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Abstract

Power law relationships are ubiquitous in ecology, and complex systems in general, and

can be used as metrics to describe many aspects of ecosystem structure and function.

While ecological interactions and processes predominantly occur at the individual level

of biological organisation, currently, most ecological studies aim to estimate “typical”

ecosystem behaviour over large spatial and temporal scales. This disconnect results

in the under- appreciation of ecosystem dynamics that are potentially important for

developing ecological theory and ecosystem modelling. The research presented herein

aims to estimate within-ecosystem dynamics, as quantified by power law relationships,

to test whether expected ecological dynamics can be captured effectively at smaller scales.

I show that Taylor’s power law, a metric of aggregation, varies systematically, both

spatially and temporally within the North Sea fish community, with the abiotic environment

when populations were considered as cohorts of individual body sizes. By combining

estimates of the power law distribution of body size in fish with stable isotopes that can be

used to infer trophic interactions, I show that seasonal trends in fish movement patterns

and the incorporation of pulsed phytoplankton production can be quantified in a highly

dynamic estuarine environment. Estimates of the in situ community predator-prey mass

ratio, which describes trophic behaviour, and the apparent trophic transfer efficiency are

then derived and shown to exhibit strong seasonal variation, indicative of an estuarine

food web that is temporally variable. Finally, I quantify the degree of individual specialisation,

a mechanism by which intraspecific competition is modulated, in the diet of a commercially

important but over-exploited fish species to inform conservation efforts.

This work shows that ecological dynamics can be captured by a range of ecosystem

metrics and that, therefore, small scale behaviours can be tested for empirically to direct
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ecosystem models and theory.
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1 | Introduction:

Power Laws and Scaling

Relationships in Ecology

1.1 A Simple Equation

Consider the following, rather humble, relationship:

y = αxβ, α > 0 (1.1)

Equation 1.1, which is defined by only 2 parameters: the normalisation coefficient α

and the scaling exponent β, is known as a power law relationship, so named as y is

proportional to x raised to some power. Examples of this function can be seen in Fig.

1.1. The power law relationship describes how one variable scales with another, or, in

other words, how a relative change in one variable expresses as a proportional relative

change in another, irrespective of the initial values, a property known as scale invariance:

f(x) = αxβ

f(cx) = α(cx)β = αcβxβ = cβf(x) ∝ f(x)

(1.2)

Another elegant property of power law relationships is that under a logarithmic

transformation they become linearised (see Fig. 1.2):

log(y) = log(αxβ) = log(α) + β log(x) (1.3)

1



Figure 1.1: Schematic showing examples of power law relationships with changing scaling
exponents, β, with the normalisation coefficient, α, held constant. Note that all the
graphs cross at the point (1, α). At β = 0, y is invariant with x, and is equal to α.
At β = 1, y varies linearly with x, and is equal to αx, with this special case termed
isometric scaling. When β 6= 0 or 1, the scaling is termed allometric. Note the axes are
on an arithmetic scale.

This provides a simple graphical method for checking for the presence of power law

relationships in empirical data - a straight line between two variables when plotted on

logarithmically scaled axes provides evidence for (but not conclusive proof of, see Clauset

et al., 2009) a power law relationship.

The presence of power laws is prolific in both natural and artificial complex systems.

For example, the Gutenberg-Richter law of earthquake magnitude (Gutenberg & Richter,

1950); Zipf’s law on distribution of words in language (Zipf, 1949) or an average walker’s

speed in relation to settlement size - city dwellers are literally living life in the fast

lane (Bettencourt et al., 2007). Even academics cannot escape this phenomenon whose

scientific output follows Lotka’s power law (Lotka, 1926).

Largely due to their apparent ubiquitous nature, power laws are not without their

skeptics (Beggs & Timme, 2012; Stumpf & Porter, 2012). Much criticism stems from

two issues: the statistical justification of a power law, particularly as distributions when

many other heavy tailed distributions may explain data equally well; and the mechanistic

2



Figure 1.2: As Fig. 1.1, only plotted on a logarithmic, rather than arithmetic, scale,
with all graphs now plotting as straight lines.

underpinning (or lack of it) that generates such a relationship (Stumpf & Porter, 2012).

While considered, these issues are not specifically addressed here. Comparative analyses

of the statistics of empirically quantifying the parameters of a power law and testing

whether the relationship holds are relatively complex, both mathematically and philosophically

(Newman, 2005; Clauset et al., 2009; Edwards et al., 2017). Such an undertaking would

be beyond the scope of this thesis. However, care is taken to make sure all research

presented herein is statistically robust in this regard, and acknowledged when evidence

is not supportive of a power law relationship.

With regard to the second issue, the rest of this brief introduction is devoted to some

of the more well-described power laws and their generative mechanisms found in the

biological sciences, with examples covering multiple levels of organisation and including

some of the power law relationships that are the subject of later chapters. While their

origin is often empirical in approach due to the nature of research in this field, many

biological power laws and the proposed models that generate them are grounded in

geometric principles and derived from relatively simple assumptions.
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1.2 Allometry - Scaling with Body Size

1.2.1 A Geometric Basis

In his seminal works, “On Growth and Form”, Thompson (1942), among many other

things, describes how many measures of shape, anatomy and physiology can be described

as power laws based on simple linear dimensions of size, termed allometry. Take the

simple case of a sphere, whose base linear dimension (l) is its radius, r. The volume, V ,

of a sphere is given by 4
3πr

3 whereas its surface area, S, is 4πr2, and therefore:

V ∝ l3 & S ∝ l2 (1.4)

Assuming that changes in size maintain similarity in form, then:

S = αV
2
3 (1.5)

were α is the normalisation constant, equal to 4π
4/3π = 1

3 in the case of the sphere.

Equations 1.4 and 1.5 show how changes in the base linear dimension, l, cause proportionally

greater changes in volume compared to the surface area. For example, a doubling of l

would cause an 8-fold increase in volume but only a 4-fold increase in the surface area.

This demonstrates that the surface area to volume ratio decreases with increasing size,

which affects almost all physiological processes due to exchanges over semi-permeable

membranes.

Such an approach can be used to derive other relationships of interest. Take for

example a swimming fish of length l, which attains its velocity, υ, by contracting its

muscles to do work, W , acting against resistance, R, produced by friction with the

water. The available energy required to do work depends on the mass of the muscle,

which, since mass is equal to the product of material density and volume, is ∝ l3. Friction

however scales with the surface area of the fish which is ∝ l2. Since W ∝ Rυ2, then:

υ2 ∝ W

R
∝ l3

l2
= l, and therefore: υ ∝ l

1
2 (1.6)
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This is known as Froude’s Law (Thompson, 1942) and shows how the speeds attained by

fishes, or ships as it was originally described for, varies with size under constant form.

1.2.2 Empirical Allometry in Fishes

The relationships described in section 1.2.1 rely on the assumption that with changes in

size, form, or the relative magnitudes and directions of shape, are maintained. As shown,

the volume, and therefore mass of an object should scale with its linear dimension cubed,

i.e. ∝ l3. Deviations from this cube scaling would therefore imply changes in form with

growth. Focusing on fishes and taking l to be their length, then species for which

the scaling exponent is > 3 would suggest that individuals become more rotund with

increasing size and, conversely, exponents of < 3 would suggest individuals becoming

more lean as they grow. Froese (2006) showed that across 1773 fish species, the median

scaling exponent, β is close to, although significantly larger than 3, with a value of 3.03.

This suggests that, on average, fish species increase in the relative bulkiness of their

bodies with size, although exponents vary from approximately 2.5 to 3.5 around this

median.

Under constant form, allometric, or more strictly isometric, scaling should exist

between different linear dimensions with an exponent of 1, i.e. la ∝ lb. Recently, Dunic

and Baum (2017) explored the allometric scaling of gape size (both mouth height and

width) in coral reef fishes. Interestingly, they found that isometric scaling held for

piscivorous and benthic invertivorous predators, whereas as positive allometry (scaling

> 1) was observed in gape width for zooplanktivores and both gape width and height for

herbivores/detritivores, suggesting that at least some variation in allometric exponents

may be explained by functional traits.

1.2.3 Ecological Allometry

So far, the focus has been on allometric scaling at the level of the individual, with

expected scalings grounded in geometry. However, allometric scaling has also been

empirically observed in traits at the population level of biological organisation. Typically,

these power law relationships take body mass (as a population average), rather than a
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linear dimension of size, with which to scale other parameters. The reason behind this

is based on energetics that intuitively relates to measures of biomass and is discussed in

detail in section 1.4. For now, I merely outline three of the more well known ecological

laws that exhibit scaling relationships (see Marquet et al. (2005) for a more substantive

review).

Damuth’s Rule

In 1981, Damuth empirically showed, by combing data taken from many ecological

studies and surveys, that the population density (number per unit area), D, of mammals

scales with the average body size of the population (mass), M̄P, with such that:

D ∝ M̄P
− 3

4 (1.7)

Variation around this relationship is large, unsurprisingly, as it incorporates data from

around the globe from a wide variety of environments with very different levels of resource

availability. This was corroborated by Brown et al. (2004), who showed that differences

in population trophic level explained much of the variation, and that within trophic

levels the exponents still approximated −34 .

Fenchel’s Law

Population growth dynamics are well described by the logistic equation:

dP

dt
= rmP (1− P

K
) (1.8)

were the change in population size, P , depends on the carrying capacity of the environment,

K, and the intrinsic growth rate, rm. While it had long been known that larger organisms

reproduced more slowly, by compiling data from various taxa, covering unicellular organisms,

ectotherms and endotherms spanning approximately 20 orders of magnitude, Fenchel

(1974) showed that rm varies with body size as a power law:

rm ∝ M̄P
− 1

4 (1.9)
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Calder’s Law

Prior to the work of Calder (1983), long term oscillations had been observed separately in

animal populations, for example, small rodents exhibited periodicities of approximately

3-4 years while hares had cycles every 8-10 years. Calder (1983) showed that, on average,

the periodicity, T , of a population scaled with the average body size, M̄P as:

T ∝ M̄P

1
4 (1.10)

These three examples highlight how various ecological traits scale as power law

relationships with body size. However it is important to note that the collective works

of Peters (1983), Schmidt-Nielsen (1984) and Brown et al. (2004), among others, show

that almost all characteristics of organisms scale predictably with body size.

1.3 The Size Spectrum

Given the breadth of described allometric relationships, it is obvious that body size is an

important individual ecological indicator, particularly over large scales. Yet traditionally,

biological studies use a classification system based on taxonomic identification. If ecosystem

processes and responses, such as levels of production, are of interest, then using individual

size as a classification may be more beneficial than one based on species (Kerr & Dickie,

2001).

A first approach to using a size based system would be to explore the distribution

of individual body sizes within systems, regardless of taxonomy. Taking advantage

of recently developed Coulter counter technology, Sheldon et al. (1972) derived the

size-frequency distribution of phytoplankton in the Atlantic and Pacific. After they

supplemented their data with estimates of fish and whales, to their surprise, plots

of logarithmically transformed biomass against logarithmically scaled size classes were

astonishingly “flat”.

Following this observation, other authors sort to measure the size spectrum in other

habitats, including the benthos (Schwinghamer, 1981) and the pelagic environment of

lakes (Sprules et al., 1983; Sprules & Munawar, 1986; Sprules et al., 1991), and with
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it, the introduction of normalising the biomass spectrum (Platt & Denman, 1977; Kerr

& Dickie, 2001), for mathematical convenience (i.e. dividing the biomass per size class

by the width of that size class). These normalised spectra typically exhibited straight

lines on logarithmic plots, suggesting a power law relationship, with negative slopes

of approximately -1 to -1.25. For a detailed review of the earlier work on the biomass

spectrum see Kerr and Dickie (2001), and for a more recent but concise review see Sprules

and Barth (2016).

Due to the various forms by which data are collected: size-frequency distributions;

density/abundance or biomass estimates etc., various forms of the size spectrum have

been estimated in different studies (White et al., 2007, 2008; Edwards et al., 2017),

between which exponents are not equivalent to each other. Fundamentally, it is the

distribution of individual body sizes that is of interest, and when expressed as probability

distributions, makes data comparable. The individual size spectrum, which I use as the

standard against which to compare other forms of size spectra throughout this thesis, is

a power law distribution:

p(x) = αx−β (1.11)

were x is the size of an individual and p(x) is the probability of being size x. The

exponent, β, is assigned a minus as the exponent is almost always negative in power

law distributions. Increasing magnitude of the exponent results in an ever decreasing

probability of ever larger sizes, often referred to as a steeping of the spectrum due to a

larger slope when data are plotted on logarithmic scales. Estimation of the parameters

of power law distributions has been well studied, including special cases such as discrete

data, and comparing the goodness of fit with other heavy tailed distributions (Goldstein

et al., 2004; Newman, 2005; White et al., 2008; Clauset et al., 2009; Virkar & Clauset,

2014; Edwards et al., 2017). Edwards et al. (2017) show how multiple methods of

constructing spectra relate to the individual size spectrum, Eq. 1.11. Sheldon et

al.’s (1972) method of logarithmically binned size classes regressed against logarithmic

biomass produces a slope, b, that is equivalent to −β + 2, while the normalised biomass

spectrum produces a slope of −β + 1.

The size spectrum is believed to be an emergent behaviour of individual trophic
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interactions, the inefficiencies in biomass transfer and metabolic maintenance (Kerr &

Dickie, 2001). For example, the exponent is steeper in food webs based on predation,

where predators are gape limited in terms of the size of prey that can be consumed,

compared to food webs dominated by detritivores (Blanchard et al., 2009). The mathematical

simplicity of the size spectrum, coupled with allometric interactions and processes, see

section 1.2, allow for complex ecosystem behaviours to be modelled in a relatively

simplistic manner, for example, exploring the effect of different fishing regimes on ecosystem

structure (Rochet & Benoît, 2011).

1.4 Metabolic Theory of Ecology

Biological material is far from thermodynamic equilibrium and therefore requires energy

expenditure for it to be maintained - an organism’s metabolism. Since ecological interactions,

both biological and abiotic, involve exchanges of energy in various forms, understanding

influences on metabolism is key to ecology (Sibly et al., 2012). Intuitively metabolic rates

should scale with body size, because the amount of biological material fundamentally

determines energy requirements for basal maintenance.

1.4.1 Kleiber’s Law

By applying the principles of Euclidean geometry, heat loss across body surfaces was

believed to constrain whole organism metabolism such that:

B = B0M
2
3 (1.12)

where B is whole organism metabolism, B0 is the mass independent normalisation

constant and M is the body mass (cf. eq. 1.5). However, in 1932, Kleiber showed

empirically across a range of mammals and birds that basal metabolic rate actually

scaled with a power exponent of 3
4 with M . This work was later expanded to include

most fauna and has since become known as Kleiber’s Law:

B = B0M
3
4 (1.13)
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with Kleiber recommending an average normalisation constant of Bo = 3.4 for basal

metabolic rate (Kleiber, 1947, 1961). While Kleiber suggested potential causes in his

original paper for this three quarter power scaling, a rigorous, generative process was

still lacking.

It was not until 1973 when the first mechanistic model was proposed in order to

explain this quarter-power scaling, although many suggestions were given by Kleiber

(1932). T. McMahon (1973) applied Thompson’s (1942) ideas of form to show, based

on mechanical restrictions of animal limbs, that mass, M , is proportional to muscle

diameter, d raised to the power 8/3. Muscle cross-sectional area, ∝ d2, is the only variable

that determines the maximum power and basal metabolic rate of a limb and therefore

B ∝ d2, and substituting mass in for diameter gives B ∝ (M 3/8)2 = M
3
4 . Assuming that

this is applicable to all muscles and not just limbs then Eq. 1.13 follows.

1.4.2 The WBE Model of Metabolic Scaling

West et al. (WBE) proposed, in 1997, that metabolism scales with body size due

to geometric limitations in the distribution network for delivering oxygen and other

metabolites, from the surfaces through which they diffuse to enter an organism’s body

to the end cell at which they are required. Their generative model is based on three

underlying principles:

1. The distribution network of an organism if fractal, branching from larger to smaller

similar units

2. The final branch of the network (e.g. capillaries in vertebrates and trachea in

insects) is size invariant (i.e. ∝M0)

3. The network is optimised so that energy dissipation is minimal

The WBE model derives, among many other allometric relationships, the three quarter

power scaling observed in Kleiber’s Law and spurred renewed interest in the field of

metabolism and allometric scaling (Sibly et al., 2012). A second, less prominent model

has also been proposed based on dynamic energy budget theory (DEB) that also generates

the three quarter power scaling (Kooijman, 1986; Maino et al., 2014). The DEB model
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is based on the premise that it is the mobilisation, and not distribution, of metabolites

that limits metabolism, with the assumptions that:

1. Organism biomass is subdivided into two compartments: storage and structure

2. All assimilated material passes through storage before it is incorporated into biological

structure

3. Storage is metabolically inert whereas structure is metabolically active and therefore

has an intrinsic maintenance

4. Metabolites are mobilised at the surfaces of storage

Far from being in conflict with the WBE model, the DEB model can be considered

complementary as it describes a different part of the metabolic system (Maino et al.,

2014). If different parts of the system scaled differently with size then substantial

re-organisation would be required during ontogenetic growth, something not typically

seen in nature.

Both of these models have been subject to scrutiny and criticism, in terms of their

generality and assumptions, as well as metabolic scaling in general (Savage et al., 2008;

Isaac & Carbone, 2010; Kearney & White, 2012; Price et al., 2012). Regardless of the

generative mechanism, the empirical evidence for metabolic scaling with body size with

an exponent of 3
4 is considerable (Kleiber, 1961; Sibly et al., 2012).

1.4.3 Metabolism and other Biological Processes

As metabolism is, at its core, biochemical pathways, temperature, which affects the

kinetics of chemical reactions, accounts for much of the deviation from Eq. 1.13. To

account for this temperature dependence, Gillooly et al. (2001), incorporated the Arrhenius

function into metabolic scaling, giving:

B = B0M
3
4 e−

Ea
kT (1.14)

where Ea is the activation energy of the metabolic process (Ea ≈ 0.65eV for processes

governed by respiration and 0.32eV for photosynthesis), k is Boltzmann’s constant (8.62×
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10−5eVK−1) and T is the body temperature in Kelvin (Gillooly et al., 2001; Brown et

al., 2004; West & Brown, 2005).

Equation 1.14 is the central equation to the metabolic theory of ecology (Sibly et al.,

2012) and, taking metabolism as the fundamental biological process, explains many other

allometric scalings that have been observed. Consider the three examples of allometric

scaling given section 1.2.3.

Damuth’s Rule

Damuth’s Rule, Eq. 1.7, stated that the scaling of density with body size was with an

exponent of −3
4 . The maximum number of individuals that can occupy an area will be

in proportion to the resource production in an area (R), divided by the individual rate

of resource use, which is determined by whole organism metabolism (B, see Marquet et

al., 2005):

D ∝ R

B
∝ R

M
3
4

∝M−
3
4 (1.15)

Fenchel’s Law

The scaling of population growth, rm, with body size with an exponent of −1
4 is Fenchel’s

Law, Eq. 1.9. Population growth is determined by the rate of biomass accumulation, a

biological rate. Since biological rates are mass specific (Brown et al., 2004) and limited

by metabolic rate:

rm ∝
B

M
∝ M

3
4

M
∝M−

1
4 (1.16)

Calder’s Law

Calder’s Law, which scaled with an exponent of 1
4 , is a biological time, which are inversely

proportional to biological rates. Given Eq. 1.16, then it follows:

T ∝ r−1 ∝

{
M

3
4

M

}−1
∝ M

M
3
4

∝M
1
4 (1.17)

As is shown by these three examples, metabolic theory predicts ecological patterns

first described empirically. More recently, metabolic theory has been used to predict
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ecosystem level processes such as carbon fluxes (Yvon-Durocher & Allen, 2012; Schramski

et al., 2015) and community dynamics (Zaoli et al., 2017). Variations between theoretical

predictions and empirical measures still remain however (Savage et al., 2008; Isaac &

Carbone, 2010; Norin & Gamperl, 2018), yet it is these deviations from predictions based

on metabolic theory and allometry that provides focus for future research (Sibly et al.,

2012). It is worthy to note that, despite their imperfections, power law relationships

capture and predict the majority of variation in complex behaviours found across the

great diversity of life that we see (Peters, 1983; Sibly et al., 2012), even if all their

underlying mechanisms are not yet wholly understood (Stumpf & Porter, 2012).

1.5 Thesis Aims, Objectives and Structure

Studies showing or utilising power laws in ecological studies are extensive, but typically

work on very large temporal or spatial scales. For example, the ecological scaling laws

cited in section 1.2.3 all compiled data globally, that were recorded disparately in time,

from a very broad range of organisms. However, does the macroecological approach

belie sensitivities in power law parameterisations that may be used to infer information

about system behaviour at smaller scales? As mentioned previously, heterogeneity within

scaling relationships is well accepted.

This thesis aims to explore the use of power law relationships in capturing community

dynamics and ecosystem behaviours, at reduced spatial and temporal scales compared to

previous work, and test for potential drivers of variation in observed power law exponents.

To do this, I use coastal fish communities as model systems, utilising two datasets: a

large fisheries survey dataset from the North Sea compiled over 40 years and my own

data collection from a local estuarine community.

In Chapter 2, I test for the presence of systematic differences in the aggregation

behaviour within the North Sea community, described by the exponent of the mean-variance

scaling known as Taylor’s Power Law (Taylor, 1961). I quantify this power law both

across space and through time and, coupling this with modelled climatology of the North

Sea, test for specific abiotic drivers in the temporal and spatial aggregation behaviour.

In Chapter 3, I assess the seasonal dynamics in the size spectrum of the fish and
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plankton communities within a dynamic estuarine environment, calculated at a monthly

resolution. Further, utilising in situ environmental data and stable isotope analyses,

I assess the overall ecological interactions within the food web, which are known to

influence the steepness of size spectra.

In Chapter 4, I use stable isotopes analyses to quantify community level predator-prey

mass ratios throughout a seasonal cycle. I then couple these with the empirical size

spectra to estimate in situ trophic transfer efficiencies in order to assess nutrient fluxes

through the estuarine system at a bi-monthly temporal scale.

In Chapter 5, utilising both stable isotope analyses with gut content data, I quantify

the degree of individual specialisation within the diet of juvenile sea bass, Dicentrarchus

labrax, a commercially important species that is currently under threat from over-exploitation.

Finally, concluding remarks are presented in Chapter 6, where I provide a synopsis

on the main findings of the research presented in this thesis. I outline the usefulness

in applying power law relationships as ecosystem metrics, discuss potential caveats and

summarise some future directions of research. Chapters 2 and 5 have been prepared for

or are currently in review for publication at the time of writing and therefore are written

as stand alone pieces of research. Styles may differ between chapters depending on the

target journal.

14



2 | Taylor’s Power Law in the

North Sea Fish Community

This chapter is a reproduction of text currently in review with the Journal

of Animal Ecology, and, as such, is written in the style of the journal.

Matthew R. D. Cobain, Markus Brede and Clive N. Trueman

MRDC processed data, conducted statistical analyses and wrote first manuscript draft,

CNT conceptualised the study and all authors contributed equally to study development

and manuscript review and editing.

2.1 Abstract

1. Taylor’s power law (TPL) describes the relationship between the mean

and variance in abundance of populations, with the power law exponent

considered a measure of aggregation of the data. However the usefulness

of TPL exponents as an ecological metric has been questioned, largely

due to its apparent ubiquity in various complex systems.

2. The aim of this study was to test whether TPL exponents vary systematically

with potential drivers of animal aggregation in time and space, and

therefore capture useful ecological information of the system of interest.

3. We derived TPL exponents from a long term, standardised and spatially

dense data series of abundance and body size data for a strongly size-
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structured fish community in the North Sea. We then explored systematic

aggregation responses as characterised by TPL exponents in time and

space and tested for relationships with specific abiotic environmental

drivers using modelled climatology.

4. We find that, in general, TPL exponents vary more than expected under

random conditions in the North Sea for size-based populations compared

to communities considered by species. Further, size-based temporal

TPL exponents are systematically higher (implying more temporally-

aggregated distributions) along hydrographic boundaries characterised

by temperature variability. We also show that size-based spatial TPL

exponents differ between hydrographically distinct basins.

5. These findings support the notion that TPL exponents do contain ecological

information, capturing community spatio-temporal dynamics as influenced

by abiotic drivers.

2.2 Introduction

In 1961, Taylor posited that the variance in the abundance of a population scales with

the mean abundance of that population as a power law, such that:

σ2 = αµβ, α > 0 (2.1)

where σ2 is the variance in abundance of the population and µ is the mean abundance

of the population, with the coefficient α and the scaling exponent β. His findings were

based on empirical observations from a wide range of taxa, from worms and insects

to molluscs and fishes, and became known as Taylor’s power law (TPL). Conceptually,

TPL describes the level of aggregation between individuals in populations, captured by

the scaling exponent, β, while the coefficient α is taken to be an artefact of sampling

methodology (Taylor, 1961). If individuals are distributed randomly, then the Poisson

distribution is approached, giving σ2 = µ, and therefore β = 1. An increasing β describes
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increasing heterogeneity beyond random (i.e. aggregation), whereas a decreasing β

describes populations tending towards a uniform distribution.

Studies have since verified the presence of a power law relationship between the mean

and variance in abundance in thousands of other datasets and taxa within differing

communities (e.g. Xu et al., 2015; Döring et al., 2015; Ramsayer et al., 2012; Ma,

2015; J. E. Cohen, Xu, & Brunborg, 2013). In a wider context, equation 2.1 is also

known as fluctuation scaling and is typical of complex systems including tornadoes and

meteorology (Tippett & Cohen, 2016), the visual cortex (Medina & Díaz, 2016) and

various physical systems such as traffic networks, stock markets and heavy-ion collisions

(reviewed by Eisler et al., 2008).

Depending on how the parameters are estimated from data, TPL manifests itself in

two variants. Mean-variance pairs calculated from abundances taken across space but

at the same point in time describe the spatial aggregation or degree of patchiness in

populations, referred to as spatial TPL. However if mean-variance pairs are estimated

from abundances measured through time but at the same location then the temporal

aggregation in the populations is described, referred to as temporal TPL. Spatial and

temporal TPL exponents typically fall between 1 and 2, although estimates can vary

outside of these limits (Taylor et al., 1980; Taylor & Woiwod, 1982) and, theoretically,

any exponent value is feasible (J. E. Cohen, 2014).

Beyond a purely descriptive use, there have been many practical and theoretical

applications of TPL in ecology. For instance, TPL has been used to improve sampling

regimes for bioassessments (Monaghan, 2015; Xu et al., 2016). The residuals from TPL

have been proposed as a measure of stability in crop yields (Döring et al., 2015) and

heterogeneity in plant communities (Guan et al., 2016). Reed and Hobbs (2004) and

Pertoldi et al. (2008) used modified forms of TPL to explore extinction risk in small-sized

populations. Recently, TPL has been incorporated into a larger macro-ecological framework

to explain commonness and rarity in reef communities (S. R. Connolly et al., 2017).

The mechanism by which TPL emerges is, however, still heavily debated in the

literature. Taylor and Woiwod (1982) conceptually argued that TPL follows from explicit

individual behaviours such as migration. Many theoretical models have been produced
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that seek to explain the emergence of TPL in ecological systems including those based on:

density dependent (Perry, 1994) or independent, stochastic population growth (R. M. Anderson

& Gordon, 1982; J. E. Cohen, Xu, & Schuster, 2013); reproductive covariance (Ballentyne IV

& Kerkhoff, 2007); dispersal distance (Shi et al., 2016); and direct and indirect competition

(Kilpatrick & Ives, 2003). Others argue that the ubiquity of TPL suggests less system

specific causes: data series length and sampling error (Kalyuzhny et al., 2014); the

underlying phase space (Fronczak & Fronczak, 2010); generic long-range interaction

(Arruda-Neto et al., 2014) or statistical artefacts of system configuration (Xiao et al.,

2015). While all these bottom-up approaches seek to explain TPL emergence with a

typical exponent of 1 ≤ β ≤ 2, few offer widely applicable interpretation of variation

in exponent values (but see J. E. Cohen, Xu, & Schuster, 2013 and Kilpatrick & Ives,

2003). Xiao et al. (2015) highlight the fact that, while TPL is statistically inevitable,

the exact form cannot be predicted and so may still contain ecological information.

