstrate how well the modified Chao estimator and all bias reduction

versions work, we focus on the geometric distribution with and without one-inflation as

it can incorporate the form of heterogeneity; the mixture of the Poisson and exponential

distribution. Morever, due to all versions of bias reduction have been developed under

the Poisson assumptions for the frequency fx, it needs to be investigated if it works well

outside the Poisson sampling for X; say whether the Poisson distribution is valid for the

frequency. Note that the simulation is for the geometric distribution only, all the terms
b0b2
b21

and
b0b23
b32

are exactly one and thus disappear in the definition of the estimators. Six

estimators of population size are compared:

1. Classical Chao estimator (C)

N̂C = n+
f2

1

f2

2. Classical Chao estimator with bias correction (CC)

N̂CC = n+
f1(f1 − 1)

f2 + 1
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3. Modified Chao estimator (MC)

N̂MC = n+
f3

2

f2
3

4. Modified Chao estimator with bias reduction 1 (MC1)

N̂MC1 = n+
f2

2 (f2 − 1)

(f3 + 1)2

5. Modified Chao estimator with bias reduction 2 (MC2)

N̂MC2 = n+
f3

2 − 3f2
2 + 2f2

(f3 + 1)2

6. Modified Chao estimator with bias reduction 3 (MC3)

N̂MC3 = n+
f3

2 − 3f2
2 + 2f2

(f3 + 1)(f3 + 2)

5.5.1 Simulation Scenarios

The scope of study covers six different scenes with different parameters.

1. The homogeneous geometric distribution with four parameter θ = 0.1, 0.2, 0.3, 0.4.

2. The homogeneous geometric distribution as scene 1 with 20% one-inflation; or

1− ω = 0.2. It means that the probability of taking only count one is 0.2 and the

probability of the count is taken from homogeneous geometric (ω) is 0.8.

3. The homogeneous geometric distribution as scene 1 with 50% one-inflation; or

1− ω = 0.5.

4. The equally weighted mixture of two geometric distributions. The six two-component

mixture populations were considered: (θ1, θ2) = (0.1, 0.2), (0.1, 0.3), (0.1, 0.4),

(0.2, 0.3), (0.2, 0.4), (0.3, 0.4), where θ1 and θ2 is parameter of the geometric from

the first and second component, respectively.

5. The equally weighted mixture of two geometric distributions as scene 4 with 20%

one-inflation.

6. The equally weighted mixture of two geometric distributions as scene 4 with 50%

one-inflation.

All scenarios are studied at three population sizes N = 50, 100 and 1, 000. Each scenario

is repeated 5,000 times to eliminate any random error due to the simulation. Performance
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is investigated by comparing relative bias (RBias), relative variance (RVar) and Relative

mean square error (RMSE) to allow for comparisons across different sized populations

(see more details in Chapter 3, Section 3.6.3).

5.5.2 Simulation Results

All results of simulation study are shown in Table 5.1 - 5.6 and also in Figure 5.1 - 5.12.

The salient findings of the simulation study are summarised here.

• Models without one-inflation

The results for this case are from scene 1 and 4, the geometric and mixture of

geometric models. The results show that all six estimators are asymptotically

unbiased with respect to the population size as we can see that the relative biases

(RBias) converge to zero (see Figure 5.1 and 5.4 - 5.6). Indeed, Table 5.1 and 5.4

present that the MC estimator for the small populations (N = 50, 100) has the

largest bias, variance and mean square error whereas the CC estimator gives the

smallest. However, the MC has a good performance, similar to other estimators

when population size is large (N = 1, 000). Moreover, all estimators tend to be

identical when the population size increases if comparing between general version

and bias reduction version; (C and CC) and (MC and MC1, MC2, MC3), as we

expect.

Note that the population size is not the only factor influencing the performance

of the estimators but also the parameter θ. Increasing parameter θ leads to a

increase in bias, variance and mean square error for all estimators. This may be

due to the fact that the observed counts show more excess of count zero as the

mean converges to zero.

• Models with one-inflation

The results of scene 2, 3, 5 and 6, the geometric and mixture of geometric with 20%

and 50% one-inflation, are summarised here. Figure 5.2-5.3 and 5.7-5.12 provide

evidences that the C and CC estimators give a severe overestimation of population

size whereas the MC, MC1, MC2 and MC3 are asymptotic unbiased estimators

based on one-inflated count distribution. It is clear that the larger one-inflation,

the higher the overestimation bias of C and CC estimators. Now, we focus on the

modified Chao estimator and its 3 bias reduction versions (MC, MC1, MC2 and

MC3). Table 5.2-5.3 and 5.5-5.6 show that the MC estimator has the largest bias,

variance and mean square error when the population size is small (N = 50, 100)

whereas the MC3 estimator provides the best performance. However, all modified

Chao estimators are identical when the population size is large. Similarly to models

without one-inflation, increasing parameter θ leads to an increase in bias, variance

and mean square error for all estimators.
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Table 5.1: RBias, RVar and RMSE of six population size estimators under
geometric model

N θ C CC MC MC1 MC2 MC3

Relative Bias

50 0.1 0.0614 -0.0026 0.3434 0.1022 0.0361 -0.0090
0.2 0.0718 -0.0050 0.5491 0.1792 0.0912 0.0106
0.3 0.0871 -0.0044 0.7767 0.1703 0.0687 -0.0159
0.4 0.1184 -0.0037 1.0672 0.2824 0.1352 -0.0209

100 0.1 0.0314 0.0004 0.1606 0.0462 0.0170 -0.0020
0.2 0.0341 0.0010 0.1868 0.0647 0.0290 0.0029
0.3 0.0394 -0.0001 0.2680 0.0882 0.0419 0.0031
0.4 0.0537 0.0025 0.4267 0.1261 0.0625 0.0002

1000 0.1 0.0019 -0.0005 0.0084 0.0041 0.0016 0.0002
0.2 0.0024 -0.0004 0.0109 0.0051 0.0020 0.0000
0.3 0.0036 0.0001 0.0141 0.0058 0.0017 -0.0013
0.4 0.0040 -0.0005 0.0245 0.0117 0.0060 0.0013

Relative Variance

50 0.1 0.0768 0.0198 1.5439 0.6513 0.3943 0.1122
0.2 0.0859 0.0341 5.8897 2.1906 1.4911 0.4423
0.3 0.1263 0.0594 10.7251 1.0830 0.7328 0.3244
0.4 0.2657 0.1117 14.8403 4.6637 3.2516 0.9714

100 0.1 0.0175 0.0087 0.6149 0.0834 0.0585 0.0328
0.2 0.0252 0.0183 1.3790 0.2016 0.1624 0.1040
0.3 0.0381 0.0292 5.7567 0.5283 0.4398 0.2484
0.4 0.0634 0.0479 5.8556 0.7630 0.6227 0.3725

1000 0.1 0.0007 0.0007 0.0023 0.0021 0.0020 0.0019
0.2 0.0015 0.0015 0.0052 0.0050 0.0048 0.0047
0.3 0.0027 0.0027 0.0110 0.0104 0.0102 0.0099
0.4 0.0045 0.0044 0.0214 0.0199 0.0195 0.0190

Relative Mean Square Error

50 0.1 0.0774 0.0198 1.6315 0.6616 0.3955 0.1123
0.2 0.0900 0.0342 6.1776 2.2223 1.4991 0.4423
0.3 0.1332 0.0594 11.3164 1.1118 0.7374 0.3246
0.4 0.2770 0.1117 15.9291 4.7425 3.2693 0.9717

100 0.1 0.0184 0.0087 0.6401 0.0855 0.0588 0.0328
0.2 0.0264 0.0183 1.4136 0.2058 0.1632 0.1040
0.3 0.0397 0.0292 5.8274 0.5360 0.4414 0.2484
0.4 0.0663 0.0479 6.0365 0.7788 0.6265 0.3724

1000 0.1 0.0007 0.0007 0.0023 0.0021 0.0020 0.0019
0.2 0.0015 0.0015 0.0054 0.0050 0.0048 0.0047
0.3 0.0027 0.0027 0.0112 0.0104 0.0102 0.0099
0.4 0.0045 0.0044 0.0220 0.0201 0.0195 0.0190
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Figure 5.1: RBias, RVar and RMSE of six estimators for counts drawn from
geometric(θ)
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Table 5.2: RBias, RVar and RMSE of six population size estimators under
geometric model with 20% one-inflation

N θ C CC MC MC1 MC2 MC3

Relative Bias

50 0.1 1.5052 1.0036 0.2895 0.0764 0.0159 -0.0187
0.2 1.2799 0.8846 0.5367 0.1622 0.0736 -0.0007
0.3 1.2831 0.8982 0.7343 0.1761 0.0698 -0.0199
0.4 1.4311 0.9962 0.9301 0.2220 0.0817 -0.0493

100 0.1 1.4118 1.0856 0.1814 0.0461 0.0161 -0.0039
0.2 1.0662 0.8958 0.2251 0.0755 0.0374 0.0060
0.3 1.0683 0.9117 0.2946 0.0848 0.0377 -0.0015
0.4 1.2131 1.0268 0.5181 0.1345 0.0680 0.0004

1000 0.1 1.0841 1.0617 0.0085 0.0041 0.0016 0.0002
0.2 0.9063 0.8925 0.0109 0.0050 0.0019 -0.0001
0.3 0.9260 0.9129 0.0148 0.0064 0.0023 -0.0007
0.4 1.0279 1.0127 0.0233 0.0103 0.0046 -0.0002

Relative Variance

50 0.1 2.1832 0.8768 0.9730 0.2994 0.1567 0.0462
0.2 1.6987 0.6534 4.5151 1.2425 0.7641 0.2310
0.3 1.8997 0.6369 6.7181 1.3116 0.8233 0.2761
0.4 2.4456 0.9023 8.5397 2.6935 1.7622 0.5139

100 0.1 1.4664 0.5883 0.7497 0.0954 0.0621 0.0287
0.2 0.4946 0.2967 1.5423 0.4108 0.3089 0.1259
0.3 0.4664 0.3005 2.7356 0.3038 0.2372 0.1396
0.4 0.7068 0.4150 8.6535 0.9034 0.7039 0.3461

