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CAPTURE-RECAPTURE ESTIMATION AND MODELLING FOR
ONE-INFLATED COUNT DATA

by Panicha Kaskasamkul

Capture-recapture methods are used to estimate the unknown size of a target population
whose size cannot be reasonably enumerated. This thesis proposes the estimators and
the models specifically designed to estimate the size of a population for one-inflated
capture-recapture count data allowing for heterogeneity. These estimators can assist
with overestimation problems occurring from one-inflation that can be seen in several

areas of researches. The estimators are developed under three approaches.

The first approach is based on a modification by truncating singletons and applying the
conventional Turing and maximum likelihood estimation approach to the one-truncated
geometric data for estimating the parameter pg. These pg are applied to the Horvitz-
Thompson approach for the modified Turing estimator (T_-OT) and the modified maxi-
mum likelihood estimator (MLE_OT).

The second approach is the model-based approach. It focuses on developing a statistical
model that describes the mechanism to generate the extra of count ones. The new
estimator MLE_ZTOI is developed from a maximum likelihood approach by using the

nested EM algorithm based upon the zero-truncated one-inflated geometric distribution

The last approach focuses on modifying a classical Chao’s estimator to involve the
frequency of counts of twos and threes instead of the frequency of counts of ones and
twos. The modified Chao estimator (MC) is asymptotic unbiased estimator for a power
series distribution with and without one-inflation and provides a lower bound estimator
under a mixture of power series distributions with and without one-inflation. The three
bias-correction versions of the modified Chao estimator have been developed to reduce
the bias when the sample size is small. A variance approximation of MC and MC3 are

also constructed by using a conditioning technique.

All of the proposed estimators are assessed through simulation studies. The real data

sets are provided for understanding the methodologies.
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Chapter 1

Introduction

This chapter outlines the context of study and the objectives. The structure of thesis is

also shown in the final section.

1.1 Introduction

Estimation of the size of an elusive target population is of great interest in several areas
such as biology, ecology, epidemiology, public health and social science. For example,
ecologists and biologists might investigate the number of species in a wildlife population
as well as to estimate the animal abundance. In social science the interest is in deter-
mining the number of drug users and the number of violators of a law. In addition, there

is a great interest in estimating the number of outbreaks of disease in public health.

Capture-recapture methods have been applied to estimate the size of populations which
are difficult to approach. They have a long history and were traditionally applied in
wildlife, biology and ecology to estimate the animal abundance and the size of wildlife
populations. To estimate the population size N, capture-recapture surveys are con-
ducted by using an identifying mechanism. FEach individual is noted of presence or
absence. For example, capture-recapture methods use the information available from
animal captured on a number of surveys. Animals in a trap are marked, released and
allowed to mix with the population. After a period of time, a second survey is taken
and the number of animals captured is counted and marked again. Repeated surveys
are carried out and the number of animals being marked from all surveys are obtained
as the capture-recapture history. This provides the observed frequency of identifying
individuals. Accordingly, the capture history is used to estimate the total population
size or the number of cases which are never caught at any occasion. Typically, the survey

is within a short period so that evolution of new cases or extinction of existing cases
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is unlikely to occur during the study period. This is referred to as the case of a closed
population. These concepts have been applied to human populations in social science
and criminology to estimate, for example, the size of an illicit drug-using population or
the number of violators of a law (see Van der Heijden et al. (2003b) and Hser (2001)), in
public health science for estimating the disease prevalence (see Gallay et al. (2000) and
Bohning et al. (2004)) and to estimate the number of unreported diseases, as well as
infection rate of AIDS in epidemiology (Brookmeyer and Gail (1988)), also estimating
the number of unknown errors in a software in system engineering (see Liu et al. (2015)).
In these situations, the population size can be determined by using a number of different
sources (lists) as a survey occasion or identifying mechanism such as hospital lists, treat-
ment center registries or pharmacy records. This similarity to wildlife capture-recapture
is in these cases that the role of the trap is taken by the register (cancer occurrence),
the police (violations of a law) or the reviewer (software error). Typically the number of
cases that does not appear in either list is unknown and need to be estimated (Brittain
and Bohning (2009)).

From the capture-recapture history, a count x as the number of individuals identified
exactly = times is obtained. A counting distribution arises when a frequency table is
constructed from summarizing how often a particular individual was identified. This is
usually referred to as capture-recapture data in the form of frequencies of frequencies.
However, some individuals do not appear since they have never been identified so the zero
count data are missing. According to Bohning and Kuhnert (2006), zero truncation arises
regularly in many practical situations. There are underlying two different categories of

zero truncation:

e Zero counts cannot occur because of the observational model such as counts of
occupants of passing cars. A telephone interviewing survey asking for the number
of telephones in the household will have only non-zero counts in a sample (Grogger
and Carson (1991); Cameron and Trivedi (2013); Winkelmann (2008)).

e Zero-truncated count models are normally used in capture-recapture studies. From
the capture-recapture history of the individual, we try to predict the frequency of
units missed by the sample. For example, suppose that the police is keeping
records on the number of times a person has been identified with deviant behavior
in a particular community. It is clear that deviant persons who have never been
identified will not be present in database. A truncated count model can be used
to predict this quantity. Furthermore, it can be found in other applications such
as the estimation of drug users in a community or the number of illegal workers in
labour studies. This situation has been investigated with emphasis on the Poisson
distribution (Béhning and Kuhnert (2006); Van der Heijden et al. (2003b); see also
the review of Bunge and Fitzpatrick (1993)).
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The frequency count data is {(x, f;) | © > 1} where f, is the frequency of individuals
captured exactly z times. Consequently, the frequency distribution is a zero-truncated
count distribution. Based upon a zero-truncated model, it is assumed that all individ-
uals in the population of interest have the same parameter determining probabilities
to be captured once, twice and so on. This is defined as the case of homogeneity and
often modelled by the Poisson or binomial distribution (see the review of Bunge and
Fitzpatrick (1993)). The parameter is unknown and can be estimated by various meth-
ods. If an estimate of the parameter is derived, then the probability of zero counts is
obtained leading to an estimate of the hidden as well as of the total size of population.
However, the homogeneous model rarely holds in practice because of the fact that the
population frequently composes of various subpopulations. Each subpopulation has the
same distribution but different parameters. This case is the so-called heterogeneity case.
Capture probabilities under a heterogeneous model are likely to differ for each individ-
ual. Approaches that take into account heterogeneous models are introduced by Chao
(1987), Zelterman (1988) and Chao and Bunge (2002). The problem of heterogeneity
should not be ignored as it can cause severe underestimation of the true population size
(see Van der Heijden et al. (2003a) and Béhning and Schon (2005)).

There have been many statistical models developed for estimating the population size
N. The classical modelling approach stems from the Lincoln-Petersen approach which
uses the independent information of two identifying sources or lists in closed popula-
tions (Seber (2002)). In this model, each source provides a binary variable taking value
1 for presence and 0 for absence. Capture and recapture samples are then formed in a
2x2 contingency table. Finally, the Lincoln-Petersen’s estimator can be constructed by
multiplying the number of individuals found on each source and dividing the outcome
by the number of individuals identified by both sources. Throughout the years, the
numerous models and estimators were developed and proposed to improve inferences in
capture-recapture studies which always rely on certain assumptions but are violated in
real situations due to time effect, heterogeneity or behavioural response among others.
Some examples include the maximum likelihood estimator, Good-Turing estimator, Zel-
terman’s estimator (Zelterman (1988)) and Chao’s lower bound estimator (Chao (1987)).

In some capture-recapture studies, we can notice from the observed data that there is
some sort of one-inflation in the count distribution (see e.g. Farcomeni and Scacciatelli
(2013)). Some portion of the population is mostly captured only once. This may be a
consequence of the fact that the probability of recapturing the same individual is very
low, especially in large cities/areas and generally within a short period of survey. Sec-
ondly, the first capture can lead to a behavioral response for some individuals to no
longer be observed. For example, individuals are stressed from the first capture and
learn to avoid recapture further on. Under a serious law enforcement, more serious legal

penalties are expected after the second time an individual is reported as perpetrator.
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Individuals may be abrogated their driver’s licence, pay a fine and/or take part in treat-
ment programs or entry visa may be invoked for foreigners. In contrast, an individual
may get as consequence only a warning by the judge if they are identified the first time. It
is not surprising if individuals may show trap avoidance after the first capture. Thirdly,
the frequency of count one (singleton) may not be reliably observed in some applications
such as in microbial diversity. One-inflation arises, especially, in data derived from mod-
ern high-throughput DNA sequencing. A new taxa may be assigned incorrectly from
the error of sequences instead of being matched to the observed taxa. This leads to an
artificially inflated frequency of count one as shown in terms of one-inflation (see Bunge
et al. (2012)). As the result of one-inflation being present in the count data, some mod-
els suffer from a boundary problem when fitted and some estimators provide extreme
overestimation of the population size (see Godwin (2017)), particularly for Chao’s lower

bound estimator which seemingly adjusted for heterogeneity.

Research in this thesis focuses on models specifically designed to estimate the size of
a population for one-inflated capture-recapture count data allowing for heterogeneity.
This provides new estimators based upon their suitable distributions. The modified
Chao estimator and its variance are also presented as a new version of classical Chao’s

lower bound estimator based on non-parametric approach for one-inflation.

1.2 Basic assumptions for this thesis

1. The target population is in a closed system (closed population; no births, no deaths

and no migration).
2. Individuals are sampled independently.

3. Repeated identification occurs independently (This assumption will be relaxed in

certain cases).

1.3 Aims and objectives of the study

The aim of this research is to develop models and estimators to estimate population size
which take into account potential one-inflation. There are a number of objectives that

must be realized in order to achieve this aim.

1. To motivate the one-inflation problem in capture-recapture studies.

2. Using the ratio plot, to investigate the presence of one-inflation in the capture-

recapture count data.



Chapter 1 Introduction 5

3. To investigate the performance of conventional estimators when prone to one-

inflation.

4. To show that conventional approaches, seemingly good approaches adjusting for
potential heterogeneity such as Chao’s lower bound estimator, fail drastically when

frequency counts of ones (singleton) is excess.
5. To develop a distributional model for counts with one-inflation.

6. To develop new estimators for estimating the size of population under the one-

truncated geometric distribution.

7. To develop a full distributional approach under the geometric with one-inflation

for estimating population size.

8. To develop a new modified Chao estimator and its variance approximation for the

case of one-inflated count data.

9. To develop bias-correction versions for the modified Chao estimator.

1.4 Outline of thesis

The thesis consists of seven chapters. The first chapter begins by introducing the context,
research objectives and the outline of the study. The remaining chapters are given

according to respective context as follows:

In Chapter 2, a literature review of the capture-recapture approach is presented, par-
ticularly with emphasis on well-known estimators of population size that are used in
capture-recapture methodology. Then, the examples of count data with one-inflation

and the ratio plots are given in the following section.

Chapter 3 shows the weak performance of some classical estimators under one-inflation.
The construction of new estimators based on the one-truncated geometric model is
examined. This chapter also provides an investigation of relative bias, relative variance
and relative mean square error of estimators under a variety of simulated conditions.
Several empirical applications are also considered in order to illustrate the use of the

new proposed estimators in real life situations.

In Chapter 4, the problem formulation and derivation of the proposed estimators based
upon zero-truncated one-inflated geometric distribution are presented. In addition, the
nested EM algorithm for estimating parameter of the model is also discussed. Finally, a
simulation study is included to study the performance of the proposed estimators under

a one-inflation problem and also illustrate these estimators in a variety of case studies.
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Chapter 5 shows the construction of the new proposed estimator for one-inflation count
data by extending the idea of Chao’s lower bound estimator. The bias correction versions
of the modified Chao estimator are given to improve the performance when the sample
size is small. A variance approximation of the modified Chao estimators is also presented
in Chapter 6. Performance evaluations of the new proposed estimators are undertaken
under the models of geometric and mixture of geometric with and without one-inflation.

This chapter ends with some applications.

Finally, Chapter 7 gives some concluding remarks and suggests potential directions for

related future research.

1.4.1 Notation and definitions

There are many parameters and statistics involved in statistical methods for capture-
recapture study using throughout in this thesis. Therefore, in order to easily under-

standing the statistical terms, some general notations and definitions are arranged as

follows:

N the unknown population size of the target population

N the estimator of the size of the target population

m  the total number of trapping occasions over the study period

n  the total number of distinct observed individuals or the number of sample units
X;; the indicator variable of the i unit being identified in the j** occasion,

1 if the i*" individual is identified on the j** occasion

where X, =
“ { 0 otherwise

X;  the number of times that the i*" individual was identified over the study period
pr  the capture probability of individuals that were identified exactly x times

fr  the frequency of identifying individuals exactly = times over the study period
fo  the frequency of unobserved individuals

S the total number of identification during study period



Chapter 2
Review of capture-recapture

In this chapter, a review of the general background of capture-recapture is provided. It
contains objective, basic idea, assumptions and characteristic of count data in capture-
recapture, including model classification and summary of estimating the size of a target
population. Some interesting estimators of population size are considered under homo-
geneous and heterogeneous Poisson models such as maximum likelihood, Chao’s lower
bound and Good-Turing estimator. This is followed by the examples of use and appli-
cation of capture-recapture method of which some may have one-inflation form. The
graphical device of the ratio plot as a tool to investigate the validity of the model is

shown in the last section.

2.1 Objective and basic idea of capture-recapture

The capture-recapture method has a long history. It was developed to improve the
limitation of census when we cannot take a complete census of the entire units in the
target population. Some units are detected but some remain hidden or undetected such
as sampling in a wildlife population, a human population with illicit habit or a human
population with a disease which is hard to detect. The capture-recapture approach
has been traditionally applied in wildlife, biology and ecology to estimate the animal
abundance and the size of a wildlife population. The basic idea of capture-recapture is
to sample or capture individuals, mark and identify, release and allow to mix with the
population and then, on a second survey, recapture individuals, count and mark again.
After that, the number of individuals are noted which have already been marked on the
first sampling occasion. This capture-recapture method can continue to m surveys. The
number of animals being marked from all surveys are obtained as the capture-recapture
history. This provides the observed frequency of identified units. Correspondingly, the
observed frequencies from the capture history are used to estimate the total population

size N or the number of units which are never caught at any occasion, fy. However,

7
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at present, the capture-recapture approach is widely applied in a variety of other fields
such as estimating the number of outbreaks of disease in public health and epidemiology,
estimating biodiversity in bioinformatics, estimating the number of drug users, the size
of homeless populations and the number of violators of a law in social science and
criminology, as well as estimating the number of unknown errors in a software in system
engineering (Bohning et al. (2013b)). Registration can be conducted to create a list
of units in the particular population of interest. In clinical studies, for example, AIDS
registries contain the number of contacts during diagnosis, treatment and after-care.
Recording might fail if patients keep away from the process of remedy. As a result, the
registries are incomplete and show only some part of the population. Questions arise
about the total number of units in the population and the number of missing units.
From this situation, under-reporting arises since the number of units reported is less
than the actual number. One might analyze under-reporting using a binomial approach
(see Cameron and Trivedi (2013)), regression approaches for the binomial model and
the beta-binomial model (see Neubauer and Friedl (2006)) or a beta-Poisson regression
model by Neubauer et al. (2011). However, the capture-recapture method is also an
efficient tool to estimate the population size for these cases. Some mechanisms are
used to identify a repeated unit such as register, surveillance system and life trapping.
Each source is treated as a survey occasion. For example, animals were repeatedly
captured using traps and the number of animals captured on trapping was reported
(Otis et al. (1978)). In case of human populations, a registration system could be used
as an identifying mechanism to identify units having a characteristic of interest such as
police database recorded the number of illegal immigrants in the Netherlands (Van der
Heijden et al. (2003a)) or drug treatment centre and arrest records collects the number
of illicit drug users (Hser (2001)). Moreover, this recapturing works either in time or
in cluster. In time, there is the period of observation in which each individual of the
target population can be detected on several occasions. On the other hand, in cluster,
recapturing base on multiple detection within a cluster such as a household, village, or
herd. In a fixed observational period, n sample units are independently observed by a
given registration. Finally, the capture-recapture history and the observed frequencies

are provided for estimating the size of population and the number of unobserved units.

From the capture-recapture history, a distribution of counts arises when a frequency
table is constructed from summarizing how often a particular unit was identified. This
is usually referred to as capture-recapture data in the form of frequencies of frequencies.
However, some units have never been identified so the zero count data are missing
and this is called zero-truncated count data. The frequency count data is {(z, f) |
x > 1} where f; is the frequency of units captured exactly x times. Consequently,
the frequency distribution is a zero-truncated count distribution which is defined by a
conditional probability function. It is frequently used to model frequency data (see
McCrea and Morgan (2014)). Let Pr(X = x) = p, denote the capture probability for

random variable X to take on value x or the probability of a unit being caught exactly
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x times in any trap or appearing exactly z times on any registry. Pr(X|X > 0) or p;-

is the conditional probability of X = x given X > 0. It can be formulated as

Pr(X=2z)  Pr(X=n1)
Pr(X >x) 1-Pr(X=0)

Pr(X =z|X >0) = (2.1)

or it can be written as

+ _ Dz 2.9
p[[ 1_p0' (')

For example, suppose that the random variable X has a Poisson distribution. As fy
is unknown and missing, the distribution is truncated at x = 0. Therefore, the zero-
truncated Poisson probability function is

Pr(X =x;)\) e A\

PrX >0\ ai(l—e )’ (2:3)

Pr(X =z|X >0, =

In practice, the capture probability is not necessary the same for all units. There are
possible sources of variation in the probability such as factors of age, social status or
effects of weather. Suppose that pg is defined as the probability of a zero count (unob-
served units) and the probability of unit identified is given by 1 — pg. It is assumed that
every unit has the same probability of being identified. The population size N composes

of the number of unobserved and observed units.

N:N(l—po)—l- Npo
—_— —~—
observed unobserved (2 . 4)
=n+ Npg.

The observed part N(1 —pg) can be estimated by the number of observed units n where
E(n) = N(1—pp). po is unknown and required to be estimated, thereby the population
size N in (2.4) can easily be solved and leads to the well-known Horvitz-Thompson
estimator in (2.5)

N =

—— (2.5)

2.2 Assumption

Almost all statistical theories generally require some assumptions for their models. Also,

capture-recapture requires essential assumptions:

1. Closed population: It is assumed that there is no change to the population
during the investigation. That is no birth, no death and no migration. This

means that the population size remains constant throughout the study periods.
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2. Independence between subjects: All individuals have the same probability of
being captured in each trapping occasion. That is there is no dependence between

different subjects.

3. Independence between captures: Lists or sources identify independently and
repeated identification occurs independently. That is capture in the first sample

does not affect capture in the second sample: samples are independent.

4. Homogeneity of capture probability: For a given source, every case has the

same chance of being captured or it is called equal catchability.

These assumptions are important and should not be violated because it can affect esti-

mation.

e If the closed population assumption is violated, individuals found in the first sample
may not be possible to be found in the other sample. This reduces the probability

of recapture and will lead to an overestimation of V.

e In case of independence, if there is positive dependence, N will be underestimated.

Contrarily, if there is negative dependence, N will be overestimated.

e Individuals found in both samples must be reliably identified and matched. If true
matches are missed, the number of recaptured units is falsely reduced leading to
an overestimation of V. If false matches are created, the number of recaptured

units is falsely increased leading to an underestimation of V.

e In terms of equal catchability assumption, if some individuals have a low probability

of being found by either method, N will be underestimated.

2.3 Data structure of capture-recapture

Capture-recapture studies substantially need to sample observed units from a target
population at least two times. The raw data are the capture records of all units iden-
tified during the study periods. The classical model of capture-recapture is a single
marking study which has only two trapping occasions(two lists/samples). Furthermore,
the multiple marking and multiple sources study are more complex by allowing to cap-
ture units more than twice. For all models, the variable of interest is the frequency
count of identified units (f,) and the latter is used to estimate the total number of a

target population (V).
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2.3.1 Single mark or two sources

The simplest model of a capture-recapture methodology is the Lincoln-Petersen model,
also known as dual systems estimation used in the two sources situation. Based on
this model, the Lincoln-Petersen estimator for the unknown population size (V) can be
considered on the basis of the odds ratio (Brittain and Bohning (2009)) or the hyper-
geometric distribution (Seber (2002)). There are two trapping occasions and it can be

summarised in 2x2 contingency table with frequencies given in Table 2.1.

Table 2.1: The two-occasion situation

Occasion 1
1 0
Occasion 2 1 fi1 for ng
f1o foo =7
ni

where

e f11 denotes the frequency of individuals identified at both occasion.

fio denotes the frequency of individuals identified once at the 1% occasion.

for denotes the frequency of individuals identified once at the 2"¢ occasion.

foo denotes the frequency of unobserved individuals.

n; denotes the number observed in source ¢; i = 1, 2.
Two main steps of sampling:

1. At the 1% occasion, some units are caught as a first sample of size n; from the
target population. Then, all of the sampled units are marked or indicated uniquely
for future recapturing occasion. After that they are released back to mix with the

n
population. So the marked proportion is ﬁl

2. After some time, has elapsed a second sample of size no is chosen and it is clear that

this second sample composes of a number of marked units (f11), and unmarked
units (fo1), where f11 + fo1 = n2. Hence, the second marked proportion is &
n2

Let mo = f11 be the number of observed individuals in both occasions. Under the

assumption of independence, the proportion of marked individuals in the second sample
m n

is equal to the population proportion of marked individuals 2 - Nl’ the Lincoln-
n2

Petersen estimator of N, can be obtained as:
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Nip = (2.6)
and the variance of this estimator is provided as:

Var(Nyp) = M2tm = m2)(nz = ms) (2.7)

my

Although the Lincoln-Petersen estimator is a simple approach, this method requires

essential assumptions as follows:

1. The population is closed. It means the number of target population (N) is con-

stant.

2. It does not matter that each individual is marked, all individuals have the same

chance of being captured in each trapping occasion.

3. Marks are not lost and each individual is correctly identified on both occasions

and successfully matched.

4. It does not matter that each individual is marked, there are no effects on in-
dividual’s chances of being caught, so capture sample and recapture sample are

independent.

However, the Lincoln-Petersen estimator has the drawback that if there is no overlap
between sources or no marked individuals are trapped on the second occasion (mg = 0),
the Lincoln-Petersen estimator for population size cannot be computed. A modified

form of this estimator is the Chapman estimator, which is giving by:

(n+1)(n2+1)
(m2 +1)

Ncpum = —1. (2.8)

This estimator is less affected by small value of mo and less biased than the Lincoln-

Petersen estimator. A variance estimate of the estimator is given in (2.9):

(n1+ 1)(n2 + 1)(n1 — ma)(ne — mg).

Var(Nepy) = (mg + 1)2(ma + 2)

(2.9)
Example 1: Two sources. Sekar and Deming (1949) used the capture-recapture
method to estimate the birth and death rates for residents of an area known as the
Singur Health Centre, near Calcutta, India by using two lists; 1) the registration list

(R) and 2) the interviews list (I) obtained from a complete house to house canvass. The

data can be represented with 2x2 contingency table as in Table 2.2.
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Table 2.2: Number of death in the Singur Health Centre

I-List Total
R-List Present Absent
Present 439 427 866
Absent 421 foo
Total 860 N
The estimate of the total number of deaths is Np = @Gﬂ)?fs%) =1,596.

2.3.2 Multiple mark

Multiple mark capture-recapture methodology is simply defined by the fact that the
target population is sampled more than two times over the period of study, also known as
multiple systems estimation. Suppose that m denotes the number of trapping occasions
over a period of study and let IV be the size of target population, so that each individual
is indexed from 1,2,3,...,n,n 4+ 1,...,N. It is assumed that all trapping occasions j
have all individuals in the population available for trapping, j = 1,2,3,...,m, due to
the assumption of closed population. Hence, X;; is the indicator variable of individual

1 observed on occasion j where

X { 1 if the i*" individual is identified on the j** occasion
ij =

0 otherwise.

The capture-recapture history can be arranged in a matrix X and X = [X;j]nxm or it

can easily be presented in the form of Table 2.3

r11 T12 x13 e T1im

T21 €22 €23 cee T2m

X = Tnl Tn2 Tn3 ce Tnm
Ln+1)l T(n+1)2 L(n4+1)3 -+ L(nt+l)m

TN1 TN2 TN3 e TNm

L - Nxm

The matrix X composes of NV rows corresponding to the individuals and m columns
for all trapping occasions. It consists of only the values of zeros and ones indicating
unidentified and identified individuals, respectively, during the study period. The first
n rows relate to the capture-recapture history of each individual that is caught at least
once over the given study period. The remaining rows (n+1,n+2, ..., N), which contain

only zeros, are unobserved and the number of these rows is unknown.
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Table 2.3: Capture-recapture history

o e . . m
Individual Occasion j Xi=>" o1 Xij
/) 1 2 3 A m
1 11 12 713 . Tim 1
2 21 X929 T3 e Toam X9
3 31 32 33 e T3m I3
n Tnl In2 Tn3 e Tnm Tn
n+1 Tn+1)1  T(n+1)2 T(nt+1)3 -+ T(tlm Tn41
n+2 T(ni2)1 Tn+2)2 T(m42)3 -+ T(n+2)m T2
N TN1 TN2 TN3 ... INm TN

Let X; be the number of times that the i*" individual was caught or identified over the
study period with m trapping occasions where X; = ZTZI Xij; X5 = 0,1,2,...,m as
can be seen from Table 2.3. The number of unobserved individuals remains to be the
unknown parameter of the study. Here, the random variable X is the main interest as
it generates the marginal frequency. Consequently, we let fi, fa, fs, ..., fm be the fre-
quencies of distinct individuals being identified exactly x times for over period of study,
x=1,2,3,...,m. Additionally, fy denotes the frequency of unobserved individuals. The
population size N can be readily obtained as N = fo+ fi+ fo+ fs+ ...+ fm=fo+n

when n = Z;ﬂ’:l f; is the total number of observed individuals.

Example 2: Multiple marks. Table 2.4 shows the example of the capture-recapture
history for each individual of 38 deer mice with six capture occasions (Amstrup et al.
(2005)). It seems that assuming a closed population is reasonable since the duration
of survey is short. It can be seen that the first individual was caught in all trapping
occasions leading to x1 = 6. The second individual was trapped in the first trapping,
and was recaptured again in the forth, fifth and sixth occasion; zo = 4. Similarly, for
the remaining distinct individuals. Note that (0,0,0,0,0,0), representing an individual
not caught in any of the six trapping occasions, does not appear. Therefore, the number
of identifications with = 0 is unknown. The frequency of counts is summarized in
Table 2.5. Since the number of trapping occasions is fixed and known prior to the
capture-recapture sampling, the largest observed count m is known. The observed counts
1,2,3,...,m provide fi, f2, f3, ..., fm. However, the frequency of unidentified individuals

(fo) is unknown and becomes important part for estimation.

Generally, there are two types of structured data in capture-recapture studies; 1) the
discrete time data or capture-recapture data with different sources and 2) the continuous
time data or repeated counting data. In the first type, recaptured identifications can
occur only at specific time points within the study period, above is an example. The

Binomial distribution, B(m,p), is a reasonable option as a basic model for the capture
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Table 2.4: Capture-recapture history of 38 deer mice with six cature occasions

Occasion
2 3 4 5 6

Individual

1

i

0 0 1 1
1 0 0 1

1
1

1

1 0 0 1

1

10
11
12

13
14
15

1 0 0 0
0 1
0 0

0 0 0

0
1
1

1 0 0
1

1
1

16
17
18
19
20
21

0

1
1

0 0 0

1
1
0

0
0
0

22

1
0 0 0

0 0
1

23
24
25
26
27
28
29
30

0 0 0
1

1
1

0 1
0 0 0
0 0 0
0 0 0
0 0 0 O
0 0 0 O
0 0 0 O

0

0
1
1
1
1
1

0 0 0 0 O
00 0 0 O
0 0 0 0 O

31

32

0
0
0
1
1
1

33
34

35

36
37
38

Table 2.5: The frequency count of deer mice

n

1 2 3 4 5 6
9 6 7 6 6 4 38

0
?

fa
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probability of the random variable X. In this case, m is the number of trapping occasions

and p is the probability that each individual is identified on each trapping occasion.

Another structure of capture-recapture data occurs if recaptured identifications can
occur any time during the study period and individuals are identified with probability
1 — pg repeatedly by the same mechanism. In this case, the number of times that an
individual is identified over a given period of the study takes the value 1,2,3,.... As a
consequence, it is impossible to know the largest possible count of identifications such
as how often patient coming to a treatment institution for the treatment of disease.
Patients can usually go to the treatment institution to receive the treatment any time.
It might be impossible to determine the largest contact count during the treatment
period (see more examples in Hay and Smit (2003) and Norris and Pollock (1996)). For
this particular type of data, the Poisson distribution is usually chosen to fit the capture
probability (Bohning (2008)).

2.3.3 Multiple sources

The capture-recapture data can be obtained from the listing and recording systems in
multiple sources (more than 2 sources) where the data are identified at different sources
and matched with each others. These are now widely used in several areas. The lists
of identified individuals from three sources can be merged and summarized as shown in
Table 2.6

Table 2.6: The three-source situation

Source 1 Source 3
1 0
Source 2 Source 2
1 0 1 0
1 fiir fio fiio  fioo
0 foir  foor Joio  fooo =7

where 0 and 1 indicates an unidentified and identified individual, respectively. Similar

to two sources and multiple marks,
fo = fooo 1is the unobserved frequency and unknown.
f1 = fio0 + foro + foor
f2 = fuo+ fio1 + four
f3=fin
n=7>3> ;> fijk— fooo=f1+ fa+ f3; 1,5,k =>0.

Therefore, the target population size can be calculated as:
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H-list

10 1 426
R-list T-list

Figure 2.1: The numbers of hospitalizations captured and overlaps in the three
lists (R, H and T)

N=fo+ fi+tfo+[f3=fo+n.

Example 3: Three sources. Jouanjus et al. (2012) studied about addictive behaviours
that are often assorted with hidden characteristics. This target population is difficult
to detect, hence multiple sources were used to search these cases and crossed to identify
eligible hospitalizations. A capture-recapture method was used to estimate the frequency

of hospitalizations related to drug abuse. The data are shown in Figure 2.1, where

e Source 1 : Spontaneous reports of drug of abuserelated disorders (NotS), called R
list

e Source 2 : Computerised hospital database Programme de Medicalisation des Sys-
temes dInformation (PMSI), called H list

e Source 3 : Toxicological analyses (TA), called T list.

Table 2.7: Capture-recapture history with three sources of hospitalizations re-
lated to drug abuse study

Source Frequency count
NotS PMSI TA fR HT
R) (H) (T

0 0 0 ?

1 0 0 10
0 1 0 943
0 0 1 426
1 1 0 4

1 0 1 1

0 1 1 122
1 1 1 3

The capture-recapture history can be written as Table 2.7 and the associated frequency

counts of identified cases can be accounted as
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fo = fooo 1is unknown.

J1 = fio0 + foro + foor = 10 + 943 4- 426 = 1,379
fo = fiio+ fion + forn =4+ 14122 =127
f3=fii1 =3, where n=fi+ fo+ f3=1,509

The frequency of these counts is summarized in Table 2.8 and it is clear that the number

of hospitalizations that were not seen fj is unobservable.

Table 2.8: The frequency table of hospitalizations

z 0 1 2 3 n
fr 7 1379 127 3 1,509

Example 4: Four sources. Bruno et al. (1994) used multiple sources to identify known
cases of diabetes among the residents of the area of Casale Monferrato in northern Italy

on October 1, 1988. There are four sources and the data are shown in Table 2.9, where

Source 1 : Diabetic clinic and/or family physician

Source 2 : Hospital discharges

Source 3 : Prescriptions

Source 4 : Reagent strips and insulin syringes.

