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Currently, engineering-scale shallow sediment characterisation relies heavily on core analysis

and cone-penetrometer tests. Unlike reservoir-scale exploration, little quantitative informa-

tion is derived from seismic reflection data, leaving largely unexploited their intrinsic value

as a remote characterisation tool. In this work, we develop seismic modelling and inversion

techniques custom-built for limited-o↵set, limited-bandwidth, ultra-high-frequency (UHF,

0.2-4.0 kHz) seismic reflection data, to obtain a robust decimetric-resolution elastic model

of the top 50 m below the seabed. Dedicated signal processing procedures are devised in or-

der to account for the specific bandwidth and acquisition characteristics of UHF data, with

the accuracy and the e�ciency necessary for pre-stack waveform inversion. A deterministic

pre-stack waveform inversion strategy is presented and tested on both complex synthetic

and real data. Robustness to noise and sensitivity to the multi-parameter elastic model

are tested in relation to the acquisition geometry and the range of physical properties. An

original stochastic inversion strategy based on a genetic algorithm is developed in order to

improve the robustness to inaccurate starting models. Complex synthetic tests show that this

outperforms a conventionally parametrised genetic algorithm, and a real case study demon-

strates that this is capable of characterising remotely decimetre-thick shallow weak layers.

By using limited a-priori information and minimal data pre-processing, an excellent agree-

ment with the geotechnical ground truth is attained. The deposition of submarine slopes

with realistic permeability layerings is simulated, and time-lapse multi-channel UHF seismic

data are computed to detect the development of localised excess pore pressure anomalies.

The results show that seismic data are sensitive to destabilising excess pore pressure levels

with a decimetric resolution. Provided that adequate signal-to-noise ratio data are available,

these can be quantitatively interpreted to constrain the in-situ e↵ective stress conditions,

and therefore better characterise the stability of a slope. This work demonstrates that the

inversion of UHF seismic data has the potential to become an important practical tool for

submarine ground model building in spatially heterogeneous areas, reducing the reliance on

expensive and time-consuming coring campaigns.
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1
Introduction

In this chapter I introduce the reader to the principles of seismic inversion, and

discuss its possible application for the detection of mechanical anomalies rele-

vant to shallow geohazard. The thesis structure is presented, including a brief

summary of each chapter.

1.1 The seismic inverse problem

Seismic wave propagation induces a transient deformation field in the subsurface,

which is a function of the mechanical properties and density of the host mate-

rial. As seismic waves propagate, reflections are generated at locations where

the physical properties relevant to wave propagation change (Aki and Richards,

2002). The architecture, amplitude and phase of the reflections recorded in seis-

mic surveys are therefore dependent on the distribution of such properties in

the subsurface. The aim of seismic interpretation is to infer information from

the signal about the propagation medium, and thereby obtain a model of the

underground geology, under the assumption that variations in texture, lithology

and pore-filling fluid have a footprint in the mechanical response to the seismic
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CHAPTER 1. INTRODUCTION

stress-field (Sheri↵ and Geldart, 1995; Mavko et al., 2009).

Seismic inversion is a quantitative approach to the interpretation of seismic

data, whereby the state of knowledge about a given parametrisation of the sub-

surface is iteratively improved by reducing a measure of the distance between a

computed seismic dataset and the observations (Tarantola, 2005). Such a quan-

tity is referred to as the objective or misfit function.

The recorded seismic reflection signal is referred to as a seismogram (S), which

is a result of the interaction between the source wavelet signature (w) and the

impulse response of the subsurface, or Green’s function (G) (Aki and Richards,

2002):

S(t,x
s

,x
r

) = w(t) ⇤G(t,x
s

,x
r

) (1.1)

where x
s

and x
r

are, respectively, the position of the source and the receiver, and

⇤ indicates the convolutional operator. The earth’s impulse response (G) is, in

turn, a function of the physical model (m) through the wave propagator (F), or

forward operator (Aki and Richards, 2002; Fichtner, 2011):

G(t,x
s

,x
r

) = F(m) (1.2)

The subsurface model (m) is the unknown of the seismic inverse problem. In

the general formulation of an anisotropic visco-elastic medium, it comprises the

Hooke’s tensor, density and attenuation factors for P and S wavefields (Aki and

Richards, 2002; Mavko et al., 2009). Provided that the source wavelet and acquisi-

tion geometry are known, a discrete parametrisation of the propagation medium,

i.e. a discrete subset of model parameters, can in principle be solved for within

the chosen physical approximation (Fichtner, 2011).

However, although Eq. 1.1 is linear, the dependency of the Green’s function

on the model parameters is non-linear (Eq. 1.2), hence no exact inverse oper-

ator exists to obtain the physical model from the data (Tarantola, 2005), and

the solution must be estimated iteratively. The problem is also non-unique, i.e.

potentially infinite combinations of parameter values can describe the observed

data equally well. Such problems are described as being ill-posed.

The seismic inverse problem is primarily ill-posed as a consequence of inherent

limitations in the acquisition geometry and source characteristics, namely the

limited source-receiver aperture and limited bandwidth. This is also a function
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of algorithmic factors, such as the physical parametrisation of the medium and

the characteristics of the misfit criterium (e.g., Operto et al., 2013).

1.1.1 Pre-stack and Post-stack data

In multi-channel seismic exploration (MCS), the wavefield reflected at physical

discontinuities in the subsurface is recorded at multiple distance from the source of

acoustic energy. For marine MCS, the multiple receivers are towed in a submerged

streamer behind the source, recording a limited range of o↵sets as the source-

receiver acquisition system moves along a survey line that is typically much longer

than the maximum source-receiver o↵set. As a result, each point of the subsurface

is sampled by the wavefield multiple times, at a range of di↵erent reflection angles.

During processing, this data redundancy is exploited to attenuate the random

noise energy by summing the reflections originating at each common reflection

point (CRP), after correcting for the reflection kinematics, such as through normal

moveout correction or migration imaging. This process is known as stacking, and

reduces the random noise energy by a factor proportional to
p
N , where N is

the number of traces associated to the same reflection point in the subsurface

(Sheri↵ and Geldart, 1995). Seismic data before stacking are referred to as pre-

stack, whereas the data after stacking are post-stack data.

Pre-stack data contain reflections originating at the same point in the sub-

surface and recorded at several source-receiver o↵sets. Therefore, in spite of the

higher noise energy, not only do such data contain information about the re-

flection amplitude, but also about the kinematics of the wavefield through the

reflection moveout (Sheri↵ and Geldart, 1995). Furthermore, the angle-dependent

reflection coe�cient at an discontinuity is dependent on both P-wave and S-wave

impedance contrasts (e.g., Koefoed, 1955; Aki and Richards, 2002), because of

the physical coupling of compressional and shear waves (Zoeppritz equations; Aki

and Richards, 2002).

Post-stack data (Sheri↵ and Geldart, 1995) are theoretically made up by nor-

mal incidence reflection traces only, in which a higher signal-to-noise ratio has

been obtained at the expense of the sensitivity to the multi-parameter elastic

model (Aki and Richards, 2002). As a consequence of the lack of reflection move-

out, post-stack seismic data pose very limited independent constraints on the
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kinematics of the wavefield, and are only dependent on the high-frequency acous-

tic impedance distribution, i.e. the product of P-wave velocity and density.

The inversion of post-stack data for the elastic parameters therefore is heav-

ily ill-posed (Tarantola, 2005; Operto et al., 2013), limiting the possible inversion

products to an appropriate parametrisation in terms of acoustic impedance within

the seismic spatial resolution (Lindset, 1979; Lee et al., 2013; Vardy, 2015). Most

often, the post-stack forward model is cast as a convolution between the seis-

mic wavelet and the series of reflection coe�cients in the time domain, which is

a zero-o↵set acoustic Green’s function. The main assumptions involved in the

time-domain convolutional approach are: (1) source and receiver locations coin-

cide, which requires the geology to be horizontally stratified or, if otherwise, that

the reflections have been e↵ectively migrated (Sheri↵ and Geldart, 1995); (2) the

observed data are primary reflections, excluding converted waves and internal

multiples; (3) the wavelet is stationary, i.e. the system is Linear and Time In-

variant (Proakis and Manolakis, 2006); (4) a long-wavelength acoustic impedance

model is available, to turn the relative impedances into true impedances and map

the time-domain solution into a depth-model (Lindset, 1979; Vardy, 2015).

Pre-stack inversion is performed on the multi-o↵set seismic data, before stack-

ing traces originating at coincident CRPs. Thanks to the dependency of the

multi-angle reflection wavefield on the elastic medium, this provides valuable

constraints on lithology, pore-filling fluid properties, and drilling hazards, and is

therefore a standard reservoir characterisation tool in hydrocarbon exploration

(Ostrander, 1984; Ruthenford and Williams, 1989; Mallick et al., 2000; Contr-

eras et al., 2014). Amplitude Versus O↵set/Angle (AVO/AVA) methods infer the

elastic properties of the reflectors by fitting the reflection amplitudes to an ap-

proximation of the Zoeppritz equations (Ruthenford and Williams, 1989), after

the data have been converted from the time-o↵set domain to the time-reflection

angle domain. Extended elastic impedance (EEI) methods are equivalent to a se-

ries of post-stack inversions applied to common-o↵set gathers (e.g., Mallick et al.,

2000), indirectly obtaining an elastic description of the seismic interfaces by in-

terpreting the changes in the estimated reflection coe�cient with the reflection

angle. Though providing a more complete description of the elastic medium, EEI

and AVO/AVA methods share with the post-stack inversion the limitations of a

time-domain convolutional process (Igel et al., 1996; Mallick and Dutta, 2002;

Mallick and Adhikari, 2015).
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Full Waveform Inversion (FWI ) (Mora, 1980; Tarantola, 1984, 1986) of reflec-

tion data, in contrast, obtains a subsurface model by iteratively minimising the

di↵erence between the observed and the computed pre-stack waveforms, including

the seismogram in its entirety. Unlike AVO/AVA methods, the forward model

is the wave equation, which accounts for all the propagation phenomena within

the chosen physical approximation. The inversion of the full waveform often out-

performs convolutional methods, especially when complex subsurface structures

produce layer interference and tuning, or velocity gradients are present that create

uncertainties in the o↵set to angle conversion (Xu et al., 1993; Igel et al., 1996).

Furthermore, FWI in principle optimises both the high and low-frequency of the

model (Mora, 1980; Jannane, 1989), providing a broadband distribution of the

elastic properties in the subsurface (Mallick and Adhikari, 2015), with a vertical

resolution in the order of half a wavelength (Virieux and Operto, 2009; Operto

et al., 2013). Despite the higher computational e↵ort, thanks to recent advances

in the availability of high-performance computing, FWI is now a widespread pro-

cedure in reservoir characterisation (Asnaashari et al., 2012; Mallick and Adhikari,

2015; Aleardi and Mazzotti, 2017), as well as in pure seismology (Bozdag et al.,

2011; Fichtner, 2011; Morgan et al., 2013) and seismic oceanography (Wood et al.,

2008; Dagnino et al., 2017).

By contrast, very little has been published about the full waveform modelling

and inversion of high-frequency marine seismic reflection data, and waveform-

based interpretation techniques are rarely applied to the remote characterisation

of shallow sub-metric targets. State-of-the-art seismic data acquisition and in-

version is more commonly orientated towards hydrocarbon (e.g., Mallick and Ad-

hikari, 2015) and complex geological (e.g., Gulick et al., 2013; Morgan et al., 2014)

targets, with a metric to decametric resolution, and a target depth in the order of

kilometres. In ultra-high-frequency (UHF, 0.2-4.0 kHz) shallow marine data for

target sizes in the order of decimetres and depths in the order of metres, specific

acquisition designs and source bandwidths need to be taken into account. Also,

the range of physical properties’ values of shallow sediments influence the sensi-

tivity of the seismic data to the di↵erent elastic properties and density, therefore

the inverse problem requires appropriate model parametrisations.

In this Thesis, Chapter 2 addresses specific modelling issues of UHF data.

Chapter 3 demonstrates that it is possible to apply FWI to shallow marine
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multi-channel data, accounting for the specific acquisition geometry and data

sensitivity.

1.1.2 Deterministic and Stochastic approaches

The most common implementation of the FWI is the iterative update of a starting

background model, based on the local gradient and curvature of the objective

function (Tarantola, 1984, 1986; Virieux and Operto, 2009; Fichtner, 2011).

Since the objective function has a highly non-linear dependency on the long

wavelength of the model, FWI needs a starting solution accurate enough to match

the traveltime with an error less than half the wave-period dominating the mis-

fit (Virieux and Operto, 2009; Fichtner, 2011) in order to avoid cycle skipping

phenomena (e.g., Mei et al., 2014). Several potential solutions to the cycle skip-

ping problem have been proposed. For example, Bunks et al. (1995b) developed

the popular multi-scale approach, in which progressively higher frequencies are

inverted. Similarly, Warner and Guasch (2014) proposed an adaptive waveform

inversion, in which an optimum predictive filter is applied at each iteration with

the aim to reduce the time shift between the computed and the observed wave-

form.

Alternatively, the inversion can be tackled with a Bayesian stochastic ap-

proach, by sampling the space of possible solutions (model space) with a den-

sity proportional to the probability posterior to the observation of the experi-

mental data, or Posterior Probability Density function (PPD) (Sambridge and

Mosegaard, 2002; Sen and Sto↵a, 2013). In addition to being less reliant upon

the accuracy of the starting solution, stochastic seismic inversion, in principle, al-

lows extra quality control information to be extracted from the PPD (Sambridge,

1999; Tarantola, 2005), in particular the multi-parameter solution uncertainties

and crosstalk resulting from the noise content, the limited o↵set and bandwidth

of the data, and the inherent interdependency of coupled parameters.

Stochastic optimisers such as Genetic Algorithm (Goldberg, 1989), Simu-

lated Annealing (Rothman, 1985) and Particle Swarm Optimisation (Kennedy

and Eberhart, 1995), implement analogies between numerical optimisation and

natural phenomena to bias the search towards the most promising regions of

the model space. They represent a compromise between a systematic explo-

ration of the whole model space, and the exploitation of the current state of
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information about the model (Sambridge and Mosegaard, 2002). Although the

resulting model distributions are not accurate representations of the PPD (Sen

and Sto↵a, 1996; Sambridge, 1999; Sambridge and Mosegaard, 2002; Aleardi and

Mazzotti, 2017), such methodologies are computationally more a↵ordable than

a pure Bayesian approach, and more robust to local minima entrapment than a

deterministic algorithm (Tarantola, 1984; Sen and Sto↵a, 2013; Sambridge and

Mosegaard, 2002).

In Chapter 4, I show the application of a genetic algorithm-based stochastic

methodology to the inversion of pre-stack UHF waveforms.

1.2 Applications of seismic inversion for shallow

sediment characterisation

The physical properties distribution of the top 100 meters below seafloor influ-

ences a wide range of o↵shore engineering contexts and environmental hazards:

shallow landsliding on low-angle slopes is preconditioned by the presence of sub-

metric thickness sedimentary horizons with specific soil properties, either acting

as a glide plane, or inducing localised low e↵ective stress anomalies by controlling

pore-fluid migration pathways (L’Heureux et al., 2012; Vardy et al., 2012); the

suitability of a carbon capture and storage (CCS ) site depends on the decimetric

to centimetric scale permeability distribution, and the way this is modified by

local changes in e↵ective stress (e.g., Cevatoglu et al., 2015); engineering design

of stable and resilient o↵shore structures, and safe hydrocarbon extraction and

transport, benefit from a detailed knowledge of the shallow subsurface response

to loading (e.g. Campbell, 1984). A quantitative near-seafloor physical model is

therefore a necessity, with a view to reducing the anthropic impact on the marine

environment (and vice versa), and minimise human and economic losses.

Current methods for the characterisation of shallow marine sediments rely

almost exclusively on direct sampling of the sub-seabed, via boreholes, physical

measurements on cores (e.g., Multi Sensor Core Logging, MSCL), and Cone Pen-

etrometer Tests (CPT ) (Stoker et al., 2009; Vanneste et al., 2015). These provide

decimetric to centimetric vertical resolution information about the top 10 meters

below seafloor at a specific location. However, achieving a horizontal resolution

su�cient to capture the lateral variability of the shallow geology is expensive and
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time consuming. Furthermore, soft soils can be deformed during coring, altering

the texture and mechanical behaviour of the sample (Vardy et al., 2017).

Unlike basin-scale geological exploration and hydrocarbon prospection, non-

invasive geophysical characterisation techniques are largely underused in shallow

ground-model building. These are most often limited to seismic reflection sub-

bottom profiling and qualitative seismic-to-core calibration (e.g., Vanneste et al.,

2015), whereby a qualitative or semi-quantitative interpretation of the reflection

amplitude and architecture guides the interpolation between in-situ measure-

ments (Forsberg et al., 2017). This approach is based on the strong assumption

of lateral continuity of the seismic reflector over large (100-1000 meters) distances,

and relies on the accuracy of the time-to-depth conversion of the seismic data.

Quantitative geophysical interpretation techniques have been long recognised

in academia as a tool for the characterisation of shallow sediments (e.g. Schock

et al., 1989; Panda et al., 1994; Nauroy et al., 1998; Pinson et al., 2008), and

have recently gained popularity (e.g., Dugan and Sheahan, 2012; Vanneste et al.,

2012, 2013; Vardy et al., 2017), thanks to the availability of high-performance-

computing resources, and as a consequence of the global financial situation, which

makes a priority to extract as much information as possible from existing datasets.

In particular, seismic methods can provide important constraint on the low-strain

mechanics of the propagation medium, and have the potential to cover large areas

in a quick and cost-e↵ective way, providing an horizontal resolution otherwise

impossible to achieve (Vardy, 2015).

Specifically, ultra-high-frequency multi-channel seismic surveys can provide

decimetric-resolution images in shallow marine environments, and a penetration

depth in the order of tens-to-hundreds of meters. This has proven to have the po-

tential to identify and quantitatively characterise sedimentary beds acting as pre-

conditioning factor of submarine slides using post-stack seismic inversion (Vardy

et al., 2012; Vanneste et al., 2012; Vardy, 2015); reconstruction of the time-

dependent acoustic properties of CCS sites from UHF data has been used to

detect gas migration pathways (Cevatoglu et al., 2015); while quality factor in-

version of broadband data (0.2-13.0 kHz) has been used to characterise the grain

size distribution of the near-seafloor (Pinson et al., 2008).

However, we do not propose that seismic remote characterisation should re-

place in-situ soil sampling and geotechnical measurements; rather, we suggest

8
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that, thanks to the time-e↵ective acquisition over large areas, and the non-

destructive nature, quantitative interpretation of seismic data has the potential

to integrate geotechnical and geological data in geohazard assessment, and/or

optimise the design of geotechnical data acquisition campaigns (Carlton et al.,

2017).

In particular, the use of seismic reflection data for the remote characterisa-

tion of shallow sediments, requires that three inherent limitations are taken into

account:

1. Spatial resolution: the seismic resolution and sensitivity to the broadband

subsurface model depend on the source bandwidth, the acquisition design

and the seismic velocities. As a consequence, landslides’ glide planes and

fluid migration pathways can have sub-seismic dimensions (millimetric to

centimetric; Viesca and Rice, 2012). Consolidation trends are di�cult to

infer from limited o↵set, limited bandwidth seismic data (Jannane, 1989;

Vardy, 2015), and the reconstruction of the full model bandwidth most

often requires integration with a-priori geotechnical information.

2. Stress range: seismic wavefield are sensitive to the mechanical properties

of the sediments because they produce a deformation field; the energy pro-

duced by a controlled source seismic experiment is normally low and there-

fore sensitive to the elastic part of the mechanical response of the propa-

gation medium (Powrie, 2002; Mavko et al., 2009). This excludes strain-

softening e↵ects, or soil activity, which can be a factor in submarine slope

instability (Viesca and Rice, 2012; Madhusudhan et al., 2017).

3. Relevant physics: the set of parameters seismic data is sensitive to (elastic

moduli and density) is only partially overlapping with the domain of the

properties necessary to describe the behaviour of a sediment for geohazard

or engineering purposes, e.g., grain size, e↵ective stress, permeability. Per-

meability, in particular, is only loosely constrained by seismic data (Vardy

et al., 2017).

Seismic reflection data are sensitive mostly to geotechnical and geological anoma-

lies a↵ecting the bulk properties of the sediment body as an equivalent propaga-

tion medium (Mavko et al., 2009). Among the most relevant for o↵shore engineer-

9



CHAPTER 1. INTRODUCTION

ing design and geohazard assessment, seismic data can be useful to characterise

the following:

1. Localised anomalies of e↵ective stress induced by permeability heterogeneities

at specific stratigraphic horizons (Dugan and Flemings, 2000); such changes

in the relative proportion of pore space and soil grain volume have a strong

e↵ect on the seismic response of a sediment, especially on P-wave propaga-

tion (Vardy et al., 2017).

2. Variations in the compressibility of the fluid phase filling the pore space have

a strong e↵ect on the sediment bulk compressibility and density. Therefore

partial gas saturation, for example, has a definite signature on the ratio

between the P- and S- wave seismic velocities (Ruthenford and Williams,

1989).

3. Variations of lithology can produce detectable seismic layerings (Igel et al.,

1996; Mallick and Adhikari, 2015).

UHF seismic data can therefore contribute to identifying areas preconditioned

to landsliding, where overpressure build-up is a factor in the in-situ stability

conditions (Dugan and Sheahan, 2012; Vanneste et al., 2015; Vardy et al., 2017),

detect shallow gas saturation (Vanneste et al., 2013; Morgan et al., 2014), fluid

leakage from storage sites (Cevatoglu et al., 2015), and lithological heterogeneity.

As an example, in Chapter 5, I show that UHF seismic data are sensitive

to the development of weak layers due to shallow excess pore pressure build-up

during deposition, and that it is in principle possible to invert those data using

the techniques developed in Chapter 3 and 4.

1.3 Thesis outline

The work presented in this Thesis attempts to answer the following fundamental

questions:

1. Is it feasible to model and invert the full waveform of ultra-high-frequency

marine reflection data?

2. Is this robust to the bias of inaccurate a-priori information?

3. Can we detect sub-metric e↵ective stress anomalies in submarine slopes?
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1.3.1 Chapter Synopses

Chapter 2 addresses the choice of the forward operator for the full waveform

inversion and details the specific techniques developed to account for the spe-

cific characteristics of ultra-high-frequency seismic reflection data. Part of this

chapter has been published as an appendix to (author list reflective of relative

contributions): Provenzano G., Vardy M.E. and Henstock T.J. 2017. Pre-stack

full waveform inversion of ultra-high-frequency marine seismic reflection data.

Geophysical Journal International 209, 1593-1611.

Chapter 3 presents a deterministic pre-stack inversion approach for the char-

acterisation of the elastic properties of the shallow subsurface with a decimetric

resolution. Robustness to noise and sensitivity issues are discussed in relation

to the chosen parametrisation. A real case study is presented where the elastic

FWI results are compared with the geotechnical ground-truth. This chapter has

been published as (author list reflective of relative contributions): Provenzano

G., Vardy M.E. and Henstock T.J. 2017. Pre-stack full waveform inversion of

ultra-high-frequency marine seismic reflection data. Geophysical Journal Inter-

national 209, 1593-1611.

Chapter 4 explores the potential of the Genetic Algorithm as a stochastic op-

timiser robust to local minima entrapment, and as a tool for the estimation of

solution confidence intervals. An original exploration strategy has been developed

and combined with a specific choice of objective function. It is finally shown that

genetic algorithm-based FWI of UHF data is able to identify and characterise a

decimetre-thick weak layer in a real case study, and detect its partial gas satu-

ration. This chapter has been submitted to Geophysical Journal International

for publication (author list is reflective of relative contributions): Provenzano G.,

Vardy M.E. and Henstock T.J. 2018. Decimetric-resolution stochastic inversion

of shallow marine seismic reflection data; dedicated strategy and application to a

geohazard case study. Submitted to Geophysical Journal International.

Chapter 5 presents a set of synthetic consolidating slope models producing com-

plex overpressure profiles during deposition as a consequence of permeability het-

erogeneities. Time-lapse multi-channel seismic data are generated to test the sen-
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sitivity to potentially destabilising under-compaction anomalies. The computed

seismic data present similar characteristics to the ones which seismic inversion has

been applied to in the previous chapters, and we discuss the potential application

of seismic inversion as a means to identify shallow excess pore pressure anomalies.

This part of the work uses, and adapts to the heterogeneous case, a mathematical

formulation developed by A. Zervos for homogeneous infinite slopes with mov-

ing sediment/water boundary. This chapter is in preparation for submission to

Quarterly Journal of Engineering Geology and Hydrogeology.
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2
Modelling of near-surface marine seismic

reflection data

This chapter addresses the accurate and e�cient simulation of the ultra-high-

frequency (UHF,0.2� 4.0kHz) marine seismic reflection wavefield, necessary for

the quantitative interpretation of the field data. The main topics covered are:

• The choice of a one-dimensional elastic isotropic forward modelling engine.

• The simulation of the source antennas and receiver arrays directivity.

• The data-driven reconstruction of the o↵set-varying receiver depth and its

e�cient simulation in the f �  domain, integrating the one-dimensional

solver (published in short form as an appendix to Provenzano G., Vardy

M.E. and Henstock T.J. 2017. Pre-stack full waveform inversion of ultra-

high-frequency marine seismic reflection data. Geophysical Journal In-

ternational, 209, 1593-1611. DOI:10.1093/gji/ggx114)

13



CHAPTER 2. MODELLING OF NEAR-SURFACE MARINE SEISMIC
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2.1 Choice of the forward model for stratified

elastic media

An appropriate approximation of the wave equation is the core of any seismic

inversion algorithm, and needs to represent the relevant physics of the problem

within an acceptable computing cost.

Unlike traveltime tomography, full waveform inversion (FWI) simulates wave

propagation in its entirety (Virieux and Operto, 2009), within the subset of dis-

crete physical properties chosen to represent the medium. Once a physical model

has been chosen for the subsurface, a numerical solution can be obtained by

discretising the partial derivative equation in finite di↵erence, or, alternatively,

discretising the propagation medium into finite elements (Fichtner, 2011).

FWI is often performed using the acoustic approximation, to obtain a detailed

three-dimensional P-wave velocity model of complex subsurface structures (e.g.

Tarantola, 1984; Virieux and Operto, 2009; Fichtner, 2011; Morgan et al., 2013).

However, the acoustic approximation neglects an important part of the physics of

the wave propagation in heterogeneous media, even if only P-waves are recorded

(Aki and Richards, 2002).

The amplitude and phase of the reflections recorded at di↵erent incidence an-

gles also depend on the shear properties contrast between layers (Koefoed, 1955;

Ostrander, 1984; Aki and Richards, 2002); variations in the P-S converted energy

a↵ect P-wave amplitudes (Aki and Richards, 2002), and P-to-S-to-P converted

waves can be observed at wide reflection angles (Kormendi and Dietrich, 1991);

independent high-frequency changes of density and P-wave velocity at constant

acoustic impedance, to which traveltimes are invariant (Jannane, 1989), can pro-

duce changes in the reflected amplitude (Mallick and Adhikari, 2015; Silverton

et al., 2015; Provenzano et al., 2017). Due to the strong link with the e↵ective

stress conditions of the sediments (Mallick and Dutta, 2002; Dugan and Sheahan,

2012; Vanneste et al., 2015; Vardy et al., 2017), pore-fluid saturation (Ruthenford

and Williams, 1989; Provenzano et al., 2016) and lithological changes (Igel et al.,

1996; Mallick and Adhikari, 2015), the aforementioned wavefield characteristics

are key to geohazard-orientated seismic exploration.

Therefore, the acoustic medium approximation does not fit the purpose of

seismic inversion for geohazard analysis; on the other hand, although fully visco-
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elastic and anisotropic modelling provides the most complete representation of

the seismic wave propagation, its computational cost makes this approach hardly

a↵ordable for the most commonly available high-performance computing solu-

tions. A compromise is thus necessary between an appropriate representation

of the physics of the problem, and a sustainable computing cost (Mallick and

Adhikari, 2015).

The approximation we choose to make is that of an isotropic, elastic medium

that can be realistically approximated as horizontally stratified in the range of

the imaging aperture (Virieux and Operto, 2009). In UHF seismic, this would

be in the order of tens of m. Despite an inherent loss of horizontal resolution,

such assumption can be considered acceptable in shallow and weakly tectonised

sediments.

A one-dimensional approximation permits to use homogeneous-layer solutions

belonging to the class of reflectivity or wavenumber integration methods (e.g.

Fuchs and Müller, 1971; Mallick and Frazer, 1987; Schmidt and Jensen, 1985;

Schmidt and Tango, 1986.), which are significantly faster than finite di↵erence or

finite element solutions (Aki and Richards, 2002; Shearer, 2009; Fichtner, 2011).

2.1.1 An outline of the homogeneous-layer formulation

In the homogeneous-layer formulation, the subsurface is parametrised as a stack

of horizontal elements, defined by a set of two independent elastic parameters and

density. Within each layer, an analytical solution of the wave equation is com-

puted for each frequency-horizontal slowness pair (f � s
x

), and matrix methods

are used to propagate the solution to adjacent layers. Boundary conditions of

continuity of displacements and tractions must be satisfied at each interface, and

the obtained frequency-slowness spectrum is integrated to yield the time-o↵set

domain seismogram (e.g. Shearer, 2009).