1000 0.1 0.0419 0.0396 0.0019 0.0017 0.0016 0.0016
0.2 0.0247 0.0238 0.0044 0.0041 0.0040 0.0039
0.3 0.0269 0.0261 0.0092 0.0085 0.0083 0.0081
0.4 0.0343 0.0333 0.0181 0.0166 0.0161 0.0156

Relative Mean Square Error

50 0.1 3.8734 1.8838 1.0067 0.3052 0.1570 0.0465
0.2 3.2241 1.4358 4.7708 1.2686 0.7693 0.2309
0.3 3.4636 1.4436 7.2204 1.3423 0.8280 0.2764
0.4 4.3150 1.8945 9.3116 2.7423 1.7686 0.5162

100 0.1 3.4296 1.7666 0.7806 0.0975 0.0623 0.0287
0.2 1.6296 1.0991 1.5924 0.4164 0.3103 0.1259
0.3 1.6076 1.1317 2.8219 0.3110 0.2386 0.1396
0.4 2.1750 1.4693 8.9193 0.9213 0.7084 0.3461

1000 0.1 1.2172 1.1668 0.0020 0.0017 0.0016 0.0016
0.2 0.8459 0.8204 0.0046 0.0042 0.0040 0.0039
0.3 0.8844 0.8594 0.0094 0.0086 0.0083 0.0081
0.4 1.0908 1.0587 0.0186 0.0167 0.0162 0.0156
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Figure 5.2: RBias, RVar and RMSE of six estimators for counts drawn from
geometric(θ) with 20% one-inflation
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Table 5.3: RBias, RVar and RMSE of six population size estimators under
geometric model with 50% one-inflation

N θ C CC MC MC1 MC2 MC3

Relative Bias

50 0.1 8.5678 6.2765 0.1827 0.0440 -0.0030 -0.0226
0.2 7.1358 4.9910 0.3654 0.1014 0.0255 -0.0225
0.3 6.5368 4.6201 0.4749 0.1310 0.0328 -0.0367
0.4 7.0650 5.0781 0.5267 0.1264 0.0079 -0.0749

100 0.1 9.7085 7.1170 0.1690 0.0476 0.0156 -0.0058
0.2 6.3522 5.0746 0.2354 0.0639 0.0245 -0.0068
0.3 5.9645 4.8689 0.3586 0.0976 0.0443 -0.0042
0.4 6.3117 5.1454 0.5515 0.1477 0.0729 -0.0074

1000 0.1 7.4840 7.2799 0.0090 0.0043 0.0017 0.0003
0.2 5.2695 5.1751 0.0107 0.0046 0.0014 -0.0006
0.3 4.9253 4.8468 0.0154 0.0066 0.0025 -0.0006
0.4 5.2223 5.1373 0.0248 0.0111 0.0054 0.0005

Relative Variance

50 0.1 39.5137 19.8072 0.5022 0.1035 0.0420 0.0122
0.2 32.7721 13.6394 1.5070 0.5301 0.2940 0.0823
0.3 27.5307 10.5799 2.3636 0.9027 0.5247 0.1468
0.4 35.5242 15.6737 2.4809 0.8467 0.4555 0.1287

100 0.1 52.7731 21.8199 0.4341 0.1368 0.0798 0.0235
0.2 18.9726 7.9329 1.1083 0.2922 0.1950 0.0632
0.3 15.2945 6.4314 1.9647 0.5362 0.3692 0.1228
0.4 18.1564 7.7890 3.6750 1.1290 0.7738 0.2331

1000 0.1 1.9320 1.7462 0.0015 0.0012 0.0011 0.0011
0.2 0.6511 0.6126 0.0030 0.0026 0.0025 0.0024
0.3 0.5417 0.5138 0.0067 0.0059 0.0057 0.0054
0.4 0.6168 0.5844 0.0122 0.0106 0.0102 0.0096

Relative Mean Square Error

50 0.1 75.9645 59.1974 0.5190 0.1054 0.0420 0.0128
0.2 71.9171 38.5464 1.5542 0.5402 0.2946 0.0828
0.3 61.6887 31.9233 2.4784 0.9197 0.5257 0.1481
0.4 71.2714 41.4573 2.5835 0.8626 0.4555 0.1342

100 0.1 139.0425 72.4677 0.4492 0.1390 0.0800 0.0235
0.2 58.6119 33.6831 1.1591 0.2962 0.1956 0.0633
0.3 50.2873 30.1363 2.0862 0.5456 0.3711 0.1228
0.4 56.9091 34.2630 3.9586 1.1506 0.7790 0.2331

1000 0.1 57.9412 54.7430 0.0015 0.0012 0.0011 0.0011
0.2 28.4186 27.3938 0.0031 0.0027 0.0025 0.0024
0.3 24.8000 24.0049 0.0069 0.0060 0.0057 0.0054
0.4 27.8892 26.9757 0.0129 0.0107 0.0102 0.0096
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Figure 5.3: RBias, RVar and RMSE of six estimators for counts drawn from
geometric(θ) with 50% one-inflation
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5.6 Applications

In the following, population sizes are estimated through the classical and modified Chao

estimator including bias correction versions so far considered in four well-known datasets:

the data of H5N1 epidemic in Thailand, the data of scrapie-infected holding in France,

the domestic violence data and the illegal immigrants data. Data are provided in Table

5.7. The Poisson and geometric ratio plots are provided in Figure 5.13 and for all

applications we can see that the geometric model is more appropriate than Poisson

model as it shows a horizontal line and the first point of ratio also shows the evidence

of one-inflation. Therefore we apply all classical and modified Chao estimators based

upon the geometric model. Population size estimates and unobserved units estimates

are reported in Table 5.8.

5.6.1 H5N1 data

The data are from Vergne et al. (2014) that provides the number of highly pathogenic

avian influenza (HPAI) H5N1 outbreak that were reported at subdistrict level in Thai-

land during the second epidemic wave (July 2004 - May 2005). The large epidemic

occurred through out the country especially in the Central Plain for about two years,

causing huge mortality in chickens and ducks. More than 65 million birds were culled

and over US$ 130 million was spent compensating farmers’ losses during 2004-2005.

First two columns in Table 5.7 shows the spatial distribution of the number of H5N1

outbreaks reported in each subdistrict. There are 6,587 subdistricts with no outbreak.

However, it seems to be suspected that these subdistricts might include a subdistrict

where at least one outbreak occurred but none were reported. Our interest is to esti-

mate the number of unobserved subdistricts with outbreak (f0). The results are shown

in Table 5.8 row 3-4. As we expect there are the large effects of one-inflation on classical

Chao estimates (f̂C
0 = 1, 044 and N̂C = 1, 813) while modified Chao estimator and its

bias reduction versions can avoid overestimation by giving smaller estimates. However,

the modified Chao estimator with bias reduction 3 (MC3) gives the smallest estimates

(f̂MC3
0 = 522 and N̂MC3 = 1, 291) similar to simulation results. Hence it is reasonable

to use estimates from MC3 as it is the best performing.

5.6.2 Scrapie Infection data

The data on scrapie-infected holdings in France are obtained from the French classical

scrapie surveillance programme (Vergne et al. (2012)). We are interested to evaluate the

number of infected units that remain undetected by the surveillance system and also

to estimate the total number of scrapie-infected holdings. Vergne et al. (2012) detected

that there is a large amount of heterogeneity in the count data, corresponding to the top



108
Chapter 5 A Modified Chao Estimator for Zero-Truncated One-Inflated Count

Distribution

left ratio plot in Figure 5.13, making the use of the simple zero-truncated Poisson model

inappropriate. Hence, the zero-truncated geometric model with one-inflation might be

more suitable for this example. Table 5.8 row 6-7 gives the estimates for f0 and N of six

estimators. Similarly, we can separate the estimates to 2 groups as they are definitely

different: severe overestimates in C and CC, and, those not affected by one-inflation in

MC, MC1, MC2 and MC3. All modified Chao estimators can cope with the problem of

one-inflation particularly MC3 as it gives the smallest estimates.

5.6.3 Domestic Violence data

Van der Heijden et al. (2014) study the prevalence of domestic violence in the Nether-

lands for the year 2009 by using capture-recapture methods to estimate the total popula-

tion size of offenders. The study is reported with the data given in Table 5.7 column 5-6.

The total number of observed culprits is n = 17, 662. There are 15,169 culprits identified

exactly once in a domestic violence incident, 1,957 exactly twice and so forth. From the

data and ratio plot in Figure 5.13 bottom left, it is noticed that the observed data may

experience forms of one-inflation. It seems likely that a portion of perpetrators caught

the first time change their behaviour and will no longer recapture as perpetrators again.

The results are not surprising. It is similar to two first examples. The largest estimates

comes from C (f̂C
0 = 117, 577 and N̂C = 135, 293) whereas the smallest estimates are

from MC3 (f̂MC3
0 = 48, 085 and N̂MC3 = 65, 747).

5.6.4 Illegal Immigrants data

We revisit the capture-recapture data of illegal immigrants in the Netherlands from

police records (Van der Heijden et al. (2003b)) and use this data set to compare all

proposed modified Chao estimators of population size with the classical Chao estimators.

The data records contain information on the number of times each illegal immigrant

was apprehended by the police (see Table 5.7 column 7-8). It can be noticed that

the number of singletons is considerably higher than the number of doubletons. This

indicates that the data may experience one-inflation as it is also supported by the ratio

plot in Figure 5.13 right bottom (see also in Chapter 3 Section 3.7). Hence, all proposed

modified estimators are applied to this data and the results of estimation are compared

with results from classical estimator as shown in Table 5.8 row 12-13. Similarly to the

previous examples, the pattern of results for all estimators is N̂C > N̂CC > N̂MC >

N̂MC1 > N̂MC2 > N̂MC3. Here, the estimate using MC3 is smallest and obviously

different from the estimate of C and CC as we expect.
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5.7 Discussion and conclusion

The main issue of population size estimation is selecting an estimator (or several) from

various approaches which should perform well and flexible even if the assumptions fail

to hold for the data at hand. One of the crucial assumptions in capture-recapture is

homogeneity. We know that heterogeneity in the capture probabilities is often occurring

and ignoring heterogeneity can lead to biased estimations. Many approaches have been

developed and offered to cope with this problem. The most popular estimator for hetero-

geneity is Chao’s lower bound estimator as its formula is easy to calculate and involves

only the frequency of count ones and twos. Moreover, Chao’s estimator is asymptotically

unbiased for a count distribution being a member of the power series family and also

provides a lower bound if the count distribution is a mixture of the power series family.

