The University of Southampton
University of Southampton Institutional Repository

An Integrated Ecological and Geophysical Approach to Habitat Mapping and its Application in Marine Conservation

An Integrated Ecological and Geophysical Approach to Habitat Mapping and its Application in Marine Conservation
An Integrated Ecological and Geophysical Approach to Habitat Mapping and its Application in Marine Conservation
Global biodiversity is in decline, with the marine environment experiencing significant and increasing anthropogenic pressures. As a response, very large (105–106 km2) marine protected areas (MPAs) have become the dominant form of environmental protection in the marine environment. At present, however, paucity in scientific sampling makes prioritising which regions of the ocean to protect, especially over such large spatial scales, particularly problematic. One such very large MPA, covering an area of over 1 million Km2, is located at the sub-Antarctic South Georgia and South Sandwich Islands (SGSSI). This study uses the SGSSI MPA as a model system to assess the application of benthic habitat mapping as an evidence-based framework for the spatial prioritisation of marine conservation.
This study presents an interdisciplinary methodology to marine landscape mapping, as a top-down, objective statistical approach to hierarchically partition and map the benthic environment into physical habitats types. Ordination analysis demonstrates a statistically significant relationship between environmentally-derived landscape mapping clusters and the composition of benthic species data from the region, thus attributing ecological relevance to the marine landscape map. Furthermore, this study adopts a bottom-up approach to habitat mapping, using an ensemble of habitat suitability models. Potential distributions are modelled for a range of benthic faunal attributes relevant to marine management, based on taxonomic classification, functional traits and vulnerability to disturbance. These modelled distributions are used to describe, for the first time, the bio-physical characteristics of SGSSI’s benthic environment. Synthesising both top-down and bottom-up approaches to habitat mapping, this study assesses the physical landscape clusters and modelled distribution results in relation to the spatial protection currently enforced at SGSSI. This synthesis addresses, (i) whether marine spatial planning in the region is representative in terms of the habitats and fauna it protects; and (ii) whether this interdisciplinary methodology at SGSSI can inform on MPA design and designation more universally, in what is an increasingly exploited, yet still poorly understood marine environment.
University of Southampton
Hogg, Oliver, Thomas
43f3bdc0-7667-488d-9f9f-963f15f33a10
Hogg, Oliver, Thomas
43f3bdc0-7667-488d-9f9f-963f15f33a10
Minshull, Timothy
bf413fb5-849e-4389-acd7-0cb0d644e6b8

Hogg, Oliver, Thomas (2018) An Integrated Ecological and Geophysical Approach to Habitat Mapping and its Application in Marine Conservation. University of Southampton, Doctoral Thesis, 253pp.

Record type: Thesis (Doctoral)

Abstract

Global biodiversity is in decline, with the marine environment experiencing significant and increasing anthropogenic pressures. As a response, very large (105–106 km2) marine protected areas (MPAs) have become the dominant form of environmental protection in the marine environment. At present, however, paucity in scientific sampling makes prioritising which regions of the ocean to protect, especially over such large spatial scales, particularly problematic. One such very large MPA, covering an area of over 1 million Km2, is located at the sub-Antarctic South Georgia and South Sandwich Islands (SGSSI). This study uses the SGSSI MPA as a model system to assess the application of benthic habitat mapping as an evidence-based framework for the spatial prioritisation of marine conservation.
This study presents an interdisciplinary methodology to marine landscape mapping, as a top-down, objective statistical approach to hierarchically partition and map the benthic environment into physical habitats types. Ordination analysis demonstrates a statistically significant relationship between environmentally-derived landscape mapping clusters and the composition of benthic species data from the region, thus attributing ecological relevance to the marine landscape map. Furthermore, this study adopts a bottom-up approach to habitat mapping, using an ensemble of habitat suitability models. Potential distributions are modelled for a range of benthic faunal attributes relevant to marine management, based on taxonomic classification, functional traits and vulnerability to disturbance. These modelled distributions are used to describe, for the first time, the bio-physical characteristics of SGSSI’s benthic environment. Synthesising both top-down and bottom-up approaches to habitat mapping, this study assesses the physical landscape clusters and modelled distribution results in relation to the spatial protection currently enforced at SGSSI. This synthesis addresses, (i) whether marine spatial planning in the region is representative in terms of the habitats and fauna it protects; and (ii) whether this interdisciplinary methodology at SGSSI can inform on MPA design and designation more universally, in what is an increasingly exploited, yet still poorly understood marine environment.

Text
Hogg, Oliver_PhD_Thesis_June_2018 - Author's Original
Available under License University of Southampton Thesis Licence.
Download (21MB)

More information

Published date: 28 June 2018

Identifiers

Local EPrints ID: 424752
URI: http://eprints.soton.ac.uk/id/eprint/424752
PURE UUID: 9d1c10a9-e0d2-4072-bb1d-0b23aa73a8b4
ORCID for Timothy Minshull: ORCID iD orcid.org/0000-0002-8202-1379

Catalogue record

Date deposited: 05 Oct 2018 11:43
Last modified: 16 Mar 2024 07:00

Export record

Contributors

Author: Oliver, Thomas Hogg
Thesis advisor: Timothy Minshull ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×