Here I briefly summarise the fundamental equations for the propagation of a

frequency-slowness pair through an arbitrary number of homogeneous layers. For

simplicity, only the transversal horizontal particle motion is considered, follow-

ing the derivation of Shearer (2009). A complete mathematical formulation for

the three-dimensional particle motion can be found in Fuchs and Müller (1971)

and Aki and Richards (2002).
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Figure 2.1: A homogeneous layer medium model. Adapted from Mallick

and Frazer (1987)

I define u
y

the displacement field at depth z
i

produced by upgoing and down-

going monochromatic plane waves propagating in the xz half space in Fig. 2.1,

with fixed frequency f and horizontal slowness s
x

.

u
y

= A
d

e(�j2⇡f(t�s

x

x))ej2⇡fszzi + A
u

e(�j2⇡f(t�s

x

x))e�j2⇡fs
z

z

i (2.1)

where A
d

is the amplitude of the downgoing wave and A
u

is the one of the upgoing

wave. The associated stress component acting on the surface normal to the z-axis

is: ⌧
yz

= µ@u

y

@z

. Therefore, we have:

⌧
yz

= µj2⇡fs
z

A
d

e(�j2⇡f(t�s

x

x))ej2⇡fszzi �µj2⇡fs
z

A
u

e(�j2⇡f(t�s

x

x))e�j2⇡fs
z

z

i (2.2)

Those quantities can be conveniently arranged in a stress-displacement vector,

where we decompose the depth dependent part from the term representing the

horizontal propagation:

H(z
i

) =


u
y

⌧
yz

�
=


ej2⇡fszzi e�j2⇡fs

z

z

i
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i

� 
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d

A
u

�
e�j2⇡f(t�s

x

x)

(2.3)

16



CHAPTER 2. MODELLING OF NEAR-SURFACE MARINE SEISMIC
REFLECTION DATA

We can express Eq. 2.3 in a more compact form:

H(z
i

) = F
i

a
i

e�j2⇡f(t�s

x

x) (2.4)

where F is the matrix containing the depth dependent layer properties (layer

matrix ) and a is the vector of upgoing and downgoing amplitudes.

Within the same layer, we now propagate the solution between two arbitrary

depths, z
i

to z
q

. By defining f(z
i

) = F
i

a
i

, the amplitude vector is:

a
i

= F�1
i

f(z
i

) (2.5)

In a purely elastic medium the amplitudes of the plane waves are constant within

the same layer, which allows f(z
q

) to be expressed as:

f(z
q

) = F
q

F�1
i

f(z
i

) (2.6)

Eq. 2.6 propagates the stress-displacement vector between two arbitrary depths

in a homogeneous medium. Therefore it can be used to propagate the wavefield

between the top and the bottom of the layer. For layer 1:

f(z
b1) = F

b1F
�1
t1 f(zt1) (2.7)

where t and b respectively refer to top and bottom of the layer. P1 = F
b1F

�1
t1 is

the propagator matrix of layer 1.

Once the wavefront encounters an interface, the solution will be propagated

to the following layer. Continuity of the stress-displacement vector (Eq. 2.3) and

kinematic continuity along the interface prescribe:

f(z
b1) = f(z

t2) (2.8)

where the numbers indicate the layer index. Thereby:

F
b1a1 = F

t2a2 �! a2 = F�1
t2 Fb1a1 (2.9)

which solves for the unknown wave amplitude after the wavefront has crossed the

interface between layers 1 and 2.

We can now propagate the solution of the wave equation through an arbitrary

number of layers. Eq. 2.6, by virtue of the continuity conditions expressed in
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Eq. 2.8, e↵ectively propagates the stress-displacement vector from layer k to

layer k + 1. It therefore follows that:

f(z
top2) = P1f(ztop1) ! f(z

top3) = P2P1f(ztop1) (2.10)

and, for a generic depth within layer N:

f(z
N

) =
N�1Y

k=1

P
k

f(z1) (2.11)

These equations describe the propagation of horizontally polarised S-waves

(SH) through a layered medium. The propagator matrix approach applies also

to the P-SV propagation system (i.e. P-wave and S-wave polarised in the prop-

agation plane), where the stress-displacement vector (H) in Eq. 2.3 contains the

in-plane components of displacement and traction for which continuity must be

solved at each interface:

H(z
i

) =

2

664

u
x

u
z

⌧
xz

⌧
zz

3

775 (2.12)

As both P- and S- wave contribute to the x and z components of the stress and

displacement fields at non-zero incidence angles, it follows that compressional and

shear waves are coupled in the xz plane. An exhaustive description of the P-SV

propagation system can be found in (Aki and Richards, 2002).

Several examples of di↵erent numerical implementations are present among

the references provided (e.g Mallick and Frazer, 1987). In this work, we use the

implementation of Ocean Acoustics and Seismic Exploration Synthesis (Oases),

from Schmidt and Jensen (1985); Schmidt and Tango (1986.). Unlike more tra-

ditional methods employing recursively propagator matrixes within each layer, it

uses a global matrix approach to solve the wave equation for all the layers simul-

taneously. This numerical implementation reduces the number of arithmetic op-

eration needed and is thus preferable in computations involving high-frequencies,

numerous receivers and high number of layers (Schmidt and Jensen, 1985). The

output from the one-dimensional solver is the multi-o↵set Green’s Function of

the layered subsurface, which is in a second step convolved with an estimate of

the source wavelet.
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However, source and receiver arrays, and complex streamer geometries are not

e�ciently simulated within the wave equation solver; further modelling steps are

thus necessary to account for the specific characteristics and geometries of the

source-acquisition system in near-surface UHF marine seismic reflection data.

2.2 Simulating source and receiver antennas

UHF seismic sources, such as Boomer and Sparker systems, act as finite-dimension

acoustic energy generators (Verbeek and McGee, 1995; Riedel and Theilen, 2001),

whose radiation pattern markedly deviates from the ideal isotropic point source

impulse response. This is instrumental in reducing the energy of the source

ghost, and contributes to attenuating high-frequency horizontally propagating

seismic arrivals that can be conducive to spatial aliasing (Sheri↵ and Geldart,

1995; Proakis and Manolakis, 2006).

The acoustic energy is recorded at di↵erent o↵sets by a multi-channel acquisi-

tion system; each channel outputs a seismic trace which results from the stack of

signals recorded by a group of closely spaced hydrophone elements. Analogously

to a directional acoustic source, the receiver group filters the steeply dipping, high

frequency energy of the wavefield, therefore acting as discretised anti-aliasing an-

tenna.

From a signal processing point of view, a receiver group acts exactly as a

an array of sources with identical geometry, and both contribute to filtering the

spatial frequencies of the wavefront sampled by each channel. For a horizontal

array, the apparent spatial frequency is the one propagating along the horizontal

(x) dimension (Sheri↵ and Geldart, 1995; Shearer, 2009). We define the quantity

horizontal wavenumber as:


x

= 2⇡fsin(✓)/V
w

(2.13)

where f is the temporal frequency, V
w

is the velocity of the medium and ✓ is the

angle of the wavefront with respect to the horizontal. For brevity, in this section

we will hereafter refer to it simply as wavenumber.
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Figure 2.2: Transfer function of a linear receiver array. The linear receiver

group is made by 7 elements with 0.15 m spacing.

In the following formulation, we focus on the e↵ect of the spatial response

of the source and acquisition system, and assume that the temporal frequency

source and receiver transfer functions are white. Under this assumption, the

seismic trace R can be compactly expressed in the wavenumber domain as a

product of linear filters’ impulse responses:

R(
x

) = S(
x

)C(
x

)G(
x

) (2.14)

where:

• G is the wavenumber-transform of the Green’s function (Aki and Richards,

2002) of the propagation medium for the source-receiver group couple, out-

put from the wave equation solver.

• C is the transfer function of the receiver antenna, which can be computed

from the known receiver group characteristics.

• S is the transfer function of the source system, computed from the specific

source device geometry.
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For a discrete linear array of N receivers (or point sources), with spacing d, the

transfer function reads:

C(k) =
sin(N/2 · 

x

· d)
Nsin(1/2 · 

x

· d) (2.15)

or, using the equivalence from Eq. 2.13:

C(f, ✓) =
sin
⇣
N⇡ fsin(✓)

V

w

d
⌘

Nsin
⇣
⇡ fsin(✓)

V

w

d
⌘ (2.16)

Figure 2.3: Radiation pattern of a Boomer plate. Diameter is 0.4 m.

Either of Eqs. 2.15 and 2.16 is su�cient to describe the impulse response of a

linear receiver array.

It is worth pointing out the following: (1) for each temporal frequency, a

specific antenna radiation/acquisition pattern of the source/receiver group can

be computed; (2) for each take-o↵ angle ✓, the array acts as a high-cut filter

in temporal frequency f ; (3) The period of the notches of the transfer function
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is inversely proportional to the product N · d, so that longer receiver groups

are more selective wavenumber filters; (4) on the other hand, at a fixed receiver

array length, fewer elements (higher d) would determine a shorter period of the

wavenumber transform (Proakis and Manolakis, 2006), hence more closely spaced

secondary maxima lobes in the receiver group’s antenna response.

Fig. 2.2 shows the frequency versus incidence angle response of a receiver

group composed on 7 elements with spacing equal to 0.15 m; note that the higher

the frequency, the lower the first notch-angle; as a consequence, far o↵sets (wider

reflection angles) reflected arrivals are going to be low-pass filtered compared to

the short o↵sets.

Estimating the directivity of high-resolution sources, on the other hand, re-

quires a correction for the specific size and shape of the device, which is, unlike

airgun-arrays (Igel et al., 1996), not exhaustively described by a linear array of

point sources. For example, the frequency-angle response of a Boomer system,

depends of the diameter of the electro-acoustic plate, as in Riedel and Theilen

(2001):

S(f, ✓) =
2J1

⇣
⇡ fsin(✓)

V

w

D
⌘

⇣
⇡ fsin(✓)

V

w

D
⌘ (2.17)

where J1 is the first-order Bessel function of the first kind and D denotes the

plate diameter. In Fig. 2.3 we plot the frequency-angle response of a Boomer

plate with diameter of 0.4 m.

The frequency-dependent directivity functions presented in Figs. 2.2 and 2.3

are appropriate the Applied Acoustics AA330 Boomer and bespoke multi-channel

streamer used for UHFMCS surveys at the University of Southampton. Together,

these functions have a significant footprint on the amplitude and phase of the

reflected wavefield (Igel et al., 1996; Riedel and Theilen, 2001). Therefore, they

need to be taken into account within the FWI forward operator, in order for the

waveform amplitude and shape to be consistently compared with the field data.
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2.3 Reproducing acquisition conditions for shal-

low marine data

In UHF marine seismic reflection data, receiver depths in the order of a few metres

produce receiver ghosts inside the bandwidth of the signal, and sub-metric scale

variations of the streamer geometry as a function of o↵set cause non-negligible

changes in the source-acquisition system impulse-response (Pinson, 2009). Signif-

icantly sagging streamer geometries are often observed in the marine-lacustrine

setting typical of UHF seismic (Pinson, 2009). Furthermore, the sea-surface to-

pography approaches the seismic wavelength of a UHF wavefield, causing the

sea-surface reflection coe�cient to change significantly across the streamer length.

In this work we chose to explicitly include these factors in the computation

of the synthetic seismograms, as opposed to applying deconvolution on the ob-

served data. Although inverse ghost filtering would yield a spectral whitening

that can be beneficial to the seismic resolution, it is liable to create artefacts

inside the bandwidth of the signal which could severely undermine the inver-

sion performance. However, an explicit full wavefield modelling would require to

solve one forward model for each receiver o↵set-depth couple in the appropriate

wavenumber bandwidth. Since the wavenumber ranges necessary to model each

o↵set are largely overlapping, this approach is clearly ine�cient and results in a

non-a↵ordable computing cost.

We developed an e�cient total seismogram modelling method, which requires

only the computation of the pure up-going wavefield at one arbitrary receiver

depth, and derives the whole gather in the frequency-wavenumber domain using

wavefield decomposition (Verschur et al., 1992; Aytun, 1999). For each channel,

the prediction of the down-going wavefield and the downward propagation in the

plane wave domain are implemented as a linear filter with the estimated receiver

depth and sea-surface reflection coe�cient; an inverse two-dimensional Fourier

transform gives a seismic gather in an expanded o↵set range from which the

trace at the appropriate o↵set is selected. The final predicted seismogram is then

obtained by merging the di↵erent o↵sets.

Compared to a full wavefield modelling approach, the proposed alternative

allowed for a reduction of the computing time of one order of magnitude.
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2.3.1 Receiver ghost modelling

A recorded seismic reflection pressure wavefield is the convolution between a

purely up-going wavefield and the impulse response of the acquisition system

as a function of receiver depth, free-surface reflection coe�cient and spatial

frequency (Aytun, 1999). The total wavefield at depth h in the frequency-

wavenumber domain can be obtained from the up-going field P
k

�(h0) as:

P
k

(h, r0) = P
k

�(h0)F1k(h, r0)F2k(h, h0) (2.18)

where:

F1
k

(h, r0) = (1 + r0e
(�j2k

z

h)) (2.19)

predicts the receiver ghost at depth h as a function of the vertical wavenumber

k
z

=
p

k2 � k2
x

, with a free-surface reflection coe�cient equal to r0.

F2(h, h0) = e(jkz(h�h0)) (2.20)

is the downward propagation operator from h0 to h accounting for the traveltime

di↵erence for each plane-wave component. The time-o↵set domain seismogram is

obtained via two-dimensional Fourier inverse transformation:

d(t, x) = F(�1){P
k

(h, r0)} (2.21)

In the general case of o↵set-varying streamer depth and sea-surface reflection

coe�cient, the complete N -channels seismic gather can be obtained by select-

ing each trace from the corresponding redundant-o↵set domain gather and then

merging the o↵sets. A compact mathematical formulation exploits the properties

of the two-dimensional Dirac delta function:

d
i

(t, x) = F(�1){P
k

(h(i), r0(i))} (2.22)

d(t, x) =
NX

i=1

Z +1

�1

Z +1

�1
�(t� ⌧, x

i

)d
i

(⌧, x
i

)d⌧dx (2.23)

As opposed to an explicit full wavefield modelling, only the computation of the

up-going wavefield at constant depth is required, and the whole gather is obtained

by signal manipulation, with significant savings in the computing cost.

In the region of the f� domain corresponding to non-physically propagating

waves (Aki and Richards, 2002), where the horizontal (apparent) wavenumber is
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higher than !/�, k
z

becomes complex-valued, making the complex exponential a

diverging function which creates numerical instability. To clarify this point, we

can decompose the f �  ghosting filter into a stable (S) and an unstable (U)

contribution:

F1
k

(z)F2
k

(z, z0) = S(z, z0)� U(z, z0) (2.24)

where

S = e{[�im(ck
z

)][z�z0]}e(j(z�z0)re(ckz)) (2.25)

and

U = e{[+im(ck
z

)][z+z0]}e(�j(z+z0)re(ckz)) (2.26)

where r0 is set equal to -1, and we indicated the complex wavenumber as ck
z

and its imaginary and real part respectively with im and re. Eq. 2.26 illustrates

how the diverging exponential first term of U can create unwanted amplitude

e↵ects on the high k
x

portion of the f �  spectrum. A simple butterfly shaped

mask valued one around the evanescent region is su�cient to prevent the inverse

filtering from diverging.

To test the capabilities of the method, a simple seismic gather has been sim-

ulated over a 1D model consisting of a 50 m deep water layer and an underlying

homogeneous elastic half space (Fig 2.4). The model contains a free-surface and

the receiver depth is equal to 5m and constant throughout the streamer, which

consists of 60 receivers 1 m apart with a minimum o↵set of 13 m. Though the

synthetic dataset is simulated as a common shot gather, in the 1D approximation

makes it equivalent to a common depth point (CDP) gather with fold equal to 60

(Sheri↵ and Geldart, 1995). The free-surface reflection coe�cient is equal to �1

. The bandwidth of the source ranges from 0.2 to 1.5 kHz. This simple synthetic

dataset is used as a benchmark to test the accuracy of the method and will be

hereafter referred to as explicit total wavefield.

The source depth in the benchmark synthetic data is in the order of a few

centimetres, i.e << �/8 for the maximum frequency and velocity range of the

model. In such a configuration the polarity reversed down-going wavefield inter-

feres with the up-going wavefield with a time delay approximating an infinitesimal

dt. The e↵ect on the signal is similar to a thin layer impulse response: a wavelet
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rotation and linear frequency increase simulating a finite di↵erence first deriva-

tive (Widess, 1973). This has been compensated for using the integral of the

estimated source signature with satisfactory results in terms of wavelet shape.

Using the same elastic model, a seismic gather has been generated with no

free-surface and zero receiver depth (Fig 2.4). The Ghosting+downward propaga-

tion f �  filter is implemented as from Eq. 2.18, with constant receiver depth

throughout the o↵set range and r0 equal to �1 . Since the system is linear, the

total seismogram including the receiver ghosts can be obtained by multiplying

the complex two-dimensional spectrum of the purely up-going wavefield and the

f � impulse response of the filter (Proakis and Manolakis, 2006) (Fig 2.5). The

resulting seismic matrix (which we will refer to as fast total wavefield) is obtained

by back-transformation of the f �  complex spectrum (Fig. 2.6).

Note how the null amplitude loci in the f� domain have the shape of hyperbolae

asymptotic to the water acoustic wave velocity slope, while in the t � x domain

the traveltime are correctly reconstructed (Figs. 2.5 and 2.6).

In order for the f � -domain filtering to be accurate and to avoid undesired

linear time-o↵set domain artefacts (Fig. 2.7, panel a) an improvement of the

wavenumber resolution with respect to the starting seismic data is necessary;

this is generally true for near-surface reflection seismic real data, which normally

employs a relatively short receiver cable. A trace zero-padding producing a 30%

increase of the spectral resolution is applied to the seismic data and e↵ectively

removes the non-physical seismic phases in the final seismogram (Fig. 2.7).

It’s also apparent from figure 2.7 (panel a) how the downward propagation of

the wavefield in the plane-wave domain produces anomalous reduction of the re-

flection amplitudes at longer o↵set/higher slowness (p). If the choice of padding

traces is justified by the need of a higher wavenumber resolution, the correct

reconstruction of the signal amplitude throughout the matrix requires a wider

slowness bandwidth than the one contained in the down-going zero-depth wave-

field, to account for the wider reflection angle of the desired seismogram. The

e↵ect of expanding the o↵set domain of the non-free surface synthetics (and, as a

result the range of available slownesses) is shown in figure 2.7, panel b: 8 traces are

symmetrically added and a perfect match is attained between the f�-predicted

data and the benchmark.
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(a)

(b)

Figure 2.4: Synthetic seismograms. Panel a): Up-going wavefield only. No

free surface, zero receiver depth seismogram. Panel b): Total wavefield used as

benchmark. Free surface, 5 m receiver depth seismogram.
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(a) (b)

(c)

Figure 2.5: Ghosting in f �  domain. In panel a) f �  amplitude spectrum

of the ghost-free data compared with the total wavefield in panel b. In panel c)

the f �  amplitude after the application of the ghosting filter.
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(a)

(b)

Figure 2.6: f �  Ghost prediction. In panel a) comparison between ghost-

free data (red) and the benchmark data from Fig. 2.4b (black). In panel b) the

comparison after ghost prediction and traveltime correction in the plane wave

domain.
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(a)

(b)

Figure 2.7: E↵ect of spatial domain expansion and trace padding. In

panel a) the result of ghost prediction when no trace-padding is applied. In panel

b) a perfect match is obtained with the benchmark data from Fig. 2.4b (black)

after trace padding and slowness band increase.
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The increased maximum slowness in the final total wavefield can produce alias-

ing if the spatial sampling rate is not increased accordingly. This is particularly

evident when, keeping the streamer length constant, the water depth is reduced.

In a test conducted in a 20m water depth model, halving the spatial sampling

interval produces dramatic improvements on the quality of the final seismic ma-

trix (Fig 2.8). However, in this shallow water case, the variation of receiver depth

from the free-surface to 5 m produces a higher increase of reflection angle, and

the spatial domain of the starting seismic data needs to be expanded accordingly.

In this case, a perfect match between the predicted and the benchmark data is

obtained by doubling the maximum o↵set of the no-free surface data. This has

also the e↵ect of improving the wavenumber resolution, which further enhances

the performance of the ghost prediction in the asymptotic region of the reflection

hyperbola. The AVO characteristics have been checked against the predicted PP

reflection coe�cient (Aki and Richards, 2002) and have shown to outperform the

explicit modelling, which su↵er for the frequency-angle dependency the source

ghost, absent in the non-free surface synthetics.

For the sake of completeness, an example of inverse filtering of the ghosted

gather to get back to the purely up-going wavefield is here also shown (Aytun,

1999) (Fig. 2.9). Despite the e↵ective receiver ghost removal, artefacts are

present in the de-ghosted gather, due to the inherent diverging nature of this

inverse filter. Also, such a de-ghosting procedure is not easily applied in the

general multi-depth case.

Although this simple constant-depth test does not show any saving in terms of

computational time with respect to an explicit modelling (being actually slower),

it gives a strong conceptual framework to be aware of when applying the method

to a real data. In a realistic application, where the filter parameters vary over

the o↵set domain, the operations outlined in this section need to be performed

for each channel, employing accurate estimates of receiver depth and reflection

coe�cient. The final seismic gather is ultimately generated by selecting the ap-

propriate traces and merging of the di↵erent o↵sets.
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(a)

(b)

Figure 2.8: Wider angle case. Panel a): No resampling in TX domain. Panel

b): the spatial sampling rate of the starting ghost-free matrix is doubled and the

aliasing is reduced in the final matrix, even when the data are resampled with a

1 m receiver spacing. Also, the spatial domain has been extended up to twice as

many traces as the benchmark seismograms, to make up for the wider reflection

angle and improve the wavenumber resolution in the high slowness region.
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(a)

(b)

Figure 2.9: De-ghosting in fk domain, constant depth. Panel a) Time

domain. Panel b) frequency-wavenumber domain. Note the periodic artefacts in

the time domain.
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2.3.2 Prediction of receiver depth and sea-surface reflec-

tion coe�cient

In general, the filter parameters h and r0 in Eq. 2.18 are not known in advance

with the accuracy required by UHF seismic modelling, and need to be estimated

from the data. The receiver ghost loci in the frequency-o↵set (f � x) domain are

a function of the receiver depth:

fn(x
i

) = n
V
w

2h
x

i

cos(✓(i))
(2.27)

where n indicates the order of the harmonic, V
w

is the water layer velocity and ✓

is the reflection angle from the sea-floor, which can be approximated as the ratio

between the traveltimes (Pinson, 2009):

✓ = (t0/ti) (2.28)

provided that t0 corresponds to a near-vertical reflection.

Eq. 2.27 establishes a linear relationship between receiver-ghost null-frequencies

and the reciprocal of the receiver depth as a function of o↵set. The estimation of

the o↵set-dependent receiver depths can be then cast as a linear inverse problem

(Aster et al., 2005); provided that more than one harmonic per o↵set is available,

the problem is over-determined and the linear formulation is convenient to derive

robust confidence intervals for the solution (Menke, 1989; Aster et al., 2005).

The reflection coe�cient for each channel can be conveniently obtained as

the solution of a non linear optimisation problem using deterministic algorithms

as simple as the bisection method (Burden and Faires, 1985); the optimal r0(xi

)

maximises the normalised cross-correlation value between the predicted trace and

the desired trace at the appropriate o↵set. Although this step is model-based, it

only requires an accurate a-priori estimate of the sea-floor depth as the normalised

cross-correlation removes the dependency of the results on the accuracy of the sea-

floor reflection AVO, while signal tapering around the sea-floor reflected arrival

helps to attenuate the bias due to the inaccuracies of the elastic model.

2.3.3 Example application

A seismic super-gather from Finneidfjord, in northern Norway, has been used

to test the method on a real dataset where the receiver’s ghost is an evident
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feature and shows a move out which suggests a varying streamer depth: the

receiver ghost is a separate arrival and the time delay between primary and ghost

reflection increases with o↵set (Fig 2.10).

Pre-stack FWI is not feasible on this data, unless we accurately model both

primary and ghost traveltime and wavelet shape. To produce a synthetic seismo-

gram comparable to the real data, a far-field measurement of the high-frequency,

wide-band source wavelet has been used in conjunction with a 66-layer 1D P-wave

velocity and density profile derived by decimating the Multi Sensor Core Logger

(MSCL) data from a proximal piston core (Fig 2.11) down to the tuning thickness

for the minimum modelled wavelength.

In the real data, because of the of the shallow towing depth and the strong

source directivity, the source ghost can be neglected, so only the receiver ghosts

have been included in the impulse response of the acquisition system.

Figure 2.10: Real data at MSCL core location. The arrival with the anoma-

lous move out is the receiver ghost. The peculiar traveltime is a consequence of a

sagging acquisition geometry in fresh waters, where the buoyancy of the streamer

is reduced
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(a)

(b)

Figure 2.11: MSCL log and synthetic data. Panel a) P-wave velocity and

density profile (blue) derived from the piston core GS-10-163- 02 (Calypso core)

in the location of the super-gather, decimated down to a 20 cm sampling interval

(red). Panel b) Synthetic data derived from the MSCL log. No free surface, zero

receiver depth.
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The ghost prediction in the f �  domain followed a procedure derived from

the previous sections:

• Estimation of the receiver depth for each channel in the frequency-o↵set

domain

• Estimation of the local free-surface reflection coe�cient for each channel

• Computation of the zero-depth, no-free surface seismic gather on the elastic

model derived from a proximal MSCL core log (Fig. 2.11).

• O↵set extrapolation and zero-padding

• Generation of one f� ghosting filter for each channel with the appropriate

receiver depth and reflection coe�cient. Regularisation and symmetrisation

of the matrixes.

• Application of the filter for each receiver depth to the whole gather, back-

transformation and o↵set selection

• Merging of the traces to obtain the new seismic gather.

In order to apply the method to the real dataset, the receiver depth (�z)

for each channel (n) has been estimated using the ghost null frequencies as a

function of reflection angle of the sea-floor reflection (Eqs. 2.27 and 2.28). The

depth estimation has been cast as a linear inverse problem for the reciprocal

of the receiver depths. Four harmonics per channel have been included in the

data vector, while the higher ones are used as prediction or validation dataset

(Fig 2.12). The uncertainty of the picking as been estimated to translate into a

standard deviation of 50 Hz. The problem is well-conditioned and the streamer

depth estimate robust, with a narrow 95% confidence interval derived from the

diagonal of the posterior model covariance matrix (Menke, 1989; Aster et al.,

2005). It’s evident in Fig. 2.12 that the data redundancy in the frequency-o↵set

domain is important to constrain the estimated streamer geometry: the higher

the number of harmonics per channel used, the narrower the confidence interval

of the output value. It is also worth pointing out that the confidence interval

becomes systematically broader for higher values of receiver depth; the model

is in fact linear for the reciprocal of the depth, hence the uncertainties maps
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(a)

(b)

(c)

Figure 2.12: Receiver depth estimation in the f-x domain. Inversion of the

receiver ghost loci for the receiver depth, varying the number of harmonics used,

from panel a to c. Left hand side: frequency-o↵set amplitude spectrum of the real

data; overlaid in red the picked ghost frequencies, in black the predicted ghost

null frequencies for the estimated receiver depth. Right hand side: estimated

streamer depth (dotted black line) as a function of channel number with 95%

confidence interval (solid blue lines).
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non linearly (Menke, 1989) in to the spatial domain. The reflection coe�cient

for each channel has been obtained as the solution of a non linear optimisation

problem using the bisection method (Burden and Faires, 1985); the optimal r0

is the one maximising the normalised cross-correlation value between the pre-

dicted trace and the desired trace at the appropriate o↵set. Using the normalised

cross-correlation removes the dependency of the results on the accuracy of the

amplitude decay versus o↵set. The cross-correlation has been performed on the

signals tapered around the sea-floor reflected arrival including the ghost, in order

to attenuate the bias due to the inaccuracies of the elastic model. Such a process

is easily embedded in the f �  ghosting filter generation for each channel.

Before the method is applied to the real dataset, a synthetic explicit total

wavefield derived from the core-log has been used as a benchmark, as we did in the

tests presented in the previous sections. A perfect match between the synthetic

gather with explicit receiver depth modelling and the f-k-predicted synthetic is

attained (Fig 2.13). In this case, the proposed method reduces dramatically

the computational e↵ort, from 10 minutes to ⇠1 minute on a standard personal

computer, without compromising on the accuracy of the seismic signal.

The obtained seismogram shows also an acceptable degree of match with the

real seismic gather (Fig 2.14) both in the time-o↵set and in the f �  domain,

which would be impossible without modelling the receiver ghosts (Fig 2.11, panel

b). It is apparent how this will reduce enormously the systematic error in seismic

depth imaging or inversion.

Fig. 2.15 shows that introducing the estimated sea-surface reflection coe�cient

(r0(x)) in the total wavefield calculation further improves the fitness between the

computed and the observed seismogram. In this example, this is particularly

evident in the nearest 10 channels. The variation of reflection coe�cient as a

function of o↵set has a dominant harmonic component with a wavelength in

the order of the streamer length, probably reflecting changing in the surface

reflectivity due to the sea swell motion.
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(a)

(b)

Figure 2.13: Benchmarking. Panel a) comparison of the explicit (black) and

fast (red) synthetic total wave fields. Panel b)f �  amplitude spectra.
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(a)

(b)

Figure 2.14: Real data prediction. Panel a) comparison of the real (black)

and fast (red) synthetic total wave fields. Panel b)f �  amplitude spectra .