Given the wide applications and limited consensus on its mechanistic underpinning,

relatively few studies have empirically explored potential drivers of variation in TPL

exponents in an ecological setting, a top-down approach that could direct theoretical

development of mechanism and better contextualise TPL exponents. Empirical data

suggest that TPL exponents do contain ecologically relevant information. For instance,

in fish communities, species with classically ‘k-selected’ life histories typically have lower

spatial TPL exponents than those with more ‘r-selected’ traits (Kuo et al., 2016). A

systematic reduction in temporal TPL exponents in fish populations was found along

gradients of increasing connectivity and size of reefs, implying that temporal dynamics

of populations on isolated, small reefs are more clustered in time (Mellin et al., 2010).

Parasite loading influenced spatial TPL exponents in populations of free-living species in

lakeshore communities (Lagrue et al., 2015). However, competition between populations

does not appear to affect spatial TPL exponents in bacteria cultures compared to being

grown in isolation (Ramsayer et al., 2012). The main challenge with empirical-based

studies of TPL is acquiring standardised data that is broad enough to cover many

different populations and encompasses a suitable range of the driver(s) of interest. For

example, Ramsayer et al. (2012) only included two species of bacteria within their
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cultures, severely limiting the general conclusions that can be drawn from their experiments,

while Kuo et al. (2016) utilised larval data as a proxy for population abundance which

limits interpretations to the spawning aggregation behaviours of reproductively active

adults.

This current study extends the empirical, top-down approaches to identifying ecological

or environmental drivers of TPL exponents by using one of the most spatially extensive,

long-term fish survey datasets available, the North Sea International Bottom Trawl

Survey (NS-IBTS, ICES, 2012). The IBTS data is derived from standardised trawl

surveys and provides length and abundance data of more than 200 fish species sampled

across 10 broad areas, subdivided into nearly two hundred standardised subareas, over

several decades. In total, the dataset used here contains over one million observations.

The North Sea is also intensively monitored and the subject of multiple climatological

and biogeochemical simulation models, producing a rich suite of associated environmental

data. Here, we couple spatial patterns in temporal TPL and temporal trends in spatial

TPL at the community level of organisation with a 3-dimensional reconstruction of the

North Sea climatology, to test whether variations in aggregation or patchiness implied by

TPL exponents correlate with ecologically plausible, large scale environmental drivers. In

other words, do TPL exponents contain information about the spatio-temporal dynamics

of the North Sea benthic fish community?

We test the hypothesis that community temporal TPL exponents in the North Sea

vary systematically in space with proximity to hydrographic boundaries, temporally

averaged physiochemical environmental drivers and their variability. We also test for

systematic differences in the spatial TPL exponents between the ecologically distinct

shallow and deep-water regions of the North Sea, and whether the spatial TPL time-series

of these two regions co-vary with differing environmental drivers. Due to the strong size

structuring in aquatic systems, we further hypothesise that populations delineated by

size will be more sensitive to environmental drivers compared to populations delineated

by species in this system.

We found that, generally, TPL exponents varied systematically with presumed drivers

of fish community dynamics when fish communities were defined as populations of
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size cohorts. Size-based populations showed greater temporal aggregation closer to

hydrographic boundaries with increased inter-annual environmental variability, particularly

variance in the summer bottom water temperature. TPL exponents also suggested

divergence in the spatial clustering of size-aggregated communities through time between

the shallow, seasonally well-mixed southern region and the deep, permanently stratified

northern region of the North Sea. This research empirically shows that abiotic environmental

drivers systematically influence TPL, and therefore we infer that TPL exponents do

capture information on spatio-temporal dynamics in ecosystems.

2.3 Materials and Methods

2.3.1 Data Sources and Processing

Fish community data from the ICES International Bottom Trawl Survey for the North

Sea (NS-IBTS) were sourced from DATRAS (http://www.ices.dk/marine-data/

data-portals/Pages/DATRAS.aspx) which provides abundance data as Catch Per Unit

Effort (CPUE) for each species binned into length classes within subareas of 0.5◦ Latitude

by 1.0◦ Longitude. Data included in this study were limited to the years 1977 through

to 2015, after the commencement of gear standardisation and to quarter one to exclude

seasonal affects on abundance (ICES, 2012). Fish less than 60mm in length were excluded

due to inefficient sampling within the trawl gear following Daan et al. (2005). Length

classes for all species were consolidated into 10mm bins, taxonomic identifications were

corrected following Heessen et al. (2015) and subareas with fewer than 10 years of

sampling were removed. The average depth of each subarea was taken as the mean

depth using ETOPO1 1arc-minute global relief model with a resolution of 1800 data

points per subarea (Amante & Eakins, 2009).

Climate data were sourced from the Adjusted Hydrography Optimal Interpolation

(AHOI, v19.02), a reconstruction of the North Sea hydrography representing monthly

temperature, salinity and mixed layer depth (MLD) maps at a resolution of 0.2◦ Latitude

and Longitude, see Núñez-Riboni and Akimova (2015). Temperature and salinity data

were limited to surface and bottom waters only, and, along with MLD, averages were
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taken for each location for the months of January, February and March and separately

for July, August and September giving measures for winter and summer. Data were

then pooled into corresponding subareas and for each year and 10 parameter averages

were calculated (minimum cut off of 5 spatial points per subarea): winter surface and

bottom water temperature and salinity; summer surface and bottom water temperature

and salinity; and summer and winter MLD.

2.3.2 Temporal TPL Analyses

From equation 2.1, it follows that the coefficient and exponent can be estimated from

abundance data by regression analysis on the logarithms:

log(s2i ) = log(α̂) + β̂ log(x̄i) + εi (2.2)

where x̄i and s2i are unbiased estimators of sample mean and variance in abundance

of the ith population respectively, either through time or across space, with εi residual

error. Here, population refers to individuals grouped into either a single species (or

lowest identifiable taxanomic unit) or length class. Mean-variance pairs were calculated

for each population across all years sampled within each subarea and TPL parameters

estimated for the whole community by ordinary least-squares linear regression (equation

2.2) for that subarea. Subareas were restricted to those that had at least 30 years of

sampling to limit the influence of time-series length on the TPL parameters (Kalyuzhny

et al., 2014) and those with at least 10 populations present. Populations were restricted

to those that were present for at least 10 years within the subarea to exclude transient

populations preventing zero inflation of variances. Years in which no individuals from

a given population were observed were assigned zero abundance for that year. Equal

weighting was given to all populations as they have the same degrees of freedom.

The spatial distribution in temporal TPL exponents was explored utilising the “feasible

set” approach employed by Xiao et al. (2015), constructing a distribution of temporal

TPL exponents for each subarea. Temporal mean-variance pairs were randomly resampled

within each subarea across the whole dataset, giving a random configuration of the

populations present. Temporal TPL exponents were then re-estimated for each subarea.
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This process was permuted 10000 times to provide a random distribution of temporal

TPL exponents for each subarea, given the data. Confidence intervals were then constructed

by numerically integrating across the kernel density curves (n=1024) of each subarea.

Systematic spatial patterns in temporal TPL exponents were tested for by modelling

the exponents as a linear function of distance from the nearest hydrographic boundary.

Boundaries were taken as the subareas that contained: the 500m depth contour separating

the North Sea from the Atlantic drift current; the 55◦45′N line running between Denmark

and Sweden separating the North Sea from the Baltic Sea; a straight line between Dover,

UK, and Calais, France, separating the North Sea from the English Channel and the

50m depth contour from Oslofjord, Norway, to Scarborough, UK, which approximately

demarcates the transition between the deep, permanently stratified waters and the

shallow, seasonally well-mixed waters (Heessen et al., 2015; van Leeuwen et al., 2015).

For those subareas where modelled climate data was available, individual linear

models were used to test for the influence of climatic drivers on temporal TPL exponents.

For each climate variable, the mean and variance was calculated for each subarea over the

whole time period. Parameters were tested for covariance and those showing collinearity

were removed. Remaining parameters were then passed as linear descriptors of individual

temporal TPL exponents.

2.3.3 Spatial TPL Analyses

Subareas were separated into deep and shallow regions based on mean depth (shallow

≤ 50m < deep, see Supplementary for map). For each year, mean-variance pairs were

calculated for each population across subareas sampled within each region and TPL

parameters estimated for the whole community by ordinary least-squares linear regression

(equation 2.2). Typically, zero data in spatial TPL analyses are excluded a priori,

however this causes selection bias in data where zero abundance can be valid, potentially

influencing the estimates of α and β (B. Jørgensen et al., 2011). Here, this is accounted

for by constructing a feasible area for each population by taking the overlap of the

subareas sampled during any one year and all the subareas that the population has

occurred in within that region over the whole time period. Populations were restricted
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to those present within at least 5 subareas for any given year within a feasible area of at

least 25 subareas to exclude vagrants and zero inflation of variances. Populations were

given weights of ni − 1, as εi is approximately inversely proportional to the degrees of

freedom (Perry, 1981; B. Jørgensen et al., 2011).

Within each region, temporal trends in spatial TPL were explored using the “feasible

set” approach as described above: spatial mean-variance pairs were resampled for each

year across the two combined regions (i.e. the whole data set). For testing trends

in spatial TPL with climatic drivers, the spatial mean and variance of all climate

parameters were calculated across the subareas sampled for each region and time-series

constructed. Parameters were then tested for covariance and those showing co-linearity

were removed. Spatial TPL time-series and the remaining climatic time-series were then

low-pass filtered with a 3 year running mean. Cross-correlation analysis was utilised

to determine relationships, if any, between smoothed spatial TPL and environmental

time-series. Lags were restricted to between 1 and 5 years relative to the TPL time-series

(0 to 5 for the climate variables based solely on quarter 1 data, i.e. in situ at time of

fish data collection for lag 0) to exclude erroneous correlations.

The significance of the correlations was tested by construction of confidence intervals

following Akimova et al. (2016). Briefly, this was done by converting the correlation

coefficients, P (τ), into normally distributed variables, z(τ), via the Fisher transformation:

z(τ) =
1

2
(ln(1 + P (τ))− ln(1− P (τ))) (2.3)

where τ denotes the lag. The standard error is given by:

δz =

√
1

N?
(2.4)

1

N?
=

1

N
+

2

N

N∑
τ=1

(N − τ)

N
ρx(τ)ρy(τ) (2.5)

The effective degrees of freedom, N?, accounts for the autocorrelations, ρ(τ), across all

lags, τ , of the two time-series, x and y, of length N . Desired limits can then be calculated

on z(τ), e.g. ±1.96δz for the 95% confidence intervals as used in this study, and then
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back transformed to P (τ) using the inverse Fisher function:

P (τ) =
e2z(τ) − 1

e2z(τ) + 1
(2.6)

Finally, to check the sensitivity of results to the method by which TPL exponents were

calculated, all analyses were conducted on spatial and temporal TPL slopes estimated

using the Siegel repeated medians regression (Siegel, 1982), which is highly robust to

the influence of outliers (breakdown point of 50%). For each individual data point, this

approach computes pairwise slopes with all other data points, from which the median

is taken. The slope of the linear relationship is then taken to be the median of N

median slopes. All analyses were conducted in R 3.3.2 (R-Core-Team, 2016), utilising

the packages: “plyr” (Wickham et al., 2011); “data.table” (Dowle & Srinivasan, 2017);

“mblm” (Komsta, 2013); “GGally” (Schlöke et al., 2017); “mctest” (Ullah & Aslam, 2014);

and “caTools” (Tuszynski, 2014). Map production was done utilising the package “maps”

(Brownrigg et al., 2017).

2.4 Results

The mean-variance data were well described by linear relationships in log-space across all

TPL parameterisations, with consistently high r-squared values and low standard errors

of coefficients. Tables of summary statistics and individual TPL plots can be found in

the Supplementary.

2.4.1 Temporal TPL

The temporal TPL exponents, calculated for 169 subareas in total, are mapped in Fig.

2.1. For populations defined by species, TPL exponents ranged from 1.80 to 2.09 with

a mean of 1.93. Only three of the subareas had exponents that fell outside the 95%

confidence intervals, see Fig. 2.1a. Size-based temporal TPL exponents showed a

greater range from 1.64 to 2.21, with a mean of 1.98. The size-based approach also had

many more subareas with exponents beyond the confidence intervals - a total of 31, see

Fig. 2.1b. Temporal TPL of size-based populations showed a systematic decrease with
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increasing distance from hydrographic boundaries (F1,167 = 40.0, P < 0.001) whereas

TPL exponents for populations defined by species showed no trend (F1,167 = 0.975, P =

0.325), see Fig. 2.2. Similar results were obtained when TPL exponents were calculated

using Siegel repeated medians regression, see the Supplementary for figures.

Figure 2.1: Maps of the temporal Taylor’s power law (TPL) exponent estimates for the
benthic fish community within 169 subareas across the North Sea, for populations by
species (a) and size-class cohorts (b). Subareas with exponent estimates either above or
below the 95% confidence interval (CI), calculated from 10000 random permutations of
mean-variance pairs, are marked with black and white filled circles respectively. Note
that the colour scaling for the temporal TPL exponents is based on distribution density
and is therefore non-linear and differs between the two plots.

A total of 151 subareas with TPL estimates were also covered by data from the

climatological model of the North Sea. Collinearity testing reduced the number of

environmental parameters from 20 to 9 (listed in the Supplementary along with cross

correlation plots). Species-based temporal TPL exponents, when estimated by either

least squares linear regression or Siegel repeated medians regression, showed no significant

linear relationships with any of the environmental parameters. However exponents

estimated from populations defined by size-classes showed significant linear relationships

with mean winter surface temperature (F1,149 = 5.09, P = 0.0256, slope = -0.020), mean

summer surface temperature (F1,149 = 5.33, P = 0.0224, slope = 0.0042) and variance in

summer bottom temperature (F1,149 = 9.97, P = 0.00193, slope = 0.089). Qualitatively
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Figure 2.2: Map (left) showing the distribution of subareas in relation to hydrographic
boundaries within the North Sea, as defined in the materials and methods. Box plot
(right) showing the distribution of temporal Taylor’s power law (TPL) exponents against
hydrographic boundary assignment for 169 subareas of populations by species and
size-class cohorts. Temporal TPL exponents decrease with distance from hydrographic
boundary when populations were considered by size class (F1,167 = 40.0, P < 0.001),
whereas no significant relationship was found when populations were considered by
species (F1,167 = 0.975, P = 0.325).

similar results were found with the Siegel method; only these three parameters showed

significant linear relationships with similar slopes, see Supplementary.

2.4.2 Spatial TPL

The spatial TPL exponent time-series calculated for 39 years are shown in Fig. 2.3.

When populations were defined by species, only 3 years had TPL exponents outside

the confidence interval for the shallow region and only 1 for the deep region. Generally,

temporal trends in species-based TPL exponents were similar in deep and shallow regions

over the whole period, with no difference in the mean of exponents (t75.8 = −0.443, P =

0.659). Populations by size-classes had many more spatial TPL exponents outside the

confidence intervals compared to species: 13 for the shallow region and 19 for the deep.

For the shallow region, 11 of these years had exponents above the confidence interval,
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with a cluster from 2008 to 2012. For the deep region, 18 of the years had exponents

below the confidence interval, with 4 clusters centred on 1984, 1991, 2001/2002 and

2008/2009. Both time series show considerable divergence over much of the period, with

the deep region TPL exponents being significantly lower on average compared to the

shallow region (t73.0 = 5.61, P < 0.001).

Figure 2.3: Time-series of the spatial Taylor’s power law (TPL) exponents by species
(top) and by size classes (bottom) calculated separately for deep (>50m, blue) and
shallow (≤50m, red) regions of the North Sea, see Supplementary for map of the two
regions. Standard errors of the regression estimates are plotted as opaque polygons
to show periods of overlap and divergence. Years with TPL exponents either above
or below the 95% confidence intervals, calculated from 10000 random permutations of
mean-variance pairs of the whole dataset, are marked by triangles either above or below
the time-series respectively. The distributions of spatial TPL estimates over the whole
period are shown in adjacent box plots. Regional distributions did not differ for TPL
exponents by species (t75.8 = −0.443, P = 0.659), but did for exponents by size classes
(t73.0 = 5.61, P < 0.001).

Similar systematic trends are seen in the time-series when exponents are estimated

by Siegel repeated medians regression. Where populations are defined by species, the two

regions predominantly overlap each other with only one exponent in total outside the

confidence intervals and now difference in means (t76.0 = 1.36, P = 0.178). Whereas
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Table 2.1: Table of environmental parameter correlations and associated lag with
time-series of spatial Taylor’s power law (TPL) exponents, which have 95 percentile
confidence intervals above or below zero. See materials and methods for details on
confidence interval construction. Parameters are defined by: the season (summer or
winter); the parameter (either bottom/surface water temperature/salinity or mixed layer
depth); and the estimated statistic (mean or variance).

Environmental Variable Correlation
Coefficient

Upper Confidence
Interval

Lower Confidence
Interval LagSeason Parameter Statistic

Least squares linear regression
Shallow Region - Populations by Species

Winter Mixed Layer Depth Mean -0.682 -0.070 -0.921 3
Deep Region - Populations by Species

Winter Bottom Temperature Mean 0.677 0.924 0.031 5
Summer Mixed Layer Depth Mean -0.736 -0.171 -0.937 3

Shallow Region - Populations by Size-classes
Winter Mixed Layer Depth Mean -0.711 -0.147 -0.926 3

Deep Region - Populations by Size-classes
N/A

Siegel repeated medians regression
Shallow Region - Populations by Species

N/A
Deep Region - Populations by Species

Winter Bottom Temperature Variance 0.672 0.905 0.132 0
Summer Mixed Layer Depth Mean -0.685 -0.139 -0.912 3

Shallow Region - Populations by Size-classes
Summer Bottom Temperature Variance 0.715 0.929 0.146 4

Deep Region - Populations by Size-classes
Winter Mixed Depth Layer Mean -0.636 -0.018 -0.902 3
Summer Bottom Temperature Variance 0.626 0.898 0.009 3

where populations are defined by size-classes, the time-series show large periods of

divergence, with 27 exponents in total falling outside the confidence intervals, clustered

similarly in time as the least-squared method and the deep region having lower exponents

on average (t75.4 = 4.27, P < 0.001), see the Supplementary.

Collinearity testing reduced the number of environmental parameters from 20 to 7 in

the shallow region and 10 in the deep region (see tables and cross-correlation plots in the

supplementary). Only bottom temperatures and mixed layer depth showed significant

correlations with TPL exponents across both species and size-class approaches, see Table

2.1. However the only pattern repeated by both regression methods was a negative

correlation with average summer mixed layer depth with TPL exponents from populations

by species in the deep region.

2.5 Discussion

Despite being one of the few widely verified patterns in macroecology, empirical investigations

into the drivers of variation in the exponent of Taylor’s Power Law are still limited.
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While some studies have sought to address this knowledge gap more recently, these have

typically focused on biotic factors that potentially affect TPL, e.g. life history traits

(Kuo et al., 2016) and synchrony of populations (Reuman et al., 2017). By utilising

a long-term and spatially dense community dataset, we have shown that there are

systematic differences in both spatial and temporal TPL exponents within the North

Sea associated with regional hydrography and therefore the in situ environment.

2.5.1 Individual Size vs. Taxonomic Identification

Systematic spatial and temporal trends in community TPL exponents were only apparent

when populations were considered as cohorts of size classes. Given that fish communities

are heavily structured by individual body size (Trebilco et al., 2013), this is unsurprising.

When populations were defined by species, less variation in both spatial and temporal

TPL exponents was expressed compared to size classes, suggesting reduced community

sensitivity as hypothesised. For temporal TPL, species-based exponents were tightly

constrained near a value of 2, the statistical null expectation for temporal TPL (Kilpatrick

& Ives, 2003).

The only other two studies exploring drivers of TPL exponents in fishes, to the best of

our knowledge, also support the importance of body size in explaining observed variation

within this group. More ‘k-selected’ species, with larger maximum sizes, showed reduced

spatial TPL exponents compared to ‘r-selected’ species (Kuo et al., 2016), with the

authors suggesting this is due to enhanced buffering of environmental stress at larger

body sizes leading to a more even dispersal of individuals. A species’ maximum body

size was an important descriptor in modelling temporal TPL exponents in reef fishes,

explaining 35% of the deviance in exponents alone; with larger sizes showing reduced

observed TPL (Mellin et al., 2010). Mellin et al. (2010) suggest that this is due to

increased sensitivity to fluctuations in recruitment that coincide with smaller body sizes.

J. E. Cohen et al. (2012) predicted that allometric scaling exists between body size

and variance in abundance by combining TPL with the biomass spectrum, the power law

distribution of body sizes. Here, by grouping individuals into size the same information

is captured in the TPL exponents, see Fig. 2.4. Tokeshi (1995) illustrates graphically
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Figure 2.4: Example of a temporal Taylor’s power law (TPL) exponent, visualised as
the slope of the least-squares linear regression (solid red line), for populations considered
by size class cohorts for the subarea “37F”. Solid black line shows the hard upper bound
of variance, which is the maximum variance for a given mean calculated from n data
points and has a slope of 2. The dashed line indicates the soft lower bound of variance
given the mean, the Poisson distribution with a slope of 1, following Tokeshi (1995).
Data points are coloured based on size. The smaller and larger size classes occupy the
extremes of mean abundance and so are more influential in TPL parameter estimation,
however variance at low mean abundances (larger size classes) is heavily bounded which
limits leverage. Note the base 10 logarithmic scale.

that estimates of TPL exponents are constrained due to a limited theoretical sampling

area in logarithmic space, which is broad at high mean abundances and narrows towards

lower mean abundances. Smaller sized individuals are typically orders of magnitude

more abundant than larger individuals; therefore they occupy the area in log space that

is less limited in possible variance to mean ratios. This means that they occupy the

area in log space that is broad and so have more leverage in regressions for estimating
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TPL exponents, Fig. 2.4. Recruits and juveniles are also the most vulnerable life stages

of fish and so will be more variable in their distributions in response to environmental

stochasticity. Further, this conceptually explains the expectation that it is the TPL

exponents, and not the intercepts, in a size-structured fish community that will vary in

response to drivers.

Empirically estimating TPL parameters requires individual abundance data along

two dimensions of variability, one to measure mean and variance of abundance in (e.g.

space for spatial TPL and time for temporal TPL) and a second to scale mean-variance

pairs for parameter estimation. In most studies, this is the opposing temporal or

spatial component. To explore potential drivers of variability in TPL exponents, a

third dimension is needed to track changes in TPL over which the drivers also vary. For

most studies, the third dimension is the method by which individuals are assigned into

populations, i.e. species. It is argued that this produces TPL estimates for populations

that have experienced the same, although not quantified, spatio-temporally dynamic

physical environment (Kuo et al., 2016), assuming census data is consistent between

species. This explains why, to date, empirical studies into the drivers of variation within

TPL exponents have focused on biotic factors, because it is biotic factors that vary

between species, e.g. competition and life history traits. In the current study, by scaling

mean-variance pairs over the delineation of populations (species or size class), we have

been able to explore the effects of the physical environment as it varies through time or

space on TPL exponents as a community response.

2.5.2 Temporal TPL

Since temporal TPL exponents track fluctuations in time, temporal TPL values can be

considered as a measure of temporal stability. Our results showed that temporal TPL

exponents systematically increased with proximity to hydrographic boundaries (Fig. 2.1b

& 2.2), where inter-annual environmental variability is typically high due the lack of a

dominant regime (van Leeuwen et al., 2015). This leads to increased environmental

stochasticity through time, a fundamental component in theoretical models that seek to

explain temporal TPL (e.g. R. M. Anderson & Gordon, 1982). Modelling individual
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temporal TPL exponents as a linear function of environmental parameters corroborated

the importance of stochasticity in influencing TPL: increasing variance in the summer

bottom water temperature was strongly associated with increasing TPL exponents.

Other studies exploring in situ abiotic environmental factors on temporal TPL are

rare; the only other study the authors are aware of is by Grman et al. (2010), were

the addition of fertiliser had no effect on the temporal TPL slopes of annual and

perennial plant communities. However the addition of fertiliser to field plots does not

necessarily cause changes in environmental stochasticity per se, only the average chemical

environment. Increasing habitat size and decreasing isolation, which are theorised to

increase temporal population stability, have also been shown to decrease temporal TPL

exponents in reef fishes (Mellin et al., 2010).

2.5.3 Spatial TPL

While temporal TPL describes the temporal stability of populations, spatial TPL exponents

describe their patchiness in space. Within the North Sea, the shallow southern basin

showed elevated spatial TPL exponents compared to the deeper northern basin. The

50m depth contour defining the two basins roughly delimits the depth beyond which

surface-tidal mixing no longer influences the benthos (Heessen et al., 2015; Huthnance

et al., 2016). Therefore the environment in the deep region is expected to be more

spatially homogenous than the shallow region that is exposed to heterogenous surface

climate effects. However tests for influences of specific environmental drivers on spatial

TPL exponents were inconclusive, as significant correlations differed between the two

estimation methods of the TPL exponents. It is possible that whole-basin measures of

environmental means and variances poorly reflect the in situ drivers at this regional

scale. Nevertheless, the periodicity seen in the deep region is potentially suggestive of

the influence of decadal-scale climatic drivers, such as the North Atlantic Oscillation.

Environmental drivers for variation in spatial TPL exponents have been explored

within tree communities by J. E. Cohen et al. (2016), who found that elevation and soil

chemistry had no influence. One might expect the spatial TPL exponents of immobile

organisms to be less sensitive to environmental drivers as they cannot exhibit migratory
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responses when conditions become less favourable but not detrimental. Xu et al. (2015)

found that species composition influenced community spatial TPL exponents for trees.

In this study, shallow water communities in the North Sea are typically comprised of

warm-water, more southern species whereas cool-water northern species occupy the

deeper waters, broadly creating two differing species compositions (Heessen et al., 2015).

Our results therefore differ from the findings of (Xu, 2015), as the spatial TPL time-series

for populations by species of the two regions matched each other closely. However caution

should be used when comparing these systems that have very different ecological and

environmental contexts.

2.5.4 Concluding Remarks

In this study we have empirically shown that exponents of the power law relationship

between mean and variance in abundance pairs (Taylor’s Power Law) vary systematically

within the North Sea, following broad patterns in the stability of the abiotic environment

as expected from theory. We therefore argue that TPL exponents may be informative

ecosystem metrics describing aspects of community stability and patchiness in response

to environmental change. The NS-IBTS dataset lends itself to such analyses because

it is numerically dense; is in a highly studied area with abundant environmental data;

and the spatial and temporal scales at which the data are collected are ecologically

relevant to the functional group of interest – fishes. The temporal and spatial scales of

study organisms and survey data are important to consider in TPL studies, and their

influences still remain poorly resolved (Certain et al., 2007; Xu, 2015). Data used here

were collected annually, on the same order as the lifespans of most of the included fish

species, thus capturing single cohorts within multiple surveys and multiple generations

over the duration of the data collection. Spatially, although mapped onto large subareas,

abundance data refers to areas swept by a standard 30-minute trawl, which captures

movements such as shoaling behaviours. If the spatial scale is too small, differences may

just reflect the small random variations imposed on larger behavioural patterns and not

capture responses to environmental drivers. Likewise if the spatial scale is too big then

only the general distribution of the cohort may be captured. With ever larger ecological
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datasets become more readily available, it is likely that empirical studies addressing the

uncertainties that still surround the mechanisms underpinning Taylor’s Power Law are

likely catch-up with the wealth of theoretical studies.
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3 | Temporal Dynamics of the Size

Spectra and Isotopic Ecology

of Southampton Water

3.1 Abstract

Current ecological tools are commonly applied at large spatial and temporal

scales to infer typical ecosystem behaviour. However the interactions and

processes that give rise to ecosystem behaviour are often highly dynamic,

occurring over smaller scales than those normally measured. To test the

applicability of standard ecological tools at determining dynamic ecosystem

behaviour, I estimated the size spectrum and measured stable isotope values,

which quantify size structure and trophic interactions respectively, of a seasonally

varying estuarine community. I show that the size spectrum of the fish

community exhibits strong seasonal periodicity, matching well with known

movement patterns. Further, stable isotopes revealed that the food web is

predominately based on seasonally pulsed in situ phytoplankton production

that is rapidly incorporated into fish biomass, faster than expected compared

to published isotopic turnover rates. These results indicate that both size

spectra and stable isotopes can capture dynamic system behaviour at smaller

temporal scales than which they are currently used.
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3.2 Introduction

Although the size spectrum was introduced as a concept in section 1.3, in this introduction

I briefly expand on its empirical and theoretical applications in ecology. I then introduce

stable isotope analyses and their applications for exploring trophic interactions within

food webs. Finally, I outline the aims of the research presented within this chapter.