Table 2.9: Data from prevalent cases of known diabetes mellitus for resident in
Italy

Ascertainment Source 1
yes no
Source 2 Source 2
yes no yes no

yes ‘ Source 4  yes 58 46 14 8
no 157 650 20 182
Source 3
no ‘ Source 4  yes 18 12 7 10
no 104 709 47

From Table 2.9, the frequency counts of identified cases can be calculated as
fo = foooo is unknown.
J1 = fi000 + for00 + fooro + fooor = 709 + 74 + 182 4+ 10 = 975

f2 = fi100 + fio10 + fioo1 + for10 + foro1 + foor1
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=1044650+ 12420+ 748 =801
f3 = fi110 + fiio1 + fron1 + forrn = 157 + 18 + 46 + 14 = 235
fa = f1i1 =58
n=fi+ fo+ f3+ f1=2,0069.

The frequency distribution for these counts is summarized in Table 2.10 and the number

of diabetes that were not seen fy need to be estimated.

Table 2.10: The frequency count of diabetes

r 0 1 2 3 4 n
fz 7 975 801 235 58 2,069

Since the population size consists of observed and unobserved units, N = n + fy, the
estimate of fy leads to the estimate of population size N. Modelling and estimating
po is one of major concern for estimating the size IV of a population according to N =
n/(1—pp). Let p, be described by some model, e.g. p, = p(6). Then, an estimate 0 of
the model parameter is derived. Hence, po(é) is obtained and leads to the estimate of
the population size N = n/(1 — po(6)) as well as the estimate of the hidden fo = N — n.

Some methods to estimate py and N are reviewed in Section 2.5.

2.4 The geometric model with truncation

The geometric distribution is a remarkably simple and flexible distribution. Although it
has been often ignored for modelling count distributions, it is popular in survival analysis
for life time data and also interesting through its memoryless property. Moreover, the
geometric provides a more flexible model than the Poisson due to the fact that it arises
as a mixture of the Poisson when the Poisson parameter is mixed with an exponential
distribution that allows for some heterogeneity in the count data (see Niwitpong et al.
(2013)).

The geometric distribution has a major interesting property that turns out to be useful

for the truncated process.

o Let (1 —p)®p be the geometric for x = 0,1,.... Then the zero-truncated geometric

s again a geometric having the form

(1-p)p

T, — (- P 'p (210)

forzx=1,2,....
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There is suspicion that counts of one are inflated. Hence, it might be appropriate to

exclude ones from the estimation. The density is a geometric again.

o Let (1—p)*1p be the geometric for x = 1,2, .... Then the one-truncated geometric

s again a geometric of the form

= (1-p)"?p (2.11)

forx =2,3,....

This truncation process can be continued with higher counts also leading to a geometric
density. The first proposed model is based on the one-truncated geometric distribution
that excludes the count of ones for the estimation and uses only the other counts for

estimating p. Then use the estimate p of p to find the estimate of population size:

N = =_——, since po=(1-p)°p=p. (2.12)
p

2.5 Overview of estimators

Classical capture-recapture methods usually focus on finding some appropriate models
for the count probability distribution. Various estimators for estimating the population
size have been proposed. Although there are two types of data sets as mentioned in
Section 2.3, the Poisson model is reasonably chosen for the probability density function
of the model because the binomial distribution can be widely approximated by a Pois-
son distribution if the number of trapping occasions m is large with the small success
probability. In this section, therefore, the majority of estimators based on homogeneous
Poisson, homogeneous geometric and heterogeneous models are examined. Maximum
likelihood estimator and Good-Turing estimator are estimators for the homogeneous
Poisson and geometric model whereas Chao’s lower bound estimator and Zelterman

estimator are proposed for heterogeneous models.

A

2.5.1 Horvitz-Thompson’s estimator (Ngr)

Horvitz and Thompson (1952) introduced a basic technique for estimating means, to-
tals and proportions of a finite population for any sampling design, with or without
replacement. This approach is applied for capture-recapture studies to estimate the
size N of target population. Let X; be the identifying indicator variable of the "
unit in the population, where X; = 1 if i** individual is identified, otherwise X; = 0.
Consequently, ZZ]\; 1 X; = n is the number of observed units. Suppose that each unit

is observed independently with identical probability 1 — py hence the probability of
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observing exactly n units is the Binomial distribution. Moreover, we can note that
N(1—pp) is the expected number of observed cases which can be estimated by n which
E(Zfil Xi) = N(1 —pg) = n. This leads to the simple equation to estimate the popu-

lation size N. We can write
N = Npy+ N(1—pg) =~ Npo + n. (2.13)
This equation can be solved for estimating N. Consequently, the Horvitz-Thompson

Estimator is provided in the form:

n

NHT: .
1 —po

(2.14)

For more detail, see Bishop et al. (1975) and Van der Heijden et al. (2003a). However,
po is regularly unknown and need to be estimated for using in (2.14). There are many

ways to estimate pg that will be discussed in following subsections.

2.5.2 Maximum likelihood estimator (Nyrg)

The maximum likelihood method is the well-known traditional technique used to derive
estimators (see Casella and Berger (2008)). Let X, Xy, ..., X;, be a random sample with
probability density function f(z;#), the likelihood function is defined as

n

L(0) = [ [ (xi:0). (2.15)

i=1

The maximum likelihood estimator (MLE) for unknown parameter 6 can be obtained
by maximizing the function L(0), differentiation L(6) with respect to 6 and equated to
zero. For capture-recapture study, the zero-truncated count data are considered because
zeroes have not been observed in the identifying systems as mentioned in Section 2.1.
Let X; be the number of times that i** individual was identified over the study period,
where ¢ = 1,2,3,...,n. Count data X is often modelled by the Zero-truncated Poisson

Distribution with probability function

exp(—A)A"
z!(1 —exp(—A))’

Pot(z;)\) = A >0, r=1,2,3,.. (2.16)

Additionally, in the sense of frequency data, let f,. denotes the frequencies of units
observed x times over the study period, where x = 1,2,...,m and > ", f; = n. Then,

the likelihood function for this zero-truncated count density is

m oz fo
L =1]] (%) x=1,2,3,...,m. (2.17)

z=1
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Therefore, the log-likelihood function of (2.17) is

[(A\) = —nA+logA Z Tfy — Z fzlog(x!) —nlog (1 —exp (—A)). (2.18)

=1 =1

We equate the derivative of the log-likelihood to zero and get an expression for the

maximum likelihood estimate \ of \ as

T = m or A =Z(1 —exp(—A)). (2.19)

Clearly, there is no close form solution for the maximum likelihood estimate A in (2.19).

We can find the approximate value of A by a Taylor series approximation as follows

X:2<x1>. (2.20)

x

Another method to solve A is an iterative method via EM algorithm. The likelihood
function (2.17) can be maximized with algorithm between the E-Step and the M-Step:

(i) Expectation (E-Step)

The expected value of unobserved case fy given the observed variables and the current

estimates of likelihood parameter are derived in this step.

fo = E(folf1, fas s f; N)
= polV (2.21)

= exp(—A)(n + fo)

Hence,
. npo  nexp(—\)

fo=1 el e (2.22)

given A and n.

(ii) Maximization (M-Step)

In this step, the unobserved, complete data likelihood function is maximized by using

observed cases (n) and unobserved cases (fy) that is imputed from initial value in first
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iteration and from using fb from E-Step for next iteration. The estimate of A in M-Step
is
m

AMLE = 7,L_iﬁ)(0fo+1f1+2f2+-.-+mfm) = ;{Zﬂ?fx (2.23)

=0

where n = >""" | f, is the total number of all observed individuals and the conditional
upon fy = fo. The EM-algorithm requires iterating between FE-Step and M-Step until
convergence in ;\MLE and fo. Moreover, the initial value is an important value to start
the procedure; so it should be selected suitably and carefully. Frequently, the initial value
is simply set by a sample mean. As a result of replacing AMLE in Horvitz-Thompson

approach in (2.14), the population size estimator with regard to maximum likelihood is

. n
NMLEP = = . (2.24)
1-— exp(—)\MLE)
The variance of (2.24) can be estimated by
. N
VaT’(NMLEfp) = MLE-P . (2.25)

(o () - T2
NurLE P NumLE P

(see Bohning et al. (2005); Chao and Lee (1992); Meng (1997); Viwatwongkasem et al.
(2008)).

Here, we consider maximum likelihood estimation under the geometric model. We as-

sume that count data X is modelled by a geometric distribution with probability function

and the zero-truncated geometric likelihood is of the form

z—1_\Jfz
Lp) =] (1 -p)* 'p)
=1
The log-likelihood function is
log L(p) =log(1 = p) > fulw — 1) +1logp D fe. (2.26)
r=1 =1

To find the maximum likelihood estimator (MLE) of unknown parameter p, differentia-
tion of (2.26) with respect to p is equated to 0. This leads to

ol . _Z;nzl folz —1) + Z;nzl fa =0

ap 1—p P

..n
P=g
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Hence, under the assumption of zero-truncated geometric model, the population size

estimator with the maximum likelihood approach is

n

T=n75 (2.27)

Nuieg =
where S = > "'" | xf,. The variance estimation of the MLE_G in (2.27) can be estimated

as
SQnQ

@“(NMLE,G) = G

(2.28)

(see Niwitpong et al. (2013)).

A

2.5.3 Turing estimator (Nt)

Initially, Turing estimation is formulated to estimate the number of classes or species of
animals which is defined as the sum of probabilities of observed classes. This estimator
can also be applied to estimate the total number of populations. Let f, be the frequency
of individuals detected exactly x times, x = 0,1, 2, ..., m where m is the largest observed
count. The total number of observed cases in the sample is n = > _." | f, and the total

number of captured cases can be defined as

m

S=fi+2f+3fs+...+mfn=) zfs.
=1
Let p, denote the probability that individual identified exactly x times. Assume that
X has a homogeneous Poisson distribution with parameter A so py = exp(—A) and

p1 = Aexp(—A). We can write py as

A _ e A __ M

= . 2.2
Po=¢ A EX) (2.29)
The estimate of pg can be calculated from observed frequency as follows
. _[i/N _h
= = —. 2.30
Po="g/N =5 (2:30)

Thus, if we plug pg into the Horvitz-Thompson estimator, Turing estimator for estimat-

ing the population size is given by

Nrp = (2.31)

"
1—f1/S

The variance for Turing estimator can be estimated as

— . nf /S n2 1-— N 2
Vatnn -t e (T g) e
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Here, Turing estimation under geometric homogeneity is considered. Let X have a

marginal pmf following the geometric distribution with parameter p where pg = p,p1 =

(1-p)pand E(X) = —p7 so that
p1 p(l—p) _
= = p“, 2.33
E(X) ~ (1-p)p (233
pl = =
E(X) p = Po.
The estimate of pg can be calculated from observed frequency as follows
A~k fl
=4/ 2.34
Do S ( )

Therefore, the extension of Turing estimator for estimating the population size under

geometric model is given by
- n

Nrg=——r—. (2.35)
1-+/fi/S
The variance of Nch; can be derived as
. v/ f1/8 S
Var(Nt.g) = %/2 + n? /i . (2.36)

(1-vars)  \as2(1-VA7s)

2.5.4 Chao’s lower bound estimator (N¢)

The previous estimators are developed under the homogeneous Poisson model. However,
it seems to be rarely met in practice and it is more suitable to incorporate heterogeneity.
It is more reasonable to assume that the target population may be composed of a variety
of subgroups. Chao (1987) proposed a lower bound for the population size N under
the heterogeneous Poisson population. The capture probability is assumed to follow a

Poisson mixture:

pe = /0 T p@n) g (V) dA,

(3] e(f)\) T
pe (£]A) = /0 A, (2.37)

where g(A) represents an arbitrary density of the model parameter A in the population.
Chao’s estimator is derived in the sense of a nonparametric way by using the Cauchy-

Schwarz inequality of any two random variables X and Y
[E(XY)] <E(X?) E(Y?). (2.38)

It is assumed that X = u(\) and Y = v(\) are function in A where A is assumed to be a

continuous random quantity with density ¢(A) defined on the support (0,00). We have
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that

( I u()\)v(/\)q()\)d)\>2 _ ( [ ey dA) ( [ ooy dA) 09)

Let u(A) = (e~ *A*~1)2 and v(\) = (e~ *A7+1)2. We have that u(A\)v()\) = e *A\?. Then,

the inequality in (2.39) can be written as

( /0 h e—Aqu(A)dA> 2 < ( /0 h e_)‘)\x_lq()\)d)\) < /0 h e_’\)\x“q()\)d)\) ,

(i: /O h e—Aqu(A)dA)Q < <g:3: /0 h e—w—lq(A)dA) (Eiﬂ;: /0 h e‘AA“lq(A)dA),

or
(@1pe)? < (& — Dpe—i(z 4+ 1)!pas1,
and finally
e (z + 1)px+1' (2.40)
Pz—1 Dz
Replacing the probability p, by their associated observed frequency specifically, for
x = 1, leads to Chao’s inequality py > 2p§2 The lower bound for the estimate of the

number of unobserved units is provided as

o I

fo= 4t (241)

where the inequality fo < fo will hold on in its expected value asymptotically. Finally,
adding the estimator fo to the number of observed cases n leads to Chao’s lower bound

estimator as )

Nep=n+ 2+ 2.42
cr=nt it (242
Chao also provided an approximate variance formula for estimator in (2.42) which is
given as
< WA R (A
Var(Ncp) = () i e 2.43
( ) 4) f3 f3 2) f (2.43)

It is interesting to note that Chao’s lower bound estimator is simple to calculate, uses
only f1 and fa. It represents lower bound estimates if heterogeniety based on Poisson
is present and a mixing distribution is not required to be specified and to be estimated.
Hence it is a truly non-parametric way (see Bohning (2010); Bohning et al. (2013b)).
However, model selection is difficult due to the absence of the likelihood-based goodness
of fit statistics.

Now Chao’s lower bound estimator is considered under a geometric heterogeneity to

estimate fy (see Niwitpong et al. (2013)). Let g(z|p) be the geometric density with
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parameter p and k(p) is an arbitrary density of the model parameter p in the target

population. The mixture geometric probability density is

)= [ stelpian= [ (197 ph Ry
The moment inequality under the Cauchy-Schwarz inequality is
[E(XY))* < E(X?)E(Y?).
Let X2 =pand Y2 = p(1 — p)?, so the inequality can be given as

[E(XY)? < E(X?) E(Y?)
[E(p(1 - p))]> < E()E [p(1 — p)?]
[E(p(1 - p)))?
= Ep1-p)?"

Replacing expected values by frequencies leads to

E(p)

V

_ /7
fo=11 (2.44)
f2
and to Chao’s lower bound estimate
S i
Ncg=n+ = (2.45)
fo
A variance estimate of Ng_g in (2.45) can be found as
4
Var(No.g) = fl ‘};1 + ? : (2.46)
2

2.5.5 Zelterman’s estimator (Nz)

Zelterman (1988) proposed a series of robust estimators of the parameter A under the
exp(—A)A\®
z!(l—exp(—A)) "
is very popular and has a simple expression and is robust under potential unobserved

zero-truncated Poisson probability, Pot(z;\) = Zelterman’s estimator

heterogeneity. It is frequently used in socio-economical applications and illicit drug use

research in the social sciences (see Navaratna et al. (2008); Bohning (2010); Farcomeni

(2017)). By using Horvitz-Thompson approach to estimate population size; N = T =

#p(—k)’ the estimate of A is required. Although the Poisson assumption is frequently

invalid in reality, it can be assumed that homogeneity of Poisson probability can hold
for small range of count variable from x to x 4+ 1. For example, singletons (f;) and
doubletons (f2) follow a homogeneous Poisson distribution whereas other counts might

be arbitrarily distributed. Therefore, the neighbouring frequencies f, and f,41 can be



28 Chapter 2 Review of capture-recapture

used to estimated a parameter A by considering the ratio

Pot(z+1;0)  exp(=A)A"TH/(z+1)I(1 —exp(=A)) A
Pot(z;\) exp(—A)AT/z!(1 — exp(—N)) S+l

The parameter A can be written as

(x +1)Pot(z +1; )\)‘

A= Pot(xz; \)

(2.47)

Po™(x;\) and Po't(z+1;\) are replaced by the empirical relative frequencies f,/N and

fz+1/N, respectively to obtain an estimator for A\. Thus, we have that

(x+1)fey1/N _ (z + 1)fx+1.

A= TN 7,

(2.48)

Zelterman claimed that individuals never seen should be more similar to rarely seen
individuals than individuals captured many times hence he suggested to use x = 1 and

~ 2
A= ﬁ In addition, Kuhnert and Bohning (2009) supported the idea of using z = 1

i

by giving 2 reasons. First is that using x = 1 gives the closest vicinal frequencies (f; and
f2) to estimate the target parameter fy. Second is that the majority of counts usually
fall into count of ones and twos in many applications. Therefore, the counts larger than
two do not affect the estimator. As the result, Zelterman’s estimator for estimating the

population size is

Nyp = (2.49)
1 —exp(2)

The variance estimate for the Zelterman’s estimator in (2.49) is

. A c (11
Var(Ngp) =nG(A) [1+nGMAN | —+— )|, (2.50)

fi o f

. -A <2
where G(\) = exp( )A and \ = 22 (see Bohning (2008)).
(1 —exp(—A))? N

Here, Zelterman’s estimator based on the geometric distribution is considered. Let
g(z|p) = g = (1 — p)*p be the geometric distribution with parameter p where gy = p.
The zero-truncated geometric distribution is

+ Iz (1 - p)xp

- _ — (1 —p)! 2.51
9 =14 T (L=p)"'p (2.51)

and the ratio of neighbouring zero-truncated geometric distribution can be calculated

" Giy _ (L=p)""'p/(1—p)
97 (1 =p)*p/(1—p)

=1—p. (2.52)
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Replacing g and g 41 in (2.52) by the respective relative frequencies

fx+l/N ~
=1-p, 2.53
FuIN (25%)
and it can be written as
1—p:f’}“:1—go. (2.54)

Using a similar reasoning as for the Poisson distribution above, x = 1 is chosen to

estimate gy hence 1 — gg = jjz Using Horvitz-Thompson approach, the Zelterman

1
estimator for estimating population size based on geometric distribution is given as

- _mn _n _Lfl
N = G T RIE T (2.55)

A variance estimate for the Zelterman estimator under geometric distribution in (2.55)
is )
— A n —
Var(Nzg) = 7111(]012 f2) +n? (Jc; + fé) (2.56)
f3 5

(see Anan (2016)).

2.6 Application concerning capture-recapture models

Capture-recapture methods are applied in many research areas to estimate the unknown
population size. In this section, some examples are examined in order to illustrate an
application of all estimators above, as well as to show that some data sets might have

the problem of one-inflation.

2.6.1 Snowshoe hares in north-central Alberta

Keith and Meslow (1968) present data on the number of times individual snowshoe
hares were captured and recaptured from live trapping at six different square mile study
areas during 1962-1967 in north-central Alberta. Regular trapping periods included

midwinter, spring and summer and the frequency counts are shown in Table 2.11.

Table 2.11: The frequency count of snowshoe hares

fi fo fs fo fs fo n

Midwinter 72 19 2 1 1 0 95
Spring 109 45 19 5 3 0 181
Summer 184 55 14 4 4 0 261

The estimators based on the Poisson and geometric model in Section 2.5 are applied to

estimate the abundance of snowshoe hares. The results are shown in Table 2.12. It can
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be seen that all estimators under the geometric distribution give larger population sizes
than estimators under the Poisson, while the smallest population size is given by Turing
under the Poisson model for all seasons.

Table 2.12: Estimated sizes of a snowshoe hares population in north-central
Alberta based on Poisson and geometric model

Estimator Poisson Geometric
Midwinter Spring Summer Midwinter Spring Summer
MLE 249 343 578 396 479 875
Turing 224 289 516 394 467 880
Chao 231 313 569 368 445 877
Zelterman 232 322 580 360 438 873

2.6.2 Cottontail rabbits: data from known size experiment

Edwards and Eberhardt (1967) study the capture-recapture data of cottontail rabbits
from an experiment with known size of population. They penned 135 wild cottontail
rabbits in a four-acre rabbit proof enclosure and conducted live trapping for 18 sequential

nights. The frequencies of capture-recapture were recorded as shown in Table 2.13 (see
more detail in Chao (1987)).

Table 2.13: The frequency count of cottontail rabbits

fi fo fs fao fs fo fr fs . fis n
43 16 8 6 0 2 1 0o .. 0 76

Table 2.14: Estimated sizes of cottontail rabbits population based on the Poisson
and geometric model

Estimator Estimated Population Size
Poisson Geometric

MLE 126 164

Turing 110 169

Chao 134 192

Zelterman 145 205

In this case of study, the target population size N is known; 135 cases. There were
only 76 caught individuals within 18 nights of trapping occasions; n = 76. It is clear
that 59 individuals were unobserved; fy = 59. The estimated values of the population
size from estimators discussed in Section 2.5 are shown in Table 2.14. It is clearly seen
that Poisson model is more suitable than the geometric model. We now consider only
estimators based on the Poisson model and it is found that Chao’s estimator yields
a remarkable reasonable estimate which is almost equal to the true population size.

Zelterman’s estimator gives an overestimation whereas others show underestimation.
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2.6.3 Illegal immigrants in the Netherlands

Van der Heijden et al. (2003a) presented the capture-recapture data of illegal immigrants
in the Netherlands from police records in order to estimate population size by using the
truncated Poisson regression model. These records contain information on the number

of times each illegal immigrant was apprehended by the police according to Table 2.15.

Table 2.15: The frequency count of illegal immigrants

i fo f3 fa fs fo n
1,645 183 37 13 1 1 1,880

It can be seen from Table 2.16 that all estimators under the Poison model give smaller es-
timates than the geometric model. Additionally, Zelterman’s estimator gives the largest
population size for under both models whereas the smallest estimation is given by Turing

and MLE under the Poisson and geometric model, respectively.

Table 2.16: Estimated sizes of illegal immigrants population based on the Pois-
son and geometric model

Estimator Estimated Population Size
Poisson Geometric
MLE 7,722 13,469
Turing 7,608 14,208
Chao 9,274 16,668
Zelterman 9,425 16,900

2.6.4 Methamphetamine use in Thailand

Rocchetti et al. (2011) show the data of drug abuse for 61 health centers in the Bangkok
metropolitan region from the Office of the Narcotics Control Board (ONCB). Table 2.17
presents the number of methamphetamine users for each count of treatment episodes
(see more detail in Bohning et al. (2004)). In this study case, the maximum observed

frequency was 10 and the total number of methamphetamine users is estimated.

Table 2.17: The frequency of Methamphetamine use in Thailand

fi foo fs fa fs fe fr fs fo fio n
3,114 163 23 20 9 3 3 3 4 3 3,345

From Table 2.18, it can be seen that the MLE based on Poisson model gives the small-
est number of methamphetamine users whereas Zelterman’s estimator under geometric

model provides the largest number.
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Table 2.18: Estimated sizes of methamphetamine users in Bangkok based on
the Poisson and geometric model

Estimator Estimated Population Size
Poisson Geometric
MLE 16,802 30,113
Turing 19,395 37,039
Chao 33,091 62,836
Zelterman 33,654 63,904

2.6.5 Microbial diversity in the Gotland Deep

Rocchetti et al. (2011) show the data on microbial diversity that stem from a recent
count by Stock et al. (2009) as shown in Table 2.19. The maximum observed frequency
is 53 and the number of observed individuals (n) is 83. In this case the number of
different genes (DNA sequences) N in particular environments is estimated by a variety
of estimators under the Poisson and geometric model. The results are shown in Table
2.20.

Table 2.19: The frequency of Microbial diversity in the Gotland Deep

fi fo f3 fa fo fs fo fio fuu fiz fiz fie fir fis foo foo fa2

48 9 6 2 2 2 1 2 1 1 1 2 1 1 1 1 1

It is clear from Table 2.20 that Turing is estimator based on the Poisson gives the lowest
estimate of microbial diversity whereas Zelterman’s estimator under the geometric model

provides the highest number of microbial diversity.

Table 2.20: Estimated microbial diversity in the Gotland Deep based on the
Poisson and geometric model

Estimator Estimated Population Size
Poisson Geometric

MLE 105 105

Turing 95 128

Chao 211 399

Zelterman 266 443

It can be clearly noticed from above applications that there can be large differences
between the results of estimating population size from different estimators based on
different models. Therefore, the important key for estimating a target population size
is the capture-recapture model that we use to fit the data. As it is mentioned in the
previous section, the basis distributions for capture-recapture are Poisson and binomial
models. However, a violation of homogeneous modelling have been widely discussed as

it leads to bias in estimation. A variety of mixture models are offered for estimating
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population size with heterogeneity. As a consequence, the model selection plays a crucial
role for a process of estimation. The next section will provide a graphical device to

investigate count data modelling.

2.7 The ratio plot

Statistical graphics are a fundamental and essential tools for statistical data analysis
although they are often overlooked. Graphs are simple instruments for preliminary ex-
ploration of a dataset to perceive and understand the features and structure of data. It
also provides insight into influential aspects of statistical inference such as invalid dis-
tributional assumptions and latent patterns. Graphs can assess quickly and efficiently
these aspects. In capture-recapture study, the ratio plot has been developed as a graphi-
cal device for investigating models and choosing methods for estimating population size.
The basic concept is derived from a homogeneous Poisson distribution and expanded to

heterogeneous models by Bohning et al. (2013a).

Assume a count distribution p, = p,(A) for the generation of f,. Here \ is reflecting

some parametric model such as the Poisson

e AN

pe=P(X=1x)= o

where A > 0 is an unknown parameter. Then, using E(fo | fi,..; fm;A) = Npo and
a Horvitz-Thompson estimator of N in (2.5), we can find a Horvitz-Thompson-type

estimate of fjy via

: po(N)
f(] = nN———_.
1 —po(A)
In capture-recapture studies, the zero counts are truncated hence ) is an estimate based
on the observed frequencies fi, ..., fm, potentially one of the estimates discussed in Sec-
tion 2.5, m being the largest observed count, and n = f; + ... + f;n. Consider the

ratios
Pet1  Pzi1/(I—po) A

Pz B Px/(l—po) _$+1

It can be seen from (2.57) that the ratio for the zero-truncated and non-truncated

(2.57)

distribution is identical and leading to

re = (z+ 1) =\, (2.58)
Dz

The ratio 7, is constant with varying count x. It is straightforward to estimate r, by 7,

fo = (@ +1)L 9}*1 (2.59)
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where f, is the frequency of count  and N = fy + f1 + ... + fin. The graph z against
Fp = (z+ 1)22HL

x
Poisson distribution. If the ratio plot shows a pattern of a horizontal line, it can be

is called the ratio plot. It can be used as a diagnostic device for the

taken as indicative for the presence of a Poisson distribution. Conversely, departures
from a horizontal line provide evidence for invalidation of Poisson homogeneity. For
constructing the ratio plot, both of f,11 and f, should be positive. If any of the two is

zero, the ratio is undefined and we will give some blanks in ratio plot.

The occurrence of homogeneous Poisson distribution is rare in practice. If the ratio plot

is a monotone pattern, indeed \ is distributed with arbitrary density ¢(\). Then

1 _—X\z
b= [ S avi (260
0 X!

has the monotonicity property (Bohning et al. (2013a))

1PL < 9P2 g3

Do D1 D2
Hence, the ratio plot must be monotone increasing. If we consider as mixing density

g(\) the exponential then

1 _—x A1

P = / eil—e*A/“d)\ = (1—p)*p. (2.61)
o T M

The geometric distribution arises with event parameter p = 1/(1 4+ ). For aspects of

heterogeneity modelling see also Dorazio and Royle (2003). Based on zero-truncated

and non-truncated geometric distribution, the ratio becomes

;o _ Pzl _ Pz+1/(1 = po)
’ Dz px/(l _pO)

=1-p (2.62)

which can be easily estimated by

o= fﬂ}zl. (2.63)

Hence plotting 7/, against = leads to the geometric ratio plot and would serve as a

diagnostic device for the geometric distribution.
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Estimators Based Upon
One-Truncated Geometric

Distribution

This chapter illustrates one-inflation and the ratio plot as a diagnostic device. It also
shows the inferior performance of classical estimators when data experience one-inflation.
To cope with this situation two new estimators of population size based on the one-
truncated geometric distribution are introduced. One is modified from Turing esti-
mation (T_OT) and another one is developed from the maximum likelihood approach
(MLE_OT). Simulation technique is applied to study the performance of proposed es-
timators. The simulation results show that the NT,OT and NMLE,OT can improve the
efficiency of the original estimators under one-inflation especially the Nr or has better
performance than NMLE.OT- Overall, the proposed estimators give the smallest relative

bias, relative variance and relative mean square error for all conditions of study.

3.1 Introduction

Based on capture-recapture models, the identifying system generally provides a count
X; > 0 of how many times the i*" individual has been captured, for i = 1,2, ...,n and
X; = 0 denotes unobserved cases in the system for i =n+ 1,n + 2, ..., N. Therefore, it
can be written that the total number of a target population (V) consists of an observed
part (zero-truncated) of size n and unobserved part of unknown size fo = N —n as well
as N = n+ fo. In order to investigate an estimate of IV based on an available sample
X1, Xa, ..., Xy, it is usually required to assume a model for the capture probability of X,
pi = Prob(X = 7). Moreover, statistical models for biology and ecology assume that the
population can be divided into a finite number of classes. Each member of the population

is identified with one class. Here, we can say that the size of target population N is the

35



36 Chapter 3 Estimators Based Upon One-Truncated Geometric Distribution

total number of existing classes. A drawn sample from such a population will typically
have repeated observations of the various classes. That is, some may be observed only
once, other twice and so on, while many classes may not appear in the sample at all.
The frequency count data is {(z, fz) | * > 1} where f, is the number of sample classes
of size x. For example the data set {(1,10),(2,4),(3,2),...,(7,1)} has ten singletons,
four doubletons, ..., and one class occurring seven times in the sample. The problem is
how to estimate the total number of classes due to not all classes are observed. Some
classes remain undetected and the purpose is to provide an estimate of the frequency fj
of different classes that remain unobserved (see details in Bunge and Fitzpatrick (1993)
or Bohning and Vilas (2008)). The Poisson distribution is used as a basic model for
fitting capture-recapture data. However, it is recognised that many datasets in some
capture-recapture application have a large number of count ones or the data are in the
form of one-inflation. According to Farcomeni and Scacciatelli (2013) and Bunge et al.
(2012), this may be the results of the fact that: 1) the recapture probability of the same
individual is very low, 2) individuals may show trap avoidance after the first capture,
and 3) individuals may be assigned to incorrect class due to the error of matching leading

to an artificially inflated frequency of count one such as the data of microbial diversity.