Note how the systematic error in the seismogram modelling associated with the

receiver impulse response is attenuated in a reasonable computing time. The

mismatch between real and synthetic can be attributed mostly to inaccuracies in

the elastic model and non-coherent noise in the data.
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(a)

(b)

Figure 2.15: Optimal reflection coe�cient estimate. Real (black) and fast

synthetic (red) seismograms. Panel a) A �1 free-surface reflection coe�cient

is assumed. Panel b) Optimal reflection coe�cient for each channel. Note the

significant improvement in the ghost prediction at the shortest o↵sets.
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2.4 Conclusions

In summary, the approach taken in this work for the accurate computation the

UHF seismic data involves the solution of the wave equation for a stratified

medium and a series of frequency-wavenumber domain signal manipulations:

• Computation of the multi-channel seismogram using the 1D solver.

• Computation of the f �  transform of the seismogram.

• Complex f� spectra multiplication with both source and receiver transfer

functions.

• Downgoing propagation and receiver ghost prediction in the extended f�-

channel domain.

• Back-Fourier transformation to the time-o↵set domain.

This procedure has been developed in order to reproduce the acquisition con-

ditions of near-surface UHF marine seismic reflection data, with accuracy and

computing cost adequate for advanced imaging and inversion. The problems of

numerical stability, wavenumber resolution and liability to aliasing have been

addressed using synthetic data as a benchmark. An example real dataset with

strong ghost-contamination and heavily sagging streamer geometry, has been used

to demonstrate the e�ciency and accuracy of the ghost prediction. Despite an

inherent loss of bandwidth associated with including the receiver ghosts in the

modelling, this approach avoids non-predictable artefacts arising from pre-stack

de-ghosting procedures, which could otherwise seriously jeopardise the inversion

results.
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Pre-stack full waveform inversion of
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reflection data
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T.J. 2017. Pre-stack full waveform inversion of ultra-high-frequency marine seis-

mic reflection data. Geophysical Journal International, 209, 1593-1611.

DOI:10.1093/gji/ggx114

Summary

The full waveform inversion (FWI ) of seismic reflection data aims to reconstruct

a detailed physical properties model of the subsurface, fitting both the ampli-

tude and traveltime of the reflections generated at physical discontinuities in the

propagation medium. Unlike reservoir-scale seismic exploration, where seismic

inversion is a widely adopted remote characterisation tool, ultra high frequency

(UHF, 0.2-4.0 kHz) multi-channel marine reflection seismology is still most often
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limited to a qualitative interpretation of the reflections’ architecture. Here we pro-

pose an elastic full waveform inversion methodology, custom-tailored for pre-stack

UHF marine data in vertically heterogeneous media to obtain a decimetric-scale

distribution of P-impedance, density and Poisson’s ratio within the shallow sub-

seabed sediments. We address the deterministic multi-parameter inversion in a

sequential fashion. The complex trace instantaneous phase is first inverted for the

P-wave velocity to make-up for the lack of low-frequency in the data and reduce

the non-linearity of the problem. This is followed by a short-o↵set P-impedance

optimisation and a further step of full o↵set range Poisson’s ratio inversion. Pro-

vided that the seismogram contains wide reflection angles (> 40 degrees), we

show that it is possible to invert for density and decompose a-posteriori the rel-

ative contribution of P-wave velocity and density to the P-impedance. A broad

range of synthetic tests is used to prove the potential of the methodology and

highlights sensitivity issues specific to UHF seismic. An example application to

real data is also presented. In the real case, trace normalisation is applied to min-

imise the systematic error deriving from an inaccurate source wavelet estimation.

The inverted model for the top 15 metres of the sub-seabed agrees with the local

lithological information and core-log data. Thus we can obtain a detailed remote

characterisation of the shallow sediments using a multi-channel sub-bottom pro-

filer within a reasonable computing cost and with minimal pre-processing. This

has the potential to reduce the need of extensive geotechnical coring campaigns.

3.1 Introduction

A quantitative physical model of near-surface marine sediments is of crucial im-

portance in a broad range of environmental and engineering contexts, from the

assessment of tsunamigenic landslides hazard and o↵shore structure stability, to

the identification and monitoring of gas storage sites. Currently, marine sediment

characterisation is heavily reliant on direct sampling of the seabed, using cores,

borehole and/or cone penetrometers (CPTUs) (e.g. Stoker et al., 2009; Vanneste

et al., 2012) . In this framework, marine seismic reflection data is limited to

providing information about the architecture of the stratigraphic discontinuities

generating the reflections in the sub-surface, combined with a predominantly

qualitative interpretation of the relative amplitude and polarity of the seismic

phases. The structural information derived from the sub-bottom profiling can
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be correlated to core or borehole logs, where possible, to extend the geotechni-

cal/lithological data from the sampling sites across larger basins. In laterally

heterogeneous areas, a large number of direct samples are required to reconstruct

the spatial variation of the model to the degree of accuracy required by engineer-

ing applications and such an approach is expensive and time-consuming. The

reliability of a quantitative estimation of sediment properties is also likely to be

undermined by the coring process itself, which deforms and mechanically alters

the sample, particularly in low-e↵ective stress environments.

Even though computationally demanding, the inversion of ultra high frequency

(0.2-4.0kHz, UHF) seismic reflection data potentially provides a non-destructive,

faster and cheaper alternative to characterise the mechanics of the sub-seabed.

The quantitative interpretation of pre-stack seismic data is a well-established and

widely accepted procedure in industry and basin-scale exploration, in the form

of either full waveform inversion (FWI ) (Tarantola, 1984) or reflection ampli-

tude versus o↵set inversion (AVO) (Ruthenford and Williams, 1989). It allows

improved imaging of complex structures (Tarantola, 1984; Mora, 1980; Virieux

and Operto, 2009), detailed rock physics characterisation of oil and gas reservoir

(Ostrander, 1984; Ruthenford and Williams, 1989; Fatti et al., 1994; Mallick and

Adhikari, 2015), and enhanced resolution regional geology models (Gulick et al.,

2013; Morgan et al., 2013).

Over the last few years, quantitative interpretation techniques have started

to be applied also to near-surface seismic data in order to remotely derive deci-

metric resolution shallow sediment physical properties in terms of reflection co-

e�cient and acoustic quality factor (Bull et al., 1998; Pinson et al., 2008; Vardy

et al., 2012; Cevatoglu et al., 2015). Holland and Dettmer (2013) used the angle-

dependent reflection amplitude as a function of frequency to derive physical prop-

erties layering and gradients within the shallow sediments. Recently, post-stack

acoustic inversion has been successfully applied on ultra-high-frequency seismic

data (Vardy, 2015) to derive quantitative sediment properties from the acoustic

impedance.

The dependency of a pre-stack seismic gather on the elastic properties of

the propagation medium theoretically allows us to obtain a detailed distribu-

tion of compressibility, shear properties and density to the scale of a fraction of

the propagated wavelength. Although such properties can be retrieved through
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the inversion of the reflections’ AVO, a full waveform approach has the advan-

tage to account for all the wave phenomena (Tarantola, 1984, 1986; Fichtner,

2011), within the required resolution and modelling approximation. By exploit-

ing the information contained in the complete waveform, FWI outperforms AVO

inversion in most realistic reservoir geophysics application (Mallick and Adhikari,

2015), especially when complicated layer interference and velocity gradients are

present (Xu et al., 1993; Igel et al., 1996), which is likely to be a factor in UHF

near-surface seismic data.

Here we invert the full waveform of UHF marine data in order to obtain a

sub-metric resolution elastic model of the near-seabed. Tests on both synthetic

and real pre-stack data, demonstrate the capability of the method to obtain a

detailed characterisation of the medium in terms of independent estimates of

P-wave velocity, density and Poisson’s ratio.

3.2 Methodology and synthetic examples

3.2.1 Full marine seismogram modelling in the varying

streamer depth case

The inversion of pre-stack marine seismic data is often addressed within the

acoustic approximation to obtain a detailed pressure wave velocity model (Ficht-

ner, 2011; Virieux and Operto, 2009; Tarantola, 1984). Although this approach is

widely employed in both industry and academia as an e↵ective tool to improve the

quality of the seismic imaging (Morgan et al., 2013), acoustic waveform inversion

fails to reproduce an accurate model of the subsurface when shear properties vary

in the subsurface, or density is not correlated to P-impedance variations, creating

significant amplitude and phase versus o↵set e↵ects (Mallick and Adhikari, 2015;

Silverton et al., 2015). The acoustic approximation is usually justified by the un-

a↵ordable computational cost of the finite-di↵erences or finite elements modelling

in laterally varying elastic media.

In this paper we account for the elastic properties, assuming that the medium’s

heterogeneity can be realistically approximated as purely vertical in the range of

the imaging aperture (Virieux and Operto, 2009); in UHF seismic, this would be

in the order of tens of metres. Despite an inherent loss of horizontal resolution,
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such an assumption is acceptable in shallow, recent and weakly tectonised sedi-

ments, and allows for the forward model to be computed using an analytic fast

solution in the plane wave domain within a reasonable computational cost (Fuchs

and Müller, 1971). The program chosen to compute the pressure seismograms

is the Ocean Acoustics and Seismic Exploration Synthesis from MIT (Schmidt

and Jensen, 1985; Schmidt and Tango, 1986.), which addresses the reflectivity

modelling in an e�cient and accurate way for the frequency-wavenumber range

of interest.

In UHF marine reflection seismic data, receiver depths in the order of a few

metres produce receiver ghost reflections that correspond to frequency notches

inside the bandwidth of the signal. Significantly sagging streamer geometries are

often observed in the marine-lacustrine setting typical of UHF seismic (Pinson,

2009) and this sub-metric to metric scale variations of the streamer geometry as

a function of o↵set cause non-negligible changes in the source-acquisition system

impulse-response. Furthermore, the sea-surface topography approaches the seis-

mic wavelength of a UHF wavefield, causing the sea-surface reflection coe�cient

to change significantly across the streamer length. In this work we chose to include

these factors in the computation of the synthetic seismograms, as opposed to a

deconvolution on the observed data. Although inverse ghost filtering would yield

a spectral whitening that can be beneficial to the seismic resolution, it is liable to

create artefacts inside the bandwidth of the signal which could severely undermine

the inversion performance. On the other hand, an explicit full wavefield modelling

using the one-dimensional solver would require one forward computation per each

receiver o↵set-depth couple in the appropriate wavenumber bandwidth; since the

wavenumber ranges necessary to model each o↵set are largely overlapping, this

approach is clearly ine�cient and results in a non-a↵ordable computing cost. In

this work, we developed an e�cient total seismogram modelling method, which

requires only the computation of the pure up-going wavefield at one arbitrary re-

ceiver depth, and derives the whole gather in the frequency-wavenumber domain

using wavefield decomposition (Verschur et al., 1992; Aytun, 1999). For each

channel, the prediction of the down-going wavefield and the downward propaga-

tion in the plane wave domain are implemented as a linear filter with the estimated

receiver depth and sea-surface reflection coe�cient; an inverse two-dimensional

Fourier transform gives a seismic gather in an expanded o↵set range from which

the trace at the appropriate o↵set is selected. The final predicted seismogram
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is then obtained by merging the di↵erent o↵sets. The alternative proposed here

allowed for a reduction of the computing time of one order of magnitude. Details

on the theory and the implementation of the method are given in Appendix 3.A.

See also Chapter 2.

3.2.2 Gauss-Newton seismic inversion

FWI is a non-linear and ill-posed parameter estimation technique, which iter-

atively updates the earth model m by minimising a weighted measure of the

di↵erence between the computed and recorded seismic data �d(m) (Tarantola,

1984; Virieux and Operto, 2009; Fichtner, 2011). The objective or misfit func-

tional accounts for the amplitude and phase characteristics of the wavefield, either

as in the full seismogram, or extracted as pre-stack attributes (Fichtner, 2011;

Jimenez-Tejero et al., 2015) and it is regularised in order to penalise physically

non-meaningful solutions (Menke, 1989; Asnaashari et al., 2012). The least square

regularised objective function reads:

e(m) = �dTWd
TWd�d+ �mTWm

TWm�m (3.1)

where Wd and Wm are respectively the data and model covariance matrix and

�m is measured with respect to a reference model.

At each iteration, the current model m
i

is updated in the direction of the

negative gradient of the misfit functional, scaled and weighted by the inverse

Hessian matrix H:

m
i+1 = m

i

�H(m
i

)�1re(mi) (3.2)

The ascent directionre is the scalar product between the wavefield partial deriva-

tive matrix (Jacobian or sensitivity matrix J), and the data residual vector �d;

H contains the zero-lag autocorrelation of the sensitivity matrix, plus a second

order term depending upon the partial second derivatives of the wavefield with

respect to each model parameter (Virieux and Operto, 2009).

In three-dimensional FWI, the number of independent model parameters

makes the computation of the partial derivative wavefield most often una↵ordable.

To overcome this limitation, the model update direction is e�ciently computed

using the adjoint state method (Lailly, 1983; Tarantola, 1984; Virieux and Op-

erto, 2009), whereas the inverse Hessian in equation 3.2 can be replaced by a
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(a)

(b)

Figure 3.1: UHF source signature: Boomer source wavelet. a) Time domain

source signature. b) Power spectrum in deciBel
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line-search estimate of the optimal step-length, which ensures the convergence

towards the nearest local minimum (Nocedal and Wright, 2006; Virieux and Op-

erto, 2009). However, such a steepest descent implementation does not account

for the scaling and uncoupling e↵ect of the inverse Hessian (Virieux and Operto,

2009; Operto et al., 2013) and a robust estimate of the latter in fact significantly

improves parameter resolution and convergence speed (Pratt et al., 1998; Operto

et al., 2013). Quasi-newton methods, such as the lBFGS (Malinkowski et al.,

2011; Gholami et al., 2013a; Dagnino et al., 2014), are now a commonplace im-

plementation of Hessian-based FWI, in which the inverse Hessian is recursively

estimated from the evolution of the gradient and model update over a number

of previous iterations (Nocedal and Wright, 2006; Virieux and Operto, 2009).

Sheen et al. (2006) and Shin et al. (2001), on the other hand, propose to reduce

the computational burden of the partial derivative wavefield by exploiting the

source-receiver reciprocity.

In this paper, the waveform inversion is implemented as a damped least square

Gauss-Newton optimisation problem (Menke, 1989; Aster et al., 2005). In the

Gauss-Newton method, a locally linear misfit functional is assumed (Kormendi

and Dietrich, 1991; Menke, 1989; Aster et al., 2005), which allows the second

order term of the Hessian to be dropped (Virieux and Operto, 2009). We obtain

explicitly the sensitivity matrix J by perturbing each model parameter at each

layer depth; the resulting partial derivative wavefield is propagated from the sec-

ondary virtual sources to the receivers’ position (Rodi, 1976; Sheen et al., 2006;

Operto et al., 2013). The e↵ectiveness of this approach in scaling and weight-

ing the gradient is higher than the steepest-descent and quasi-Newton methods,

because the approximate Hessian JTJ is computed rather than statistically esti-

mated. The relatively low number of unknowns of the 1D modelling makes the

computing cost a↵ordable, with wide scope for improvement thanks to the highly

parallelisable nature of the sensitivity matrix. The Gauss-Newton method can

be applied to trace-normalised seismic data (Lee and Kim, 2003), in which the

non-physical phase correction resulting as a by-product of the source deconvolu-

tion makes the back-propagation of the adjoint-field inappropriate (Virieux and

Operto, 2009). Also, the presence of strong receiver ghost reflections in UHF

data undermines the accuracy of the reverse time migration of the residuals (Sun

et al., 2015). The model update �m at each iteration can therefore be expressed
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as:

�m = (JTWdJ+Wm)�1JTWd�d (3.3)

The first factor of the right hand side of Eq. 3.3 is the regularised approximate

Hessian, while the second is the gradient of the misfit functional. Eq. 3.3 has the

form of the regularised least square inverse solution for a problem of the kind:

�d = J�m (3.4)

It is therefore possible to express the linear operator J mapping the data residual

�d from the data space into the model update �m space in the Singular Value

Decomposed (SVD) domain. If, for the sake of simplicity, we set the data covari-

ance matrixes equal to the identity and scale the model covariance by the factor

↵, Eq. 3.3 takes the form (Aster et al., 2005):

�m =
kX

i=1

s
i

2

s
i

2 + ↵2

U(:,i)
T �d

s
i

pTV(:,i) (3.5)

where U is the data eigenvector matrix, s
i

is the i
th

singular value and V is

the model eigenvector matrix. This equation expresses the model update vector

as the result of the projection of the data residual vector on the model update

vectorial space. The hyper parameter ↵ contributes in the filter factor s

i

2

s

i

2+↵

2 to

damp out the small singular value responsible for numerical instability (Menke,

1989; Aster et al., 2005; Asnaashari et al., 2012). The preconditioning vector p

assigns a di↵erent relative weight to each parameter of the sensitivity matrix in

order to guide the inversion towards geologically plausible solutions.

From a physical point of view, Eq. 3.4 is equivalent to the Born approximation

of the wavefield (Jannane, 1989; Virieux and Operto, 2009; Fichtner, 2011), which

implies that the data residuals are linearly related to missing heterogeneities in a

background elastic model (Tarantola, 1984; Jannane, 1989; Virieux and Operto,

2009; Fichtner, 2011). In this framework, in order for the convergence to local

minima to be prevented, the background velocity distribution needs to account

for the traveltime information of the data within half a propagated wavelength,

otherwise cycle skipping (Virieux and Operto, 2009) occurs and a spurious solu-

tion is obtained. Resuming, the inversion process involves the following steps:

1. Computation of the seismogram for the current model m
i

;
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2. Computation of the residual vector �d;

3. Computation of the sensitivity matrix by perturbing each model parameter

and computing the residuals in a forward finite di↵erence scheme;

4. Singular value decomposition and generalised inverse computation;

5. Computation of the model update �m and of the model m(i+1);

6. Seismogram computation for the m(i+1) model;

7. Misfit computation;

8. If the convergence criteria are satisfied, the inversion ends, otherwise goes

back to 2.

The process stops when a maximum number of iteration is reached, the misfit

goes below a threshold, or the misfit evolution function has reached a plateau.

3.2.3 A strategy for the multi-parameter problem

An isotropic and elastic medium is univocally described by a spatial distribu-

tion of three independent parameters (Aki and Richards, 2002), most commonly

density and the Lamè coe�cients (Tarantola, 1986); although equivalent in a

forward modelling sense, di↵erent parametrisations have di↵erent convergence

properties and parameters’ resolution. The most desirable parametrisation guar-

antees the minimum crosstalk among the unknowns of the inversion (Tarantola,

1986; Kormendi and Dietrich, 1991); ideally, the partial derivative wavefield of

one parameter should be uncorrelated with the residual wavefield produced by

each other independent parameter (Tarantola, 1986; Operto et al., 2013). In ma-

rine reflection seismic data, the presence of only one propagation mode impedes

the opportunity to obtain independent estimates of P-wave (Vp) and S-wave ve-

locity (Vs) (Jin et al., 1992; Igel et al., 1996); on the other hand, density is

strongly coupled with P-wave velocity at narrow reflection angle; the two param-

eters can’t be e↵ectively resolved and in fact yield a posterior reconstruction of

the P-impedance model (Tarantola, 1986; Operto et al., 2013). Here we choose to

parametrise the reflectivity of the earth model as a distribution of P-impedance,
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Poisson’s ratio and density (Debski and Tarantola, 1995; Igel et al., 1996), super-

imposed to a long-wavelength P-wave velocity model that controls the wavefield

kinematic (Tarantola, 1986; Jannane, 1989).

The limited o↵set, limited bandwidth, lack of diving waves and multi-component

data of UHF data produce a highly hierarchical dependancy on the multi-parameter

space as a function of the reflection angle range (Tarantola, 1986). P-impedance

is the dominant parameter over the whole angle range, and it is su�cient to

explain the reflected energy at near-zero reflection angle (Tarantola, 1986). A

second order contribution to the wavefield energy is given by the variation of the

reflection amplitude with angle; this depends upon the Poisson’s ratio and density

contrast at the layer interfaces, the first dominating the mid o↵set AVO, the lat-

ter having an increasing importance at greater reflection angles (Koefoed, 1955;

Ostrander, 1984; Ruthenford and Williams, 1989; Mallick and Dutta, 2002). The

resulting Hessian matrix for a scatterer layer is highly rank-deficient, meaning

that only one parameter class can be e↵ectively inverted for in a simultaneous

multi-parameter inversion (Operto et al., 2013); despite the inherent stability

of the SVD approach, this makes the multiplication by the inverse Hessian not

ideal as a means to uncouple the di↵erent components of the gradient. On the

other hand, the angle dependancy of the secondary virtual sources for the chosen

parametrisation, allows us to orthogonalise the problem by appropriately weight-

ing the residual wavefield and inverting sequentially each independent parameter,

from the strongest to the weakest contributor to the residual energy (Tarantola,

1986; Igel et al., 1996; Operto et al., 2013). This approach has also the advantage

of a simpler implementation of the regularised least-square inversion, as it does

not require to build a model covariance matrix that balances the contribution of

parameters with di↵erent weights (Eq. 3.3).

We first invert for P-wave velocity by keeping Poisson’s ratio and density

constant to the background values, windowing the data and the partial derivative

field around the near-o↵sets; this is equivalent to a P-impedance inversion, for

density is kept constant. We then invert the whole o↵set range for Poisson’s

ratio; the virtual source radiation patterns of Poisson’s ratio and density are

partially overlapping in the mid reflection angle range, hence the estimate will be

to some extent a↵ected by crosstalk. If wide reflection angles (> 40 degrees) are

available in the data, the relative contributions of density and P-wave velocity to

P-impedance are decomposed by inverting for density at constant P-impedance.
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A cyclical update of density and Poisson’s ratio in this stage makes up for the

e↵ect of crosstalk resulting from the previous stage. The reliability of the a-

posteriori P-wave velocity estimate is ensured by the broad wavenumber content

of the P-impedance model (Operto et al., 2013), as opposed to a a-posteriori

estimation of density from a [P-impedance, Vp, Poisson’s ratio] parametrisation.

3.2.4 Test on synthetic UHF marine reflection data

We test the performance of the sequential inversions strategy on a synthetic

example of pre-stack UHF data. In this experiment, the starting P-wave velocity

model is accurate enough to allow for an e↵ective inversion of the reflectivity of

the medium. We also assume that the source wavelet is perfectly known. The

synthetic true model has 18 layers, for a total thickness of 12 metres below the

sea-bottom interface at 15 metres water depth; it includes 20 cm thick target

horizons with distinct elastic characteristics. Changes in acoustic impedance are

either correlated to variation in both density and velocity, or density only, and the

Poisson’s ratio varies independently with respect to the P-wave velocity, in order

to mimic both changes in fluid saturation in the same lithology and lithological

stratifications (Ruthenford and Williams, 1989). The perfect elasticity implies

that there is no intrinsic attenuation (Aki and Richards, 2002). The theoretical

source signature is a minimum phase Boomer wavelet (Fig. 3.1) band-pass filtered

0.1-1.5 kHz (almost 4 octaves). The acquisition simulates a source depth in the

order of 10 centimetres and a 60 channel streamer with a group spacing of 1

meter and a minimum o↵set equal to 13 metres. The receiver depth is equal to

1.85 metres, which corresponds to receiver ghost notches at multiples of 400 Hz

(Aytun, 1999). The true data have been contaminated by a band-limited zero-

mean gaussian noise, for a signal-to-noise ratio equal to 50 with respect to the

amplitude of the strongest reflection.

The starting model of the iterative inversion is a low-pass filtered (2 metres

cut-o↵ wavelength) version of the true model, containing the correct velocity and

density trend, but accounting only for the sea-floor primary reflection traveltime

and surface-related multiples. With the exception of the sea-floor, the location of

the discontinuities is unknown. The starting model has been parametrised as a

stack of 58 homogeneous, elastic and isotropic layers with a thickness chosen to

be in the order of the tuning thickness for the frequency band employed and the
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expected velocity values (�/4). This results in a model space with 174 degrees of

freedom, which are broken down to 58 per stage in the sequential inversion.

In Stage 1 ( Fig. 3.2) the data are inverted for P-wave velocity only. An

accurate P-impedance profile is retrieved and a good waveform match is attained

in the short o↵sets of the seismic gather. Note how the 20 cm thick low-density

bed at 3.4 metres is incorrectly identified by a drop in P-wave velocity, while

in layers where P-wave velocity and density are correlated, the P-wave velocity

change is overestimated to explain the P-impedance variation. This confirms the

considerations about the [Vp, density, Poisson’s ratio] parametrisation in the

reflection regime (Tarantola, 1986; Operto et al., 2013). The Poisson’s ratio is

kept constant in this stage, so that not only P-wave, but also S-wave velocity is

e↵ectively updated.

At Stage 2 the data are inverted for Poisson’s ratio, while the other parameters

are kept fixed. The misfit is here dominated by the reflection amplitude versus

o↵set variation. The inversion updates the model in the correct direction, but

crosstalk with density prevents from reconstructing the fine-scale details of the

shear properties, especially where the relative contribution of P-wave velocity and

density to the P-impedance is poorly described ( Fig. 3.3).

Stage 3 of the inversion firstly optimises density until an accurate impedance

distribution is obtained. At this point, the final parametrisation [P-impedance,

density, Poisson’s ratio] is e↵ectively adopted and density evolves independently

from P-impedance; this produces a consequent change in P-wave velocity. Note

how the P-impedance contrast at 3.4 metres is now correctly decomposed in its

relative P-wave velocity and density contributions. The e↵ect crosstalk between

Poisson’s ratio and density in the previous stage is also made up for by cyclically

updating the two parameters: the e↵ectiveness of this stage is particularly evident

in layers where the underestimate of density in the starting model had induced

an underestimate of Poisson’s ratio (and vice-versa). The final model (Fig. 3.4)

is a high-fidelity representation of the elastic model.

The robustness of the proposed inversion strategy can be tested against vari-

ations of the signal-to-noise ratio (SNR). Gaussian band-limited noise with zero

mean has been added in the signal frequency band to the field data with di↵erent

SNRs and the normalised L2 model misfit has been computed per each parameter

class. As shown in Fig. 3.5, P-impedance is the most robust parameter to increas-

ing random noise energy in the data; Poisson’s ratio is also remarkably robust in
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a broad range of SNR, while the results of the P-wave velocity/density decompo-

sition at constant impedance quickly deteriorates with decreasing signal-to-noise

ratio. Note how, for signal-to-noise ratio lower than 50, the Poisson’s ratio data

misfit increases steeply, arguably because of the crosstalk between density and

shear properties. The results are consistent with the idea that shear properties

and density are second order contributions to the misfit value in marine reflection

seismograms (Tarantola, 1984, 1986), hence their e↵ect is more quickly buried in

high noise levels. Nevertheless, as we will see in the next section, general conclu-

sions about the robustness of the parameter estimation need to account for the

medium characteristics and the acquisition parameters.

3.3 Sensitivity issues specific to UHF data

The elastic full waveform inversion of UHF reflection data su↵ers from specific

factors, which are discussed in detail in this section:

1. The limited reflection angle due to the short streamers normally employed

limits the possibility to obtain independent information about P-wave ve-

locity and density.

2. The inversion for the Poisson’s ratio distribution is highly non-unique, be-

cause the AVO characteristics of the gather are dependent upon the Pois-

son’s ratio contrasts (Aki and Richards, 2002), rather than its absolute

value, so that the misfit function is insensitive to shear properties gradients.

Furthermore, the high Vp/Vs ratio of the shallow marine sediments (in the

order of 101 � 102) spans a very narrow Poisson’s ratio range (Hamilton,

1970).

3. The sensitivity in the mid to long wavelengths of the P-wave velocity model

is poor because of the lack of low-frequencies and the limited available o↵sets

(Mora, 1980; Jannane, 1989).