However, Chao’s estimator seems to face the big problem of overestimation when the

count data experience one-inflation.

A modified Chao estimator is developed to avoid overestimation stemming from one-

inflation by using the frequency of count twos and threes instead of the frequency of

count ones and twos. The main advantage of using the modified Chao estimation is that

it retains the good properties of the classical Chao estimator; asymptotically it is an

unbiased estimator for a power series distribution with and without one-inflation and

provides a lower bound estimator under a mixture of power series distributions with and

without one-inflation, as we can see from theoretical, analytic and simulation results.

However, both classical and modified Chao estimators have a limitation. They are

biased estimators when the sample size is small. Hence three versions of bias correction

for modified Chao estimation have been developed. It is assumed that the frequency of

counts follows a Poisson distribution which is a conventional assumption in frequency

table analysis. The properties of the Poisson distribution are used to reduce the bias;

equidispersion (mean = variance) and the third moment of the Poisson distribution. To

investigate the performance of the modified Chao estimator and demonstrate how well all

bias reduction versions work, the geometric and the mixture of geometric distribution

with and without one-inflation are considered in a simulation study. The simulation

results show that the larger the one-inflation, the higher the overestimation bias of the

classical Chao estimator. On the other hand, the modified Chao estimator can avoid

the effect of one-inflation as it shows a good performance for all situations except when

the sample size is small. Furthermore, all bias reduction versions of the modified Chao

estimator have a good performance for all cases of study, especially good is the last

version of bias reduction (MC3).

In summary, the modified Chao estimator can reduce the bias from one-inflation and all

bias-reduction versions can reduce the bias for small sample size settings considerably.

Hence it is reasonable to use all proposed modified Chao estimators for one-inflation

count data in practice.
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Table 5.4: RBias, RVar and RMSE of six population size estimators under
mixture of geometric model

N θ1 θ2 C CC MC MC1 MC2 MC3

Relative Bias
50 0.1 0.2 0.0718 -0.0021 0.4769 0.1220 0.0478 -0.0084

0.3 0.0843 -0.0036 0.5613 0.1382 0.0494 -0.0210
0.4 0.0891 -0.0102 0.6638 0.1381 0.0345 -0.0502

0.2 0.3 0.0855 -0.0003 0.6617 0.1396 0.0509 -0.0191
0.4 0.0918 -0.0057 0.7696 0.1571 0.0526 -0.0369

0.3 0.4 0.1142 0.0037 0.9343 0.2100 0.0870 -0.0277

100 0.1 0.2 0.0291 -0.0022 0.1919 0.0712 0.0360 0.0072
0.3 0.0362 -0.0005 0.1918 0.0531 0.0152 -0.0126
0.4 0.0337 -0.0092 0.2593 0.0515 0.0063 -0.0311

0.2 0.3 0.0330 -0.0026 0.2169 0.0779 0.0366 0.0047
0.4 0.0369 -0.0048 0.2722 0.0741 0.0263 -0.0144

0.3 0.4 0.0439 -0.0011 0.3194 0.0983 0.0441 -0.0041

1000 0.1 0.2 0.0032 0.0005 0.0087 0.0035 0.0007 -0.0011
0.3 0.0002 -0.0029 0.0032 -0.0032 -0.0066 -0.0088
0.4 -0.0055 -0.0091 -0.0099 -0.0181 -0.0221 -0.0250

0.2 0.3 0.0022 -0.0010 0.0094 0.0024 -0.0012 -0.0036
0.4 -0.0008 -0.0045 -0.0026 -0.0111 -0.0153 -0.0183

0.3 0.4 0.0039 -0.0001 0.0104 0.0003 -0.0044 -0.0081

Relative Variance
50 0.1 0.2 0.0868 0.0304 3.6927 0.9183 0.5884 0.1873

0.3 0.1149 0.0398 4.9532 0.9841 0.6157 0.2072
0.4 0.1653 0.0603 6.1848 1.2303 0.7747 0.2557

0.2 0.3 0.1335 0.0593 8.8799 0.8303 0.5545 0.2470
0.4 0.1419 0.0679 9.4369 1.4284 0.9527 0.3469

0.3 0.4 0.2125 0.0930 12.8778 2.0382 1.3688 0.4912

100 0.1 0.2 0.0183 0.0118 1.2129 0.4110 0.3064 0.1175
0.3 0.0275 0.0184 0.7058 0.1524 0.1186 0.0782
0.4 0.0371 0.0245 4.0213 0.3602 0.2839 0.1551

0.2 0.3 0.0289 0.0220 0.8094 0.2212 0.1795 0.1254
0.4 0.0396 0.0300 3.4121 0.4147 0.3353 0.2020

0.3 0.4 0.0498 0.0381 2.3844 0.4539 0.3702 0.2403

1000 0.1 0.2 0.0011 0.0011 0.0039 0.0036 0.0035 0.0034
0.3 0.0016 0.0016 0.0056 0.0052 0.0051 0.0049
0.4 0.0023 0.0022 0.0084 0.0078 0.0076 0.0074

0.2 0.3 0.0022 0.0021 0.0077 0.0073 0.0071 0.0069
0.4 0.0028 0.0028 0.0104 0.0097 0.0095 0.0093

0.3 0.4 0.0034 0.0034 0.0145 0.0136 0.0133 0.0130

Relative Mean Square Error
50 0.1 0.2 0.0884 0.0304 3.8436 0.9332 0.5907 0.1874

0.3 0.1180 0.0398 5.1770 1.0032 0.6181 0.2076
0.4 0.1660 0.0604 6.4542 1.2494 0.7759 0.2583

0.2 0.3 0.1392 0.0593 9.2624 0.8498 0.5571 0.2474
0.4 0.1482 0.0680 9.9537 1.4531 0.9555 0.3483

0.3 0.4 0.2219 0.0930 13.6221 2.0822 1.3764 0.4920

100 0.1 0.2 0.0191 0.0118 1.2487 0.4160 0.3077 0.1176
0.3 0.0288 0.0184 0.7425 0.1552 0.1188 0.0784
0.4 0.0383 0.0246 4.0877 0.3629 0.2839 0.1561

0.2 0.3 0.0300 0.0220 0.8564 0.2272 0.1809 0.1254
0.4 0.0410 0.0300 3.4862 0.4202 0.3360 0.2022

0.3 0.4 0.0517 0.0381 2.4865 0.4635 0.3721 0.2403

1000 0.1 0.2 0.0011 0.0011 0.0040 0.0036 0.0035 0.0034
0.3 0.0016 0.0016 0.0056 0.0052 0.0051 0.0050
0.4 0.0023 0.0023 0.0085 0.0081 0.0081 0.0080

0.2 0.3 0.0022 0.0021 0.0078 0.0073 0.0071 0.0070
0.4 0.0028 0.0028 0.0104 0.0098 0.0097 0.0096

0.3 0.4 0.0034 0.0034 0.0146 0.0136 0.0133 0.0130
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Figure 5.4: RBias of six estimators for counts drawn from mixture of
geometric(θ1, θ2)
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Figure 5.5: RVar of six estimators for counts drawn from mixture of
geometric(θ1, θ2)
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Figure 5.6: RMSE of six estimators for counts drawn from mixture of
geometric(θ1, θ2)
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Table 5.5: RBias, RVar and RMSE of six population size estimators under
mixture of geometric model with 20% one-inflation

N θ1 θ2 C CC MC MC1 MC2 MC3

Relative Bias
50 0.1 0.2 1.4079 0.9503 0.3880 0.1080 0.0336 -0.0185

0.3 1.3844 0.9358 0.5367 0.1191 0.0334 -0.0280
0.4 1.4842 1.0178 0.5972 0.1190 0.0204 -0.0525

0.2 0.3 1.3196 0.9084 0.6219 0.1525 0.0587 -0.0176
0.4 1.4005 0.9740 0.6500 0.1668 0.0584 -0.0366

0.3 0.4 1.3488 0.9506 0.8244 0.2313 0.0994 -0.0234

100 0.1 0.2 1.1773 0.9609 0.1936 0.0665 0.0311 0.0018
0.3 1.1719 0.9666 0.2352 0.0563 0.0170 -0.0123
0.4 1.2715 1.0432 0.3036 0.0577 0.0101 -0.0300

0.2 0.3 1.0513 0.8931 0.2563 0.0758 0.0332 -0.0008
0.4 1.1347 0.9559 0.2994 0.0723 0.0234 -0.0184

0.3 0.4 1.1171 0.9521 0.3632 0.0926 0.0378 -0.0107

1000 0.1 0.2 0.9755 0.9587 0.0082 0.0030 0.0002 -0.0016
0.3 0.9799 0.9637 0.0070 0.0004 -0.0031 -0.0053
0.4 1.0412 1.0235 -0.0043 -0.0126 -0.0167 -0.0196

0.2 0.3 0.9140 0.9006 0.0102 0.0031 -0.0005 -0.0030
0.4 0.9665 0.9520 -0.0007 -0.0092 -0.0134 -0.0164

0.3 0.4 0.9752 0.9611 0.0142 0.0039 -0.0009 -0.0047

Relative Variance
50 0.1 0.2 1.9539 0.7780 2.0791 0.6323 0.3634 0.1075

0.3 1.9676 0.7673 3.2093 0.7264 0.4328 0.1361
0.4 2.4558 1.0385 4.3556 0.9688 0.5914 0.1823

0.2 0.3 1.9729 0.6636 5.5099 1.1691 0.7334 0.2371
0.4 2.2912 0.9185 5.7805 1.8916 1.2273 0.3622

0.3 0.4 2.0398 0.8328 8.0650 2.1248 1.3279 0.4082

100 0.1 0.2 0.7317 0.4203 0.9091 0.6121 0.4627 0.1395
0.3 0.6591 0.3504 1.3838 0.1668 0.1218 0.0683
0.4 0.8596 0.4588 2.2214 0.3197 0.2276 0.1005