3.2.1 Size Spectra

Condensing information on the community size composition was first introduced as an

ecological concept by Elton (1927), who summarised bins of size classes as pyramids of

numbers, which later became modified to the classic pyramids of biomass (Bodenheimer,

1938). While the concept of the size spectrum originated from an independent avenue

of research (Sheldon et al., 1972, see section 1.3), Trebilco et al. (2013) showed that

ecological pyramids and size spectra are merely different representations of the same

information, see Fig. 3.1, with a steepening of the size spectrum exponent being equivalent

to an increasingly bottom-heavy pyramid.

Figure 3.1: When beginning with a trophic-level (TL) pyramid, first convert TL to body
mass (M) to give an M pyramid. From the M pyramid, left-align M class layers and
rotate 90◦ counter-clockwise (i to ii); flip the plot onto its vertical axis (ii to iii); express
both axes on the log scale, to linearize (iii to iv). Taken from Trebilco et al. (2013).

The distribution of individual body sizes, and therefore biomass, is determined by

various ecological and physiological rates, such as growth (both somatic and reproductive),

predation, ingestion and egestion, mortality, and metabolism, which act to regulate the

flow of energy through the food web (Sprules & Barth, 2016). Since physiological rates

and ecological interactions occur at the individual level and are related to body size as

36



power laws (Peters, 1983; Brown et al., 2004), the emergence of size spectra as power-law

distributions is theoretically well-grounded (Kerr & Dickie, 2001).

Changes to underlying ecological processes, or system perturbations, will cause shifts

in energy flow and therefore result in changes in the size spectrum, either as shifts in

its parameterisation or its functional form (e.g. curvature indicative of departure from

steady state). This makes the size spectrum a potentially powerful ecological metric

(Gómez-Canchong et al., 2013). For example, Duplisea and Kerr (1995) showed that

within a 22-year time series of size spectra of a demersal fish community, the year

with exceptionally strong curvature of the spectra (in logarithmic space) coincided with

a natural perturbation: an anomalously large biomass of squid. Changes in basal

productivity, which affects growth rates throughout the food web, have also been shown

to influence size spectra. Increasing oligotrophic conditions, determined by water phosphate

concentration, caused a steepening in the plankton size spectra exponents across North

American lakes (Sprules & Munawar, 1986). Similarly, Finlay et al. (2007) found

increased curvature when measuring the zooplankton size spectra in more productive

lake systems.

Fishing applies a notably size-selective pressure as direct mortality and biomass

removal of larger bodied individuals in aquatic systems. The use of size spectra as

an indicator has been well studied in this regard, showing a steepening with prolonged

fishing pressure (e.g. Blanchard et al., 2005; Daan et al., 2005; Yemane et al., 2008). This

is apparent even in areas where the magnitude of fishing pressure is relatively low (Dulvy

et al., 2004). Robinson et al. (2017) showed changes in size spectra exponents occur in

reef fish communities that are highly remote from fish markets and, as an ecosystem

metric, were more sensitive than measuring bulk community biomass. However coral

reef habitat degradation, which increases predation risk for small fish, results in a

shallowing of the spectra, opposite to the effect of fishing (Wilson et al., 2010). This

demonstrates that not all anthropogenic impacts will impart the same resultant change

on size structure, and makes teasing apart the effects of multiple perturbations challenging.

Other anthropogenic driven changes in size spectra have also been demonstrated empirically.

Yvon-Durocher et al. (2011) used mesocosm experiments to show the potential effects of
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global warming, with a 4◦c temperature increase resulting in a steepening of plankton

size spectra and an overall reduction in biomass.

Predicting the form of the size spectra under varying conditions allows empirical

estimates to be placed into the context of the underlying conditions of the system, a

powerful tool in terms of management. For example, Jennings and Blanchard (2004)

reconstructed the baseline size spectra of the North Sea based on metabolic theory and

compared it to the observed spectra, which had a fish community biomass reduced by 38%

compared to the calculated baseline, attributed to fishing. The mathematical simplicity

of size-based approaches and their well-defined relationships with biological processes has

culminated in a wealth of theoretical modelling that has rapidly increased in complexity

and scale over the past decade, with the size spectrum as the primary emergent property

(Guiet et al., 2016; Blanchard et al., 2017). This includes incorporation of complex

dynamics, such as seasonality (Datta & Blanchard, 2016), predicting the effects of various

system perturbations and system resilience (e.g. Rochet & Benoît, 2011; Blanchard et

al., 2011), and forecasting the large-scale ecosystem effects of climate change (Blanchard

et al., 2012; Woodworth-Jefcoats et al., 2013). For a review on theoretically modelling

size spectra see Blanchard et al. (2017).

3.2.2 Stable Isotopes in Food Webs

Following the conjecture of “you are what you eat (plus a few per mil)” (DeNiro &

Epstein, 1976), stable isotope analysis (SIA), particularly of carbon, nitrogen and sulfur

(δ13C, δ15N and δ34S respectively), has become a fundamental tool in trophic ecology

for elucidating diets (Parnell et al., 2010, 2013; Phillips et al., 2014), assigning trophic

positions and estimating food chain length (Vander Zanden, Shuter, et al., 1999; Vander Zanden,

Casselman, & Rasmussen, 1999a; D. M. Post, 2002), describing individual and population

level behaviours (Matthews & Mazumder, 2004; Araújo et al., 2007; Layman et al.,

2012), determining resource acquisition (Cherel et al., 2005) and quantifying energy

fluxes (Peterson & Fry, 1987; Hecky & Hesslein, 1995; Trueman et al., 2014; Grey,

2016), for reviews see Martínez del Rio et al. (2009) and Boecklen et al. (2011). The

premise is that as dietary material is assimilated into organismal tissues, those tissues
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incorporate and therefore equilibrate to the isotopic composition of the diet (you are

what you eat), offset by the tendency of preferential excretion of lighter elements during

physiological processes causing an enrichment of the heavier isotope (plus a few per

mil), termed the trophic discrimination factor (TDF). Therefore if the TDF is known

and different dietary (basal production) sources are isotopically distinct, then one can

infer information on the trophic ecology of the system in question.

Sources of variability in TDFs are numerous, yet often poorly resolved, and include

composition and quality of diet (protein content etc.); metabolic/physiological state;

species and tissue type effects on physiological routing; and abiotic environment (Caut

et al., 2009; K. W. McMahon et al., 2010; Bastos et al., 2017; Blanke et al., 2017; Britton

& Busst, 2018). While more sophisticated approaches are being developed to help predict

this variability in a modelling approach (Boecklen et al., 2011; Healy, Guillerme, et al.,

2017; Healy, Kelly, et al., 2017), point estimates or normally distributed TDFs are more

commonly utilised (D. M. Post, 2002; Phillips et al., 2014, but see Bastos et al., 2017).

Carbon is typically assumed to have a negligible TDF (Boecklen et al., 2011), with

empirical estimates typically on the order of 0.4-1%� (DeNiro & Epstein, 1978; D. M. Post,

2002; McCutchan et al., 2003), although values of up to 4%� have been recorded (Elsdon

et al., 2010; K. W. McMahon et al., 2010; Britton & Busst, 2018), making it useful in

discriminating between basal production sources fuelling food webs (D. M. Post, 2002;

R. Ramos & González-Solís, 2012). This is facilitated by physiological differences in

photosynthetic (and chemosynthetic) pathways, e.g. C3/C4 plants, creating disparate

δ13C values between different production sources (B. N. Smith & Epstein, 1971). Environmental

effects also cause large variation in basal δ13C values (along with other elements), which

can impart further separation between sources (R. Ramos & González-Solís, 2012).

In contrast to carbon, empirically estimated TDFs for nitrogen are high, typically on

the order of 3-3.4%�, although the variation around this can be large, with estimates

ranging from approximately 1 to 8%� (DeNiro & Epstein, 1981; D. M. Post, 2002;

McCutchan et al., 2003; Elsdon et al., 2010; Florin et al., 2011; Heady & Moore, 2013;

Blanke et al., 2017; Britton & Busst, 2018). Due to this high rate of fractionation

across trophic interactions, nitrogen is useful in determining food web structure and
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estimating trophic position (D. M. Post, 2002; Boecklen et al., 2011; Nielsen et al., 2018).

Similarly to carbon, sulfur is assumed to have a negligible TDF, although estimates of

approximately -3 to 4%� have been recorded (McCutchan et al., 2003; Florin et al.,

2011), and it is particularly useful at separating pelagic and benthic, and marine and

freshwater production due to varying nutrient sources (R. M. Connolly et al., 2004).

Another key, but often neglected, source of variability in isotopic composition is

the rate at which isotopes are incorporated into body tissues. The isotopic signature of

assimilated material fluctuates in natural systems due to changes in diet composition (e.g.

seasonal prey availability) and spatiotemporal changes in the isotopic composition of

basal production sources (e.g. periods or locations of nutrient upwelling) that determines

the isotopic signatures of the diet. Therefore the often implicit assumption that individuals

are in equilibrium with their diet (Parnell et al., 2010; Phillips et al., 2014) is likely

egregious and can lead to gross misinterpretations of data (O’Reilly et al., 2002).

Isotopes are incorporated into tissue through two process: catabolic turnover of

tissues and growth of new tissue mass (Fry & Arnold, 1982). The rate of incorporation

depends upon the tissue type in question, typically related to its metabolic activity /

protein turnover: blood plasma and liver > muscle and red blood cells > bone collagen

(Hobson & Clark, 1992; Martínez del Rio et al., 2009; Crowley et al., 2010; Boecklen

et al., 2011). Some tissues, such as bird feathers and fish otoliths, are metabolically

inert, therefore incorporate no new material post deposition and do not change in

isotopic composition over time (R. Ramos & González-Solís, 2012). Modelling isotopic

incorporation into tissues to determine turnover rates typically involves diet switch

experiments and the use of mass balanced box models (Martínez del Rio & Carleton,

2012). Typically, one compartment models are used, such that isotopes are incorporated

into the tissue of interest from a single source pool (e.g. Fry & Arnold, 1982; Carleton &

Martínez del Rio, 2005; Podlesak et al., 2005). However it is possible that this assumption

does not hold, with potentially multiple internal source pools might being utilised during

turnover, each with separate kinetics. Therefore use of multi-compartment box models

has been advocated (Cerling et al., 2007). However empirical support for the use of

one or multiple compartment models appears to depend upon the tissue being studied

40



(Carleton et al., 2008; Heady & Moore, 2013). Importantly, Cerling et al. (2007) showed

that tissue growth, if unaccounted for, causes over-estimation of turnover rates.

Recent meta-analyses have found that isotopic turnover rates broadly scale with body

size with an exponent of -0.19 and -0.22 (Thomas & Crowther, 2015 and Vander Zanden

et al., 2015 respectively), close to that predicted from metabolic theory (-0.25, Brown

et al., 2004), however variation around these allometric relationships is large. Further,

almost all estimates of isotopic turnover rates are determined experimentally, under

varying diet shift scenarios and environmental conditions. Due to limited testing it is

unclear whether such estimates reflect ‘realised’ turnover rates in the field, taking into

account factors such as in situ growth rate.

3.2.3 Aims

Size spectra and stable isotope analyses offer complementary approaches in exploring

energy flows through food webs: size spectra represent the emergent behaviour of size

based interactions and processes whereas stable isotopes can be used to infer the movement

of biomass through the food web. Currently, empirical studies typically measure across

and average over large scales, providing estimates of ecosystem steady-state conditions,

i.e. equilibrium solutions (e.g. Jennings, Warr, & Mackinson, 2002; Daan et al., 2005),

implying that the structuring within food webs is relatively fixed. However, ecological

dynamics do occur over smaller spatial and temporal scales compared to those of such

studies. For example, in temperate and polar climes, seasonality causes large periodicity

in planktonic production, such that inputs are pulsed rather than continuous (Trebilco

et al., 2013). Theory predicts that such behaviour should cause dynamic oscillations

within community size spectra (Datta & Blanchard, 2016), corroborated by limited

empirical results (Gaedke, 1992). As well as there being seasonal changes in plankton

isotope composition (Goering et al., 1990), pulsed plankton production causes temporal

variability in the proportion of basal sources fuelling in situ food webs and isotopic

fractionation processes (Savoye et al., 2003). This variability is expected to propagate

up the food chain in a lagged manner due to the rates at which stable isotopes are

incorporated into tissues (Thomas & Crowther, 2015; Vander Zanden et al., 2015; Datta
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& Blanchard, 2016).

Large scale determinations can fail to capture such dynamical behaviour, as these are

either averaged out as noise or missed completely, leading to differing inferences when

processes are measured at different scales (Davis & Pineda-Munoz, 2016). Recently, the

mismatch between ecological processes of interest and the spatial and temporal scales

over which data are collected has been highlighted as a limitation in modern ecology

(Chave, 2013; Estes et al., 2018). Smaller scale dynamics are potentially important for

accurately modelling whole ecosystem processes such as fisheries production, especially

in coastal areas that are poorly resolved (Woodworth-Jefcoats et al., 2013; Jennings &

Collingridge, 2015). A first step is to determine whether expected dynamics are suitably

captured at the community level by these commonly utilised ecological tools: size spectra

and SIA.

In this chapter, I utilise a highly dynamic estuarine environment to test whether

the strong seasonal behaviours exhibited within the fish community are captured by

size spectra and stable isotope analyses at a monthly temporal resolution - finer than

that which is typical of current ecological studies. Fish community size composition was

monitored over a seven year period, over which I show that the fish size spectra exhibit

consistent seasonal periodicity, matching well with the known influx of small juveniles

and emigration of larger individuals during the summer period. Physical samples for

SIA, representative of the fish community, were collected over 15 months spanning a

complete seasonal cycle, coupled with environmental data measured in situ to verify

expected seasonal trends. I demonstrate that production from the spring phytoplankton

bloom is rapidly incorporated into the fish community at a rate faster than otherwise

expected compared to predicted incorporation rates.
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3.3 Materials and Methods

3.3.1 Study Site & Data Acquisition

Study Site

Southampton Water is a partially mixed estuary located in southern England (50◦52′N,

01◦22′W, Fig. 3.2) that is 1.96km wide at its mouth and approximately 10km in length.

It has an artificially deepened channel for much of its length that is maintained by

periodic dredging. It is fed by three rivers, the Test, Itchen and Hamble, which have a

catchment area of around 1500km2. The estuary itself is hypernutrified with relatively

low turbidity: suspended particulates average 40mgl−1 at the mouth falling to 5-10mgl−1

at the head, making it a highly productive environment (Townend, 2008).

Figure 3.2: Map showing the location of Southampton Water, bounded by the black
box, within southern England (a), with an enlarged view of the estuary (b). Coloured
diamonds denote sampling locations of environmental data.

Fish Community Data

Due to the industrial and port activities within the estuary, the fish community of

Southampton Water are subject to continual ecological monitoring. Species abundance,

biomass and size-frequency data were collected monthly from a cooling water intake

system (work here using data spanning the period from July 2009 through to November

2016). As the data are commercially sensitive, the exact location is not given, however,
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briefly, the sampling methods are as follows. Water from the estuary is drawn in through

a large intake, where it passes through a series of filtrations. Very large items, typically

branches and large clusters of floating macroalgae, are removed via a coarse grid which

is periodically cleaned by a grab system. Rotating drum screens are then employed

to separate out weed, plastic and other debris, including fish and invertebrates, which

are directly returned to sea via a fish return system. Each month, the return system

is netted for a 24-hour period (one 18-hour overnight sample plus 6 hourly samples)

for environmental monitoring. Catches are sorted, identified to species level, counted

and length-frequency measurements recorded. Representative subsamples are taken for

highly abundant species. The results, coupled with the known abstraction rates, can be

used to estimate total catches of fish, crustaceans and other invertebrates

Physical samples were collected monthly from the same site from October 2015

through to January 2017 inclusive, providing a representative distribution of the total

catch. These were bagged, individual lengths and weights recorded and then frozen for

future analyses. Due to the scarcity of large individuals, these samples were supplemented

with samples from quarterly trawl surveys within Southampton Water. Each quarter

consisted of 6 hauls of approximately 10 minute duration using a 10m bottom otter

trawl with a cod end mesh size of 10mm. All trawls occurred within approximately 3km

of each other within Southampton Water, centred around the sampling site.

Plankton Community Data

Plankton samples were collected each month from October 2015 through to December

2016 inclusive. Pre-filtered water that excluded macroscopic organisms and debris from

the return system was passed through a plankton net with 100µmmesh size for approximately

30 minutes. The net was submerged in a tank to reduce flow through pressure and filtrate

volume recorded from outlet flow rates. Samples were condensed to 1 litre volumes,

preserved using Lugol’s iodine and stored in standard plankton bottles until further

analysis.

Plankton community composition was estimated from counts of broad taxonomic

identification of 5ml subsamples determined using a standard light microscope. In
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situ plankton clade concentrations were then estimated using total filtrate volume.

Subsamples were diluted when required with dilutions accounted for in concentration

estimates. The size distribution of the plankton was determined using a Beckman Coulter

LS130 particle analyser, with 6 replicates run per sample, which provides estimates as

equivalent spherical diameters of particle volumes. Samples were then filtered onto GF/F

filters (Whatman1825 - 047, 0.7µm effective mesh size) using a vacuum pump and then

frozen until stable isotope analyses were conducted.

Environmental Data

Nitrate concentration data over the period were sourced from the Environment Agency

via the water quality data archive (public sector information licensed under the Open

Government Licence v3.0), with sampling locations shown in Fig. 3.2b. Temperature,

chlorophyll-a and turbidity time series data were obtained from the Xylem data buoy,

located approximately at the Southampton Water Hound Buoy location (Fig. 3.2b). The

buoy was fitted with a YSI EX02 multi-parameter mounted with antifouling guards and

cleaning rotary wiper brushes on the sensors, providing almost continuous environmental

monitoring - data are measured every 15 minutes. Here, data was limited to the 11th

of December to the 31st of January inclusive. Prior to this period, the buoy was out

of operation for maintenance. The buoy sensors are maintained at a water depth of

between 1m and 2m. Data reported here are daily means (95 data points spanning from

00:00 through to 23:45) to average over tidal and diurnal induced fluctuations.

3.3.2 Stable Isotope Analyses

The bulk carbon, nitrogen and sulfur isotopic compositions were determined for monthly

samples representative of the fish community and the total plankton filtrate samples.

Additionally, various macroalgae, one common bryozoan species (Tricellaria sp.), and

leaf litter that were sampled during July 2016, upon which they were frozen, were also

analysed.

For the fish community, representative samples were determined using the total

species and size-frequency data. For each month, individuals were binned into 5mm
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length classes (size-frequency data multiplied up for those estimated from subsamples)

and then summed over the 7 year period. A random sample (n = 25) of the size

distribution was then drawn from these bins for each month with weighting as the

square root of the total in each bin, giving a representative, inter-annually averaged,

size distribution for each month. Separately, the frequency of occurrence of each species

and the total biomass of each species was calculated for each month summed over the

7 year period. A random sample (n = 25) was then drawn with each species given

weighting as the fourth root of the product of total frequency and the total biomass,

so as to avoid biasing towards either small, abundant species, or large but infrequent

species. The monthly random draws were then combined and individuals selected to

best match the size and species distributions for each month.

For stable isotope analyses (SIA), small plugs of muscle (circa 0.5cm3) were taken

from individual fish below the second dorsal fin, with skin removed, and stored in

Eppendorf tubes and refrozen. For small individuals, whole fillets were taken with skin,

spines and bones removed were possible to avoid isotopic disparity between tissue types.

All samples for SIA were freeze-dried at -55◦c for 24 hours (Heto Power dry LL3000, whole

samples in tin for macroalgae, bryozoan and leaf litter, whole filters for plankton filtrate)

then stored at room temperature in sealed containers. Dehydrated tissue samples were

homogenised using a pestle and mortar and 1.9mg +/- 0.1mg samples were measured

into tin boats using a Sartorius microbalance with a precision of 0.001mg. For plankton

filtrate, 3 small semicircular plugs of 12mm diameter were taken from the filters for

each month and wrapped into tin boats (area taken determined by a small pilot study

of varying plug sizes to determine optimal area). Samples were analysed at NERC

Life Sciences Mass Spectrometry Facility, SUERC, using an Elementar vario Pyrocube

(Hanau, Germany) coupled to an IsoPrime (now Elementar) VisION Mass Spectrometer

(Cheadle, UK). We assume that Lugol’s iodine does not influence the isotopic signatures

of plankton as the preservative does not include carbon, nitrogen or sulfur containing

compounds.

All isotopic values are reported relative to their respective international standards:

Pee Dee Belemnite (PBD) for carbon, atmospheric air for nitrogen and Cañon Diablo
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Troilite (CDT) for sulfur. Isotopic compositions are expressed as delta (δ) per mille (%�)

notation, given by:

δX =

[
Rsample
Rstandard

− 1

]
× 1000 (3.1)

where X is either 13C, 15N or 34S and R is the ratio of 13C:12C, 15N:14N or 34S:32S.

Equipment calibration and compensation for drift over time was corrected for by internal

standards run between every 10 samples, with analytical measurement errors of 0.1%�,

0.2%� and 0.6%� for δ13C, δ15N and δ34S respectively.

3.3.3 Estimation of Size Spectra

For each month, fish size-frequency data were pooled across species (multiplied up for

those estimated from subsampling). Data were limited to fish above 30mm in length due

to reduced catch efficiencies at smaller sizes. Individual measures of length were binned

into 5mm classes to match size-frequency data. Size spectra were then estimated for each

month following the maximum likelihood methods for binned data following Edwards et

al. (2017), with the xmin for each month limited to the most abundant size-class. Months

with fewer than 100 individuals in total were excluded. Since length data were used, this

produces individual length spectra. Typically, size spectra are reported using individual

biomass or volumes (Kerr & Dickie, 2001). Given that:

SL ≈ LβL (3.2)

where SL is the length spectra with exponent βL, and that the mass-length relationship

of fish is also a power law (Froese, 2006):

M = aLb (3.3)

it follows that the exponent for the individual biomass spectra, SM , can be approximated

by:

SM ≈Mβ ∝ L
βL
b (3.4)
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where exponents βL and b are from Eqs. 3.2 and 3.3 respectively. Previous studies have

estimated eq. 3.3 separately for individual species and applied corrections to length data

prior to estimating the size spectra. Here, we simply use the median value of b = 3.025,

which is an average taken from 1773 species (Froese, 2006), to approximate the individual

biomass spectra from length data following Eq. 3.4.

The size distribution for the plankton samples, estimated from the Beckman Coulter

LS130 particle analyser, is provided as proportions within predefined, logarithmically-scaled

size classes. Since information is not provided on individual particle size, maximum

likelihood methods cannot be directly applied. Instead, mean proportions for each size

class were calculated across replicates and normalised to the width of the respective

size-class. Data were limited to those size-classes with equivalent spherical diameter

intervals spanned ≥ 100µm, the plankton net mesh size. The size spectrum exponent, β,

was then estimated as the slope of the linear regression of logarithmically transformed

normalised mean proportion (equatable to normalised abundance) and the size-class

interval mid-point (Sprules & Barth, 2016; Edwards et al., 2017), with the xmin limited

to the size-interval with the highest abundance.

3.3.4 Statistical Analyses of Stable Isotope Data

Fish species were assigned to a functional group, either benthic, bentho-pelagic or pelagic,

based on prey consumed as described in Heessen et al. (2015). Further, statistical

analyses of the fish community were limited to those species with a minimum number of 7

individuals over the sampling period. Flounder, Platichthys flesus, were excluded as the

majority of individuals were young of the year (standard length < 80mm, n = 7 of 10)

occurring in March and April 2016, with juveniles being known to inhabitat the far upper

reaches of estuaries (salinities < 3, Kerstan, 1991) and therefore are exposed to very

different isotopic baselines. Thornback rays, Raja clavata (n = 9), were also excluded as

urea-based osmotic physiology results in differing muscle isotope fractionation pathways

(N. Hussey et al., 2012; Kim & Koch, 2012). The δ13C of all fish samples were lipid

corrected following Kiljunen et al. (2006) prior to statistical analyses.

Temporal trends and effects of individual traits on stable isotope composition were
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tested for using mixed effects models conducted separately for each element. Models

included size (as base 10 logarithmically transformed wet weight), functional group (FG)

and month as fixed effects with random intercept and individual slope with mass effects

by species. Model selection was conducted sequentially by analysis of variance between

models in a hierarchical manner (i.e. only nested model structures were compared). All

analyses were conducted in R 3.3.2 (R-Core-Team, 2016), utilising the package “lme4”

for mixed effects models (Bates et al., 2015).

3.4 Results

3.4.1 Fish Community Size Spectra

The time series of the monthly size spectra calculated for the fish community are shown

in Fig. 3.3. The time series shows strong seasonality, with a steepening of the spectra

in late spring to early summer, peaking typically in May, and minima during winter. A

second, smaller peak often occurred during the autumn. The variation exhibited by the

slope of the size spectra is large, ranging from 0.551 in December 2015 to 4.82 in May

2012. Size spectra exponents were not dependent on the value of xmin (F1,78 = 0.236, p

= 0.628).

3.4.2 Plankton Community Composition and Size Spectra

The phytoplankton community (size ≥ 100µm) was dominated throughout the year

by diatoms including Odontella, Coscinodiscus, Rhizosolenia and Thalissosira spp..

Calanoid copepods (and to a lesser extent, their nauplii larvae) numerically dominated

the zooplankton except for June 2016 were various meroplanktonic invertebrate larvae

showed increased abundance, particularly bivalves and cirripedia. Broad relative proportions

are shown in Fig. 3.4. Abundance estimates of sampled phytoplankton, zooplankton

and detritus are shown in Fig. 3.5. Phytoplankton abundances were low throughout

the winter months, but peaked in June 2016 before slowly decreasing to winter levels.

Zooplankton abundances showed a similar pattern to phytoplankton, with a large increase

concurrent with the peak in phytoplankton, but peaking in August before decreasing to
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Figure 3.3: Time series of the estimated monthly exponents of the individual size spectra,
corrected following Eq. 3.4 with 95% confidence intervals plotted as error bars. Period
spans from July 2009 to November 2016. Dashed black lines indicate months have been
excluded due to having less than 100 individuals (no data were available for March 2013).
Solid red lines mark the commencement of new years. Note that the y-axis is reversed
so that steeper size spectra are plotted higher.

winter levels. Levels of detritus were variable throughout the period, but proportionally

dominated samples in January and November 2016. Detritus included suspended sediment

grains, zooplankton moults, plant matter and fibres.

Individual plots of plankton size spectra are shown in Fig. 3.6. The results show

a strong steepening of the spectra during May 2016, coincident with the dominance of

phytoplankton within the sample. However most spectra show systematic curvature,

suggesting deviation from a power law distribution and therefore are not considered any

further during analyses.