4. The accuracy of the UHF source wavelet estimation using traditional method-

ologies is compromised by the characteristics of the data and of the typical

reflectivity series involved.
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(a)

(b)

Figure 3.2: Stage1, P-wave velocity inversion. a) Starting model (black),

true model (blue), current best model (red). b) Synthetic seismogram (red)

overlaid to the ”real data” (blue). The solid grey curve represents the trace by

trace percentage L2 misfit for the final model, the dashed curve is relative to the

model at the beginning of the stage. The Impedance profile is retrieved accurately

and a good match is attained in the short o↵sets of the seismic gather.
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(a)

(b)

Figure 3.3: Stage2, Poisson’s ratio inversion. a) Starting model (black), true

model (blue), current best model (red). b) Synthetic seismogram (red) overlaid

to the ”real data” (blue). The solid grey curve represents the trace by trace

percentage L2 misfit for the final model, the dashed curve is relative to the model

at the beginning of the stage. In this stage we reduce the data misfit associated

to the AVO characteristics of the gather, but the inaccuracies in the starting

density model prevent the algorithm from retrieving the shear-properties’ fine-

scale details.
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(a)

(b)

Figure 3.4: Stage3, Cyclical density and Poisson’s ratio inversion. P-

impedance constant. a) Starting model (black), true model (blue), current

best model (red). b) Synthetic seismogram (red) overlaid to the ”real data”

(blue). The solid grey curve represents the trace by trace percentage L2 misfit

for the final model, the dashed curve is relative to the model at the beginning of

the stage. In this stage we fit the wide-angle part of the shot gather by optimising

cyclically for density and Poisson’s ratio. Note how the impedance change right

below 3 metres depth is correctly attributed to a density change and the P-wave

velocity is changed accordingly to keep the P-impedance constant.
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Figure 3.5: Robustness to random noise. Model misfit percentage variation

for P-impedance, Poisson’s ratio, P-wave velocity and density as a function of

signal-to-noise ratio (SNR). Note how the acoustic impedance is the most robust

parameter, while the Vp/density separation is the most sensitive to the noise

energy in a broad SNR range. Interpolated from the computed value (asterisks).
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3.3.1 Sensitivity to constant-impedance density variations

A broad literature about the parameter dependancy of marine seismic reflection

data shows that independent high frequency variations of P-wave velocity and

density at constant impedance are poorly constrained parameters when limited

o↵set are available (e.g. Debski and Tarantola, 1995; Jannane, 1989; Igel et al.,

1996). We conduct a sensitivity analysis on a simple homogeneous model with a

low impedance 50 cm thick layer, whose density is changed at constant impedance,

as a function of the maximum reflection angle at the target. The relative L2 data

misfit is computed against a reference model and the results are plotted in decibel

scale in Fig. 3.6a. The rapid decrease in the relative data misfit with decreasing

reflection angle suggests that the sensitivity of the inversion to such changes in the

subsurface is highly sensitive to the ratio between streamer aperture and target

depth. In order to decompose the amplitude and traveltime contribution to the

measured misfit, we compute the o↵set-dependent cross-correlation value and

lag; the results show how a density perturbation at constant impedance produces

a change in the maximum value of the cross-correlation function (Fig. 3.6b),

whilst the lag is not significantly a↵ected, being always equal to or lower than

one sample. This results confirm that, although the reflection travel times are

insensitive to such perturbations, being mostly controlled by a long-wavelength

distribution of the P-wave velocity, density variations at constant impedance do

a↵ect the angle-dependent reflectivity of the propagation medium, as a second

order contribution to the AVO reflection amplitude (Aki and Richards, 2002).

Three density profiles have been picked from the population of models used for

the sensitivity analysis to test how this translates into the inversion results. We

use a constant starting density model, where the impedance change at the target

layer is entirely explained by a P-wave velocity variation, a situation comparable

to the end of the second stage of the inversion. The Poisson’s ratio profile of the

starting model is correct, thereby crosstalk e↵ects do not play a role in the test.

The curves computed from the exact AVO equation (Aki and Richards, 2002)

for the starting and true models show how the inaccuracy in the density profile

at constant impedance contrast produces a residual AVO at long o↵set, which

is greater for the shallower model. The quality of the P-wave velocity/density

decomposition in the final models is highly dependent on the reflection angle

range (Fig. 3.7) and no independent information about P-wave velocity and
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density can be reliably obtained at reflection angles below 30 degrees. Model

misfit for each parameter class in the 18 layers model (Fig. 3.8) as a function

of a maximum reflection angle shows that P-impedance and Poisson’s ratio are

robust to changes in the reflection angle; in contrast, the P-wave velocity profile

quickly deteriorates as the reflection angle range narrows.

3.3.2 Sensitivity to Poisson’s ratio in high Vp/Vs media

Changes in lithology, pore pressure and saturating fluids produce di↵erential vari-

ations of compressibility and shear properties, determining changes on the ratio

between P-wave and S-wave velocities (Vp/Vs) (Ruthenford and Williams, 1989;

Mallick and Dutta, 2002; Igel et al., 1996). However, the Vp/Vs ratio controls

the reflectivity of a medium via the Poisson’s ratio (Koefoed, 1955; Mavko et al.,

2009):

⌫ =
(V

p

/V s)2 � 2

2[(V
p

/V s)2 � 1]
(3.6)

The non linear relationship of Eq. 3.6 determines a range-dependent sensitivity to

Vp/Vs changes. For low ⌫, small changes in the Vp/Vs ratio head to significant

variation of ⌫, thereby creating important AVO e↵ects; in contrast in the range

from 0.45 to 0.5, where normally most shallow marine sediments fall (Hamilton,

1970), large changes in Vp/Vs correspond to small variation of Poisson’s ratio

(Fig. 3.9a), limiting the AVO response (Mallick and Dutta, 2002).

A sensitivity analysis is performed on a simple elastic model with a low-

impedance 50 cm thick target layer, whose Vp/Vs ratio is 5 times higher than the

surrounding homogeneous medium, simulating the presence of a under-consolidated,

high-porosity and high pore-pressure sediment bed. Within a broad range of ⌫,

we introduce perturbations to the S-wave velocity of the target layer and mea-

sure the relative L2 misfit with respect to a reference model. The sensitivity

to Vs perturbations rapidly falls with increasing Poisson’s ratio, regardless the

amount of perturbation added (Fig. 3.9b). To study how this loss of sensitivity

a↵ects the inversion performances, we pick four models from the sensitivity anal-

ysis in four di↵erent Poisson’s ratio ranges and run the inversion starting from

a homogeneous profile. Although the Vp/Vs ratio contrast at the target layer

boundary is 5 for every model, the corresponding Poisson’s ratio variation drops
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(a)

(b)

Figure 3.6: Constant-impedance density sensitivity analysis. Per each

reflection angle, the L2 data misfit normalised to the seismogram energy is com-

puted between a reference model and a range of models with increasing percent-

age perturbation of the target layer density. a) Data misfit normalised to the

total data energy in deciBel. The contour plot shows the percentage iso-misfit

surface. The black dots correspond to the computed models. b) Maximum cross-

correlation value as a function of o↵set at di↵erent maximum reflection angles.

The o↵set-dependent correlation is computed per di↵erent perturbation values

(increasing from pale blue to magenta).
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(a)

(b)

Figure 3.7: Constant-impedance density sensitivity analysis. a) Di↵eren-

tial reflection AVO computed between a constant density model, and a model

where both density and Vp contribution are present, within a reflection angle

range corresponding to changes in sea-floor depth from 15 to 50 metres. The solid

lines are relative to the models considered for the inversion. The legend contains

the reflection angle at the target layer. b) Retrieved density profile (red), against

true density profile (blue). The starting density model is homogeneous (black),

although it corresponds to a correct P-impedance profile.
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Figure 3.8: Robustness to changes in the reflection angle range. Model

misfit percentage variation as a function of the maximum reflection angle for

the complex 18 layers model per each parameter class. Interpolated from the

computed value (asterisks).

quickly below 5% for Vp/Vs ratio higher than 4 (Table 3.1). This is apparent

in the residual Amplitude Versus Angle (AVA) computed between the starting

homogeneous Poisson’s ratio model and the true model containing the target in-

terface (Fig. 3.10). As a consequence, in the presence of noise the match between

retrieved and true S-wave velocity profile deteriorates when the Poisson’s ratio

background value increases (Fig. 3.11). The Vp/Vs increase at the target inter-

face is accommodated for by a Vs profile with a similar contrast, but an erroneous

relatively long-wavelength trend.

To address this non-uniqueness issue, we propose a structure-constrained gra-

dient preconditioning: in the framework of a sequential strategy, the normalised

derivative of the P-impedance obtained from the first stage of the inversion is used

to weigh each element of the misfit gradient in the Poisson’s ratio stage. Thus

the inversion updates preferentially the Poisson’s ratio of layers with a signifi-

cant change in the acoustic properties, imposing a correlation between changes in

P-impedance and Vp/Vs ratio. The final model misfit is significantly improved

by preconditioning (Fig. 3.12), especially for the low-sensitivity, high Poisson’s

ratio cases. Ambiguities in the interpretation of the interface location are reduced
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⌫ 1 ⌫ 2 Vp/Vs 1 Vp/Vs 2

a 0.33 0.4949 2 10

b 0.4666 0.4987 4 20

c 0.4920 0.4996 8 40

d 0.4984 0.4999 18 90

Table 3.1: Sensitivity to Vp/Vs ratio.Table of Poisson’s ratio and Vp/Vs ratio

of the models used for the sensitivity analysis. Index 1 refers to the surrounding

medium, index 2 to the target layer.

without the need of additional a-priori information. This approach remains es-

sentially data-driven and fits naturally in the sequential inversion strategy.

3.3.3 Complex trace inversion to improve the model kine-

matics

The lack of low frequencies and the limited o↵sets in UHF data determine a

low sensitivity to the mid-to-low wavelengths of the earth-model (Mora, 1980;

Jannane, 1989). Although the background P-wave velocity distribution within

the top 50 metres of the sub-seabed is close to the water velocity (Hamilton,

1970), this characteristic can be conducive to cycle-skipping and local minimum

entrapment in the P-wave velocity inversion (Tarantola, 1984; Virieux and Op-

erto, 2009), which would jeopardise the reconstruction of the elastic model in

the following steps. To reduce this problem, when the knowledge of the starting

model is poor, we exploit the properties of the complex trace, combined with

a multi-scale approach, which progressively includes higher frequency in the in-

version (Bunks et al., 1995a). The seismic signal s(t) can be considered as the

real part of a complex c(t) trace whose imaginary part is its Hilbert transform

h(t)(Taner et al., 1979), i.e. its ⇡/2 phase-shifted version:

c(t) = d(t) + ih(t) (3.7)

The instantaneous phase (IP) is defined as the inverse tangent of the ratio between

the imaginary and the real part, while the modulus of the complex trace is known
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(a)

(b)

Figure 3.9: Poisson’s ratio sensitivity. a) Poisson’s ratio vs Vp/Vs ratio. Most

unconsolidated sediments fall into the red box, where great changes in Vp/Vs

correspond to a narrow Poisson’s ratio range and thereby to a small AVO e↵ect,

which translates into a poorer sensitivity. b) Over a broad Vp/Vs ratio range of

the encasing medium, the L2 data misfit is computed between a reference model

and a range of models with increasing percentage perturbation of the target layer

S-wave velocity. Data misfit normalised to the total data energy in deciBel. The

contour plot shows the percentage iso-misfit surface. The black dots correspond

to the computed models.
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Figure 3.10: Poisson’s ratio sensitivity. Di↵erence between the AVA of the

starting and true Poisson’s ratio profiles in the four Vp/Vs ranges considered

in the sensitivity analysis (solid lines). Intermediate di↵erential AVA curves are

shown with the dotted lines. The quick fall in di↵erential AVA from the first solid

line (Vp/Vs=2) to the first dotted line (Vp/Vs=3) is consistent with the quick

loss in sensitivity shown in figure 3.9b

.
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(a)

(b)

Figure 3.11: Poisson’s ratio inversion as a proxy to Vs. Sensitivity anal-

ysis. Poisson’s ratio inversion for the models from a to d, with and without noise.

a) Retrieved S-wave velocity profile in the noise-free (red) and noise-contaminated

data (black), against the true Vs profile (blue). b) Final Vp/Vs ratio misfit for

models from a to d in the noise-free and noise-contaminated cases. Interpolated

from measured data (asterisks).
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(a)

(b)

Figure 3.12: Poisson’s ratio inversion as a proxy to Vs. Sensitivity anal-

ysis. Poisson’s ratio inversion of models from a to d with structure-constrained

gradient preconditioning. Noise-contaminated data. a) Retrieved S-wave velocity

profile with (red) and without (black) gradient preconditioning, against the true

Vs profile (blue). b) Final Vp/Vs ratio misfit for models from a to d with and

without gradient preconditioning. Interpolated from measured data (asterisks).
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as the envelope or reflection strength. Here we use a modified version of the

instantaneous phase, proposed by Jimenez-Tejero et al. (2015), where the inverse

tangent computed on the ratio between the absolute value of the imaginary trace

and the real trace. It reads:

�(t) = tan�1(
|h(t)|
d(t)

) (3.8)

Separating instantaneous amplitude and phase information of the seismogram is

beneficial to the convergence properties of FWI (Fichtner, 2011; Bozdag et al.,

2011; Fichtner et al., 2008). The modified instantaneous phase is less liable

to cycle skipping when FWI is applied to limited-o↵set, band-limited seismic

reflection data (Jimenez-Tejero et al., 2015), which is commonly the case in near-

surface marine reflection seismic; furthermore, the phase-only virtual source for

P-wave velocity is naturally uncoupled in the reflection regime with Poisson’s

ratio and density over the whole o↵set range, for it is less AVO-dependent. For

elastic seismic inversion, the complex trace attributes are easily incorporated into

a multi-stage approach, where the instantaneous phase is inverted first for the P-

wave velocity distribution until convergence is reached and the reflected phases are

correctly aligned; after that, the elastic model parameters are inverted for using a

misfit functional based on the instantaneous amplitude. The same considerations

about the sensitivity to the elastic model space hold in the envelope-based misfit

functional, as the trace envelope is su�cient to describe the AVO characteristics

of the gather.

3.3.4 The source-independent approach

Inaccuracies in the estimation of the source wavelet are among the main causes of

systematic error in the FWI of real data. Statistical source estimation based on

the seismic convolution theory assumes a white reflectivity series (Dey and Lines,

1998; Mallick and Adhikari, 2015); although this is the most popular approach

in seismic modelling and imaging, such an assumption is likely to be violated in

UHF near-surface data, because the short reflectivity series involved do not allow

for a statistically robust estimate of a white signal and graded boundaries become

increasingly important at the sub-metric scale. More complex methods, such as

homomorphic deconvolution in the cepstral domain (Ulrych, 1971), are compro-

mised by strong ghost contamination. Therefore we use the source normalisation
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scheme proposed by Lee and Kim (2003). According to the convolution theory, a

seismic trace can be expressed in the frequency domain by multiplying the com-

plex spectra of the source and the impulse response of the propagation medium,

or Green’s function (Aki and Richards, 2002).

d(!) = s(!)g(!) (3.9)

Let d
R

(!) be a reference trace chosen from the multi-channel seismic gather,

where g(!) in Eq. 3.9 is replaced by g
R

(!) . Normalising the seismogram for the

reference trace in the frequency domain e↵ectively deconvolves the data from the

source signature:

dN(!) =
s(!)g(!)

s(!)g
R

(!)
=

g(!)

g
R

(!)
(3.10)

where g
R

(!) is the impulse response at the reference receiver. In Eq. 3.10, d
N

is independent from the source signature and essentially reduced to the Green’s

function normalised to the impulse response at the reference receiver location,

normally chosen to be the closest to the source (Lee and Kim, 2003; Joo et al.,

2012; Kwon et al., 2015). In the so-obtained normalised data space, the inversion,

rather than being driven by the recorded wavefield, seeks for the match between

the relative changes in the impulse response of the medium with respect to the

reference trace position.

No changes in the virtual sources radiation patterns are observed, hence the

parameter dependancy of the normalised data from the elastic model space is

not modified. The spectral normalisation, however, is liable to instabilities if

the reference trace spectrum contains near-zero values at certain frequencies. In

order to overcome this issue, the back transformation to the time domain is

computed assigning a specific weight to each frequency component to damp out

the spikes in the spectra corresponding to poles in the inverse filter. Although

this approach would be easily incorporated in a frequency domain inversion, back

transformation to the time domain is necessary to allow for the inversion to be

performed on the time-dependant complex trace attributes.

74



CHAPTER 3. DETERMINISTIC DECIMETRE-RESOLUTION PRE-STACK
WAVEFORM INVERSION

3.4 Application to a real UHF dataset

3.4.1 Setting and Data overview

In order to test the performance of the proposed inversion scheme, we apply the

methodology to a real UHF multi-channel shallow water seismic gather acquired

in the Solent, UK. The seismic source is an electro-acoustic Boomer plate, ca-

pable of producing a high-frequency, wide-band and highly repeatable minimum

phase pulse (Verbeek and McGee, 1995) (Fig. 3.1); the receiver streamer has 60

channels with minimum o↵set equal to 10 metres, one-meter group spacing and 7

elements per group. Both source and receiver directivity filters have been applied

to the synthetics in the FK domain prior to the misfit computation (Verbeek

and McGee, 1995; Riedel and Theilen, 2001). The inversion is performed on the

reference-trace deconvolved seismograms, which is expected to be robust against

inaccuracies in the wavelet estimate. Since the sea surface multiple reflections are

not included in the forward modelling, the data are bottom muted above the first

order sea floor multiple; the only other pre-processing applied to the data is the

muting of the direct wave and a frequency filtering in the appropriate modelling

band.

Previous geophysical data available in the area comprise acoustic quality fac-

tor Qp (Pinson et al., 2008), and long-wavelength P-wave velocity field from

Migration Velocity Analysis (MVA) (Pinson, 2009), along with lithology, poros-

ity and density log-measurements of a proximal sediment core. Seismic to log

calibration identifies a 1-to-3 metres thick gravel layer, with low Qp (c. 50), high

P-wave velocity and density; it overlays, separated by an erosive unconformity,

an over-consolidated clay-dominated layered sediment sequence, with high Qp (c.

150) and acoustic velocity. The sediment sequence below the unconformity is

interbedded by sub-metric shelly and limestone layers, and thus likely has de-

tectable variations of shear properties. At the bottom of this 15 metres thick

sequence, there is a strong impedance contrast interface.

The combination of shallow water environment (16 metres water depth) and

streamer aperture, makes the reflection angle range wide enough to obtain in-

dependent estimates of density and P-wave velocity (64 to 47 degrees from the

shallowest to the deepest interface), while the relatively low Vp/Vs ratio of the

over-consolidated clayey sequence is favourable to the shear properties inversion.
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The medium is parametrised as a stack of 78, 20 cm-thick homogeneous layers,

from the seabed at 16 metres below the free surface, down to 15 metres below the

seafloor. The MVA velocity profile is used as the starting Vp model. The initial

Poisson’s ratio model consists of a gradient for the top gravel sequence from 0.5

at the seafloor to 0.45 at the top of the layered sequence, whose value remains

constant down to the bottom of the model. The latter is an unusually low value

for shallow marine sediments, but is required due to the over-consolidation; tests

run with higher average Poisson’s ratio resulted in higher data misfit. Although

we invert here for the elastic parameters, the forward model includes a long-

wavelength Qp model determined using the spectral ratio method from near-o↵set

Boomer and Chirp over the sediment sequence (Pinson et al., 2008); the Qs model

is derived from Qp using, in the absence of other information, a high-Q empirical

relationship between compressional and shear attenuation, i.e. Qs = 4/9Qp (Aki

and Richards, 2002).

3.4.2 FWI and comparison with the ground-truth

In the FWI for the elastic parameters, the strategy described in the methodology

section is applied, with a misfit functional based on the complex trace attributes:

the modified instantaneous phase is used to obtain a P-wave velocity model ro-

bust to cycle-skipping; the elastic model parameters controlling the AVO are then

inverted sequentially using the instantaneous trace amplitude. The first stage of

the inversion updates the MVA velocity model by fitting the instantaneous phase

of the seismogram, starting from a cut-o↵ frequency of 0.5 kHz and progressively

broadening the bandwidth up to 1.5 kHz. After convergence is attained in the

instantaneous phase domain, the envelope of the seismograms are inverted for P-

wave velocity; a near-o↵set taper is applied to the data to attribute higher weight

to the near-vertical reflection amplitude and reduce the crosstalk with Poisson’s

ratio. In Fig. 3.13, note how the reflection strength inversion updates the veloc-

ity model in the absolute values, while the location of peaks and troughs in the

velocity structure has already been constrained by the instantaneous phase (IP)

inversion. Poisson’s ratio inversion reduces the misfit between the computed and

the field data, with an importance increasing with increasing o↵set (Fig. 3.14).

No gradient preconditioning is applied in this stage, as the highly heterogeneous
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impedance in the shallowest two metres would produce a strong bias in the solu-

tion, preventing the model from evolving in the deeper portions; nevertheless, the

relatively low Poisson’s ratio in the site allows for obtaining a stable result. In the

final stage, the inversion for density yields minor improvements in the impedance

profile; when convergence is reached, density is inverted for independently from

P-impedance, alternating steps of Poisson’s ratio optimisation (Fig. 3.15).

A synoptic view of the elastic model and the ground-truth is shown in Fig.

3.16. The seismic inversion site is five hundred metres away from the ground-

truth, since the irregular sea bottom at the core site invalidated the 1d assump-

tion. However, the lateral continuity of the reflections in the pre-stack-migrated

seismic section (Fig. 3.16) suggests that, other than changes in depths and layer

thicknesses, the sediment properties are equivalent. The reflectors of the PSDM

seismic section are used to correlate the inversion results to the core measure-

ments, which have been filtered down to the seismic resolution after the removal

of outliers and non-significant values. The axis scale of the porosity is reversed,

to highlight the positive correlation between the reduction of porosity and the

P-impedance (Vardy, 2015); we also expect to find a positive correlation between

the clay content and the Poisson’s ratio (Hamilton, 1970). The sedimentary log

ranges from clay to gravel for loose sediments, whereas the presence of lithified

material is marked by values going past the gravel base-line. We divide the section

into units, colour coded and labeled in Fig. 3.16.

Unit a. The top 3 metres of the model are characterised by a high-impedance

top portion overlaid by a low-impedance, low-density and lower Poisson’s ra-

tio deeper part; although no ground-truth density and porosity are available

at this depth, the results are consistent with the gravel layer, with internal

heterogeneity confirmed by the presence of reflections in the PSDM section.

Note in figure 3.13 how the inner structure of the gravel layer recognised

by the inversion was instead averaged in a uniform high-velocity layer in

the MVA model. A strong reduction of the Poisson’s ratio is observed from

the top to the bottom of the unit, as expected inside the shallowest seabed

sediment as a consequence of increasing consolidation with depth.

Unit b. Here higher impedance and higher Poisson’s ratio than the bottom of

unit a are obtained; the top and bottom boundaries correlate to two strong

reflections in the PSDM section, while the core data identifies a clay bed
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Figure 3.13: Stage1. P-wave velocity inversion. Instantaneous phase multi-

scale P-wave velocity inversion, followed by a P-wave velocity instantaneous am-

plitude inversion with short o↵set windowing. In panel a, the starting model

(black) and the final model at this stage (red). The dashed red line is the Vp

model after the instantaneous phase inversion only. In panel b, the envelope of

the synthetic seismogram (red) overlaid to the real (blue) and percentage misfit

as a function of o↵set, at the start and at the end of the stage (dashed and solid

grey lines).
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Figure 3.14: Stage2. Instantaneous amplitude Poisson’s ratio inversion.

In panel a, the starting model (black) and the final model at this stage (red). In

panel b, the envelope of the synthetic seismogram (red) overlaid to the real (blue)

and percentage misfit as a function of o↵set, at the start and at the end of the

stage (dashed and solid grey lines).
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Figure 3.15: Stage 3. Instantaneous amplitude cyclical density and Pois-

son’s ratio inversion. Firstly, density is updated independently from Vp to

optimise the impedance; after convergence, impedance is kept constant and den-

sity and Poisson’s ratio are inverted for cyclically. In panel a, the starting model

(black) and the final model at this stage (red). In panel b, the envelope of the

synthetic seismogram (red) overlaid to the real (blue) and percentage misfit as a

function of o↵set, at the start and at the end of the stage (dashed and solid grey

lines).
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with a density and porosity structure which mimics the inverted impedance

and density profile; note how the strong impedance contrast at the bottom

of the unit has no clear correspondence in the density data at the core

location, consistently with a weaker and locally less continuous reflection in

the PSDM seismic. The increase of Poisson’s ratio is in agreement with a

more cohesive medium, which is less conducive to shear wave propagation.

Unit c. The impedance and density trends match the porosity and ground-

truth density, consistent with changes from fine-grained sediments to silt-

dominated beds. Poisson’s ratio in this unit is anti-correlated to the impedance

profile; this can be explained by an increased sti↵ness in the micro-fabric of

the sediments, which determines an increase of compressional wave velocity

correlated to a decrease of the Vp/Vs ratio. At the bottom of the unit,

the decrease of impedance and increase of Poisson’s ratio correlates to a

increased clay content in the lithological log.

Unit d. The Impedance and density profiles have a positive gradient, which

correlates to the transition to a coarser-grained portion of the lithological

log, reaching a maximum in a composite sandy layer interbedded by a

thin clay-rich bed; the latter has a distinct low density and high Poisson’s

ratio signature in the inverted model. The excellent agreement between the

ground truth and the model in this layer is encouraging.

Unit e. Impedance and density decrease in a one-meter thick bed interbedded

by a higher impedance and density thinner layer. This correlates with a

clay bed interbedded by a thin coarser-grained interval. Poisson’s ratio

shows a decrease in this unit, with a negative peak corresponding to the

coarse-grained layer depth and an increase in the clay content towards the

base. Density and porosity from the log are consistent with the inversion

results.

Unit f. High impedance and density unit, interbedded by a 20 cm thick bed

with low impedance and density. The ground-truth shows a similar pattern

and correlates the low-impedance layer with a shelly sediment bed within

the clay-dominated sediment. Poisson’s ratio has a negative trend at the

top, reaches a negative peak at the low-impedance sand layer location, and
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sharply increases in the bottom clay-rich portion. In this unit, changes be-

tween cohesive and granular medium have a clear signature on the Poisson’s

ratio variations.

Unit g. This unit shows an alternation of lows and highs in impedance and

density. The sharp increase of impedance at the bottom corresponds to

a strong continuous reflection in the PSDM seismic; this correlates to a

fining-upward, from gravel to clay, sediment interval. The internal litholog-

ical layering seems to have a signature in the 20 cm thick sharp decrease

of Poisson’s ratio at a depth compatible with the gravely-sandy part. Note

how, at this depth, the quality of the inverted density profile has deterio-

rated as a consequence of the narrower reflection angle range.

Unit h. The top part of this unit shows a decrease of impedance and density,

which correlates to the density and porosity profiles, followed by an increase

which can be related to the top of a rocky unit.

3.4.3 Comments

The real data example corroborated most of the conclusions drawn from the syn-

thetic sensitivity tests. The combination of streamer aperture and water depth

ensured that the reflection angle range was wide enough to obtain an indepen-

dent characterisation of the subsurface in terms of P-wave velocity, density and

Poisson’s ratio, without assuming any a-priori relationship between the param-

eters. Despite the simple starting model used and the deterministic approach,

a sensible solution has been obtained. The convergence properties of the modi-

fied instantaneous phase have been exploited to reduce the risk of cycle-skipping,

whereas possible inaccuracies in the source wavelet have been mitigated by using

the reference-trace normalisation. The o↵set-dependent misfit evolution through-

out the inversion confirmed that the sequential optimisation is a reasonable and

e↵ective way to tackle the hierarchical dependancy of the data on the elastic

parameters. The presence of strong internal heterogeneity inside the top gravel

layer undermined the e↵ectiveness of the Poisson’s ratio gradient preconditioning

scheme; however, the relatively low Poisson’s ratio in the site and the wide re-

flection angle, allowed for the shear properties inversion to produce stable results

using a raw gradient calculation.
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Figure 3.16: Inversion results interpretation. In panel a) inverted P-

impedance, density and Poisson’s ratio. In panel b) PSDM seismic section with

location of the acquisition site (left vertical line) and core position (right vertical

line). Overlaid to the acquisition site, the red line indicates the width of the

acquisition streamer. Note how the vertical dimension is greatly exaggerated. In

panel c) wet bulk density, fractional porosity and sedimentary column from log;

the latter is a curve whose values are proportional to the relative abundances of

clay, silt, sand, gravel and lithified sediment. The labelled units are colour-coded

to highlight the correlation between the inversion results and the ground-truth.
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The Qp macro-model estimated using the spectral ratio method (Pinson et al.,

2008) and the derived Qs were included in the forward model, in particular to

account for the strong intrinsic attenuation within the top low-Qp gravel layer.

Although a high-fidelity attenuation model would further improve the character-

isation of the sediment column, a reliable and precise wavelength-scale Qp-model

is di�cult to achieve: in the high Qp limit there is little attenuation per wave-

length, and in the low Qp limit the energy is unable to propagate. In particular,

within the FWI framework, there is low sensitivity to attenuation and strong

crosstalk with the elastic model parameters (e.g. Malinkowski et al., 2011; Kamei

and Pratt, 2013); furthermore, constraining Qs from marine seismic data would

require isolating converted S-waves. In this case study, the sensitivity to Q is

further limited by the large-scale high quality factor of the fine-grained, cohesive

sediments that form the dipping beds (Pinson et al., 2008; Malinkowski et al.,

2011), which limits the change in waveform due to attenuation. However, the

large-scale, high precision, Qp model of Pinson et al. (2008) accounts for the

intrinsic attenuation of energy, enhancing the stability of the inversion and the

reliability of the solution.

Conclusions

This work demonstrates that it is possible to use a multi-channel UHF sub-bottom

profiler to derive a high-fidelity distribution of the elastic properties of the sub-

seabed with a sub-metric resolution, using a relatively simple algorithm, with a

simple pre-processing of the raw data and without detailed a-priori information.

A dedicated modelling and inversion strategy has been developed to account for

the specific acquisition conditions and frequency content of shallow marine data

within a reasonable computing time on a standard workstation. A broad range

of synthetic tests along with a real data case study have been used to explore the

capabilities of the inversion method and to define the conditions under which a

full elastic characterisation can be obtained.

We have shown that:

• A sequential inversion strategy is an e�cient way to tackle the multi-

parameter dependancy of the data, and can be used to derive P-wave ve-

locity, bulk density, and Poisson’s ratio profiles.
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• The relative contribution of density and P-wave velocity to P-impedance can

be decomposed, provided that reflection angles > 40 degrees are available.

• P-impedance is the most robust parameter to noise and can be e↵ectively

obtained from narrow reflection angle data even if P-wave velocity and

density cannot be separated, as long as a reliable low-wavenumber velocity

model is available.