As it was mentioned in Section 2.7, the ratio plot can be used as a diagnostic device
for the Poisson or geometric model. If the pattern of the ratio plot is a horizontal line,
it indicates the presence of the distribution of interest. The estimate for the Poisson
is 7 = (x 4+ 1)fy41/fr whereas 7, = fy11/f. is the estimate for the geometric. To
illustrate the ratio plot for one-inflation and the potential of large bias in the estimate
of Chao, we consider synthetic data of a population with size N = 15,000 with 10,000
counts generated from the Poisson with parameter 2 merged with 5,000 extra-ones.
The frequency distribution is fo = 1,377, f1 = 7,823, fo = 2,614, f3 = 1,736, f4 =
894, f5 = 354, fe+ = 202. In this case, the observed sample size is n = 13,623. We
ignore the fact that fy is known and estimate it by the conventional Chao estimator
fb = f%/2fs = 11,706 and finally the population size estimate is N=n+ fo = 25, 329.
It can be seen clearly that Chao’s estimator gives a serious overestimate of the true
fo=1,377and N = 15,000, respectively. The associated ratio plot and frequency chart
are presented in Figure 3.1. The ratio plot shows clear evidence of one-inflation since the
first point is far away from the best horizontal line. Here, the explanation is that there
are a lot more counts of one. Therefore, from this example, the ratio plot can be used
as a rough diagnostic device of one-inflation. Additionally, we can use the ratio plot for
the geometric to investigate the suitability of a geometric distribution with one-inflation
in a similar way. Note that the frequency chart (right panel in Figure 3.1) would not

allow an easy identification of one-inflation as the ratio plot does.
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Figure 3.1: Ratio plot (left panel) and corresponding frequency chart (right
panel) for N = 15,000 simulated Poisson counts with mean 2 and 50% one-
inflation

3.2 Examples of applications with one-inflated count data

and ratio plot

Example 1 In the context of animal disease surveillance, the data on scrapie-infected
holdings in France are obtained from the French classical scrapie surveillance programme
(Vergne et al. (2012)). Here, we are interested in estimating the total number of hold-
ings with scrapie infection in France. Table 3.1 presents the frequency distribution of
detection among holdings where at least one infected animal was detected. Here f, rep-
resents the number of detected holdings with exactly = infected sheep. The total number
of detected holdings is n = 141. There are 121 holdings with exactly one infected sheep,
13 holdings with exactly two infected sheep and so forth.

Table 3.1: Zero-truncated count data of French scrapie-infected holding in 2006

zr 1 2 3 4
fr: 121 13 5 2

Figure 3.2 left panel shows the two ratio plots, the first one using 7, = (x + 1) fo41/f2
for the diagnosis of a Poisson and the second one using 7/, = f,41/f, for the diagnosis
of a geometric. It is clear that the ratio plot for a Poisson shows a monotone increasing

pattern, in particular, we can say that it does not show a horizontal line pattern. Hence
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Figure 3.2: Ratio plot (left panel) and corresponding frequency chart (right
panel) for the scrapie infected holding data

the Poisson model may not be suitable with this data whereas the ratio plot for a
geometric is much closer to a horizontal line. However, it should be noticed that the
first value of the geometric ratio plot 7 = fa/ f1 is very low if compared with the others
values in the graph. This could be explained by the fact that there are a lot more
counts of holding with one infected sheep due to one-inflation as corresponding with the
frequency chart in right panel. Therefore, it is indicated to use the geometric model

under one-inflation estimating the total number of holding with scrapie infection.

Example 2 Van der Heijden et al. (2014) study the prevalence of domestic violence
in the Netherlands for the year 2009 by using capture-recapture methods to estimate
the total population size of offenders. The perpetrator study is reported with the data
given in Table 3.2. The total number of observed offenders is n = 17,662. There are
15,169 offenders identified exactly once in a domestic violence incident, 1,957 exactly
twice and so forth. From the data and the the frequency chart in Figure 3.3 right panel,
it is noticed that the observed data may be contaminated with errors due to inflation in

count one.

Table 3.2: The frequency count of a domestic violence incident in the Nether-
lands

T 1 2 3 4 5 6+
fe 15,169 1,957 393 99 28 16

In Figure 3.3 left panel, the two ratio plots are used to investigate the models appropriate
for the data, one using for the diagnosis of a Poisson and another using for the diagnosis
of a geometric. It appears to be clear that the Poisson model might not be appropriate

for these data due to the ratio plot for the Poisson does not show a horizontal line
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Figure 3.3: Ratio plot (left panel) and corresponding frequency chart (right
panel) for the domestic violence data

pattern. Contrarily, the ratio plot for the geometric is much closer to a horizontal line,
so it is interesting to use the geometric model fitting these data. Although, we cannot
see the signal of one-inflation from the ratio plot, it is suspected that the counts of ones
might be exceed due to the number of singletons is almost an amplitude higher than the

number of doubletons.

Example 3 Phage diversity analyses represent a new level of population diversity be-
yond what is encountered in other areas of microbial ecology. We illustrate the situation
for a contig spectrum from a swine fecal metagenome (Allen et al. (2011)). The contig
spectrum was generated using Circonspect via the CAMERA pipeline (Sun et al. (2011)).
Here, we are interested in estimating the taxonomic diversity of this metagenome. The

complete frequency count data is in Table 3.3.

Table 3.3: The frequency count data of phage metagenome

x 1 2 3 4 5 6 7 8 9 10 11 12 13
fo 4736 521 152 69 46 27 21 18 16 10 9 8 7

x 14 15 16 17 18 19 20 21 22 23 24 25 26
fa 6 ) 4 4 3 3 3 3 2 2 3 3 1

x 27 28 29 30 31 32 33 34 35 36 37 38 39
fa 2 1 2 21 1 1 1 1 1 1 1 1

x 40 41 42 43 44 45 46 47 48 49 52 51 52
fx 1 1 0 10 1 o0 0 O 0 0 0 1

The total number of observed taxa is n = 5,703. Bunge et al. (2012) state: "It is clear
even without graphing the data that the sample diversity is high: for instance, the num-

ber of singletons is almost an order of magnitude higher than the number of doubletons.



40 Chapter 3 Estimators Based Upon One-Truncated Geometric Distribution

o Poisson
A Geometric

50
1
4000
|

40
1
3000
1

ratio
30
x
2000
I

20
1

1000
1

N
e A
° P TIT Ny W -
g =
TITTTTTTITT I TIITTTITITTTITTITITTTTTT
1 6 12 19 26 33 40 i 3 5 7 9

e —

X X

Figure 3.4: Ratio plot (left panel) and corresponding frequency chart (right
panel) for the phage metagenome data

There is some basis to believe that the experimental and bioinformatic procedures that
generated these data are prone to erroneous inflation of the low frequency counts” (p.5).
Furthermore, it can be found in Figure 3.4 right panel that the number of singletons is
about nine times the number of doubletons and there is a long and sparse tail to the
right. This data shows an uncertainty in the low-frequency counts that is the salient
characteristics of data in microbial ecology. The ratio plots in Figure 3.4 left panel are
now considered and it is clear that the Poisson does not appear to be suitable with this
data as its plots depart from a horizontal line pattern whereas the geometric is much
closer to a horizontal line although some points are not that of a line pattern. Moreover,
one should notice that the lower counts such as count one, two, three and four are very
low when compared with other counts in the graph. Therefore, we can say that the ratio
plot shows evidence of one-inflation in these data. Besides one-inflation, another notice

should be considered that the error variance will increase with increasing counts.

The results of these examples show distinctly the effect of one-inflation in conventional
estimators. Hence, we should be concerned about how to cope with this problem. In this
chapter, we will focus on models specifically designed to estimate the size of a population
for one-inflated capture-recapture count data allowing for heterogeneity. We also provide
an inferential approach of estimators under one-inflation. These models and proposed

estimators are based upon the geometric distribution.

3.3 One-truncated geometric model

Under the assumption that the frequency of count one is inflated, some estimators are

developed under the one-truncated geometric model. The first proposed estimator is
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provided in form of a Turing estimator and another one is developed by the maximum

likelihood approach.

3.3.1 One-truncated Turing estimator (]\AfooT)

Let f, be the frequency of individuals identified exactly x times. Also, n = > ", f; is
the total number of observed cases in the sample, and S = fi +2fo+3fs+...+mfi, =
Y one, xfz is the total number of captured cases. The estimate of py and population size

N can be calculated from the observed frequencies as follows:

. _ /N _ A
PO="g/N =5
Nr =175

This is the conventional Turing estimator developed under the Poisson model. Under
the geometric distribution, let p, = (1 — p)*p; = =0,1,2,.... The Turing estimator of

p can be derived as follows:

p_ (1—-pp _ 2
EX) (-p/fp 7

or
p1 o
E( X) P = Po-
It follows that
. fi
= ) 3.1
P 5 (3.1)

Consider the case of a one-truncated geometric distribution. Let us write

py=(1-p¥'p; y=1,23,..

in the form

T

pw:(l_p) p; $:0a1a27

with 2 =y — 1. From formula in (3.1) follows that
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Transform the random variable x to y so that

. f2
b= \/Ofaco + lfle + 2f$:2 + ...+ (m - 1>fx:m—1

_ f2
- \/0f1 1ot 2+t (m—1)fm

Hence, the estimate of p can be calculated from the observed frequencies as:

. P
Pror = \/fQ +2fs+3fs+ ..+ (m—1)fm (3.2

Thus, the one-truncated Turing estimator for estimating the population size is given by

- n
N = 3.3
ot 1 —pror ( )

The formula in (3.3) is simply derived in terms of the Horvitz-Thompson estimator in
(2.12) by replacing p by pror in (3.2) assuming there is one-inflation in the capture
probability. Expanding to k-truncated geometric distribution, the k-truncated Turing
estimator (T_KT) for p is of the form:

Jrt1
T_KT 3.4
y \/ Sk — k), 34

3.3.2 One-truncated maximum likelihood estimator (NMLEDT)

Let X be the number of times that a unit was identified over the study period. Count

X is modelled with a geometric distribution having probability function

Since the observed sample from a capture-recapture study contains only non-zero counts,
the associated probability function becomes a zero-truncated geometric. Additionally,
in the sense of frequency data, the observed data are given as f, where xt =1,2,3,...,m

where m is the largest observed count. The zero-truncated geometric likelihood is of the

= ﬁ [(1—p)*'p) .

r=1

form

The log-likelihood function is

m

log L(p) = log(1 = p) > fulw — 1) +logp > fu. (3.5)

x=1 =1
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To find the maximum likelihood estimator (MLE) of the unknown parameter p, the

derivative of (3.5) with respect to p is equated to 0:

RS > SYACES VI v Y
This leads to
N n
PMLEZT = g

Hence, under the assumption of a zero-truncated geometric model, the population size

estimator based on the maximum likelihood estimation is

. n
NyLgzr = T=n/S" (3.6)

Similarly, we assume that the count X is modelled as one-truncated geometric distribu-
tion with probability function
pe=(1-p)*?p : x=2,3,4,...

The log-likelihood function is

log L(p) =log(1 —p) > fulw —2) +logp > _ fu (3.7)
r=2 =2

To find the maximum likelihood estimator (MLE) of unknown parameter p, the deriva-

tive of (3.7) with respect to p is equated to 0:

0

di - Yo falx—2) n—fi
- _|_ —
dp 1-p P

so that
P _ n— fi
MLE_OT S —_n

arises. Hence, under the assumption of one-truncated geometric model, the population

size estimator based on the maximum likelihood estimation is

ML OT = TG S =)

(3.8)

In a similar way, the general form of maximum likelihood estimator for unknown pa-

rameter p under k-truncated geometric distribution is derived as

n— Zi:l fa:
S—kn+ Y i(k—2)fs (39)

PMLEKT =
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3.4 Goodness of fit

The goodness of fit (GOF) of a statistical model describes how well it fits a set of obser-
vations. The measures of GOF regularly summarize the discrepancy between observed
values, which are the frequency of a class from a sample and the estimated or fitted fre-
quencies, which is calculated under the claimed model. In order to measure departure

of the observed data from the model, an asymptotic x? goodness of fit statistic is used.
Let G be

G:ZW, (3.10)

r=1
where f, and e, are the observed and fitted frequency in the z'” class, respectively.

We can calculate the fitted frequency by

forx=1,...,m—1; and
oo
Jm+ = Z fj
j=m

and

o
b =1 30 PUX =)
j=m
for the last cell.

The asymptotic distribution of G is x2 where v = m — p — 1 is the degree of freedom for
a model with p parameters. If any of the expected class frequencies are less than five,
classes are binned. Starting from the lowest class frequency, classes are binned one by

one until the expected frequency is greater than or equal to five.

3.5 Estimating an unknown population size

There is a large number of estimators which are derived under homogeneity and het-
erogeneity of the target population. Examples of estimators based on geometric ho-
mogeneity are Nyrg = n/(1 —n/S), Nt = n/(1 — \/f1/S) where S = 0fy + 1f; +
... + mf,,. Furthermore, the popular estimator which allow population heterogeneity
is Chao’s lower bound given by No¢ = n + f 2/fo under geometric model. As pre-

sented in the previous section, the one-truncated Turing estimator Nt ot = %

where pr or = \/ 27275 +”ﬁ(m_1) o and the one-truncated maximum likelihood estima-

tor NMLE,OT = m allow for one-inflation.
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To compare the suggested estimators with existing estimators, we look at the synthetic
data of a population size N = 20 with 20% of one-inflation which generated from
geometric distribution with parameter 0.1 as shown in Table 3.4. Table 3.5 provides
population size estimated by conventional and proposed estimators, respectively. As
can be seen, the proposed estimators (T_OT and MLE_OT) can effectively improve the
estimates of population size from conventional estimators (Turing and MLE) and provide
values closest to the parameter of interest N = 20. Therefore, the proposed estimators

are viable and become candidates for use under one-inflation situation.

Table 3.4: The frequency of zero-truncated count data with 20% one-inflation
from Section 3.1

fo fi fo f3s fo fs feo fr fs fuu fiz fuu on
1 7 1 1 1 1 3 1 1 1 1 1 19

Table 3.5: Estimates for the data in Table 3.4

Estimator Estimated population size

Chao 68

Turing 26.24
MLE 23.95
T.OT 21.52
MLE_OT 22.74

Further simulation work is conducted to investigate how well these estimators are per-

forming in term of bias, variance and mean square error.

3.6 Simulation study

The main purpose of this section is to study the performance of proposed estimators
and to compare their behaviours with the other well-known estimators: Chao’s lower

bound estimator (C), Turing estimator (T) and maximum likelihood estimator (MLE).

3.6.1 Scope of study

1. The data were generated by the Monte Carlo technique using the program R, each

condition was repeated 1,000 times.
2. The target population data were generated from a geometric model.
3. The population size was N = 20, 50, 100, 500 and 1, 000 .

4. There were 2 levels of one-inflation: 20% and 50% represent low and high level of

one-inflation respectively.
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5. The criteria of comparing the performance of each estimator was relative bias

(RBias), relative variance (RVar) and relative mean square error (RMSE).

3.6.2 A simulation plan

This simulation study was undertaken to investigate the performance of two proposed
estimators and to compare these with other conventional estimators by means of the
Monte Carlo method. The total size of the target population for each level of one-
inflation was assumed to be 20, 50, 100, 500 and 1,000. The heterogeneity populations
were generated from geometric distribution (arising from the mixture of Poisson distri-
bution with an exponential distribution) with parameter p € {0.1,0.2,0.3,...,0.6}. The

simulation procedure is as follows:

1. Generate random number for X; from geometric distribution with 20% and 50%
of extra-ones for each (p); where i = 1,2, ..., N. For example, 20% extra-ones with
a population of 500 is generated by N = 400 follows a geometric distribution and

the one-inflation has size 100.

2. Count the frequencies of each value of X; begin with fy the count of X; = 0, until
fm the frequencies of maximum value of X,,, then fy is dropped or truncated

before going to the next step of estimator computation.

3. Estimate the total number of population sizes by means of Chao, Turing, MLE
and the suggested estimators: one-truncated Turing (T_OT) and one-truncated
MLE (MLE_OT).

4. Repeat the procedure (1) to (3) for 1,000 times

5. Compute the relative bias, relative variance and relative mean square error of

population size estimator of each method

6. Rank the best performance of each condition by means of smallest relative bias,

relative variance and relative mean square error.

3.6.3 Statistical investigation

For each scenario, all estimates were computed. Expected values and variance were

determined as

A A 1 1000 .
Mean(N) = B(N) = - > N
k=1
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The performance of population size estimators is evaluated in terms of bias, variance
and mean square error. Due to the fact that the expected values and variance increase
with increasing N, we take the relative bias, relative variance and relative mean square

error as follows:

Relative Bias:

E(N)-N
N
(om0 ket Ni) = N

RBias(N) = 1)

Relative Variance:

. (3.12)
e SR (N — N)?
_ 1

Relative Mean Square Error:

E(N — N)?
NZ
000 /
_ ﬁ Ilc:I(Nk_N)2
— e

RMSE(N) = 1)

3.6.4 Simulation results

The results of the simulation study are divided into two parts; 1) 20% one-inflation
and 2) 50% one-inflation. Each part reports the investigation of relative bias (Rbias),
relative variance (RVar) and relative mean square error (RMSE) for all conditions of
the study. Due to the fact that the results of two parts are similar, both parts will be
summarized together. To explore preliminary the behaviour of estimators, we consider

the mean of estimates of population size from all estimators.

According to the results provided in Table 3.6, it is noticeable that the results of two
parts are similar (20% and 50% one-inflation). Clearly, all of the conventional estimators
(Chao, Turing and MLE) show an overestimation of population size for all conditions
of the study particularly it is severe in Chao’s lower bound estimator. Turing and MLE
estimators are less affected by one-inflation than Chao’s lower bound. The proposed
estimators ]\AfooT and NMLE,OT yield satisfying outcomes which are close to the true
value of population size N. We can summarize the performance of estimators by ordering
them as Nc > NT > NMLE > NMLE,OT > NT,OT- It is also clear that newly proposed
estimators NMLEDT and NMLEDT perform considerably better than the others. This
can indicate that the proposed estimators have a good performance under one-inflation,

for both low and high level. However, if comparing among new proposed estimators,
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]\AfooT performs better than NMLE,OT' We can make a preliminary conclusion that the
proposed estimators can cope with one-inflation situation satisfactorily. Next, further
investigation will be provided.

Note ”-” in Table 3.6 - 3.9 is defined as no results from simulation study.
1) Investigate of relative bias (RBias)

The relative bias (RBias) is commonly defined as the difference between the estimated
value and true value of N, and then scaled by the true value. Consequently, a good
estimate of population size will have an associated relative bias close to zero. Addi-
tionally, the positive value of RBias presents an overestimation whereas the negative
value of RBias shows an underestimation. As can be seen from Table 3.7, almost all
estimators provide an overestimation for all conditions. There is only Nt or that gives
an underestimate in case of small population sizes (N = 20,50,100) under 20% one-
inflation. Furthermore, the proposed estimators ]\AfooT and NMLEDT show the highest
performance of accuracy, respectively, by giving the smallest RBias among the other es-
timators for all the geometric parameter p and population sizes N. It is also found that
N¢ has the worst performance of accuracy as the difference between the expected value
of the estimator and the true value of IV is largest for all conditions of study. This can
confirm in a severe overestimation of Chao’s lower bound estimator under one-inflation
situation as mentioned in beginning. In addition, consider an effect of the geometric
parameter and the population size. Certainly, increasing the geometric parameter leads
to a slight increase in bias for all estimators except N¢ which slightly decrease in the
beginning before increase. Conversely, an increase in population size lead to a slight

decrease in bias for all estimators except Np_or.

2) Investigate of relative variance (RVar)

Variance is the common measure of variation. Variance of each estimator is the squared
difference in average between an individual value of estimator and the expected value of
estimator. Hence, a small variance of estimator can indicate that most individual values
of estimators are close to their mean. To compare the variation among estimators for
different population sizes, the relative variance (RVar) is calculated as the ratio of the
variance and the expected value of estimator squared, see equation (3.12). As can be seen
from Table 3.8, the RVar of 20% and 50% one-inflation for all estimators are similar pat-
terns in the study. It is clearly seen that the suggested estimators NT,OT and NMLE,OT
perform the best with the smallest RVar where RVar(NMLEfoT) > RVar(NTfoT). Per-
formance of classical estimators NT and NMLE are fairly close to suggested estimators
whereas N¢ performs the worst with the largest RVar and significantly different from
other estimators. Additionally, similar to the results of RBias, increasing the geometric

parameter leads to a slight increase in RVar whereas an increase in population size leads
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A

Table 3.6: Monte Carlo means of the population size estimates (Mean(N))
based upon geometric distribution with 20% and 50% one-inflation

Extra-ones N p  Chao Turing MLE T.OT MLEOT

20% 20 0.1 43 23 21 20 21
0.2 44 25 23 19 22
0.3 50 28 26 19 -
50 0.1 127 o7 53 49 51
0.2 113 62 57 49 53
0.3 113 67 61 47 56
0.4 123 75 69 45 -
100 0.1 237 114 105 100 103
0.2 207 122 112 99 105
0.3 207 133 122 97 110
04 221 148 136 95 117
0.5 245 170 158 90 129
0.6 296 208 194 83 -
500 0.1 1056 569 525 507 511
0.2 952 608 557 514 525
0.3 971 658 602 523 543
0.4 1014 725 665 530 072
0.5 1124 822 756 546 607
0.6 1303 985 913 530 671

1000 0.1 2082 1138 1051 1018 1022
0.2 1906 1220 1117 1040 1051
0.3 1922 1315 1203 1063 1087
0.4 2028 1446 1325 1098 1136
0.5 2225 1641 1509 1113 1208
0.6 2549 1943 1797 1153 1314

50% 20 0.1 123 30 25 20 22
0.2 124 40 32 20 -
50 0.1 501 72 60 51 53
0.2 403 89 72 50 o7
0.3 392 115 94 51 64
0.4 409 152 127 51 -
100 0.1 1110 143 118 102 106
0.2 761 178 144 104 114
0.3 702 220 179 104 124
0.4 709 281 233 106 140
0.5 894 389 329 108 165
0.6 1160 578 506 109 -
500 0.1 4421 711 588 521 528
0.2 3169 871 705 547 563
0.3 2992 1073 872 581 609
0.4 3159 1370 1128 605 675
0.5 3605 1822 1530 648 764
0.6 4512 2585 2229 699 909

1000 0.1 8493 1420 1174 1047 1056
0.2 6214 1738 1408 1106 1126
0.3 5924 2149 1743 1173 1217
0.4 6214 2713 2231 1254 1340
0.5 7074 3584 3005 1377 1507
0.6 8926 5159 4437 1515 1779
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Table 3.7: Relative bias of five population size estimators based upon geometric
distribution with 20% and 50% one-inflation

Extra-ones N P Chao  Turing MLE TOT MLE_OT

20% 20 0.1 1.1651 0.1548 0.0687 -0.0132 0.0367
0.2 1.1924 0.2441 0.1490 -0.0547 0.0791

0.3 14577 0.3887 0.2813 -0.0997 -

50 0.1 15486 0.1423 0.0540 -0.0122 0.0234
0.2 1.2611 0.2308 0.1312 -0.0280 0.0643

0.3 1.2570 0.3359 0.2297 -0.0639 0.1160

0.4 14593 04921 0.3748 -0.0954 -

100 0.1 1.3569 0.1416 0.0543 -0.0015 0.0251
0.2 1.0700 0.2221 0.1202 -0.0120 0.0539

0.3 1.0685 0.3301 0.2179  -0.0295 0.0995

0.4 12093 0.4762 0.3563 -0.0506 0.1684

0.5 1.4593 0.7045 0.5771 -0.0951 0.2912

0.6 19613 1.0826 0.9449 -0.1671 -
500 0.1 1.1111 0.1383 0.0505 0.0146 0.0219
0.2 09036 0.2160 0.1147 0.0279 0.0500

0.3 09425 0.3167 0.2035 0.0453 0.0865

0.4 1.0284 0.4494 0.3301 0.0608 0.1433

0.5 1.2484 0.6446 0.5125  0.0918 0.2136

0.6 1.6052 0.9705 0.8251 0.0606 0.3417
1000 0.1 1.0817 0.1382 0.0507  0.0177 0.0223
0.2 09060 0.2199 0.1167 0.0397 0.0506

0.3 09225 0.3154 0.2033 0.0637 0.0873

0.4 1.0278 0.4464 0.3246 0.0981 0.1359

0.5 1.2251 0.6414 0.5088 0.1131 0.2079

0.6 15488 0.9433 0.7970  0.1531 0.3136

50% 20 0.1 5.1590 0.5061 0.2380  0.0157 0.0776
0.2 52127 0.9808 0.6178 0.0142 -

50 0.1 9.0240 0.4460 0.1910 0.0164 0.0602
0.2 7.0616 0.7890 0.4489  0.0081 0.1403

0.3 6.8339 1.2990 0.8843 0.0269 0.2812

04 71889 2.0316 1.5483 0.0165 -
100 0.1 10.1014 0.4310 0.1813 0.0220 0.0582
0.2 6.6093 0.7802 0.4417  0.0411 0.1384

0.3 6.0221 1.1979 0.7921 0.0441 0.2414

0.4 6.0930 1.8060 1.3315 0.0623 0.4024

0.5 79437 2.8877 2.2871  0.0801 0.6529

0.6 10.5987 4.7808 4.0617  0.0892 -
500 0.1 7.8420 04218 0.1753 0.0413 0.0567
0.2 53389 0.7414 0.4103 0.0938 0.1264

0.3 49847 1.1470 0.7434 0.1627 0.2185

0.4 53181 1.7420 1.2570  0.2107 0.3491

0.5 6.2104 2.6430 2.0597  0.2959 0.5270

0.6 8.0233 4.1704 3.4580 0.3992 0.8185
1000 0.1 7.4933 0.4198 0.1738  0.0470 0.0558
0.2 52137 0.7375 0.4078  0.1065 0.1259

0.3 49243 1.1487 0.7433 0.1729 0.2175

0.4 5.2138 1.7126 1.2313 0.2543 0.3397

0.5 6.0734 2.5844 2.0053 0.3774 0.5071

0.6 79257 4.1587 3.4367 0.5150 0.7790
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Table 3.8: Relative variance of five population size estimators based upon geo-
metric distribution with 20% and 50% one-inflation

Extra-ones N D Chao  Turing MLE T.-OT MLE.OT

20% 20 0.1 1.0832 0.0117 0.0068 0.0045 0.0057
0.2 1.5992 0.0515 0.0343 0.0109 0.0245

0.3 24632 0.1236 0.0891 0.0175 -

50 0.1 1.8850 0.0046 0.0028 0.0024 0.0024
0.2 1.5986 0.0139 0.0087 0.0050 0.0066

0.3 1.8110 0.0356 0.0262 0.0094 0.0214

0.4 22841 0.0948 0.0757 0.0157 -
100 0.1 1.0718 0.0023 0.0013  0.0012 0.0011
0.2 0.6283 0.0071 0.0046 0.0031 0.0034

0.3 04570 0.0166 0.0112 0.0057 0.0081

0.4 0.5752 0.0392 0.0288 0.0098 0.0228

0.5 1.2910 0.1087 0.0891 0.0147 0.0874

0.6 24855 0.3422 0.3100 0.0201 -
500 0.1 0.0904 0.0005 0.0003  0.0003 0.0002
0.2 0.0499 0.0013 0.0008  0.0007 0.0006

0.3 0.0489 0.0030 0.0021  0.0017 0.0016

0.4 0.0608 0.0068 0.0052 0.0036 0.0038

0.5 0.1112 0.0163 0.0128 0.0074 0.0100

0.6 0.2212 0.0496 0.0423 0.0125 0.0354
1000 0.1 0.0417 0.0002 0.0001 0.0001 0.0001
0.2 0.0255 0.0006 0.0004  0.0004 0.0003

0.3 0.0257 0.0016 0.0011  0.0010 0.0008

0.4 0.0369 0.0037 0.0027  0.0019 0.0018

0.5 0.0520 0.0077 0.0060 0.0039 0.0045

0.6 0.0966 0.0212 0.0180 0.0088 0.0156

50% 20 0.1 85233 0.1108 0.0515 0.0031 0.0081
0.2 10.6954 0.6657 0.4525 0.0079 -

50 0.1 31.4384 0.0194 0.0074 0.0015 0.0021
0.2 259054 0.0804 0.0395 0.0040 0.0083

0.3 31.3470 0.4388 0.3094 0.0081 0.0577

0.4 31.0232 1.2350 1.0519 0.0119 -
100 0.1 57.6632 0.0086 0.0032 0.0010 0.0010
0.2 23.8094 0.0373 0.0187 0.0029 0.0039

0.3 22.0421 0.1134 0.0683 0.0062 0.0133

0.4 155799 0.3139 0.2355 0.0108 0.0608

0.5 37.1924 13921 1.0667 0.0185 0.3544

0.6 709817 6.9650 6.2770 0.0379 -
500 0.1 4.5555 0.0015 0.0005  0.0003 0.0002
0.2 1.5720 0.0060 0.0028  0.0009 0.0007

0.3 1.1085 0.0173 0.0103  0.0024 0.0022

0.4 1.2783 0.0578 0.0389 0.0048 0.0070

0.5 1.9032 0.1659 0.1225 0.0119 0.0210

0.6 4.1770 0.6265 0.5235 0.0333 0.1103
1000 0.1 1.9314 0.0007 0.0002 0.0001 0.0001
0.2 0.6574 0.0028 0.0014  0.0005 0.0003

0.3 0.5639 0.0094 0.0052  0.0013 0.0010

0.4 0.6431 0.0279 0.0182 0.0031 0.0033

0.5 0.9498 0.0767 0.0573 0.0082 0.0108

0.6 2.0447 03160 0.2499 0.0268 0.0386
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Table 3.9: Relative mean square error of five population size estimators based
upon geometric distribution with 20% and 50% one-inflation

Extra-ones N P Chao Turing MLE T-OT MLEOT

20% 20 0.1 24394 0.0356  0.0115  0.0046 0.0071
0.2  3.0195 0.1110  0.0565  0.0139 0.0307

0.3  4.5856 0.2745 0.1682  0.0274 -

50 0.1  4.2813 0.0249  0.0057  0.0026 0.0030
0.2  3.1874 0.0671  0.0259  0.0058 0.0108

0.3  3.3891 0.1484  0.0789 0.0135 0.0348

04 44114 0.3368  0.2161  0.0248 -

100 0.1 29118 0.0224  0.0042  0.0012 0.0017
0.2 1.7724 0.0564  0.0190 0.0032 0.0063

0.3  1.5982 0.1256  0.0587  0.0066 0.0080

0.4  2.0372 0.2659  0.1557  0.0124 0.0511

0.5  3.4193 0.6050  0.4221  0.0238 0.1721

0.6 6.3297 1.5139  1.2024  0.0480 -
500 0.1 1.3250 0.0196  0.0028  0.0005 0.0007
0.2 0.8664 0.0479  0.0139  0.0015 0.0031

0.3 0.9371 0.1033  0.0436  0.0038 0.0091

04 1.1184 0.2087  0.1141  0.0073 0.0243

0.5 1.6695 0.4317  0.2754  0.0158 0.0556

0.6  2.7978 0.9913  0.7230  0.0162 0.1522
1000 0.1 1.2117 0.0193  0.0027  0.0005 0.0006
0.2  0.8463 0.0490 0.0140  0.0020 0.0028

0.3  0.8767 0.1011  0.0425  0.0050 0.0085

0.4 1.0932 0.2030  0.1080  0.0115 0.0203

0.5 1.5527 0.4192  0.2649 0.0167 0.0478

0.6  2.4953 0.9109  0.6533  0.0322 0.1139

50% 20 0.1 35.1301  0.3668  0.1081  0.0034 0.0141
0.2 37.8571 1.6271  0.8338  0.0080 -

50 0.1 112.8388 0.2183  0.0438  0.0018 0.0047
0.2 75.7459  0.7028  0.2410 0.0041 0.0279

0.3 78.0177 21259 1.0911 0.0088 0.1368

0.4 82.6723 5.3611  3.4481 0.0121 -

100 0.1 159.6436 0.1944 0.0361  0.0015 0.0044
0.2 67.4689 0.6460 0.2138  0.0046 0.0230

0.3 58.2859 15483 0.6956  0.0082 0.0716

0.4 52.6894  3.5753  2.0081  0.0147 0.2227

0.5 100.2575 9.7297  6.2962  0.0250 0.7803

0.6 183.2422 29.8142 22.7683 0.0458 -
500 0.1 66.0486  0.1794  0.0313  0.0020 0.0034
0.2 30.0747  0.5557  0.1712  0.0097 0.0167

0.3 259548 13329 0.5630 0.0289 0.0500

0.4 29.5591  3.0922 1.6189  0.0492 0.1289

0.5 40.4701 7.1514  4.3646  0.0995 0.2987

0.6 68.5455 18.0183 124810 0.1927 0.7802
1000 0.1 58.0789  0.1769  0.0305  0.0023 0.0032
0.2 27.8394 0.5468 0.1677 0.0118 0.0162

0.3 24.8117 13289  0.5577  0.0312 0.0483

0.4 27.8260 29607 1.5343 0.0678 0.1187

0.5 37.8369  6.7557  4.0783  0.1506 0.2679

0.6 64.8600 17.6102 12.0607 0.2920 0.6458
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to a slight decrease in RVar for all estimators except Ne.