3.4.3 Environmental Data

The nitrate concentration data are plotted in Fig. 3.7, and show high variability between

stations, particularly during the winter months. Nitrate concentrations in the winter
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Figure 3.4: Overview of the relative plankton community composition, excluding
detritus, from October 2015 through to December 2016.
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from October 2015 through to December 2016. No estimates are available for May 2016
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Figure 3.6: Individual plots of sampled plankton filtrate normalised mean proportion,
P (x), where x is the mid-point of the size class, against the equivalent spherical
diameter (µm). Note the axes are on logarithmic scales. Solid red line indicates linear
regression on logarithmically transformed data, with a minimum cut-off from the highest
abundance size-class, used to estimate the size spectra exponent β (b = β). However
strong, systematic curvature across multiple months indicates deviation from a power
law distribution.
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are relatively high, with a sharp decrease from May to June (change in mean from

approximately 145 to 26 µMl−1), after which there is a gradual increase through to

winter.
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Figure 3.7: Time series of water N-nitrate concentrations recorded at four sampling
stations (see Fig. 3.2b for station locations) acquired from the Environment Agency.
Only winter and summer months are monitored. Line shows mean concentration of the
four stations, and is dashed when spanning non-sampled months.

Temperature, chlorophyll-a and turbidity time series are shown in Figs. 3.8, 3.9 and

3.10 respectively. The temperature data show the typical seasonal cycle exhibited by

temperate estuaries, Fig. 3.8. For 2015-2016, the winter minimum occurred in February

and March, with temperatures as low as 8◦C. From April 2016, water temperature

rapidly increased, reaching approximately 20◦C by the end of July 2016, a peak which

is maintained until early September, after which temperatures rapidly decrease through

autumn to winter, reaching as low as 6◦C by January 2017. The data here indicate that

the winter of 2015-2016 was milder compared to that of 2016-2017.

The daily chlorophyll-a concentrations, a proxy for phytoplankton abundance, show

the seasonally variability in phytoplankton, Fig. 3.9. Winter concentrations are low,

53



typically 0.5µgl−1, with the bloom commencing in April and peaking in May after

increasing by 3 orders of magnitude to approximately 500µgl−1. Chlorophyll-a concentrations

then decrease through June and July, however a smaller second bloom occurs in August,

peaking at approximately 10µgl−1, after which concentrations decrease again through

autumn, reaching a minimum by December 2016. Superimposed upon this overall trend

is an approximate two week periodicity which is particularly apparent in the autumn.

The turbidity within Southampton Water was highly variable, and appears to show

periodicity throughout the year with peaks occurring approximately every two weeks,

Fig. 3.10. Although variability is high, a seasonal trend is apparent: the summer period

from May through to early August shows mean turbidity at approximately 0FNU with

the periodicity highly dampened. The spring, winter and autumn periods all show an

elevated mean turbidity compared to the summer of approximately 4FNU , with periods

of strong fluctuations in late March to early April and October through to the end of

November 2016.

3.4.4 Stable Isotope Analyses

Plankton

Time series of the isotopic composition of plankton filtrate, i.e. the combined phytoplankton,

zooplankton and detritus, are shown in Fig. 3.11. Across all three elements, January

2016 showed strong depletion in the heavier isotopes, particularly in sulfur. A similar, but

less pronounced, pattern can also been seen in November 2016. This coincides with high

proportional dominance of detritus within the samples, see Fig. 3.5. Excluding these two

months, variability in δ13C was relatively low with values typically of -24%�, except for a

peak in April of -22.7%� followed by strong depletion in May to -26.8%� when the sample

solely consisted of diatoms and their phytodetritus. More pronounced seasonal trends

can be seen in the δ15N values. Late winter to early spring (December 2015 through

to April 2016) showed elevated levels of between 9%� and 10.5%�. Following the large

phytoplankton bloom, see Figs. 3.4 and 3.9, a minimum is observed of 7.1%� after which

values slowly increase until August when zooplankton dominated the sample. Values

then decrease again in September, coinciding with the commencement of the smaller
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Figure 3.8: Time series of average daily water temperature recorded by the Xylem data
buoy from the 11th of December to the 31st of January inclusive. Ticks on the x-axis
show the commencement of individual months. Dashed grey lines indicate dates when
physical plankton samples were collected.
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Figure 3.9: Time series of average daily chlorophyll-a concentration estimated from water
fluorescence recorded by the Xylem data buoy from the 11th of December to the 31st of
January inclusive. Ticks on the x-axis show the commencement of individual months.
Dashed grey lines indicate dates when physical plankton samples were collected. Note
the y-axis is on a logarithmic scale.
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Figure 3.10: Time series of average daily water turbidity, given in Formazin
Nephelometric Units (FNU), estimated from the degree of scattering of emitted infrared
light, recorded by the Xylem data buoy from the 11th of December to the 31st of January
inclusive. Ticks on the x-axis show the commencement of individual months. Dashed
grey lines indicate dates when physical plankton samples were collected. For clarity,
three exceptionally high data points have been removed: 14th, 15th and 18th of August
2016 with values of 73.5, 66.9 and 88.7FNU respectively.
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second phytoplankton bloom, Fig. 3.9, to a second minimum of 7.1%� in October, after

which values increase going into winter. Sulfur isotopic composition appears to remain

quite stable throughout the year within the plankton community at approximately 16%�,

except for during the early summer where a minimum of 13.0%� occurs in June 2016,

shortly after the major phytoplankton bloom. Such trends should be interpreted with

caution however, as the filtrate composition was highly variable across sampled months.
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Figure 3.12: Bi-plots of the δ13C, δ15N and δ34S stable isotope composition of various
macroalgae, leaf litter, a bryozoan species and plankton filtrate sampled in July 2016.
Colours indicative of broad taxonomic clade (red = red algae, green = green algae, brown
= brown algae, yellow = bryozoa, dark blue = leaf litter and light blue = plankton
filtrate). Unique symbols within brown and red algae denote separate species. Samples
of Ulva lactuca and Tricellaria sp. were taken from the same macroalgae cluster and
colony respectively.

Bi-plots of the various macroalgal species, leaf litter and bryozoa sampled in July 2016

are shown in Fig. 3.12, along with the concurrently sampled plankton filtrate. Variability

across all three elements is high, with ranges from -33.6 to -11.4, 3.6 to 14.7 and 11.3 to
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Table 3.1: Major fish species (n > 7) by functional group included in the statistical
analyses of stable isotope composition of the Southampton Water fish community,
excluding flounder, Platichthys flesus, and thornback rays, Raja clavata. Complete list
of fish species can be found in the Appendices.

Benthic Bentho-Pelagic Pelagic
Common Name Species Common Name Species Common Name Species

Sand Goby Pomatoschistus minutus Pout Trisopterus luscus Sprat Sprattus sprattus
Rock Goby Gobius paganellus Whiting Merlangius merlangus Herring Clupea haregus
Black Goby Gobius niger Sea Bass Dicentrarchus labrax Transparent Goby Aphia minuta

Sole Solea solea Sand Smelt Atherina spp.
Tub Gurnard Chelidonichthys lucerna

21.7%� for δ13C, δ15N and δ34S respectively. Macroalgae span the range of δ13C values,

with U. lactuca being notably high (circa -12%�), brown macralgae clustered around

-19%� and red algal species spanning from -33.6 to -19.5%�. For δ15N, the majority of

samples had values around 8%�, although leaf litter was slightly lower at approximately

4%� and F. serratus appears anonymously high at 14.7%�. Leaf litter have notably low

δ34S values, and to a lesser extent, the plankton filtrate, compared to the macroalgae,

which, apart from F. serratus, are clustered around values of ∼ 21%�.

Fish Community Isotopic Ecology

The exclusion of transient species (those with fewer than 7 individuals over the whole

period), as well as flounder and thornback rays, reduced the total sample size from 450 to

379 and the number of species from 32 to 12. The species included in statistical analyses

are listed in table 3.1, whose individual carbon to nitrogen ratios ranged from 3.05 to

4.52, with a mean of 3.32 (± 0.18 standard deviation). Overall, the fish community

showed large variation in stable isotope composition (although less than that exhibited

by the productions sources) across all three elements, see Fig. 3.13, with ranges from

-21.3%� to -13.9%�, 10.4%� to 18.7%� and 9.8%� to 19.5%� for δ13C, δ15N and δ34S

respectively.

Model selection determined that several factors beyond random species effects explained

variation in individual stable isotope composition. Interactive effects and correlations

between random intercept and slope effects were excluded due to the high number a

parameters causing models to become degenerate. The optimal mixed effects models for
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Figure 3.13: Bi-plots of the δ13C, δ15N and δ34S stable isotope composition of individual
fish included in mixed effects models (n = 379), coloured by functional group.

each stable isotope element within the fish community were:

δ13C ∼ log10(Mass) + Month + (1 | Species) + (0 + log10(Mass) | Species)

δ15N ∼ log10(Mass) + Month + (1 | Species) + (0 + log10(Mass) | Species)

δ34S ∼ log10(Mass) + FG + (1 | Species) + (0 + log10(Mass) | Species)

(3.5)

For all three elements, there was a global change in delta values with increasing mass:

for δ13C and δ15N, an order of magnitude increase in mass resulted in an average increase

of 0.44%� and 0.45%� respectively, however for δ34S an order of magnitude increase in

mass caused a change of -0.48%�, see Fig. 3.14. Around these global averages were

random species effects with standard deviations of 0.37, 0.46 and 0.23 for δ13C, δ15N
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Figure 3.14: Plots of δ13C, δ15N and δ34S against the logarithmic (base 10) size of
individual fish included in mixed effects models (n = 379), coloured by functional group.
Solid black lines show global effect of size on respective element from optimal mixed
effects models described in Eqs. 3.5 with coefficients inset. Note that, for δ34S, the
global effect is referenced to the benthic functional group.

and δ34S respectively.

Significant temporal trends were observed in the δ13C and δ15N values of the fish

community, eqs. 3.5, which are shown in Fig. 3.15. For carbon, May was significantly

higher than the reference month of January (mean difference of 2.58%�), with June

and August also being significantly higher, although less pronounced (mean differences

of 0.59%� and 0.62%� respectively). For nitrogen, δ15N values showed a smoother

temporal trend, with higher levels in winter and significantly lower values through the

summer (May through to October inclusive, with a minimum in June of -1.30%� mean

difference). While there were no significant temporal trends in δ34S, it was the only

element which showed significant mean differences between functional groups: globally,

benthic individuals had an average δ34S of 14.6%� increasing significantly by 1.33%�

and 2.00%� for the bentho-pelagic and pelagic group respectively (p = 0.022 and p <
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Figure 3.15: Time series of δ13C and δ15N values of individual fish included in mixed
effects models (n = 379), coloured by functional group. Solid black lines and grey
diamonds show global effect of month on respective element from optimal mixed effects
models described in eqs. 3.5. Asterisks denote months that are significantly different
from the reference month, January (* = p < 0.05, ** = p < 0.01 and *** = p < 0.001).
Green vertical line demarcates the approximate position of the peak phytoplankton
bloom. Data are jittered along the x-axis for visual clarity.

0.001, see Fig. 3.13). The random species effects are shown in table 3.2, with remaining

residual standard deviation of 0.93, 0.76 and 1.25 for δ13C, δ15N and δ34S respectively.

3.5 Discussion

3.5.1 Seasonality in Size Spectra

The data presented here, which span over 7 seasonal cycles, exhibit consistent cyclical

patterns, of a rapid steepening of the fish size spectra from winter lows of β ≈ −1

to late spring / early summer highs of β ≈ −4. In all years except for 2013 (and,

to a lesser extent, 2010), a second smaller peak in the autumn is also apparent. This

pattern is almost certainly driven by the inshore migrations and spawning behaviours

of the dominant smaller-sized species within Southampton Water: sprat (Munk, 1991),
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Table 3.2: Table of the random effects of individual species (common name given, latin
names can be found in table 3.1) on the intercept, (1 | Species), and the slope with size,
(0 + log10(Mass) | Species) determined by the optimal mixed effects models in Eq. 3.5.

Fish Species δ13C δ15N δ34S
Intercept (%�) Slope Intercept (%�) Slope Intercept (%�) Slope

Black Goby -18.6 0.45 13.0 0.59 14.0 -0.50
Rock Goby -18.8 0.21 13.0 -0.11 16.1 -0.39
Sand Goby -18.1 0.26 14.1 0.65 14.0 -0.59
Sole -18.6 0.20 12.6 0.44 14.3 -0.50
Tub Gurnard -18.3 0.76 13.8 0.66 14.8 -0.52
Pout -18.1 0.36 14.7 0.29 14.9 -0.60
Sand Smelt -18.4 0.39 13.8 0.79 14.0 -0.63
Sea Bass -17.2 0.042 15.9 -0.017 14.3 -0.61
Whiting -18.6 0.64 14.0 0.70 15.3 -0.34
Herring -18.2 0.36 14.2 -0.096 14.6 -0.30
Sprat -18.9 1.09 12.8 0.30 14.6 -0.31
Transparent Goby -17.9 0.52 14.1 1.21 14.7 -0.48
Standard Deviation 0.52 0.37 0.92 0.46 0.66 0.23

sandsmelt (Henderson et al., 1984), transparent gobies (Heessen et al., 2015) and sand /

common gobies (Miller, 1975; Arruda et al., 1993); coupled with the movement of larger

fish out of the estuary during the warmer summer months (Claridge et al., 1986; Potter

et al., 1986). Previous studies exploring the seasonality of size spectra have mostly

focused on the small end of the particle size distribution, notably the phytoplankton and

zooplankton compartments (Bailey-Watts, 1986; Villate, 1991; Gaedke, 1992; Lam-Hoai

et al., 2006; Zhou et al., 2009), with the typical pattern being of dominance of smaller

body sizes in the spring and summer bloom leading to a steepening of the spectra

compared to winter distributions. However, comparatively, the changes exhibited in

the fish spectra here are much more stark, for example, Gaedke (1992) noted a decrease

in the plankton size spectra of only approximately 0.3 from spring to autumn in large

temperate lake system.

To the best of my knowledge, the only other study exploring the seasonal trend

in size spectra for a fish community was by McGarvey and Kirk (2018), although

their study included macroinvertebrates and was limited to only four temporal samples.

Comparatively, they also noted much smaller changes in the size spectra compared to

here, with β ranging from -1.81 in May to -1.65 in October. Other temporal studies

of fish size spectra study more long term, inter-annual trends (Rice & Gislason, 1996;

Jennings, Greenstreet, et al., 2002; Nicholson & Jennings, 2004). It is even suggested

that size spectra are relatively insensitive at detecting more short term responses in fish
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communities to perturbations (Nicholson & Jennings, 2004). While it is expected that

seasonal oscillations in size spectra are dampened towards the larger body sizes (Guiet

et al., 2016), estuaries are highly productive environments that are key nursery grounds

for many fish and invertebrate species (Beck et al., 2001), and therefore some of the most

dynamic habitats in terms of community structure and composition. It is not surprising

therefore that the seasonality is so strongly expressed in the size spectra here.

3.5.2 SIA and Incorporation of Production

In general, sulfur SIA showed results as expected. Sulfur present in the water column

that is incorporated into phytoplankton production is typically in the form of sulfates

and is isotopically enriched in heavy sulfur (approximately 20-21%�) whereas benthic

production utilises bacterially produced sulfides that have lower δ34S values (approximately

-24%�) due to high fractionation during reduction processes (Rees et al., 1978; Fry,

2002; R. M. Connolly et al., 2004). This was apparent in the plankton filtrate isotope

composition, were months with high amounts of detrital inputs, and assumably associated

sedimentary bacteria, caused a large reduction in δ34S, see Fig. 3.11. Despite limited

to negligible fractionation of sulfur occurring during photosynthetic fixation (Fogel &

Cifuentes, 1993), δ34S values for plankton filtrate were lower than 20%� throughout the

year even when proportional detritus was low: in May 2016, when the filtrate consisted

only of diatoms, the δ34S value was still only ∼ 15%�. This suggests bacterially processed

benthic sulfides partially contribute to pelagic production within the estuary, likely as

nutrient inputs through resuspension of sediments into the water column which occurs

throughout the year as inferred by water turbidity (Fig. 3.10). Interestingly, this sulfur

source does not appear to be incorporated into the macroalgae, which also obtain their

nutrients directly from the water column. Macroalgae δ34S values clustered around

21%� (Fig. 3.12), matching closely to the expected marine sulfate value that dominates

estuarine water (Rees et al., 1978; Fry, 2002).

Overall, the fish community δ34S values reflected a similar pattern to the plankton,

with almost all values below 18%� suggesting that bacterially derived sulphides and their

production contribute to the entirety of the Southampton Water food web. Assuming
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that macroalgae δ34S values have limited temporal variation, their relatively high levels

compared to the overall fish community excludes them as a major contributor of production

to higher trophic levels. Similarly, low δ34S values of leaf litter suggest propagation

of terrestrial detritus through the food web is minimal, although sampling of these

production sources was limited. Fish functional groups were separated by their average

δ34S values, with pelagic individuals having the highest values and benthic individuals

the lowest, although individual variation was high. This is expected, as the benthic

food chain incorporates invertebrate deposit feeders that directly process sediments.

However, the comparatively low disparity between functional groups (∼ 2%�) suggests

only a small difference in the overall importance of bacterial production. The absence

of any temporal trend in global δ34S values indicates that the importance of bacterially

sourced production does not change seasonally. It is also further evidence for the limited

contribution of macroalgal and terrestrial production inputs that, like phytoplankton, are

seasonally pulsed: the autumnal macroalgal die-off and degradation after which it can be

utilised in the benthic pathway and high rates of riverine and therefore terrestrial detrital

inputs during the winter. This has been noted elsewhere, for example, Garcia et al. (2017)

found an apparent lack of assimilation of macroalgal production into an omnivorous fish

despite the macroalgae dominating in terms of biomass within the studied lagoonal

system. With regard to increasing body size, δ34S showed a decreasing trend, implying

an overall increasing importance of pelagic predation at larger body sizes.

Neither carbon nor nitrogen isotopes differentiated between functional groups, however

both showed significant temporal trends. In May, linear mixed effects models indicated

a significant increase in δ13C, although this had reduced by June. Concurrently in May,

a significant and prolonged decrease in δ15N was seen that lasted until October. The

commencement of these trends coincided with the late spring phytoplankton bloom,

which peaked in May, see Fig. 3.9. It has been shown that the δ13C of phytoplankton

depends upon the in situ dissolved inorganic carbon (DIC) utilised for fixation, with

fractionation rates reducing and therefore phytoplankton δ13C increasing under low,

limiting concentrations of DIC (Laws et al., 1995; Riebesell et al., 2000). These conditions

are known to occur during peak spring phytoplankton blooms with increases in δ13C
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values recorded in natural systems (C. Ramos et al., 2003; Savoye et al., 2003), and

would explain the trend in the fish community δ13C seen here, with the peak δ13C

restricted to May 2016 when the spring bloom occurred.

Changes in phytoplankton δ15N are also known to occur under bloom conditions,

with increases associated with depleting nitrate availability due to reduced fractionation

(Goering et al., 1990; Nakatsuka et al., 1992; York et al., 2007). However this only

occurs at very low nitrate concentrations (<25µMl−1, Goering et al., 1990; Nakatsuka

et al., 1992), whereas Southampton Water is hypernutrified (Townend, 2008). Here,

the minimum nitrate concentration was recorded a month after the spring bloom in

June 2016, with concentrations only falling to 26µMl−1, Fig. 3.7. Since the nitrate

minimum occurred post bloom, during which concentrations remained relatively high,

phytoplankton appear not to be nitrogen limited within Southampton Water. Changes

in δ15N values therefore are unlikely to be associated with changes in fractionation

rates as they were with δ13C. The spring bloom would have provided a large flux of

new production into Southampton Water, which eventually becomes remineralised. The

remineralisation process causes an increase in δ15N values in particulate organic nitrogen

(York et al., 2007). It is likely that the trends in δ15N in the fish community seen here is

a reflection of the new phytoplankton production fuelling the food web from late spring

through to autumn, causing the protracted period of reduced δ15N values. Once this

new production is depleted, there is reliance on remineralised production over the winter

and the associated increase in δ15N values.

The tight coupling exhibited between the phytoplankton bloom and changes in fish

community isotopic composition suggests that the phytoplankton production was rapidly

incorporated into fish biomass, on the order of 4 weeks or fewer (the May 2016 sample

was taken approximately 2 weeks after the spring bloom). This conflicts with previous

research that suggests seasonal trends in production sources are essentially unobservable

within fish communities (Jennings et al., 2008). By inserting the average body mass

of sampled fish and the typical water temperature for May (0.61g and 11◦c, see Fig.

3.8, respectively) into the tissue turnover rate equations estimated by Thomas and

Crowther (2015), the expected half life is on the order of 29 and 30 days for δ13C
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and δ15N respectively (16 days using the estimates from Vander Zanden et al., 2015).

The validity of these estimates were tested by inserting them into a toy model of carbon

isotope incorporation across two trophic levels: phytoplankton to zooplankton to fish,

under the assumption that Southampton Water is DIC limited and therefore the δ13C

of phytoplankton is a function of their density. The model output is shown in Fig. 3.16,

see Appendices for model summary and parameterisation.
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Figure 3.16: Time series of modelled δ13C of phytoplankton, zooplankton and
zooplanktivorous fish. For fish, the four combinations of 29 (LT - dashed lines, estimated
from (Thomas & Crowther, 2015)) and 16 isotopic half lives (HT - solid lines, estimated
from (Vander Zanden et al., 2015)) coupled with no growth (NG) and high growth rate
(G, λg = 0.05d−1). Dashed grey lines indicate sampling.

Isotope incorporation depends upon both catabolic turnover of tissues, as well as

the formation of new biomass - somatic growth, which acts to dilute the current tissue

mass with assimilated material (Fry & Arnold, 1982). Qualitatively, the trend seen in

Fig. 3.15 is best described when fish growth rates are high, at which point the difference
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between the two turnover rates is limited. When the model fish are not growing, then the

magnitude of the increase in δ13C is reduced and the peak is more drawn out, contrasting

with the sharp, sudden peak seen in the data. This emphasises the importance in

recognising growth in isotope dynamics, especially when this coincides with rapid changes

in basal isotopic composition (Jardine et al., 2014). Asymmetric seasonal growth patterns

are well described in temperate fish, particularly juveniles (Pannella, 1971; Mann, 1971;

Bacon et al., 2005), with dynamics having been incorporated into the von Bertalanffy

growth equation to account for such variation (Pitcher & MacDonald, 1973; Cloern &

Nichols, 1978). Peak growth rates typically occur during the late spring and summer

period when production is high, with reduced or even cessation of growth during the

winter (Bacon et al., 2005). It is important to note however that somatic growth can

be reduced during spawning periods as assimilated material is preferentially shuttled to

gamete production (Miller, 1975; Heessen et al., 2015), even when food intake is high.

Nevertheless, high somatic growth rates explain the apparent rapid incorporation of the

phytoplankton bloom production within the fish community via the zooplankton.

3.5.3 Implications

The results presented here suggest that size spectra and stable isotopes are sensitive to

within-system ecological dynamics and therefore can be utilised at finer temporal scales

in future research. Size spectra within the fish community exhibited large fluctuations

between months with consistent seasonal patterns over 7 years of data, in keeping with

the movements of fish into and out of the estuary. The dynamics within the size

spectra may therefore provide a useful indicator of environmental conditions or shifts in

community composition, especially when adult movements and juvenile influxes act in

tandem to steepen the spectra. For example, shifts in the timing juvenile influxes, which

are sensitive to water temperatures, would be reflected in timing of the early summer peak

of the size spectra. Additionally, recent developments in maximum likelihood methods,

which do not require averaging into size classes, are likely to facilitate higher resolution

temporal sampling regimes through their ability to parameterise power law distributions

at reduced sample sizes compared to other methods (Edwards et al., 2017).
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Compared to Southampton Water, which functions as an important nursery ground,

other fish communities may be less seasonally variable and therefore exhibit relatively

dampened size spectra dynamics. Nevertheless, the strong seasonal differences observed

advocate exploring these dynamics in other systems. Long term studies on fish size

spectra have estimated a slow continual increase in the steady state size spectrum

exponent of fish communities at the inter-annual scale (Rice & Gislason, 1996; Jennings,

Greenstreet, et al., 2002; Blanchard et al., 2005). How this change is manifested remains

an open question, for example, it may be an average increase in the size spectrum across

the whole year or a larger but seasonally periodic increase. Knowledge of the dynamics in

the size spectra at the seasonal rather than annual scale will help improve understanding

of the functioning of these ecosystems and therefore fisheries management.

Although various basal production sources are available to the food web within

Southampton Water, SIA, particularly δ34S, revealed that pelagic phytoplankton was

the dominant source, although some benthic bacterial production is also incorporated

steadily throughout the year. Interestingly, macrophytes and terrestrial inputs, which

show strong seasonality, did not appear to be incorporated into the food web in any

appreciable amount. Monthly sampling of SIA also revealed the dynamics of phytoplankton

production through the food web, with new production being utilised for approximately

6 months after the commencement of the spring bloom. Knowledge of such trophic

behaviour is important when modelling ecosystem processes such as nutrient cycling

and carbon sequestration, which are poorly resolved in coastal systems (Jennings &

Collingridge, 2015).

For studies utilising SIA, either equilibrium with the in situ diet or slow tissue

turnover is assumed in order to, for example, elucidate information on diet (Parnell

et al., 2010), categorise niches or traits (e.g. Wood et al., 2017; Rader et al., 2017)

and retrospectively geolocate animals (R. Ramos & González-Solís, 2012). However

results here indicate that this assumption is invalid in a dynamic food web, where

pulsed production sources appear to be rapidly incorporated at higher trophic levels,

contrary to previous research (Jennings et al., 2008). Such assumptions have come

under increasing scrutiny recently, as the number of studies utilising SIA grows rapidly.
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For example, Gorokhova (2018) showed experimentally that when individuals are in

equilibrium with a fixed diet, physiological state influences TDF values and therefore can

influence interpretation of data. On the other hand, the rapid incorporation suggests

SIA are suitable for quantifying dynamic energy flows through food webs and, under

suitable sampling regimes, can help elucidate ecosystem properties at reduced temporal

scales.
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4 | Quantifying Energy Fluxes

within Southampton Water

4.1 Abstract

Knowledge on the trophic structure and biomass transfer in ecosystems is

important for the estimation of ecosystem services such as fish production.

However current ecosystem models assume steady-state conditions and are

often parameterised from studies utilising only single time point sampling.

It is currently unknown whether or not such approaches are suitable, as

the temporal dynamics of in situ trophic structure and biomass transfer

are currently poorly resolved. To address this, I quantified the seasonal

variability in the realised predator-prey mass ratios (PPMR) and apparent

trophic transfer efficiency (TE) utilising stable isotope methods in a highly

dynamic estuarine fish community. I show that both the PPMR and TE

vary over several orders of magnitude between summer and winter, which

is associated with changes in size structure due to known size-segregated

movements of individuals and likely predator foraging mode. Since ecosystems

may rarely be considered as energetically closed, this research suggests that

empirical measures of TE do not conceptually reflect the theoretical TE as

used in models, but encompasses size-dependent rates of system biomass

exchange. The seasonal trends observed in PPMR and TE imply that when

such metrics are only single point estimates, they may poorly reflect average

system behaviour, and therefore should be used with caution in ecosystem
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models.

4.2 Introduction

The structure of trophic food webs are shaped by the flow of biomass through biological

communities, and therefore ultimately depend upon the interactions between predators

and their prey. Determining general patterns of interactions and energy flows has been a

key goal of ecology since its emergence as a scientific field (Elton, 1927; Lindeman, 1942).

Individual body size, which determines many biological traits (Brown et al., 2004; Sibly

et al., 2012), limits the range of predator-prey interactions that can occur. Increasingly

small prey leads to a decreasing rate of capture success for ever more nutrient limited

gains. Likewise, predators become physically constrained in utilising increasingly larger

prey, leading to a limited range of viable predator to prey mass ratios (PPMR) (Brose,

2010; Nakazawa, 2017). The energy flow between these size constrained predator-prey

interactions can be quantified by the assimilated biomass that becomes available to the

rest of the food web relative to the biomass acquired by the predator from its prey, the

trophic transfer efficiency (TE) (Andersen et al., 2009). These processes determine the

size spectra of the community (Kerr & Dickie, 2001) and therefore measuring PPMRs and

TEs is key for modelling and understanding other ecosystem processes. For example,

ecosystem rates of nutrient uptake are hypothesised to be determined by the vertical

diversity of food webs, which is a function of the community PPMR (Wang & Brose,

2018), whereas both are required in models for predicting fisheries production (Jennings

& Collingridge, 2015).