• The Poisson’s ratio inversion does not require wide reflection angle data,

but it su↵ers from an important loss of sensitivity in very high Vp/Vs

ratio media, which can be partially made up for using a structure-oriented

gradient preconditioning.

The elastic model obtained shows a good agreement with the ground-truth

density and porosity, and a correlation is shown between clay content and Pois-

son’s ratio distribution. Estimates of physical properties, such as undrained shear

strength, e↵ective stress, overpressure ratio and porosity, can be derived from

the inverted elastic model (Hamilton, 1970; Richardson and Briggs, 1993; Mavko

et al., 2009; Vardy, 2015). This opens the way to the extensive use of quantitative

seismic interpretation as a means to obtain a detailed characterisation of the shal-

low sediment properties, as an e�cient alternative to costly and time-consuming

coring campaign.
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3.A E�cient receiver ghost prediction in the

general varying streamer depth case

A recorded seismic reflection pressure wavefield is the convolution between a

purely up-going wavefield and the impulse response of the acquisition system

as a function of receiver depth, free-surface reflection coe�cient and spatial

frequency (Aytun, 1999). The total wavefield at depth h in the frequency-

wavenumber domain can be obtained from the up-going field P
k

�(h0) as:

P
k

(h, r0) = P
k

�(h0)F1k(h, r0)F2k(h, h0) (3.11)

where:

F1
k

(h, r0) = (1 + r0e
(�j2k

z

h)) (3.12)

predicts the receiver ghost at depth h as a function of the vertical wavenumber

k
z

=
p

k2 � k2
x

, with a free-surface reflection coe�cient equal to r0, whereas:

F2(h, h0) = e(jkz(h�h0)) (3.13)

is the downward propagation operator from h0 to h accounting for the travel-time

di↵erence per each plane-wave component. The time-o↵set domain seismogram

is obtained via two-dimensional Fourier inverse transformation:

d(t, x) = F(�1){P
k

(h, r0)} (3.14)

In the general case of o↵set-varying streamer depth and sea-surface reflection

coe�cient, the complete N -channels seismic gather can be obtained by select-

ing each trace from the corresponding redundant-o↵set domain gather and then

merging the o↵sets. A compact mathematical formulation exploits the properties

of the two-dimensional dirac delta function:

d
i

(t, x) = F(�1){P
k

(h(i), r0(i))} (3.15)

d(t, x) =
NX

i=1

Z +1

�1

Z +1

�1
�(t� ⌧, x

i

)d
i

(⌧, x
i

)d⌧dx (3.16)

As opposed to an explicit full wavefield modelling, only the computation of the

up-going wavefield at constant depth is required, and the whole gather is obtained

by signal manipulation, with significant savings in the computing cost.
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In general, the filter parameters h and r0 are not known in advance with the

accuracy required by UHF seismic modelling and need to be estimated from the

data. The receiver ghost loci in the frequency-o↵set (Fx) domain are a function

of the receiver depth:

fn(x
i

) = n
V
w

2h
x

i

cos(✓(i))
(3.17)

where n indicates the order of the harmonic, V
w

is the water layer velocity and ✓

is the reflection angle from the sea-floor, which can be approximated as the ratio

between the traveltimes (Pinson, 2009):

✓ = (t0/ti) (3.18)

provided that t0 corresponds to a near-vertical reflection. Eq. 3.17 establishes a

linear relationship between receiver-ghost null-frequencies and the reciprocal of

the receiver depth as a function of o↵set. The estimation of the o↵set-dependent

receiver depths can be then cast as a linear inverse problem (Aster et al., 2005);

provided that more than one harmonic per o↵set is available, the problem is over-

determined and the linear formulation is convenient to derive robust confidence

intervals for the solution (Menke, 1989; Aster et al., 2005). In Fig. 3.17 we show

the observed null frequency versus the predicted null frequency for the estimated

depth, overlaid to the frequency-o↵set amplitude spectrum of the real data. The

estimated depth profile in the lower panel shows a clearly sagging geometry and

the e↵ect of the tail-buoy in the far-o↵set channels.

The reflection coe�cient per each each channel can be conveniently obtained

as the solution of a non linear optimisation problem using deterministic algo-

rithms as simple as the bisection method (Burden and Faires, 1985); the optimal

r0(xi

) maximises the normalised cross-correlation value between the predicted

trace and the desired trace at the appropriate o↵set. Although this step is model-

based, it only requires an accurate a-priori estimate of the sea-floor depth: the

normalised cross-correlation removes the dependency of the results on the accu-

racy of the sea-floor reflection AVO, while signal tapering around the sea-floor

reflected arrival helps to attenuate the bias due to the inaccuracies of the elastic

model. The estimated reflection coe�cient obtained for the real data didn’t di↵er

significantly from -1 and hence are not shown here.
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(a)

(b)

Figure 3.17: Streamer depth estimation. In panel a, the frequency-o↵set

power spectrum with overlaid the picked and the predicted null frequencies; the

latter are computed using Eq. 3.17 from the inverted streamer depth shown in

panel b. Note that the sagging receivers’ depth profile and the uplift in the farther

channels due to the use of a tail-buoy.
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4
Decimetric-resolution stochastic inversion

of shallow marine seismic reflection data;

dedicated strategy and application to a

geohazard case study

This chapter has been sent for publication as G. Provenzano, M. E. Vardy, T.

J. Henstock, 2018. Decimetric-resolution stochastic inversion of shallow marine

seismic reflection data. Dedicated strategy and application to a geohazard case

study. Submitted to Geophysical Journal International

Summary

Characterisation of the top 10-50 m of the subseabed is key for landslide hazard

assessment, o↵shore structure engineering design and underground gas-storage

monitoring. In this paper, we present a methodology for the stochastic inversion

of ultra-high-frequency (UHF, 0.2-4.0 kHz) pre-stack seismic reflection waveforms,
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designed to obtain a decimetric-resolution remote elastic characterisation of the

shallow sediments with minimal pre-processing and little a-priori information.

We use a genetic algorithm in which the space of possible solutions is sampled

by explicitly decoupling the short and long wavelengths of the P-wave velocity

model. This approach, combined with an objective function robust to cycle skip-

ping, outperforms a conventional model parametrisation when the ground-truth is

o↵set from the centre of the search domain. The robust P-wave velocity model is

used to precondition the width of the search range of the multi-parameter elastic

inversion, thereby improving the e�ciency in high dimensional parametrisations.

Multiple independent runs provide a set of independent results from which the

reproducibility of the solution can be estimated. In a real dataset acquired in

Finneidfjord, Norway, we also demonstrate the sensitivity of UHF seismic inver-

sion to shallow subseabed anomalies that play a role in submarine slope stability.

Thus, the methodology has the potential to become an important practical tool

for marine ground model building in spatially heterogeneous areas, reducing the

reliance on expensive and time-consuming coring campaigns for geohazard miti-

gation in marine areas.

4.1 Introduction

A quantitative high-resolution physical model of the top 50 m of the subseabed

is of key importance for a wide range of geohazard and o↵shore engineering ap-

plications: identification of potential shallow landsliding (Vanneste et al., 2013);

monitoring of gas storage sites (Cevatoglu et al., 2015); and assessment of o↵shore

structures’ stability (Vardy et al., 2012). Currently, engineering-scale sediment

characterisation relies heavily on direct sampling of the seabed and in-situ mea-

surements (e.g. Stoker et al., 2009). This is expensive and time-consuming for

large areas, as well as being liable to alter the sediment properties during the

coring process (Clare et al., 2017; Monrigal et al., 2017; Vardy et al., 2017).

Variations in lithology and pore-pressure conditions produce mechanical lay-

ering in the shallow subsurface, that can be conducive to changes in the stabil-

ity conditions of submarine slopes (Vardy et al., 2012; Vanneste et al., 2013).

Corresponding anomalies in compressibility, shear resistance and density, have

recognisable footprints on the amplitude and phase of the multi-o↵set reflected
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seismic waveforms (Ostrander, 1984; Ruthenford and Williams, 1989). There-

fore, seismic reflection data have the potential to be used as a remote sensing

tool for shallow geohazard estimation (Mallick and Dutta, 2002; Vardy et al.,

2017). As opposed to reservoir-scale seismic exploration, ultra-high-frequency

(UHF, 0.2-4.0 kHz) multi-channel marine seismic reflection data are historically

under-used in industry for o↵shore engineering design, being most often limited

to a to semi-quantitative interpretation of the reflection amplitudes and facies ge-

ometries. Recent advances, however, have shown the potential use of UHF data

as a quantitative tool (Vardy et al., 2017), from acoustic quality factor estimation

(Pinson et al., 2008) and acoustic impedance inversion (Vardy, 2015), to elastic

pre-stack inversion of the full waveform (Provenzano et al., 2016, 2017).

Full waveform inversion (FWI) is a process by which the initial state of knowl-

edge about a given parametrisation of the propagation medium (model) is iter-

atively improved, by maximising the fitness between the observed seismograms

and the data computed using a forward modelling operator that approximates

the wave equation (Mora, 1980; Tarantola, 1984; Virieux and Operto, 2009).

The oscillating nature of the data makes the high-frequencies of the inversion

strongly non-linear with respect to the long-wavelengths of the P-wave model

(cycle skipping; Tarantola, 1984; Fichtner, 2011), and non-linearity is enhanced

by the interdependency among the di↵erent elastic parameters (Operto et al.,

2013; Gholami et al., 2013a,b). A deterministic inversion thus requires an ac-

curate starting model and an equally accurate estimation of the Hessian matrix

(Virieux and Operto, 2009; Fichtner, 2011; Operto et al., 2013; Dagnino et al.,

2014).

Alternatively, the inversion can be tackled with a stochastic approach, which

samples the model space with a density proportional to the Posterior Probabil-

ity Density function (PPD) (Sambridge and Mosegaard, 2002; Sen and Sto↵a,

2013). In addition to being less reliant upon the accuracy of the starting solu-

tion, stochastic seismic inversion, in principle, allows lots of potentially useful

information on the performance of the inversion to be extracted from the PPD

(Sambridge, 1999; Tarantola, 2005). This includes, but it’s not limited to, the

multi-parameter solution uncertainties and crosstalk resulting from the noise con-

tent, the limited o↵set and bandwidth of the data, and the inherent interdepen-

dency of coupled parameters. However, most often deterministic FWI is the only

feasible approach in three-dimensional environments because of the high number
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of model evaluations required in high-dimensionality spaces and the computing

cost of the seismogram modelling.

Stochastic optimisers such as Genetic Algorithm (Goldberg, 1989), Simu-

lated Annealing (Rothman, 1985) and Particle Swarm Optimisation (Kennedy

and Eberhart, 1995), implement analogies between numerical optimisation and

natural biological and physical phenomena. They represent a compromise be-

tween the extensive exploration of the model space, and the exploitation of the

current state of information about the model (Sambridge and Mosegaard, 2002).

Although providing a biased posterior distribution of models (Sambridge and

Mosegaard, 2002; Sambridge, 1999; Sen and Sto↵a, 1996; Aleardi and Mazzotti,

2017), they are computationally more a↵ordable than a pure Bayesian approach,

and more robust against local minima entrapment than a deterministic algorithm

(Tarantola, 1984; Sen and Sto↵a, 2013; Sambridge and Mosegaard, 2002).

These algorithms have been applied to FWI of both land and marine data,

for reservoir characterisation and shallow drilling hazard assessment, (Sto↵a and

Sen, 1991; Sen and Sto↵a, 1992; Mallick and Dutta, 2002; Mallick and Adhikari,

2015; Sajeva et al., 2016; Aleardi and Mazzotti, 2017), especially when a one-

dimensional parametrisation of the problem is sensible, and hence the number

of unknowns lower. Stochastic optimisers would be especially beneficial to the

inversion of seismic data for shallow geohazard purposes, because of the di�cul-

ties of obtaining a reliable starting elastic model from a typical UHF reflection

dataset, as well as the capability of providing solution error bounds for geological

interpretation and engineering design (Morgan et al., 2014; Vardy, 2015; Vardy

et al., 2015).

In this paper we present a sub-metric resolution stochastic seismic inversion

methodology based upon a genetic algorithm, custom-built for limited o↵set,

limited bandwidth seismic reflection data. The performance of the stochastic

algorithm is tested on both synthetic and real data. In summary, this paper aims

at demostrating that:

1. Our proposed strategy is e↵ective at reducing the dependency from the

search range design compared to a genetic algorithm with a conventional

parametrisation.
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2. A two-stage multi-parameter inversion with data-driven preconditioning im-

proves the performance of the inversion, and the interpretability of the es-

timated elastic model.

3. Elastic layering, corresponding to key-features for slope instability, can be

successfully identified and quantitatively described; in an area subject to

shallow landsliding (Finneidfjord, northern Norway). A sediment bed corre-

sponding to the glide plane of multiple-landslide events is accurately located

and its changes in pore-fluid saturation quantified.

This underpins the application of UHF seismic reflection data as a remote sensing

tool for ground-model building and geohazard estimation, reducing the need for

expensive and time-consuming coring campaigns.

4.2 Data and methodology outline

4.2.1 Example estimation of a starting model from UHF

data

Shallow marine seismic reflection data typically su↵er from the limited o↵set and

lack of low frequencies of the source-acquisition system, which severely limits

the sensitivity to the broad-band multi-parameter space (Mora, 1980; Jannane,

1989). Furthermore, most shallow marine datasets are single-component and do

not contain post-critical reflections, which limits the possibility of uncoupling

the e↵ect of the di↵erent elastic parameters (Kormendi and Dietrich, 1991), as

well as the sensitivity to the long wavelength distribution of shear properties and

density (Operto et al., 2013; Provenzano et al., 2017). As a result, the solution

of the inverse problem is highly dependent upon the starting model (Virieux and

Operto, 2009; Operto et al., 2013).

In high-resolution reflection seismic data, due to the limited aperture, a start-

ing model is typically obtained from limited-o↵set normal-move-out velocity anal-

ysis (e.g. Aleardi et al., 2016), from which an interval P-wave velocity profile is

derived (Dix, 1955). The uncertainty associated with this process can be high,

and bias the seismic inversion towards unreliable solutions.

As an example, we simulate a synthetic UHF seismic reflection dataset (Fig. 4.1a),

acquired in a shallow marine context with a one-dimensional isotropic elastic

93



CHAPTER 4. STOCHASTIC DECIMETRE-RESOLUTION PRE-STACK
WAVEFORM INVERSION

(a)

(b)

Figure 4.1: One-dimensional elastic model and synthetic data. In panel a)

horizontally layered elastic model, parametrised as P-wave velocity (V p), Pois-

son’s ratio (⌫) and density (⇢); depth relative to the sea surface. In panel b)

common-shot multi-channel reflection seismic data simulating the acquisition in

a shallow marine environment. The seismogram is computed using the Oases soft-

ware (Schmidt and Jensen, 1985; Schmidt and Tango, 1986.), and contaminated

with band-limited random noise; signal-to-noise ratio is equal to 50, computed

with respect to the strongest reflection

.

94



CHAPTER 4. STOCHASTIC DECIMETRE-RESOLUTION PRE-STACK
WAVEFORM INVERSION

shallow subsurface (Fig. 4.1b); the model is a 7-m thick stack of 30 homogeneous

layers, representing a site with a strong P-wave velocity gradient and properties

reasonable for near-surface sediments (Hamilton, 1970). We suppose no data-

independent information is available in the site about the P-wave velocity trend,

and we want to derive interval velocities from reflection moveout semblance anal-

ysis.

The source wavelet is the signature of a Boomer electro-acoustic plate, whose

e↵ective bandwidth spans from 0.2 to 2.5 kHz (Verbeek and McGee, 1995); the

simulated streamer comprises 60 channels with 1-m spacing and minimum o↵set

of 13 m. A realistic level of band-limited random noise has been added to the

data; namely, the signal-to-noise ratio, computed with respect to the seafloor

reflection amplitude, is equal to 50. Note in Fig. 4.1b how the strong P-wave

velocity gradient determines a compression of the time delay among reflections

at the longest o↵sets, which makes it di�cult to accurately use moveout-based

velocity estimation tools. The broad moveout semblance maxima (Fig. 4.2) pro-

duce uncertainties in the velocity picking that translate into a broad range of

possible interval P-wave velocity profiles; such variability is in general beyond a

cycle-skipping safe domain (Virieux and Operto, 2009; Fichtner, 2011; Aleardi

et al., 2016), and suggests that move-out velocity analysis is not a robust tool to

obtain a starting P-wave model for local-search FWI. In the absence of reliable

Cone Penetrometer Tests (CPT) and/or core-logs, the starting S-wave velocity

and density profiles would also be derived from this P-wave model, further jeop-

ardising the chance to converge to the global minimum of the multi-parameter

objective function.

The latter is in fact a typical situation in engineering-scale seismic exploration

and clarifies the potential benefits of a seismic inversion strategy that reduces

the dependency upon the initial state of information. In the next sections, we

demonstrate that, although the inherent sensitivity limitation of this kind of data

cannot be overcome, our stochastic approach can still provide a robust solution

when a wrong velocity trend is used to build the starting model search range.

4.2.2 Proposed genetic algorithm-based strategy

Stochastic optimisers like the genetic algorithm (GA Goldberg, 1989) represent

a compromise between the systematic exploration of the model space and the
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Figure 4.2: Deriving low-frequency P-wave velocity model from NMO

analysis: panel a) stacking velocity semblance panel with possible V
rms

pickings;

panel b) interval P-wave velocity models (dotted-lines) derived using Dix (1955)

equation from the V
rms

, and true Vp model (solid blue).

exploitation of the current state of information about the physical model (Sam-

bridge and Mosegaard, 2002); although more robust to cycle-skipping than de-

terministic FWI (Sajeva et al., 2016), they can similarly su↵er from local-minima

entrapment, depending on the model space dimensionality and the nature of the

objective function (Sajeva et al., 2017).

In this paper, we introduce relevant changes to a classic evolutionary algorithm

framework, in order to attenuate the bias inherited from ill-characterised a-priori

distributions, and reduce the e↵ective size of the model space. The proposed

strategy is based on the genetic algorithm developed by Vardy (2015), adapted

to the multi-parameter FWI of multi-channel data (Fig. 4.3). The subsurface is

assumed to be horizontally stratified (Fig. 4.1), and each isotropic elastic layer

is parametrised in terms of P-impedance (Z), Poisson’s ratio (⌫) and density (⇢)

(Debski and Tarantola, 1995; Igel et al., 1996; Provenzano et al., 2017). The

inversion workflow can be divided into 3 stages:

1. In the first stage, the goal is to obtain a high-fidelity P-wave velocity model,

robust to inaccurate a-priori information. An initial population of P-wave
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Figure 4.3: Inversion workflow. The computation of the forward model within

each generation is parallelised using openMP.
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Figure 4.4: Random seeds In panel a) random models (thinner lines) generated

by the decomposed algorithm within a search range designed around the sem-

blance velocity model (thick red), and true Vp model (thick black). Correlation

length for the high-frequency component is equal to the thickness of the individ-

ual layer (0.25cm ' �
min

/4), and ' 1m for the long component. In panel b) the

random models are instead generated by sampling randomly the same Vp search

window.
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profiles is generated within a search-window built around the semblance-

derived interval velocities. Unlike a classic GA, which performs a purely

random exploration of the model space, here each individual of the ini-

tial population results from the superposition of a random long-wavelength

component and a high-frequency perturbation, defined according to the

frequency band of the data, and the minimum expected velocity. For each

model, the multi-channel seismogram is computed using a homogeneous-

layer method (Schmidt and Jensen, 1985; Schmidt and Tango, 1986.) and

the value of the objective function is calculated. The following generation

is then populated using a stochastic remainder criterium (Vardy, 2015); all

models with fitness better than average are propagated to the next gen-

eration and the remaining individuals are randomly selected among the

entire population. The survivors are crossed-over and mutated according

to user-defined crossover and mutation probabilities. The long- and short-

wavelength components of the model are completely decoupled, with the

crossover and mutation elements of the GA operating on each indepen-

dently.

2. After convergence is attained, the data are inverted for the elastic proper-

ties (Z, ⌫, ⇢) . The genetic algorithm operates on the multi-parameter elastic

space, preconditioned by the robust P-wave velocity model obtained in the

previous stage. Shear-wave velocity and density trends, which can’t be

constrained independently by single-component marine seismic data alone

(Operto et al., 2013), are derived from the long wavelengths of the P-wave

velocity profile, by using appropriate rock-physics relationships (Hamilton,

1970; Richardson and Briggs, 1993; Mavko et al., 2009). By contrast, the

high-frequency, reflective component, of the elastic model is estimated from

the o↵set-dependent seismic waveforms. The width of the search range

is modulated by the local P-wave reflectivity; the higher the P-impedance

contrast, the wider the range. The rationale is to bias the inversion towards

regions where anomalies in the elastic properties are most probable: Pois-

son’s ratio and density are expected to change where P-wave impedance

changes (Hamilton, 1970; Mavko et al., 2009), i.e. at interfaces between

sediment types. Thereby the e↵ective size of the model space is selectively
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reduced, thus improving the e�ciency in high-dimensional parametrisations

(Tarantola, 2005; Sajeva et al., 2016).

3. Multiple independent runs are performed, each starting from an indepen-

dent random population of models (Sen and Sto↵a, 1992; Vardy, 2015). This

produces an ensemble of statistically independent solutions, from which the

model parameters’ error boundaries can be computed, without the bias of

genetic drift and model inter-dependency (e.g. Vardy, 2015). The process

is iterated until the estimate of the median model is stable, as in Sto↵a and

Sen (1991). The aim of this process is to obtain a measure of the repro-

ducibility of the solution rather than an importance sampling of the PPD,

which is not achievable using a GA without further exploration of the model

space (Sto↵a and Sen, 1991; Sambridge, 1999; Aleardi and Mazzotti, 2017).

In the next section we provide experimental proof of the e�cacy of the

methodology on both synthetic and real data: the decoupled approach, is ef-

fective at retrieving the true P-wave velocity model even when it lies at the edges

of the range, while the structural preconditioning improves the e�ciency of the

elastic inversion by reducing the size of the model space. Both synthetic data

(Fig. 4.1) and a real case study are presented. We will hereafter refer to our

proposed strategy as DGA (Decomposed Genetic Algorithm). In analogy with

Bayesian methods, the search domain will be referred to as a-priori probability

density function (PDF).

4.3 Implementation and results

4.3.1 Robust P-wave velocity estimation with constant

density and shear properties

Here we compare the proposed DGA to a GA inversion with a traditional parametri-

sation, for the reconstruction of an accurate P-wave velocity model starting from

a ill-constructed a-priori search domain. The data and the true elastic model are

shown in Fig. 4.1. The search window is built around the interval P-wave velocity

model derived from semblance velocity analysis (Dix, 1955), in purple in Fig. 4.2,

which represents an underestimate of the velocity gradient of about 5 %. Hence,

the true model is significantly o↵set from the centre of the uniform a-priori PDF.
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The model is parametrised as a stack of 30 layers with a thickness of 25 cm,

down to a depth of 7-m below the seafloor. Only P-wave velocity is inverted

for, whereas Poisson’s ratio and density are kept fixed at this stage to a uniform

profile (⌫ = 0.48 and ⇢ = 1.5g/cm3 ). A population of 160 individuals sampled

from the a-priori PDF evolve through 150 generations according to a L1 data

fitness criterium (Menke, 1989), based either on the real waveform or its modified

instantaneous phase (MIP; Jimenez-Tejero et al., 2015).

The DGA explores the model space by explicitly decomposing each random

subsurface profile into a slowly-varying component, in the order of the dominant

propagated wavelength (� �
dom

), and an independent high-frequency perturba-

tion, in the order of the tuning thickness for the maximum frequency contained in

the data (' �
min

/4). This is achieved by generating two random series of chromo-

some values (i.e. P-wave velocity per layer), with correlation lengths respectively

equal to �
dom

and �
min

/4, and superimposing them to create the broadband sub-

surface model (Fig. 4.4). For the P-wave velocities and source bandwidth of this

test, the correlation lengths of the short and long wavelength components are

respectively 0.25 and 1.25 m (Table 4.1). The decomposed approach is taken in

both the sampling of the starting random population from the search range, and

in the mutation and crossover through the generations. High mutation rates and

relatively low crossover probabilities are used to enhance the explorative nature

of the algorithm, and prevent from earlier convergence to local minima (Sen and

Sto↵a, 2013). The process thus accounts for the dual nature of the subsurface

properties the seismic data are sensitive to, i.e. kinematic and reflective (Mora,

1980; Jannane, 1989). By contrast, in a conventionally parametrised GA the re-

construction of the broadband earth model results from random mutation and

crossover operating on each layer individually. Unlike the DGA, the model sam-

ples of the GA are high-variance profiles clustered around the centre of the search

domain, and are in fact more likely to produce geologically unrealistic features

(Fig. 4.4).

In Figs. 4.5 and 4.6, we compare the median model and the 66 and 95 %

solution confidence limits obtained from 50 independent inversion runs. The vari-

ation band of minimum and average L1 data misfit across the generations is also
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One parameter (Vp) Elastic (Z, ⌫, ⇢)

L(m) 1.25 -

S(m) 0.25 0.25

Number of variables 30 90

Mutation prob. 0.2 0.001

Crossover prob. 0.4 0.6

Number of individuals 160 320

Number of generations 150 150

Number of runs 50 50

Table 4.1: DGA inversion parameters. User-defined genetic algorithm pa-

rameters for the first-stage P-wave velocity inversion, and the following precon-

ditioned simultaneous elastic inversion.

shown. The results show that the spectrally-decomposed algorithm outperforms

the conventional parametrisation in attenuating the bias of the starting model:

regardless the seismic attribute used, the true model is in fact included in the 95

% confidence limit of the DGA solution (grey shaded area in Figs. 4.5 and 4.6).

However, the median model of the DGA waveform-based inversion is o↵set from

the true P-wave profile, and the reproducibility of the solution is poor (Fig. 4.5).

The MIP-based misfit functional (Jimenez-Tejero et al., 2015) ensures more sta-

ble results (Fig. 4.6), proving a higher sensitivity to long-wavelength changes in

the model, and lower liability to cycle skipping. In contrast, the waveform based

objective function strongly su↵ers from local minima entrapment, because of the

high non-linearity of the objective function with respect to the P-wave velocity

trends (Virieux and Operto, 2009; Operto et al., 2013). Therefore, the modified

model exploration strategy is e↵ective at attenuating the footprint of inaccurate

a-priori information, but only if combined with an appropriate objective function.

By decomposing the P-wave velocity model into independent long and a short

components, and using a misfit criterium robust to cycle skipping, the inaccuracy

in the starting model has been compensated for. Also, the model heterogeneities

have been correctly located. The next step is to use this result to precondition

the high-resolution multi-parameter elastic inversion.

102



CHAPTER 4. STOCHASTIC DECIMETRE-RESOLUTION PRE-STACK
WAVEFORM INVERSION

Figure 4.5: Vp inversion. Waveform L1 misfit functional. In panel a,

results obtained using a GA with a conventional strategy; in panel b, results

obtained using our DGA. True model (blue); median model (red) and shaded

areas for the 66 (blue) and 95 (grey) % confidence intervals of the solution are

computed from an ensemble of 50 independent realisations; the solid black lines

are the limits of the search range built around the NMO model (dashed black

line). The variability range of the average and minimum misfit evolution over the

generations is shown. The final minimum misfit is lower for the DGA inversion,

and the true model is included in the confidence interval. However, the high

variability of the solution reveals a remarkable liability to cycle skipping.
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Figure 4.6: Vp inversion. Complex trace L1 misfit functional. In panel

a, results obtained using a GA with a conventional strategy; in panel b, results

obtained using our DGA. True model (blue); median model (red) and shaded

areas for the 66 (blue) and 95 (grey) % confidence intervals of the solution are

computed from an ensemble of 50 independent realisations; the solid black lines

are the limits of the search range built around the NMO model (dashed black

line). The variability range of the average and minimum misfit evolution over the

generations is shown. Note how the DGA solution (panel b) is less dependent

from the central model (dashed line) of the a-priori distribution, and that the

final minimum misfit is lower than the traditional GA.
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Figure 4.7: Advantage of using the P-wave velocity model to precondi-

tion the search window. Elastic model parametrised as (Z, ⌫, ⇢). Note that

the Z model obtained at the first stage of DGA (solid red), allows us to build

accurate estimates of the shear and density trends (also in solid red). The de-

rived ranges (solid black) contain the true model (blue). Using the semblance

P-wave model with the same empirical relationship (dashed red), increases the

chances of excluding the true model from the search window (dashed black). In

this example, this is particularly evident for density.
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4.3.2 Structure-preconditioned elastic inversion

Here we exploit the information contained in the estimated P-wave velocity

model, in order to guide the inversion for the elastic properties. The model

is parametrised in terms of P-impedance (Z), Poisson’s ratio (⌫) and density (⇢)

(e.g. Debski and Tarantola, 1995; Igel et al., 1996; Provenzano et al., 2017). No

independent constraint on the shear and density macro-model is posed by the

single-component, limited o↵set data. So, in the absence of independent geologi-

cal and geotechnical information, a sensible relationship with the P-wave velocity

is needed to derive the elastic starting model. We make the assumption that such

a relationship is available in our synthetic test, and is representative only of the

long-wavelength component of the model. The high-wavenumber component, on

the other hand, varies independently for each parameter, simulating changes in

lithology and/or fluid saturation (Igel et al., 1996; Mallick and Dutta, 2002); such

anomalies are the target of the elastic inversion, and are estimated entirely from

the o↵set-dependent reflected wavefield.