3) Investigate of relative mean square error (RMSE)

Relative mean square error (RMSE) shows the ratio of the squared difference between
each value of estimator and the true value of parameter over the true value of parameter,
averaged over the sample space. The estimator, which gives a smallest value of RMSE,
normally indicates that this estimator shows the highest efficient estimation, on average
is closest to the true value of parameter of interest. The RMSE of each estimator under
consideration are presented in Table 3.9. Similar to the results in the investigation of
RVar, the suggested estimators NT,OT and NMLEDT also perform the best by giving
the smallest value of RMSE whereas N¢ performs the worst with the largest RMSE.
As a summary of performance with regard to relative mean square error, ordering of
the estimators is RMSE(NC) > RMSE(NT) > RMSE(NMLE) > RMSE(NMLEDT) >
RMSE(NTfoT) for all studied cases. Moreover, increasing the geometric parameter leads
to an increase in RMSE whereas an increasing the population size leads to decreasing

in RMSE for all estimators except Ne.

3.7 An application for estimating the population size

The aim of this section is to apply the proposed estimators (T_-OT and MLE_OT) to
real data where we suspect one-inflation is ongoing, and compare their performance with

conventional estimators (Chao, Turing and MLE).
1) Estimating the total number of scrapie infected holding in France

According to the case study of estimating the total number of holdings with scrapie
infection in France (see Table 3.1 in Section 3.2 for the data and Figure 3.2 left panel
for the ratio plot of one-inflation), the results of estimation (fy and N) from a variety of
methods are shown in Table 3.11. As we expect, due to an effect of one-inflation, there
is a large difference between the conventional estimators and those accounting for one-
inflation. Chao’s lower bound estimator yields with 1,267 a huge number of estimated
scrapie-infected holdings. Next, the conventional Turing and MLE estimator give a more
moderate estimate; 902 and 827, respectively. Finally, the smallest estimates are given
by the proposed estimators NT,OT = 427 and NMLEDT = 454. It can be seen clearly
that the proposed estimators can reduce the overestimation associated with conventional

estimators.

Although the simulation studies indicate that the suggested estimators can properly
deal with one-inflation, we should also consider goodness-of-fit in model fitting when we
apply these estimators in real situations. Figure 3.5 left panel shows the fitted values

for this data set with all estimators. It is clear that the estimated values from T_OT
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Table 3.10: The data of French scrapie-infected holdings from section 3.2

x 1 2 3 4
f, 121 13 5 2

and MLE_OT, represented by purple line and orange line on the graph, fit the data very
well and better than the conventional estimators. This agrees with the p-value from the
goodness of fit statistics in Table 3.11.

Table 3.11: Results for scrapie-infected holdings in France

Estimator fo N Chi-square  p-value
Chao! 1,126 1,267 27.195 0.00000
Turing 761 902 8.487 0.01436
MLE 686 827 6.781 0.03369
T.OT 286 427 0.283 0.59474

MLE_OT 313 454 0.507 0.47644

2) Estimating the total number of domestic violence in the Netherlands

Coming back to the application of estimating the population size of domestic violence
offenders in Section 3.2, we show the data again in Table 3.12. The results of estimation
from the classical and proposed estimators are shown in Table 3.13. As we expect, the
pattern of results is similar to the previous application, Nc > NT > NMLE > NT,OT >
NMLEDT, but here estimators are very few in their magnitude which corresponds to
the unclear one-inflation signal of ratio plot in Figure 3.3. Nevertheless, it is clear that
the proposed estimators can reduce overestimation associated with the conventional

estimators.

Table 3.12: The data of domestic violence from Section 3.2

x 1 2 3 4 5 6+
fe 15,169 1,957 393 99 28 16

Table 3.13: Results for domestic violence study

Estimator fo N Chi-square  p-value
Chao' 117,577 135,223 317.537 0.00000
Turing 103,233 120,879 166.795 0.00000
MLE 98,788 116,434 144.797 0.00000
T.OT 65,573 83,219 7.227 0.02696

MLE_OT 64,754 82,400 6.649 0.03599

For GOF-test, po = % and p = po for geometric model
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Scrapie infected holding data Domestic violence data
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Figure 3.5: Square root of goodness of fit test charts for all estimators for scrapie
infected holding data (left panel) and domestic violence data (right panel)

In terms of statistical model fitting, Figure 3.5 right panel shows the fitted values for
this data set by using standardized residuals with all estimators. The conventional
estimators are shown by blue, red and green lines, whereas the purple and orange lines
are for the proposed estimators. It can be clearly seen from the graph and the p-
value from the goodness of fit statistics in Table 3.13 that the estimated values from
proposed estimators can fit the data well and definitely improve upon the fitting of the
conventional estimators. Nonetheless, the p-values of the proposed estimators indicate
that the one-truncated geometric model may not be able to fit this data set good enough

if we consider the level of significance at 0.05 or 0.10.

3.8 Conclusion/Discussion

Chao’s lower bound, Turing and maximum likelihood estimator are some of the most
popular estimators used to estimate the elusive target population size in capture-recapture.
Turing and maximum likelihood estimation are developed under the Poisson homogene-
ity assumption whereas Chao’s lower bound is developed allowing heterogeneity. In this
chapter, it is shown that these estimators can show a weak performance by producing an
overestimation bias when these estimators experience one-inflation, particularly a severe
overestimation for a Chao’s lower bound. To cope with this problem two new estimators
are proposed based upon modified forms of Turing and maximum likelihood estimation

under the one-truncated geometric model.

To evaluate the performance of the proposed estimators, comparisons are done among ex-
isting conventional estimators. The simulation study considers the population generated
from geometric distribution with 20% and 50% one-inflation. The size of population is
20, 50, 100, 500 and 1,000. The simulation results provides evidence that the proposed

estimators show a good performance of accuracy and perform best with the smallest
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mean square error for all conditions of study. If we compare only between the two newly
proposed estimators, modified Turing is better than modified MLE all of case studies. As
an application, we illustrate two case studies with one-inflation which were investigated
previously by the ratio plot. The first case study looks at the total number of scrapie
infected holdings in France, while the second is interested in the size of domestic violence
in the Netherlands. Both examples show that the proposed estimators can cope with the
problem of one-inflation by providing smaller estimates than conventional estimators.
Nevertheless, only smaller estimates cannot confirm that the proposed estimators can
be viable in real situations. Hence it requires considering statistical model fitting. Here
the goodness of fit statistic is used for checking. It is found that the fitted values on
the basis of the proposed estimators can suit the data with one-inflation well and better

than conventional estimators in both of case studies.

To sum up, the proposed estimators under a one-truncated geometric distribution show
a good performance in both, simulation and applications. However, in this chapter we
applied the proposed estimators with only two case studies. It may not be appropriate
and good enough for other applications. Therefore, it cannot guarantee that the pro-
posed estimators will be practicable with one-inflation data in all real life situations.
Moreover, the proposed estimators are not developed by a model approach, it is just
based on modification by truncating counts of one and then applying the conventional
Turing and MLE approach to the one-truncated data. It does not involve a model mech-
anism that describes how extra ones are generated. This point will be the project for
Chapter 4 where we focus on developing a model that describes the mechanism for extra
one generation. Furthermore, the proposed estimators in this chapter will be included
in simulation experiment in Chapter 4 and we will see whether there are any benefits
of the model-based approach. The EM algorithm that will be used in Chapter 4 is also
more complex and more computational demanding so it would be beneficial if we could
also deal with simpler approach provided in this chapter. However, final conclusions can
only be reached after the results of Chapter 4 are available and we need to postpone

final assessments to the next chapter.



Chapter 4

Zero-Truncated One-Inflated

Geometric Distribution

This chapter focuses on developing a new model for capture-recapture estimation in
order to deal with a one-inflation. This model describes the statistical mechanism for
generating an extra of singletons. It is denoted as the zero-truncated one-inflated geo-
metric model (ZTOI). A new estimator of the population size is also developed by the
maximum likelihood approach based on the ZTOI geometric model (NMLEZTOI). The
nested EM algorithm is discussed for maximum likelihood estimation as no closed form
solutions are available. As an evaluation, performance of the new proposed estimator
(NMLEZTOI) is investigated and compared to the previously proposed estimators from
Chapter 3 (NT,OT and NMLEDT) in a simulation study. The applications are illustrated
in the last section and the likelihood ratio test is used to check the presence of one-
inflation in real data. Success of the proposed estimators is shown by simulation and

applications.

4.1 Introduction

Knowledge of population size is of key importance in many fields of researches such as
animal ecology, evolution, conservation biology, public health, epidemiology and crim-
inology. For natural elusive populations, it is rarely possible to count all individuals.
Therefore, capture-recapture estimation approach usually is used for estimating popula-
tion size. The performance of capture-recapture models depends on their assumptions;
these assumptions can be violated in many fields as it was mentioned previously. Crit-
ical assumptions are whether capture probability remains constant, changes with time
or as behavioural response to previous experience, or varies among individuals. These
might affect to the data being in one-inflation form. Furthermore, the reliability of sta-

tistical inference in capture-recapture studies depends on the quality of observed data.

o7
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This means that the correctness of the population size estimate depends on the initial
identification of the sampled individuals. If sample individuals are classified into wrong

classes, it can also cause the problem of one-inflation.

The variables of interest in a capture-recapture experiment are the frequency counts of
identified individuals (f;) and it was already defined in Chapter 2 that f1, f2, f3, ..., fm
represent the frequencies of different individuals identified exactly 1,2,3,...,m times
during the study period. Moreover, fy is the frequency of individuals that were not
identified or observed in the study. Therefore, the unknown population size (N) can be
calculated by N = fo+ fi1+ fa+...+ fm or we can say that N = fo+n wheren =>""" , f,.
In fact, estimating fy leads to an estimate of population size N. Let p, = P(X = z)
denote probability for identifying an individual exactly x times. Accordingly, pg is the
probability of identifying an individual 0 times. As a result, the unknown population
size can be defined as N = Npg + E(n), where we treat n as a random variable. It
can easily be solved for N and replacing F(n) by its moment estimator n leads to the

Horvitz-Thompson estimator
n

1—po

Generally, pg is unknown and depends on model parameter so modelling for count prob-

N =

(4.1)

ability p, becomes one of main concerns. Maximum likelihood approach is a popular
statistical method for estimating unknown parameters of a probability model. A param-
eter is a descriptor of the model. Likelihood is defined to be a quantity proportional to
the probability of observing the data given the model. Thus, we can calculate the prob-
ability the observations which have actually been observed as a function of the model if
we have a model (general, specific or modified model). Maximum likelihood provides a
consistent approach to parameter estimation problems. This means that maximum likeli-
hood estimates can be developed for capture-recapture estimation situations. Maximum
likelihood methods have desirable mathematical and optimality properties. Specifically,
they become minimum variance unbiased estimators as the sample size increases. These
good properties are interesting and inducing to use for developing estimator. To cope
with the problem of one-inflation, hence, the basic idea of this chapter is that a statisti-
cal model is built that describes the mechanism to generate the extra of count ones. A
new estimator is developed from the maximum likelihood approach by using the nested

EM algorithm based upon the zero-truncated one-inflated geometric distribution.

4.2 Zero-truncated one-inflated geometric model

A one-inflation model is a statistical model based on a probability distribution which
allows for frequent one observations. A one-inflation model employs two components
that correspond to two one-generating processes. The first process is governed by a

binary distribution that generates structural ones. The second process is generated by
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a probability density function of model f,(#) that generates counts, some of which may

be one. The two components of a one-inflation model for 8 are described as follows:

) wix(0) , i x#1
Pr=) ) +wfu(0) , if z=1

where w is an unknown weight parameter; 0 < w < 1. Assume that x1,zs,..., T,
are observed and drawn from a geometric distribution with mean (1 — 6)/6, where
fz(0) = (1 =0)*0; x = 0,1,2,.... Thus, a one-inflation geometric probability density

function is

[ w0y L if w1

pz_{(l—w)—i—w(l—&)m@, T (4.2)

The parameter 1 — w represents the proportion of extra-ones present in the population
which are not generated by the mechanism provided by f,(6) or a geometric distribution.
However, due to the fact that over the study period of the capture-recapture experiment
all observed units were identified at least once, we need to incorporate zero-truncation

of the one-inflation geometric distribution and results in:

1+ _ w(l—=0)"0/[1 — wb] , ifx#1

v { (1-w)+wl—-6)"0]/[1 —wb] , ifz=1. (43)

The observed, incomplete data log-likelihood for a zero-truncation-one-inflation geomet-

ric distribution is
m
Ia(w,0) = fologpy"
=1

_ f:bg { (1— w)1+_wu5; —0)0) } n ifx log {W}

- (1—w) +w(l—0)9)
fllOg{ T od

+ (8 — f1)log(1 — 6)

} + (n — f1) {logw + log 6 — log(1 — wh)}

where S =" xf,.

4.3 Zero-truncated one-inflated maximum likelihood esti-

mator via an EM algorithm

The EM algorithm is a popular method for maximum likelihood estimation. McLachlan
and Krishnan (1997) stated that a general purpose of the EM algorithm is to cope with
incomplete-data problem for maximum likelihood estimation. In addition, it composes
of two steps, the Expectation (E-step) and the Maximization (M-step). In the E-step, we

replace all missing data by their expected values that are calculated from the observed



60 Chapter 4 Zero-Truncated One-Inflated Geometric Distribution

data and the current estimates of likelihood parameters. In the M-step, we maximize the
likelihood function by using both the observed and imputed data. The EM algorithm
is an iterative method, so the procedure alternates between E-step and M-step until

estimates of the likelihood parameters converge.

Here, we wish to fit the zero-truncated one-inflated geometric distribution to the fre-
quency data in capture-recapture. The complete data log-likelihood is required. On
defining the complete data as f,,x = 0,1,2,...,m, this situation can be viewed as a
missing data problem since fp is unobserved. If fy is given, the maximum likelihood
estimators are available. The EM algorithm can be used by imputing a value for fy and
then maximize the non-zero-truncated distribution. Iterating through these two steps
gives us a maximum likelihood estimate for 6 and w. The likelihood for the one-inflated
distribution can be maximized by means of the EM algorithm. Embedding another EM
into the M-step of the outer EM algorithm gives us a nested EM.

4.3.1 EM algorithm for zero-truncated part (Outer part)

The first step is to specify an initial values by letting Wy = 1/2 and finding the initial
value for é(o) from E(X); X ~ Geo(0)

1-6 1
E(X)= 5 =--1
1 _ Z?:ovrfx 1= Z;n:()ﬂjf:c +n
9(0) n n
~ n

O S afetn 1+
Thus, the estimated probability X = 0 given the observed data is

. " 1
Po) = @%0) = 577

E-step: In order to estimate fy, the EM algorithm is used as an instrument to solve
this problem. By the E-step, the unobserved frequency fy is replaced by its expected
value given observed frequencies, (n = f1 + fa2 + ... + fm), and current estimates of

likelihood estimators. Let fo denotes the estimate of the expected value of fy which can
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be achieved as follows:

fo = E(fo|observed data; 0)
= E(folf1, f2, s fm 3 0)
= Npo
= (n+ fo)po
= npo + fopo

The expected frequency of zero counts is

p npo
fo= ,
1—po

where n = > """ | f is the number of observed units and N=n+ fo.

M-step: The associated complete data log-likelihood is
m

l(w,0) = frlogp,
=0

where p, is a one-inflated geometric probability density function, see (4.2). We need
to find & and 6 that maximize [(w, @) to complete the M-step. Unfortunately, M-step
cannot be solved in closed form. Therefore, we use another EM algorithm to solve the
M-step.

4.3.2 EM algorithm for one-inflated part (Inner part)

This can be accomplished by introducing a binary indicator variable z; defined as

{ 1 ,if the sample value one is from the extra-ones population
Z; =

0 ,otherwise.

This leads to the unobserved, complete likelihood function given as:

L(z;w,0) = J] (1 = w)*w(@ — )76 = J] [w(1 - 6)™6]. (4.4)

z;=1 i #1

The log-likelihood is

l(z;w,0) = Z [zilog(1 — w) + (1 — z;)logw + (1 — z;)zilog(1 — 0) + (1 — z;)logb)]
z;=1
+ Z [logw + z;log(1 — 0) + logh]
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which can be simplified to

N
l(z;w,0) = Z zi[log(1 — w) — logw] + Nlogw + Zmilog(l —60) + Nlogb
zi=1 i=1 (4.5)
— Z zilzilog(1 — 0) + logh)].
;=1

Nested E-step: The unobserved indicator z; is treated as missing data. In the E-step,
z; is replaced by its expected value e; conditional upon the observed data and current
values of w and 6. Moreover, e; can be determined as the posterior probability that
observation ¢ belongs to extra-ones and can be calculated by the following version of

Bayes’s theorem:

ei=FE(% | zjw,0) = P(zi = 1| 2 = Liw,0)

B Plxzi=1]|2%z=1w,0)P(z;=1]|w,0)
C[Pri=1]z=1)P(zi=1)+P(xi=1]z = 0)P(z; = 0)]

1—w

(1 —w) +wfi(0)]

where f1(0) is the geometric probability for a one, so

l1—w

(1—-w)+w(l—0)0]

ei=Pzi=1|z;=1w,0)= (4.6)

Now z; is replaced by its expected values e;.

Nested M-step: Let > ; = >, _;e;. To find MLEs of w and 6, the log-likelihood
with z; replaced by e; in (4.5) is maximized by taking a derivative with respect to w and

setting it equal to 0, X
ol N
o_ % % N,

ow  1-—w w w

N_% %

1—w w

Hence,

Then taking a derivative with respect to 6 and setting it equal to 0, we yield

ﬁ: Zij\ilxi_i_ﬁ_i_ > _&
00 1-46 0 1-—96 0

=0,
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or R
ﬁ_L:ZiNzlwi_ 21
0 0 1—-46 1-6’
or X
1—9:21']\;11’2‘_21
S
finally
N
1_1:Zi:1$i_21'
0 N-=>4
Hence, R
A N —
i 21 (4.8)

N+Zij\i1$i*221

In summary, we have
w=1—%(1-w)/[(1—-w)+w(l—-0)0] (4.9)

and
N — f1il—w)/[1—-w)+w(ld—0)0

N+3Y =211 = w)/[(1 —w) +w(l - 0)f]
The equation (4.9) and (4.10) have to be interpreted in the way that w represents the

0= (4.10)

current value and w is the solution from the M-step for the new iteration. Note also that

f1 is the frequency of ones. Also, N refers to the current value of fo leading to N = fo +n.

Convergence Criterion determines when iterations are stopped. For the outer EM,

iterations are ceased when

| fotky — fok—1) 1< €
For the inner EM, iterations are ceased when all parameter estimates meet the criteria

~

| gy —wu—ny I< e

and
|00y — Ou—1y I< €

Consequently, the population size estimator based upon zero-truncated one-inflated ge-

ometric model through the Horvitz-Thompson approach is

where pg = wb

Nzror = 1= 0

In summary, the algorithm used to compute the estimate of population size is given as

follows.

Step 0 : choose initial values for @) and 9(0), and set k =0, =0.
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Table 4.1: The complete frequency table

x 0 1 2 3 ... m
fo fo A fo 5 o fm

Here, we set w) =1 /2 and using the complete frequency data to calculate initial value
of 6, where é(o) =1/(1+2z); Z=7>"gxfs/n, hence pye) = 1/2(1 + ).

Step 1 : E-step
Set k =k + 1, compute fo(k) by using w(;_1) and é(k—l)

o = nPo(k—1)
Mk)_-l“ﬁMk—D

N(k) =n+ fo<k>

Step 2 : M-step

Using the complete frequency table fo(k), f1, fo, ..., fm computes the new maximum like-

lihood estimator w) and é(k). The unobserved, complete likelihood function is

L(ziw,0) = [ (1 —w) w1 —6)"6]' = J] [w(1 - 6)"6]

X;=1 X #1
and the log-likelihood function is

N
l(z;w,0) = Z zi[log(1 — w) — logw] + Nlogw + Z x;log(1 — 0) + Nlogh

z;=1 i=1

- Z zilzilog(1 — 0) + logb)]

zi=1

Finding updated w and 6 by maximizing this log-likelihood function

; Mm=n+ﬁw

Note that now we cannot calculate w) and é(k) because we do not know Zl(k), SO we

have to do another EM step for z;.

Step 2.1 : Nested E-step
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Set [ =1+ 1 and Z;;, are computed by using their expected values.

1 —wg-y)
(1 —@g—1)) +©a—1)(1 = Og—1))01—1)]

E(z | z;w,0) = e;q) =

Step 2.2 : Nested M-step

Updated w) and é(k) are obtained by

by =1 flAei(l)
Nik)
i N(k) — fiei

Ny + 2N 2~ 2fre

lead to Do) = ‘J:’(l)é(l)'

Checking 1) ‘ LZ)(Z) — d)(l—l) ‘ < €
| é(l) - é(l—l) | < €

2) | fo(k) - fo(kfl) | < ¢

Then, going back to step 1. These steps alternate continuously until @, 6 and fo converge

to a MLE with an acceptable error. Here ¢ is set equal to 1076.

4.4 Likelihood-ratio test (LRT)

The likelihood-ratio test is a test statistic used to compare the goodness of fit of two
models, one of which; the null model, is a special case of the other; the alternative model.
The test is based on the likelihood ratio, which expresses how many times more likely
the data are under one model than the other. The likelihood-ratio test can be presented

as a difference in the log-likelihood as follows:

Lo
LRT = —-2In| —
R n(LA>

= —2In(Lg) +2In(L4)
= —2lg+ 24
where [y and [4 denote the log-likelihood function under null and alternative hypothesis

respectively. Generally, the probability distribution of the test statistic is approximately
a chi-square distribution with degree of freedom equal to df 4 — dfy, where dfy and df 4



66 Chapter 4 Zero-Truncated One-Inflated Geometric Distribution

represent the number of free parameters under the null model and the alternative model

respectively. Now, the hypothesis that we consider here is

Hy : data are from ZT geometric distribution (w = 0)

A : data are from ZTOI geometric distribution (w > 0)

Hence, LRT is determined as:

LRT = —21(0,6) + 214(w, ) (4.11)

where 0 is the MLE under a zero-truncated (ZT) geometric model, whereas & and 6
are the MLEs under a zero-truncated one-inflated (ZTOI) geometric model. It can be
seen from the null hypothesis that the true parameter value w = 0 is on the boundary
of parameter space (0 < w < 1). Therefore, the asymptotic distribution of the test
statistic LRT in (4.11) is the mixture of the one point distribution with all its mass
equal to zero (x3) and the chi-square distribution with one degree of freedom (x3) with
equal weights, LRT %x% + %x%, while the upper percentiles of the null distribution
of LRT are approximately equal to the (1 — 2a)100 percentiles of x? (see more details
in Bohning et al. (1994) and Self and Liang (1987)). The log-likelihood of null and

alternative models are shown in next subsection.

4.4.1 A zero-truncated geometric model

The probability density function of a zero-truncated geometric distribution is
pe=(1-p)"'p; =123 .
and the likelihood function is

= H (pm)fz .
x;=1

Hence, the observed, incomplete data log-likelihood based on null model is determined

as:

0) = Z falog[(1 = p)™~'p]
(4.12)

—wax—l log(1—0 +folog9



Chapter 4 Zero-Truncated One-Inflated Geometric Distribution 67

4.4.2 A zero-truncated one-inflated geometric model

The probability density function of a zero-truncated one-inflated geometric distribution

is

1+ ) w@d=0)"0/[1 —wb] ifx#1
Tl [ —w) +w(d—60)%0 /1 —wl] ifz=1
and the likelihood function is
L(w,0) = H (pi:—‘_)fl :
x;=1

The observed, incomplete data log-likelihood based on alternative model is shown as:
Ia(w,0) = fologpy"
=1

) leog (e rut 00}, i o {2200

B (1—-w)+w(l-20)0)
fllOg{ 1—wb

+ (8 — f1)log(1 — 0)

} + (n — f1) {logw + log 6 — log(1 — wh)}

(4.13)

where S =" zf,.

4.5 The performance of the newly proposed estimator

The following examples are given to demonstrate finding the newly proposed maximum
likelihood estimator based on a zero-truncated one-inflated geometric model (MLE_ZTOI)
under 20% and 50% one-inflation. Then, this newly proposed estimator is compared with

the conventional estimators and the formerly proposed estimators from Chapter 3.

Example 4.1 The data in Table 4.2 are generated from the zero-truncated geometric

distribution with parameter p = 0.2 and N = 100 under 20% of one-inflation.

Table 4.2: The data with 20% one-inflation

fo fi fo fs fo fs fe fr fs fo fuu fizr n
(13) 32 14 7 7 9 5 3 3 1 3 3 87

We consider only zero-truncated counts and n = 87. The computation of MLE_ZTOI
starts with setting the initial values of w and 8. The complete frequency table fy, fi, ..., fim

is used to calculate the maximum likelihood estimators of d},é and fo as following;:
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Step 0 : Set W) = 1/2, 00 = 1/(1 +z) = 0.2112 ,where # = 3.7356. Hence,
Po(o) = @(0)00) = 0.5(0.2112) = 0.1056

First outer iteration (k =1)
Step 1 : E-step
Computing fo(l) and N(l) by using w(g) and é(o), hence

P nho)  87(0.1056)

- = =10.27
°W T T hoy 1 0.1056

Nay =n+ foay =87 +10.27 = 97.27

Step 2 : M-step
Using the new complete frequency table f0(1)7 f1, fo, ..., fm computes the new maximum
i Ny =31

(1) Noy+Xil i 2i=231 )
know the value of 21(1)? 21(1) =D _4,—1 Zi(1) S0 we need to do another EM-step.

Now we do not

likelihood estimator ;) = 1 — and 0;) =

First inner iteration (I =1)
Step 2.1 : Nested E-step
Computing z;(1) by using their expected values
1 — &) 1-0.5

ey = _ = 0.8572
W0 = G0) + @) (1= 00)fy] (1= 0.5) +0.5(1 —0.2112)(0.2112)]

Step 2.2 : Nested M-step
New update w(q) and é(l) are obtained by

. fiei 32(0.8572)
Oy =1-"—==1-""""T"=0.718
Ny 97.27
R Ny — —
i 1) — freiw) _ 97.27 — 32(0.8572) 01901

1) = Noy+ SN — 2fieqqy 9727+ 325 — 2(32)(0.8572)

Checking | (1) — @y(0) |=]0.718 = 0.5 [=0.218 > 107F
| 011y — 01() |=] 0.1901 — 0.2112 |= 0.0211 > 107°

Due to both estimates cannot meet the criteria so we need to go back to step 2.1 for the

second inner iteration.

Second inner iteration (I = 2)
Step 2.1 : Nested E-step
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Computing z;2) by using their expected values

e _ 1 - (:J]_(]_)
1(2) = " N = =
® (1 = @11)) + @10y (1 = 0101))01 (1)
- 1-0.718
~ [(1—=0.718) +0.718(1 — 0.1901)(0.1901)]

=0.7184

Step 2.2 : Nested M-step

New maximum likelihood estimates w9 and 9(2) are obtained by

fiei(2) 32(0.7184)
Ny =1-"—2 =1- = 0.7637
“1@ N 97.27
A Ngy — fiexo) 97.27 — 32(0.7184)
91(2) = = N = =0.1974
Noy+ 5N 2 —2f1e1)  97:27 4325 — 2(32)(0.7184)
Checking | @1(2) — @11y |[=] 0.7637 — 0.718 |[= 0.0458 > 107F
| 01(2) — 0101y |=] 0.1974 — 0.1901 |= 0.0073 > 1076
Go to step 2.1 for the third inner iteration (I = 3). Continue these inner steps until

& and 6 converge to a MLE. This example takes 20 inner iterations for the first outer
iteration. It provides @) = 0.80058 and ;) = 0.20307 so po1) = @(1)f) = 0.16257.

Then we move on the second outer iteration.

Second outer iteration (k = 2)
Step 1 : E-step
Computing f0(2) and N(g) by using w1y and é(l), hence

~ . nﬁo(l) o 87(0.16257)
021 Py 1-0.16257

= 16.8897
Nigy =+ fora) = 87 + 16.8807 = 103.8897

Checking | fo2) — foa1) |=| 16.8897 — 10.27001 |= 6.61969 > 107% go to step 2.

Step 2 : M-step

Using the new complete frequency table f0(2), f1, fo, ..., fm computes the new maximum

_ _ Ne-%ie
N(2)+Z§V:1 z;—2 21(2) '

EM-step calculates 319y D 21(2) = 2,21 Zi(2)-

likelihood estimator wpy = 1 — == Using another

First inner iteration [ =1 for k£ =2
Step 2.1 : Nested E-step
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Let wy(g) = w(1) and éQ(O) = é(l). Computing z;2) by using their expected values

e21) = a0
201) = - - —
[(1 = Qa0y) + Wa(0) (1 = ba(0))b2(0)]
- 1 — 0.80058
~ (1= 0.80058) + 0.80058(1 — 0.20307)(0.20307)]

= 0.60618

Step 2.2 : Nested M-step

New maximum likelihood estimates wy () and éQ(l) are obtained by

fieaq)y - 32(0.60618)

= = 0.81329
Ny 103.8897

Wy =1—

Ny — frean) 103.8897 — 32(0.60618)

Oa1) = — = = 0.21659
20 Ny + N 2 — 2fresny | 103.8897 + 325 — 2(32)(0.60618)

Checking | @y1) — Wa(o) |=| 0.81329 — 0.80058 |=0.01271 > 107

| By1) — Oa(0y |=] 0.21659 — 0.20307 |= 0.01352 > 107°

Go to step 2.1 for I = 2, These inner steps are repeated until @ and 0 converge to a
constant. Finally, we get @) = 0.83525 and f2) = 0.21987 50 py(2) = W(2)0(2) = 0.18365.
Then going on step 1 for iteration 3, we calculate fy3) by using wa), f(2) and checking
its convergence. Both outer and inner steps are repeated until d},é and fo converge to a
constant or the difference between present and previous values are less than 1075, The
all iterations of EM-algorithm for maximum likelihood estimation of this example are
shown in Table 4.3.

Finally, the estimates of unobserved frequency (fo) and population size (N) from max-
imum likelihood estimation based on a zero-truncated one-inflated geometric model
(MLE_ZTOI) are equal to 21.50 and 108.50 respectively. To compare this newly sug-
gested estimator with existing estimators, Table 4.4 provides the population size esti-
mated by the conventional estimators and the proposed estimators based on OT and
ZTOI model, respectively. It can be seen clearly that the newly suggested estimator
(N MLE.zToI) yields value closest to the parameter of interest N = 100. Although the
Turing_ OT and MLE_OT produce the overestimation more than MLE_ZTOI, their esti-
mates are not much different. Therefore, we can say that the newly proposed estimator
can show the best performance and all proposed estimators can effectively cope with

one-inflation problem.
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Table 4.3: The maximum likelihood estimation for Example 4.1

k Jok) Ny ! k(1) Wi (1) O Po(k)

- - 0.5 0.21116 0.10558
1 0.857211 0.717994  0.1900861

2 0.718407  0.763658  0.1974025

3 0.661408 0.782409 0.2003079

1 10.27001 97.27001

19  0.6061827 0.8005773 0.2030701

20 0.6061808 0.8005780 0.2030702  0.16257
2 16.88972 103.88972 21  0.6061797 0.8132852 0.2165937

22 0.5750135 0.8228849 0.2180355

40 0.5348744 0.8352486 0.2198709 0.1836468
3 19.57152 106.57152 41  0.5348731 0.8393948 0.2251363

30 21.49810 108.49810 175 0.4834359 0.8574173 0.2310924 0.1981427

Table 4.4: Estimates for the data in Example 4.1 with true N = 100

Estimator Estimated population size

Chao 160.14
Turing 126.78
MLE 118.8

Turing OT 114.85
MLE_OT 113.15
MLE_ZTOI 108.50

Example 4.2 We also apply the newly proposed estimator with 50% one-inflation sit-
uation. Table 4.5 shows the data that are generated from the zero-truncated geometric

distribution with parameter p = 0.2 and N = 100 under 50% one-inflation.