4.2.1 Predator-Prey Mass Ratios

As predator-prey interactions occur at the individual level, empirical estimates of PPMR

are frequently measured from direct observation of these interactions, typically via

stomach content analyses (Brose et al., 2005; Barnes et al., 2010; Nakazawa, 2017).

However, due to varying data quality and study designs, various forms of PPMR have

been quantified, such as species-based averages (e.g. Brose et al., 2006; Gaeta et al.,

2018) versus individual-based averages (Nakazawa et al., 2011; Nakazawa, 2017), which
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can complicate interpretations. For example, species-based PPMRs are typically one

order of magnitude lower compared to individual PPMRs, although the bias is data

dependent (Woodward & Warren, 2007; Nakazawa et al., 2011), and these two forms

appear to co-vary with different factors. Meta-analyses of stomach content data show

individual PPMRs are dependent upon size but invariant with environment (Barnes et

al., 2010) whereas species based PPMRs tend to vary with ecosystem and prey type

(Brose et al., 2006). Current consensus is that, particularly in size-structured systems,

species-based PPMRs should be used with caution as they average over size effects that

are key at the individual level and therefore may not reflect the actual in situ feeding

relationships (Guiet et al., 2016; Nakazawa, 2017).

Empirical estimates of PPMRs capture the actual predator-prey interactions, the

realised PPMR, however the original conception of the PPMR was to represent the

prey preference of predators for numerical modelling of food webs, the preferred PPMR

(Nakazawa, 2017). These conceptual differences are important as realised PPMRs reflect

the preferred PPMR compounded by the probability distribution of in situ prey sizes, the

size spectrum. Tsai et al. (2016) showed that the apparent size dependency in realised

individual PPMRs (Barnes et al., 2010) is a result of the prey distribution, with preferred

PPMRs being size invariant once feeding mode (pelagic or benthic) was accounted for,

a key finding for modelling approaches that typically assume size invariance in preferred

PPMR (e.g. Blanchard et al., 2009).

Rather than utilising stomach contents, individual realised PPMRs can be estimated

as a community average using SIA (Jennings, Warr, & Mackinson, 2002; Jennings et

al., 2008). Nitrogen exhibits a relatively high trophic discrimination factor, typically of

3-3.4%� (D. M. Post, 2002; McCutchan et al., 2003; Nielsen et al., 2018). Therefore

the PPMR can be estimated from the slope of the relationship between δ15N and

logarithmically transformed body size and the known (or assumed) fractionation of δ15N

(Jennings, Warr, & Mackinson, 2002):

PPMR = LB
TDFN
b (4.1)

where b is the linear slope between δ15N and logarithmically transformed mass with base
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LB and TDFN is the trophic discrimination factor of δ15N.

Empirical estimates of PPMR using stomach contents vary widely in aquatic systems

from approximately 1 to 1,000,000 (Barnes et al., 2010; Naisbit et al., 2011). Community

estimates of PPMR using stable isotopes are less common but also appear to vary widely,

from 109 in the North Sea fish community (Jennings, Warr, & Mackinson, 2002) to

244000 for nekton within the pelagic sub-tropical Pacific (Hunt et al., 2015). While

many sources of variation in PPMRs have been identified, including locality, phylogeny

and feeding mode (Barnes et al., 2010; Naisbit et al., 2011; Tsai et al., 2016), the degree

to which PPMR varies temporally within systems has, as of yet, not been thoroughly

explored (Reum & Hunsicker, 2012).

4.2.2 Trophic Transfer Efficiencies

Estimating the efficiency at which production or biomass is transferred through a food

web has historically relied upon a mass-balance modelling approach (Pauly & Christensen,

1995; Rousseau et al., 2000; Tanaka & Mano, 2012), with the typical expectation that

the TE per trophic level should be approximately 0.1 (or 10%). Because size spectra are

determined by the community PPMR and TE (Kerr & Dickie, 2001), one can use this

relationship as another method to directly estimate the TE of a size-structured system:

TE = PPMRβ+ 3
4 (4.2)

where β is the size spectrum exponent, with 3
4 being the assumed scaling of consumption

driven by metabolic rate (Andersen et al., 2009; Barnes et al., 2010; Trebilco et al.,

2013). Whilst applying eq. 4.2, many authors have assumed a size spectra exponent β

(Barnes et al., 2010; Hunt et al., 2015), which may not accurately represent the system of

interest. More recently, other authors have suggested that the ratio of biomass between

predators and prey can be used as a proxy for TE (García-Comas et al., 2016; Ersoy

et al., 2017). However, since the predator-prey biomass ratio is an expression of the

biomass spectrum, which has an exponent of β + 1, there is an implicit assumption of a

fixed PPMR (unless dynamics in PPMR are measured and accounted for). Overall, few

studies have measured both PPMR and the size spectrum in situ in order to estimate
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TEs (but see Jennings, Warr, & Mackinson, 2002), and therefore the in situ variability

in TE, like PPMR, remains poorly resolved.

4.2.3 Model System

Southampton Water provides an excellent model system in order to test for the temporal

variability in realised PPMRs and apparent TEs. As shown in Chapter 3, the size

spectrum of the estuarine fish community exhibits strong seasonal dynamics, with stark

steepening in the summer associated with an influx of juveniles and the emigration of

larger individuals out of the estuary. These movements correspond with the commencement

of the phytoplankton bloom, which provides a large pulse of new production which is

rapidly incorporated into the community. This production is then remineralised during

the winter to fuel both the benthic and pelagic pathways within the estuary. Given eq.

4.2, it follows that seasonal variation must occur within the realised PPMR and / or

apparent TE within Southampton Water in order to account for the observed seasonal

changes in the size spectrum (assuming a closed system).

4.2.4 Aims

Determining and quantifying ecosystem energy fluxes is crucial for modelling fisheries

production and other ecosystem functions (e.g. Blanchard et al., 2012; Jennings &

Collingridge, 2015). However such models often assume static behaviour in trophic

interactions and transfer efficiencies. Further, these models are often parameterised using

data from studies that utilise single temporal point samples but covering a large spatial

area. The implicit assumption therefore is that spatial variability is very much larger

than temporal variability, however, to date, this assumption has not been thoroughly

tested. The purpose of this study is thus to quantify the effects of known, size-segregated

movement patterns on the realised PPMR and the apparent TE within Southampton

Water. If these two ecosystem metrics exhibit seasonal dynamics then this has implications

not only for studies utilising only a single time point sample, but also other systems were

movement patterns are poorly constrained.

I show that the community PPMR does exhibit strong seasonality, covering the range
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of values estimated across different marine systems. Coupling the PPMR with the known

size structure, I demonstrate that the apparent trophic transfer efficiency also exhibits

strong seasonality, implying temporally variable energy fluxes within SouthamptonWater.

The work presented in this chapter highlights empirically the importance of temporal

variability in these two metrics, rather than just spatial variability. Temporal dynamics,

particularly of fish movements, should therefore be considered when estimating energy

fluxes and determining ecosystem structure and function (Barneche & Allen, 2018).

4.3 Materials and Methods

For details on sample collection and processing see section 3.3. All individuals sampled

for stable isotope analyses are included except for flounder, Platichthys flesus, and

European eel, Anguilla anguilla, due to their inhabiting of fresh water (Kerstan, 1991;

Henderson, 2014; Heessen et al., 2015), giving a total of n = 438.

PPMRs were estimated, following eq. 4.1, separately for the benthic functional group

and combined pelagic and bentho-pelagic feeding individuals. The parameter b was

determined from the slope of ordinary least squares linear regression of individual δ15N

against logarithmically transformed body mass (Lb = 10). The mean TDFN was assumed

to be 3.2%�. Error was incorporated into the PPMR estimates by assuming b and TDFN

are normally distributed variables, were the standard deviation of b was taken as the

standard error from the linear regression. For TDFN , a standard deviation of 0.2%�

was assumed, giving 95% limits of approximately 2.8-3.6%�, which broadly encompasses

most empirical estimates of TDFN (DeNiro & Epstein, 1981; D. M. Post, 2002, see

section 3.2.2). Since Lb is fixed (in this study at 10), PPMR is a function of the ratio

of TDFN/b. Analytically solving for the probability distribution of ratios of normal

variables is non-trivial (Marsaglia, 1965; Hinkley, 1969), therefore a quasi Monte Carlo

approach was utilised. Samples were drawn (n = 10000) for TDFN and b giving estimates

of their ratio. When b approaches zero, a singularity is reached causing the magnitude

of the ratio to rapidly approach ∞. Therefore, the ratio distribution was taken as the

99% confidence intervals of the samples to exclude such erroneous estimates, providing

a sample of estimated PPMRs. Desired confidence intervals were then calculated by
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numerically integrating along kernel density (n=4096) of logarithmically transformed,

estimated PPMRs and then back calculated. As the ratio distribution was unimodal

and asymmetric, the median PPMR was taken as the estimate of central tendency.

In situ measures of PPMR (and therefore TE) using δ15N are dependent upon

the assumed TDFN , as biomass moves from one trophic level to the next. Here, I

assume a normally distributed TDFN that is additive, i.e. is independent of the trophic

level of the predator and the isotopic composition of its prey. Recently, N. E. Hussey

et al. (2014) suggested that this simple additive approach inadequately describes the

enrichment process and that using a TDFN that scales with trophic level should be used

instead. This scaled approach reduces estimated community PPMR values, increases

the assumed trophic level at size and increases estimated food chain length (Reum et

al., 2015; Ohshimo et al., 2016). Reum et al. (2015) also noted that the scaled approach

reduces apparent spatial variability observed in estimated PPMRs.

N. E. Hussey et al. (2014) drew their inference from relatively limited experiments

whereby dietary δ15N was varied beyond that reflecting natural diet compositions (and

therefore naturally observed physiological routing processes). Additionally, the scaled

approach implies that the TDF is directly affected by prey δ15N values (as this is used

to estimate trophic level). While variations in TDFs have been noted between trophic

levels, this is typically due to the quality of diet, and not the dietary δ15N value per se

(McCutchan et al., 2003; K. W. McMahon et al., 2015). The implication of the scaled

approach is that changes in dietary δ15N values not due to changes in composition, e.g.

the seasonal recycling of pelagic production as shown in Chapter 3, would also impart

changes to the TDF. The scaling approach is thereby mechanistically flawed, making the

applicability of TDFN scaling to ecological data questionable. Further, in testing this

approach, Ohshimo et al. (2016) found little difference in estimated PPMRs between

the additive and scaled approaches, given the confidence intervals around the estimates.

Therefore I have confidence that a simple, normally distributed TDF is suitable for

PPMR estimation.

PPMRs were estimated for the fish community over the whole sampling period as well

as for each bi-monthly period. To test for significant temporal differences in seasonal
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PPMR (bi-monthly periods), pairwise comparisons were conducted on the regression

slopes of δ15N and logarithmically transformed mass, since theTDFN distribution was

assumed to be fixed. The Z-statistic was calculated as:

Z =
b1 − b2√

SEb1
2 + SEb2

2
(4.3)

where b1 and b2 are the two regression slopes with respective SEb1 and SEb2 standard

errors (J. Cohen et al., 2013).

If the PPMR and the size spectra exponents are known then the TE can be estimated

following eq. 4.2. For each bi-monthly period and across the whole period, the size

spectra exponents were estimated for the fish community following the methods described

in section 3.3 separately for bentho-pelagic and pelagic feeding individuals and the

benthic functional group. As fish community data was not available for December 2016

and January 2017, a size spectrum, and therefore a TE, could not be estimated for this

period. Limits for TE were estimated by directly inserting the 75% confidence intervals

for PPMRs and the 95% confidence intervals for the size spectra into eq. 4.2. All analyses

were conducted in R 3.3.2 (R-Core-Team, 2016).

4.4 Results

Over the whole sampling period, the grouped community of pelagic and bentho-pelagic

feeding individuals showed a significant linear increase in δ15N with log body size (b

= 0.926, F1,322 = 178.3, p < 0.001) whereas the benthic functional group showed no

significant trend (F1,102 = 0.187, p = 0.667), see Fig. 4.1. Following eq. 4.1, the

pelagic and bentho-pelagic community have an estimated PPMR of 2890 (95% confidence

interval of 534 to 15500). The lack of a significant trend in the benthic group suggests

that there is no apparent change in trophic level with body size within these fishes.

The size spectrum exponent for the pelagic and bentho-pelagic individuals over the

total period was β = −1.31 (-1.29 to -1.33 confidence intervals at 95%) calculated from

7459 individuals. Combining the estimated PPMR and size spectrum as in eq. 4.2 yields

a TE of 0.012 (ranging from 0.0056 to 0.023), or 1.2%. For the benthic community, the
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spectrum was steeper at β = −1.68 (-1.62 to -1.74 confidence intervals at 95%) calculated

from 2257 individuals. Since there is no estimate of PPMR, a TE cannot be estimated

for this group.
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Figure 4.1: Plot of δ15N against logarithmically transformed (base 10) individual mass.
There was no significant linear trend within the benthic functional group (broken red
line), whereas for bentho-pelagic and pelagic individuals combined δ15N significantly
increased linearly with logarithmic mass (solid blue line) - model parameters inset with
asterisks denoting significance (* = p < 0.05, ** = p < 0.01 and *** = p < 0.001) and
standard error in parentheses for slope. Median PPMR calculated following eq. 4.1,
with 95% confidence intervals given in parentheses.

The bi-monthly plots of δ15N with body size for pelagic and bentho-pelagic feeding

individuals and the benthic functional group are shown in Figs. 4.2 and 4.3 respectively.

For pelagic and bentho-pelagic feeders, all periods showed a significant positive regression

slope, implying median PPMRs ranging from 304 in April-May 2016 to 200000 in

February-March 2016. For the benthic functional group, no period showed a significant

trend in δ15N with body size. Pairwise comparisons of the regression slopes for individual

periods are given in table 4.1. Only the periods June-July 2016 and and October-November
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Table 4.1: Pairwise matrix of probabilities of mean slopes from regressions of δ15N
against logarithmically transformed (base 10) individual mass of bentho-pelagic and
pelagic individuals of bi-monthly periods being the same, determined by Z-tests, eq.
4.3. Significantly different periods (p < 0.05) highlighted in grey. Letters correspond to
periods as those inset in Figs. 4.2 and 4.3.

a b c d e f g
b 0.882
c 0.735 0.600
d 0.088 0.078 0.058
e 0.042 0.018 0.027 0.707
f 0.851 0.729 0.891 0.077 0.043
g 0.077 0.044 0.048 0.613 0.827 0.072
h 0.776 0.670 0.994 0.085 0.063 0.909 0.094

2016 showed significantly higher regression slopes and therefore lower PPMRs compared

to other periods.

The PPMRs and size sprectra exponents for the bentho-pelagic and pelagic group are

plotted as a time series in Fig. 4.4, which shows that the decrease in PPMR commencing

in April-May 2016 coincides with a steepening in the size spectrum exponent from β =

−1.06 to β = −2.02. The error in PPMR estimation is highly variable but particularly

large in February-March 2016 and August-September 2016, resulting in uncertainties

spanning approximately 4 to 5 orders of magnitude.

The estimated TEs are plotted in Fig. 4.5. Over the winter, values of TE are high

with a maximum of 0.27 in October-November 2015. A gradual decrease occurs until

a low of 3.6× 10−7 in August-September 2016 is reached, after which the TE increases

to 0.039 in October-November 2016. Uncertainties for TEs varied in magnitude, but

roughly corresponded to the uncertainties in PPMRs. Despite this, the non-overlapping

errors suggest that late spring to early autumn TEs are notably reduced compared to

winter values.
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Figure 4.2: Bi-monthly plots of δ15N against logarithmically transformed (base 10)
individual mass for pelagic and bentho-pelagic individuals. Significant linear regressions
plotted as solid blue lines. Sampling months and linear regression parameters inset (with
standard error of slope given in parentheses) with asterisks denoting level of significance
(* = p < 0.05, ** = p < 0.01 and *** = p < 0.001). PPMRs were estimated following
Eq. 4.1 for significant regressions only (with 95% confidence intervals).
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Figure 4.3: Bi-monthly plots of δ15N against logarithmically transformed (base 10)
individual mass for benthic individuals. Non-significant regressions as dashed lines.
Sampling months and linear regression parameters inset (with standard error of slope
given in parentheses) with asterisks denoting level of significance (* = p < 0.05, ** = p
< 0.01 and *** = p < 0.001). No PPMRs were estimated as no period showed significant
regressions.
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magnitude of the size spectrum exponent (β), for pelagic and bentho-pelagic individuals.
Error bars as 75% and 95% confidence intervals for PPMRs and biomass spectra
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symbols). Grey horizontal line marks the β value below which pyramids of biomass
become top-heavy (i.e. inverted). Estimates for the total period are plotted for reference.
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4.5 Discussion

4.5.1 Predator-Prey Mass Ratios

Measures of community PPMRs, estimated from δ15N, are known to vary spatially and

between functional groups. Hunt et al. (2015) found a shift from a PPMR of 3683 for

macrozooplankton to 244000 for nekton within the pelagic sub-tropical Pacific. A value

of 5032 has been estimated for the pelagic food web in the Western Pacific (Ohshimo

et al., 2016), whereas in the North Sea fish community, Jennings, Warr, and Mackinson

(2002) estimated a mean PPMR as low as 109. This large variation emcompasses the

range of seasonal PPMRs within the pelagic food web estimated here, which varied

between 304 to 200000. The temporal average PPMR of 2890 estimated here matches

well with that from inshore kelp forest fish communities (PPMR of 1650, Trebilco et al.,

2016). The lack of any significant trends between δ15N and logarithmically transformed

body mass for the benthic functional group suggests that for this part of the food web,

trophic level is not a function of body size (and hence why a PPMR cannot be calculated

for this group using the stable isotope approach).

Temporal dynamics in PPMR are poorly resolved: the only study exploring the

seasonal variability of PPMR within a system that I am aware of is that by Reum and

Hunsicker (2012). The authors used gut content analyses to estimate individual PPMRs

in the Puget Sound fish community (Seattle, US) and found that, on average, realised

PPMR was higher in summer compared to autumn and winter. They argue that this

is due to predators feeding down prey sizes when invertebrate production and larval /

juvenile fish abundances are high. This extends from food web theory whereby a steeper

size spectrum combined with a size invariant preferred PPMR produces a larger realised

PPMR (Tsai et al., 2016).

Here, the opposite trend was observed within Southampton Water, apparently in

contradiction to what is expected from theory, given that here the size spectrum is

also steep during the summer period. Results show that fish community PPMR during

the winter months is high, on the order of 50,000-200,000, but that PPMR sharply

reduces by 2-3 orders of magnitude with the commencement of the phytoplankton bloom
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until the end of summer. These realised PPMRs, are estimated using stable isotopes,

specifically δ15N, for the pelagic and bentho-pelagic feeding fish. It is important to

note that, given the tight coupling between the pelagic and benthic pathways, δ15N

cannot differentiate between different feeding modes (see Fig. 3.15). During the winter,

pelagic prey abundances are relatively reduced, as can be seen by the shallowing of size

spectrum in Figs. 3.3 and 4.4. It is likely therefore that during this period, bentho-pelagic

predators switch to being more “benthic” in their feeding mode. Such behaviour would

cause a reduction in the slope of δ15N against logarithmic mass (cf. Figs. 4.2 and 4.3)

and therefore increase the realised PPMR, explaining the seasonal pattern seen here.

Bentho-pelagic coupling through predation is theorised to increase the resilience of size

structured food webs to perturbation (Blanchard et al., 2011), such as pulsed pelagic

production, and is important to consider when quantifying ecosystem processes (Griffiths

et al., 2017). Interestingly, Reum and Hunsicker (2012) also found feeding mode effects

on PPMR, with invertebrate prey resulting in an order of magnitude increase compared

to fish prey, a pattern that has been suggested in other studies (J. E. Cohen et al., 1993;

Juanes et al., 2001).

4.5.2 Trophic Transfer Efficiences

Direct, in situ measures of TE are difficult to obtain, however some studies have estimated

TE under varying assumptions. Irigoien et al. (2014) quantified the biomass differences

between primary produces and mesopelagic fishes globally. By assuming a trophic level

difference of 2 between these two groups, they estimated a TE within the mesopelagos of

14% per trophic level from primary produces to fishes, higher than they had expected.

By assuming a size spectra exponent of β = −1.05, a typical steady state value taken

from Kerr and Dickie (2001), Barnes et al. (2010) estimated TE values in the range

of 5.8 to 13.4% using eq. 4.2, based on their PPMR estimates from a compilation

of global stomach content data. Hunt et al. (2015) assumed the same size spectra

exponent to directly estimate TEs of 6.3, 8.5 and 2.4% for pelagic mesozooplankton,

macrozooplankton and nekton respectively using in situ community PPMRs estimated

from δ15N. For the North Sea, Jennings, Warr, and Mackinson (2002) combined in situ
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PPMRs and biomass spectra to estimate a community TE ranging from 3.7 to 12.4%,

with lower TE estimates when larger bodied fish were included, suggesting reduced TE

at higher trophic levels. The time averaged TE estimated here, at 1.2%, is lower than

these previously estimated values. However, seasonal estimates showed large variation

encompassing previously recorded TEs, with winter values of up to 27.4% being higher

than those recorded, to an autumn low of 3.6×10−5%. Given the more narrow intervals

around TE of approximately 2-20% estimated from mass balance models (Pauly &

Christensen, 1995), it is unlikely that such large variation solely reflects actual variability

in TE, as defined in section 4.2, in Southampton Water.

Conceptually, eq. 4.2 estimates the trophic transfer efficiency as the difference in

biomasses between two trophic levels in a size structured system, where the distance

between trophic levels on the size spectrum is determined by the PPMR. This approach

matches the notion of TE as parameterised in mass-balanced food web models (Pauly

& Christensen, 1995; Tanaka & Mano, 2012), under the assumption of a closed system

in steady-state equilibrium. Empirical estimates of TE are taken from point samples

of system biomasses in both time and space, and therefore reflects the differences in

biomasses between trophic levels only at that point in time and space. The argument

therefore is in whether the assumptions of a closed system and steady-state equilibrium

hold for such point estimates.

With regard to the first assumption of a closed system, this is clearly violated in

Southampton Water: seasonal fish movements known to occur within Southampton

Water result in asymmetric movements of biomass in and out of the estuary over the

seasonal cycle. In fact, it is likely violated in all but the most isolated of systems.

For example, Hunt et al. (2015) estimated TEs for open ocean, surface waters. While

lateral movements in biomass may be considered limited here, vertical diel migrations

of mesopelagic nekton rapidly draw down surface production to deeper waters, referred

to as the biological carbon pump (Trueman et al., 2014). The second assumption of

steady-state equilibrium is also clearly violated in Southampton Water, where the size

spectrum and PPMR are highly dynamic, varying widely over seasons (Fig. 4.4): the

food web is not static within the estuary, and further, not wholly sampled using this
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approach (only fish were used to parameterise the size spectrum and estimate PPMR).

Therefore, the ecological interpretation of changes in this apparent TE seen here are

more nuanced than simple changes in trophic transfer efficiencies.

If one assumes that actual TE is, as modelling studies suggest, convergent and

relatively stable at around 10% per trophic level, then one could potentially interpret the

results shown in Fig. 4.5 not as estimates of trophic transfer efficiency, but the relative

energy fluxes into and out of the system given the size structure (the size spectrum) and

the trophic behaviour of the food web (the PPMR). In other words, the overall changes

in biomass at lower trophic levels, either through the direct movement of individuals or

other forms of biomass change (e.g. somatic growth vs. respiratory losses) compared to

those at higher trophic levels.

For example, if the estimated TE is higher than 10%, then this would imply that

the higher trophic levels within the system would appear to be (or have recently been)

“subsidised” energetically from outside of the in situ system, either spatially or temporally

(or both). In other words, larger individuals are acquiring or have acquired resources

to sustain them from outside of Southampton Water, and/or are using up energy stores

acquired within Southampton Water but during an earlier period. Conversely, TEs

lower than 10% would suggest that not all of the biomass available at lower trophic

levels is being utilised in situ by higher trophic levels within the pelagic fish community,

implying either an export of biomass and / or increased growth at lower trophic levels.

These interpretations and the observed trend of high TEs in winter and low TEs during

summer in Southampton Water thus matches well with known fish movement patterns

as well as seasonal patterns of lipid storage and energy allocation in temperate fishes

(J. R. Post & Parkinson, 2001; C. Jørgensen & Fiksen, 2006).

4.5.3 Implications

Recent efforts have focused on large scale modelling to estimate patterns in ecosystem

services, such as fish biomass production, and predict their projections with expected

scenarios of climate change (e.g. Blanchard et al., 2012; Merino et al., 2012; Jennings &

Collingridge, 2015; van Denderen et al., 2018). These approaches rely on representative
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but static estimates of, for example, PPMR. However data here suggest that estimates

calculated from a single point maybe inappropriate in temperate coastal regions due to

the strong seasonal dynamics observed. A further issue may arise due to under-estimation

of production losses via averaging over dynamics. Here, the size spectra steepened

considerably over the summer (see Figs. 4.4 and 3.3), implying that the total biomass

consisted of a much greater proportion of small sized individuals during this period. This

is also the period when in situ temperatures are much higher (see Fig. 3.8). Metabolic

theory predicts a compounding effect of reduced body size and higher temperature

on increasing mass-specific respiration rates (Brown et al., 2004), and therefore whole

system, time integrated respiration rates likely will be higher than those estimated from

temporal averages. The assumption of temporally static size spectra and PPMRs, and

therefore TEs, used in large scale predictions should therefore be re-evaluated, especially

in temperate and polar regions with strong seasonality, in order to improve models and

forecasting (Reum & Hunsicker, 2012).

The data presented here start to address this issue, potentially allowing for absolute

local fish production rates of Southampton Water to be more realistically modelled, as

the dynamics in whole (or at least partial) ecosystem properties have been estimated (size

spectrum and PPMR), and the environmental setting is well quantified (see Chapter 3).

As a first order approximation, the low value of 1.2% for the temporally averaged TE

is suggestive of a net efflux of fish biomass through time, either through movements out

the estuary, or greater than average respiratory losses. Considering the estuary’s role

as a nursery ground (Chapter 5) and the coincident high biomass of small individuals

in summer when temperatures are high, an efflux of fish biomass would be logically

expected.

Due to the inefficient transfer of biomass through trophic interactions (i.e. TE is

always < 1), Lindeman (1942) put forward the conjecture that all food webs must exhibit

pyramids of biomass that are bottom heavy. Due to the very high rates of production

to standing biomass, top-heavy pyramids have been observed in oligotrophic plankton

communities (Gasol et al., 1997). However more recent observations have also noted

top-heavy pyramids of biomass within some fish communities, notably reef habitats with
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sharks as apex predators (Singh et al., 2012; Mourier et al., 2016; Trebilco et al., 2016).

Obviously such observations have been met with skepticism due to energetic implications

of such food web structures (Bradley et al., 2017). Potential suggested mechanisms

for their occurrence include increased levels of generalism within apex predators and

therefore higher PPMRs at the largest body sizes (Woodson et al., 2018). However,

criticisms have also been made against methods used to estimate the biomass of larger,

more motile and patchily distributed predators, which have been shown to vastly over

estimate their abundances in reef systems (Nadon et al., 2012; Bradley et al., 2017).