0.2 0.3 0.4072 0.2631 1.6437 0.2435 0.1864 0.1093
0.4 0.6054 0.3473 2.2074 0.3221 0.2421 0.1338

0.3 0.4 0.4868 0.3232 2.6291 0.3879 0.3032 0.1822

1000 0.1 0.2 0.0302 0.0289 0.0030 0.0028 0.0027 0.0026
0.3 0.0315 0.0303 0.0050 0.0046 0.0045 0.0043
0.4 0.0359 0.0345 0.0068 0.0062 0.0059 0.0057

0.2 0.3 0.0256 0.0248 0.0062 0.0058 0.0056 0.0054
0.4 0.0285 0.0276 0.0083 0.0076 0.0074 0.0072

0.3 0.4 0.0301 0.0292 0.0124 0.0114 0.0111 0.0108

Relative Mean Square Error
50 0.1 0.2 3.6660 1.6809 2.1881 0.6438 0.3645 0.1079

0.3 3.6997 1.6430 3.4514 0.7405 0.4338 0.1368
0.4 4.3308 2.0742 4.6287 0.9828 0.5917 0.1850

0.2 0.3 3.6231 1.4887 5.8660 1.1921 0.7367 0.2374
0.4 4.0863 1.8669 6.1495 1.9190 1.2304 0.3635

0.3 0.4 3.7000 1.7363 8.6683 2.1778 1.3375 0.4087

100 0.1 0.2 2.1084 1.3436 0.9456 0.6164 0.4636 0.1394
0.3 2.0303 1.2846 1.4386 0.1700 0.1221 0.0684
0.4 2.4682 1.5469 2.3120 0.3230 0.2276 0.1014

0.2 0.3 1.5114 1.0606 1.7089 0.2492 0.1875 0.1092
0.4 1.8910 1.2610 2.2963 0.3273 0.2426 0.1342

0.3 0.4 1.7346 1.2297 2.7604 0.3964 0.3046 0.1823

1000 0.1 0.2 0.9819 0.9480 0.0031 0.0028 0.0027 0.0026
0.3 0.9917 0.9591 0.0051 0.0046 0.0045 0.0044
0.4 1.1198 1.0821 0.0068 0.0063 0.0062 0.0061

0.2 0.3 0.8610 0.8359 0.0063 0.0058 0.0056 0.0054
0.4 0.9627 0.9340 0.0083 0.0077 0.0076 0.0074

0.3 0.4 0.9811 0.9528 0.0126 0.0115 0.0111 0.0108
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Figure 5.7: RBias of six estimators for counts drawn from mixture of
geometric(θ1, θ2) with 20% one-inflation
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Figure 5.8: RVar of six estimators for counts drawn from mixture of
geometric(θ1, θ2) with 20% one-inflation
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Figure 5.9: RMSE of six estimators for counts drawn from mixture of
geometric(θ1, θ2) with 20% one-inflation
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Table 5.6: RBias, RVar and RMSE of six population size estimators under
mixture of geometric model with 50% one-inflation

N θ1 θ2 C CC MC MC1 MC2 MC3

Relative Bias
50 0.1 0.2 7.6972 5.4523 0.2538 0.0593 -0.0005 -0.0298

0.3 7.6606 5.4325 0.3011 0.0626 -0.0065 -0.0434
0.4 7.7222 5.5449 0.3124 0.0679 -0.0127 -0.0589

0.2 0.3 6.8114 4.7925 0.3733 0.0709 -0.0047 -0.0487
0.4 7.1722 4.9878 0.3802 0.1132 0.0161 -0.0501

0.3 0.4 6.9371 4.9361 0.4460 0.1037 0.0018 -0.0672

100 0.1 0.2 7.7507 5.9046 0.2244 0.0577 0.0209 -0.0062
0.3 7.4630 5.7802 0.2700 0.0741 0.0299 -0.0093
0.4 7.5967 5.8943 0.3230 0.0636 0.0134 -0.0261

0.2 0.3 6.2668 5.0381 0.2662 0.0743 0.0287 -0.0106
0.4 6.4426 5.1533 0.3363 0.0699 0.0194 -0.0238

0.3 0.4 6.1307 5.0014 0.4137 0.0906 0.0327 -0.0192

1000 0.1 0.2 6.1167 5.9848 0.0083 0.0029 0.0000 -0.0018
0.3 5.8251 5.7092 0.0089 0.0020 -0.0015 -0.0038
0.4 6.0236 5.9022 0.0036 -0.0052 -0.0093 -0.0122

0.2 0.3 5.0516 4.9668 0.0128 0.0054 0.0018 -0.0008
0.4 5.2135 5.1248 0.0078 -0.0013 -0.0055 -0.0086

0.3 0.4 5.0504 4.9693 0.0177 0.0068 0.0019 -0.0019

Relative Variance
50 0.1 0.2 34.6928 15.6734 0.8041 0.1831 0.0838 0.0250

0.3 34.7046 15.5893 1.0302 0.2677 0.1303 0.0387
0.4 35.6402 17.2157 1.3053 0.4075 0.2103 0.0600

0.2 0.3 29.2484 11.9099 1.4363 0.3317 0.1692 0.0525
0.4 34.7685 13.4350 1.5915 0.6744 0.3540 0.0982

0.3 0.4 31.9114 13.6552 2.2137 0.7041 0.3785 0.1082

100 0.1 0.2 34.1997 12.8562 0.8330 0.1833 0.1134 0.0371
0.3 33.0858 13.1726 1.3453 0.6165 0.4322 0.1214
0.4 31.0391 12.1909 1.4695 0.2484 0.1543 0.0541

0.2 0.3 19.0359 7.7209 1.3869 0.3974 0.2640 0.0847
0.4 20.3165 7.2571 1.8407 0.3779 0.2532 0.0876

0.3 0.4 18.8909 8.0653 2.6697 0.4650 0.3168 0.1172

1000 0.1 0.2 1.0273 0.9516 0.0021 0.0018 0.0017 0.0016
0.3 0.8676 0.8100 0.0034 0.0030 0.0028 0.0027
0.4 0.9534 0.8885 0.0050 0.0042 0.0040 0.0038

0.2 0.3 0.5466 0.5166 0.0045 0.0040 0.0038 0.0036
0.4 0.6145 0.5805 0.0061 0.0053 0.0051 0.0048

0.3 0.4 0.5608 0.5317 0.0089 0.0078 0.0075 0.0071

Relative Mean Square Error
50 0.1 0.2 74.2285 45.3977 0.8065 0.1865 0.0838 0.0259

0.3 75.1669 45.0979 1.0412 0.2715 0.1303 0.0406
0.4 73.9131 47.9578 1.3117 0.4121 0.2105 0.0634

0.2 0.3 66.5927 34.8755 1.4986 0.3366 0.1692 0.0549
0.4 73.3605 38.3101 1.6388 0.6871 0.3542 0.1007

0.3 0.4 68.3319 38.0179 2.2927 0.7147 0.3785 0.1127

100 0.1 0.2 92.0884 47.7181 0.8747 0.1866 0.1138 0.0371
0.3 86.7972 46.5807 1.4074 0.6219 0.4330 0.1215
0.4 86.1852 46.9309 1.5573 0.2524 0.1545 0.0548

0.2 0.3 57.5793 33.1020 1.4523 0.4028 0.2647 0.0848
0.4 61.2083 33.8122 1.9477 0.3827 0.2535 0.0881

0.3 0.4 55.8452 33.0781 2.8320 0.4731 0.3178 0.1176

1000 0.1 0.2 38.4411 36.7695 0.0022 0.0018 0.0017 0.0016
0.3 34.7996 33.4052 0.0035 0.0030 0.0028 0.0027
0.4 37.2371 35.7243 0.0050 0.0043 0.0041 0.0039

0.2 0.3 26.0655 25.1859 0.0046 0.0040 0.0038 0.0036
0.4 27.7950 26.8440 0.0061 0.0053 0.0051 0.0049

0.3 0.4 26.0671 25.2252 0.0092 0.0078 0.0075 0.0071
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Figure 5.10: RBias of six estimators for counts drawn from mixture of
geometric(θ1, θ2) with 50% one-inflation
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Figure 5.11: RVar of six estimators for counts drawn from mixture of
geometric(θ1, θ2) with 50% one-inflation
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Figure 5.12: RMSE of six estimators for counts drawn from mixture of
geometric(θ1, θ2) with 50% one-inflation
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Table 5.7: Observed frequency distribution of the count of four applications

H5N1 Scrapie Infection Domestic Violence Illegal Immigrants
x fx x fx x fx x fx

0 6,587 1 121 1 15,169 1 1,645
1 410 2 13 2 1,957 2 183
2 161 3 5 3 393 3 37
3 87 4 2 4 99 4 13
4 46 5 28 5 1
5 26 6+ 16 6 1
6 21
7 8
8 4
9 6
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Figure 5.13: Poisson and geometric ratio plot for real data examples
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Table 5.8: Population size estimation for four applications

Estimator C CC MC MC1 MC2 MC3

H5N1

f̂0 1,044 1,035 551 535 528 522

N̂ 1,813 1,804 1,320 1,304 1,297 1,291

Scrapie Infection

f̂0 1,126 1,037 88 56 48 41

N̂ 1,267 1,178 229 197 189 182

Domestic Violence

f̂0 117,577 117,509 48,527 48,257 48,207 48,085

N̂ 135,293 135,171 66,189 65,919 65,869 65,747

Illegal Immigrants

f̂0 14,787 14,698 4,477 4,221 4,175 4,068

N̂ 16,667 16,578 6,357 6,101 6,055 5,948





Chapter 6

Variance Estimation for Modified

Chao Estimators

This chapter relates to the proposed estimators in Chapter 5. It provides two variance

approximations for the modified Chao estimator and the modified Chao estimator with

bias correction version 3.