Table 4.5: The data with 50% one-inflation

fo fi fo fs fa fs fo fr o fs fio fiz fis fir n
(11) 67 5 3 2 4 1 1 1 2 1 1 1 89

The newly proposed estimator for this example can be calculated in same way with the
Example 4.1. It can be seen that the procedure of EM algorithm is repeated 24 rounds
for outer part and 104 rounds for inner part until reaching the constant of estimators
and it produces fg = 6.88 and N MmLE.zTol = 95.88. The details and outcomes are
shown in Table 4.6.

As can be seen in Table 4.7, there is only one estimator, MLE_ZTOI, which provides

an underestimation (N MLE.zTol = 95.88) and closest to the parameter N = 100
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Table 4.6: The maximum likelihood estimation for Example 4.2

k Fow) N ! €k (l) Wi (1) Or) Po(k)
0 - - - - 0.5 0.3090278 0.1545139
1

16.26489  105.2649 1 0.8240425 0.4755056 0.2582192
2 0.8520416 0.4576844 0.2534471

13 0.8679196 0.4475783 0.2506563 0.1121883
2 11.246484 100.24648 14 0.8679199 0.4199235 0.2301009
15 0.8863331 0.4076169 0.2264110

34 0.9080619 0.3780488 0.2111513 0.09017878
3 8.821416  97.82142 35 0.9080621 0.3709712 0.2061625

24 6.875001  95.87500 104 0.9179104 0.3585398 0.2000000 0.07170796

whereas Turing_OT and MLE_OT produce the overestimation, NTngfoT = 113.12
and N mLe.or = 111.25, but they do not give the severe overestimation as much as the
conventional estimators. It can be shown that the all proposed estimators can improve

the overestimation associated with conventional estimators.

Table 4.7: Estimates for the data in Example 4.2

Estimator Estimated population size

Chao 986.8
Turing 212.03
MLE 161.01
Turing OT 113.12
MLE_OT 111.25
MLE_ZTOI 95.88

It is clear that the newly suggested estimator (MLE_ZTOI) can perform effectively under
one-inflation and better than the previously proposed estimators from Chapter 3 (T_OT
and MLE_OT). However, these are only examples from two data sets, it is necessary to
do a further investigation in terms of bias, variance and mean square error by simulation

studies and it is shown in next section.

4.6 Simulation study

The simulation study was undertaken to investigate the performance of three pro-
posed estimators: the Turing estimator (NT,OT), the maximum likelihood estimator

(NMLEDT) based on the one-truncated geometric model, and the maximum likelihood
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estimator based on zero-truncated one-inflated geometric model (NMLEZTOI). In addi-
tion, three conventional estimators namely Chao’s lower bound, the conventional Turing
and maximum likelihood estimator are included to create a comprehensive comparison
of all estimators affected by the one-inflation problem. The heterogeneous populations
were generated from a geometric distribution (arising from the mixture of a Poisson dis-
tribution with an exponential distribution) with parameter § = 0.1,0.2,0.3,0.4,0.5,0.6
and population sizes N = 20, 50, 100, 500, 1000 for two levels of one-inflation (20% and
50%). Each case is repeated 1,000 times. To evaluate the performance of estimation,

the following criteria are used:

1) Relative bias (RBias(N) = E(NJ\);N)

2) Relative variance (RVar(N) = E(N_NiEQ(N)F)

2) Relative mean square error (RMSE(N) = E(NT_QN)Z)

The results of simulation study are presented in Table 4.8 - 4.11 and Figure 4.1 - 4.2.
Due to the fact that the results of two one-inflation levels are similar, both parts are sum-
marized together. To explore preliminary the behaviour of estimators, we consider the
mean of estimates of population size. According to the results provided in Table 4.8, all
of the conventional estimators (Chao, Turing and MLE) show clearly an overestimation
of population size for all conditions of the study, particularly, it is severe in Chao’s lower
bound estimator. Conventional Turing and MLE estimators are less affected by one-
inflation than Chao’s lower bound. All proposed estimators yield satisfying outcomes
which are close to the true value of population size N with a slight tendency of overes-
timating except Nt or which gives slight underestimates for the small population sizes
(N = 20,50,100) in the case of 20% one-inflation. In addition, Numrg zror vields the
best estimation results for almost all studied conditions. Correspondingly, NMLEZTOI
produces the smallest RBias in all studied cases as Table 4.9 and Figure 4.1 - 4.2 left
panel show. We can rank the performance of proposed estimators in terms of accuracy
as NMLEZTOI, NT,OT and NMLEDT. This could indicate that the NMLEZTOI can cope
with the one-inflation situation better than NT,OT and NMLEDT in both, low and high
level, one-inflation scenarios. According to RVar (see Table 4.10), the ]\AfooT tends to
provide the minimum RVar in the case of small population size (N = 20, 50, 100) whereas
NMLE.zTOI yields the minimum RVar for the large size of population (N = 500, 1000).
However, all proposed estimators give relatively small RVar in all conditions if compared
with the conventional estimators as shown in Figure 4.1 - 4.2 middle panel. Similar to
the results of RVar, the Ny o1 seems to provide the smallest RMSE for the small popu-
lation size whereas NMLEZTOI gives the smallest RMSE for the large size of population
as Table 4.11 and Figure 4.1 - 4.2 right panel show. However, overall the efficiency of
Nt or seems to be reduced if the level of one-inflation is increasing which is opposite
to NMLEZTOI. Furthermore, it can be noticed that with increase of the population size,
there is a decline in the RBias, RVar and RMSE for all proposed estimators. On the
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other hand, with increasing geometric parameter 6 there is an increase in the RBias,
RVar and RMSE for all proposed estimators.

Note ”-” in Table 4.8 - 4.11 is defined as no results from simulation study.

Table 4.8: Monte Carlo means of the population size estimates (Mean(N))
under 20% and 50% one-inflation

Extra-ones N P Chao Turing MLE T.OT MLE.OT MLE_ZTOI

20% 20 0.1 42.89 22.96 21.26 19.61 20.63 20.18
0.2 46.31 25.27 23.24 18.90 21.74 20.66

0.3 47.28 27.78 25.73 17.89 - 21.63

50 0.1 127.70 57.04 52.73 49.23 51.25 50.14
0.2 112.46 61.63 56.61 48.98 53.22 50.75

0.3 11343 67.04 61.52 47.45 55.54 51.33

04 12231 75.12 69.20 45.54 59.93 53.31

100 0.1 231.04 113.93 105.26 99.30 102.37 100.15
0.2 205.59 122.04 111.86 98.73 105.22 100.29

0.3  210.15 132.64 121.53 97.50 109.82 101.52

0.4 216.72 146.61 135.11 95.24 117.00 104.62

0.5 242.10 168.66 156.12 91.22 128.72 109.93

0.6  300.93 206.86 192.18 83.27 - 118.53

500 0.1 1053.44  569.26 525.72 506.84 511.55 500.49
0.2 963.08 609.47 558.00 515.16 525.04 500.07

0.3 971.41 659.11 602.42 518.37 543.61 500.71

0.4 1020.69  724.57 663.84 532.26 569.39 503.55

0.5 1119.12  818.73 753.22 539.65 605.51 508.49

0.6 1303.91 981.44 907.65 545.36 666.00 521.65

1000 0.1 2092.53 1138.30 1050.46 1017.62 1021.92 999.64
0.2 1907.28 1218.46 1115.75 1038.31 1050.11 1000.22
0.3 1933.49 1316.74 1203.44 1057.25 1086.36 1000.56
0.4 2027.43 1445.50 1323.87 1094.42 1135.09 1002.55
0.5 222443 1642.99 1510.24 1132.57 1208.15 1008.72
0.6 2565.39 1953.83 1807.09 1180.50 1319.75 1024.08

50% 20 0.1 120.34 29.79 24.56 20.17 21.50 20.21
0.2 123.95 38.38 31.39 20.07 - 21.13

50 0.1 494.75 72.15 59.53 50.68 53.09 50.19
0.2 403.30 89.65 72.78 51.48 57.27 50.65

0.3 399.49 113.63 92.37 50.56 62.89 51.62

0.4  420.22 152.91 127.72 50.70 69.75 57.09

100 0.1 1038.28  143.13 118.28 102.20 105.94 100.21
0.2 742.85 176.13 142.85 104.76 113.43 100.62
0.3 684.94 219.17 178.15 106.47 123.40 101.50
04 742,94 282.58 233.44 109.48 138.51 103.77

0.5 898.43 387.43 327.56  108.30 - 113.77
500 0.1 4371.18 710.60 587.27 521.62 527.90 499.98
0.2 3182.76  872.46 706.55 547.70 563.69 500.56
0.3 2999.10 1074.84 872.24 578.09 609.01 501.27
0.4 3141.97 1361.50 1120.47 616.55 672.10 504.07
0.5 3610.54 1812.17 1521.01  648.45 761.10 507.99
0.6 452217 2613.77 2257.55  681.05 919.27 529.34

1000 0.1 8471.62 1419.90 1173.77 1047.30 1055.66 999.92
0.2 6278.96 1744.01 1412.57 1107.76 1127.99 1001.85
0.3 587290 2138.95 1736.09 1167.56 1215.55 1001.32
0.4 6253.75 2719.71 2235.84 1246.69 1339.53 1004.02
0.5 7120.06 3618.72 3034.65 1383.39 1514.05 1008.41
0.6 8869.88 5175.92 4463.78 1438.39 1803.81 1031.95
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Table 4.9: Relative bias of six population size estimators under 20% and 50%
one-inflation

Extra-ones N D Chao  Turing MLE TOT MLE_.OT MLE_ZTOI

20% 20 0.1 1.1447 0.1481 0.0629 -0.0197 0.0315 0.0090
0.2 13154 0.2636 0.1619  -0.0550 0.0870 0.0329

0.3 1.3641 0.3889 0.2867 -0.1053 - 0.0814

50 0.1 1.5541 0.1407 0.0546 -0.0154 0.0250 0.0027
0.2 1.2492 0.2326 0.1322 -0.0204 0.0643 0.0150

0.3 1.2687 0.3409 0.2304 -0.0510 0.1108 0.0267

0.4 1.4463 0.5024 0.3841 -0.0893 0.1985 0.0662

100 0.1 1.3104 0.1393 0.0526  -0.0070 0.0237 0.0015
0.2 1.0559 0.2204 0.1186 -0.0127 0.0522 0.0029

0.3 1.1015 0.3264 0.2153  -0.0250 0.0982 0.0152

0.4 1.1672 0.4661 0.3511 -0.0476 0.1700 0.0462

0.5 14210 0.6866 0.5612 -0.0878 0.2872 0.0993

0.6 2.0093 1.0686 0.9218 -0.1673 - 0.1853

500 0.1 1.1069 0.1385 0.0514  0.0137 0.0231 0.0010
0.2 09262 0.2189 0.1160 0.0303 0.0501 0.0001

0.3 0.9428 0.3182 0.2048 0.0367 0.0872 0.0014

0.4 1.0414 0.4491 0.3277  0.0645 0.1388 0.0071

0.5 1.2382 0.6375 0.5064  0.0793 0.2110 0.0170

0.6 1.6078 0.9629 0.8153 0.0907 0.3320 0.0433

1000 0.1 1.0925 0.1383  0.0505 0.0176 0.0219 -0.0004
0.2 09073 0.218 0.1157  0.0383 0.0501 0.0002

0.3 0.9335 0.3167 0.2034  0.0572 0.0864 0.0006

0.4 1.0274 0.4455 0.3239 0.0944 0.1351 0.0025

0.5 1.2244 0.6430 0.5102 0.1326 0.2081 0.0087

0.6 1.5654 0.9538 0.8071 0.1805 0.3198 0.0241

50% 20 0.1 5.0169 0.4895 0.2281 0.0083 0.0748 0.0104
0.2 5.1975 0.918 0.5693 0.0033 - 0.0565

50 0.1 8.8950 0.4430 0.1905 0.0137 0.0619 0.0039
0.2 7.0660 0.7930 0.4555 0.0296 0.1454 0.0130

0.3 6.9899 1.2726 0.8474 0.0112 0.2578 0.0325

0.4 7.4045 2.0582 1.5544 0.0140 0.4043 0.1419

100 0.1 9.3828 0.4313 0.1828 0.0220 0.0594 0.0021
0.2 6.4285 0.7613 0.4285 0.0476 0.1343 0.0062

0.3 5.8494 1.1917 0.7815 0.0647 0.2340 0.0150

0.4 6.4294 1.8258 1.3344  0.0948 0.3851 0.0377

0.5 7.9843 2.8743 2.2756 0.0830 - 0.1377

500 0.1 7.7424 04212 0.1745 0.0432 0.0558 0.0000
0.2 5.3655 0.7449 0.4131 0.0954 0.1274 0.0011

0.3 49982 1.1497 0.7445 0.1562 0.2180 0.0025

0.4 5.2839 1.7230 1.2409 0.2331 0.3442 0.0081

0.5 6.2211 2.6243 2.0420 0.2969 0.5222 0.0160

0.6 8.0443 4.2275 3.5151 0.3621 0.8385 0.0587

1000 0.1 7.4716 0.4199 0.1738 0.0473 0.0557 -0.0001
0.2 5.2790 0.7440 0.4126 0.1078 0.1280 0.0019

0.3 4.8729 1.1390 0.7361 0.1676 0.2156 0.0013

0.4 5.2537 1.7197 1.2358 0.2467 0.3395 0.0040

0.5 6.1201 2.6187 2.0346 0.3834 0.5141 0.0084

0.6 7.8699 4.1759 3.4638  0.4384 0.8038 0.0320
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Table 4.10: Relative variance of six population size estimators under 20% and
50% one-inflation

Extra-ones N D Chao Turing MLE T-OT MLE.OT MLE.ZTOI

20% 20 0.1 1.2344 0.0126 0.0070 0.0043 0.0056 0.0052
0.2 1.6830 0.0476 0.0334 0.0108 0.0263 0.0235

0.3 21594 0.1152 0.0920 0.0160 - 0.0739

50 0.1 19136  0.0050 0.0030 0.0024 0.0025 0.0024
0.2 1.6089  0.0144 0.0092 0.0057 0.0069 0.0067

0.3 1.5709 0.0401 0.0280 0.0101 0.0219 0.0203

0.4 21363 0.0968 0.0709 0.0154 0.0570 0.0521

100 0.1 0.8588  0.0023 0.0013  0.0012 0.0011 0.0010
0.2 04538 0.0068 0.0045 0.0032 0.0036 0.0034

0.3 09350 0.0171 0.0119 0.0060 0.0086 0.0086

0.4 05790 0.0391 0.0292 0.0097 0.0225 0.0248

0.5 0.8630 0.1092 0.0885 0.0163 0.0966 0.0865

0.6 27078  0.2989 0.2624 0.0197 - 0.2931

500 0.1  0.0967  0.0004 0.0003  0.0003 0.0002 0.0002
0.2 0.0513 0.0013 0.0008  0.0007 0.0006 0.0006

0.3 0.0552  0.0031 0.0021 0.0016 0.0015 0.0015

0.4 0.0760  0.0078 0.0055 0.0035 0.0037 0.0040

0.5 0.1078 0.0153 0.0124 0.0078 0.0103 0.0116

0.6 0.2153  0.0490 0.0424 0.0141 0.0364 0.0420

1000 0.1  0.0409  0.0002 0.0001  0.0001 0.0001 0.0001
0.2 0.0252  0.0007 0.0004 0.0004 0.0003 0.0003

0.3 0.0261 0.0014 0.0010  0.0009 0.0007 0.0008

0.4 0.0352 0.0037 0.0027  0.0018 0.0018 0.0018

0.5 0.0589 0.0092 0.0072 0.0048 0.0048 0.0050

0.6 0.1025 0.0215 0.0183 0.0102 0.0161 0.0179

50% 20 0.1 74757 0.0797 0.0352 0.0033 0.0074 0.0040
0.2 10.1349 0.4444 0.2996 0.0073 - 0.0835

50 0.1 30.5648 0.0179 0.0067  0.0015 0.0018 0.0013
0.2 27.9088 0.0749 0.0399 0.0045 0.0092 0.0047

0.3 31.9849 0.2735 0.1637 0.0077 0.0366 0.0202

0.4 35.7446 1.5514 1.0792 0.0140 0.2580 0.2362

100 0.1 45.7641 0.0077 0.0028  0.0009 0.0009 0.0006
0.2 19.6035 0.0332 0.0168 0.0029 0.0038 0.0020

0.3 13.2992 0.1108 0.0627 0.0056 0.0119 0.0058

0.4 20.1043 0.3522 0.2379 0.0115 0.0443 0.0182

0.5 39.7080 1.3324 1.0135 0.0183 - 0.2355

500 0.1 4.5381 0.0015 0.0005  0.0003 0.0002 0.0001
0.2 14321 0.0058 0.0028 0.0010 0.0007 0.0004

0.3 1.1298 0.0192 0.0111  0.0023 0.0022 0.0010

0.4 1.3901 0.0519 0.0336 0.0051 0.0066 0.0027

0.5 2.0034 0.1663 0.1244 0.0106 0.0235 0.0078

0.6 4.3476  0.6947 0.5811 0.0231 0.1228 0.0424

1000 0.1  1.8840  0.0007 0.0003  0.0001 0.0001 0.0001
0.2 07029 0.0032 0.0015 0.0005 0.0003 0.0002

0.3 04896 0.0091 0.0053 0.0011 0.0010 0.0005

0.4 0.6253 0.0259 0.0175 0.0032 0.0034 0.0013

0.5 09114 0.0773 0.0572  0.0080 0.0102 0.0033

0.6 1.8886 0.3106 0.2568 0.0219 0.0486 0.0133
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Table 4.11: Relative mean square error of six population size estimators under
20% and 50% one-inflation

Extra-ones N D Chao Turing MLE T-OT MLE.OT MLE_ZTOI

20% 20 0.1 2.5436 0.0345 0.0109  0.0047 0.0066 0.0053
0.2 3.4116 0.1170 0.0595 0.0138 0.0338 0.0246

0.3 4.0180 0.2663 0.1741  0.0271 - 0.0805

50 0.1 4.3268 0.0248 0.0059 0.0026 0.0031 0.0024
0.2 3.1679 0.0684 0.0267  0.0061 0.0111 0.0069

0.3 3.1788 0.1563 0.0811  0.0127 0.0341 0.0210

0.4 4.2258 0.3490 0.2184 0.0234 0.0963 0.0564

100 0.1 2.5751 0.0217 0.0041 0.0013 0.0017 0.0010
0.2 1.5682 0.0554 0.0186  0.0033 0.0063 0.0035

0.3 2.1474 0.1236 0.0582  0.0067 0.0182 0.0089

0.4 1.9408 0.2563 0.1525 0.0120 0.0514 0.0269

0.5 2.8814 0.5805 0.4034  0.0240 0.1790 0.0963

0.6 6.7422 1.4406 1.1118  0.0477 - 0.3272

500 0.1 1.3217 0.0196 0.0029 0.0005 0.0007 0.0002
0.2 0.9090 0.0492 0.0143 0.0017 0.0031 0.0006

0.3 0.9440 0.1043 0.0440 0.0029 0.0091 0.0015

0.4 1.1604 0.2095 0.1129 0.0077 0.0230 0.0040

0.5 1.6409 0.4216 0.2689 0.0140 0.0548 0.0119

0.6 2.8002 0.9761 0.7071  0.0223 0.1466 0.0439

1000 0.1 1.2345 0.0193 0.0027  0.0005 0.0006 0.0001
0.2 0.8483 0.0484 0.0138 0.0019 0.0028 0.0003

0.3 0.8975 0.1017 0.0424 0.0041 0.0082 0.0008

0.4 1.0908 0.2022 0.1076 0.0107 0.0200 0.0018

0.5 1.5580 0.4227 0.2675 0.0224 0.0481 0.0050

0.6 2.5529 0.9312 0.6697  0.0428 0.1184 0.0184

50% 20 0.1  32.6378 0.3192 0.0872  0.0034 0.0130 0.0041
0.2 371391 1.2882 0.6234  0.0073 - 0.0866

50 0.1 109.6550 0.2141 0.0430 0.0017 0.0057 0.0013
0.2 77.8097 0.7036 0.2473 0.0053 0.0303 0.0049

0.3  80.8113 1.8928 0.8817  0.0079 0.1030 0.0212

0.4  90.5354 5.7861 3.4944  0.0142 0.2645 0.2561

100 0.1 133.7561  0.1937 0.0362 0.0014 0.0044 0.0006
0.2 60.9101 0.6128 0.2004 0.0051 0.0219 0.0021

0.3  47.5016 1.5308 0.6734 0.0098 0.0667 0.0060

0.4 61.4216 3.6855 2.0182 0.0205 0.1925 0.0196

0.5 103.4174  9.5929 6.1908  0.0251 - 0.2542

500 0.1  64.4777 0.1789 0.0310 0.0021 0.0033 0.0001
0.2 30.2195 0.5607 0.1734 0.0101 0.0169 0.0004

0.3  26.1107 1.3410 0.5654 0.0267 0.0497 0.0010

0.4  29.3088 3.0206 1.5735 0.0594 0.1250 0.0027

0.5 40.7032 7.0533 4.2942 0.0987 0.2961 0.0081

0.6 69.0547 18.5662 12.9364 0.1542 0.8258 0.0458

1000 0.1  57.7072 0.1770 0.0305 0.0024 0.0032 0.0001
0.2 28.5697 0.5567 0.1717  0.0121 0.0167 0.0002

0.3 24.2343 1.3063 0.5471 0.0292 0.0475 0.0005

0.4  28.2265 2.9833 1.5448 0.0641 0.1187 0.0013

0.5 38.3656 6.9350 4.1970 0.1550 0.2744 0.0033

0.6 63.8217 17.7486 12.2543  0.2140 0.6947 0.0144
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Figure 4.1: RBias, RVar and RMSE of sixz estimators for counts drawn from
geometric(0) with 20% one-inflation
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Figure 4.2: RBias, RVar and RMSE of sixz estimators for counts drawn from
geometric(0) with 50% one-inflation
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4.7 Real-data examples

In this section, the two data sets of Section 3.7 and a new case study are used to
examined the newly proposed estimator in actual data of one-inflation and comparing

the estimate with other methods.

Example 4.3 Referring to the first case study in Chapter 3, we wish to estimate the
total number of scrapie-infected holdings in France. The details of observed counts are

presented again in Table 4.12.

Table 4.12: The data of French scrapie-infected holdings

z 1 2 3 4
f, 121 13 5 2

The ratio plot in Figure 3.2 left panel shows that this data may experience one-inflation

form. Now, we can check this suspicion again by using the likelihood ratio test as follows:

Hy : data are from zero-truncated geometric distribution

H 4 : data are from zero truncation one inflation geometric distribution
Set e = 0.05 and use the test statistic

LRT = —21y(0,0) 4 214(%, 0)
= —2(77.6590) + 2(75.5607)
= 4.1966.

with a critical value of X.290,1 = 2.706. We come to the decision to reject Hy since
LRT > 2.706 and %(0.02025) < @(0.05). We conclude that this data set are from

zero-truncated one-inflated geometric distribution at 0.05 significance level.

From the evidence provided by ratio plot and likelihood ratio test, the presence of one-
inflation can be conjectured. Therefore, all proposed estimators should be appropriate
for this data set, particularly the newly developed estimator. The results of estimat-
ing the total number of scrapie-infected holdings and the goodness of fit statistics from
all estimators are shown in Table 4.13. As we expect, the newly suggested estimator
NMLEZTOI can definitely reduce the overestimation assorted with conventional estima-
tors by producing a distinctly smaller estimate. It clearly reveals that the MLE_ZTOI
provides the smallest estimate while the estimate of T_OT is in between the estimate of
MLE_ZTOI and MLE_OT but slightly more close to the proposed MLE_OT estimator.
Moreover, the goodness of fit statistics and the graph in Figure 4.3 show that the esti-
mated values from MLE_ZTOI, shown by the orange line on the graph, can fit the data

very well and as good as the T_OT estimator.
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Table 4.13: Results for scrapie-infected holdings in France

Estimator fg N Chi-square  p-value

Chao! 1126 1267 27.195 0.00000
Turing 761 902 8.487 0.01436
MLE 686 827 6.781 0.03369
T_OT 286 427 0.283 0.59474

MLE_OT 313 454 0.507 0.47644
MLE_ZTOI 120 261 0.316 0.57402

Scrapie infection data

-4 - Turing
MLE

® % T_OT

—- MLE_OT

MLE_ZTO||

Standardized Residual

Figure 4.3: Residual plot with all estimators for scrapie infection data

Example 4.4 According to the case study of domestic violence in the Netherlands
which was previously discussed in Chapter 3, Section 3.7, the frequency of domestic
violence offenders can be seen in Table 3.12. The ratio plot is shown in Figure 3.3 left
panel and it shows unclear one-inflation so here we investigate again by the likelihood
ratio test and the result of testing shows the presence of one inflation; LRT = 98.9135
and p — value < 0.001. It can be assumed that the newly proposed estimator is viable
and suitable with this data set. The results of estimation from the classical and newly
proposed estimators are shown in Table 4.14. The pattern of results for all proposed
estimators is different from the example 1, Nt or > NuLgor > NMLEZTOI. It is
clearly seen that the estimate of MLE_ZTOI is smallest and obviously different from the
estimate of T_OT and MLE_OT.

'For GOF-test, po = % and p = po for geometric model
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Table 4.14: Results for domestic violence study

Estimator fg N Chi-square  p-value
Chao! 117,577 135,223 317.537 0.00000
Turing 103,233 120,879 166.795 0.00000
MLE 98,788 116,434 144.797 0.00000
T.OT 65,5673 83,219 7.227 0.02696

MLE_ OT 64,754 82,400 6.649 0.03599
MLE_ZTOI 35,085 52,731 8.097 0.01745

Domestic violence data

—o— Chao

- T.0T

—— MLE_OT

MLE_ZTO||

Standardized Residual

Figure 4.4: Residual plot with all estimators for domestic violence data

In terms of statistical model fitting, Figure 4.4 shows the standardized residual plot for
this data set with all estimators. The fitted values of MLE_ZTOI are shown by the
orange line, whereas the purple and black lines are for T_OT and MLE_OT respectively.
It can be clearly seen from the graph and the p-value from the goodness of fit statistics
in Table 4.4 that the estimated values from newly proposed estimator can fit the data

well but it cannot clearly improve upon the fitting of the former proposed estimators.

Example 4.5 From the example of capture-recapture data in Section 2.6, the data of
illegal immigrants in the Netherlands from police records are shown again in Table 4.15
in order to estimate the population size by all proposed estimators comparing with the

classical estimators.

It can be noticed that the number of singletons is considerably higher than the number

of doubletons. This indicates that the data may experience one-inflation. Then, we
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Table 4.15: The data of illegal immigrants in the Netherlands

fi fo f3 fa fs fo n
1645 183 37 13 1 1 1880

lllegal immigrants data

© Poisson

4 Geometric|

ratio

Figure 4.5: Ratio plot for illegal immigrants data

look at the ratio plot as shown in Figure 4.5. We found that a geometric distribution
might be more suitable with this data than a Poisson distribution but we cannot see
the evidence of one-inflation. However, the likelihood ratio test indicates that this data
set undergoes one-inflation by LRT = 20.8471 and p — value = 4.97 x 107%. Hence,
all proposed estimators are applied to this data and the results of estimation from all

estimators are shown in Table 4.16.

Table 4.16: Results for illegal immigrants study

Estimator fo N Chi-square  p-value
Chao' 14,787 16,667 92.009 0.00000
Turing 12,327 14,270 43.811 0.00000
MLE 11,588 13,468 36.326 0.00000
T.OT 6,461 8,341 3.085 0.37870

MLE_OT 6,311 8,191 2.917 0.40460
MLE 7ZTOI 2,983 4,863 2.859 0.40779

As similar with previous examples, we consider the results in two parts; estimation and

model fitting. In terms of estimation, the estimates from conventional estimators are
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Illegal immigrants data

x- T_OT
- MLE_OT

< q MLE_ZTO||

Standardized Residual
2
I

Figure 4.6: Residual plot with all estimators for illegal immigrants data

about double in size in comparison to the proposed estimators due to the effect of one-
inflation as we expect. Interestingly, the estimates of T_OT and MLE_OT are similar;
NT,OT = 8,341 and NMLEQT = 8,191, whereas they are about double of MLE_ZTOI
Nuigzror = 4,863. The estimation of MLE_ZTOI seems to be the best in term of
model fitting with x? = 2.859 and p — value = 0.40779. This corresponds with the
graph in Figure 4.6. Nevertheless, it can be seen that the fitted values for count twos,
threes, fours and so on seem to be identical under the two models as shown in Table
4.17. The question arises why the estimate for count zeros are so different. The reason
is that the estimates of py from two models are different although the estimates of the

two models parameters are identical, pyo(0T) = 0 whereas Py (zto1) = @f.

Table 4.17: Fitted frequencies under the MLE_OT and MLE_ZTOI estimators
for illegal immigrants data

T fa MLE_OT MLE_ZTOI
1 1,645 1,647.02
2 183 181.07 176.39

3 37 41.55 42.84

4 13 9.54 10.41

) 1 2.19 2.53

6 1 0.50 0.61
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4.8 Discussion and conclusion

In capture-recapture studies, the reliability of the population size estimate depends on
the correctness of initial identification of sample individuals. Some applications un-
dergo the situation of identifying individuals to wrong classes or some may face a trap-
avoidance situation and these can cause the problem of one-inflation. To estimate the
size N of an elusive population under one-inflation, two concepts are suggested to deal
with. The first is based on a modification by truncating singletons and applying the
conventional Turing and MLE approach to the one-truncated geometric data (NT,OT
and NMLEDT). These are examined in Chapter 3. On the other hand, another concept,
the model-based approach, focuses on developing a statistical model that describes the
mechanism for extra one generation as shown in Chapter 4. In this chapter, a new es-
timator (NMLEJTOI) is developed from the maximum likelihood approach by using the
nested EM algorithm based upon the zero-truncated one-inflated geometric distribution.
Chapter 3 shows that NT,OT and NMLEDT can solve the problem of one-inflation and
Nt or performs better than Nuie.or. To evaluate the performance of the newly pro-
posed estimators NMLEZTOI, simulation studies are done again in order to compare the
performance of all newly suggested and also existing conventional estimators. The sim-
ulation results provides evidence that NMLEZTOI shows a good performance in accuracy
and perform best for all conditions under study. In addition, NMLEZTQI provides the
smallest variance and mean square error for the big size of population (N = 500, 1000)
whereas Ny o7 provides the smallest for the small population size (N = 20,50,100).
Overall it can be concluded that NMLE,ZTOI is better than NT,OT especially in case of

high level of one-inflation and the large size of population.