Trebilco et al. (2013) emphasise the importance of the spatial extent over which food

webs function, and that abundance estimates should encompass the whole area over

which the top predators range. For example, apparent top-heavy pyramids found in

kelp fish communities are likely sustained by energy subsidies from different habitats

at higher trophic levels (Trebilco et al., 2016). However, results here also highlight the

importance of temporal dynamics in food webs with regard to inversions of pyramids

of biomass. The seasonal, size segregated movements of fish resulted in shallow size

spectra during winter, and therefore a reduction in the bottom-heaviness of the in situ

pyramid of biomass. In fact, some months exhibited top heavy structure as the size

spectra exponents were greater than -0.75 (see Fig. 3.3, Trebilco et al., 2013). Therefore

both spatial and temporal movements and energy subsidies are important to consider

when determining biomass mass structure and hence estimating energy flows through

food webs (Barneche & Allen, 2018). Nevertheless, the dynamics of the apparent TE, as

estimated here, can provide valuable insight into such ecosystem processes.
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5 | Individual Specialisation in

Juvenile Sea Bass: Implications

for the Local Management of a

Commercially Important

Species

This chapter is a reproduction of text currently written for submission with

the ICES Journal of Marine Science, and, as such, is written in the style of

the journal.

Matthew R. D. Cobain, Will Steward, Clive N. Trueman and Antony Jensen

MRDC and AJ conceptualised the study, MRDC andWS collected and processed samples,

MRDC conducted statistical analyses and wrote first manuscript draft, and all authors

contributed equally to study development and manuscript review and editing.

5.1 Abstract

Stocks of the commercially important European sea bass, Dicentrarchus labrax,

have declined in recent years, and national and international recovery efforts

have focused on increasing the Minimum Conservation Reference Size and
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restricting fishing effort. Additional management strategies at the local

(and national) level, focused on maximising survival and growth of juvenile

bass in inshore nursery grounds, will complement these efforts. Information

regarding habitat and prey utilisation by individual juvenile bass is lacking,

but such data can greatly increase the effectiveness of management policy.

To address this knowledge gap, we explored individual dietary behaviours

in juvenile sea bass from a common nursery area using stomach content

and stable isotope analyses at monthly resolution over an annual cycle. We

found strong evidence for individual specialisation in stomach contents after

accounting for seasonal and age effects on diet. This was corroborated by

stable isotope analyses, which showed significantly higher variance in sea

bass compared to two other concurrently sampled, sympatric bentho-pelagic

predators. Our findings suggest that juvenile sea bass represent trophically-

generalist populations composed of specialised individuals. Therefore a variety

of microhabitats in nursery areas should be preserved to best protect the

vulnerable life stages of this commercially important species.

5.2 Introduction

European sea bass, Dicentrachus labrax (Linnaeus, 1758), have been, until recently, an

important resource for inshore fisheries in the southern UK, both commercially and

recreationally. DEFRA (2013) reports that, in 2012, 897t of sea bass were landed into

the UK (mostly into England by the UK commercial fleet), with a first sale value of

£5.6million (MMO, 2013) and it is estimated that an additional 230 - 440t of sea bass

were kept by recreational sea anglers in England (DEFRA, 2013). A large drop in sea

bass standing stock since ∼2010 (circa 18kt in 2010 to below 7kt in 2017) has resulted

in the ICES advice on fishing opportunities, catch and effort identifying that sea bass

stocks are now below Blim, the limit reference point for spawning stock biomass (ICES,

2017). For 2018, strict EU fishing regulations have come into force in an effort to improve

sea bass stock levels (MMO, 2018). Coupled with these EU-wide regulations, localised

management strategies within England are currently being reviewed, in conjunction with
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MPA designation and the conservation of other species of interest, notably inshore netting

regulations and fishing within sea bass nursery areas. However it has been highlighted

that uncertainties in sea bass ecology are impeding policy development for the protection

of this species (López et al., 2015).

Nursery areas are critical habitats for any efforts to conserve and re-build populations,

and management efforts aiming to maximise the survival and recruitment of juvenile

seabass should consider the variety of habitats utilised by juvenile sea bass. For predatory

fish such as sea bass, the variety of habitats occupied typically coincides with the variety

of prey consumed. Current knowledge on the diet of sea bass is biased towards young

of the year (Aprahamian & Barr, 1985; Laffaille et al., 2001; Cabral & Costa, 2001;

Martinho et al., 2008) or mature adults (Kelley, 1987; Spitz et al., 2013). However, the

consensus is that sea bass are opportunistic, generalist predators, with diet reflecting the

in situ seasonally abundant prey within the locality that are available to the given life

history stage (Pickett & Pawson, 1994; Rogdakis et al., 2010; Pérez-Ruzafa & Marcos,

2014). This can lead to diverse estimates of diet compositions when assimilating data

on sea bass from different regions and localities due to the spatial variability in potential

prey (Kelley, 1987).

At a more local scale, a generalist diet in a population may reflect either cosmopolitan

foraging within individuals, or the aggregation of individuals that specialise on differing

prey. Increasing levels of individual specialisation is a potential mechanism through

which levels of intra- and interspecific competition, as well as predation, can be modulated

(Araújo et al., 2011), and therefore maximise population growth when fish densities are

high, as is typical in nursery grounds. Individual specialisation may also arise due to

variation in individual behavioural traits such as boldness (reviewed by Toscano et al.,

2016), an evolutionary hedge betting strategy reflecting that differing ecological trade

offs may impart the same long-term fitness (B. R. Smith & Blumstein, 2008).

Individual specialisation in diet can be quantified directly using either stomach

content data (Bolnick et al., 2002; Araújo et al., 2008; Zaccarelli et al., 2013), stable

isotopes (Layman et al., 2007; Dermond et al., 2018) or a combination of both (Araújo

et al., 2009). Stomach content analyses offer high taxonomic resolution, however the
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information it provides is limited to a narrow time window of up to several hours prior to

capture, and therefore may not reflect the true, time averaged diet (Nielsen et al., 2018).

Further, potential biases due to restricted sampling location(s) of motile individuals and

patchily distributed prey items can falsely be interpretted as high levels of “apparent”

individual specialisation. Conversely, stable isotopes contain information on the diet

over a time frame of up to several weeks in the case of muscle, as they are incorporated

into the body via tissue turnover and somatic growth (Vander Zanden, Casselman, &

Rasmussen, 1999b; R. Ramos & González-Solís, 2012; Thomas & Crowther, 2015), at

the cost of reduced dietary resolution. High levels of individual specialisation in diet

causes individuals to equilibrate to (assumably) isotopically distinct food sources and

therefore increases dispersion within the population in isotopic space, allowing relative

levels of specialisation to be inferred (Layman et al., 2012).

Anecdotal evidence suggests that individual specialisation does occur in juvenile

sea bass populations: local differences in habitat preferences have been noted, with

individuals occupying tidal creeks, deep pools and faster flowing channels within estuaries

(Kelley, 1986). Differential feeding patterns have also been reported within young of the

year (Fonseca et al., 2011). However, despite its potential conservation importance,

information on the dietary strategies at the individual level for sea bass, including

measures levels of individual specialisation, are lacking.

In this study, we address this knowledge gap to better inform conservation efforts of

this threatened species. We assess the dietary behaviour of juvenile sea bass, including

young of the year, one year aged and two year aged cohorts, across a seasonal cycle within

an estuarine nursery ground. We then test the hypothesis that the juvenile sea bass

population consists of specialised individuals rather than individuals with cosmopolitan

foraging behaviours using both stomach content and stable isotope data.
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5.3 Materials and Methods

5.3.1 Study Area, Sample Collection and Processing

We utilised Southampton Water for this study, a partially mixed estuary located in

southern England (50◦52′N, 01◦22′W) that is 1.96km wide at its mouth and approximately

10km in length. It has an artificially deepened channel for much of its length that is

maintained by periodic dredging. It is fed by three rivers, the Test, Itchen and Hamble,

which have a catchment area of around 1500km2. The estuary itself is hypernutrified

with relatively low turbidity: suspended particulates average 40mgl−1 at the mouth

falling to 5-10mgl−1 at the head, making it a highly productive environment (Townend,

2008).

Individual fish were sampled opportunistically on a monthly basis from November

2015 through to January 2017 from a water intake pipe within Southampton Water using

a collection net over a 24-hour period (one 18-hour overnight collection and six hourly

collections). Catches were sorted, identified, counted and measured, and all available sea

bass collected. Samples were supplemented with quarterly trawl surveys, all of which

fell within 3km of the intake pipe and within the Southampton Water. A 10m-bottom

otter trawl was used with a 10mm mesh cod end trawled for 10 minutes at a time with

up to 10 trawls per quarter. With both modes of sampling, only fish deemed unable to

survive being returned were taken. While survivability is likely to be influenced by body

condition, which is dependent upon feeding behaviour and therefore may bias results,

most individuals sampled came from the overnight net collection with limited returns

from this method. Therefore the action of only collecting those deemed unsuitable to

return is unlikely to have a major influence on results. All fish were collected under

licence as part of on-going environmental monitoring of the estuary and were frozen

post-collection until further analysis.

For dietary analyses, sea bass specimens were defrosted, standard length and wet-mass

measured, and stomachs excised. Stomach contents were weighed separately, contents

identified and sorted into 12 broad trophic categories under a binocular microscope

(pelagic copepods, amphipods, isopods, mysids, shrimps, crabs, polychaetes, bivalves,
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gastropods, fish, algae and detritus). For each category, numeric counts were taken and

volume estimated.

Stable isotope analyses (SIA) were conducted on a subset of individuals, due to

logistical constraints, representative of the size distribution and temporal variation in

abundance. Small plugs of muscle (circa 0.5cm3) were taken from below the second dorsal

fin, with skin removed, and stored in eppendorf tubes and refrozen. For small individuals,

whole fillets were taken with skin, bone and spines removed to avoid isotopic disparity

between tissue types. Samples were freeze-dried at -55◦c for 24 hours (Heto Power

dry LL3000) then stored at room temperature in sealed containers. Dehydrated tissue

samples were homogenised and weighed using a Sartorius microbalance with precision

of 0.001mg. Samples of 1.9mg +/- 0.1mg were weighed out into tin capsules and were

analysed at NERC Life Sciences Mass Spectrometry Facility, SUERC, using an Elementar

vario Pyrocube (Hanau, Germany) coupled to an IsoPrime (now Elementar) VisION

Mass Spectrometer (Cheadle, UK).

All isotopic values are reported relative to their respective international standards:

Pee Dee Belemnite (PBD) for carbon, atmospheric air for nitrogen and Cañon Diablo

Troilite (CDT) for sulfur. Isotopic compositions are expressed as delta (δ) per mille (%�)

notation, given by:

δX =

[
Rsample
Rstandard

− 1

]
× 1000 (5.1)

where X is either 13C, 15N or 34S and R is the ratio of 13C:12C, 15N:14N or 34S:32S.

Equipment calibration and compensation for drift over time was corrected for by internal

standards run between every 10 samples, with analytical measurement errors of 0.1%�,

0.2%� and 0.6%� for δ13C, δ15N and δ34S respectively.

5.3.2 Dietary Analyses

Sea bass were assigned an age class determined by their standard length and month

of capture following data from Claridge and Potter (1983). Two dietary indices were

employed to describe overall trophic behaviour for each seasonal age class following

Rosecchi et al. (1988):

IRI = pF × (pN + pV ) (5.2)
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IMF =

√{
pV × (pN + pF )

2

}
(5.3)

where pF is the proportional frequency of occurrence of prey categories across stomachs,

pN is the proportional numerical abundance of prey categories and pV is the proportional

volume of each prey category. The index of relative importance, IRI , was described by

Pineas et al. (1971) and the main food item index, IMF , was described by Zander (1982).

While Zander (1982) originally used percentage dry weight, we used percentage volume

(Rosecchi et al., 1988) and normalised each index to its total to allow comparisons

between different age classes and seasons. In addition, the vacuity index, IV , was

calculated as the proportion of empty stomachs out the total examined for each group.

5.3.3 Statistical Analyses of Individual Specialisation

Since individual-level diet variation can be confounded with other sources of intra-population

diet variation, we tested for differences in diet associated with ontogeny and seasonality.

We utilised the proportional similarity index, PS, (Schoener, 1968):

PSij = 1− 1

2

∑
k

|pik − pjk| (5.4)

such that pik and pjk are the proportions of prey category k in the diets i and j

respectively. PSij is a measure of the overlap in the diets i and j, ranging from 0

(no overlap) to 1 (complete overlap). We calculated the PS between each individual

and the whole population average diet, the age class average diet, the seasonal average

diet and seasonal age class average diet (average diets taken as the mean of individual

proportional diets). Increasing mean PS values within group comparisons compared

to the whole population suggests that the grouping explains some of the variation in

individual diet. To test that this explained diet variation was not due to a random

grouping effect, we used a Monte Carlo method to generate null groupings, where the

age classes and seasons of individuals were randomly permutated. We compared the

actual values to those from 10,000 permutations to obtain approximate p-values for the

groupings. Results indicated that the increase in average proportional similarity from
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0.287 for the whole population to 0.439 for seasonal age classes was not due to a random

grouping effect (p ≈ 0.0049). Sea bass were therefore grouped into seasonal age classes

for subsequent analyses (average proportional similarity for age classes and seasons were

0.360 and 0.349 respectively).

To quantify the strength of individual specialisation based on stomach content data

within each seasonal age class, we calculated two metrics. Firstly, we calculated the E

index, which is based on pair-wise individual diet overlap (Araújo et al., 2008), given by:

E = 1−
2×

∑
pairs PSij

n(n− 1)
(5.5)

such that the proportional similarity, PS, is calculated between two individuals, i and j,

in the population of size n. The E index ranges from 0 (no individual specialisation) to

1 (maximum individual specialisation), however it can be biased towards specialisation

when individuals consume low numbers of prey items. The observed index is therefore

adjusted based on a null value calculated fromMonte Carlo resampling methods (Zaccarelli

et al., 2013):

Eadj =
Eobs − Enull

1− Enull
(5.6)

The second metric we calculated was the ratio of the Within Individual Component

(WIC) of diet variation to the Total Niche Width (TNW):

TNW = V ar(xij) = WIC +BIC

WIC = E[V ar(xj |i)]

BIC = V ar[E(xj |i)]

(5.7)

where xij is the frequency of prey item j in individual i’s diet. This follows Roughgarden’s

(1972) conjecture that the total niche width of a population, TNW, can be broken down

into the variation in resource use within individuals, WIC, and the variation in resource

use between individuals, BIC. The relative degree of individual specialisation is then

given by the ratio of variation within individuals compared to the total, WIC:TNW,

with low ratios indicating high levels of individual specialisation (see Zaccarelli et al.,

2013 for details on calculation of different components). Individuals with empty stomachs
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were excluded from these analyses.

The statistical significance of the two metrics was tested using Monte Carlo resampling

methods to derive null diet distributions, based on individuals stochastically sampling

from a shared distribution (the average population diet), with the number of prey items

for each individual held constant to maintain data structure. This null diet is based

on the assumption that individual items within the stomachs of individuals constitute

independent feeding events. Across all statistical analyses, we used the frequency of

diet items within individual stomachs rather than volume, as this is required for the

generation of null models. Mean proportional diets were calculated as the average

proportional diet of individuals (i.e. not the proportional diet of summed prey items

across all individuals).

Individual specialisation can be inferred using stable isotopes by quantifying population

structure in isotopic space, with greater variance typically associated with a higher degree

of specialisation, given the same isotopic baseline (Layman et al., 2012). Quantifying

the isotopic composition of the diverse suit of prey of sea bass represents a major

logistical challange. Therefore, we inferred the relative individual specialisation in sea

bass by comparing their dispersion in isotopic space against two sympatric, generalist

bentho-pelagic predators collected concurrently along with sea bass: pout, Trisopterus

luscus (Linnaeus, 1758), and whiting, Meralngius merlangus (Linnaeus, 1758). The

juveniles of pout and whiting occur within estuarine habitats, exhibit limited movements

and predate on a variety of invertebrate and fish prey (Heessen et al., 2015) making them

suitable candidates for comparison. Variance in isotopic space was compared graphically

by constructing standard ellipses, a two-dimensional equivalent of standard deviation

and differences in dispersion were tested using the Euclidean distances of individuals

from the population centroids based on methods described by M. J. Anderson (2006).

Prior to analyses, isotope values were first normalised to their observed range across all

species so that distances in each dimension were weighted equally. Post-hoc pair-wise

comparisons using a Tukey test followed a significant difference in dispersion.

All statistical analyses were conducted in R 3.3.2 (R-Core-Team, 2016), with individual

specialisation metric calculations conducted using the package ‘RInSp’ v1.2 (Zaccarelli
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Table 5.1: Total number of sea bass sampled during the study separated into season and
age group.

Season Months Age Class N

Winter 2015
November 2015 0 7
December 2015 1 7
January 2016 2+ 9

Spring 2016
February 2016 0 14
March 2016 1 15
April 2016 2+ 5

Summer 2016
May 2016 0 0
June 2016 1 1
July 2016 2+ 0

Autumn 2016
August 2016 0 17

September 2016 1 0
October 2016 2+ 4

Winter 2016
November 2016 0 19
December 2016 1 7
January 2017 2+ 10

Total

0 57
1 30
2+ 28
All 115

et al., 2013), dispersion tests using the package ‘vegan’ v2.4-5 (Oksanen et al., 2017) and

standard ellipse construction and bayesian estimation using the package ‘SIBER’ v2.1.1

(A. L. Jackson et al., 2011). The priors used to calculate the posterior distributions

of standard ellipse areas for each bi-plot were the inverse Wishart distribution with 2

degrees of freedom and a normal prior around the mean with a precision of 10−3. Two

chains were run of 10,000 iterations, with a burn in of 1000 and thinned by a factor of

10.

5.4 Results

5.4.1 Dietary Analyses

The number of individual sea bass collected are summarised in table 5.1, totalling 115

individuals over the whole period. The age class of 2+ includes all individuals estimated

to be 2 years or older: only 2 individuals were estimated to be 3 years of age and 1

individual estimated at 4 years of age. As there was only one individual sampled during

Summer 2016, this period was excluded from further analyses.

Although there were moderate levels of stomach vacuity, the IRI and IMF indices

for dietary items across age classes and seasons generally showed broad agreement and

are summarised in table 5.2. Briefly, polychaetes appear to be a highly important

food source for sea bass across all age classes and seasons, particularly the year 1 age
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class. Amphipods were a key resource for young of the year bass throughout the entire

seasonal cycle, however they were only important for the year 1 sea bass in winter

2015 and were absent in all but one individual from the 2+ age class. Copepods were

only present in the diet of the young of the year in the autumn, where they were the

dominant food source, but absent in all other seasons and age classes. Prey fish showed

a similar pattern, being the main food source in autumn for age class 2+ but only

minor contributions during other seasons and practically absent in the other age classes.

Shrimp and crabs contributed to the diet in all age classes, although more so to the

2+ bass, with contributions shifting over seasons. Over the winter period, bivalves were

considerable components of the diets of the young of the year and the 2+ age class.

Other prey categories made only minor contributions to sea bass diet.

5.4.2 Individual Specialisation

For the six seasonal age class groups where sufficient non-empty stomachs were available,

levels of individual specialisation were typically high, table 5.3. The WIC:TNW metric

was significant for all cohorts, although this measure can overestimate the degree of

specialisation when there are high proportions of stomachs with only one food category

present. However, the more conservative Eadj index also recorded significant levels of

individual specialisation: only the young of the year and one year age classes of spring

showed insignificant dietary specialisation for this metric.

A total of 53, 42 and 44 individuals of pout, bass and whiting respectively, distributed

relatively evenly over the sampling period, were analysed for stable isotope composition.

The individual size distributions for which isotopic signatures were measured are shown

in Fig. 5.1, and are relatively similar across species, although whiting were slightly

larger on average (mean body mass = 64.7g, 51.9g and 145g for bass, pout and whiting

respectively). The three isotope bi-plots for carbon, nitrogen and sulphur are shown

in Fig. 5.2. Sea bass appear to vary more greatly in isotopic space, indicated by the

larger standard ellipses (which contain approximately 40% of the data) - the posterior

distributions of the standard ellipse areas were greater for sea bass across all three stable

isotope bi-plots, Fig. 5.2. This was confirmed by significance in the test of homogeneity
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Table 5.2: Dietary indices based on stomach content analyses of sea bass grouped into
seasonal age class cohorts, see Materials and Methods for description of indices. Values
of 0.1 or greater (major components) highlighted in bold. N denotes the number of
stomachs sampled.

Age Class 0 Age Class 1 Age Class 2+
Winter
2015

Spring
2016

Autumn
2016

Winter
2016

Winter
2015

Spring
2016

Autumn
2016

Winter
2016

Winter
2015

Spring
2016

Autumn
2016

Winter
2016

N 7 14 17 19 7 15 0 7 9 5 4 10
IV 0.57 0.29 0.29 0.42 0.43 0.13 - 0.86 0.44 0.4 0 0.3

Food Category IRI (IMF )

Amphipods 0.53
(0.38)

0.35
(0.26)

0.22
(0.22)

0.50
(0.27)

0.51
(0.54)

0.01
(0.01) - 0 (0) 0 (0) 0 (0) 0.01

(0.01) 0 (0)

Copepods 0 (0) 0 (0) 0.68
(0.39) 0 (0) 0 (0) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Isopods 0 (0) 0.04
(0.12)

0.01
(0.02)

0.03
(0.07) 0 (0) 0.02

(0.08) - 0 (0) 0 (0) 0 (0) 0 (0) 0.01
(0.03)

Mysids 0 (0) 0 (0) 0 (0) 0.11
(0.13) 0 (0) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Decapod Crabs 0 (0) 0 (0) 0.03
(0.10)

0.03
(0.10)

0.04
(0.09)

0.01
(0.04) - 0 (0) 0.47

(0.46)
0.01
(0.03)

0.05
(0.10)

0.55
(0.40)

Decapod Shrimp 0.20
(0.24)

0.01
(0.05)

0.02
(0.08)

0.05
(0.11) 0 (0) 0.02

(0.07) - 0 (0) 0.03
(0.07)

0.04
(0.09)

0.20
(0.22)

0.26
(0.17)

Polychaetes 0.15
(0.20)

0.60
(0.51)

0.04
(0.11)

0.28
(0.30)

0.44
(0.33)

0.93
(0.70) - 1.00

(1.00)
0.40
(0.28)

0.94
(0.82)

0.16
(0.14)

0.04
(0.08)

Fish 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.02
(0.08) - 0 (0) 0.07

(0.15) 0 (0) 0.53
(0.43)

0.07
(0.14)

Bivalve 0.12
(0.17) 0 (0) 0.01

(0.04) 0 (0) 0 (0) 0 (0) - 0 (0) 0.03
(0.05)

0.02
(0.06)

0.05
(0.11)

0.06
(0.14)

Gastropod 0 (0) 0.01
(0.04)

0.01
(0.04) 0 (0) 0 (0) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Algae 0 (0) 0 (0) 0 (0) 0.01
(0.03)

0.01
(0.05)

0.01
(0.02) - 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Detritus 0 (0) 0.01
(0.02) 0 (0) 0 (0) 0 (0) 0.01

(0.01) - 0 (0) 0 (0) 0 (0) 0 (0) 0.02
(0.06)

Table 5.3: Metrics of individual specialisation for groups with 5 or more individuals with
non-empty stomachs, see Materials and Methods for description of indices. Significance
of each index denoted by the number of asterisks (* = p < 0.05, ** = p < 0.01, *** = p <
0.001). Number of stomachs containing only one food category are also reported as they
can cause the WIC:TNW metric to overestimate the degree of individual specialisation.
Further, we additionally analysed the pooled two winters for the 2+ age class to increase
the number of stomachs to make it comparable to those of the other groups.

Age Class Season Non-Empty
Stomachs Eadj

WIC:
TNW

Stomachs with only
one food category

0 Spring 2016 10 0.245 0.304*** 7
0 Autumn 2016 12 0.324** 0.305*** 6
0 Winter 2016 11 0.334* 0.357*** 5
1 Spring 2016 13 0.123 0.487*** 4
2+ Winter 2015 5 0.505* 0.267* 2
2+ Winter 2016 7 0.664*** 0.111*** 4
2+ Winter 2015/16 12 0.446*** 0.136*** 6
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in dispersion distances (F2,135 = 14.538, p < 0.001), with post-hoc testing indicating that

bass were over-dispersed compared to pout (difference in mean distance from centroid of

0.929, p < 0.001) and whiting (difference of 1.091, p < 0.001). Pout and whiting showed

no significant difference in dispersion (difference of 0.161, p = 0.719).
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Figure 5.1: Size-frequency distributions of the individuals of the three species, sea bass
(top left, n = 42), pout (top right, n = 53), and whiting (bottom left, n = 44), for which
stable isotopic signatures were measured. Vertical lines beneath the histograms mark
the values of individuals. Axes are the same across three graphs. Note that the body
mass axes are on a logarithmic scale.

5.5 Discussion

The research presented here, to the best of our knowledge, is the first quantitative study

on the extent of individual diet specialisation in juvenile sea bass. We hypothesised

that juvenile sea bass within Southampton Water, an important nursery ground for this

species, exhibit individual specialisation in diet. This hypothesis was confirmed utilising

two distinct but complementary sources of evidence: stomach content data and stable
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Figure 5.2: Stable isotope bi-plots of individual pout, bass and whiting, with standard
ellipses plotted for each species. Bottom-right panel shows the bayesian posterior
distribution of the standard ellipse area for each species for each bi-plot, where CN
is carbon-nitrogen (top-left), SN is sulfur-nitrogen (top-right) and CS is carbon-sulfur
(bottom-left). Credible intervals are 50, 75 and 95% with the mode of each distribution
indicated by a black circle.

isotope analyses. The two metrics of individual specialisation from stomach content

data yielded significant results for a majority of groupings after accounting for seasonal

and ontogenetic influences on diet. Similarly, stable isotopes revealed that sea bass were

over-dispersed in isotopic space compared to two sympatric predatory species, suggestive

of comparatively higher levels of specialisation within sea bass.

These findings appear to contradict the previous assumption of generalist feeding

behaviour in sea bass populations (Pickett & Pawson, 1994; Pérez-Ruzafa & Marcos,

2014). This inference is based on to observation of sea bass utilising different prey that

are patchily distributed in space at the regional scale, e.g. Nereis spp., amphipods and
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Carcinus maenas in salt marshes in south east England (Fonseca et al., 2011), similar

to the results in this study, versus the brown shrimp, Crangon crangon, which dominate

the prey base in the Wadden Sea (Cardoso et al., 2015). However no previous dietary

study has tested whether the population-level generalist feeding behaviour in sea bass

was due to generalism at the individual level or varying specialisations in diet. Here,

we explicitly tested for the presence of individual specialisation within a single locality,

Southampton Water, within which juvenile sea bass are assumably exposed to the same

potential prey base, and found that the population consists of specialised individuals.

Individual specialisation has been well documented in various other fish species

however, due to limited research, the extent to which it is found across species is

currently unknown (Araújo et al., 2011). Studies have shown strong correlations between

population density (a proxy for intraspecific competition) and the degree of individual

specialisation in fishes (Svanbäck & Persson, 2009), suggestive of density dependence

in the expression of individual specialisation. Frédérich et al. (2010) found that group

density partially explained variation in specialisation in a site-attached damselfish. In

experimental manipulation studies, larger young of the year eurasian perch (Perca fluviatilis)

switched from consuming predominantly zooplankton to benthic macroinvertebrates

when densities became high (Huss et al., 2008). Similar behaviour has also been noted in

0-class sea bass, with smaller conspecifics feeding mainly on pelagic copepods and larger

individuals on epibenthic invertebrates (Fonseca et al., 2011).

Changes in in situ environment have also been suggested as mechanisms driving

variation in the degree of individual specialisation, such as environmental stability, an

increase in which has been shown to cause higher levels of specialisation in brown trout,

Salmo trutta (Dermond et al., 2018). However, here data comparisons with sympatric

predators exposed to the same environmental dynamics are suggestive of behavioural

traits rather than extrinsic drivers. Phenotypic differences in foraging behaviours have

been recorded in juvenile sea bass in terms of risk aversion (Millot et al., 2009; Killen et

al., 2011), and shoaling (Boulineau-Coatanea, 1969). Juveniles also potentially segregate

along temperature and salinity gradients within estuaries (López et al., 2015), and

variation in habitat occupancy has been noted (Kelley, 1986). These variations in
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behavioural traits and microhabitat occupancy, can also impart individual specialisation

in diet as they result in individuals being exposed to different potential prey within a

locality (Toscano et al., 2016).