6.1 Introduction

As it was shown in previous chapters, the crucial parameters in capture-recapture studies

are N , f0 and p0 where N denotes the unknown population size, f0 is the frequency

of unobserved units and p0 is the probability of not identifying a unit of the target

population. It follows that E(f0) = Np0 and f̂0 = np0
1−p0 , n is the number of observed

units. The estimator of N is N̂ = n/(1− p0) or

N̂ = n+ f̂0 (6.1)

and depends on the approach used to estimate p0. If we consider the variance of (6.1),

it can be easily seen that there are two components of variation. The first variation is

due to n and another variation is due to f̂0. The total variance of N̂ can be calculated

125
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as

var(N̂) = var(n+ f̂0)

= var(n+
np̂0

1− p̂0
)

= var(
n

1− p̂0
)

=

(
1

1− p̂0

)2

var(n)

=

(
1

1− p̂0

)2

Np0(1− p0)

(6.2)

where n ∼ B(N, 1− p0) and has variance Np0(1− p0). However, it can be argued that

there is nothing uncertain about n since it has been observed already. The interest

should be regularly in the uncertainty attached to f̂0 as this quantity is unobserved and

is predicted. The partial variance of prediction f̂0 can be easily computed as

var(f̂0) =

(
p0

1− p0

)2

var(n) =

(
p0

1− p0

)2

Np0(1− p0) (6.3)

Note that the partial variance var(f̂0) is smaller than the total variance var(N̂) and

they are related by var(f̂0) = p2
0var(N̂). We find that the prediction variance is more

appropriate than the total variance for capture-recapture experiments. Hence in order to

assess the uncertainty of the proposed estimators in Chapter 5, the variance estimation

for the modified Chao estimator is constructed by using the advantages of likelihood

framework and considering only on a partial prediction variance var(f̂0). This chapter

focuses on f̂0 from the modified Chao estimator, f̂0(MC) =
b0b

2
3

b32

f3
2

f2
3

, and the modified

Chao estimator with bias correction version 3, f̂0(MC3) =
b0b

2
3

b32

f3
2 − 3f2

2 + 2f2

(f3 + 1)(f3 + 2)
, as it is

the best version of bias reduction.

6.2 Likelihood framework

In this section a likelihood framework is developed in order to derive the variance of the

modified Chao estimator. As the modified Chao estimator uses only frequencies with

counts of twos and threes, we consider truncating all counts except counts of twos and

threes. This truncated sample leads to a binomial log-likelihood

l = f2 log(p) + f3 log(1− p), (6.4)

where p = P (X = 2) and 1− p = P (X = 3) which is uniquely maximized as

∂l

∂p
=
f2

p
− f3

1− p
= 0
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p̂ =
f2

f2 + f3
. (6.5)

Let E(fx | f2, f3; px) = ex for x = 0, 1, 2, ...,m and we have

ex = Npx = (e0 + e1 + f2 + f3 + e+
4 )px (6.6)

and

E(fx | x 6= 2, 3) = NP (X 6= 2, 3)

e0 + e1 + e+
4 = (e0 + e1 + f2 + f3 + e+

4 )(1− p2 − p3)

= [(e0 + e1 + e+
4 ) + (f2 + f3)](1− p2 − p3)

=
(1− p2 − p3)

p2 + p3
(f2 + f3).

(6.7)

We know that e0 = (e0+e1+e+
4 +f2+f3)p0 from (6.6) and e0+e1+e+

4 =
(1− p2 − p3)

p2 + p3
(f2+

f3) from (6.7) and finally e0 can be obtained as

e0 = (e0 + e1 + e+
4 + f2 + f3)p0

=

[
(1− p2 − p3)

p2 + p3
(f2 + f3) + f2 + f3

]
p0

=
p0

(p2 + p3)
(f2 + f3).

(6.8)

To develop this further we need to use power series px = bxθ
x/g(θ) only for x = 0, 2, 3

so

e0 =
b0

(b2θ2 + b3θ3)
(f2 + f3) (6.9)

and replacing θ by its maximum likelihood estimator (θ̂) in (6.9):

ê0 =
b0

(b2θ̂2 + b3θ̂3)
(f2 + f3). (6.10)

Refer to the binomially-truncated log-likelihood in (6.4), f2 log(p) + f3 log(1 − p), and

maximum likelihood estimator of p in (6.5), p̂ =
f2

f2 + f3
. Under the power series,

px = bxθ
x/g(θ), we have

p =
Np2

Np2 +Np3

=
p2

p2 + p3

=
b2θ

2

b2θ2 + b3θ3

=
b2

b2 + b3θ
.
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The invariance principle is used to find the estimator of θ as following:

f2

f2 + f3
=

b2

b2 + b3θ̂

b2 + b3θ̂

b2
=
f2 + f3

f2

θ̂ =
b2
b3

f3

f2
. (6.11)

Replacing θ̂ from (6.11) in (6.10) and it follows that

ê0 =
b0

b2
b22
b23

f23
f32

+ b3
b32
b23

f33
f32

(f2 + f3)

=
b0

b32
b23

(
f23
f22

+
f33
f32

)(f2 + f3)

=
b0b

2
3

b32

(f2 + f3)f3
2

f2f2
3 + f3

3

=
b0b

2
3

b32

f3
2

f2
3

.

We can see that ê0 =
b0b

2
3

b32

f3
2

f2
3

corresponds to the modified Chao estimator (f̂0(MC)) in

Chapter 5.

6.3 Variance of the modified Chao estimator

The modified Chao estimator for f0 can be written as

f̂0(MC) = ê0 =
b0

(b2θ̂2 + b3θ̂3)
(f2 + f3) = T (θ̂)(f2 + f3) (6.12)

where θ̂ =
b2
b3

f3

f2
and T (θ̂) =

b0

(b2θ̂2 + b3θ̂3)
.

Here the interest is in developing the variance of estimator f̂0(MC) in (6.12) by mean of

conditioning technique which has a general form for two random variables X and Y as

follows:

var(X) = E[var(X | Y )] + var[E(X | Y )] (6.13)

(see more details in Böhning (2008) and Van der Heijden et al. (2003a)).
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We apply the concept in (6.13) by using X = T (θ̂)(f2 + f3) and Y = f2 + f3 so that we

achieve

var(ê0) = var[T (θ̂)(f2 + f3)]

= E
[
var

{
T (θ̂)(f2 + f3) | (f2 + f3)

}]
+ var

[
E
{
T (θ̂)(f2 + f3) | (f2 + f3)

}]
(6.14)

To solve the first term in (6.14), we assume that E
[
var

{
T (θ̂)(f2 + f3) | (f2 + f3)

}]
=

var[T (θ̂)(f2 + f3)]. We have that

var[T (θ̂)(f2 + f3)] = (f2 + f3)2var[T (θ̂)]

The delta-method is applied here to deal with var[T (θ̂)]. This leads to var[T (θ̂)] =

T ′(θ̂)2var(θ̂). Hence the first term in (6.14) can be written as

E
[
var

{
T (θ̂)(f2 + f3) | (f2 + f3)

}]
= T ′(θ̂)2var(θ̂)(f2 + f3)2 (6.15)

To consider the second term in (6.14), since E[T (θ̂)(f2 + f3) | (f2 + f3)] ≈ T (θ)(f2 + f3)

so var[T (θ)(f2 + f3)] can be estimated as T (θ̂)2(f2 + f3).

Finally, the partial prediction variance of modified Chao estimator can be derived from

var[T (θ̂)(f2 + f3)] ≈ T ′(θ̂)2︸ ︷︷ ︸
(1)

var(θ̂)︸ ︷︷ ︸
(2)use F-information

(f2 + f3)2 + T (θ̂)2(f2 + f3). (6.16)

Let us consider first term (1) in (6.16):

T (θ̂) =
b0

(b2θ̂2 + b3θ̂3)

T ′(θ̂) = −b0(b2θ̂
2 + b3θ̂

3)−2(2b2θ̂ + 3b3θ̂
2)

T ′(θ̂)2 = b20(b2θ̂
2 + b3θ̂

3)−4(2b2θ̂ + 3b3θ̂
2)2

=
b20θ̂

2

θ̂8

(2b2 + 3b3θ̂)
2

(b2 + b3θ̂)4

where θ̂ =
b2
b3

f3

f2
, hence

T ′(θ̂)2 =
b20b

6
3

b62

f6
2

f6
3

(2b2 + 3b2f3/f2)2

(b2 + b2f3/f2)4

=
b20b

6
3

b62

f6
2

f6
3

(2f2 + 3f3)2/f2
2

(f2 + f3)4/f4
2

=
b20b

6
3

b82

f8
2

f6
3

(2f2 + 3f3)2

(f2 + f3)4
.
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Second term (2) in (6.16) can be derived by using the delta-method (see Bishop et al.

(1975))as

var(θ̂) = var

(
b2
b3

f3

f2

)

≈ 5g

(
f2

f3

)T
cov

(
f2

f3

)
5 g

(
f2

f3

)

where

5g

(
f2

f3

)T
=

(
−b2
b3

f3

f2
2

b2
b3

1

f2

)

cov

(
f2

f3

)
=

f2

(
1− f2

n

)
−f2f3

n

−f2f3

n
f3

(
1− f3

n

)


and

5g

(
f2

f3

)T
Cov

(
f2

f3

)
=

(
−b2
b3

f3

f2

(
1− f2

n

)
− b2
b3

f3

n

b2
b3

f2
3

f2n
+
b2
b3

f3

f2

(
1− f3

n

))

hence

var(θ̂) ≈ 5g

(
f2

f3

)T
cov

(
f2

f3

)
5 g

(
f2

f3

)

=
b22
b23

f2
3

f3
2

(
1− f2

n

)
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b22
b23

f2
3

f2
2n
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b22
b23
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3

f2
2n
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+
f3

f2
2

)
=
b22
b23

(f2 + f3)f3
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and finally

var[T (θ̂)(f2 + f3)] ≈ T ′(θ̂)2V ar(θ̂)(f2 + f3)2 + T (θ̂)2(f2 + f3)

=
b20b

6
3

b82

f8
2

f6
3

(2f2 + 3f3)2

(f2 + f3)4

b22
b23

(f2 + f3)3f3

f3
2
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b20b

4
3

b62

f6
2

f4
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3
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2
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3
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(f2 + f3)
+
b20b

4
3

b62

f6
2

f4
3

1

(f2 + f3)

=
b20b

4
3

b62

f6
2

f4
3

1

(f2 + f3)

{
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}
(6.17)
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It can be seen from (6.17) that
b20b

4
3

b62

f6
2

f4
3

= f̂2
0(MC) as we know from Chapter 5 that

f̂0(MC) =
b0b

2
3

b32

f3
2

f2
3

, hence, the prediction variance of modified Chao estimator (V1) is

ˆvar1(f̂0) =

{
b0b

2
3

b32

f3
2

f2
3

}2
1

(f2 + f3)

{
1 +

(2f2 + 3f3)2

f2f3

}
=
f̂2

0(MC)

f2 + f3

{
1 +

(2f2 + 3f3)2

f2f3

}
.