The high-dimensionality of the multi-parameter problem determines a rapid

increase of the model space volume with the range width, hence of the number of

model evaluations needed to identify and sample its high-fitness region (Tarantola,

2005; Sajeva et al., 2016, 2017). In our specific test, each elastic layer is described

by a triad of independent parameters (Z, ⌫ and ⇢), for a total of 90 degrees of

freedom. It can be therefore beneficial to reduce the volume of the model space by

selectively narrowing the search domain. For this purpose, we further exploit the

information contained in the P-wave velocity profile to precondition the elastic

inversion. The exploration of the elastic model space is biased towards model

heterogeneity locations identified by regions of contrasting P-wave velocity, from

the results of the first inversion stage.

The preconditioned search range for either ⌫ and ⇢, for each depth, is compactly

defined as:

R = F (V p
sm

)± w0p (4.1)

where:

p =

���@
2
V p

@d

2

���

max
⇣���@2

V p

@d

2

���
⌘ (4.2)

the search range R is thus obtained from the smooth P-wave velocity V p
sm

using

the rock-physics relationship F ; the half-width w0 can be modulated by the second
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derivative of V p, computed with respect to the depth d, and normalised to one.

In Fig. 4.7 we compare the state of information available from the move-out based

interval acoustic velocities with the one from the FWI P-wave profile; the latter

allows us to build a more accurate multi-parameter search window, that reduces

the risk of ruling out the true model from the a-priori model distribution.

The inversion parameters are summarised in table 4.1. Compared to the

Vp-stage, we use a lower mutation rate, a higher crossover probability and a

higher number of individuals per generation, to account for the higher number

of unknowns (Sto↵a and Sen, 1991; Sen and Sto↵a, 1992). In Figs. 4.8 and 4.9,

we show the inversion results and the marginal confidence intervals for the elastic

inversion, respectively with and without range-width modulation. The confidence

limits in both case are a high-fidelity representation of the elastic model, despite

the low sensitivity of limited-o↵set marine data to shear properties variations,

within the narrow Poisson’s ratio range of shallow sediments (Mallick and Dutta,

2002; Provenzano et al., 2017). However, the fully-preconditioned test, with range

modulation, produces solution confidence regions with better defined shear and

density heterogeneities, especially in the deeper parts of the model.

In Fig. 4.10 the synthetic seismogram for the final FWI-model is overlaid to

the real one, and the o↵set-dependent L1 misfit is plotted for each DGA stage.

It is worth pointing out that the Vp-model, although obtained via instantaneous

phase inversion, is responsible for a significant reduction of the waveform misfit,

especially at the far o↵sets. The final misfits for the elastic models obtained with

the two preconditioning techniques are similar; despite the higher misfit in some

of the farthest channels, the fully-preconditioned solution has a higher fitness

value, thanks to the better match at the higher-energy shortest o↵sets.

With a view to reducing the size of the models space, the range-width precon-

ditioning will be key in the inversion of the real case study, where the presence of

a 50 cm thick gas-saturated layer requires the inversion to explore a wide range

of elastic moduli values in a thick spatial parametrisation.
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Figure 4.8: Elastic multi-parameter inversion with long-wavelength pre-

conditioning. Median model (red) and 66 (blue) - 95 (grey) % confidence inter-

vals obtained from 50 independent inversion runs; true model in blue and range

boundaries in solid black. In this test, the preconditioning on Poisson’s ratio and

density is only in the long-wavelength of the P-wave velocity model obtained in

the previous stage.
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Figure 4.9: Elastic multi-parameter inversion with full preconditioning.

Median model (red) and 66 (blue) - 95 (grey) % confidence intervals obtained

from 50 independent inversion runs; true model in blue and range boundaries in

solid black. In this test, full preconditioning is used, and the width of the search

range is modulated by the local P-wave velocity model heterogeneities obtained

in the previous stage.
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Figure 4.10: Two-stage elastic inversion o↵set-dependent misfit. Real

seismogram (red), Synthetic seismogram (blue) for the median model after elastic

FWI. Overlaid, o↵set-dependent trace-normalised L1 misfit for the starting NMO

model (dash-dot grey), the final Vp model (dash grey), and the two median

models, with and without range-width preconditioning (respectively blue and

red).
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4.3.3 Identification of shallow weak layers

Figure 4.11: Real data, Finneidfjord. Panel a) bathymetric image of the

study area, with location of the two common shots (site A and B). The seabed

morphology clearly shows indicators of multiple marine landslides deposits. The

gas front area is shaded. Panel b) migrated Boomer seismic line crossing the gas

front. Panel c and d: Seismic gather respectively of site A and B. Note how the

strong receiver ghost reflections cross the event bed reflection in site A.

4.3.3.1 Acquisition design and background information

Here we apply the elastic FWI to two UHF multi-channel seismic datasets ac-

quired on a marine slope prone to shallow landsliding, in the Sørfjorden side-fjord

near the town of Finneidfjord (Norway). The extensive suite of high frequency

geophysical, geotechnical and geological data in the study area (e.g. Steiner et al.,

2012) identifies a composite 50 cm thick clay-rich bed with low sti↵ness, low den-

sity and high overpressure ratio that lies at shallow depth within the background

silty-clay sediments (Vanneste et al., 2012; Vardy et al., 2012; Vardy, 2015). This

layer has been recognised as the failure plane for multiple submarine landslides

from the last few decades and is is thus referred to as event bed (L’Heureux et al.,

2012; Steiner et al., 2012; Vanneste et al., 2012, 2015; Vardy et al., 2012). The
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saturation state of the event bed changes across the basin, from a water-saturated

zone in the north to a gas-bearing area to the south (Vardy et al., 2012; Morgan

et al., 2014).

The seismic source is a Boomer wide-band electro-acoustic plate with an ef-

fective bandwidth spanning from 0.2 to 2.5 kHz. The acquisition system is a

60-channel streamer with 1.0 m group spacing and maximum o↵set equal to 72

meters. A single receiver group has a length of 1 m and is made up by 7 ele-

ments. Both source and receiver group wavenumber filters have been included in

the modelling. The receiver ghost reflections are a strong source of coherent noise

in the data (Fig. 4.11), particularly at site A, where the seafloor ghost reflection

has higher energy than the event bed reflection and the respective traveltimes

intersect. We include the receiver ghosts in the forward model by integrating

the one dimensional solver with a custom-built frequency-wavenumber filter that

accounts for the strong variation of the streamer depth and sea-surface reflection

coe�cient with o↵set (Provenzano et al., 2017).

Because of the availability of a reliable ground-truth, the challenging nature

of the seismic data and the geohazard implications, this is an excellent case study

to test the potential of UHF seismic inversion.

4.3.3.2 Elastic FWI and ground-truthing

We apply the inversion at two key locations, outside (Site A) and inside (Site

B) the gas front (Fig. 4.11), with the aim to locate and characterise the event

bed, and quantify the changes in partial gas saturation. P-wave velocity and bulk

density measurements from a Multi Sensor Core Logger (MSCL) core proximal

to Site A (Fig. 4.11), provide the low-frequencies to build a reliable starting

model; therefore the computational e↵ort in this section will be devoted to the

identification of geohazard-relevant features. The one-dimensional approximation

is justified by the almost plane-parallel geometry of the shallow reflectors in the

pre-stack depth-migrated (PSDM) image (Fig.4.11). Preliminary analysis of the

available reflection angle range suggests that, due to the short aperture of the

data compared to the target depth, density and P-impedance can’t be resolved

independently (Provenzano et al., 2017), therefore a full elastic (Z, ⌫, ⇢) multi-

parameter inversion would be heavily ill-posed. As shown in Igel et al. (1996)
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and Provenzano et al. (2016), a more appropriate parametrisation in this case is

(Z, ⌫).

One parameter (Vp) Elastic (Z, ⌫)

S(m) - 0.15

Number of variables - 120

Mutation prob. - 0.001

Crossover prob. - 0.6

Number of individuals - 420

Number of generations - 100

Number of runs - 50

Table 4.2: Site A inversion parameters. User-defined genetic algorithm pa-

rameters for the simultaneous elastic inversion.

One parameter (Vp) Elastic (Z, ⌫)

S(m) 0.2 0.2

Number of variables 35 70

Mutation prob. 0.01 0.001

Crossover prob. 0.6 0.6

Number of individuals 320 500

Number of generations 120 150

Number of runs 10 50

Table 4.3: Site B inversion parameters. User-defined genetic algorithm pa-

rameters for the first-stage P-wave velocity inversion, and the following precon-

ditioned simultaneous elastic inversion.

Inversion parameters at site A are presented in Table 4.2. The relatively narrow

range of expected values allowed for the simultaneous (Z, ⌫) inversion to converge

to a satisfactory solution. The median model attains an excellent match with the

MSCL acoustic impedance within the seismic resolution (Fig. 4.12), capturing

the composite structure of the low-impedance anomaly between 3.5 and 4.0 m

depth. The results suggest that the strongest heterogeneity at the event bed
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Figure 4.12: Site A elastic inversion results. Median (solid red) and 66 -

95 % confidence intervals (respectively blue and grey) obtained from 50 indepen-

dent inversion runs; MSCL Impedance measured in-situ (blue); search boundaries

(solid black lines).

is the bottom interface, whereas the top one is probably a graded boundary at

the seismic resolution. The Poisson’s ratio model, on the other hand, does not

contain important discontinuities, most probably because of the low-sensitivity

of reflection data to changes in shear properties in the range of non-lithified

sediments (� 0.49; Hamilton, 1970; Mallick and Dutta, 2002; Provenzano et al.,

2017). In Fig. 4.13 we compare the real seismogram to the computed one for

the best-fit model; note that the small amplitude negative polarity reflection

associated with the event bed is correctly represented in the inversion, despite the

strong receiver ghost, which overlaps the up-going reflection within a significant

range of o↵set. The small reduction of normalised o↵set-dependent misfit between

the starting low-frequency model and the FWI-solution, is explained by the low

energy of the subsurface reflections compared to the primary and ghost seafloor

reflections.
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Figure 4.13: Site A elastic inversion o↵set-dependent misfit. Real seis-

mogram (red), Synthetic seismogram (blue) for the median model after elastic

FWI. Overlaid, o↵set-dependent trace-normalised L1 misfit for the starting low-

frequency model (dash-dot grey) and the final FWI-model (solid grey).
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The inversion at site B is performed using the parameters summarised in Ta-

ble 4.3. Because we want account for the possible presence of free gas, broader

(Z, ⌫) search windows are required to allow for the inversion to converge close

to the true elastic model; due to the gas saturation, P-impedance values close-to

or lower-than the water column acoustic impedance are expected, and Poisson’s

ratio can span a broad range of values (Anderson and Hampton, 1980a; Ostran-

der, 1984; Tóth et al., 2014). Attempts to invert simultaneously Z and ⌫ failed

to converge to a meaningful solution, thus the two-stage preconditioned strategy

is applied to reduce the size of the model space. The first stage of P-impedance

inversion places the event bed between 7.5 and 8.0 m below the seabed; this

model is then smoothed with a correlation length of 50 cm (Fig. 4.14), and used

to precondition the range-width of the elastic inversion. The final model shows

a drop of Z at 7.4 m b.s.f., with a 95% confidence interval reaching values below

600m/s · g/cm3, correlated to a decrease in ⌫. The confidence intervals for ⌫

are broad, and the solution for Z shows a probably non-physical long wavelength

harmonic trend, as a consequence of the limited sensitivity of the short-o↵set

reflection data in a relatively deep-water environment (Mallick and Dutta, 2002;

Operto et al., 2013). Nevertheless, the FWI univocally identifies a shallow hori-

zon with reduced bulk modulus, consistent with the presence of free gas in the

pore space. The solution models after each stage account for a significant reduc-

tion of the o↵set dependent misfit in Fig. 4.15 compared to the initial state of

information, and the final computed seismogram shows an excellent match with

the real one.

4.3.3.3 Can we quantify the free-gas content?

As an example application, we use the FWI results to estimate a partial gas-

saturation distribution in the sediment column. The presence of small amounts

of free gas in the pore space is expected to produce a strong increase in the

bulk sediment compressibility, having, on the other hand, little e↵ect on its shear

modulus (Mavko et al., 2009). Therefore, a drop of P-wave velocity associated

with a decrease of Poisson’s ratio is expected (Aki and Richards, 2002). Also,

gas-bubble resonance produce frequency-dependent changes in attenuation and

P-wave velocity, which are significant at frequencies higher than the characteristic
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Figure 4.14: Site B elastic inversion results. Median model (solid red) and

66 - 95 % confidence intervals (respectively blue and grey) obtained from 50

independent inversion runs; search boundaries (solid black lines); the red dashed

line is the smoothed P-impedance model from the single-parameter inversion,

whose local rate of change is used to precondition the width of the search range

for the elastic inversion.
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Figure 4.15: Site B elastic inversion o↵set-dependent misfit. Real seis-

mogram (red), Synthetic seismogram (blue) for the final model after elastic

FWI. Overlaid, o↵set-dependent trace-normalised L1 misfit for the starting low-

frequency model (dash-dot grey), the final Vp model (dash grey), and the final

FWI-model (solid grey).
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Figure 4.16: Site B. Partial gas saturation from Z and ⌫. P-impedance and

Poisson’s ratio predicted (blue) using Anderson and Hampton (1980b) model are

compared with the FWI-solution (red). In the right panel, log-scale partial gas

saturation estimated by fitting the median (red), and the 66 % (blue) and 95 %

(grey) confidence limits.

resonance frequency of the dominant bubble size (Anderson and Hampton, 1980a;

Tóth et al., 2015).

Under the assumption that bulk mechanical e↵ects dominate in our frequency

band (0.2-2.5 kHz; Riedel and Theilen, 2001), we apply the geo-acoustic model

by Anderson and Hampton (1980b) to estimate the partial gas saturation (Tóth

et al., 2014). The model accounts for the increase of compressibility due to the

presence of gas in the pore space, with respect to a water-saturated sediment

at a given hydrostatic pressure. The model predicts the three-phase medium

bulk modulus (K
m

), and the shear modulus (µ), from which the (Z,⌫) couple at

each depth can be derived assuming an elastic isotropic mechanics (Mavko et al.,

2009). The partial gas-saturation value is obtained by iteratively minimising the

di↵erence between the FWI-model and the predicted one.

Fig. 4.16 shows the results obtained at site B by fitting the FWI results

within the confidence intervals, and compares the FWI-solution with the elastic
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Figure 4.17: Site A. Partial gas saturation from Z and ⌫. P-impedance and

Poisson’s ratio predicted (blue) using Anderson and Hampton (1980b) model are

compared with the FWI-solution (red). In the right panel, log-scale partial gas

saturation estimated by fitting the median (red), and the 66 % (blue) and 95 %

(grey) confidence limits.
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properties predicted by the geo-acoustic model. A free-gas anomaly is placed at

7.5 m below the sea-floor, with a partial gas saturation confidence area in the order

of 0.03%; this in good agreement with previous results obtained independently at

the same site employing di↵erent high-resolution seismic sources with dissimilar

inversion techniques (Vanneste et al., 2013; Morgan et al., 2014). The same

procedure applied to site A resulted in a gas saturation one order of magnitude

lower (Fig. 4.17).

4.3.4 Discussion

The real case study demonstrates stable results, in excellent agreement with the

geotechnical ground-truth at the seismic resolution. This makes a strong case for

the use of seismic data as a remote characterisation tool for decimetric-scale fea-

tures relevant to geohazard. In general, even when the final solution confidence

intervals are broad, as in site B, the stochastic inversion succeeds at improving

the a-priori state of information about the subsurface, in a purely data-driven

way. In Site A, the solution for P-impedance reproduces the MSCL V p data,

almost perfectly within the seismic resolution, constituting a virtual in-situ elas-

tic log. In site B, our structure-preconditioned strategy is fundamental to obtain

convergence in the simultaneous multi-parameter inversion. The (Z, ⌫) model

univocally identifies a shallow horizon showing a typical signature of gas satura-

tion, as expected from the available independent data.

In the real data example, the availability of a P-wave velocity profile, measured

on a core proximal to the inversion site, allowed us to design an accurate search

range for the stochastic optimiser. When this is not the case, low-resolution P-

wave models obtained from the reflection kinematics (e.g. from NMO analysis),

can be used for the purpose. However, especially in sites with a strong shallow

velocity gradient, inaccuracy in the semblance-derived starting model could bias

the genetic algorithm away from the true broadband model. On the other hand,

a uniform search range, between the maximum and the minimum expected ve-

locities, significantly increases the number of samples required for an e↵ective

exploration of the model space (Tarantola, 2005), therefore reducing the chances

of convergence within a feasible computing time (curse of dimensionality, e.g.;

Sajeva et al., 2016, 2017). Thus, we suggest that reflection moveout analysis can

be used as a quick method to narrow the range of possible earth models, and that
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this should be combined with an appropriate seismic inversion strategy. In the

synthetic example, the proposed decoupled parametrisation of the P-wave veloc-

ity model, combined with a misfit criterium based on the instantaneous phase

(Jimenez-Tejero et al., 2015), proved to be able to compensate for ill-constructed

search ranges, attenuating the bias of the starting model on the solution.

In the preconditioned elastic stage, a robust relationship among the long wave-

length of the elastic parameters is only needed to build the search window, and

can reflect the expected sediment type (Hamilton, 1970; Richardson and Briggs,

1993), or previous information about the recent geological history of the study

area (e.g. Vardy et al., 2017). Detectable converted S-wave and post-critical

reflections would probably allow us to constrain independently the shear proper-

ties long wavelengths, but this is often not the case in short-o↵set marine data

(Kormendi and Dietrich, 1991; Igel et al., 1996; Vardy et al., 2017).

The elastic stage of reflection FWI aims at estimating the high-frequency

elastic structures responsible for the o↵set-dependent seismic reflectivity, which

are indicators of local anomalies in sediment fabric, lithology, or partial fluid

saturation. The constraint posed by reflection data on the elastic parameters is

highly hierarchical (Tarantola, 1986; Igel et al., 1996), namely higher for P-wave

impedance, whereas independent density anomalies can only be detected if wide

reflection angles are available (> 40�; Provenzano et al., 2017). Sensitivity to

di↵erential changes of P- and S- waves in non-lithified, water-saturated media is

also low, because they span a narrow Poisson’s ratio range, with little footprint

on the AVO response (Mallick and Dutta, 2002; Provenzano et al., 2017). This

explains, in the synthetic example, the lower accuracy of the reconstructed shear

and density profiles compared to the P-wave impedance result, and, in the real

data, the absence of significant Poisson’s ratio interfaces correlated to the event

bed. By contrast, small amounts of gas in the pore space correspond to greater

Poisson’s ratio anomalies, as in site B (Ostrander, 1984; Mallick and Dutta, 2002).

The aforementioned sensitivity issues in the multi-parameter elastic space can

in principle be quantitatively estimated from the posterior model ensemble as so-

lution non-uniqueness. Several techniques have been developed in the literature in

order to make the evolutionary optimiser a proxy to Bayesian statistics (e.g., Sen

and Sto↵a, 1992, 1996; Sambridge, 1999; Aleardi and Mazzotti, 2017). However,

it is beyond the scope of this paper to address the issue of an e↵ective impor-

tance sampling of the model space using a genetic algorithm. The approach of
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this work is to perform multiple inversion runs, starting from independent ran-

dom model populations (Sen and Sto↵a, 1992; Vardy, 2015), in order to estimate

the reproducibility of the solution without the bias of genetic drift and model

inter-dependency (e.g. Vardy, 2015).

In the real case study, the partial gas saturation boundaries estimated from

the elastic model confidence intervals are consistent with previous independent

geophysical studies (e.g. Vanneste et al., 2013; Morgan et al., 2014). While the gas

saturations at this site have not been measured in situ (through pressure coring,

or similar), the consistency amongst di↵erent geophysical methods is promising,

especially because of the potential destabilising e↵ect of gas-pockets within near-

seafloor beds (e.g. Vanneste et al., 2013). However, similarly to the cited works,

the compressible-gas model used (Anderson and Hampton, 1980b) does not ac-

count for gas bubble resonance. As shown by Tóth et al. (2015), the validity

of this assumption is highly dependent on the dominant gas bubble size, which

exerts an important influence on apparent P-wave velocity dispersion and atten-

uation (Anderson and Hampton, 1980a). Such frequency-dependent e↵ects are

negligible only at frequencies lower than the gas bubble characteristic frequency

(Wilkens and Richardson, 1998). Since the bubble size is not known to the ac-

curacy required to rule out P-wave velocity dispersion at the upper end of the

spectrum of our data (' 2.0�3.0kHz), this approach could have underestimated

the true gas saturation value, and should therefore be considered a lower bound.

4.4 Conclusions

We proposed a dedicated strategy for the pre-stack waveform inversion of ultra-

high-frequency marine reflection data, based on a genetic algorithm with a care-

fully constructed model space, and demonstrated the potential of the method as

a tool for the remote characterisation of decimetric thickness layers.

In summary:

1. We have demonstrated that a genetic algorithm optimisation is not in-

herently robust against inaccurate starting models, and requires appropri-

ate model parametrisation and a careful choice of the objective function.

A spectrally-decoupled exploration of the model space, combined with a
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complex-trace based objective function has been shown to increase robust-

ness against inaccurate a-priori distribution, e.g. derived from inaccurate

pickings in reflection moveout analysis.

2. We have also shown that this robust P-wave velocity model can be used

to precondition the multi-parameter elastic inversion, in order to reduce

the size of the model space in high-dimensionality parametrisations. This

allows us to obtain a complex elastic model starting from little a-priori

information.

3. A real case study has confirmed the potential of stochastic seismic inversion

as a tool for the remote characterisation of decimetric-scale structures useful

for shallow geohazard assessment. A sedimentary bed correlated to the

failure depth of multiple landslides in the study area has been identified.

Signatures of changes in its partial gas saturation have been detected in the

elastic model. Within the seismic resolution and sensitivity, an excellent

match with the ground truth has been obtained

The proposed strategy for engineering-scale FWI is thus a precious practical

tool to complement information from bathymetry, sub-bottom profilers, cores

and CPTUs for shallow geohazard assessment, reducing the need of expensive

and time consuming geotechnical sampling campaigns in areas prone to shallow

marine landsliding.
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5
Can we detect in-situ instability

conditions from shallow marine reflection

seismic data?

Summary

1 In this chapter, we compute synthetic UHF seismic reflection data from a set

of synthetic marine slopes in which disequilibrium compaction is induced dur-

ing deposition. Rather than simulating realistic slope conditions, our goal is

to showcase seismic reflection data as a tool for the remote detection of sub-

metric scale, potentially destabilising e↵ective stress reductions, in a variety of

permeability structures and sedimentation rates. We simulate continuous depo-

sition of sediment on a consolidating infinite marine slope, using combinations of

sedimentation rate and permeability distribution representative of di↵erent de-

positional environments in which shallow landsliding is observed (Masson et al.,

1Section 5.2 of this chapter is based on the formulation developed in Zervos (2014), gener-

alised for heterogeneous models
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2006). A time-evolving acoustic impedance model is derived from porosity us-

ing an empirical relationship reasonable for shallow marine sediments (Vardy,

2015), and multi-channel UHF seismic reflection datasets are computed. The

seismograms show the development of negative polarity reflections generated at

lower-impedance horizons, corresponding to stratigraphic layers with localised

disequilibrium compaction. The amplitude of the reflections is a function of the

excess pore pressure distribution, which in turn depends on the permeability

structure and the sedimentation rate. The detectability of destabilising e↵ective-

stress reductions is limited by the signal-to-noise ratio, resolution and sensitivity

of the data. The characteristics of the computed seismograms, however, suggest

that seismic inversion can be applied successfully, within the aforementioned lim-

itations. Provided that the empirical porosity-acoustic impedance relationship is

representative of the rock physics of the medium, the inverted model can then be

used to derive porosity. This poses constraints on the in-situ excess pore pressure

distribution, providing valuable information about the e↵ective stress conditions

of the slope. In turn, the e↵ective stress profile for a slope directly influences

its stability, controlling the level of stress required to trigger failure and lateral

movement of material.

5.1 Introduction

Background

Submarine landslides involve the movement of thousands of km3 of sediments

(Halflidason et al., 2005; Masson et al., 2006) and are spread worldwide in a vari-

ety of depositional environments (Garzaglia et al., 2005). Hazards associated with

modern submarine landslides include human fatalities and damage to shoreline

and/or o↵shore engineering structures (Masson et al., 2006; Shanmugam, 2015).

Unlike their land equivalents, they are observed on very low-angle slopes (even

below 2�) with relatively low sedimentation rates (Urlaub et al., 2012; Madhusud-

han et al., 2017), and are recognised as a cause of tsunamis that can travel for 100s

km and therefore extend the hazard over huge areas (Skvortsov and Bornhold,

2007; Conway et al., 2012).

Localised development of pore overpressure, i.e. pore pressure higher than

hydrostatic, has been commonly regarded as a preconditioning factor in the oc-
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currence of slope failure (Leynaud et al., 2007; Flemings et al., 2008; Dugan and

Sheahan, 2012). Sediment beds with low e↵ective stress are believed to act as

glide planes of translational slides in both continental shelf and near-shore con-

texts (L’Heureux et al., 2012; Vanneste et al., 2013; Madhusudhan et al., 2017).

Although numerical modelling studies suggest that overpressure development by

sedimentary loading alone is not likely to cause submarine landsliding under re-

alistic sedimentation rates (Urlaub et al., 2012), it can however favour the occur-

rence of slope failure in the presence of transient loading caused by either natural

causes, such as earthquakes or gas-hydrate dissociation (Dugan and Flemings,

2000; Masson et al., 2006; Stigall and Dugan, 2010; Madhusudhan et al., 2017),

or anthropic, e.g. industrial blasting or piling (Masson et al., 2006; Vanneste

et al., 2013, 2015).

The evaluation of in-situ stability conditions of the shallow sub-seafloor is

strongly reliant on direct sampling of the seabed via cores and CPTUs (Stoker

et al., 2009; Colombo et al., 2016; Madhusudhan et al., 2017), which provide

centimetre-to-millimetre vertical resolution data, but are limited by logistics to

a coarse spatial coverage. Unlike basin scale research (Binh et al., 2009; Marin-

Moreno et al., 2012, 2013), non-invasive estimations of pore-pressure distribution

are not commonly employed in o↵shore geotechnics, and very rarely link the

quantitative interpretation of geophysical data to e↵ective stress conditions.

Seismic field exploration methods can provide important constraints on the ef-

fective stress conditions of the the shallow subsurface, by virtue of the dependency

of the dynamic elastic moduli, and hence acoustic impedance, on the overpressure

distribution (Dugan and Sheahan, 2012; Marin-Moreno et al., 2012, 2013; Vardy,

2015), and have the potential to cover large areas in a quick and cost-e↵ective

way. Ultra-high-frequency (0.2-12.5 kHz) seismic surveys provide a sub-metric to

centimetric resolution in shallow marine environments, and a penetration depth

in the order of a few tens of m; this has proven to have the potential to identify

and characterise sedimentary beds acting as preconditioning factor of submarine

slides (Vardy et al., 2012; Vanneste et al., 2015).

The lower vertical resolution compared to direct soil sampling, makes the

seismic data unfit for the detection of millimetric features that can be key in pre-

conditioning slope instability (Viesca and Rice, 2012; Madhusudhan et al., 2017),

whereas other factors contributing to slope stability, such as plasticity (Gordon

and Flemings, 1998), are not part of the relevant physics of wave propagation.
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Permeability distribution is loosely constrained by the attenuation characteris-

tics of the medium. Though a reliable attenuation model can be obtained from

broadband data (> 5 octave; Pinson et al., 2008), this hardly attains the spatial

resolution necessary to capture model heterogeneities at the scale required by

slope stability characterisation.

Nevertheless, because of the sensitivity to the low-stress elastic response of the

sediment at a sub-metric scale (Dugan and Sheahan, 2012; Vardy et al., 2017),

UHF seismic data can contribute to identify areas preconditioned to landsliding,

where overpressure build-up is a factor in the in-situ stability conditions (Vanneste

et al., 2015). Thanks to the time-e↵ective acquisition over large areas, and the

non-destructive nature, this has the potential to integrate with bathymetric and

geological data in optimising the design of higher resolution geotechnical data

acquisition campaigns (Carlton et al., 2017).

Outline of the chapter

We present synthetic tests showcasing the use of marine seismic data as a tool for

the remote sensing of disequilibrium compaction. We simulate the acquisition of

ultra-high-frequency multi-channel reflection seismic data, during the sedimen-

tary loading of an infinite marine slope with permeability layering (Bethke, 1985;

Huang and Gri�ths, 2010). The thickness of the model is in the order of tens of

m and the deposition interval in the order of 1� 10ka (kilo annum=1000 years).

We first outline the mathematical model and numerical solution to the Terza-

ghi consolidation equation (Gibson, 1958; Powrie, 2002; Huang and Gri�ths,

2010) for a horizontally stratified medium, with variable sedimentation rate; the

formulation includes the moving sediment-water boundary originally developed

by Zervos (2014).