It is important to note that compared to other dietary studies on sea bass, we

acknowledge the total number of sea bass sampled here, 115 total, is relatively low (e.g.

404 in Spitz et al., 2013 and 570 in Rogdakis et al., 2010), and that suitable sample sizes

were not available to test across all combinations of age class and season. However, this

study was undertaken during a period when destructive sampling of juveniles is counter

to efforts to rebuild sea bass stocks. To minimise this impact at a time of conservation

concern, fish showing vigorous life signs and little to no damage by the sampling screens

or trawling were immediately released, reducing sample sizes. For statistical analyses,

we used null models based on random permutations, which maintain data structure and

therefore incorporate small sample sizes when testing for significance (Zaccarelli et al.,

2013). For stable isotope analyses, we included as balanced a design as feasible, given

the sampling available. Given the agreement between stomach content data and stable

isotope analyses, we therefore have confidence, despite the more limited sampling, in the

results presented herein and the conclusions that are drawn.

While the concept of individual specialisation within populations is now well established

(Araújo et al., 2011; Layman et al., 2015; Toscano et al., 2016), its ecological consequences

have rarely been considered in terms of management strategies. We have shown high

levels of individual specialisation in juvenile sea bass, which are typically a response to

intraspecific competition and due to differences in behavioural traits. It likely follows

therefore that individuals also specialise in their occupancy of the diverse microhabitats

available within the estuary to limit competition between and within cohorts. High

microhabitat dispersal within estuaries may also serve to reduce cannibalism, which is

known to occur in sea bass (Henderson & Corps, 1997). Facilitating these specialisation

behaviours, will therefore promote increased survival and population growth in juvenile

sea bass during these early, vulnerable life stages of sea bass. SouthamptonWater already

has special protection area (SPA) status with a variety of intertidal areas designated as

Sites of Special Scientific Interest, predominantly due to the community of seabirds that
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they support (Natural England, 2018). These encompass a variety of habitats such as

salt water marshes, seagrass beds, mud, sand and coarse sediment flats. By extending

the variety of microhabitats protected to also include subtidal areas, sea bass may also

further benefit from this protection status. However, if protected areas are designed

such that they only encompass a limited diversity in microhabitats, then intraspecific

competition may reduce overall population condition, making juvenile sea bass more

susceptible to climatic fluctuations (Henderson & Corps, 1997; Bento et al., 2016). This

would reduce nursery ground contributions to standing stocks at a time when efforts are

required at multiple levels to aid the recovery of this commercially important species

(ICES, 2017; MMO, 2018).
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6 | General Discussion

6.1 Summary of Findings

The inherent complexity of ecosystems makes them difficult to mechanistically study, yet

capturing the ecological processes and interactions that determine ecosystem structure

and function, in a quantitative manner, is crucial in order to test and develop ecological

theory, to create realistic models and for the implementation of effective management and

conservation strategies. Recent advances in the metabolic theory of ecology, MTE, have

shown that power law relationships effectively capture much of the variation in biological

processes, rates, times etc. across the huge diversity of life, condensing information

along the single dimension of individual body size (Brown et al., 2004; Sibly et al.,

2012). As such, power law based approaches are now commonly used for ecosystem

modelling (Blanchard et al., 2017), and as metrics of ecosystem behaviour (Petchey &

Belgrano, 2010), however this typically occurs over large spatial and temporal scales

with a coarse resolution (globally or regionally, e.g. Jennings & Collingridge, 2015). The

work presented in this thesis explored the dynamics of some of these ecological power law

relationships at smaller scales compared to previous work. Their variability at smaller

spatial and temporal scales was determined to assess whether this matched with expected

ecological behaviour and therefore their viability as ecosystem metrics at these smaller

scales.

6.1.1 Chapter 1

In Chapter 1, I introduced the functional form of the power law relationship and the

prevalence at which it occurs in ecology. Their mathematical simplicity makes them a
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computationally effective tool for modelling complex ecosystem processes (Guiet et al.,

2016; Blanchard et al., 2017) and recent statistical developments have also improved

their empirical parameterisation (Clauset et al., 2009; Edwards et al., 2017). While

their pervasiveness has led to some scepticism (Stumpf & Porter, 2012), the allometric

foundation of many power laws in biology provides a robust mechanistic underpinning

(Thompson, 1942). This was further developed by West et al. (1997), who constructed

a mechanistic model of individuals that, when scaled up to higher levels of biological

organisation, predicted many of the ecological scaling relationships empirically derived

during the 20th century (Peters, 1983), and has since become the foundation of the

metabolic theory of ecology.

6.1.2 Chapter 2

The relationship between the mean and variance has been of scientific interest since the

introduction of ANOVA and the key requirement of equal variances between samples

(Fisher, 1919, 1921). It was not until 1961 that Taylor showed empirically across many

different populations of taxa that the variance in abundance was well described as a

power law of the mean, and suggested the exponent as a metric of aggregation in the

data. This proposal has since been questioned due to the ubiquity of TPL in complex

systems and apparent lack of ecological inference (Downing, 1986; Kalyuzhny et al.,

2014), yet studies have shown that TPL does appear to capture ecological information

(Lagrue et al., 2015; Kuo et al., 2016).

I showed that in the size structured fish community of the North Sea, systematic

differences in TPL, when populations were considered by individual size, were linked to

the abiotic environment, namely hydrographic boundaries for temporal variability and

basin type for spatial aggregation. This work suggests that TPL exponents capture

community spatio-temporal dynamics as influenced by abiotic drivers. While links have

been made between TPL and body size, either as trait effects (Kuo et al., 2016) or

via mean abundance and size scaling (J. E. Cohen et al., 2016), this work is the first

to consider individual body size explicitly, despite the importance of body size at the

individual level (Brown et al., 2004).
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6.1.3 Chapter 3

The size distribution of individual body sizes within a community follows a power

law distribution, the exponent of which has been suggested as an ecological indicator

of ecosystem health (Petchey & Belgrano, 2010). While fishing pressures are known

steepen the size spectrum (e.g. Robinson et al., 2017), seasonal dynamics are less

well studied, with limited research suggesting nuanced but limited influences on the

exponent in fish communities (McGarvey & Kirk, 2018). I showed that the size spectrum

in an estuarine fish community exhibits large seasonal periodicity, that corresponds

to the known movements of different sized fish in response to temperature changes.

This suggests that, if steady-state temporal average measures of the size spectrum are

required, single point estimates may not be suitable even if data are collected across a

relatively large spatial area.

In Chapter 3, I also explored trends in the stable isotope composition of the fish

community. Stable isotopes can be used as natural geochemical tracers to elucidate

information on trophic interactions (R. Ramos & González-Solís, 2012; Nielsen et al.,

2018), and since size-based predator-prey dynamics strongly affect the size spectrum

(Kerr & Dickie, 2001), SIA provide complementary information to size spectra. Results

showed that, while some benthic bacterially derived sources are expressed in the food

web, the majority of basal production is from pelagic phytoplankton as new production

inputs during the spring bloom that is then remineralised over the winter. A key aspect

of SIA is the rate at which assimilated material is incorporated into body tissues. I

showed that during the summer when growth rates are high, stable isotopes are rapidly

incorporated into fish biomass, faster than expected given published estimates of turnover

rates (Thomas & Crowther, 2015; Vander Zanden et al., 2015).

6.1.4 Chapter 4

Due to the size-based constraints of predator-prey interactions, they are well described

by the ratio between the body size of the predator and the body size of prey. Community

based average PPMRs can be estimated using SIA and appear to exhibit high spatial

variability (Jennings, Warr, & Mackinson, 2002; Reum et al., 2015; Ohshimo et al., 2016),
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however the temporal variability, which is important for in situ energy flux dynamics, is

poorly resolved. I showed that, over a seasonal cycle, PPMR varied over several orders

of magnitude, similar to the variability recorded across space.

Under the assumption of energetic equivalence and steady state, the slope of the

individual size spectrum within a community is (Trebilco et al., 2013):

Mβ ∝M−
3
4 ×M

log(TE)
log(PPMR) (6.1)

which highlights how predator-prey interactions influence the size spectrum (Kerr &

Dickie, 2001), and shows how the trophic transfer efficiency can be derived in situ.

Similarly to the PPMR, TE also exhibited temporal variation of several orders of magnitude.

However, the ecological inference of this in situ TE likely not a simple assimilation

biomass ratio, due to assumption violation. I suggest that this may instead provide

information of the flux of energy into or out of the system if one assumes the “true”

efficiency is relatively constant.

6.1.5 Chapter 5

In Chapter 5, although not strictly utilising a power law relationship, I explored the level

of individual specialisation within the diet of a commercially important but overexploited

species, Dicentrachus labrax or the European sea bass. Previous diet studies have

found generalist feeding behaviour within sea bass populations, inferred as opportunistic

predation strategies (Pickett & Pawson, 1994). However, population level generalism

can manifest itself either as a population of individual generalists or as a population

of varied individual specialists (Araújo et al., 2011). This distinction had not, until

this research, been resolved for sea bass, but is important as dietary specialisation can

modulate intraspecific competition (Svanbäck & Persson, 2009), which will affect the

recovery of this species. Both stomach content analysis and SIA suggested that the

juvenile sea bass population within Southampton Water consists of individual specialists.

Therefore the effective conservation of key nursery grounds should incorporate a diversity

of microhabitats, and therefore prey, to facilitate this dietary behaviour.
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6.2 A Brief Synthesis: Pattern and Scale

Pattern implies repetition, and the existence of repetition implies that some form of

prediction is possible (MacArthur, 1972), and so in lies the aim of macroecology - to

discern broad patterns within and across whole ecosystems to better understand and

predict ecological processes. The question is then in defining "broad", or over what

scale in which pattern should be quantified. This obviously depends upon the process of

interest, however Levin (1992) highlighted that scientists, as observers, impose bias in

how a system is viewed, to match a scale that suits us, rather than the scales over which

patterns are expected based on theory and the often different scale of the mechanism(s)

that give rise to them. Pattern is an emergent property in these complex systems. Some

25 years later, this ecological mismatch is still apparent (Chave, 2013; Estes et al., 2018),

with scales often being selected for logistical convenience rather than biological reasoning

(H. B. Jackson & Fahrig, 2015). In this thesis, care has been taken, within the limit

of sampling constraints, to use data that has been collected at assumably ecologically

relevant scales - aggregative behaviour across the North Sea but determined across swept

area (on the order of 1km2) and the size distribution and trophic interactions based at

the individual level measured at monthly intervals within a seasonally dynamic estuary.

It is not only scale that is important but, coupled with this, the dimension over

which patterns are observed, namely time and space. Many studies focus on just

one of these dimensions, yet it is nigh on impossible to sample and therefore explore

patterns in one dimension at a fixed point in the other - coordinating the simultaneous

sampling across the North Sea at the same point in time for example. Metrics are

then typically estimated by averaging over the sampling regime with variation due to

the other dimension implicitly dismissed as noise, with the researcher assuming dynamics

are predominately expressed in the dimension of interest, either space or time. In reality,

spatiotemporal dynamics exist across many scales (Levin, 1992) and should be accounted

for. An exaggerated example would be the diel migration of mesopelagic food webs that

could result in erroneous spatial distributions in surface pelagic biomass estimates if

sampling varied over the course of a few hours at different sites. Of course, when scales
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of measure become arbitrarily small, it can be argued that observed variation is merely

stochastic noise. Such and argument should be used with caution however during the

up-scaling of measure in macroecology, as it belies the inherent complexity of ecosystems.

The results in this thesis highlight the importance of both dimension and scale when using

common ecological metrics and tools.

In Chapter 2, I showed that at the regional scale (across the North Sea and at a time

scale of several decades) patterns in the aggregative behaviour of the size structured fish

community emerge both across space and through time, with trends exhibiting similar

orders of magnitude, that relate to in situ hydrography. This implies that at these

dimensional scales for this system, both spatial and temporal effects on community

structure are important. Interestingly, Taylor’s Power Law (TPL) that was used as a

metric of aggregation does not depend on the scale of measure, and therefore can be

quantified across a multitude of spatial and temporal scales. Such an approach could be

used to derive the temporal and spatial scales over which aggregative behaviour is most

prominent in fish and other communities. While the idea of scale and its importance

has been highlighted for TPL in terms of generality and therefore usefulness (Xu, 2015),

the converse argument is that it a lack of evidence for TPL for a particular species

/ community at a particular scale is evidence for its interpretation being ecologically

redundant at that scale.

The size spectrum quantifies the size structure within the community as a power

law distribution (Kerr & Dickie, 2001) and is now being used as a relatively simple

ecological metric indicative of perturbations, notably fishing pressures (Sprules & Barth,

2016). In Chapter 3, I showed that the size spectrum of an estuarine fish community

exhibited stark but consistent fluctuations across a seasonal cycle. The implication is

that if spatial patterns in size structure are required, small differences in the time of

sampling (on the order of only a few weeks) could impart large variation within the

data, that, if the sampling regime is conducted systematically in space, could be falsely

interpreted as a spatial trend. Similarly, I demonstrated that seasonal dynamics are

rapidly incorporated into the stable isotope composition of the fish community during

the summer period. Stable isotopes analyses are now a common ecological tool used to
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elucidate information on the trophic niche structure and spatial patterns of individuals,

populations and communities (R. Ramos & González-Solís, 2012), often blindly without

regard to the multiple sources of variation, most notably temporal effects. For example,

raw stable isotope values are now being used as a direct ecological "trait" in some

studies (e.g. Wood et al., 2017). Results here suggest that temporal patterns can impart

strong variation in isotopes over smaller scales than have been previously assumed and

therefore should be considered in sampling designs. The size spectrum and stable isotope

approaches were then naïvely but purposefully combined in Chapter 4 to demonstrate

high temporal variability in predator-prey mass ratios and apparent trophic transfer

efficiencies and to show that temporal dynamics need to be considered to better interpret

results when applying metrics derived from theory.

Data here indicates that temporal dynamics in ecology can be strong at smaller

scales. However with the advent of remote sensing with global coverage and ever more

computing power, it is not surprising that macroecology is turning towards ever larger

spatial scales. Coupled with this is the focus of climatic effects on ecosystems across large

temporal scales. At these most certainly broad scales, dynamic ecosystem models can be

constructed to predict and forecast large scale processes such as global fish production

in a warming world (Blanchard et al., 2012; Jennings & Collingridge, 2015), in order

to better inform management and policy. However, if smaller scale dynamics are large

then empirical verification of such predictions becomes challenging, and their usefulness

at local and regional levels is reduced. That is not to say that these large scale studies

should be abandoned, but that an understanding and appreciation of ecological processes

at smaller scales improves the context in which macroecological theory and forecasts

can be placed. In fact, many statistical approaches that are employed to account for

temporal effects when exploring spatial data or vice versa could be used to facilitate

multi-dimensional exploration of dynamics given suitable data.

A final note is given to the concept of body size and its apparent ubiquity in explaining

ecological variation (Peters, 1983). Indeed, individual body size is the cornerstone

of MTE (Brown et al., 2004) and has featured strongly in this thesis. Much of this

inference has been made by compiling data across large scales and it is important to
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clarify however that, as demonstrated here, as scales are reduced then the import of size

also appears to reduce. In Chapter 2, considering individuals by size revealed strong

aggregative patterns compared to a species approach at a regional scale. In Chapter

3, while seasonal variations in size distributions were apparent at the local scale, linear

mixed effects models identified influences of functional group and individual species in

stable isotope data. Distinctions in size based trophic interactions between functional

groups were also apparent in Chapter 4 with the local benthic food web seeming to lack

size structure as inferred by stable isotopes. Finally, at the local species level within

Southampton Water, differences in trophic behaviours were found between sea bass and

two sympatric gadoid species. Other studies have made similar conclusions, with the

predictive power of body size waning as food web complexity increases (Jonsson et al.,

2018) or argue for a combined size-species approach for forecasting the population and

community responses to, for example, changes in temperature (Lindmark et al., 2018).

An integration and appreciation of both size and species (or functional group) would

therefore improve macroecological theory and prediction, potentially explaining much of

the residual variation in metabolic theory and other power law relationships.

6.3 Considerations and Future Directions

The results presented herein have focused on two locations: the North Sea for TPL

and Southampton Water for size spectra. While the results are promising, showing

strong temporal variability (and spatial for TPL) in these two areas for the associated

metrics, location effects cannot be excluded, since the effective replication is one. In

fact, Southampton Water was chosen as the ecological dynamics are especially stark in

estuarine environments, and therefore more likely to show seasonality. Since both TPL

and size spectra can be readily calculated from size and species abundance data, this

allows for the testing of such dynamics in other locations. For example, while the North

Sea IBTS was utilised here, similar surveys are conducted in other European shelf seas

with appropriate data also readily accessible through the DATRAS data portal. Likewise

there exists impingement data similar to that used for calculating the size spectrum of

Southampton Water for many locations where cooling water is extracted for industrial
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use and regulations require the monitoring of environmental impacts. Ecological datasets

in general are becoming more openly available with the advent of data repositories, such

as the global biodiversity information facility (www.gbif.org), which would allow for

testing among differing taxa as well as locations.

A key aspect for any metric is its accurate parameterisation, particularly if the

expected ranges over which they vary are relatively small. Whilst significant development

has been made for more accurate parameterisation of power law distributions, i.e. size

spectra, using maximum likelihood approaches (Clauset et al., 2009; Edwards et al.,

2017), as of yet, no such methods exist for power law relationships. Researchers are thus

limited to applying linear based regression approaches on logarithmically transform data

(Sibly et al., 2012). Given the variety of regression methods available, e.g. ordinary

vs. orthogonal least squares, Bayesian and median based, it is surprising that, currently,

no quantitative comparison has been made in relation to power law parameterisation.

In Chapter 2, I utilised two regression methods that qualitatively reproduced the same

results, improving confidence in the conclusions drawn and something not conducted

in other studies. However a full cross-comparison on simulated data would be useful

to test for potential biases in regression methods applied to power law relationships.

Similarly, there exists two separate methods for estimating PPMR, stomach content

analysis and SIA, with no study conducting a direct comparison between the two. Given

the importance of PPMR in modelling ecosystem processes, and the fact that physical

samples are required for both approaches, this should also be addressed.

Sources of variability in stable isotopes can be categorised broadly into trophic

(including physiological) processes, temporal variability and spatial variability (Boecklen

et al., 2011; R. Ramos & González-Solís, 2012). In this thesis I have focused on the

trophic and temporal sources of variability while quantifying system dynamics within

Southampton Water. The assumption therefore is that spatial variability is negligible.

Fish examined here are all relatively small, (on the order of 1kg or less) and therefore

movements are relatively restricted even when individuals move out of the estuary. For

example, tagging data on sea bass show that larger juveniles stay within a few kilometres

of their estuarine nursery ground (Pawson et al., 1987). Studies on spatial variability of
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isotopes typically show that variability occurs on the order of hundreds to thousands of

kilometres and therefore should not influence results here, although spatial variability in

inshore waters is poorly resolved but likely higher (Bowen, 2010).

Finally, the isotopic sampling, although spanning 15 months, only captured one full

seasonal cycle. Confidence in the seasonal dynamics would therefore be improved if they

were repeated over another or multiple cycles. Additionally, higher number of isotopic

samples per month would also help reduce the uncertainty in regression estimates and

therefore more tightly constrain, for example PPMR estimates, pertinent when errors are

propagated. However, such an undertaking, although more ideal, would require logistical

efforts that were beyond the scope of this research project.
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7 | Appendices

7.1 Appendix: Taylor’s Power Law in the North Sea Fish

Community

Due to the large quantity of plots characterising individual TPL exponents, the supplementary

material for this chapter is provided as a separate pdf document.

7.2 Appendix: Isotope Incorporation Model

This appendix corresponds to the incorporation of δ13C into fish biomass in Southampton

Water, as discussed in Chapter 3.

7.2.1 Model of Isotope Incorporation

Following Fry and Arnold (1982), a simple toy model was constructed to explore carbon

isotope incorporation in pelagic fish within Southampton Water following the seasonal

dynamics of the plankton. The model, defined by a difference equation, is based on two

pathways in which isotopes are incorporated: catabolic turnover and somatic growth.

Catabolic turnover follows first order kinetics (Fry & Arnold, 1982; Cerling et al., 2007),

and here is modelled as a simple exponential decay toward equilibrium with a single

source (a one compartment model). The isotopic composition of the consumer tissue

due to turnover, δ13Ccons, at time t is defined as:

δ13Ccons(t) = λt.ρ.+
(
1− λt

)
.δ13Ccons(t− 1)

ρ = δ13Cprey(t) + TDFcons

(7.1)
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where each time step is considered one day. The first part of the equation gives

the isotopic composition of the turned over tissue, ρ, defined as the temporally varying

isotopic composition of the prey / diet (δ13Cprey) plus the consumer trophic discrimination

factor (TDFcons). The second part gives the isotopic composition of the tissue that is not

turned over, which is equivalent to δ13Ccons from the previous time step. The turnover

rate, λt, defines the proportion of tissue mass that is replaced each time step.

By assuming that growth is not limited, i.e. exponential, then the dilution effect of

newly formed somatic tissue can be included by a mass-specific growth term, λg such

that:

δ13Ccons(t) =
λt.ρ+

(
1− λt

)
.δ13Ccons(t− 1) + λg.ρ(
1 + λg

) (7.2)

Using eq. 7.2, a two step food chain was constructed with the basal prey being

phytoplankton, which were fed upon by zooplankton, which were likewise fed upon by

fish.

7.2.2 Parameterisation of Model

Phytoplankton carbon isotopic composition, δ13Cp, is dependent upon the concentration

of DIC which affects fractionation during fixation (Laws et al., 1995; Riebesell et al.,

2000). Here, I assume that the concentration of DIC is a linear function of logarithmically

transformed chlorophyll concentration, a proxy for phytoplankton density. The relationship

is rescaled to approximately match measured values of phytoplankton from Goering et

al. (1990), such that:

δ13Cp =
ln [Chla]

2
− 20 (7.3)

where Chla is the chlorophyll-a concentration (Fig. 3.9).

Zooplankton often have very high turnover rates, with a value of λt(zoo) = 0.15

assumed here, taken as the typical value from the literature review in Jardine et al.

(2014). Zooplankton turnover rates are typically measured in situ as the rate of isotope

incorporation, and therefore include both catabolic turnover and somatic growth. Therefore
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zooplankton isotopic composition was modelled via eq. 7.1 with δ13Cprey(t) given by eq.

7.3.

For fish, turnover rates were determined by using the equations described in Thomas

and Crowther (2015) and Vander Zanden et al. (2015). Body mass was taken as the

average of those sampled in May 2016 (0.61g) and temperate as the in situ measured

over that period (11◦c), as this is the period of interest. This gave λt(fish) = 0.024 and

0.043 respectively. Growth rates in fish are variable but can be as high as 0.16d−1 in

fast growing post larval juveniles (Munk, 1991). Here, two growth rates were utilised,

λg(fish) = 0 for no growth (which makes eq. 7.2 equivalent to eq. 7.1) and λg(fish) = 0.05

for high growth. For simplicity, λg(fish) is assumed not to vary with time. Finally, for

both zooplankton and fish, a TDFcons of 1%� was assumed.

7.3 Appendix: Stable Isotope Data

This appendix includes tables of species and stable isotope data used in Chapters 3, 4

and 5.
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Table 7.1: List of fish species sampled from Southampton Water for which SIA were
conducted (N = number of samples).

Common Name Species Name N
5-BeardedRockling Ciliata mustela 4
BaillonsWrasse Symphodus bailloni 2
BallanWrasse Labrus bergylta 1
Bass Dicentrachus labrax 42
BlackGoby Gobius niger 7
CommonGoby Pomatoschistus microps 2
CorkwingWrasse Symphodus melops 3
Dogfish Scyliorhinus canicula 2
Eel Anuilla anguilla 2
Flounder Platichthys flesus 10
GreaterPipefish Syngnathus acus 2
GreyGurnard Eutrigla gurnardus 4
GreyMullet Liza ramada 4
GiltheadBream Sparus aurata 5
Herring Clupe harengus 26
LongSpineSeaScorpion Taurulus bubalis 1
PaintedGoby Pomatoschistus pictus 3
Plaice Pleuronectes platessa 2
Pollock Pollachius pollachius 1
Pout Trisopterus luscus 53
ReticulatedDragonette Callionymus reticulatus 6
RockGoby Gobius paganellus 18
SandGoby Pomatoschistus minutus 40
SandSmelt Atherina spp. 40
Scad Trachurus trachurus 3
Sole Solea solea 11
Sprat Sprattus sprattus 52
StarrySmoothHound Mustelus asterias 5
ThornbackRay Raja clavata 9
TransparentGoby Aphia minuta 42
TubGurnard Chelidonichthys lucerna 7
Whiting Merlangius merlangus 44
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Table 7.2: Raw stable isotope values of muscle from individual fish sampled from
Southampton Water.