(6.18)

The prediction variance for the modified Chao estimator can be obtained in another

version by replacing f̂0(MC) in (6.18) by the modified Chao estimator with bias correc-

tion version 3, f̂0(MC3), where f̂0(MC3) =
b0b

2
3

b32

f3
2 − 3f2

2 + 2f2

(f3 + 1)(f3 + 2)
and replacing

1

f2f3
by

1

(f2 + 1)(f3 + 1)
. Therefore, the second version of prediction variance for the modified

Chao estimator (V2) is

ˆvar2(f̂0) =
f̂2

0(MC3)

f2 + f3

{
1 +

(2f2 + 3f3)2

(f2 + 1)(f3 + 1)

}
=

{
b0b

2
3

b32

f3
2 − 3f2

2 + 2f2

(f3 + 1)(f3 + 2)

}2
1

(f2 + f3)

{
1 +

(2f2 + 3f3)2

(f2 + 1)(f3 + 1)

}
.

(6.19)

Note that a 95% prediction interval based upon prediction variance can be calculated

as f̂0 ± 1.96

√
var(f̂0) for f0 and as n+ f̂0 ± 1.96

√
var(f̂0) for N .

6.4 Simulation study

To explore the performance of two versions of variance estimation (V1 and V2) for

modified Chao estimators (MC and MC3), the simulation study is designed to cover

different models, geometric distribution and mixture of geometric distribution with and

without one-inflation, with population size N = 50, 100, 1, 000. Each simulation scenario

is repeated 1,000 times (B = 1, 000). Therefore, the Monte Carlo variance for two

proposed estimator is given by

var(f̂0(MC))True =
1

B

B∑
b=1

{
f̂

(b)
0(MC) − E(f̂0(MC))

}2
(6.20)

var(f̂0(MC3))True =
1

B

B∑
b=1

{
f̂

(b)
0(MC3) − E(f̂0(MC3))

}2
(6.21)

where

f̂0(MC) =
f3

2

f2
3

,
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f̂0(MC3) =
f3

2 − 3f2
2 + 2f2

(f3 + 1)(f3 + 2)

and

E(f̂0(MC)) =

∑B
b=1 f̂

(b)
0(MC)

B
, E(f̂0(MC3)) =

∑B
b=1 f̂

(b)
0(MC3)

B
.

The true standard error is simply computed as s.e.(f̂0)True =

√
var(f̂0)True.

To evaluate the behaviour and performance of two variance estimations in (6.18) and

(6.19), the expected value of the approximated standard error E
{
s.e.(f̂0)

}
can be cal-

culated by

E
{

ˆs.e.1(f̂0)
}

=

√√√√ 1

B

B∑
b=1

ˆvar1(f̂0) (6.22)

E
{

ˆs.e.2(f̂0)
}

=

√√√√ 1

B

B∑
b=1

ˆvar2(f̂0) (6.23)

where

ˆvar1(f̂0) =
(f3

2 /f
2
3 )2

f2 + f3

{
1 +

(2f2 + 3f3)2

f2f3

}
and

ˆvar2(f̂0) =

{
f3

2 − 3f2
2 + 2f2

(f3 + 1)(f3 + 2)

}2
1

(f2 + f3)

{
1 +

(2f2 + 3f3)2

(f2 + 1)(f3 + 1)

}
.

Note that
b0b

2
3

b32
is equal to 1 for geometric distribution (see more detail in section 5.3).

The ratio of standard error of estimation
E[ ˆs.e.(f̂0)]

s.e.(f̂0)True

is provided for comparing the

performance of two versions of variance estimation (V1 and V2) which are considered for

two estimators (MC and MC3). R1 and R2 are the ratios of the approximated standard

error from V1 and V2 to the true standard error from modified Chao estimator (MC),

respectively, whereas R3 and R4 are the ratios of the approximated standard error from

V1 and V2 to the true standard error from modified Chao estimator with bias correction

version 3 (MC3), respectively. The comparison can simply be seen as following:

• Comparing ˆvar1(f̂0) and ˆvar2(f̂0) for MC

R1 =
E[ ˆs.e.1(f̂0)]

s.e.(f̂0(MC))True

R2 =
E[ ˆs.e.2(f̂0)]

s.e.(f̂0(MC))True
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• Comparing ˆvar1(f̂0) and ˆvar2(f̂0) for MC3

R3 =
E[ ˆs.e.1(f̂0)]

s.e.(f̂0(MC3))True

R4 =
E[ ˆs.e.2(f̂0)]

s.e.(f̂0(MC3))True

The reference value for these ratios is equal to one. The more ratio is close to 1, the

more estimation is close to the real value.

6.5 Simulation results

Table 6.1 and 6.2 provide the standard errors and the ratio of standard errors R1-R4

from 1,000 repeated simulation samples. Figure 6.1-6.4 illustrate the graphs of the ratio

of standard errors where blue (R1) and red (R2) lines are used for comparing V1 and V2

for MC whereas green (R3) and purple (R4) lines are used for comparing V1 and V2 for

MC3. The data are generated under the geometric and the mixture of geometric models

with and without one-inflation. Overall, it can be seen from the simulation results that

V2 performs the best with the ratio of standard errors close to one for all conditions

especially the ratio of standard error from V2 to MC3 (R4). For more details, V2 gives

an underestimation of the standard error for MC but gives slightly overestimation for

MC3. On the other hand, V1 gives an overestimation of the standard error for both MC

and MC3 particularly, severe overestimation for MC3 when population sizes are small

(N=50, 100). There is no surprise that V1 is larger than V2 all cases of study due to

V2 is derived from the bias correction version 3 for estimating the variance. However,

the results also show that V1 and V2 are identical when the size of population are

large and they are close to the true variance (MC and MC3 are also identical for large

population size) as we can see that all ratios converge to one (see Figure 6.1-6.4). As

a result, it is reasonable to state that the variance approximation V2 can be utilized to

represent the true variance of both MC and MC3 for the geometric and the mixture of

geometric models with and without one-inflation while the variance approximation V1

can be applied to stand for the true variance of MC and MC3 only the cases of large

population sizes.

6.6 Conclusion

To determine the efficiency of an estimator in capture-recapture study, accuracy and

precision are considered. Accuracy, is provided as the bias of estimator, refers to the

closeness of an estimate to the true value. The estimator which is close to the parameter
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would be more accurate than other estimators which provide a larger different value.

The term precision, is defined as a variance of estimator, refers to the degree of variation

for a series of estimates. The estimator which provides a small variation shows higher

performance of estimation in terms of precision. In other words, the most effective

estimator is the one among all possible estimators which has minimal bias and variance.

The modified Chao estimator (MC) is an asymptotically unbiased estimator and the

modified Chao estimator with bias correction version 3 (MC3) is the best version of

reducing bias when a sample size is small for a power series distribution with and with-

out one-inflation as presented in Chapter 5. This chapter examines an approximation

variance of MC and MC3. Variance estimators are simply derived by the conditioning

method. It is clearly seen that the variation of both modified Chao estimators arise

from two sources; the random variation of sampling n individuals from population and

the variation from the predicted estimate f̂0. Here we focus on the partial variance

of prediction var(f̂0) as it has nothing uncertain about observed n. Variance of the

proposed estimators, V1 or ˆvar1(f̂0) and V2 or ˆvar2(f̂0), are given in (6.18) and (6.19)

respectively. The simulation study shows that V2 has the best performance for estimat-

ing the variance of MC and MC3 estimators on average as it provides the closest values

to true variances. Although V1 give a severe overestimates for small sample size, it has

a good performance when the sample size is large as it can be seen that the estimates

of V1 and V2 are slightly different and they are close to true variances. Therefore, it

can be sensibly stated that the variance estimation V2 in (6.19) represent well the true

variance of MC and MC3 whereas the variance estimation V1 in (6.18) can stand for

the true variance of MC and MC3 only in the case of large sample size.
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Table 6.1: Comparison of the standard errors of two formulas with the true
standard error of the modified Chao (MC) and the modified Chao with bias
correction version 3 (MC3) under the geometric model and the geometric model
with 20% and 50% one-inflation

N θ s.e.(f̂0)True E[ ˆs.e.(f̂0)] MC MC3
MC MC3 V1 V2 R1 R2 R3 R4

The geometric model

50 0.1 64.827 8.738 150.376 13.517 2.320 0.209 17.210 1.547
0.2 74.522 14.341 161.638 21.590 2.169 0.290 11.271 1.505
0.3 199.850 30.545 434.860 46.571 2.176 0.233 14.237 1.525
0.4 162.530 26.444 368.764 41.787 2.269 0.257 13.945 1.580

100 0.1 57.413 17.852 107.226 23.197 1.868 0.404 6.006 1.299
0.2 47.626 22.329 69.334 29.388 1.456 0.617 3.105 1.316
0.3 78.058 37.850 105.909 46.676 1.357 0.598 2.798 1.233
0.4 241.840 60.654 465.971 83.738 1.927 0.346 7.682 1.381

1000 0.1 44.605 41.234 47.182 43.044 1.058 0.965 1.144 1.044
0.2 72.657 68.776 73.182 68.779 1.007 0.947 1.064 1.000
0.3 105.920 100.438 106.509 100.448 1.006 0.948 1.060 1.000
0.4 139.395 131.084 147.045 137.632 1.055 0.987 1.122 1.050

The geometric model with 20% one-inflation

50 0.1 47.452 5.963 114.530 9.305 2.414 0.196 19.207 1.561
0.2 103.091 13.595 238.158 21.506 2.310 0.209 17.517 1.582
0.3 136.309 19.853 308.888 31.031 2.266 0.228 15.559 1.563
0.4 149.598 19.998 353.345 32.676 2.362 0.218 17.669 1.634