We explore di↵erent combinations of sedimentation rate and permeability lay-

ering, examples of sedimentary structures that can be observed in a variety of

geological settings: (1) Peri-glacial, with silty-clayey deposition, interrupted by

rapid sedimentation of a few-decimetres thick low-permeability composite layer

[e.g. Finneidfjord, Norway , Vardy et al. (2012); Vanneste et al. (2015)] (2)

Deltaic, with high permeability contrast between sandy sediments and clay beds,

and high-sedimentation rate [e.g. Gulf of Mexico, Flemings et al. (2008); Long

et al. (2008, 2011)] (3) Continental shelf, with coarsening upward silty-clayey
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sedimentary sequences [e.g. AFEN (Atlantic Frontier Environmental Network)

landslide complex, Madhusudhan et al. (2017)]. The evolution of overpressure

ratio, porosity and factor of safety is then presented for each of the sedimentary

structures considered.

The presence of low-permeability beds in the sedimentary column produces

disequilibrium compaction and thus deviations from the normally consolidated

e↵ective stress profile. This in turn induces stratigraphic variations in porosity,

which can be linked to acoustic impedance using an empirical relationship valid for

shallow marine sediments (Hamilton, 1970; Richardson and Briggs, 1993; Vardy,

2015). Noise-contaminated seismic data are then generated with a frequency

content and acquisition geometry typical of shallow marine reflection data.

The seismic data characteristics, along with the possibility to apply seismic

inversion and infer in-situ e↵ective stress conditions, are discussed. Within the

limitations of the simple geotechnical model used, the results support the use of

multi-channel seismic reflection data to identify over-pressure anomalies, on the

road to an integrated geophysical-geotechnical approach in the characterisation

of landslide geohazard.

5.2 Consolidating infinite slope modelling

In this work, we use a one-dimensional consolidating elastic slope model (Gib-

son, 1958; Huang and Gri�ths, 2010), integrated with a moving sediment-water

interface during deposition (Zervos, 2014). The slope is assumed to be under

hydrostatic pore pressure conditions when loading starts and soil particles are

deposited over time according to a time-varying sedimentation rate. Due to the

added load, the slope will consolidate, with transient vertical pore fluid flow dis-

sipating the excess pore pressure generated (Gibson, 1958). The presence of low

permeability layers within the sediment column can inhibit this process and lead

to disequilibrium compaction and localised over-pressure build up; the consequent

reduction of the e↵ective stress facilitates slope failure by reducing the shear re-

sistance of the sediment (Huang and Gri�ths, 2010; Dugan and Sheahan, 2012;

Marin-Moreno et al., 2012).

During deposition, the seafloor position potentially changes due to the new

material being deposited, and overpressure can develop within the new sediments.

Hence sedimentation is accounted for not only as an external load, but also as
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a part of the consolidating slope. The problem is one-dimensional, governed by

water mass balance considerations and a linear elastic stress-strain response of the

soil skeleton. The solid grains are assumed incompressible, hence load-induced

deformations are entirely attributed to variations of the pore space volume, which

lead to a time evolution of permeability, according to an exponential relationship

between intrinsic permeability and porosity (Binh et al., 2009). Thermo-chemical

reactions, such as dehydration and cementation e↵ect, that play an important role

in basin scale compaction studies (Gordon and Flemings, 1998; Marin-Moreno

et al., 2012, 2013; Colombo et al., 2016), are also unlikely to be a factor in shallow,

low-temperature sediments (Dugan and Sheahan, 2012), and are therefore not

accounted for in the modelling. In this section, we lay out the fundamental

equations describing the model and the boundary conditions. Those are derived

from the original formulation developed by Zervos (2014) for a homogeneous

slope, and generalised to account for a time and space varying permeability.

5.2.1 Mathematical formulation

5.2.1.1 Model setup and definitions

We consider a sediment column of unit weight � on an infinite slope of angle

✓, submerged under hydrostatic conditions (Figure 5.1). The thickness of the

sediment, measured normal to the slope from the impermeable bedrock to the

seafloor, is D. We isolate a block of length 2l along the slope and depth (D� z),

where z is the distance of the base of the block from the the base of the column,

measured normal to the slope (Fig. 5.2). The average vertical depth of the layer’s

surface from the sea surface is d0. The following forces and stresses act on the

block (Fig. 5.2):

• Its own weight, W = 2l(D � z)�, where we assume the soil unit weight �

to be uniform for simplicity.

• The average pressure of the overlying body of water, p0 = �
w

d0; this varies

from p
L

upslope to p
R

downslope. By integrating the force along the slope

length, we obtain the resultant normal force F
n

= 2lp0 acting at the surface

of the block.

• The average normal stress �
z

and shear stress ⌧ at the bottom of the block.
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Figure 5.1: Model setup 1. A submerged infinite slope. From Zervos (2014).

• Along-the-slope forces F
L

and F
R

and shear forces T , acting on the left and

right ends of the block due to interaction with the soil further upslope and

downslope respectively.

The right side of the block is deeper under water than the left side, hence

higher pore water pressure will act on the right side than on the left, but that

doesn’t a↵ect the e↵ective stress conditions (Zervos, 2014). Infinite slope condi-

tions suggest that the e↵ective stress acting on the left and right sides should be

equal, i.e that di↵erence in pore pressure between the left and the right side of

the block equals the respective di↵erence in total stress. From Figure 5.1;

F
R

� F
L

= (2l(D � z) sin ✓) �
w

(5.1)

where the additional pore pressure is 2lsin(✓)�
w

and multiplication by the surface

length (D�z) yields the extra-force on the lateral surface. The total forces acting

on the block are shown in Figure 5.2. Equilibrium in the x and z directions
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Figure 5.2: Model setup 2. Forces acting on a block of a submerged infinite

slope. From Zervos (2014).

requires that the sum of the total force components is zero. Taking into account

Eq. 5.1:

⌃F
z

= 2l�
z

� (2l(D � z)�) cos ✓ � 2l�
w

d0 = 0 (5.2)

⌃F
x

= 2l⌧ + F
R

� F
L

� (2l(D � z)�) sin ✓ = 0 (5.3)

Rearranging to solve for the normal and shear stress, we obtain:

�
z

= �(D � z) cos ✓ + �
w

d0 (5.4)

⌧ = (� � �
w

)(D � z) sin ✓ (5.5)

The average pore pressure and e↵ective stress at the bottom of the block are

calculated as:

p = �
w

(d0 + (D � z) cos ✓) (5.6)

�0
z

= �
z

� p = (� � �
w

)(D � z) cos ✓ (5.7)

The mobilised strength at the base of the block is:

tan�0
mob

=
⌧

�0
z

(5.8)
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Substituting Eqs. 5.5 and 5.7, we obtain:

tan�0
mob

=
(� � �

w

)(D � z) sin ✓

(� � �
w

)(D � z) cos ✓
= tan ✓ (5.9)

We now consider the problem of Figure 5.3, where continuous deposition and

consolidation make the thickness of the sediment column vary with time, in other

words D = D(t). Figure 5.4 shows an infinitesimal layer of the consolidating

slope, with thickness dz; u
x

and u
z

are the displacement along the x- and z-axes

respectively, and compression is taken positive. The following definitions and

relationships will be used in the formulation of the transient problem:

W

l

l

τ(z)

T

F
L

F
R

T

2l sinθ

θ

D

σ
z (z)

p
L

p
R

d0

σ
v

x

z

Figure 5.3: Model setup with load 1. A submerged infinite slope with vertical

load. From Zervos (2014).

• Pore pressure: p = p
h

+ p
e

, where p
h

the hydrostatic component and p
e

the

excess pore pressure.

• Excess head: h =
p
e

�
w

.
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Figure 5.4: Model setup with load 2. An element of a consolidating slope.

From Zervos (2014).

• E↵ective stress: �0
z

= �
z

� p = (�
z

� p
h

)� p
e

.

• Overpressure ratio: �⇤ =
p
e

�
z

� p
h

. I.e. the ratio between the excess pore

pressure and the e↵ective stress under hydrostatic conditions.

• Strain normal to the slope (equal to volumetric strain): ✏
z

= ✏
vol

= �@u
z

@z
.

• One-dimensional soil sti↵ness: E 0
0 =

d�0
z

d✏
z

, where �0
z

= �0
z

(✏
z

).

• Porosity: n = V
v

/V
tot

. Void ratio: e = V
v

/V
s

! e =
n

1� n
! n =

e

e+ 1

• Darcy’s law: q = �kA
@h

@z
, where q the volumetric flow-rate through the

infinitesimal layer, k the kinematic permeability (Powrie, 2002) and A the

area available for flow.

5.2.1.2 Derivation of the governing equations

Assuming that water is incompressible, the net outflow of water from the infinites-

imal layer shown in Figure 5.4 must equal the net volume loss due to deformation.

If V is the volume of the layer at time t, we can write:

q
out

� q
in

= �@V

@t
(5.10)

By indicating the di↵erential flux as dq and A as the area available for vertical

flow:
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dq = �A
@u

z

@t
(5.11)

Therefore, since ✏
z

= �@u
z

@z
:

dq = A
@✏

z

@t
dz (5.12)

Taking the di↵erential of Darcy’s law and combining with the above equation we

arrive at the expression of mass balance:

@k

@z

@h

@z
+ k

@2h

@z2
= �@✏

z

@t
(5.13)

We assume that the material is linearly elastic with (constant) modulus E 0
0:

�0
z

= E 0
0✏z (5.14)

The constitutive expression, relating the stress rate to the strain rate, can be

derived as:

�0
z

= �0
z

(✏
z

(z, t)) (5.15)

@�0
z

@t
=

d�0
z

d✏
z

@✏
z

@t
= E 0

0

@✏
z

@t
(5.16)

@✏
z

@t
=

1

E 0
0

@�0
z

@t
(5.17)

The rate of change of the e↵ective stress is:

@�0
z

@t
=

@

@t
(�

z

� p
h

� p
e

) =
@

@t
(�

z

� p
h

� �
w

h) =
@�

z

@t
� @p

h

@t
� �

w

@h

@t
(5.18)

Taking into account that
@p

h

@t
= 0 and combining with Eq. 5.17, the constitutive

expression becomes:

@✏
z

@t
=

1

E 0
0

✓
@�

z

@t
� �

w

@h

@t

◆
(5.19)

Combining Eqs. 5.13 and 5.19 we obtain:

@k

@z

@h

@z
+ k

@2h

@z2
= � 1

E 0
0

✓
@�

z

@t
� �

w

@h

@t

◆
(5.20)
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Rearranging the terms we finally arrive at:

E 0
0

�
w

✓
@k

@z

@h

@z
+ k

@2h

@z2

◆
+

1

�
w

@�
z

@t
=

@h

@t
(5.21)

Assuming that the depth of submersion (d0) remains constant, i.e. that sea level

does not rise, the increase in total vertical stress �
v

over time at any given location

z can only be due to deposition of new material. Deposition causes a uniform

increase of �
v

through the depth of the layer, which in turn implies a uniform

increase of the total stress normal to the slope (�
z

):

@�
z

@t
= cos2 ✓

d�
v

dt
(5.22)

where the normal force increment is obtained as dF
z

= 2l cos ✓d�
v

and then

d�
z

= dF
z

cos ✓/(2l).

Substituting the above into Eq. 5.21 yields the governing equation of the

problem:

E 0
0

�
w

✓
@k

@z

@h

@z
+ k

@2h

@z2

◆
+

cos2 ✓

�
w

d�
v

dt
=

@h

@t
(5.23)

Eq. 5.23 is a non-linear di↵usion-generation equation for the excess head h(z, t),

which is the only unknown. For given values of the constant parameters �, �
w

, ✓,

k and E 0
0, and for a known loading rate �

v

(t), it can in principle be solved (with

appropriate boundary conditions) for h(z, t).

One complication is that, due to deposition, the thickness of the layer and

therefore the location D of the top boundary, changes over time, i.e. D = D(t).

An additional equation to describe the velocity of this moving boundary is needed.

The net upward movement of the boundary will be equal to the rate of deposition

minus the rate of settlement due to consolidation:

dD

dt
=

1

�
s

d�
v

dt
+

@u
z

@t

����
D

(5.24)

where u
z

is considered positive along the positive z-axis, i.e. for swelling rather

than settlement. Swelling requires (downwards) flow into the soil of a fluid volume

equal to that swept by the moving boundary. Considering an arbitrary area A

on the slope surface, and using Eq. 5.12:

@u
z

@t

����
D

Adt = �dqdt = k
@h

@z

����
D

Adt (5.25)

@u
z

@t

����
D

= k
@h

@z

����
D

(5.26)
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Combining Eqs. 5.24 and 5.26 we finally arrive at the governing equation for the

moving boundary:

dD

dt
=

1

�
s

d�
v

dt
+ k

@h

@z

����
D

(5.27)

If drainage is not allowed through the surface, the second term of the right

hand side of Eq. 5.27 becomes zero and the surface moves upwards at the same

rate that sediment is deposited. If, on the other hand, the rate of deposition is

taken zero, Eq. 5.27 expresses the fact that the upwards (downwards) velocity

of the moving boundary equals the downwards (upwards) superficial velocity of

fluid flow through the surface.

To summarise, the problem at hand is an initial/boundary value problem

expressed by Eqs. 5.23 and 5.27. The necessary initial and boundary conditions

are:

• Initial thickness of soil layer: D(t = 0) = D0

• Initial excess pore pressure: h(z, t = 0) = 0

• Impermeable bottom boundary:
@h

@z

����
z=0,t

= 0

• Free-draining top boundary (surface): h(D(t), t) = 0

5.2.1.3 Deformation-induced permeability variations

In our formulation, we assume that the kinematic permeability (k) is a function of

the pore space volume, according to an exponential empirical relationship (Binh

et al., 2009; Urlaub, 2012)

k =
�
w

µ
w

AeBn (5.28)

where µ
w

is the dynamic viscosity of water and A and B are a function of the

sediment type. The starting permeability layering is attained by changing A and

B over the sediment column, whereas transient changes in permeability are in-

duced by variations in the pore space volume determined by the one-dimensional

deformation, as a function of the e↵ective stress and the linear elastic modulus

(Eq. 5.18). For a one-dimensional problem, where the deformation is accommo-

dated for by a change in pore-space, we can easily relate volumetric strain to the
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increment in void ratio:

ė =
1

V
s

@V
v

@t
= A

@u
z

@t

(e+ 1)

Adz
= �✏̇

z

(1 + e) (5.29)

Given the relationship between n and e, we have

ṅ =
@n

@e
ė =

@

@e

e

(e+ 1)
ė = � ✏̇

z

(1 + e)
(5.30)

whereby porosity is updated at each iteration, and permeability is changed ac-

cordingly using Eq 5.28.

5.2.1.4 Factor of safety

In parts of the sediment column where the transfer of the overburden load from

the pore fluid to the solid skeleton is inhibited, pore pressures higher than hy-

drostatic develop and the e↵ective stress distribution deviates from the normal

consolidation profile. As a result of the decreased e↵ective stress, the shear stress

necessary to trigger failure is reduced.

For an infinite slope (Morgenstern, 1967), the factor of safety (FOS) compactly

expresses this concept. Once Eqs. 5.23 and 5.27 are solved for h(z, t) and D(t),

the factor of safety F (z, t) of the slope can be calculated over time and at di↵erent

depths, as:

F (z, t) =
tan�0

crit

tan�0
mob

(z, t)
(5.31)

where �0
crit

the friction angle of the soil at critical state and �0
mob

(z, t) the mobilised

friction angle at time t and depth z. Using Eqs. 5.2, 5.3 and the definition of

e↵ective stress from Eq. 5.7, we obtain:

tan�0
mob

(z) =
⌧

�0
z

=
⌧

�
z

� p
h

� �
w

h
(5.32)

which, for a heterogeneous density model, can be expressed as:

tan�0
mob

(z
i

) =
�
R

z

i

D

(�(z)� �
w

)dz sin ✓

�
R

z

i

D

(�(z)� �
w

)dz cos ✓ � �
w

h
(5.33)
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After some algebraic manipulation, the previous equation becomes:

1

tan�0
mob

(z
i

)
=

1

tan ✓


1� �

w

h

�
R

z

i

D

(�
z

� �
w

)dz cos ✓

�
(5.34)

Finally, the factor of safety is expressed as:

F (z
i

, t) =
tan�0

crit

tan�0
mob

(z
i

)
= F0


1� �

w

h

�
R

z

i

D

(�
z

� �
w

)dz cos ✓

�
(5.35)

where

F0 =
tan�0

crit

tan ✓
(5.36)

is the factor of safety of the slope before loading commences. It is assumed F0 > 1.

Factors of safety below unity are obtained if the mobilised strength is higher than

the available shear strength and correspond to failure of the infinite slope.

Infinite slope conditions, however, assume: (1) length much larger than the

thickness of the failing soil mass; (2) slip plane parallel to the surface. In real

cases, FOSs higher than one can observed at failure planes and, vice-versa, failure

conditions predicted by the factor of safety can occasionally correspond to stable

slopes (Viesca and Rice, 2012).

Therefore, in the following section, we will also focus on the development of

overpressure and consequent e↵ective stress reduction, as a more general physi-

cal parameter preconditioning a slope for failure, irrespective of whether failure

conditions are predicted by the FOS.

5.2.2 Numerical treatment

The governing Eqs. 5.23 and 5.27 can be solved using a finite di↵erence method

(Bethke, 1985). Equations are discretised using a backward in time and centred

in space finite di↵erence scheme; i and j are used as indexes for the spatial and

temporal grids, with steps �T and �Z (Fig. 5.5). We use an implicit scheme in

time, which is unconditionally stable, and a central finite-di↵erence approxima-

tion in space. The accuracy of this implementation is of second order, i.e. the

error increases with �Z2, as long as the grid spacing is uniform (Ferziger and

Perić, 2002).

However, in our model, the latter condition can be violated and irregular grid

spacings can play a role. Each grid point within the model undergoes vertical
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displacement as a consequence of loading, and the accumulated vertical displace-

ment is, in general, not negligible. Therefore, we replace the constant �Z, with

a time and space varying spatial step:

�Z
i,j

= Zj�1
i

� Zj�1
i�1 + uj�1

i

� uj�1
i�1 (5.37)

The latter is equivalent to deforming the spatial grid progressively over time. The

assumption u
i

<< �Z
i

would normally be sensible for sti↵ness modulus’ values

typical of rocks (104 � 106kPa) (Mavko et al., 2009). However, this is not the

case in soft sediments, where the Young’s modulus is in the order of E ' 103kPa

(L’Heureux et al., 2012; Vanneste et al., 2013) and significant deformations cor-

respond to the reduction of the pore space.

One more complication is that the location of the top boundary changes over

time, as prescribed by Eq. 5.27. At any given time T
j

, the top boundary will,

in the general case, be located between grid points Z
k

and Z
k+1 as shown in

Figure 5.5, at a distance �Z from Z
k

. With reference to Figure 5.5 we define

the position of this temporary grid point through  as:

�j = Z
k

+ �Z �!  =
1

�Z

�
�j � Z

k

�
(5.38)

The finite di↵erence approximation of a n
th

order derivative at grid point i can

be derived using Taylor expansions of the excess head function at two grid points

adjacent to i. Hereafter, we refer to the discretised parameters and unknown

using the capitalised letters:

Hj

i+1 = Hj

i

+H 0
i

�Z
i+1;i +

1

2
H 00

i

�Z2
i+1;i +

1

3!
H 000

i

�Z3
i+1;i +O(�Z4) (5.39)

Hj

i�1 = Hj

i

�H 0
i

�Z
i�1;i +

1

2
H 00

i

�Z2
i�1;i �

1

3!
H 000

i

�Z3
i�1;i +O(�Z4) (5.40)

Subtracting Eq. 5.40 from 5.39, and taking |�Z
i+1,i ��Z

i�1,i| to be negligible,

we obtain the expression for the centred finite di↵erence approximation of the

first spatial derivative with an error of order �Z2.

@H

@Z

����
Z

i

,T

j

=
Hj

i+1 �Hj

i�1

�Z
i+1;i +�Z

i�1;i
(5.41)
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Figure 5.5: Model discretisation. Representation of the spatial finite di↵erence

grid with in-between grid points.

Adding Eq. 5.39 to 5.40 we obtain the expression for the second order derivative:

@2H

@Z2

����
Z

i

,T

j

= 2
Hj

i+1 � 2Hj

i

+Hj

i�1

�Z2
i+1;i +�Z2

i�1;i

(5.42)

If |�Z
i+1,i��Z

i�1,i| is significant, the approximation leading error would increase

to first order.

At the moving sediment-water interface, i = k, the forward grid spacing is

�Z�,k

= �Z
k+1,k, whereas the backward distance is equal to �Z

k�1,k. Such

di↵erence is a function of time and deposition rate and is in general not negligible

(Fig. 5.5). To minimise losses of accuracy at the model top boundary, we consider

two equidistant points centred around Z
k

, with spacing �Z
k�1,k: the node �,

i.e. the interface, and the fictitious point k̂. Using Eq. 5.38 we obtain the value

at Z
k̂

by linear interpolation (Fig. 5.5) :

H
k̂

= (1� )H
k

+ H
k�1 (5.43)
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Hj

� = Hj

k

+H 0
k

�Z
k�1;k +

1

2
H 00

k

(�Z
k�1;k)

2 +
1

3!
H 000

k

(�Z
k�1;k)

3 +O(4�Z4
k�1;k)

(5.44)

Hj

k̂

= Hj

k

�H 0
k

�Z
k�1;k +

1

2
H 00
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(�Z
k�1;k)

2 � 1

3!
H 000

k

(�Z
k�1;k)

3 +O(4�Z4
k�1;k)

(5.45)

Consistently, we can derive the first and second order finite di↵erence approxi-

mations. Because, according to the free drainage boundary condition at the top

H� = 0, we have:

@H

@Z

����
k,T

j

=
�Hj

k̂

�Z
k�1;k

(5.46)

@2H

@Z2

����
k,T

j

=
�2Hj

k

+Hj

k̂

2�Z2
k�1;k

(5.47)

Finally, the backward finite di↵erences time derivative reads:

@H

@T

����
Z

i

,T

j

=
Hj

i

�Hj�1
i

�T
(5.48)

The final set of equations is obtained by discretising the di↵usion and the

moving boundary equations (Eqs. 5.23 and 5.24). Defining ↵
j

as the current rate

of change of vertical stress, for each time step T
j

we solve:

• For gridpoint i = 1, using Hj

0 = Hj

2 due to the boundary condition at

Z = 0, the di↵usion equation as:

E 0
0

�
w

 
+4Kj

i

Hj

2 �Hj

1

�Z2
2;1 +�Z2

1;0

!
+

cos2 ✓

�
w

↵
j

=
Hj

1 �Hj�1
1

�T
(5.49)

• For gridpoints 2  i  k � 1, the di↵usion equation:
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• For gridpoint i = k we account for the sediment-water interface boundary

conditions; the first term of the space derivative of the Darcy’s equation is

dropped and the di↵usion equation is modified using Eqs.. 5.46 and 5.47:

E 0
0

�
w

 
Kj

k

�2Hj

k

+Hj

k̂

2�Z2
k�1;k

!
+

cos2 ✓

�
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=
Hj
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�Hj�1
k
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(5.51)

• For all time-steps, we work out the position of the sediment-water interface:

�j ��j�1

�T
=

�Hj

k̂

2�Z
k�1;k

+
1

�
s

↵
j

(5.52)

• For all gridpoints with Z
i

> �j, Hj

i

= 0.

At time T
j

, we assume that �j�1 and all Hj�1
i

are known from the solution

of the previous time step j � 1, or from the initial conditions if j = 1. For

all gridpoints Kj

i

is updated accounting for the change in porosity at time T
j�1

(Eq. 5.28).

5.3 Slope models

Here we simulate the deposition of soft, high-porosity sediment on synthetic in-

finite marine slopes, and model the transient excess pore pressure over time at

shallow depths ( 50 m).

Each of the models considered represents a sedimentary structure similar to

one of those commonly observed in areas prone to shallow landsliding. Litholog-

ical layering is represented by changes in the porosity-permeability relationship

(as from section 5.2.1.3) within the model; these can be interpreted as varia-

tions in the sediment texture and pore-space connectivity, that are functions of
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grain size, sorting and packing (Philips, 1991; Pape et al., 1999). For each layer,

porosity at deposition is ' 0.6�0.7, and varies because of compaction over time.

One dimensional sti↵ness is homogeneous and constant, representing soft, non-

consolidated sediments (E ' 10.03kPa; e.g.(Vanneste et al., 2013; Madhusudhan

et al., 2017)).

Initial conditions are zero excess pore pressure within the sediment body,

which, at a friction angle equal to 12� and slope angle of 3�, correspond to a

factor of safety FOS ' 4. Therefore, the slopes are largely within stability

conditions before sedimentation starts, and evolve closer to failure (FOS ' 1)

through sedimentary loading.

Rather than an accurate representation of the natural processes occurring

at specific geological settings, this work aims at generating reasonably complex

overpressure profiles during deposition, within sedimentary structure that can be

observed in nature, to test the sensitivity of seismic reflection data to e↵ective

stress reduction potentially conducive to slope failure. In some cases, in order to

attain significant e↵ective stress reduction via loading only, permeability values

have been chosen to be close to the lower end of the realistic permeability spec-

trum (Neuzil, 1994; Binh et al., 2009) for marine sediments; in real cases, higher

permeability values and milder permeability contrasts can in fact be observed

at slope failure locations, where three-dimensional e↵ects such as lateral fluid

flow play a fundamental role in reducing the local e↵ective stress (Dugan and

Flemings, 2000). Likewise, failures observed in very low sedimentation rate envi-

ronments (< mm/year; Urlaub et al., 2012; Urlaub, 2012), are not reproducible

within our modelling assumptions.

In the next sections, the following display conventions are adopted:

• The geotechnical data are displayed as a function of depth below seafloor,

whose position, in reality, changes due to deposition and settlement over

time; however, to maintain consistency among the plots, hereafter changes

in the sediment thickness are shown as changes in the position of the im-

permeable bedrock relative to a fixed seafloor.

• The curves of total stress are reduced to the value at the seafloor, where

u
h

= �
v

and e↵ective stress is zero; thereby in the plots the total, hydrostatic

and e↵ective stress will all be zero-valued at the sea-sediment interface.
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• In the schematic lithological logs, permeable materials in the sedimentary

columns are represented with light dotted patterns, whereas impermeable

are indicated by a laminated design. The location of the likely glide plane

is marked by a dotted red line.

• In the tables, background sedimentation will be indicated as B (background

sedimentation); permeability anomalies potentially favouring the occur-

rence of localised stress reduction as A (referred to event beds in the text).

• The seismic data are displayed in two-way-traveltime (TWT) vs o↵set (i.e.,

distance between source and receiver). The colormap used is a conventional

polar colour scheme, such that positive polarity reflections are red, zero-

amplitude is white and negative reflections are blue.

5.3.1 Model-1. Delta-type

Table 5.1: Model-1 layer properties at the moment of deposition.

A=event bed, potentially generating overpressure. B=background sediments.

Layer-type Rate (mm/yr) Perm.(m/s) ⇢
g

(g/cm3) E (kPa) Porosity

B 3 10�6 2.65 103 0.7

A 30 10�9 2.65 103 0.7

B 3 10�6 2.65 103 0.7

The first scenario models the fast deposition of a hydraulically impervious layer

within a high-permeability sedimentary column (Fig. 5.6, Tab. 5.1). The high

permeability contrast, replicating a sand-clay transition, and the high sedimen-

tation rate, have been observed in delta environments, such as the Ursa Basin

in the Gulf of Mexico (Flemings et al., 2008; Long et al., 2008, 2011), associated

with shallow seabed failure.

When deposition starts, a 1-m thick layer of permeable sediment (k ' 10�6m/s)

sits in equilibrium above the impermeable bedrock. A sediment of the same type

is deposited at a rate of 3mm/yr, until after about 800 years of deposition, where-

upon a 1-m-thick low-permeability (k ' 10�9m/s) layer is deposited at a fast rate

(30mm/yr).
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In Fig. 5.7, we show the permeability, overpressure ratio, porosity and FOS

profiles at four instants during deposition. At the bottom of the impermeable bed,

pore pressure dissipation is inhibited and overpressure builds up quickly, produc-

ing a locally almost-lithostatic pore pressure (�⇤ = 0.7, Fig. 5.6), to which corre-

sponds failure for the slope angle and friction angle of the simulation (Eq. 5.35).

Failure occurs after 1.62 ka, when sediment thickness is 17 m. The localised

disequilibrium compaction has a definite signature on the porosity profile, which

markedly deviates from a normal consolidation curve (Fig. 5.7).

Figure 5.6: Simulated stress conditions at failure for model-1. On the

left, total stress (red), hydrostatic pressure (blue), total pore pressure (black) and

e↵ective stress (green). On the right, sedimentary column: permeable sediments

are represented by a light dotted pattern, low-permeability layer is indicated by

a dark laminated interval; bedrock is represented by white blocks; the glide plane

is marked by a dashed red line.
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Figure 5.7: Evolution of geotechnical properties for model-1: 4 timesteps

during deposition as a function of depth below the seafloor. In years, from the

oldest to the most recent: blue-380, red-780, yellow-1180, purple-1620, after de-

position starts; the relative bedrock position is shown as an horizontal dotted line

with the same colour.

5.3.2 Model-2. Peri-glacial basin-type

Table 5.2: Model-2 layer properties at the moment of deposition.

A=event bed, potentially generating overpressure (1 clay, 2 sand, 1 clay, for

the A-bed has internal layering). B=background sediments.