Furthermore, we applied the newly proposed estimator with the two data sets from
Chapter 3 and a new data set of illegal immigrants in the Netherlands. Also we com-
pare the estimate with other estimators. All examples show that the newly proposed
estimators can cope with the problem of one-inflation by providing smaller estimates
than conventional estimators and also smaller than the previous suggested estimators
except example 1. In term of statistical model fitting, it is found that the fitted values
of the newly developed estimator can fit the data with one-inflation well and better than

the conventional estimators in all of the cases studies particularly in the last example.

To sum up, it can be seen clearly that both concepts can solve the problem of one-
inflation and each concept has a different strength. The first concept is simpler whereas
the second concept uses a model-based approach to explain the extra-ones. Although
the latter approach is more complex and more computational demanding, it produces
the best estimates, especially for the large population size and high level of one-inflation.
However, in case of a small size of population, although the first approach seems to be

better than the second approach, the differences between the two are almost negligible.
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Hence, both approaches seem reasonable to use with a slight benefit to the first one as

it is the simpler concept.



Chapter 5

A Modified Chao Estimator for
Zero-Truncated One-Inflated

Count Distribution

As it is shown in Chapter 2, Chao’s lower bound estimator is widely used to estimate
population size in capture-recapture. One reason is that its formula is easy to calcu-
late. It involves only the frequency of counts one and two. Moreover, it is not only
asymptotically unbiased if the count distribution is a member of the power series family
such as Poisson, binomial, exponential and geometric distribution but also provides a
lower bound estimator if the count distribution is a mixture of the power series family.
Nevertheless, Chao’s lower bound estimator can severely overestimate if the count data
have an excess number of ones, called one-inflation. To avoid the overestimation caused
by one-inflation, Chao’s estimator is modified to involve the frequency of counts of twos
and threes instead of the frequency of counts of ones and twos. The modified Chao
estimator shows a good performance in simulation studies under the geometric model,
geometric model with one-inflation, mixture of geometric model, mixture of geometric
with one-inflation, and it is reasonable to use in applications. Furthermore, it retains its
good properties; asymptotically it is an unbiased estimator for a power series distribution
with and without one-inflation and provides a lower bound estimator under a mixture of
power series distributions with and without one-inflation. However, all Chao estimators
are biased estimators when the sample size is small, so the bias-reduction versions of all

Chao estimators have been developed that can reduce the bias considerably.

87
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5.1 Introduction

The estimation of the size N of a closed elusive population using capture-recapture
techniques is an important topic in many research areas. The problem consists in ex-
trapolating a value for the number of units that have been missed, using the information
gathered on the captured units at m occasions where m might be known or not. The
data set for analysis consists of the empirical frequencies fi, fo, ..., f;, where f, is the fre-
quency of distinct units identified exactly = times during the study period and m is the
largest count observed in the sample. The predicted value of fy depends on the model
for the capture of units based on a zero-truncated count distribution. The typical model
is the Poisson or the binomial. However, heterogeneity in the capture probabilities is a
common occurrence. It appears to be general agreement that a simple model p(x|A) is
not flexible enough to capture the variation in the recapture probability for the distinct
units of real-life population (see e.g. Pledger (2005) for the discrete mixture model and
Dorazio and Royle (2003) for the continuous mixture model). It can be seen that in fact
the mixture p, = [~ p(z|A)f(A)dX is a natural model for modelling a heterogeneous
population. Nevertheless, there has also been discussion on the problem of identifiabil-
ity of the mixture model (see Link (2003)). Several models for the individual capture
probabilities have been investigated by several researchers. Huggins (2001) and Link
(2003), for example, showed that the population size is not estimable in the presence
of heterogeneity. Even though m is large, two models fitting the data evenly well can
give entirely different estimates for N. In addition, boundary problems may occur in
the maximum likelihood approach for finite mixture models (Wang and Lindsay (2005)).
These emphasize the importance of Chao’s lower bound estimator; a lower bound es-
timate on the population size might be the best result achievable for a heterogeneous
population. Moreover, the lower bound approach has neither an identifiability problem,
nor is there need to specify a mixing distribution; it is completely nonparametric. For
these advantages the conventional estimators f7/(2f2) for the unobserved frequency fy
of zero-counts and n + f2/(2f2) of the population size N (Chao (1987)) are popular and
frequently used. It is asymptotically unbiased if count X follows a Poisson distribution
and represents a lower bound if X follows a mixture of Poisson distributions. The pur-
pose of this chapter is to present a modification of the Chao’s estimator in the case of
one-inflation as it can severely overestimate as shown in previous chapters. This effect
is in contrast to the expectation of users of the estimator as it is expected to provide a

lower bound that is relatively close to the true population size.

5.2 Power Series and Mixture of Power Series Distribution

The family of power series distribution is important due to the fact that it provides a very

elegant and perceptive formulation of several classical discrete distributions that are used
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in statistical research including the capture-recapture area. Most of the special, discrete
distributions are included such as Poisson, binomial, geometric, negative-binomial with
known shape parameter and others. The discrete random variable X is said to have a

power series distribution if
P (0) = b:0"/g(), (5.1)

where b, > 0 is a known, non-negative coefficient, 6 is a positive parameter and x
ranges over the set of non-negative integers. Here g(6) = > .2 ;b.0" is the normalizing
constant. The specific member of the power series is defined by the coefficient b,, for
example, the Poisson is defined by b, = 1/z! whereas b, = (ZZ) for x = 0,1, ...,m defines
the binomial with positive integer m (b, = 0 for z > m). The geometric is defined as
by, = 1. In case of the negative binomial, p, = %W (1 — )% is also a member
% for a known value of shape parameter

k>0 and 6 € (0,1) is the event parameter. For k& = 1 the negative binomial becomes

of the power series family with b, =

the geometric distribution, conversely, for £ — oo the negative binomial approaches the
Poisson distribution. However, a model which is a member of the power series distri-
bution cannot adequately describe the target population of interest with heterogeneity
especially when heterogeneity is unobserved. Hence, the mixture of power series distri-
bution is considered in the sense that the unobserved heterogeneity is described by a
latent variable T'. The joint probability density of the count random variable X and
the latent variable T is given by f(z,t) = f(z|t)f(t) and f(z|t) = f(z,t)/f(t) where
f(t) = [, f(xz,t)dz. The marginal density [, f(x|t)f(t)dt of the count z is considered
instead of the joint density because the information of latent variable is unknown. If
we define the conditional density f(x|t) by a power series density p,(#) and identify the
latent variable t by the parameter 6, the mixture model for the power series family is
obtained by

my = /9 pa(6)£(6)d6 (5.2)

where p;(0) is the mixture kernel and f(6) is the mixing distribution. The mixture
of power series distribution seems to be more flexible but it also involves a lack of
identifiability or the boundary problem in maximum likelihood estimation. Hence, the
lower bound estimation might be the better choice to avoid these problems. The original
concept of lower bound estimation is to apply nonparametric statistical inference based
upon the Cauchy-Schwarz inequality in the context of zero-truncated count mixture
modelling by keeping the mixture distribution unspecified. To give some ideas of the
lower bound approach by consider the Poisson mixture kernel exp(—A)A*/x!, the Cauchy-

Schwarz inequality can be written as

- e Mg(N\)dA 2 < h e q(N)d\ h e A2g(N)dA
/ J J

and it is equivalent to p% < po(2p2). Replacing the theoretical probabilities p; by their
sample estimates f;/N for i = 1,2, leads to Chao’s estimator for fy and N as f2/(2f2)
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and n + f2/(2f2), respectively. This idea is taken up again and developed further for

the one-inflated count distributions in Section 5.3.

5.2.1 The Monotonicity of the Mixed Power Series Probability Ratio

The power series in (5.1) has an interesting property. If we consider the ratios of neigh-
bouring probabilities for the power series multiplied by a known factor over the range of

x, they provide a constant value which is equal to the unknown parameter 6 as follows:

Pe_ ba07/g(0)
Pat1  bzy107T1/g(0)
bl
bz—i—l 0
and
Px—1 _ bxflex_l/g(e)
Do b.0%/g(0)
o bac—ll
by 0
SO

9 — by Pz+1 _ by—1 Dz
bz+1 Dz by Pr-1

=1, (5.3)

In capture-recapture studies, zero-counts are truncated. Let p}(0) = p(0)/[1 — po(6)]
and m; (0) = m,(6)/[1 — mo(0)] are the zero-truncated density for the power series and
the mixture of power series distributions, respectively. The ratio r, is also identical to

the zero-truncated power series distribution since

by p;:rJrl _ by pm—i—l/[l_pO(g)] o by Pr+1

T, = = — .
’ bri1 pir bri1 pm/[l - po(e)] brt1 D
. . . A bx fm+1 .
The ratio r, is estimated by 7, = 2 7 where f, is the frequency of observed
z+41 T

value of count x. Bohning et al. (2013a) developed the graph of x against 7, as a
diagnostic device for departure of a distribution and it is called the ratio plot (see also
Chapter 2, Section 2.7). The horizontal line is consistent with homogeneous power series
distributional observations whereas departures from a horizontal line provide evidence
for the occurrence of unobserved heterogeneity leading to a mixture of power series

distribution. Similarly, we can consider the ratio plot for mixtures

by Myt1

(5.4)

Ty = b ,
x+1 My

where the coefficients b, is associated with the mixture kernel p,(#). It can be seen that

the estimate of r, will not change but the observed pattern in the ratio plot will change
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and it will be interpreted in a different way due to the property of monotonicity in the
mixture of power series as follows (see Chao (1987) and more general detail in Béhning
(2008) and Béhning (2015)).

Theorem 1. Let m, = [,p.(0)f(8)dd where p,(f) is a member of the power series

b
family and f(€) is an arbitrary density. Then, for r, = 5 2 Matl wo have the following
z+1 My
monotonicity:
Ty < Tga
for all x =0,1,....

The result from Theorem 1 shows that the ratio plot will no longer show a horizontal
line pattern in the case of a mixture of power series distributions but it will display a
monotone non-decreasing pattern with an increase in x. Therefore, the ratio plot can
be taken as an indicator for presence of heterogeneity if a monotone increasing pattern

occurs in the ratio plot.

5.3 Modified Chao Estimation

From the ratio in (5.4) and a consequence of the result in Theorem 1, we obtain

by mg_1 — bm+1 My

For x = 1 we have that
bo ma < bl meo

bt mog = bomy
or

boba m

mo = (5.5)

? mo '
Replacing the theoretical quantities m, by their sample estimates f,/N leads to the
lower bound of Chao estimate for fy and N as (Chao (1987) and Chao (1989))

P boba S

boba f
fo= 2 — =
1 [

and chn+ ,
b} f2

(5.6)
respectively. It can be seen that the estimate in (5.6) provides a lower bound of the num-
ber of missing units in population and a lower bound of the population size if compares
with the interpretation in (5.5). This estimate is the most popular and frequently used,
particularly, when the assumption is based on a Poisson distribution, where b, = 1/x!
then fo = f?/2f2 and Ne =n+ f2/2f2. However, if we apply the monotonicity property
in Theorem 1 with all possible ratios of x, we get
bo ma bl meo bQ ms3 b3 my b4 ms

o oM 2T JaT AT
bimo — bami — bgma T bymz T bsmy
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As a consequence many other lower bounds for mg are possible:

mg > —5-— (For Chao estimation)
bl meo
bobs m1ma
m 2073
0= biby ms
bobsy mims
m [
0= bibs my
bobs mim
mo > 005 M 114
b1b4 ms

It can be seen clearly that the lower bound of Chao is the largest, hence it is the best

lower bound estimate of fy and N. Indeed, for example

bym bam
1my _ 02m3

f 01 <2
rom o <
follows b2 m1 > b3 mo
bimg — byms
2
and finally bobz my > bobs myms

?W’LQ ~ biby mg

Nevertheless, Chao’s estimator can experience a severe problem of overestimation when
there is one-inflation occurrence due to its form involves f2 as shown in Chapter 3. Let

m,, be the one-inflated model described as follows:

/ { WMy for x#1 (5.7)

(1-w)+wm, for z=1

where m, is the mixture of a power series member and 1 — w represents the proportion
of one-inflation. Note that m,, in (5.7) can be written as m,, = (1 — w)d;(z) + wm, for
x=0,1,2,... and é;(x) = 1 for z = 1 and zero otherwise. For a one-inflation model,
counts of one will be no more compatible with the non-parametric mixture model as it
is outside the class of non-parametric mixtures. Hence, Chao’s estimator is no longer
a lower bound estimator as Theorem 1 no longer holds. This point is different from
a zero-inflated model as every zero-inflated power series distribution can be written as
the mixture (1 — w)dp(z) + wm, = (1 — w)b,0%/g(6) + wm, which is within the class of

non-parametric mixtures of power series distribution.

To cope with this problem and avoid using f; for estimation, the monotonicity property
is considered in the following another way:
b b
Ama %213

bomy — b3me (58)
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1b3 m3

> 2=, 5.9

= b% ms (5.9)

This bound has never been used nor enlarged on since it seems aimless as the counts of
ones are observed and its bound is not required. However, if we replace m1 in (5.5) with

the bound of counts one given in (5.9), we yield

bobg <b1b3 m%)Z 1
mo > ———= —. 5.10
0= b% b% ms3 ma ( )
The bound can be simplified to
bob% m%
> 7372 5.11
mo = b% mg? ( )
then plugging the relative frequencies leads to
b bob3 f3
fi=-—== (5.12)
N
and 5 3
- bob
NMc:n+°—3j”f%. (5.13)
by [
From the Theorem 1, fg can be expected to be smaller than fo as
~ _ boba f2 _ bob3 f3
fo > b2 ST Bty [y (5.14)

oo 0S5

Here inequalities are meant w.r.t. expected values. The generalised modified Chao
estimator in (5.11) and (5.12) can be transformed to the specific forms for the mixture

of particular power series member by substituting associated coefficients. For example,

if m, is
. . o 213
a Poisson mixture then fi = ==,
9 f3
: : rx f23
a geometric mixture then fo = =
3
; m—2)? 2 f3
a binomial mixture then fo = (m=2)" 7];22'
m(m—1)9 f3

Note that f(’f for a binomial mixture and a Poisson mixture is identical if m becomes
large. Additionally, both fg and f(’)‘ are asymptotically unbiased under a power series

distribution, in the sense of no mixing involved.

According to (5.14), the bound f(’)k could be of interest as it will typically provide an
even lower bound than the conventional Chao lower bound estimator fo. The advantage

of the new lower bound estimator is shown here.
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Distribution

Theorem 2. Assume a one-inflation model m,, as given in (5.7), where m, = Jop2(0)f(0)df

where p,.(0) is a member of the power series family and f(#) is an arbitrary density. Then

9 13
bS r2°
2 mg

’
moz

Proof. For the non-inflated component we have that

203

2

mgy > —=—
3
by m3

and multiplying both sides with w gives

bob% (wm2)3

0= 2

b3 (wms)

(5.15)

which is the result as m,, = wm, for z # 1. This ends the proof.

As a consequence of this theorem, we can expect that fa‘ is a lower bound estimator in

the mean under heterogeneity of the power series distribution and under one-inflation.

Consider the case of power series distribution with one-inflation, in other words

m, = (1 — w)d(z) + wp,.

Then, the conventional Chao estimator has asymptotic bias

boba [(1 — w) + wps]?

Proof.
We have from (5.11) that
E(Nc)=EFE <n+ 2 f
bob
= E(n) + 27 B/ f)
bob
= N(1—-po) + %E(ff/fb)
1
. B b0b2 [(1 — UJ) + wp1]2
= VL= /g(0) + O Ly

- N + {bgbg [(1 — w) + wp1]2

b% wp2

which ends the proof.

N—%@@N},
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In contrast, the suggested modified Chao estimator is asymptotically unbiased, even
if the power series distribution is contaminated by one-inflation as can be seen in the

following:

E(Nuc)=E (n + bobgfg)

b f3
= N(1—mp)+ b3 E(f2/£5)
bob3 (wp2)?
= N(1—wpo) + (ll;iggwii;
_ bob [w? (b260°/g(6))°
= N[1 —wbo/g(0)] + bgg [w2(b393/g(9))2] ~
= N[1 = who/g(8)] + [who/g(B)] N

=N

5.4 Bias Correction

The limitation of Chao’s estimator is that it can have severe bias when the sample size is
small. To reduce the bias of the modified Chao estimator, we need, firstly, to understand
the occurrence of bias and the idea of bias-reduction for classical Chao estimator, then
apply to the newly modified Chao estimator so we go back to consider the original Chao

estimator in (5.5) again.

5.4.1 Classical Chao estimator with bias correction

As the arguments used to reduce bias are not easily available in the published literature,
it is presented here. The idea is to attempt to estimate Nm?2/my = [E(f1)]?/E(f2) by
using f2/fo but E(f%/f2) is not necessarily close to [E(f1)]?/E(f2) except that fi/N
and fo/N are close to m; and mag, respectively; say if N is large enough. If N is small,
hence, we cannot use f? to estimate [E(f1)]? directly as [E(f1)]? will not equate to
E( f12) Indeed, we use an equidispersion property of Poisson assumption: ”Mean =

Variance”,

Var(fi) = B(ff) = [E(f)]” = E(f1). (5.16)

It follows that [E(f1)]? = E(f%) — E(f1) which can be estimated as fZ — f; leading to
the numerator of the bias-corrected Chao estimator. Turning to the denominator, we
also notice that the interest is in 1/A = 1/E(f2), but we can use 1/ f, estimate E(1/f2)
only if the latter exists or fo # 0. Alternatively, 1/(f2 + 1) will estimate E[1/(f2 + 1)]
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which can be evaluated using the Poisson assumption for fo as
E( 1 ) _ i 1 exp(—A)\?
fa+1 — f2+1 fa!

_Zexp )\fz)\
(fa+1)!

exp(—=A)Af2F1
=3 Z i D) (5.17)

= eng\)\) (exp(A) — 1)

=1/\—exp(—=A)/A
1
T E(f2)

with the approximation error less than 0.001 for A > 5. This leads to the bias-corrected

classical Chao estimator

o bobz fl(fl_l)

5.4.2 Modified Chao estimator with bias correction 1

In a similar way, the modified Chao estimator in (5.11) is considered again by separating
m3/m3 into 2 parts as (m3/ms)(ma/ms). We apply the Poisson assumptions in (5.16)
and (5.17) for the numerator and denominator in the first part, respectively and use the

property in (5.17) again for the denominator in the second part as follows
Nm3 ([ Nmj mo
i~ (o) ()
_ ([E(fz)]2> (E(f2)>
E(f3) E(f3)
~ (E(fg) —E(f2)> ( E(f2) >
E(f3+1) E(f3+1)

2 _
which can be estimated by (ff2 +‘§2) ( 7 fj_ 1) or f(2 f(fj- 2 D) . This provides the first
3 3 3

version of bias correction for the modified Chao estimator

A 6062 f3(fa — 1)
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5.4.3 Modified Chao estimator with bias correction 2

Here we give some details of developing another version for the bias-reduction of the
modified Chao estimator. We use the property of third moment of the Poisson distribu-
tion to estimate m3 = E(f)3 for the numerator and keep the denominator identical as
in the bias correction 1 in (5.19). We note that

E[f3 = 3f3E(f2) + 3f2E(f2)? — E(f2)"]
(f3) = 3E(f3)E(f2) + 3E(f2)E(f2)* — E(f2)°
(f3) = 3E(f3)E(f2) + 2E(f2)".

E[fo — E(f2))?

E
E

Using a Poisson assumption for fao, E[f2 — E(f2)]® = E(f2), we yield

E(f2) = E(f3) = 3B(f3)E(f2) + 2E(f2)°

Using the Poisson assumption of variance once more, we have that E(f2) = E(f2) +
E(f2)? so that

E(f2) = E[f5] = 3[E(f2) + E(f2)Y]E(f2) + 2E(f2)°

2E(f2)* = E(f2) — E(f3) + 3E(f2)* + 3E(f2)?
E(f2)* = BE(f3) — E(f2) — 3E(f2)?

using the Poisson assumption for E(f2)? = E(f2)? — E(f2) again

E(f2)* = E(f3) = B(f2) = 3E(f3) + 3B(f2)
= B(f3) +2B(f2) — 3E(f3)

which can be estimated by f3 — 3f2 + 2f,. Finally, we obtain the second version of bias

correction for modified Chao estimator

bob3 f3 — 313 +2f>

B (st 1) (5.20)

NMCQ =n-+

5.4.4 Modified Chao estimator with bias correction 3

The last version of bias reduction, the numerator is maintained identical as in the bias
correction version 2 in (5.20). For the denominator we note that E[1/(fs + 1)(f3 + 2)]
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can be evaluated using the Poisson assumption as

o

1 B 1 exp(—A)\3
E((f3+1)(f3+2)> _J;(f3+1)(f3+2) f3!

B i exp(—)\))\f-")ﬁ

a0 (fs+2)! A2
Z exp )\f3+2
)\2 f3 +2)!
_ exp(—)\) i M3 +2
= - '
At = (st 2)!
exp(—A)
= T(exp(k) —1-2)
1 exp(-A)  exp(—A)
e A2 A
ot 1
TN E(f)Y

which is giving an excellent approximation if A > 5. Hence we derived the modified

Chao estimator with bias correction version 3

bob3 f3 — 33 +2f>
5 (+1)(fs+2)

Nyics = n + (5.21)

5.5 Simulation study

A simulation experiment is undertaken to study the performance of all proposed esti-
mators. To demonstrate how well the modified Chao estimator and all bias reduction
versions work, we focus on the geometric distribution with and without one-inflation as
it can incorporate the form of heterogeneity; the mixture of the Poisson and exponential
distribution. Morever, due to all versions of bias reduction have been developed under
the Poisson assumptions for the frequency f;, it needs to be investigated if it works well
outside the Poisson sampling for X; say whether the Poisson distribution is valid for the
frequency. Note that the simulation is for the geometric distribution only, all the terms
bgé’? and bo —2 are exactly one and thus disappear in the definition of the estimators. Six
estlmators of population size are compared:

1. Classical Chao estimator (C)

: i

Neg=n+ =+

¢ f2
2. Classical Chao estimator with bias correction (CC)
. -1
Nec—nit? filfi—1)

fo+1
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3. Modified Chao estimator (MC)

o 1
NMc—n+7
f3

4. Modified Chao estimator with bias reduction 1 (MC1)

f3(f2—1)

N =n+
Met (fs+ 1)2

5. Modified Chao estimator with bias reduction 2 (MC2)

- f3—3f3+2f
Ny =n+ 22 —2J2 T 272
M2 =R )

6. Modified Chao estimator with bias reduction 3 (MC3)

f3 =33 +2f
(fs+1)(fs+2)

NMCS =n+

5.5.1 Simulation Scenarios

The scope of study covers six different scenes with different parameters.

1. The homogeneous geometric distribution with four parameter 6 = 0.1,0.2,0.3,0.4.

2. The homogeneous geometric distribution as scene 1 with 20% one-inflation; or
1 —w = 0.2. It means that the probability of taking only count one is 0.2 and the

probability of the count is taken from homogeneous geometric (w) is 0.8.

3. The homogeneous geometric distribution as scene 1 with 50% one-inflation; or
1 —-w=0.5.

4. The equally weighted mixture of two geometric distributions. The six two-component
mixture populations were considered: (61,62) = (0.1,0.2),(0.1,0.3), (0.1,0.4),
(0.2,0.3),(0.2,0.4),(0.3,0.4), where 6; and 65 is parameter of the geometric from

the first and second component, respectively.

5. The equally weighted mixture of two geometric distributions as scene 4 with 20%

one-inflation.
6. The equally weighted mixture of two geometric distributions as scene 4 with 50%

one-inflation.

All scenarios are studied at three population sizes N = 50,100 and 1, 000. Each scenario

is repeated 5,000 times to eliminate any random error due to the simulation. Performance
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is investigated by comparing relative bias (RBias), relative variance (RVar) and Relative
mean square error (RMSE) to allow for comparisons across different sized populations

(see more details in Chapter 3, Section 3.6.3).

5.5.2 Simulation Results

All results of simulation study are shown in Table 5.1 - 5.6 and also in Figure 5.1 - 5.12.

The salient findings of the simulation study are summarised here.

e Models without one-inflation
The results for this case are from scene 1 and 4, the geometric and mixture of
geometric models. The results show that all six estimators are asymptotically
unbiased with respect to the population size as we can see that the relative biases
(RBias) converge to zero (see Figure 5.1 and 5.4 - 5.6). Indeed, Table 5.1 and 5.4
present that the MC estimator for the small populations (N = 50,100) has the
largest bias, variance and mean square error whereas the CC estimator gives the
smallest. However, the MC has a good performance, similar to other estimators
when population size is large (N = 1,000). Moreover, all estimators tend to be
identical when the population size increases if comparing between general version
and bias reduction version; (C and CC) and (MC and MC1, MC2, MC3), as we

expect.

Note that the population size is not the only factor influencing the performance
of the estimators but also the parameter 6. Increasing parameter 6 leads to a
increase in bias, variance and mean square error for all estimators. This may be
due to the fact that the observed counts show more excess of count zero as the

mean converges to zero.

e Models with one-inflation
The results of scene 2, 3, 5 and 6, the geometric and mixture of geometric with 20%
and 50% one-inflation, are summarised here. Figure 5.2-5.3 and 5.7-5.12 provide
evidences that the C and CC estimators give a severe overestimation of population
size whereas the MC, MC1, MC2 and MC3 are asymptotic unbiased estimators
based on one-inflated count distribution. It is clear that the larger one-inflation,
the higher the overestimation bias of C and CC estimators. Now, we focus on the
modified Chao estimator and its 3 bias reduction versions (MC, MC1, MC2 and
MC(C3). Table 5.2-5.3 and 5.5-5.6 show that the MC estimator has the largest bias,
variance and mean square error when the population size is small (N = 50, 100)
whereas the MC3 estimator provides the best performance. However, all modified
Chao estimators are identical when the population size is large. Similarly to models
without one-inflation, increasing parameter 6 leads to an increase in bias, variance

and mean square error for all estimators.
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Table 5.1: RBias, RVar and RMSE of six population size estimators under

geometric model

N 0 C CcC MC MC1 MC2 MC3
Relative Bias
50 0.1 0.0614 -0.0026 0.3434 0.1022 0.0361 -0.0090
0.2 0.0718 -0.0050 0.5491 0.1792 0.0912 0.0106
0.3 0.0871 -0.0044 0.7767 0.1703 0.0687 -0.0159
0.4 0.1184 -0.0037 1.0672 0.2824 0.1352 -0.0209
100 0.1 0.0314 0.0004 0.1606 0.0462 0.0170 -0.0020
0.2 0.0341 0.0010 0.1868 0.0647 0.0290 0.0029
0.3 0.0394 -0.0001 0.2680 0.0882 0.0419 0.0031
0.4 0.0537 0.0025 0.4267 0.1261 0.0625 0.0002
1000 0.1 0.0019 -0.0005 0.0084 0.0041 0.0016 0.0002
0.2 0.0024 -0.0004 0.0109 0.0051 0.0020 0.0000
0.3 0.0036 0.0001 0.0141 0.0058 0.0017 -0.0013
0.4 0.0040 -0.0005 0.0245 0.0117 0.0060 0.0013
Relative Variance
50 0.1 0.0768 0.0198 1.5439 0.6513 0.3943 0.1122
0.2 0.0859 0.0341 5.8897 2.1906 1.4911 0.4423
0.3 0.1263 0.0594 10.7251 1.0830 0.7328 0.3244
0.4 0.2657 0.1117 14.8403 4.6637 3.2516 0.9714
100 0.1 0.0175 0.0087 0.6149 0.0834 0.0585 0.0328
0.2 0.0252 0.0183 1.3790 0.2016 0.1624 0.1040
0.3 0.0381 0.0292 5.7567 0.5283 0.4398 0.2484
0.4 0.0634 0.0479 5.8556 0.7630 0.6227 0.3725
1000 0.1 0.0007 0.0007 0.0023 0.0021 0.0020 0.0019
0.2 0.0015 0.0015 0.0052 0.0050 0.0048 0.0047
0.3 0.0027 0.0027 0.0110 0.0104 0.0102 0.0099
0.4 0.0045 0.0044 0.0214 0.0199 0.0195 0.0190
Relative Mean Square Error
50 0.1 0.0774 0.0198 1.6315 0.6616 0.3955 0.1123
0.2 0.0900 0.0342 6.1776  2.2223 1.4991 0.4423
0.3 0.1332 0.0594 11.3164 1.1118 0.7374 0.3246
0.4 0.2770 0.1117 15.9291 4.7425 3.2693 0.9717
100 0.1 0.0184 0.0087 0.6401 0.0855 0.0588 0.0328
0.2 0.0264 0.0183 1.4136 0.2058 0.1632 0.1040
0.3 0.0397 0.0292 5.8274 0.5360 0.4414 0.2484
0.4 0.0663 0.0479 6.0365 0.7788 0.6265 0.3724
1000 0.1 0.0007 0.0007 0.0023 0.0021 0.0020 0.0019
0.2 0.0015 0.0015 0.0054 0.0050 0.0048 0.0047
0.3 0.0027 0.0027 0.0112 0.0104 0.0102 0.0099
0.4 0.0045 0.0044 0.0220 0.0201 0.0195 0.0190
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Figure 5.1: RBias, RVar and RMSE of sixz estimators for counts drawn from
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Table 5.2: RBias, RVar and RMSE of six population size

geometric model with 20% one-inflation

estimators under

N 0 C CcC MC MC1 MC2 MC3
Relative Bias
50 0.1 1.5052 1.0036 0.2895 0.0764 0.0159 -0.0187
0.2 1.2799 0.8846 0.5367 0.1622 0.0736 -0.0007
0.3 1.2831 0.8982 0.7343 0.1761 0.0698 -0.0199
0.4 1.4311 0.9962 0.9301 0.2220 0.0817 -0.0493
100 0.1 1.4118 1.0856 0.1814 0.0461 0.0161 -0.0039
0.2 1.0662 0.8958 0.2251 0.0755 0.0374 0.0060
0.3 1.0683 0.9117 0.2946 0.0848 0.0377 -0.0015
0.4 1.2131 1.0268 0.5181 0.1345 0.0680 0.0004
1000 0.1 1.0841 1.0617 0.0085 0.0041 0.0016 0.0002
0.2 0.9063 0.8925 0.0109 0.0050 0.0019 -0.0001
0.3 0.9260 0.9129 0.0148 0.0064 0.0023 -0.0007
0.4 1.0279 1.0127 0.0233 0.0103 0.0046 -0.0002
Relative Variance
50 0.1 2.1832 0.8768 0.9730 0.2994 0.1567 0.0462
0.2 1.6987 0.6534 4.5151 1.2425 0.7641 0.2310
0.3 1.8997 0.6369 6.7181 1.3116 0.8233 0.2761
0.4 2.4456 0.9023 8.5397 2.6935 1.7622 0.5139
100 0.1 1.4664 0.5883 0.7497 0.0954 0.0621 0.0287
0.2 0.4946 0.2967 1.5423 0.4108 0.3089 0.1259
0.3 0.4664 0.3005 2.7356 0.3038 0.2372 0.1396
0.4 0.7068 0.4150 8.6535 0.9034 0.7039 0.3461
1000 0.1 0.0419 0.0396 0.0019 0.0017 0.0016 0.0016
0.2 0.0247 0.0238 0.0044 0.0041 0.0040 0.0039
0.3 0.0269 0.0261 0.0092 0.0085 0.0083 0.0081
0.4 0.0343 0.0333 0.0181 0.0166 0.0161 0.0156
Relative Mean Square Error
50 0.1 3.8734 1.8838 1.0067 0.3052 0.1570 0.0465
0.2 3.2241 1.4358 4.7708 1.2686 0.7693 0.2309
0.3 3.4636 1.4436 7.2204 1.3423 0.8280 0.2764
0.4 4.3150 1.8945 9.3116 2.7423 1.7686 0.5162
100 0.1 3.4296 1.7666 0.7806 0.0975 0.0623 0.0287
0.2 1.6296 1.0991 1.5924 0.4164 0.3103 0.1259
0.3 1.6076 1.1317 2.8219 0.3110 0.2386 0.1396
0.4 21750 1.4693 8.9193 0.9213 0.7084 0.3461
1000 0.1 1.2172 1.1668 0.0020 0.0017 0.0016 0.0016
0.2 0.8459 0.8204 0.0046 0.0042 0.0040 0.0039
0.3 0.8844 0.8594 0.0094 0.0086 0.0083 0.0081
0.4 1.0908 1.0587 0.0186 0.0167 0.0162 0.0156
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Figure 5.2: RBias, RVar and RMSE of sixz estimators for counts drawn from
geometric(0) with 20% one-inflation
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Table 5.3: RBias, RVar and RMSE of six population size estimators under

geometric model with 50% one-inflation

N 0 C CcC MC MC1 MC2 MC3
Relative Bias
50 0.1  8.5678 6.2765 0.1827 0.0440 -0.0030 -0.0226
0.2  7.1358 4.9910 0.3654 0.1014 0.0255 -0.0225
0.3  6.5368 4.6201 0.4749 0.1310 0.0328 -0.0367
0.4  7.0650 5.0781 0.5267 0.1264 0.0079 -0.0749
100 0.1  9.7085 7.1170 0.1690 0.0476  0.0156  -0.0058
0.2  6.3522 5.0746  0.2354 0.0639  0.0245 -0.0068
0.3 5.9645 4.8689 0.3586 0.0976  0.0443 -0.0042
0.4 6.3117 5.1454  0.5515 0.1477  0.0729 -0.0074
1000 0.1 7.4840 7.2799 0.0090 0.0043 0.0017  0.0003
0.2  5.2695 5.1751 0.0107 0.0046  0.0014 -0.0006
0.3 4.9253 4.8468 0.0154 0.0066  0.0025 -0.0006
0.4  5.2223 5.1373  0.0248 0.0111  0.0054 0.0005
Relative Variance
50 0.1 39.5137 19.8072 0.5022 0.1035  0.0420 0.0122
0.2 32.7721 13.6394 1.5070 0.5301  0.2940 0.0823
0.3 27.5307 10.5799 2.3636 0.9027 0.5247  0.1468
0.4 35.5242 15.6737 2.4809 0.8467  0.4555 0.1287
100 0.1 527731 21.8199 0.4341 0.1368  0.0798 0.0235
0.2 18.9726  7.9329 1.1083 0.2922  0.1950 0.0632
0.3 15.2945 64314 1.9647 0.5362  0.3692 0.1228
0.4 18.1564  7.7890 3.6750 1.1290 0.7738 0.2331
1000 0.1 1.9320 1.7462 0.0015 0.0012 0.0011 0.0011
0.2  0.6511 0.6126  0.0030 0.0026  0.0025 0.0024
0.3  0.5417 0.5138 0.0067 0.0059  0.0057 0.0054
0.4  0.6168 0.5844  0.0122 0.0106  0.0102 0.0096
Relative Mean Square Error
50 0.1 75.9645 59.1974 0.5190 0.1054  0.0420 0.0128
0.2 71.9171 38.5464 1.5542 0.5402  0.2946 0.0828
0.3 61.6887 31.9233 2.4784 0.9197 0.5257  0.1481
0.4 71.2714 41.4573 2.5835 0.8626  0.4555 0.1342
100 0.1 139.0425 724677 0.4492 0.1390  0.0800 0.0235
0.2 58.6119 33.6831 1.1591 0.2962 0.1956 0.0633
0.3 50.2873  30.1363 2.0862 0.5456  0.3711 0.1228
0.4 56.9091 34.2630 3.9586 1.1506  0.7790 0.2331
1000 0.1 57.9412 54.7430 0.0015 0.0012  0.0011 0.0011
0.2 28.4186 27.3938 0.0031 0.0027  0.0025 0.0024
0.3 24.8000 24.0049 0.0069 0.0060 0.0057 0.0054
0.4 27.8892 26.9757 0.0129 0.0107 0.0102 0.0096
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Figure 5.3: RBias, RVar and RMSE of sixz estimators for counts drawn from
geometric(0) with 50% one-inflation
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5.6 Applications