100 0.1 82.623 17.314 169.614 24.527 2.053 0.297 9.796 1.417
0.2 57.640 20.052 100.371 27.673 1.741 0.480 5.005 1.380
0.3 116.448 39.281 184.743 52.074 1.586 0.447 4.703 1.326
0.4 132.047 38.704 241.790 54.949 1.831 0.416 6.247 1.420

1000 0.1 40.671 36.869 43.877 39.114 1.079 0.962 1.190 1.061
0.2 70.172 65.453 68.415 63.280 0.975 0.902 1.045 0.967
0.3 95.235 89.011 96.906 90.009 1.018 0.945 1.089 1.011
0.4 133.457 123.463 137.098 126.111 1.027 0.945 1.110 1.021

The geometric model with 50% one-inflation

50 0.1 33.435 3.365 84.004 5.373 2.512 0.161 24.963 1.597
0.2 58.237 6.849 141.397 10.914 2.428 0.187 20.644 1.593
0.3 76.461 8.489 190.984 14.160 2.498 0.185 22.498 1.668
0.4 195.415 29.327 436.201 45.719 2.232 0.234 14.874 1.559

100 0.1 51.169 6.983 122.652 11.175 2.397 0.218 17.564 1.600
0.2 116.431 18.932 256.318 28.522 2.201 0.245 13.539 1.507
0.3 151.591 24.544 333.705 37.568 2.201 0.248 13.596 1.531
0.4 212.765 33.200 472.461 51.474 2.221 0.242 14.231 1.550

1000 0.1 36.633 30.994 40.141 33.182 1.096 0.906 1.295 1.071
0.2 55.353 49.523 57.691 50.867 1.042 0.919 1.165 1.027
0.3 79.672 71.429 83.545 74.092 1.049 0.930 1.170 1.037
0.4 115.963 101.869 118.971 103.684 1.026 0.894 1.168 1.018
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Figure 6.1: Ratio of standard errors from two formulas (V1 and V2) to the true
standard errors of MC and MC3 when data are generated from the geometric(θ)
with and without one-inflation
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Table 6.2: Comparison of the standard errors of two formulas with the true
standard error of the modified Chao (MC) and the modified Chao with bias
correction version 3 (MC3) under the mixture of geometric model and the mix-
ture of geometric model with 20% and 50% one-inflation

N θ1 θ2 s.e.(f̂0)True E[ ˆs.e.(f̂0)] MC MC3
MC MC3 V1 V2 R1 R2 R3 R4

The mixture of geometric model

50 0.1 0.2 100.032 13.049 229.203 20.751 2.291 0.207 17.565 1.590
0.3 116.737 16.870 262.047 26.255 2.245 0.225 15.533 1.556
0.4 90.156 13.730 210.868 21.722 2.339 0.241 15.359 1.582

0.2 0.3 130.149 20.195 283.869 30.822 2.181 0.237 14.056 1.526
0.4 232.759 33.972 512.965 52.022 2.204 0.224 15.099 1.531

0.3 0.4 208.168 30.522 459.253 47.376 2.206 0.228 15.047 1.552
100 0.1 0.2 58.141 21.444 92.811 28.743 1.596 0.494 4.328 1.340

0.3 108.749 35.927 173.895 47.283 1.599 0.435 4.840 1.316
0.4 175.713 38.650 356.337 53.336 2.028 0.304 9.219 1.380

0.2 0.3 168.506 38.522 343.785 51.062 2.040 0.303 8.924 1.326
0.4 116.138 36.520 222.276 48.154 1.914 0.415 6.086 1.319

0.3 0.4 77.939 38.535 112.229 49.549 1.440 0.636 2.912 1.286
1000 0.1 0.2 61.270 57.453 61.413 57.031 1.002 0.931 1.069 0.993

0.3 69.772 65.467 74.751 69.605 1.071 0.998 1.142 1.063
0.4 90.335 84.220 93.053 86.172 1.030 0.954 1.105 1.023

0.2 0.3 90.528 85.757 89.096 83.891 0.984 0.927 1.039 0.978
0.4 105.727 99.770 104.243 97.798 0.986 0.925 1.045 0.980

0.3 0.4 119.845 113.350 123.975 116.546 1.034 0.972 1.094 1.028

The mixture of geometric model with 20% one inflation

50 0.1 0.2 73.133 9.069 173.524 14.528 2.373 0.199 19.134 1.602
0.3 77.976 11.162 182.095 17.415 2.335 0.223 16.314 1.560
0.4 80.540 9.912 195.570 16.335 2.428 0.203 19.730 1.648

0.2 0.3 163.569 22.641 366.425 34.858 2.240 0.213 16.184 1.540
0.4 128.509 16.830 302.899 27.319 2.357 0.213 17.997 1.623

0.3 0.4 127.299 17.990 297.321 29.150 2.336 0.229 16.527 1.620
100 0.1 0.2 170.650 27.485 365.677 40.456 2.143 0.237 13.305 1.472

0.3 138.664 28.634 285.837 41.100 2.061 0.296 9.983 1.435
0.4 137.594 27.055 293.109 40.748 2.130 0.296 10.834 1.506

0.2 0.3 74.339 27.280 121.110 37.644 1.629 0.506 4.440 1.380
0.4 184.055 39.756 380.738 56.244 2.069 0.306 9.577 1.415

0.3 0.4 256.494 49.405 533.563 70.400 2.080 0.274 10.800 1.425
1000 0.1 0.2 54.436 50.171 57.697 52.580 1.060 0.966 1.150 1.048

0.3 68.324 63.119 71.112 65.023 1.041 0.952 1.127 1.030
0.4 83.883 77.021 85.667 77.837 1.021 0.928 1.112 1.011

0.2 0.3 80.704 75.385 80.815 74.907 1.001 0.928 1.072 0.994
0.4 89.588 83.421 94.545 87.290 1.055 0.974 1.133 1.046

0.3 0.4 104.159 97.014 111.465 103.125 1.070 0.990 1.149 1.063

The mixture of geometric model with 50% one inflation

50 0.1 0.2 38.490 3.970 97.554 6.489 2.535 0.169 24.576 1.635
0.3 55.612 6.383 136.451 10.131 2.454 0.182 21.377 1.587
0.4 48.758 5.326 124.124 8.614 2.546 0.177 23.303 1.617

0.2 0.3 65.614 7.874 159.964 12.557 2.438 0.191 20.315 1.595
0.4 57.531 6.630 143.518 10.678 2.495 0.186 21.646 1.610

0.3 0.4 79.367 9.051 197.076 14.855 2.483 0.187 21.775 1.641
100 0.1 0.2 120.411 16.428 270.033 25.281 2.243 0.210 16.437 1.539

0.3 99.384 16.855 222.252 25.314 2.236 0.255 13.186 1.502
0.4 92.761 13.456 215.555 21.370 2.324 0.230 16.020 1.588

0.2 0.3 155.439 23.073 343.368 35.457 2.209 0.228 14.882 1.537
0.4 112.252 20.952 247.096 31.566 2.201 0.281 11.794 1.507

0.3 0.4 176.719 27.999 388.222 42.705 2.197 0.242 13.865 1.525
1000 0.1 0.2 48.444 42.466 50.710 43.606 1.047 0.900 1.194 1.027

0.3 61.014 53.237 61.523 53.006 1.008 0.869 1.156 0.996
0.4 69.385 60.063 75.067 64.052 1.082 0.923 1.250 1.066

0.2 0.3 64.319 57.619 69.113 61.166 1.075 0.951 1.199 1.062
0.4 71.192 63.463 79.060 69.492 1.111 0.976 1.246 1.095

0.3 0.4 89.397 79.680 95.995 84.595 1.074 0.946 1.205 1.062
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Figure 6.2: Ratio of standard errors from two formulas (V1 and V2) to the true
standard errors of MC and MC3 when data are generated from the mixture of
geometric(θ1, θ2)



Chapter 6 Variance Estimation for Modified Chao Estimators 139

0
5

10
15

theta1=0.1,theta2=0.2

N

R
at

io
 o

f S
ta

nd
ar

d 
E

rr
or

50 100 1000

0
5

10
15

theta1=0.1,theta=0.3

N

R
at

io
 o

f S
ta

nd
ar

d 
E

rr
or

50 100 1000

0
5

10
15

20

theta1=0.1,theta=0.4

N

R
at

io
 o

f S
ta

nd
ar

d 
E

rr
or

50 100 1000

0
5

10
15

theta1=0.2,theta=0.3

N

R
at

io
 o

f S
ta

nd
ar

d 
E

rr
or

50 100 1000

0
5

10
15

theta1=0.2,theta=0.4

N

R
at

io
 o

f S
ta

nd
ar

d 
E

rr
or

50 100 1000

0
5

10
15

theta1=0.3,theta=0.4

N

R
at

io
 o

f S
ta

nd
ar

d 
E

rr
or

50 100 1000

R1 R2 R3 R4

Figure 6.3: Ratio of standard errors from two formulas (V1 and V2) to the true
standard errors of MC and MC3 when data are generated from the mixture of
geometric(θ1, θ2) with 20% one-inflation
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Figure 6.4: Ratio of standard errors from two formulas (V1 and V2) to the true
standard errors of MC and MC3 when data are generated from the mixture of
geometric(θ1, θ2) with 50% one-inflation



Chapter 7

Conclusion and Future Work

This chapter provides the discussion and conclusion of this thesis. Some further works

are also examined in the last section in order to extend and develop the research in the

future.

7.1 Discussion and conclusion

Capture-recapture technique is an important topic in many research areas. It is used to

estimate the target elusive population size N . The problem consists in predicting a value

for the number of units that have been missed by using the information collected from

the captured units during a study period. The predicted value of missing units depends

on the model for the capture of units based on a zero-truncated count distribution. The

typical model is the Poisson or the binomial. The various models and estimators were

developed and proposed to improve inferences in capture-recapture studies which always

rely on certain assumptions but might be violated in real situations due to time effect,

heterogeneity or behavioural response among others. Heterogeneity in the capture prob-

abilities is a common occurrence. A simple model is not flexible enough to capture the

variation in the recapture probability for the distinct units of real-life population so

the mixture is considered as a natural model for modelling a heterogeneous population.