Layer-type Rate (mm/yr) Perm.(m/s) ⇢
g

(g/cm3) E (kPa) Porosity

B 4 7.0�8 2.65 103 0.7

A1 10 10�10 2.65 103 0.7

A2 10 1.5�7 2.65 103 0.7

A1 10 10�10 2.65 103 0.7

B 4 7.0�8 2.65 103 0.7

The second scenario simulates the deposition of a composite sub-metre thickness

layer, with a thin sand seam within a clay bed, which interrupts a silty-clayey

background sedimentation. This is based upon the stratigraphy observed in the

peri-glacial environment of Finneidfjord, in northern Norway (Vardy et al., 2012;
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Vanneste et al., 2013, 2015), and has also been seen in various other high lat-

itude, previously glaciated settings (Hansen et al., 2011). Such structures are

observed to produce overpressure, and to act as glide planes of shallow landslides

(L’Heureux et al., 2012).

At the start of deposition, a 2-m-thick silty-clayey layer (k ' 10�7m/s), is in

place in equilibrium on the impermeable bedrock. A sediment of the same type is

deposited for 400 years, followed by the quick (' 1cm/yr) emplacement of a 60-

cm-thick composite layer. Its characteristics, described in Table 5.2, simulate a

thinly layered sequence of the type clay-sand-clay (Fig. 5.8). The low permeability

at the bottom of the first impermeable layer favours the localised increase of pore

pressure, with �⇤ quickly approaching 0.5 (Fig. 5.9). Failure occurs at ' 1.0 ka

after deposition starts, when �⇤ exceeds 0.8, at a depth comparable to the one

observed in the field in Finneidfjord (e.g. L’Heureux et al., 2012).

Note how the porosity profile, in Fig. 5.9, shows the e↵ect of the property

layering within the event bed: a sharp porosity increase at the bottom of the

deepest impermeable unit, a decrease below the permeable sandy layer, and again

a high-porosity anomaly determined by the impervious top clay bed.

Figure 5.8: Simulated stress conditions at failure for model-2. On the

left, total stress (red), hydrostatic pressure (blue), total pore pressure (black) and

e↵ective stress (green). On the right, sedimentary column: permeable sediment

is represented with a light dotted pattern; low-permeability composite bed is

indicated by a dark laminated interval with an interbedded clastic layer; bedrock

is represented by white blocks; the glide plane is marked by a dashed red line.
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Figure 5.9: Evolution of geotechnical properties for model-2: 4 timesteps

during deposition as a function of depth below the seafloor. In years, from the

oldest to the most recent: blue-200, red-400, yellow-800, purple-1140, after depo-

sition starts; the relative bedrock position is shown as an horizontal dotted line

with the same colour.

5.3.3 Model-3. Continental shelf-type

Table 5.3: Model-3 layer properties at at the moment of deposition.

A=event bed, potentially generating overpressure. B=background sediments.

Layer-type Rate (mm/yr) Perm.(m/s) ⇢
g

(g/cm3) E (kPa) Porosity

B 3 1.6�11 to 7.0�10 2.65 103 0.6

A 3 1.6�11 2.65 103 0.6

B 3 1.6�11 to 7.0�10 2.65 103 0.6

A 3 1.6�11 2.65 103 0.6

B 3 1.6�11 to 7.0�10 2.65 103 0.6

The third and last scenario consists of the deposition of three coarsening upward,

clayey-silty sedimentary sequence; compared to the two previous models, lower

porosity and low overall permeability, associated with low sedimentation rates,

simulate the deposition of more distal, fine-grained sediments. The changes in

permeability at constant porosity as grain size varies, ought to be interpreted as
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changes in the pore space structure, from a more interconnected one, to a more

tortuous and impervious fluid path among the grains (Pape et al., 1999; Philips,

1991). The structure is loosely based upon core-logs from the continental-shelf

AFEN complex (Madhusudhan et al., 2017). Each sequence’s top boundary is

marked by a sharp decrease in permeability, which produces a complex overpres-

sure ratio profile.

Model characteristics are summarised in Table 5.3. Sediment thickness at t0 is

equal to 1 m, in equilibrium; the model simulates the cyclical deposition of a 10-

m-thick coarsening upward sediment sequence, marked at the top by a minimum

in permeability (Fig. 5.10). Due to the low sedimentation rate and the milder

permeability contrast impeding upward fluid flow, overpressure builds up slowly,

with maxima below the bottom of the most impermeable beds (Fig. 5.11); �⇤

exceeds 0.5 after about 8.0 ka of deposition, and failure is attained at the bottom

of the deepest impermeable layer (Fig. 5.10), after 1.2 ka.

Compared to the previous two examples, the porosity profile shows milder

deviations from a normal consolidation profile, which are expected to produce

less pronounced changes in the seismic response.

Figure 5.10: Simulated stress conditions at failure for model-3. On the

left, total stress (red), hydrostatic pressure (blue), total pore pressure (black)

and e↵ective stress (green). On the right, sedimentary column: more permeable

coarsening upward sequence is represented with a light dotted pattern, where the

density of the dots is inversely proportional to the permeability; low-permeability

bed is indicated by a dark laminated interval; bedrock is represented by white

blocks; the glide plane is marked by a dashed red line.
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Figure 5.11: Evolution of geotechnical properties for model-3.:4 timesteps

during deposition as a function of depth below the seafloor. In years, from the

oldest to the most recent: blue-2880, red-5760, yellow-8640, purple-11520, after

deposition starts; the relative bedrock position is shown as an horizontal dotted

line with the same colour.

5.4 Synthetic time-lapse UHF seismic data

Multi-channel UHF seismic reflection data are simulated for each model, at time

instants corresponding to relevant changes in overpressure. In order to propagate

the wavefield in the slope, a new elastic parametrisation must be derived from

the geotechnical properties.

In principle, rock-physics models relating the e↵ective stress conditions to

P-wave velocity (Mavko et al., 2009; Marin-Moreno et al., 2012, 2013), or site-

specific relationships (Dugan and Sheahan, 2012), can be used to derive the

parametrisation of the equivalent propagation medium (Mavko et al., 2009). How-

ever, the problem of an appropriate rock-physics model for the shallow sediments

is beyond the scope of this work. Here we use a robust empirical relationship

between P-wave impedance (Z) and porosity (n), as derived from extant in situ

measurements of shallow sediment properties (e.g. Hamilton, 1970; Richardson
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Figure 5.12: Impedance-sediment properties relationships from Vardy

(2015): the relationship plotted in panel d) between acoustic impedance and

porosity is inverted and used to derive the acoustic model from the output of the

slope modelling.

and Briggs, 1993) by Vardy (2015) (Fig. 5.12).

Z =
6.307 · 10�2 � [6.307102 · 10�4 � 4 · 6.604 · 10�6 · (178 + n · 100)]0.5

(2 · 6.60410�6)
(5.53)

In water-saturated sediments, porosity is the parameter with the strongest foot-

print on P-wave propagation, because relative volumetric changes of pore-space

and grain-skeleton modify the mechanical behaviour of the multi-phase body to

a greater extent than variations in the nature of the solid grains (Mavko et al.,

2009; Vardy et al., 2017).

Bulk density is directly derived from the slope model output parameters, as:

⇢ =
(�

g

⇤ (1� n) + �
w

· n)
g

(5.54)

The model is assumed to be acoustic and isotropic. In the absence of pore-

fluid substitutions and partial gas saturation (Ostrander, 1984; Provenzano et al.,
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2016), this is a sensible first order approximation for limited-o↵set marine seis-

mic data acquired on shallow sediments; in these settings, the observed Vp/Vs

ratios are typically low, hence low sensitivities to possible overpressure-induced

Poisson’s ratio variations (Mallick and Dutta, 2002; Provenzano et al., 2017).

Figure 5.13: Evolution of seismo-acoustic properties for model-1: 4

timesteps during deposition as a function of depth below the seafloor. In years,

from the oldest to the most recent: blue-380, red-780, yellow-1180, purple-1620,

after deposition starts.

For each scenario and for each of the time instants represented in Figs. 5.7, 5.9

and 5.11, an acoustic subsurface model is derived and a multi-channel (MCS)

synthetic seismic gather is computed using the method outlined in Chapter 2.

Note in Figs 5.13 to 5.15 that the consolidation trend produces a positive acoustic

impedance trend, and that localised excess pore pressure anomalies correspond

to deviations of the acoustic impedance and density profiles.
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Figure 5.14: Evolution of seismo-acoustic properties for model-2: 4

timesteps during deposition as a function of depth below the seafloor. In years,

from the oldest to the most recent: blue-200, red-400, yellow-800, purple-1140,

after deposition starts.

Figure 5.15: Evolution of seismo-acoustic properties for model-3: 4

timesteps during deposition as a function of depth below the seafloor. In years,

from the oldest to the most recent: blue-2880, red-5760, yellow-8640, purple-

11520, after deposition starts.
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The simulation parameters and source signatures are comparable to the one

used in Chapter 3, and replicate the characteristics of a 60-m long acquisition

streamer (Pinson, 2009) combined with a Boomer source (Verbeek and McGee,

1995). The gentle slope angles and the parallel stratification, allow for the ho-

mogeneous layer method to be applied within a sensible one-dimensional approx-

imation.

The seismic data from model-1 (Fig. 5.16), show the development of a strong

negative polarity reflection as a consequence of disequilibrium compaction; pore

pressure dissipation from below the impermeable layer is inhibited, porosity do

not decrease, and a negative acoustic impedance anomaly is generated (Fig. 5.13).

In Fig. 5.16, panels c and d correspond to �⇤ respectively close-to and higher-

than 0.5, before and at the moment of slope failure. Thus, in this case, a definite

seismic signature is associated to the destabilisation of the slope.

In model-2 (Fig. 5.14), because of the lower sedimentation rate and the com-

posite nature of the thin event bed, the localised shallow overpressure anomaly

has lower magnitude and produces a weaker negative reflection (Fig. 5.17). The

strongest porosity heterogeneity in the model, at the bottom of the shallowest

sub-unit of the event bed, creates an acoustic interface with reflection coe�cient

close to 10�2, with a clear signature in the seismic data developing in between

1.0 and 1.37 ka, when the slope fails.

In model-3, the less pronounced heterogeneities in the overpressure ratio and

porosity profiles (Figs. 5.10 and 5.11), correspond to a less reflective time-evolving

acoustic model (Fig. 5.15). Coincident with the deepest low-permeability bed, a

dim negative reflection starts to be weakly visible at 40 ms TWT, after about 9 ka

(Fig. 5.18). At failure, with �⇤ ' 0.8, the reflected energy correlated to the event

bed is higher, and stands out as a more coherent arrival, and a shallower (25 ms

TWT), lower amplitude reflection is correlated to the top low permeability layer.
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Figure 5.16: Model-1 MCS seismic data: Synthetic seismograms computed for

the time-evolving acoustic models extracted from the consolidating slope. A blue-

white-red colour scale is used so that negative reflections are blue and positive

are red. The top and bottom black arrow indicate respectively the seafloor and

the bedrock reflection; the red arrow points at the reflection generated by the

overpressure development during deposition.
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Figure 5.17: Model-2 MCS seismic data: Synthetic seismograms computed for

the time-evolving acoustic models extracted from the consolidating slope. A blue-

white-red colour scale is used so that negative reflections are blue and positive

are red. The top and bottom black arrow indicate respectively the seafloor and

the bedrock reflection; the red arrow points at the reflection generated by the

overpressure development during deposition.
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Figure 5.18: Model-3 MCS seismic data: Synthetic seismograms computed for

the time-evolving acoustic models extracted from the consolidating slope. A blue-

white-red colour scale is used so that negative reflections are blue and positive

are red. The top and bottom black arrow indicate respectively the seafloor and

the bedrock reflection; the red arrow points at the reflection generated by the

overpressure development during deposition.

158



CHAPTER 5. CAN SEISMIC REFLECTION DATA DETECT SLOPE
INSTABILITY?

Figure 5.19: Noise contamination: Synthetic multi-channel data at failure,

contaminated with random noise at di↵erent energy levels. In panels from a to

c, signal-to-noise amplitude ratio (SNR) is equal to 100; in panels d to f, SNR is

equal to 40.

159



CHAPTER 5. CAN SEISMIC REFLECTION DATA DETECT SLOPE
INSTABILITY?

5.4.1 Comments on the seismic data

The noise-free synthetic data have shown that negative polarity reflections are

associated with the development of metric and sub-metric thickness pore pres-

sure anomalies in the shallow subsurface. In order to asses the detectability of

destabilising overpressure anomalies under more realistic noise conditions, we add

random noise to the seismic data computed at failure, with the same frequency

content of the signal (Fig. 5.19). For each model, signal-to-noise-ratios (SNR)

equal to 100 and 40 are generated, where SNR has been computed as the ratio

between the seafloor reflection and the root mean square noise amplitudes.

In model-1, a definite acoustic layering develops during deposition as a con-

sequence of disequilibrium compaction (Figs. 5.7). A strong signature of this is

present in the multi-channel seismic data, which remains clearly detectable in the

SNR=40 dataset (panel d). Seismic inversion, as cast in the previous chapters,

should therefore be capable of retrieving the acoustic anomaly from the data,

under realistic noise-energy conditions (panels a and d in Fig. 5.19).

In model-2 (Fig. 5.9), the lower permeability contrast and the lower thickness

of the event bed produce a weaker reflection. In Fig. 5.19, note that, though

the event bed reflection has higher amplitude than the background noise in the

SNR=100 dataset (panel b), it loses coherency at SNR=40 (panel e). The ampli-

tude and depth of the reflection from the base of the event-bed are comparable

to the ones observed in Finneidfjord, where both acoustic impedance (Vardy,

2015), and full waveform inversion have been successfully applied, in the latter

case, despite strong coherent noise components in the data (see Chapter 4 and

Provenzano et al., 2016).

Model-3 (Fig. 5.11), shows the development of mild, cuspid-shaped acoustic

anomalies corresponding to localised overpressure build-ups (Fig. 5.15). Although

coincident with destabilising localised e↵ective stress reductions, they produce

reflection coe�cients one order of magnitude lower than in model-2, arguably

because the excess pore pressure profile contains smoother transitions (Fig. 5.15).

The resulting seismic reflections have very low amplitude (Fig. 5.18), and are

buried in noise in both cases (Fig. 5.19, panels c and f).

In order to answer the question whether, in these synthetic examples, time-

lapse seismic data can be used for the early identification of excess pore pressure

development, we extract the time evolution of the reflection coe�cient (R0) at the
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Figure 5.20: Model-1 acoustic reflectivity evolution at the event bed.

Panel a: overpressure ratio. Panel b: factor of safety. Panel c: reflection coe�-

cient. Panel d: reflection coe�cient rate of change in 10 years.

strongest heterogeneity for each model (Fig. 5.20 to 5.22). The rate of change of

R0 in 10 years is also shown, and compared to the evolution of overpressure ratio

(�⇤) and factor of safety. The destabilisation of the slope (decrease in factor of

safety) does not show abrupt changes of gradient despite the non-stationary sed-

imentation rate; this correlates with a smooth evolution of the seismic response,

which could potentially be detected by a time-lapse survey, provided that data

with adequate signal-to-noise ratio are available.

These results indicate that the availability of data with low noise energy is cru-

cial for detecting temporal changes in the shallow stress regime. When this is not

the case, but multi-o↵set data is available, several methods, such as partial-angle

stacking (Sheri↵ and Geldart, 1995) or waveform-preserving focusing techniques

(Dagnino et al., 2017), can be applied to boost the signal-to-noise ratio before

pre-stack inversion is applied. Should that not be su�cient, post-stack inver-

sion, thanks the inherently lower noise energy (Sheri↵ and Geldart, 1995), could

be a more appropriate means to identify small changes in acoustic impedance

corresponding to slope destabilisation.
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Figure 5.21: Model-2 acoustic reflectivity evolution at the event bed.

Panel a: overpressure ratio. Panel b: factor of safety. Panel c: reflection coe�-

cient. Panel d: reflection coe�cient rate of change in 10 years.

When considering the suitability of seismic inversion for resolving potentially

destabilising �⇤ anomalies, it has to be recognised that seismic inversion provides

a band-limited representation of the propagation medium: sub-decimetric scale

variations of the e↵ective stress conditions lie outside the bandwidth of most UHF

data and are likely to produce no signature on the seismic data (Widess, 1973;

Virieux and Operto, 2009); on the other hand, changes in the consolidation trend,

can go undetected by limited o↵set data alone, where the moveout information

is not enough to constrain the velocity macro-model (Jannane, 1989), and no

a-priori information is available. Although inherent bandwidth and geometry

limitations cannot be overcome, stochastic inversion methods and specific misfit

functionals (e.g. Chapter 4), can be beneficial in these cases, for they are less

liable to cycle-skipping than linearised inversions.

In this work, we have assumed that the reflectivity is only dependent upon

disequilibrium compaction, and that model is acoustically transparent before

consolidation starts. In fact, similar acoustic impedance contrasts can be ob-

served at lithological or textural interfaces that have no relationship to changes
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Figure 5.22: Model-3 acoustic reflectivity evolution at the event bed.

Panel a: overpressure ratio. Panel b: factor of safety. Panel c: reflection coe�-

cient. Panel d: reflection coe�cient rate of change in 10 years.

in the e↵ective stress conditions. However, specific techniques can be applied to

multi-channel data, to distinguish overpressure-related seismic signatures from

heterogeneities produced by other geological processes. For example: a time-

lapse approach that looks for time-dependent changes in the acoustic properties,

which can be attributed to fluid pore pressure variations from an initial state, in

analogy with seismic exploration for reservoir monitoring (e.g., Asnaashari et al.,

2015) of fluid injection studies (Zhang et al., 2014; Cevatoglu et al., 2015); in-

tegration of the inverted acoustic properties with burial modelling to assess the

likely subsurface conditions (e.g. Marin-Moreno et al., 2012, 2013), supported

by a-priori information about the underground geology from available sediment

cores; a fully-elastic parametrisation of the seismic inverse problem can provide

the additional information necessary (Igel et al., 1996; Provenzano et al., 2017)

to distinguish the nature of the subsurface heterogeneities. Namely, as shown in

Chapter 3 and Chapter 4 , independent estimates of Vp, density and Poisson’s

ratio enable to distinguish between lithological layerings, changes in partial gas

saturation, and excess pore pressure.
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5.5 Conclusions

In this chapter, I have modelled the deposition and consolidation of shallow sub-

marine slopes with permeability heterogeneities and sedimentation rates realistic

for a set of depositional environments where submarine landslides are observed.

Localised disequilibrium compaction at specific low-permeability layers induces

sub-metric thickness porosity anomalies, which relate to a time-evolving seis-

mic response of the slope. A series of ultra-high-frequency multi-channel seismic

datasets has been computed on the slope at di↵erent timesteps, with bandwidth

and acquisition geometries comparable to realistic shallow marine surveys.

It has been shown that:

1. UHF multi-channel seismic reflection data are sensitive to the development

of pore pressures higher than hydrostatic, as a consequence of compaction

anomalies at low-permeability stratigraphic horizons.

2. The possibility to detect the development of overpressure is strongly de-

pendent on the noise content of the data and on the nature of the under-

compaction anomaly. This is, in turn, a function of sedimentation rate and

permeability structure.

3. A time-lapse seismic reflection survey is potentially capable of identifying

de-stabilising overpressure levels, but in some cases it would require appro-

priate pre-processing in order to obtain an adequate signal-to-noise ratio.

The characteristics of the seismic data are such that, within these limitations,

pre-stack full waveform inversion, as cast in Chapter 3 and Chapter 4, should

be capable of capturing temporal evolutions in the acoustic model caused by

evolving stress conditions. If accurate rock-physics relationships are available,

the estimated seismic model can be used to quantify overpressure-related poros-

ity anomalies. Overpressure ratio can then be inferred from porosity (Dugan

and Flemings, 2000; Colombo et al., 2016), or equivalently from the model bulk

density profile (Powrie, 2002), as shown in Vardy et al. (2015) and Vardy et al.

(2017). Alternatively, a rock-physics constitutive model can be used to relate the

estimated elastic moduli to the e↵ective stress distribution (e.g. Marin-Moreno

et al., 2012, 2013). Characterising temporal changes in the overpressure ratio of

submarine slopes from seismic reflection data would have significant implications
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on geohazard assessment. Potentially unstable (or evolving towards becoming

unstable) areas could be identified before failure occurs, which would permit

more focused detailed site investigation and the implementation of more e↵ective

hazard mitigation measures.
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6
Conclusions and future work

Compared to hydrocarbon reservoir analysis, where seismic inversion and rock-

physics modelling have a long history of being e↵ectively combined to describe

complex reservoirs, marine geohazard assessment and ground-model building for

o↵shore engineering largely under-use seismic reflection data as a quantitative

remote characterisation tool of the shallow geology. Recent advances in academia

(e.g., Pinson et al., 2008; Vardy, 2015; Cevatoglu et al., 2015; Clare et al., 2017;

Duarte et al., 2017; Monrigal et al., 2017) have shown that sediment properties can

be remotely inferred from ultra-high-frequency seismic data, with decimetric to

centimetric resolution, improving the knowledge of the near-seafloor in areas liable

to shallow geohazards (e.g., submarine landslides, carbon capture and storage

sites). Nevertheless, to date, seismic waveform inversion had not been applied to

UHF seismic reflection data, at least in part because existing reservoir-scale pre-

stack inversion procedures do not simply downscale to the sub-metric resolution

required for geohazard applications.
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6.1 Conclusions

In this thesis I have developed and applied custom-built methodologies for the

inversion of shallow marine seismic data, in order to obtain a sub-metric reso-

lution elastic model of the top 50 meters below the seafloor. In Chapter 2, I

have shown that dedicated signal processing techniques in the plane-wave domain

must integrate the one-dimensional solver in order to model e�ciently UHF data.

Specific conclusions from this chapter include:

1. Both the UHF sources and hydrophone receiver arrays are highly direc-

tional. This can be accounted for through the application of a frequency-

wavenumber filter, in order to accurately represent the o↵set-dependent

amplitude of the reflected waveform for each plane-wave component.

2. The streamer geometry in shallow marine seismic reflection surveys cannot

be controlled, particularly in terms of depth, with the precision required

for a generic pre-stack wavefield modelling approach. However, the receiver

depths can be estimated from the frequency-o↵set receiver ghost notches,

and the sea surface reflection coe�cient variation inferred from the rela-

tive amplitude of receiver ghost and seafloor primary reflection for each

channel. The retrieved parameters can then be used to model accurately

the total wavefield: for each plane-wave component, the upgoing wavefield

at constant depth obtained from the one-dimensional solver is down/up-

propagated to the correct receiver depth; the downgoing part of the seismo-

gram (receiver ghost) predicted in the frequency-wavenumber domain for

each channel. Thereby a synthetic total seismogram is obtained that can

be compared to the observed data.

In Chapter 3 I have detailed the development of a deterministic waveform inver-

sion methodology, custom-built for shallow marine UHF data, and demonstrated

its e�ciency on a complex synthetic example and a real case study. The main

findings of this chapter are:

1. A multi-channel UHF marine seismic reflection dataset can be inverted to

estimate the subsurface elastic model using a sequential deterministic ap-

proach, in which the parameters are inverted for from the strongest to

168



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the weakest contributor to the reflectivity of the medium, namely: P-

impedance; Poisson’s ratio; and density. The results obtained from the

inversion of a real UHF dataset can be compared with in-situ geotechnical

measurements, within the seismic resolution.

2. The relative contribution of density and P-wave velocity to P-impedance

can be decomposed, provided that reflection angles > 40 degrees are avail-

able, otherwise only P-impedance and Poisson’s ratio can be independently

resolved.

3. P-impedance is the most robust parameter to noise and can be e↵ectively

obtained from narrow reflection angle data even if P-wave velocity and

density cannot be separated, as long as a reliable low-wavenumber velocity

model is available.

4. The Poisson’s ratio inversion does not require wide reflection angle data,

but it su↵ers from an important loss of sensitivity in very high Vp/Vs ratio

media, which can be partially compensated for using a structure-oriented

gradient preconditioning.

In Chapter 4, I have addressed the problem of the robustness to inaccurate

a-priori information, and demonstrated that:

1. A genetic algorithm as a stochastic optimiser is not inherently robust to

inaccurate starting P-wave velocity trends.

2. A spectrally decoupled exploration of the model space, combined with a

complex trace-based objective function, increases the robustness against

inaccurate a-priori information derived from inaccurate reflection moveout

analysis.

3. The obtained robust P-wave velocity model can be used to precondition the

stochastic multi-parameter elastic inversion to reduce the size of the model

space in high-dimensionality parametrisations. An accurate elastic model

is obtained starting from poorly constrained a-priori information.
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4. Stochastic seismic inversion can be used a remote characterisation tool for

subsurface features preconditioning shallow geohazard. In a real case study,

a weak layer that correlates to multiple landslides in the study area has been

identified, and the inverted model shows an excellent agreement with the

geotechnical ground-truth.

5. It is possible to identify changes in the pore-fluid saturation of a sub-metric

thickness layer, including the signature of shallow partial gas saturation.

In Chapter 5, I have simulated the deposition and consolidation of heteroge-

neous sedimentary bodies on low-angle submarine slopes, in order to generate re-

alistic complex overpressure profiles within the top 50 meters below the seafloor.

Time-lapse synthetic seismic gathers are generated with frequency content and

acquisition geometry comparable to the ones used in the previous chapters. The

conclusions from this chapter can be summarised as follows:

1. UHF multi-channel seismic reflection data are sensitive to the development

of pore pressures higher than hydrostatic, as a consequence of compaction

anomalies at low-permeability stratigraphic horizons.

2. The possibility to detect the development of overpressure is dependent on

the noise content of the data and on the nature of the under-compaction

anomaly, which is in turn a function of sedimentation rate and permeability

structure.

3. Within the sensitivity limitations of UHF data, a time-lapse seismic reflec-

tion survey is potentially capable of identifying de-stabilising overpressure

levels. However, in order to detect transient changes of excess pore pressure,

this requires high signal-to-noise ratios.

6.2 Future work

This work demonstrates that near-surface marine seismic reflection data can be

quantitatively interpreted to retrieve the shallow sediments’ elastic properties

with a decimetric resolution. The set of information derived using the proposed

methodologies is useful for a range of o↵shore engineering and geohazard appli-

cations. However, there is significant room for improvement in bridging the gap
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between seismic inversion and marine geotechnics, and further work can be done

to underpin the use of seismic data for o↵shore geohazard assessment. Possible

future research includes, but is not limited to, the following:

1. Testing whether seismic inversion of multi-channel UHF reflection data can

be e↵ectively used to monitor changes in the subsurface pore-pressure condi-

tions in the field, with a sensitivity useful to detect and recognise potentially

destabilising overpressure levels.

2. Exploring the capabilities of rock-physics inversion methodology, whereby

the seismic data are inverted directly for soil properties. This poses impor-

tant problems from the point of view of numerical optimisation, because of

the high number of unknowns and the strong coupling among di↵erent pa-

rameters. However, appropriate weighting and a-priori distributions can in

principle be used to constrain the problem within the realm of realistic soil

properties. If this were combined with a stochastic approach, we would be

able to infer e↵ective stress conditions from the seismic data, together with

solutions error bounds, providing the engineering geologists with invaluable

information for a fully-integrated framework.

A broader applicability of the proposed methodologies, would also benefit

from future work aimed at optimising the extraction of useful information from

the seismic data. Specifically, the following limitations of the inversion strategy

have been identified, and should be addressed in future research:

1. Currently, the methodology lacks a general approach to the estimation of

the source wavelet: source-independent approaches can be unstable and

require accurate fine-tuning of spectral damping parameters; far field mea-

surements of the source signature, on the other hand, are not always avail-

able. It is therefore worth to explore the performance of di↵erent source

estimation techniques, as well as the possibility to include the source pa-

rameters among the unknowns of the inverse problem.

2. Seabed roughness at the wavelength or sub-wavelength scale, can produce a

frequency- and angle- dependent scattering, modifying the signal as a func-

tion of the seafloor shape. For example, seafloor gravel waves (e.g., Pinson,

2009), can have wavelengths in the order of m, which would definitely have

a footprint in the frequency band of UHF data.
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3. Sea-surface multiple reflections are currently not modelled, thereby limit-

ing the maximum penetration depth of the methodology. As recognised

in hydrocarbon-scale seismic imaging (e.g., Berkhout and Verschur, 2006),

appropriately accounting for sea-surface multiples in the inversion can be

beneficial, provided that the sea-surface shape and reflection coe�cient are

known. Specifically, a dataset including surface-related multiple reflections

could: (1) improve the reflection angle coverage at narrow angles, thereby

improving the sensitivity to the AVO response in shallow water environ-

ments; (2) pose additional constraint on the long wavelength P-wave ve-

locity model, thanks to the transmission-regime multiple seismic arrivals;

(3) improve the depth-resolution in thinly layered subsurfaces (in two-way

traveltimes, the multiple reflectivity series is stretched, therefore seismic

reflections are better separated).

With the the aim to improve the applicability of the methodology to engi-

neering design and geohazard assessment, further e↵orts should be made in order

to contain its computing cost. In the current CPU parallel implementation, a

single run of genetic algorithm-based multi-parameter inversion can use up to

24 hours computing time on a single node 16-core machine, depending on the

bandwidth and the spatial parametrisation. Thanks to the highly parallel ar-

chitecture, a GPU (graphics processing unit) implementation would allow for a

significant reduction of the computing cost (up to one order of magnitude, e.g.,

P.Yang et al., 2015), significantly enhancing the possibility of application to large

data volumes. GPUs are becoming an increasingly popular device for scientific

computing, hence this could be a viable practical option to make the computing

cost of FWI a↵ordable for the o↵shore engineering community.
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