In the following, population sizes are estimated through the classical and modified Chao
estimator including bias correction versions so far considered in four well-known datasets:
the data of H5N1 epidemic in Thailand, the data of scrapie-infected holding in France,
the domestic violence data and the illegal immigrants data. Data are provided in Table
5.7. The Poisson and geometric ratio plots are provided in Figure 5.13 and for all
applications we can see that the geometric model is more appropriate than Poisson
model as it shows a horizontal line and the first point of ratio also shows the evidence
of one-inflation. Therefore we apply all classical and modified Chao estimators based
upon the geometric model. Population size estimates and unobserved units estimates

are reported in Table 5.8.

5.6.1 H5N1 data

The data are from Vergne et al. (2014) that provides the number of highly pathogenic
avian influenza (HPAI) H5N1 outbreak that were reported at subdistrict level in Thai-
land during the second epidemic wave (July 2004 - May 2005). The large epidemic
occurred through out the country especially in the Central Plain for about two years,
causing huge mortality in chickens and ducks. More than 65 million birds were culled
and over US$ 130 million was spent compensating farmers’ losses during 2004-2005.
First two columns in Table 5.7 shows the spatial distribution of the number of H5N1
outbreaks reported in each subdistrict. There are 6,587 subdistricts with no outbreak.
However, it seems to be suspected that these subdistricts might include a subdistrict
where at least one outbreak occurred but none were reported. Our interest is to esti-
mate the number of unobserved subdistricts with outbreak (fy). The results are shown
in Table 5.8 row 3-4. As we expect there are the large effects of one-inflation on classical
Chao estimates ( fg = 1,044 and Ng = 1,813) while modified Chao estimator and its
bias reduction versions can avoid overestimation by giving smaller estimates. However,
the modified Chao estimator with bias reduction 3 (MC3) gives the smallest estimates
( fé\m?’ = 522 and Nycs = 1,291) similar to simulation results. Hence it is reasonable

to use estimates from MC3 as it is the best performing.

5.6.2 Scrapie Infection data

The data on scrapie-infected holdings in France are obtained from the French classical
scrapie surveillance programme (Vergne et al. (2012)). We are interested to evaluate the
number of infected units that remain undetected by the surveillance system and also
to estimate the total number of scrapie-infected holdings. Vergne et al. (2012) detected

that there is a large amount of heterogeneity in the count data, corresponding to the top



Chapter 5 A Modified Chao Estimator for Zero-Truncated One-Inflated Count
108 Distribution

left ratio plot in Figure 5.13, making the use of the simple zero-truncated Poisson model
inappropriate. Hence, the zero-truncated geometric model with one-inflation might be
more suitable for this example. Table 5.8 row 6-7 gives the estimates for fy and N of six
estimators. Similarly, we can separate the estimates to 2 groups as they are definitely
different: severe overestimates in C and CC, and, those not affected by one-inflation in
MC, MC1, MC2 and MC3. All modified Chao estimators can cope with the problem of

one-inflation particularly MC3 as it gives the smallest estimates.

5.6.3 Domestic Violence data

Van der Heijden et al. (2014) study the prevalence of domestic violence in the Nether-
lands for the year 2009 by using capture-recapture methods to estimate the total popula-
tion size of offenders. The study is reported with the data given in Table 5.7 column 5-6.
The total number of observed culprits is n = 17,662. There are 15,169 culprits identified
exactly once in a domestic violence incident, 1,957 exactly twice and so forth. From the
data and ratio plot in Figure 5.13 bottom left, it is noticed that the observed data may
experience forms of one-inflation. It seems likely that a portion of perpetrators caught
the first time change their behaviour and will no longer recapture as perpetrators again.
The results are not surprising. It is similar to two first examples. The largest estimates
comes from C ( fg = 117,577 and Ne = 135,293) whereas the smallest estimates are
from MC3 (fMC3 = 48,085 and Nyics = 65, 747).

5.6.4 Illegal Immigrants data

We revisit the capture-recapture data of illegal immigrants in the Netherlands from
police records (Van der Heijden et al. (2003b)) and use this data set to compare all
proposed modified Chao estimators of population size with the classical Chao estimators.
The data records contain information on the number of times each illegal immigrant
was apprehended by the police (see Table 5.7 column 7-8). It can be noticed that
the number of singletons is considerably higher than the number of doubletons. This
indicates that the data may experience one-inflation as it is also supported by the ratio
plot in Figure 5.13 right bottom (see also in Chapter 3 Section 3.7). Hence, all proposed
modified estimators are applied to this data and the results of estimation are compared
with results from classical estimator as shown in Table 5.8 row 12-13. Similarly to the
previous examples, the pattern of results for all estimators is Nc > NCC > NMC >
NMCl > NMCQ > NMcg. Here, the estimate using MC3 is smallest and obviously

different from the estimate of C and CC as we expect.
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5.7 Discussion and conclusion

The main issue of population size estimation is selecting an estimator (or several) from
various approaches which should perform well and flexible even if the assumptions fail
to hold for the data at hand. One of the crucial assumptions in capture-recapture is
homogeneity. We know that heterogeneity in the capture probabilities is often occurring
and ignoring heterogeneity can lead to biased estimations. Many approaches have been
developed and offered to cope with this problem. The most popular estimator for hetero-
geneity is Chao’s lower bound estimator as its formula is easy to calculate and involves
only the frequency of count ones and twos. Moreover, Chao’s estimator is asymptotically
unbiased for a count distribution being a member of the power series family and also
provides a lower bound if the count distribution is a mixture of the power series family.
However, Chao’s estimator seems to face the big problem of overestimation when the

count data experience one-inflation.

A modified Chao estimator is developed to avoid overestimation stemming from one-
inflation by using the frequency of count twos and threes instead of the frequency of
count ones and twos. The main advantage of using the modified Chao estimation is that
it retains the good properties of the classical Chao estimator; asymptotically it is an
unbiased estimator for a power series distribution with and without one-inflation and
provides a lower bound estimator under a mixture of power series distributions with and
without one-inflation, as we can see from theoretical, analytic and simulation results.
However, both classical and modified Chao estimators have a limitation. They are
biased estimators when the sample size is small. Hence three versions of bias correction
for modified Chao estimation have been developed. It is assumed that the frequency of
counts follows a Poisson distribution which is a conventional assumption in frequency
table analysis. The properties of the Poisson distribution are used to reduce the bias;
equidispersion (mean = variance) and the third moment of the Poisson distribution. To
investigate the performance of the modified Chao estimator and demonstrate how well all
bias reduction versions work, the geometric and the mixture of geometric distribution
with and without one-inflation are considered in a simulation study. The simulation
results show that the larger the one-inflation, the higher the overestimation bias of the
classical Chao estimator. On the other hand, the modified Chao estimator can avoid
the effect of one-inflation as it shows a good performance for all situations except when
the sample size is small. Furthermore, all bias reduction versions of the modified Chao
estimator have a good performance for all cases of study, especially good is the last

version of bias reduction (MC3).

In summary, the modified Chao estimator can reduce the bias from one-inflation and all
bias-reduction versions can reduce the bias for small sample size settings considerably.
Hence it is reasonable to use all proposed modified Chao estimators for one-inflation

count data in practice.
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Table 5.4: RBias, RVar and RMSE of six population size estimators under
mixture of geometric model

N 01 02 C cC MC MC1 MC2 MC3
Relative Bias

50 0.1 0.2 0.0718 -0.0021 0.4769 0.1220 0.0478  -0.0084
0.3 0.0843 -0.0036 0.5613 0.1382 0.0494 -0.0210

0.4 0.0891 -0.0102 0.6638 0.1381 0.0345 -0.0502

0.2 0.3 0.0855 -0.0003 0.6617 0.1396 0.0509 -0.0191

0.4 0.0918 -0.0057 0.7696 0.1571 0.0526  -0.0369

0.3 04 0.1142 0.0037 0.9343 0.2100 0.0870  -0.0277

100 0.1 0.2 0.0291 -0.0022 0.1919 0.0712 0.0360 0.0072
0.3 0.0362 -0.0005 0.1918 0.0531 0.0152 -0.0126

0.4 0.0337 -0.0092 0.2593 0.0515 0.0063 -0.0311

0.2 0.3 0.0330 -0.0026  0.2169 0.0779 0.0366 0.0047

0.4 0.0369 -0.0048 0.2722 0.0741 0.0263 -0.0144

0.3 04 0.0439 -0.0011 0.3194 0.0983 0.0441  -0.0041
1000 0.1 0.2 0.0032 0.0005 0.0087 0.0035 0.0007  -0.0011
0.3 0.0002 -0.0029 0.0032  -0.0032 -0.0066 -0.0088

0.4 -0.0055 -0.0091 -0.0099 -0.0181 -0.0221 -0.0250

0.2 0.3 0.0022 -0.0010 0.0094 0.0024 -0.0012 -0.0036

0.4 -0.0008 -0.0045 -0.0026 -0.0111 -0.0153 -0.0183

0.3 04 0.0039 -0.0001 0.0104 0.0003 -0.0044 -0.0081

Relative Variance

50 0.1 0.2 0.0868 0.0304 3.6927 0.9183 0.5884  0.1873
0.3 0.1149 0.0398 4.9532 0.9841 0.6157  0.2072

0.4 0.1653 0.0603 6.1848 1.2303 0.7747  0.2557

0.2 0.3 0.1335 0.0593 8.8799 0.8303 0.5545 0.2470

0.4 0.1419 0.0679 9.4369 1.4284 0.9527  0.3469

0.3 04 0.2125 0.0930 12.8778 2.0382 1.3688 0.4912

100 0.1 0.2 0.0183 0.0118 1.2129 0.4110 0.3064 0.1175
0.3 0.0275 0.0184 0.7058 0.1524 0.1186 0.0782

0.4 0.0371 0.0245 4.0213 0.3602 0.2839 0.1551

0.2 0.3 0.0289 0.0220 0.8094 0.2212 0.1795 0.1254

0.4 0.0396 0.0300 3.4121 0.4147  0.3353 0.2020

0.3 04 0.0498 0.0381 2.3844 0.4539 0.3702 0.2403
1000 0.1 0.2 0.0011 0.0011 0.0039 0.0036 0.0035 0.0034
0.3 0.0016 0.0016 0.0056 0.0052 0.0051 0.0049

0.4 0.0023 0.0022 0.0084 0.0078 0.0076 0.0074

0.2 0.3 0.0022 0.0021 0.0077 0.0073 0.0071 0.0069

0.4 0.0028 0.0028 0.0104 0.0097  0.0095 0.0093

0.3 04 0.0034 0.0034 0.0145 0.0136 0.0133 0.0130

Relative Mean Square Error

50 0.1 0.2 0.0884 0.0304 3.8436 0.9332 0.5907  0.1874
0.3 0.1180 0.0398 5.1770 1.0032 0.6181 0.2076

0.4 0.1660 0.0604 6.4542 1.2494 0.7759 0.2583

0.2 0.3 0.1392 0.0593 9.2624 0.8498 0.5571 0.2474

0.4 0.1482 0.0680 9.9537 1.4531 0.9555 0.3483

0.3 04 0.2219 0.0930 13.6221  2.0822 1.3764  0.4920

100 0.1 0.2 0.0191 0.0118 1.2487 0.4160 0.3077  0.1176
0.3 0.0288 0.0184 0.7425 0.1552 0.1188 0.0784

0.4 0.0383 0.0246 4.0877 0.3629 0.2839 0.1561

0.2 0.3 0.0300 0.0220 0.8564 0.2272 0.1809 0.1254

0.4 0.0410 0.0300 3.4862 0.4202 0.3360 0.2022

0.3 04 0.0517 0.0381 2.4865 0.4635 0.3721 0.2403
1000 0.1 0.2 0.0011 0.0011 0.0040 0.0036 0.0035 0.0034
0.3 0.0016 0.0016 0.0056 0.0052 0.0051 0.0050

0.4 0.0023 0.0023 0.0085 0.0081 0.0081 0.0080

0.2 0.3 0.0022 0.0021 0.0078 0.0073 0.0071 0.0070

0.4 0.0028 0.0028 0.0104 0.0098 0.0097  0.0096

0.3 04 0.0034 0.0034 0.0146 0.0136 0.0133 0.0130
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Table 5.5: RBias, RVar and RMSE of six population size estimators under
mixture of geometric model with 20% one-inflation

N 01 02 C CC MC MC1 MC2 MC3
Relative Bias

50 0.1 0.2 1.4079 0.9503 0.3880  0.1080 0.0336 -0.0185
0.3 1.3844 0.9358 0.5367 0.1191 0.0334 -0.0280

0.4 1.4842 1.0178 0.5972 0.1190 0.0204 -0.0525

0.2 0.3 1.3196 0.9084 0.6219 0.1525 0.0587 -0.0176

0.4 1.4005 0.9740 0.6500  0.1668 0.0584 -0.0366

0.3 0.4 1.3488 0.9506 0.8244  0.2313 0.0994 -0.0234

100 0.1 0.2 1.1773 0.9609 0.1936 0.0665 0.0311 0.0018
0.3 1.1719 0.9666  0.2352 0.0563 0.0170 -0.0123

0.4 1.2715 1.0432 0.3036 0.0577 0.0101 -0.0300

0.2 0.3 1.0513 0.8931 0.2563 0.0758 0.0332 -0.0008

0.4 1.1347 0.9559 0.2994 0.0723 0.0234 -0.0184

0.3 0.4 1.1171 0.9521 0.3632 0.0926 0.0378 -0.0107
1000 0.1 0.2 0.9755 0.9587 0.0082 0.0030 0.0002 -0.0016
0.3 0.9799 0.9637 0.0070 0.0004 -0.0031 -0.0053

0.4 1.0412 1.0235 -0.0043 -0.0126 -0.0167 -0.0196

0.2 0.3 0.9140 0.9006 0.0102 0.0031 -0.0005 -0.0030

0.4 0.9665 0.9520 -0.0007 -0.0092 -0.0134 -0.0164

0.3 0.4 0.9752 0.9611 0.0142 0.0039 -0.0009 -0.0047

Relative Variance

50 0.1 0.2 1.9539 0.7780 2.0791 0.6323 0.3634 0.1075
0.3 1.9676 0.7673  3.2093 0.7264 0.4328 0.1361

0.4 2.4558 1.0385  4.3556 0.9688 0.5914 0.1823

0.2 0.3 1.9729 0.6636 5.5099 1.1691 0.7334 0.2371

0.4 2.2912 0.9185 5.7805 1.8916 1.2273 0.3622

0.3 0.4 2.0398 0.8328 8.0650 2.1248 1.3279 0.4082

100 0.1 0.2 0.7317 0.4203 0.9091 0.6121 0.4627 0.1395
0.3 0.6591 0.3504 1.3838 0.1668 0.1218 0.0683

0.4 0.8596 0.4588 2.2214  0.3197 0.2276 0.1005

0.2 0.3 0.4072 0.2631 1.6437 0.2435 0.1864 0.1093

0.4 0.6054 0.3473 2.2074  0.3221 0.2421 0.1338

0.3 0.4 04868 0.3232 2.6291 0.3879 0.3032 0.1822
1000 0.1 0.2 0.0302 0.0289 0.0030 0.0028 0.0027 0.0026
0.3 0.0315 0.0303 0.0050  0.0046 0.0045 0.0043

0.4 0.0359 0.0345 0.0068 0.0062 0.0059 0.0057

0.2 0.3 0.0256 0.0248 0.0062 0.0058 0.0056 0.0054

0.4 0.0285 0.0276  0.0083 0.0076 0.0074 0.0072

0.3 0.4 0.0301 0.0292 0.0124 0.0114 0.0111 0.0108

Relative Mean Square Error

50 0.1 0.2 3.6660 1.6809 2.1881 0.6438 0.3645 0.1079
0.3 3.6997 1.6430 3.4514  0.7405 0.4338 0.1368

0.4 4.3308 2.0742 4.6287  0.9828 0.5917 0.1850

0.2 0.3 3.6231 1.4887 5.8660 1.1921 0.7367 0.2374

0.4 4.0863 1.8669 6.1495 1.9190 1.2304 0.3635

0.3 0.4 3.7000 1.7363 8.6683 2.1778 1.3375 0.4087

100 0.1 0.2 21084 1.3436 0.9456 0.6164 0.4636 0.1394
0.3 2.0303 1.2846  1.4386 0.1700 0.1221 0.0684

0.4 24682 1.5469 2.3120 0.3230 0.2276 0.1014

0.2 0.3 15114 1.0606 1.7089 0.2492 0.1875 0.1092

0.4 1.8910 1.2610 2.2963 0.3273 0.2426 0.1342

0.3 0.4 1.7346 1.2297 2.7604  0.3964 0.3046 0.1823
1000 0.1 0.2 0.9819 0.9480 0.0031 0.0028 0.0027 0.0026
0.3 0.9917 0.9591 0.0051 0.0046 0.0045 0.0044

0.4 1.1198 1.0821 0.0068 0.0063 0.0062 0.0061

0.2 0.3 0.8610 0.8359 0.0063 0.0058 0.0056 0.0054

0.4 0.9627 0.9340 0.0083 0.0077 0.0076 0.0074

0.3 0.4 0.9811 0.9528 0.0126 0.0115 0.0111 0.0108
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Table 5.6: RBias, RVar and RMSE of six population size estimators under
mixture of geometric model with 50% one-inflation

N 01 02 C CcC MC MC1 MC2 MC3
Relative Bias

50 0.1 0.2 7.6972 5.4523  0.2538 0.0593 -0.0005 -0.0298
0.3 7.6606 5.4325 0.3011 0.0626 -0.0065 -0.0434

04 7.7222 5.5449  0.3124 0.0679 -0.0127 -0.0589

0.2 0.3 6.8114 4.7925 0.3733 0.0709 -0.0047 -0.0487

0.4 7.1722 49878 0.3802 0.1132 0.0161 -0.0501

0.3 04 6.9371 4.9361  0.4460 0.1037 0.0018 -0.0672

100 0.1 0.2 7.7507 5.9046  0.2244  0.0577 0.0209 -0.0062
0.3  7.4630 5.7802  0.2700 0.0741 0.0299 -0.0093

0.4  7.5967 5.8943  0.3230 0.0636 0.0134 -0.0261

0.2 0.3 6.2668 5.0381  0.2662 0.0743 0.0287 -0.0106

0.4  6.4426 5.15633  0.3363  0.0699 0.0194 -0.0238

0.3 04 6.1307 5.0014  0.4137  0.0906 0.0327 -0.0192
1000 0.1 0.2 6.1167 5.9848  0.0083  0.0029 0.0000 -0.0018
0.3 5.8251 5.7092  0.0089 0.0020 -0.0015 -0.0038

0.4 6.0236 5.9022  0.0036 -0.0052 -0.0093 -0.0122

0.2 0.3 5.0516 4.9668 0.0128  0.0054 0.0018 -0.0008

0.4 5.2135 5.1248  0.0078 -0.0013 -0.0055 -0.0086

0.3 0.4 5.0504 4.9693 0.0177  0.0068 0.0019 -0.0019

Relative Variance

50 0.1 0.2 34.6928 15.6734 0.8041 0.1831 0.0838 0.0250
0.3 34.7046 15.5893 1.0302 0.2677 0.1303 0.0387

0.4 35.6402 17.2157 1.3053  0.4075 0.2103 0.0600

0.2 0.3 29.2484 11.9099 1.4363 0.3317 0.1692 0.0525

0.4 34.7685 13.4350 1.5915 0.6744 0.3540 0.0982

0.3 0.4 319114 13.6552 2.2137 0.7041 0.3785 0.1082

100 0.1 0.2 34.1997 12.8562 0.8330 0.1833 0.1134 0.0371
0.3 33.0858 13.1726 1.3453 0.6165 0.4322 0.1214

0.4 31.0391 12.1909 1.4695 0.2484 0.1543 0.0541

0.2 0.3 19.0359 7.7209 1.3869 0.3974 0.2640 0.0847

0.4 20.3165 7.2571 1.8407  0.3779 0.2532 0.0876

0.3 0.4 18.8909 8.0653 2.6697  0.4650 0.3168 0.1172
1000 0.1 0.2 1.0273 0.9516  0.0021  0.0018 0.0017 0.0016
0.3 0.8676 0.8100  0.0034  0.0030 0.0028 0.0027

0.4 0.9534 0.8885  0.0050  0.0042 0.0040 0.0038

0.2 0.3 0.5466 0.5166  0.0045  0.0040 0.0038 0.0036

0.4 0.6145 0.5805  0.0061  0.0053 0.0051 0.0048

0.3 0.4 0.5608 0.5317  0.0089  0.0078 0.0075 0.0071

Relative Mean Square Error

50 0.1 0.2 74.2285 45.3977 0.8065 0.1865 0.0838 0.0259
0.3 75.1669 45.0979 1.0412 0.2715 0.1303 0.0406

0.4 739131 479578 1.3117 0.4121 0.2105 0.0634

0.2 0.3 66.5927 34.8755 1.4986 0.3366 0.1692 0.0549

0.4 73.3605 38.3101 1.6388 0.6871 0.3542 0.1007

0.3 0.4 683319 38.0179 2.2927 0.7147 0.3785 0.1127

100 0.1 0.2 92.0884 47.7181 0.8747 0.1866 0.1138 0.0371
0.3 86.7972 46.5807 1.4074 0.6219 0.4330 0.1215

0.4 86.1852 46.9309 1.5573 0.2524 0.1545 0.0548

0.2 0.3 57.5793 33.1020 1.4523 0.4028 0.2647 0.0848

0.4 61.2083 33.8122 1.9477 0.3827 0.2535 0.0881

0.3 0.4 55.8452 33.0781 2.8320 0.4731 0.3178 0.1176
1000 0.1 0.2 38.4411 36.7695 0.0022 0.0018 0.0017 0.0016
0.3 34.7996 33.4052 0.0035 0.0030 0.0028 0.0027

0.4 37.2371 35.7243 0.0050 0.0043 0.0041 0.0039

0.2 0.3 26.0655 25.1859 0.0046 0.0040 0.0038 0.0036

0.4 27.7950 26.8440 0.0061 0.0053 0.0051 0.0049

0.3 04 26.0671 25.2252 0.0092 0.0078 0.0075 0.0071
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Figure 5.10: RBias of six estimators for counts drawn from mizture of

geometric(01,02) with 50% one-inflation
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geometric(01,02) with 50% one-inflation
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Table 5.7: Observed frequency distribution of the count of four applications

H5HN1 Scrapie Infection | Domestic Violence | Illegal Immigrants
x fz T fz T fz T fz
0 6,087 |1 121 1 15,169 1 1,645
1 410 | 2 13 2 1,957 2 183
2 161 |3 ) 3 393 3 37
3 87 4 2 4 99 4 13
4 46 ) 28 5) 1
) 26 6+ 16 6 1
6 21
7 8
8 4
9 6
H5N1 Data Scrapie Infection Data
0 O Poisson : o Poisson
A Geometrid A Geometrid
; . 3 ) ; 2 :
Domestic Violence Data lllegal Immigrants Data
O Poisson O Poisson
o A Geometrid ) A Geometrid
J 2 3 ) ; . 2 .

Figure 5.13: Poisson and geometric ratio plot for real data examples
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Table 5.8: Population size estimation for four applications

Estimator C CC MC MC1 MC2 MC3
H5N1
fo 1,044 1,035 551 535 528 522
N 1,813 1,804 1,320 1,304 1,297 1,291
Scrapie Infection
fo 1,126 1,037 88 56 48 41
N 1,267 1,178 229 197 189 182
Domestic Violence
fo 117,577 117,509 48,527 48,257 48,207 48,085
N 135,293 135,171 66,189 65,919 65,869 65,747
1llegal Immigrants
fo 14,787 14,698 4,477 4221 4,175 4,068
N 16,667 16,578 6,357 6,101 6,005 5,948







Chapter 6

Variance Estimation for Modified

Chao Estimators

This chapter relates to the proposed estimators in Chapter 5. It provides two variance
approximations for the modified Chao estimator and the modified Chao estimator with

bias correction version 3.

6.1 Introduction

As it was shown in previous chapters, the crucial parameters in capture-recapture studies
are N, fo and py where N denotes the unknown population size, fy is the frequency

of unobserved units and pg is the probability of not identifying a unit of the target

population. It follows that E(fy) = Npy and fg = ff”]go, n is the number of observed
units. The estimator of N is N = n/(1 — pp) or

N =n+ fo (6.1)

and depends on the approach used to estimate py. If we consider the variance of (6.1),
it can be easily seen that there are two components of variation. The first variation is

due to n and another variation is due to fo. The total variance of N can be calculated

125
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as

2>

) = var(n+ fo)
npo )
1—po

1 —ﬁo) (6.2)

_ (1_1]30>20ar(n)

1 2
= Npo(1 —
<1 ﬁ0> po(1 = po)

where n ~ B(N,1 — pg) and has variance Npy(1 — pg). However, it can be argued that

var(

= var(n +

= var(

there is nothing uncertain about n since it has been observed already. The interest
should be regularly in the uncertainty attached to fo as this quantity is unobserved and

is predicted. The partial variance of prediction fo can be easily computed as

2 2
var(o) = (22 ) wart) = (12 ) Npol1 = ) (63
Note that the partial variance var(fp) is smaller than the total variance var(N) and
they are related by var( fo) = pgvar(N ). We find that the prediction variance is more
appropriate than the total variance for capture-recapture experiments. Hence in order to
assess the uncertainty of the proposed estimators in Chapter 5, the variance estimation
for the modified Chao estimator is constructed by using the advantages of likelihood

framework and considering only on a partial prediction variance var( fo). This chapter

2 £3
bzg?’fé, and the modified
2 J3
bob3 f5 —3f3 +2f
b5 (fs+1)(fs+2)

focuses on fo from the modified Chao estimator, fO(MC) =

Chao estimator with bias correction version 3, fynics) = , as it is

the best version of bias reduction.