Additionally, some capture-recapture data show some sort of one-inflation in the count

distribution. Some portion of the population is mostly captured only once. This may

be a consequence of many factors such as trap avoidance, low probability of recapturing

the same individual in large cities/areas within a short period of survey, misclassifi-

cation and so on. As a result of one-inflation being present in the count data, some

fitting models suffer from a boundary problem and some estimators provide extreme

overestimation of the population size, particularly, Chao’s lower bound estimator. The

aim of this thesis is to develop the estimators and the models specifically designed to

estimate the size of a population for one-inflated capture-recapture count data allowing
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for heterogeneity. These models are based upon the geometric distribution as it is a

remarkably simple distribution with memoryless property and also provides a flexible

model for some heterogeneity in the count data. The estimators are developed under

three concepts.

The first concept is suggested in Chapter 3. It is based on a modification by truncating

singletons and applying the conventional Turing and maximum likelihood estimation

approach to the one-truncated geometric data for estimating the parameter p0. These

estimators p̂0 are applied to the Horvitz-Thompson approach for the new population

size estimators T OT and MLE OT which are denoted as modified Turing and modified

MLE estimators, respectively. The simulation results provide evidence that the T OT

and MLE OT can solve the problem of one-inflation. They show a good performance

of accuracy and perform best with the smallest mean square error for all conditions of

study when the comparison is done among existing conventional estimators. Although

both proposed estimators can perform very well and reasonable under the one-inflation,

T OT gives superior results compared to MLE OT.

The second concept is the model-based approach. It focuses on developing a statistical

model that describes the mechanism to generate the extra of count ones as shown in

Chapter 4. The new estimator MLE ZTOI is developed from a maximum likelihood

approach by using the nested EM algorithm based upon the zero-truncated one-inflated

geometric distribution. Maximum likelihood approach is interesting and indicated to

use for developing an estimator as it has desirable mathematical and optimality prop-

erties, particularly, it becomes minimum variance unbiased estimator as the sample size

increase. These properties can be confirmed by the simulation studies in Section 4.6.

The simulation results also show that the new estimator MLE ZTOI can cope with

the problem of one-inflation by reducing an overestimation and perform best among

all proposed estimators, T OT, MLE OT and MLE ZTOI and existing conventional

estimators, Chao, Turing and MLE.

As it is shown in Chapter 2 and 3 that a classical Chao’s estimator is popular and

frequently used in capture-recapture study but it is severely affected by one-inflation

due to the fact that its formula relates to a square of singletons, n + f2
1 /(2f2). Hence

the last concept focuses on modifying the classical Chao estimator by avoiding using

the frequency of count ones for estimation. Chao’s estimator is modified to involve

the frequency of counts of twos and threes instead of the frequency of counts of ones

and twos (see Chapter 5). The modified Chao estimator (MC) can retain the good

properties of a classical Chao estimator. It is asymptotic unbiased estimator for a

power series distribution with and without one-inflation. It provides a lower bound

estimator under a mixture of power series distributions with and without one-inflation.

These good properties can be seen from theoretical, analytic and simulation results. It

shows a good performance in simulation studies and it is applicable in real situations.

However, the modified Chao estimator is a biased estimator when the sample size is
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small, therefore three bias-correction versions of the modified Chao estimator (MC1,

MC2 and MC3) have been developed. The frequency of counts is assumed to follow a

Poisson distribution which is a classical assumption in analysis of frequency table. The

property of equidispersion and the third moment of the Poisson distribution are used to

reduce the bias. All bias-reduction versions can reduce the bias considerably as can be

seen from simulation studies, especially the best one is the bias reduction version three

(MC3).

Furthermore, a variance approximation of the modified Chao estimator (MC) and the

modified Chao estimator with bias reduction version 3 (MC3) are examined in Chapter

6. A conditioning technique is used to derive the variance of the estimator MC and

MC3. The variation of MC and MC3 estimator arise from two sources. The first source

is from the random variation of observed sampling from population (n). The second is

from the variation of the predicted estimate (f̂0). As there is nothing uncertain about

observed n we focus on constructing the partial variance of prediction, var(f̂0), for both

MC and MC3, denoted by V1 and V2, respectively. The simulation study presents that

V2 has the best performance for estimating the variance of MC and MC3 as it provides

the closest values to the true variance. V1 gives severe overestimates for small sample

size but it is asymptotically unbiased when the sample size is large. Therefore, it can be

reasonably stated that the variance estimation V2 approximates well the true variance

of MC and MC3 whereas the variance estimation V1 can stand for the true variance of

MC and MC3 only in case of a large sample size.

It can be seen clearly that all proposed estimators based on different concepts can cope

with the problem of one-inflation. Each concept has a different strength and limitation.

1. The first (T OT) and third (MC and MC3) concept are simpler whereas the second

(MLE ZTOI) concept is more complex and more computational demanding.

2. The second concept uses a model-based approach to explain the extra-ones whereas

the first and third concept ignore the information from count of ones that is the

main information of data.

3. The first and second concept are a parametric approach whereas the third concept

is completely nonparametric.

4. Although the second concept produces the best estimates among estimators based

on the parametric approach, it may experience boundary problems.

5. The third concept has neither an identifiability problem, nor is there need to specify

a mixing distribution.

6. The first and second concept are suitable for a heterogeneous population following

the geometric distribution with one-inflation whereas the third concept is more
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flexible as it can be applied for the population following a power series distribution

and the mixture of power series distribution with and without one-inflation.

7. The first and second concept are good for all sizes of population whereas the third

concept (MC) is good for the large size of population. However, the bias correction

version 3 (MC3) in the third concept can cope with this problem. MC3 is also

good for all sizes of population.

8. The first and second concept provide small variances whereas the third concept

provides large variances. In other words, the first and second concept are superior

to the third concept in terms of precision.

In this thesis, all proposed estimators are developed under one-inflated capture-recapture

count data. All procedures and algorithms for calculations have been done by R pro-

gramming. For efficient estimation, it is necessary to check and ensure the validation of

all basic assumptions of the considered estimators. Here, the ratio plot is used as pre-

liminary investigating tool for the presence of one-inflation. Alternatively, the likelihood

ratio test can also be used for testing the distribution with one-inflation.

7.2 Future work

Although the results of all proposed estimators and models have illustrated the efficiency

of dealing with the zero-truncated capture-recapture count data with one-inflation, there

are some points that could be further developed and extended.

The generalized modified Chao estimator of population size for capture-recapture study

might be another aspect for further work if covariates are available. The modified Chao

estimator provides a lower bound of the population size under one-inflated unobserved

heterogeneity as shown in Chapter 5. If heterogeneity is observed and available in form

of covariates, this information can be used to reduce the bias of the modified Chao

estimator for one-inflation (see Böhning et al. (2013b) for motivation).

The modified Chao estimator, using likelihood framework in Section 6.2, is extended to

include covariate information working directly with a truncated power series likelihood

rather than with the complete power series likelihood, truncating all counts except counts

of twos and threes. Let (X1, z1), ..., (XN , zN ) be a sample with covariate information

where zi is a p-dimensional vector additional information on unit i. It can be assumed

that the heterogeneity can be captured by mean of a power series regression model with

log-link function

θi = exp(α+ βT zi) (7.1)

for i = 1, ...,M where M is the total number of covariate combinations with n1 + n2 +

...+nM = n and ni is the frequency of covariate combination i. The associated truncated
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power series model with all counts truncated except Xi = 2 and Xi = 3 is

P (Xi = 2) = (1− pi) =
1

1 + (b3/b2)θi

and

P (Xi = 3) = pi =
(b3/b2)θi

1 + (b3/b2)θi
.

The truncated power series likelihood is given as

M∏
i=1

(
1

1 + (b3/b2)θi

)fi2
×
(

(b3/b2)θi
1 + (b3/b2)θi

)fi3
=

M∏
i=1

(
1

1 + (b3/b2) exp(α+ βT zi)

)fi2
×
(

(b3/b2) exp(α+ βT zi)

1 + (b3/b2) exp(α+ βT zi)

)fi3 (7.2)

where fij is the frequencies of count j in the covariate combination i when j = 2 or j =

3. The likelihood in (7.2) can be written in another form as

M∏
i=1

(1− pi)fi2pfi3i =
M∏
i=1

(
1

1 + exp(α′ + βT zi)

)fi2
×

(
exp(α

′
+ βT zi)

1 + exp(α′ + βT zi)

)fi3
(7.3)

where α
′

= log(b3/b2) + α. Therefore, the log-likelihood becomes

l(θi | f2, f3) =
M∑
i=1

fi3 log[(b3/b2)θi]−
M∑
i=1

(fi2 + fi3) log[1 + (b3/b2)θi] (7.4)

Hence, the idea is to use this likelihood to estimate α and β in the model (7.1) and then

develop from here inference for a generalized, modified and covariate-adjusted Chao

estimator.

Other ideas for future work include on improved diagnostic methodology beyond the

ratio plot for diagnosis of one-inflation. Another interesting area of future work is

investigating count inflation other than those of ones.

In summary, several approaches for modelling and estimating in capture-recapture study

have been developed. A new crucial problem in many fields is presence of one-inflation

in capture-recapture count data. It affects the efficiency of inference. The new proposed

models and estimators for one-inflated heterogeneous population under three concepts

in this thesis have shown the good performance to cope with this situation. It can be

expected that the knowledge gained from this thesis will lead to considerable impact

in theoretical and practical research in capture-recapture methods based on counting

distribution.
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Niwitpong, S., Böhning, D., Van der Heijden, P., and Holling, H. (2013). Capture-

recapture estimation based upon the geometric distribution allowing for heterogeneity.

Metrika, 76:495–519.

Norris, J. and Pollock, K. (1996). Including model uncertainty in estimating variances

in multiple capture studies. Environmental and Ecological Statistics, 3(3):235–244.

Otis, D., Burnham, K., White, G., and Anderson, D. (1978). Statistical inference from

capture data on closed animal populations. Wildlife Monographs, 62:1–135.

Pledger, S. (2005). The performance of mixture models in heterogeneous closed popu-

lation capture-recapture. Biometrics, 61:868–876.



REFERENCES 151
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