6.2 Likelihood framework

In this section a likelihood framework is developed in order to derive the variance of the
modified Chao estimator. As the modified Chao estimator uses only frequencies with
counts of twos and threes, we consider truncating all counts except counts of twos and

threes. This truncated sample leads to a binomial log-likelihood

I = falog(p) + f3log(1 - p), (6.4)
where p = P(X = 2) and 1 — p = P(X = 3) which is uniquely maximized as

al — fo /3

o p 1-p
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. Jo
= . 6.5
P Y s (6:5)
Let E(fy | f2, f3;p2) = €, for £ =0,1,2,...,m and we have
ez = Npy = (eg+e1+ fo+ fs+ef )pa (6.6)
and
E(fs |z #2,3) = NP(X #2,3)
eoter+e; =(eg+er+ fot fs+ef)(1l—p2—p3)
= [(eo+e1+el) + (fo+ f3)](1 — p2 —p3) (6.7)
(1 —p2—p3)
= P2 e 4 fa).
P2 + 3 (f2 4 13)
_ + + (1 — P2 _p3)
We know that eg = (eg+e1+ey + fo+f3)po from (6.6) and eg+e1+e€, = W(fg—l—
2+ D3
f3) from (6.7) and finally ey can be obtained as
eo = (eo +e1+ef + fa+ f3)po
(1 —p2 —p3)
= |t fa) + o+
o + 73 (fa+ f3) + fo+ f3| o (6.8)
Po
= (fy+ fa).
(pQ +p3) (f2 f3)

To develop this further we need to use power series p, = b,6%/g(0) only for z = 0,2,3
SO
bo

(b292 + b393) (fQ + f3) (69)

€y —

and replacing 0 by its maximum likelihood estimator (6) in (6.9):

. bo
€y = 7@2@2 L b3é3) (f2+ f3). (6.10)

Refer to the binomially-truncated log-likelihood in (6.4), fa2log(p) + f3log(1l — p), and
2

fa+ f3

maximum likelihood estimator of p in (6.5), p = Under the power series,

Pz = bi0%/g(0), we have

_ Npo

~ Np2+ Nps
_ P2

C p2tops

B by 6>

N be0? + b393
- by + b3l

b
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The invariance principle is used to find the estimator of 6 as following:
f2 ba

f2+f3:bg+b3é
bz+b3é:f2+f3

ba f2
5 bafs
===, 6.11
bs f2 (6.11)
Replacing 0 from (6.11) in (6.10) and it follows that
. bo
€0 = b2 £2 b3 3 (f2+f3)
bgb—%f—% + bgb—%f—%
3 J2 3J2
bo
- @ (ﬁ_‘_ﬁ) (f2+f3)
b3\
_ bob3 (f2 + f3)f3
b3 faf3+ 13
_ bob3 f3
b 15
. bob3 f3 . . P )
We can see that éy = W corresponds to the modified Chao estimator (fyac)) in
2 J3
Chapter 5.
6.3 Variance of the modified Chao estimator
The modified Chao estimator for fy can be written as
foicy = 0 = —= 2 (fo + fs) = TO)(fa + f2) (6.12)
0(MC) 0 (bgéQ n b393) 2 3 2 3 .
- b . b
where 0 = ba Js and T'(6) = — 0
b3 f2 (b2€92 + b393)

Here the interest is in developing the variance of estimator fo(MC) in (6.12) by mean of
conditioning technique which has a general form for two random variables X and Y as

follows:
var(X) = Elvar(X | Y)] +var[E(X | Y)] (6.13)

(see more details in Béhning (2008) and Van der Heijden et al. (2003a)).
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We apply the concept in (6.13) by using X = T'(0 )(fz + f3) and Y = fo + f3 so that we
achieve
var(é) = var[T(0)(f2 + f3)]

= E[var {TO)(f2 + f5) | (2 + £5)}] +var [E{TO2 + f5) | (2 + )}
(6.14)

To solve the first term in (6.14), we assume that E [var {T(é)(fz + f3) | (f2+ fS)H =
var[T(0)(f2 + f3)]. We have that

var[T(é)(fz + f3)] = (fa + f3)2Ua7'[T(é)]

The delta-method is applied here to deal with var[T(f)]. This leads to var[T(0)] =
T'(9)?var(f). Hence the first term in (6.14) can be written as

B [var {TO)(fo+ fs) | (fo+ £ }| = T @Pvar@)(fo+ £ (6.15)

To consider the second term in (6.14), since E[ TO)(f2+ f3) | (fo+ f3)] = TO)(fo + f3)
so var[T(0)(fz + f3)] can be estimated as T(0)2(fa + f3).

Finally, the partial prediction variance of modified Chao estimator can be derived from

var[T(0)(f2 + f3)] = T'(0)>  war(d)  (fo+ f3)> +T(0)*(f2+ f3).  (6.16)

(1)  (2)use F-information
Let us consider first term (1) in (6.16):
(bQéQ + bgé?’)
T'(0) = —bo(b20? + b363)~2(2b20 + 3b362)
0)? = b2(020° + b30%)~*(2020 + 3b362)?

_ b30% (2by + 3b30)?
08 (by + b3f)4

—~
>
—

T'(0

b2 f3

where § = =
3 fo

, hence

T/(é)2 — babg Lg (2b2 + 3b2f3/f2)2
b f9 (b + bafs/f2)*

_ b3bs f9 (2f2 + 3f3)/ f3

WS [ (fat f3)4/fs
b3S f5 (2f2 + 3f3)°

05 S (ot f3)!
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Second term (2) in (6.16) can be derived by using the delta-method (see Bishop et al.
(1975))as

Y
var(f) = va <b3 f2>

T
N P fo fa
sV <f3> “r <f3) Ve <f3>

where .
AREET Y
VIlg) "\ bh
() r-%)
cov =
/ Chfs - 5)
’ n fs <1 n
and

T
f2 P\ _( bafs(; o\ bafs b2 fi b2f?»< fi’>>)
Vo <f3> cov <f3> ( by fo (1 n) bsn  bsfan b fa\  m

hence
LY (f f
; 2 2 9
’UCLT(Q) ~ vg Ccov v g
/3 I3 f3
b3 f3 fo\ (b5 f5 b3 f5 b3 f3 f3
S R (W B R e R e LA (S L
B\ ) TR B BE n
_ b fE M f 2 ff bifs B3]
bifs  b3fin o b3 fin W3 f5 b3 fin
b2 2
-2(5+%)
b3 f2 f2
_ Bt f)fs
b; O f3
and finally

var[T(0)(f2 + f3)] = T'(0)*Var(0)(f2 + £3)* + T(0)*(f2 + f3)
_ OGRS S (2f2 +3f3)2 3 (f2+ f3)°fs , bgbs  fS (o + f5)
8 1S (ot )t 03 f3 6 f(fo+ f3)? ’
RO S (2f2+3f3)%  BROA S 1

WSS (fat fa) vS 13 (f2+ f3)
_AE 1 [ ea o)

WS (2t fs) faf3

(6.17)
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214 16 .
It can be seen from (6.17) that 263 f2 = fg(MC) as we know from Chapter 5 that
3
. b0b2 f3
Joome) = b3 , hence, the prediction variance of modified Chao estimator (V1) is
3
g bob3 f3 }2 1 { (2f2+3f3)2}
vari(fo) = = 1+
o { B 13 (ot fs) fofs 619
_ Jooro {1 . (2f2+3f3)2}
ot /3 faf3

The prediction variance for the modified Chao estimator can be obtained in another
version by replacing fO(MC) in (6.18) by the modified Chao estimator with bias correc-
bob3 f5 —3f5 +2f2

and replacing —— by
b3 (fs+1)(fs+2) ff

Therefore, the second version of prediction variance for the modified

tion version 3, fo(Mcg), where fO(MC3) =
1

(f2+D(fs+1)
Chao estimator (V2) is

TN (2f2 + 3f3)?

vara(fo) = 550, {“ (f2+1)(f3+1)}

:{b0b§ f3 =312 +2f }2 1 {1+ (2f2 + 3f3)2 }
by (fs+1)(fs+2)) (fa+ f3) (o+D(fs+1) )"

(6.19)

Note that a 95% prediction interval based upon prediction variance can be calculated

as fo £ 1.961/var(fo) for fo and as n+ fo £ 1.961/var(fy) for N

6.4 Simulation study

To explore the performance of two versions of variance estimation (V1 and V2) for
modified Chao estimators (MC and MC3), the simulation study is designed to cover
different models, geometric distribution and mixture of geometric distribution with and
without one-inflation, with population size N = 50, 100, 1, 000. Each simulation scenario
is repeated 1,000 times (B = 1,000). Therefore, the Monte Carlo variance for two

proposed estimator is given by

B
R 1 N . 2
var(fooue))Tre = 5 > { 0(?1)\/10) - E(fo(Mc))} (6.20)
b=1
1 B « 2
var(f (MC3) True = Z{ (MC3 (fO(MC3))} (6'21)
b=1

where
3

fO(MC) = Ti?a
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i 3 =3f342f
0D = (s + 1)(fs + 2)

and B 3(b) B 3(b)
A ~ 2=1 fouey s =1 Joucs)
E(fome)) = — 75 E(fooues)) = — 75

The true standard error is simply computed as s.e.( fo)True = \/var( fo)True-

To evaluate the behaviour and performance of two variance estimations in (6.18) and

(6.19), the expected value of the approximated standard error F {s.e.( fg)} can be cal-

culated by
B
E{sea(io)} = éZv&rl(fo) (6.22)
b=1
. 1 E .
E {Sfe.g( fo)} - \ B vira(fo) (6.23)
b=1
h
o sl = VLA [, 030}
1o fo+ f3 faf3
and
. (f):{f§’3f§+2fz }2 1 {1+ (2f2 + 3/3)? }
MOTVNB DB Rt U (DB

2

bob
Note that % is equal to 1 for geometric distribution (see more detail in section 5.3).
2

E[s’e.(fo)]

The ratio of standard error of estimation ————— is provided for comparing the
S'e'(fO)True
performance of two versions of variance estimation (V1 and V2) which are considered for

two estimators (MC and MC3). R1 and R2 are the ratios of the approximated standard
error from V1 and V2 to the true standard error from modified Chao estimator (MC),
respectively, whereas R3 and R4 are the ratios of the approximated standard error from
V1 and V2 to the true standard error from modified Chao estimator with bias correction

version 3 (MC3), respectively. The comparison can simply be seen as following:

e Comparing var(fo) and vars(fo) for MC

Rl — E[{fe-l(fo)]
s.e.(fomc)) True
Ro Elsles(fo)]

S-e-<f0(MC))True
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e Comparing var(fo) and vars(fo) for MC3

E[s’e.1(fo)]

R3 = -
S.e. (fO(MCS) )True

E[ffe-z(fo)]
S'e'(fO(MCB))True

The reference value for these ratios is equal to one. The more ratio is close to 1, the

more estimation is close to the real value.

6.5 Simulation results

Table 6.1 and 6.2 provide the standard errors and the ratio of standard errors R1-R4
from 1,000 repeated simulation samples. Figure 6.1-6.4 illustrate the graphs of the ratio
of standard errors where blue (R1) and red (R2) lines are used for comparing V1 and V2
for MC whereas green (R3) and purple (R4) lines are used for comparing V1 and V2 for
MC3. The data are generated under the geometric and the mixture of geometric models
with and without one-inflation. Overall, it can be seen from the simulation results that
V2 performs the best with the ratio of standard errors close to one for all conditions
especially the ratio of standard error from V2 to MC3 (R4). For more details, V2 gives
an underestimation of the standard error for MC but gives slightly overestimation for
MC3. On the other hand, V1 gives an overestimation of the standard error for both MC
and MC3 particularly, severe overestimation for MC3 when population sizes are small
(N=50, 100). There is no surprise that V1 is larger than V2 all cases of study due to
V2 is derived from the bias correction version 3 for estimating the variance. However,
the results also show that V1 and V2 are identical when the size of population are
large and they are close to the true variance (MC and MC3 are also identical for large
population size) as we can see that all ratios converge to one (see Figure 6.1-6.4). As
a result, it is reasonable to state that the variance approximation V2 can be utilized to
represent the true variance of both MC and MC3 for the geometric and the mixture of
geometric models with and without one-inflation while the variance approximation V1
can be applied to stand for the true variance of MC and MC3 only the cases of large

population sizes.

6.6 Conclusion

To determine the efficiency of an estimator in capture-recapture study, accuracy and
precision are considered. Accuracy, is provided as the bias of estimator, refers to the

closeness of an estimate to the true value. The estimator which is close to the parameter
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would be more accurate than other estimators which provide a larger different value.
The term precision, is defined as a variance of estimator, refers to the degree of variation
for a series of estimates. The estimator which provides a small variation shows higher
performance of estimation in terms of precision. In other words, the most effective

estimator is the one among all possible estimators which has minimal bias and variance.

The modified Chao estimator (MC) is an asymptotically unbiased estimator and the
modified Chao estimator with bias correction version 3 (MC3) is the best version of
reducing bias when a sample size is small for a power series distribution with and with-
out one-inflation as presented in Chapter 5. This chapter examines an approximation
variance of MC and MC3. Variance estimators are simply derived by the conditioning
method. It is clearly seen that the variation of both modified Chao estimators arise
from two sources; the random variation of sampling n individuals from population and
the variation from the predicted estimate fo. Here we focus on the partial variance
of prediction var( fo) as it has nothing uncertain about observed n. Variance of the
proposed estimators, V1 or vary(fo) and V2 or vary(fo), are given in (6.18) and (6.19)
respectively. The simulation study shows that V2 has the best performance for estimat-
ing the variance of MC and MC3 estimators on average as it provides the closest values
to true variances. Although V1 give a severe overestimates for small sample size, it has
a good performance when the sample size is large as it can be seen that the estimates
of V1 and V2 are slightly different and they are close to true variances. Therefore, it
can be sensibly stated that the variance estimation V2 in (6.19) represent well the true
variance of MC and MC3 whereas the variance estimation V1 in (6.18) can stand for

the true variance of MC and MC3 only in the case of large sample size.
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Table 6.1: Comparison of the standard errors of two formulas with the true
standard error of the modified Chao (MC) and the modified Chao with bias
correction version 3 (MC3) under the geometric model and the geometric model
with 20% and 50% one-inflation

N 0 s.e.(fo)True Elsle.(fo)] MC MC3

MC MC3 V1 V2 R1 R2 R3 R4

The geometric model

50 0.1 64.827 8.738 150.376  13.517 2.320 0.209 17.210 1.547

0.2 74.522 14.341 161.638  21.590 2.169 0.290 11.271 1.505

0.3 199.850  30.545 434.860  46.571 2.176  0.233 14.237 1.525

0.4 162.530 26.444 368.764  41.787 2.269 0.257 13.945 1.580

100 0.1 57.413  17.852 107.226  23.197 1.868 0.404 6.006 1.299
0.2 47626  22.329 69.334  29.388 1.456 0.617 3.1056 1.316

0.3 78.058  37.850 105.909  46.676 1.357 0.598 2.798 1.233

0.4 241.840 60.654 465.971  83.738 1.927 0.346 7.682 1.381

1000 0.1 44.605  41.234 47.182  43.044 1.058 0.965 1.144 1.044
0.2 72.657  68.776 73.182  68.779 1.007 0.947 1.064 1.000

0.3 105.920 100.438 106.509  100.448 1.006 0.948 1.060 1.000

0.4 139.395 131.084 147.045 137.632 1.055 0.987 1.122  1.050

The geometric model with 20% one-inflation

50 0.1  47.452 5.963 114.530  9.305 2.414 0.196 19.207 1.561

0.2 103.091 13.595 238.158  21.506 2.310 0.209 17.517 1.582

0.3 136.309  19.853 308.888  31.031 2.266 0.228 15.559 1.563

0.4 149.598  19.998 353.345  32.676 2.362 0.218 17.669 1.634

100 0.1 82,623 17.314 169.614  24.527 2.063 0.297 9.796  1.417
0.2 57.640  20.052 100.371  27.673 1.741  0.480 5.006 1.380

0.3 116.448 39.281 184.743  52.074 1.586 0.447 4.703 1.326

0.4 132.047 38.704 241.790  54.949 1.831 0.416 6.247 1.420

1000 0.1 40.671  36.869 43.877  39.114 1.079 0.962 1.190 1.061
0.2 70.172  65.453 68.415  63.280 0.975 0.902 1.045 0.967

0.3 95235  89.011 96.906  90.009 1.018 0.945 1.089 1.011

0.4 133.457 123.463 137.098 126.111 1.027 0.945 1.110 1.021

The geometric model with 50% one-inflation

50 0.1 33.435 3.365 84.004 5.373 2,512 0.161 24.963 1.597

0.2 58.237 6.849 141.397  10.914 2.428 0.187 20.644 1.593

0.3 76.461 8.489 190.984  14.160 2.498 0.185 22.498 1.668

0.4 195415 29.327 436.201  45.719 2.232  0.234 14.874 1.559

100 0.1  51.169 6.983 122.652  11.175 2.397 0.218 17.564 1.600
0.2 116.431 18.932 256.318  28.522 2.201 0.245 13.539 1.507

0.3 151.591 24.544 333.705  37.568 2.201 0.248 13.596 1.531

0.4 212.765 33.200 472.461  51.474 2.221  0.242 14.231 1.550

1000 0.1 36.633  30.994 40.141  33.182 1.096 0.906 1.295 1.071
0.2 55.353  49.523 57.691  50.867 1.042 0.919 1.165 1.027

0.3 79.672  71.429 83.545  74.092 1.049 0.930 1.170 1.037

0.4 115963 101.869 118.971 103.684 1.026 0.894 1.168 1.018
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Figure 6.1: Ratio of standard errors from two formulas (V1 and V2) to the true
standard errors of MC and MCS8 when data are generated from the geometric(8)
with and without one-inflation
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Table 6.2: Comparison of the standard errors of two formulas with the true
standard error of the modified Chao (MC) and the modified Chao with bias
correction version 3 (MC3) under the mixture of geometric model and the mix-
ture of geometric model with 20% and 50% one-inflation

N 01 02 s.e-(fo) True E[s’e.(fo)] MC MC3

MC MC3 V1 V2 R1 R2 R3 R4
The mizture of geometric model
50 0.1 0.2 100.032 13.049 229.203  20.751 2.291  0.207 17.565 1.590
0.3 116.737  16.870 262.047  26.255 2.245  0.225 15.533  1.556
0.4 90.156  13.730 210.868  21.722 2.339  0.241 15.359  1.582
0.2 03 130.149 20.195 283.869  30.822 2,181  0.237 14.056  1.526
0.4 232759  33.972 512.965  52.022 2.204 0.224 15.099 1.531
0.3 0.4 208.168  30.522 459.253  47.376 2.206 0.228 15.047 1.552
100 0.1 0.2 58.141  21.444 02.811  28.743 1.596  0.494 4328 1.340
0.3 108.749  35.927 173.895  47.283 1.599  0.435 4.840  1.316
0.4 175.713  38.650 356.337  53.336 2.028  0.304 9219  1.380
0.2 0.3 168.506 38.522 343.785  51.062 2.040 0.303 8.924  1.326
0.4 116.138  36.520 222.276  48.154 1.914  0.415 6.086 1.319
0.3 04 77939 38535 112.229  49.549 1.440 0.636 2912  1.286
1000 0.1 0.2 61.270  57.453 61.413  57.031 1.002  0.931 1.069  0.993
0.3  69.772  65.467 74751  69.605 1.071  0.998 1.142  1.063
0.4 90.335  84.220 93.053  86.172 1.030  0.954 1.105  1.023
0.2 0.3 90.528  85.757 89.096  83.891 0.984  0.927 1.039  0.978
0.4 105.727  99.770 104.243  97.798 0.986  0.925 1.045  0.980
0.3 04 119.845 113.350 123.975  116.546 1.034  0.972 1.094 1.028
The mizture of geometric model with 20% one inflation
50 0.1 0.2 73133  9.069 173.524  14.528 2.373  0.199 19.134  1.602
0.3 77.976  11.162 182.095  17.415 2.335  0.223 16.314 1.560
0.4 80540  9.912 195.570  16.335 2.428  0.203 19.730  1.648
0.2 0.3 163.569  22.641 366.425  34.858 2.240  0.213 16.184  1.540
0.4 128509  16.830 302.899  27.319 2.357  0.213 17.997  1.623
0.3 04 127.299  17.990 297.321  29.150 2.336  0.229 16.527 1.620
100 0.1 0.2 170.650 27.485 365.677  40.456 2143 0.237 13.306 1.472
0.3 138.664  28.634 285.837  41.100 2.061  0.296 9.983  1.435
0.4 137.594  27.055 293.109  40.748 2.130  0.296 10.834 1.506
02 0.3 74339  27.280 121.110  37.644 1.629  0.506 4.440  1.380
0.4 184.055  39.756 380.738  56.244 2.069 0.306 9.577  1.415
0.3 0.4 256494  49.405 533.563  70.400 2.080 0.274 10.800 1.425
1000 0.1 0.2 54436 50.171 57.697  52.580 1.060  0.966 1.150  1.048
0.3 68324  63.119 71112 65.023 1.041  0.952 1.127  1.030
0.4 83.883  77.021 85.667  T7.837 1.021  0.928 1.112  1.011
0.2 03 80.704  75.385 80.815  74.907 1.001  0.928 1.072  0.994
0.4 89.588  83.421 94.545  87.290 1.055 0.974 1.133  1.046
0.3 0.4 104159 97.014 111.465 103.125 1.070  0.990 1.149  1.063
The mizture of geometric model with 50% one inflation

50 0.1 0.2 38490  3.970 97.554  6.489 2.535  0.169 24.576  1.635
0.3 55612  6.383 136.451  10.131 2454  0.182 21.377 1.587
0.4 48758  5.326 124.124  8.614 2.546  0.177 23.303  1.617
0.2 03 65614  7.874 159.964  12.557 2.438  0.191 20.315 1.595
0.4 57.531  6.630 143.518  10.678 2.495 0.186 21.646 1.610
0.3 04 79367  9.051 197.076  14.855 2.483  0.187 21.775 1.641
100 0.1 0.2 120411 16.428 270.033  25.281 2243 0.210 16.437 1.539
0.3 99.384  16.855 222252  25.314 2.236  0.255 13.186  1.502
0.4 92761  13.456 215.555  21.370 2.324  0.230 16.020 1.588
0.2 0.3 155439  23.073 343.368  35.457 2.209 0.228 14.882  1.537
0.4 112.252  20.952 247.096  31.566 2.201  0.281 11.794  1.507
0.3 04 176.719  27.999 388.222  42.705 2.197  0.242 13.865 1.525
1000 0.1 0.2 48444  42.466 50.710  43.606 1.047  0.900 1.194  1.027
0.3 61.014  53.237 61.523  53.006 1.008  0.869 1.156  0.996
0.4 69.385  60.063 75.067  64.052 1.082  0.923 1.250  1.066
02 0.3 64319  57.619 69.113  61.166 1.075  0.951 1.199  1.062
0.4 71192  63.463 79.060  69.492 1.111  0.976 1.246  1.095
0.3 0.4 89397  79.680 95.995  84.595 1.074  0.946 1.205  1.062
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Figure 6.2: Ratio of standard errors from two formulas (V1 and V2) to the true
standard errors of MC and MCS8 when data are generated from the mixture of
geometric (61,02 )
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Figure 6.4: Ratio of standard errors from two formulas (V1 and V2) to the true
standard errors of MC and MCS8 when data are generated from the mixture of
geometric(01,62) with 50% one-inflation



Chapter 7

Conclusion and Future Work

This chapter provides the discussion and conclusion of this thesis. Some further works
are also examined in the last section in order to extend and develop the research in the

future.

7.1 Discussion and conclusion

Capture-recapture technique is an important topic in many research areas. It is used to
estimate the target elusive population size N. The problem consists in predicting a value
for the number of units that have been missed by using the information collected from
the captured units during a study period. The predicted value of missing units depends
on the model for the capture of units based on a zero-truncated count distribution. The
typical model is the Poisson or the binomial. The various models and estimators were
developed and proposed to improve inferences in capture-recapture studies which always
rely on certain assumptions but might be violated in real situations due to time effect,
heterogeneity or behavioural response among others. Heterogeneity in the capture prob-
abilities is a common occurrence. A simple model is not flexible enough to capture the
variation in the recapture probability for the distinct units of real-life population so
the mixture is considered as a natural model for modelling a heterogeneous population.
Additionally, some capture-recapture data show some sort of one-inflation in the count
distribution. Some portion of the population is mostly captured only once. This may
be a consequence of many factors such as trap avoidance, low probability of recapturing
the same individual in large cities/areas within a short period of survey, misclassifi-
cation and so on. As a result of one-inflation being present in the count data, some
fitting models suffer from a boundary problem and some estimators provide extreme
overestimation of the population size, particularly, Chao’s lower bound estimator. The
aim of this thesis is to develop the estimators and the models specifically designed to

estimate the size of a population for one-inflated capture-recapture count data allowing

141



142 Chapter 7 Conclusion and Future Work

for heterogeneity. These models are based upon the geometric distribution as it is a
remarkably simple distribution with memoryless property and also provides a flexible
model for some heterogeneity in the count data. The estimators are developed under

three concepts.

The first concept is suggested in Chapter 3. It is based on a modification by truncating
singletons and applying the conventional Turing and maximum likelihood estimation
approach to the one-truncated geometric data for estimating the parameter pg. These
estimators Py are applied to the Horvitz-Thompson approach for the new population
size estimators T_OT and MLE_OT which are denoted as modified Turing and modified
MLE estimators, respectively. The simulation results provide evidence that the T_OT
and MLE_OT can solve the problem of one-inflation. They show a good performance
of accuracy and perform best with the smallest mean square error for all conditions of
study when the comparison is done among existing conventional estimators. Although
both proposed estimators can perform very well and reasonable under the one-inflation,

T_OT gives superior results compared to MLE_OT.

The second concept is the model-based approach. It focuses on developing a statistical
model that describes the mechanism to generate the extra of count ones as shown in
Chapter 4. The new estimator MLE_ZTOI is developed from a maximum likelihood
approach by using the nested EM algorithm based upon the zero-truncated one-inflated
geometric distribution. Maximum likelihood approach is interesting and indicated to
use for developing an estimator as it has desirable mathematical and optimality prop-
erties, particularly, it becomes minimum variance unbiased estimator as the sample size
increase. These properties can be confirmed by the simulation studies in Section 4.6.
The simulation results also show that the new estimator MLE_ZTOI can cope with
the problem of one-inflation by reducing an overestimation and perform best among
all proposed estimators, T_OT, MLE_OT and MLE_ZTOI and existing conventional
estimators, Chao, Turing and MLE.

As it is shown in Chapter 2 and 3 that a classical Chao’s estimator is popular and
frequently used in capture-recapture study but it is severely affected by one-inflation
due to the fact that its formula relates to a square of singletons, n + f2/(2f2). Hence
the last concept focuses on modifying the classical Chao estimator by avoiding using
the frequency of count ones for estimation. Chao’s estimator is modified to involve
the frequency of counts of twos and threes instead of the frequency of counts of ones
and twos (see Chapter 5). The modified Chao estimator (MC) can retain the good
properties of a classical Chao estimator. It is asymptotic unbiased estimator for a
power series distribution with and without one-inflation. It provides a lower bound
estimator under a mixture of power series distributions with and without one-inflation.
These good properties can be seen from theoretical, analytic and simulation results. It
shows a good performance in simulation studies and it is applicable in real situations.

However, the modified Chao estimator is a biased estimator when the sample size is
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small, therefore three bias-correction versions of the modified Chao estimator (MC1,
MC2 and MC3) have been developed. The frequency of counts is assumed to follow a
Poisson distribution which is a classical assumption in analysis of frequency table. The
property of equidispersion and the third moment of the Poisson distribution are used to
reduce the bias. All bias-reduction versions can reduce the bias considerably as can be

seen from simulation studies, especially the best one is the bias reduction version three

(MC3).

Furthermore, a variance approximation of the modified Chao estimator (MC) and the
modified Chao estimator with bias reduction version 3 (MC3) are examined in Chapter
6. A conditioning technique is used to derive the variance of the estimator MC and
MC3. The variation of MC and MC3 estimator arise from two sources. The first source
is from the random variation of observed sampling from population (n). The second is
from the variation of the predicted estimate ( fg). As there is nothing uncertain about
observed n we focus on constructing the partial variance of prediction, var( fg), for both
MC and MC3, denoted by V1 and V2, respectively. The simulation study presents that
V2 has the best performance for estimating the variance of MC and MC3 as it provides
the closest values to the true variance. V1 gives severe overestimates for small sample
size but it is asymptotically unbiased when the sample size is large. Therefore, it can be
reasonably stated that the variance estimation V2 approximates well the true variance
of MC and MC3 whereas the variance estimation V1 can stand for the true variance of

MC and MC3 only in case of a large sample size.

It can be seen clearly that all proposed estimators based on different concepts can cope

with the problem of one-inflation. Each concept has a different strength and limitation.

1. The first (T_OT) and third (MC and MC3) concept are simpler whereas the second

(MLE_ZTOI) concept is more complex and more computational demanding.

2. The second concept uses a model-based approach to explain the extra-ones whereas
the first and third concept ignore the information from count of ones that is the

main information of data.

3. The first and second concept are a parametric approach whereas the third concept

is completely nonparametric.

4. Although the second concept produces the best estimates among estimators based

on the parametric approach, it may experience boundary problems.

5. The third concept has neither an identifiability problem, nor is there need to specify

a mixing distribution.

6. The first and second concept are suitable for a heterogeneous population following

the geometric distribution with one-inflation whereas the third concept is more
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flexible as it can be applied for the population following a power series distribution

and the mixture of power series distribution with and without one-inflation.

7. The first and second concept are good for all sizes of population whereas the third
concept (MC) is good for the large size of population. However, the bias correction
version 3 (MC3) in the third concept can cope with this problem. MC3 is also

good for all sizes of population.

8. The first and second concept provide small variances whereas the third concept
provides large variances. In other words, the first and second concept are superior

to the third concept in terms of precision.

In this thesis, all proposed estimators are developed under one-inflated capture-recapture
count data. All procedures and algorithms for calculations have been done by R pro-
grammang. For efficient estimation, it is necessary to check and ensure the validation of
all basic assumptions of the considered estimators. Here, the ratio plot is used as pre-
liminary investigating tool for the presence of one-inflation. Alternatively, the likelihood

ratio test can also be used for testing the distribution with one-inflation.

7.2 Future work

Although the results of all proposed estimators and models have illustrated the efficiency
of dealing with the zero-truncated capture-recapture count data with one-inflation, there

are some points that could be further developed and extended.

The generalized modified Chao estimator of population size for capture-recapture study
might be another aspect for further work if covariates are available. The modified Chao
estimator provides a lower bound of the population size under one-inflated unobserved
heterogeneity as shown in Chapter 5. If heterogeneity is observed and available in form
of covariates, this information can be used to reduce the bias of the modified Chao

estimator for one-inflation (see Bohning et al. (2013b) for motivation).

The modified Chao estimator, using likelihood framework in Section 6.2, is extended to
include covariate information working directly with a truncated power series likelihood
rather than with the complete power series likelihood, truncating all counts except counts
of twos and threes. Let (X1,21),...,(Xn,2n) be a sample with covariate information
where z; is a p-dimensional vector additional information on unit . It can be assumed
that the heterogeneity can be captured by mean of a power series regression model with
log-link function

0; = exp(a + 8T %) (7.1)

for i = 1,..., M where M is the total number of covariate combinations with ny + ny +

...+ npyr = n and n; is the frequency of covariate combination i. The associated truncated
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power series model with all counts truncated except X; = 2 and X; = 3 is

1

PXi=2)=(=p) = 770

and
(b3/b2)0;

P(Xi=3)=pi = 7 5 7335

The truncated power series likelihood is given as

M

H(W)fmx<%>m

M

B 1 fi2 (bg/bg) exp(a + BTZi) fi3
- U <1 T (b /b2) expla + 6%)) ) <1 + (by/ba) expla + B%))

where f;; is the frequencies of count j in the covariate combination i whenj =2 or j =

(7.2)

3. The likelihood in (7.2) can be written in another form as

M M S ' fis
H(l —p-)fﬂpfi?’ = H < 1 >f2 < exp(a + 87z) (7.3)
i=1 v o L+ exp(a’ + BT%) 1+ exp(a’ + 1)

where o = log(bs/by) + . Therefore, the log-likelihood becomes

M
10 | f2, f3) = Zfzglog (b3/b2)0i) = > (fiz + fiz) log[1 + (bs/b2)6i]  (7.4)
=1

=1

Hence, the idea is to use this likelihood to estimate o and 3 in the model (7.1) and then
develop from here inference for a generalized, modified and covariate-adjusted Chao

estimator.

Other ideas for future work include on improved diagnostic methodology beyond the
ratio plot for diagnosis of one-inflation. Another interesting area of future work is

investigating count inflation other than those of ones.

In summary, several approaches for modelling and estimating in capture-recapture study
have been developed. A new crucial problem in many fields is presence of one-inflation
in capture-recapture count data. It affects the efficiency of inference. The new proposed
models and estimators for one-inflated heterogeneous population under three concepts
in this thesis have shown the good performance to cope with this situation. It can be
expected that the knowledge gained from this thesis will lead to considerable impact
in theoretical and practical research in capture-recapture methods based on counting

distribution.
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