Month Date Species SL (mm) Weight (g) Sample (mg) δ15N δ13C δ34S N% C% S% C/N C/S
Oct-15 03/11/15 5-BeardedRockling 108 11.94 1.997 14.75 -17.2 17.07 14.50 45.54 1.42 3.14 32.04
Oct-15 03/11/15 Bass 65 3.7 1.994 16.97 -18.02 12.76 13.35 44.23 1.48 3.31 29.84
Oct-15 03/11/15 Bass 126 33.37 1.998 14.82 -18.79 15.4 13.97 46.85 1.38 3.35 33.94
Oct-15 03/11/15 Herring 71 3.57 1.869 13.86 -18.35 15.13 12.71 41.16 1.31 3.24 31.41
Oct-15 03/11/15 Herring 71 3.17 1.822 14.14 -17.85 15.7 12.90 41.58 1.26 3.22 33.1
Oct-15 03/11/15 Pout 100 13.82 1.949 15.15 -17.7 15.68 13.82 43.89 1.47 3.18 29.93
Oct-15 03/11/15 Pout 96 13.48 1.865 14.71 -18.67 16.26 14.40 45.66 1.50 3.17 30.46
Oct-15 03/11/15 RockGoby 34 0.65 1.839 13.33 -18.5 17.09 13.04 43.69 1.52 3.35 28.81
Oct-15 03/11/15 RockGoby 39 0.87 1.815 13.07 -18.69 16.88 12.66 43.10 1.51 3.4 28.5
Oct-15 03/11/15 RockGoby 53 2.06 1.878 12.28 -19.11 16.67 13.79 45.84 1.62 3.32 28.3
Oct-15 03/11/15 SandGoby 41 0.74 1.833 13.83 -18.62 15.48 13.13 43.03 1.48 3.28 29.09
Oct-15 03/11/15 SandGoby 48 1.18 1.84 13.54 -20.02 13.55 13.44 43.86 1.55 3.26 28.31
Oct-15 03/11/15 SandGoby 53 1.53 1.934 14.07 -18.34 14.26 13.47 44.04 1.45 3.27 30.37
Oct-15 03/11/15 SandGoby 61 2.92 1.898 13.69 -19.12 12.54 13.43 44.11 1.46 3.28 30.17
Oct-15 03/11/15 SandSmelt 96 9.7 1.997 14.39 -19.69 14.74 13.90 46.23 1.41 3.32 32.8
Oct-15 03/11/15 SandSmelt 102 12.36 1.961 14.31 -18.03 13.67 14.53 46.72 1.41 3.22 33.24
Oct-15 03/11/15 Sole 176 72.6 1.914 14.37 -16.26 16.19 13.07 43.30 1.27 3.31 34.13
Oct-15 03/11/15 Sole 162 48.23 1.973 12.47 -19.1 14.14 14.58 46.27 1.47 3.17 31.53
Oct-15 03/11/15 Sole 106 11.54 1.851 13.11 -14.36 12.12 14.49 45.81 1.60 3.16 28.67
Oct-15 03/11/15 Sprat 42 0.69 1.858 12.52 -19.82 15.69 13.00 42.10 1.25 3.24 33.72
Oct-15 03/11/15 Sprat 43 0.84 1.92 12.54 -19.6 16.41 13.85 43.55 1.25 3.14 34.91
Oct-15 03/11/15 TransparentGoby 33 0.28 1.911 13.95 -19.11 17.77 11.46 40.65 1.28 3.55 31.86
Oct-15 03/11/15 TransparentGoby 39 0.56 1.798 14.07 -18.96 16.85 11.83 41.79 1.30 3.53 32.18
Oct-15 03/11/15 Whiting 248 107.97 1.826 14.87 -17.64 16.91 14.24 44.39 1.29 3.12 34.28
Oct-15 03/11/15 Whiting 180 54.14 1.903 14.66 -18.24 16.12 14.88 46.55 1.28 3.13 36.29
Nov-15 01/12/15 Bass 131 32.48 1.919 15.75 -17.41 14.58 13.96 45.40 1.43 3.25 31.69
Nov-15 01/12/15 Herring 67 0.59 1.926 13.55 -18.25 15.96 12.78 41.25 1.33 3.23 31.1
Nov-15 01/12/15 Herring 88 5.53 1.86 13.76 -18.34 15.75 13.64 43.03 1.27 3.15 33.99
Nov-15 01/12/15 Herring 101 9.07 1.851 13.89 -18.28 15.67 13.67 42.68 1.32 3.12 32.38
Nov-15 01/12/15 Pout 123 29.95 1.928 15.35 -17.73 15.63 14.52 45.77 1.52 3.15 30.16
Nov-15 01/12/15 Pout 150 42.96 1.948 14.71 -17.89 17.81 14.76 45.65 1.48 3.09 30.94
Nov-15 01/12/15 Pout 156 53.96 1.87 15.94 -16.75 15.88 14.56 45.35 1.43 3.11 31.64
Nov-15 01/12/15 RockGoby 35 0.62 1.971 12.98 -19.17 17.35 12.60 42.35 1.49 3.36 28.34
Nov-15 01/12/15 RockGoby 59 3.38 1.968 13.91 -16.39 17.1 13.88 44.81 1.64 3.23 27.3
Nov-15 01/12/15 SandGoby 41 0.68 1.848 14.03 -20.27 12.06 12.92 43.48 1.40 3.37 31.14
Nov-15 01/12/15 SandGoby 46 0.99 1.946 13.92 -19.34 11.73 14.26 46.18 1.49 3.24 30.93
Nov-15 01/12/15 SandGoby 52 1.62 1.905 14.94 -17.8 13.57 14.36 46.16 1.61 3.21 28.63
Nov-15 01/12/15 SandGoby 54 1.62 1.871 14.71 -17.21 15.17 14.10 45.21 1.55 3.21 29.15
Nov-15 01/12/15 SandGoby 64 3.47 1.909 14.49 -17.2 12.36 13.81 44.57 1.55 3.23 28.8
Nov-15 01/12/15 SandSmelt 47 0.9 1.949 14.26 -17.72 16.29 12.38 42.23 1.29 3.41 32.65
Nov-15 01/12/15 SandSmelt 100 11.25 1.892 14.79 -17.57 15.85 13.71 45.30 1.33 3.31 34.11
Nov-15 01/12/15 SandSmelt 115 17.95 1.855 14.57 -18.23 14.74 14.26 46.54 1.45 3.26 32.18
Nov-15 01/12/15 SandSmelt 102 13.58 1.92 13.92 -20.43 14.3 13.34 44.68 1.38 3.35 32.35
Nov-15 01/12/15 Sprat 41 0.51 1.839 12.63 -19.4 16.92 11.68 39.69 1.10 3.4 36.16
Nov-15 01/12/15 Sprat 120 21.54 1.843 11.8 -19.7 17.03 11.10 50.13 0.93 4.52 53.96
Nov-15 01/12/15 TransparentGoby 32 0.19 1.963 13.2 -19.29 17.11 11.38 40.31 1.21 3.54 33.25
Nov-15 01/12/15 TransparentGoby 36 0.33 1.972 13.87 -19.32 15.69 12.27 42.59 1.34 3.47 31.83
Nov-15 01/12/15 Whiting 239 125.31 1.879 14.77 -16.71 16.34 14.73 45.38 1.11 3.08 40.96
Nov-15 01/12/15 Whiting 250 159.42 1.833 15.91 -16.95 16.28 14.52 45.28 1.12 3.12 40.27
Nov-15 01/12/15 Whiting 284 246.51 1.873 15.24 -16.61 16.66 14.55 45.52 1.08 3.13 42.23
Dec-15 17/12/15 Bass 149 52.16 1.831 15.08 -18.05 15.11 13.95 45.79 1.39 3.28 32.95
Dec-15 17/12/15 Herring 78 5.19 1.981 14.45 -18.32 16.58 13.02 42.23 1.26 3.24 33.54
Dec-15 17/12/15 Herring 90 6.41 1.878 14.82 -17.94 16.97 13.43 43.13 1.32 3.21 32.65
Dec-15 17/12/15 SandSmelt 63 2.27 1.874 13.86 -19.34 14.39 13.63 45.03 1.45 3.3 31.13
Dec-15 17/12/15 SandSmelt 71 2.81 1.86 14.14 -18.73 14.31 13.61 44.74 1.37 3.29 32.7
Dec-15 17/12/15 SandSmelt 109 16.02 1.902 14.41 -18.18 14.66 14.28 46.51 1.43 3.26 32.55
Dec-15 17/12/15 SandSmelt 52 1.33 1.859 13.37 -19.51 14.86 11.78 40.44 1.25 3.43 32.37
Dec-15 17/12/15 SandSmelt 52 1.25 1.861 12.54 -20 15.88 12.71 42.02 1.38 3.31 30.37
Dec-15 17/12/15 Sprat 54 1.15 1.838 12.6 -19.32 16.01 13.04 41.30 1.16 3.17 35.51
Dec-15 17/12/15 Sprat 94 10.92 1.969 13.29 -18.44 17.22 11.93 47.12 0.95 3.95 49.54
Dec-15 17/12/15 Sprat 118 18.47 1.918 12.52 -18.78 16.74 11.81 48.82 0.93 4.13 52.51
Dec-15 17/12/15 Sprat 43 0.76 1.883 12.54 -19.86 16.6 12.66 41.40 1.20 3.27 34.43
Dec-15 17/12/15 Sprat 49 1.1 1.981 11.95 -19.15 16.35 13.43 41.14 1.11 3.06 37.21
Dec-15 17/12/15 Sprat 51 1.31 1.824 12.7 -19.56 16.5 12.10 39.86 1.21 3.3 33.04
Dec-15 17/12/15 TransparentGoby 35 0.25 1.906 13.51 -19.23 16.58 12.01 42.10 1.29 3.51 32.76
Dec-15 17/12/15 TransparentGoby 38 0.45 1.814 13.73 -18.66 17.5 12.01 42.40 1.30 3.53 32.53
Dec-15 17/12/15 TransparentGoby 40 0.5 1.996 13.66 -19.56 16.2 12.07 42.52 1.31 3.52 32.42
Dec-15 17/12/15 TransparentGoby 37 0.36 1.927 13.28 -19.91 16.19 11.96 43.02 1.33 3.6 32.29
Dec-15 17/12/15 Whiting 131 22.16 1.962 14.94 -18.33 16.81 14.16 44.51 1.29 3.14 34.61
Dec-15 17/12/15 Whiting 146 34.36 1.963 15.47 -18.22 15.59 14.83 46.42 1.34 3.13 34.7
Dec-15 17/12/15 Whiting 234 200.86 1.983 15.51 -18.16 14.49 14.82 46.77 1.11 3.16 42.32
Dec-15 17/12/15 Whiting 265 268.77 1.995 15.52 -16.66 16.6 14.40 45.39 1.07 3.15 42.45
Dec-15 10/12/15 Bass 210 152.66 1.939 14.75 -17.11 15.93 14.49 46.62 1.35 3.22 34.44
Dec-15 10/12/15 Bass 198 133.27 1.959 15.2 -18.06 15.55 13.98 45.63 1.38 3.26 33.08
Dec-15 10/12/15 Bass 196 135.58 1.913 15.66 -17.4 14.15 14.73 47.99 1.35 3.26 35.63
Dec-15 10/12/15 Herring 163 58.12 1.86 14.17 -18.53 14.93 13.67 46.82 1.09 3.42 43.03
Dec-15 10/12/15 Herring 156 49.77 1.874 14.22 -18.79 15.39 12.90 47.40 1.18 3.67 40.13
Dec-15 10/12/15 Herring 148 41.96 1.863 14.65 -18.64 15.85 14.03 47.52 1.37 3.39 34.73
Dec-15 10/12/15 Whiting 350 607.07 1.843 15.18 -16.84 16.73 15.27 47.77 1.10 3.13 43.4
Dec-15 10/12/15 Whiting 335 525.18 1.8 15.19 -16.78 17.09 14.88 47.06 1.13 3.16 41.49
Dec-15 10/12/15 Whiting 305 370.61 1.862 15.34 -16.78 15.68 14.81 45.88 1.15 3.1 39.93
Dec-15 10/12/15 Whiting 285 336.1 1.89 15.41 -16.79 15.89 14.24 44.84 1.06 3.15 42.43
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Table 7.2 continued.

Month Date Species SL (mm) Weight (g) Sample (mg) δ15N δ13C δ34S N% C% S% C/N C/S
Jan-16 21/01/16 Bass 134 35.56 1.841 15.63 -20.39 14.12 14.17 45.44 1.41 3.21 32.23
Jan-16 21/01/16 Bass 47 1.49 1.854 16.6 -17.67 15.06 13.06 44.73 1.38 3.42 32.32
Jan-16 21/01/16 Bass 162 66.75 1.991 16.5 -17.52 15.89 14.20 45.75 1.39 3.22 32.91
Jan-16 21/01/16 Herring 128 14.93 1.837 14.17 -17.93 18 12.69 40.70 1.23 3.21 32.97
Jan-16 21/01/16 Herring 85 5.03 1.934 14.41 -17.82 16.63 12.71 40.56 1.24 3.19 32.69
Jan-16 21/01/16 Pout 104 17.76 1.856 15.42 -18.86 15.81 14.13 44.82 1.51 3.17 29.7
Jan-16 21/01/16 Pout 115 25.02 1.945 15.97 -17.87 14.87 13.62 43.71 1.41 3.21 30.93
Jan-16 21/01/16 SandGoby 54 1.92 1.964 15.26 -18.25 12.7 13.11 43.37 1.34 3.31 32.26
Jan-16 21/01/16 SandGoby 44 0.95 1.933 14.15 -19.19 12.35 13.84 44.87 1.54 3.24 29.18
Jan-16 21/01/16 SandGoby 53 2.17 1.82 15.88 -19.47 14.62 13.76 44.86 1.40 3.26 32.11
Jan-16 21/01/16 SandSmelt 65 2.35 1.973 14.29 -19.53 15.35 12.98 45.82 1.39 3.53 32.88
Jan-16 21/01/16 SandSmelt 95 10.16 1.93 14.57 -18.76 13.66 13.75 45.99 1.48 3.35 31.04
Jan-16 21/01/16 Sprat 52 1.3 1.875 13.65 -19.19 16.28 13.22 44.17 1.24 3.34 35.54
Jan-16 21/01/16 Sprat 42 0.65 1.88 12.54 -19.5 16.27 13.86 43.19 1.22 3.12 35.5
Jan-16 21/01/16 Sprat 89 6.4 1.983 13.33 -17.8 17.74 13.10 42.69 1.16 3.26 36.74
Jan-16 21/01/16 Sprat 103 11.92 1.836 13.26 -17.06 16.38 13.78 44.83 1.12 3.25 40.03
Jan-16 21/01/16 Sprat 81 6.04 1.888 13.55 -18.68 15.53 13.35 43.68 1.22 3.27 35.84
Jan-16 21/01/16 TransparentGoby 33 0.23 1.906 14.13 -19.09 15.92 13.40 46.26 1.30 3.45 35.49
Jan-16 21/01/16 TransparentGoby 39 0.5 1.944 14.09 -18.98 16.49 11.85 41.73 1.29 3.52 32.33
Jan-16 21/01/16 TransparentGoby 37 0.38 1.87 13.94 -19.5 16.3 11.27 40.19 1.29 3.57 31.26
Jan-16 21/01/16 TubGurnard 171 78.15 1.893 15.2 -17.23 11.21 14.13 45.72 1.30 3.24 35.05
Jan-16 21/01/16 TubGurnard 232 189.23 1.938 16.19 -15.8 14.33 14.46 45.92 1.30 3.18 35.45
Jan-16 21/01/16 Whiting 125 17.02 1.804 14.34 -18.76 17.04 13.54 42.50 1.22 3.14 34.91
Jan-16 21/01/16 Whiting 187 58.6 1.958 15.02 -17.35 16.39 14.55 45.26 1.22 3.11 37.05
Jan-16 21/01/16 Whiting 225 176.33 1.89 15.59 -17.19 16.01 14.10 44.38 1.07 3.15 41.37
Jan-16 21/01/16 Whiting 252 196.09 1.969 15.17 -17.4 15.91 14.48 45.29 1.12 3.13 40.52
Feb-16 25/02/16 Bass 76 6.07 1.885 13.7 -19.05 18.13 11.31 39.68 1.26 3.51 31.6
Feb-16 25/02/16 Bass 123 25.51 1.995 18.72 -18.38 9.76 14.00 45.04 1.26 3.22 35.72
Feb-16 25/02/16 Bass 118 25.85 1.931 14 -19.54 11.94 13.67 44.78 1.31 3.28 34.08
Feb-16 25/02/16 Bass 62 3.26 1.834 16.98 -15.16 19.49 13.68 44.92 1.40 3.28 31.99
Feb-16 25/02/16 Bass 68 3.74 1.806 17.12 -14.6 19.29 14.17 46.48 1.47 3.28 31.71
Feb-16 25/02/16 Herring 97 9.24 1.942 16.46 -20.56 15.43 13.69 42.95 1.23 3.14 34.8
Feb-16 25/02/16 Herring 106 9.1 1.881 13.75 -17.98 17.06 12.98 39.75 1.14 3.06 34.89
Feb-16 25/02/16 Pout 117 30.97 1.864 15.46 -18.06 16.72 13.99 44.78 1.37 3.2 32.73
Feb-16 25/02/16 Pout 133 44.52 1.952 16.57 -17.01 14.07 14.19 45.33 1.41 3.2 32.06
Feb-16 25/02/16 Pout 146 60.38 1.948 14.94 -16.97 15.45 14.09 44.84 1.32 3.18 34.09
Feb-16 25/02/16 SandGoby 43 1.02 1.925 14.01 -20.6 10.95 12.93 44.00 1.49 3.4 29.48
Feb-16 25/02/16 SandGoby 55 2.3 1.844 15.58 -18.31 15.38 12.72 42.60 1.41 3.35 30.17
Feb-16 25/02/16 SandSmelt 51 0.87 1.824 13.26 -19.02 15.95 12.42 41.38 1.43 3.33 29.02
Feb-16 25/02/16 SandSmelt 92 8.27 1.956 14.64 -19.02 15.22 13.45 44.61 1.41 3.32 31.75
Feb-16 25/02/16 Sprat 44 0.85 1.82 12.79 -19.65 15.54 13.20 41.51 1.19 3.15 35.03
Feb-16 25/02/16 Sprat 52 1.45 1.94 13.21 -19.66 15.28 13.45 42.36 1.12 3.15 37.93
Feb-16 25/02/16 Sprat 57 1.95 1.933 14.03 -18.83 16.13 12.42 40.93 1.21 3.3 33.85
Feb-16 25/02/16 Sprat 63 3 1.894 13.44 -18.71 16.18 13.89 44.60 1.14 3.21 38.97
Feb-16 25/02/16 Sprat 102 9.8 1.886 11.49 -18.02 18.58 13.28 42.54 1.11 3.2 38.43
Feb-16 25/02/16 ThornbackRay 248 64.25 1.962 13.8 -17.51 16.26 15.90 44.22 1.00 2.78 44.36
Feb-16 25/02/16 ThornbackRay 307 145.98 1.808 14.77 -17.16 13.92 15.64 43.78 1.10 2.8 39.94
Feb-16 25/02/16 TransparentGoby 35 0.26 1.876 12.31 -17.27 17.87 12.97 46.26 1.15 3.57 40.09
Feb-16 25/02/16 TransparentGoby 40 0.46 1.989 13.88 -19.09 17.64 11.61 41.34 1.24 3.56 33.4
Feb-16 25/02/16 TransparentGoby 40 0.5 1.886 14.56 -19.49 16.13 11.50 40.43 1.30 3.52 31.05
Feb-16 25/02/16 Whiting 212 57.43 1.835 14.94 -17.52 16.29 13.93 43.80 1.07 3.14 41.06
Mar-16 23/03/16 Bass 80 6.52 1.863 17.92 -16.63 17.28 14.05 45.71 1.41 3.25 32.53
Mar-16 23/03/16 Bass 81 6.27 1.888 18.22 -14.76 13.1 13.55 45.21 1.41 3.34 32.15
Mar-16 23/03/16 BlackGoby 72 6.1 1.869 13.55 -18.43 14.99 13.99 46.63 1.36 3.33 34.31
Mar-16 23/03/16 Dogfish 541 619 1.926 14.2 -16.34 16.75 14.87 44.31 0.93 2.98 47.64
Mar-16 23/03/16 Dogfish 515 627 1.98 15.26 -16.45 15.92 15.62 44.41 0.97 2.84 45.64
Mar-16 23/03/16 Flounder 40 1.26 1.972 15.82 -26.12 3.5 12.56 41.74 1.21 3.32 34.49
Mar-16 23/03/16 Flounder 43 1.32 1.845 13.1 -29.46 5.35 12.38 41.79 1.25 3.37 33.4
Mar-16 23/03/16 Flounder 71 6.3 1.831 15.1 -25.13 11.06 11.87 39.55 1.28 3.33 30.91
Mar-16 23/03/16 Flounder 60 3.49 1.847 16.03 -28.04 -0.45 12.60 41.29 1.34 3.28 30.79
Mar-16 23/03/16 Flounder 63 4.26 1.828 12.65 -27.39 7.05 13.57 44.47 1.32 3.28 33.68
Mar-16 23/03/16 GuiltheadBream 126 60.96 1.873 15.42 -17.12 13.49 13.84 46.50 1.26 3.36 36.91
Mar-16 23/03/16 GuiltheadBream 121 50.29 1.843 14.47 -14.46 12.29 13.67 45.18 1.28 3.3 35.32
Mar-16 23/03/16 GuiltheadBream 114 45.14 1.893 16.6 -16.48 15.38 14.57 47.57 1.48 3.26 32.09
Mar-16 23/03/16 GuiltheadBream 103 30.59 1.876 16.5 -15.44 14.69 14.21 46.59 1.35 3.28 34.61
Mar-16 23/03/16 Herring 120 15.22 1.862 14.93 -18.24 17.6 13.64 43.45 1.25 3.19 34.73
Mar-16 23/03/16 Pout 95 13.29 1.968 15.32 -19.16 16.5 13.64 43.88 1.46 3.22 29.96
Mar-16 23/03/16 Pout 125 35.68 1.955 15.52 -17.8 15.02 13.34 43.28 1.35 3.25 32.13
Mar-16 23/03/16 Pout 161 73.76 1.885 15.94 -18.23 12.7 14.00 45.14 1.38 3.22 32.78
Mar-16 23/03/16 RockGoby 70 6.24 1.983 12.76 -18.75 17.58 12.84 42.68 1.57 3.32 27.26
Mar-16 23/03/16 SandGoby 35 0.36 1.862 13.76 -18.47 16.39 12.68 42.45 1.37 3.35 31.05
Mar-16 23/03/16 SandGoby 47 0.92 1.897 15.93 -16.74 11.43 11.89 40.42 1.39 3.4 29.08
Mar-16 23/03/16 SandGoby 43 0.81 1.861 14.29 -19.4 14.72 11.78 40.28 1.29 3.42 31.2
Mar-16 23/03/16 SandSmelt 69 3.1 1.929 14.21 -18.73 17.02 12.90 43.00 1.53 3.33 28.07
Mar-16 23/03/16 SandSmelt 71 3.18 1.879 14.02 -19.25 15.15 12.96 43.56 1.52 3.36 28.69
Mar-16 23/03/16 Sole 126 18.51 1.888 12.41 -19.29 11.58 13.62 43.48 1.47 3.19 29.68
Mar-16 23/03/16 Sprat 51 0.77 1.946 14.15 -20.04 16.32 12.64 43.88 1.10 3.47 39.93
Mar-16 23/03/16 Sprat 56 1.44 1.967 14.18 -20.07 15.5 12.32 42.14 1.15 3.42 36.7
Mar-16 23/03/16 TransparentGoby 40 0.46 1.987 14.16 -18.82 18.3 11.81 41.99 1.26 3.56 33.36
Mar-16 23/03/16 TransparentGoby 41 0.48 1.915 12.75 -18.29 18.2 12.13 42.16 1.26 3.48 33.47
Mar-16 23/03/16 TransparentGoby 42 0.66 1.938 14.58 -19 16.93 11.31 39.87 1.25 3.52 31.98
Mar-16 23/03/16 TubGurnard 124 28.78 1.968 14.42 -17.8 17.98 13.98 44.95 1.46 3.22 30.78
Mar-16 23/03/16 Whiting 248 124 1.892 14.97 -16.93 17.53 14.52 45.43 1.08 3.13 41.88
Mar-16 23/03/16 Whiting 103 7.13 1.829 13.96 -19.5 15.74 13.33 42.65 1.24 3.2 34.51
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Table 7.2 continued.

Month Date Species SL (mm) Weight (g) Sample (mg) δ15N δ13C δ34S N% C% S% C/N C/S
Mar-16 29/03/16 Bass 246 243.99 1.925 16.01 -16.03 13.22 14.35 45.91 1.15 3.2 39.8
Mar-16 29/03/16 Bass 189 119.3 1.829 15.37 -20.53 13.6 13.34 44.33 1.22 3.32 36.29
Mar-16 29/03/16 Bass 182 91.5 1.85 15.23 -18.28 16.34 13.88 45.53 1.27 3.28 35.91
Mar-16 29/03/16 Herring 172 65 1.963 14.2 -18.08 15.31 13.57 43.85 1.04 3.23 42.04
Mar-16 29/03/16 Herring 179 67.19 1.897 14.14 -17.84 15.3 13.92 44.80 1.05 3.22 42.77
Mar-16 29/03/16 Herring 174 56.63 1.806 11.66 -17.36 18.77 14.18 43.23 1.11 3.05 38.82
Mar-16 29/03/16 Pout 236 272.97 1.97 15.94 -17.38 14.09 14.06 45.22 1.34 3.22 33.67
Mar-16 29/03/16 Pout 196 195.95 1.828 14.66 -17.13 15.42 14.77 46.12 1.18 3.12 38.96
Mar-16 29/03/16 Pout 239 339.81 1.905 15.3 -17.65 14.41 13.18 42.40 1.28 3.22 33.05
Mar-16 29/03/16 Whiting 307 499.49 1.851 17.38 -18.32 14.63 14.52 46.76 1.44 3.22 32.48
Mar-16 29/03/16 Whiting 272 361.47 1.816 15.71 -16.98 16.2 13.92 44.79 1.03 3.22 43.69
Apr-16 21/04/16 5-BeardedRockling 177 55.21 1.843 14.96 -19.84 15.18 13.92 44.93 1.43 3.23 31.32
Apr-16 21/04/16 BaillonsWrasse 62 4.63 1.892 11.4 -18.59 15.99 13.40 44.54 1.53 3.33 29.14
Apr-16 21/04/16 Bass 66 3.99 1.915 17.34 -15.28 14.48 13.09 45.44 1.48 3.47 30.66
Apr-16 21/04/16 Bass 102 13.09 1.801 15.68 -16.13 13.92 13.98 45.28 1.52 3.24 29.74
Apr-16 21/04/16 BlackGoby 66 5.81 1.878 13.63 -18.59 13.26 13.92 45.27 1.57 3.25 28.88
Apr-16 21/04/16 BlackGoby 94 19.6 1.989 13.7 -19.27 10.45 13.32 44.46 1.45 3.34 30.66
Apr-16 21/04/16 CorkwingWrasse 73 7.45 1.98 14.05 -18.83 16.07 13.92 46.29 1.38 3.32 33.51
Apr-16 21/04/16 Flounder 54 2.52 1.806 13.37 -27.41 6.29 13.34 44.34 1.31 3.32 33.8
Apr-16 21/04/16 Flounder 77 8.78 1.861 13.24 -29.37 7.58 12.48 45.48 1.16 3.64 39.34
Apr-16 21/04/16 PaintedGoby 41 0.79 1.828 14.18 -17.68 16.97 13.05 42.80 1.47 3.28 29.08
Apr-16 21/04/16 PaintedGoby 42 0.8 1.89 14.1 -20.2 14.21 13.07 44.07 1.53 3.37 28.83
Apr-16 21/04/16 Pollock 208 83.29 1.844 15.03 -18.48 16.51 14.47 45.56 1.28 3.15 35.47
Apr-16 21/04/16 Pout 170 82.35 1.943 15.42 -19.6 15.3 14.34 46.47 1.35 3.24 34.39
Apr-16 21/04/16 ReticulatedDragonette 108 12.96 1.968 12.52 -17.97 14.17 14.76 46.25 1.33 3.13 34.78
Apr-16 21/04/16 ReticulatedDragonette 78 5.65 1.972 13.33 -20.74 14.85 14.17 45.90 1.36 3.24 33.76
Apr-16 21/04/16 ReticulatedDragonette 46 1.24 1.981 12.77 -21.91 13.41 13.74 44.72 1.38 3.26 32.48
Apr-16 21/04/16 ReticulatedDragonette 39 0.38 1.84 13.46 -18.05 16.2 10.90 35.81 1.19 3.29 30.1
Apr-16 21/04/16 RockGoby 40 0.93 1.859 13.16 -20.91 15.73 11.35 47.62 1.18 4.2 40.47
Apr-16 21/04/16 RockGoby 61 3.49 1.83 11.84 -19.14 14.96 13.24 44.22 1.67 3.34 26.44
Apr-16 21/04/16 SandGoby 35 0.37 1.915 13.87 -19.32 15.92 12.60 43.53 1.27 3.46 34.36
Apr-16 21/04/16 SandGoby 45 0.76 1.875 13.59 -20.42 15.43 11.51 42.21 1.31 3.67 32.18
Apr-16 21/04/16 SandGoby 52 1.18 1.887 12.98 -21.9 12.96 12.41 40.94 1.46 3.3 27.98
Apr-16 21/04/16 SandSmelt 51 1.17 1.888 14.48 -17.74 16.13 11.35 39.81 1.38 3.51 28.85
Apr-16 21/04/16 SandSmelt 60 1.89 1.828 13.99 -18.82 15.65 12.38 41.22 1.41 3.33 29.3
Apr-16 21/04/16 SandSmelt 101 11.4 1.89 16.31 -18.08 14.18 13.53 44.62 1.47 3.3 30.3
Apr-16 21/04/16 SandSmelt 103 12.5 1.814 14.29 -19.03 15.65 14.12 46.14 1.40 3.27 32.91
Apr-16 21/04/16 SandSmelt 117 15.45 1.899 14.39 -18.29 17.25 14.33 45.52 1.37 3.18 33.11
Apr-16 21/04/16 Scad 222 131.65 1.868 14.32 -18.54 17.23 14.17 47.35 1.04 3.34 45.59
Apr-16 21/04/16 TransparentGoby 34 0.27 1.89 12.7 -18.89 17.29 10.94 39.40 1.24 3.6 31.91
Apr-16 21/04/16 TransparentGoby 37 0.35 1.914 12.02 -18.7 18.23 11.59 41.58 1.24 3.59 33.53
Apr-16 21/04/16 TransparentGoby 36 0.29 1.98 11.97 -18.76 17.81 10.48 37.86 1.20 3.61 31.51
Apr-16 21/04/16 TransparentGoby 46 0.9 1.849 13.42 -19.28 16.87 11.55 42.07 1.27 3.64 33.07
Apr-16 21/04/16 TubGurnard 132 39.08 1.811 15.24 -19.07 12.22 13.49 43.63 1.40 3.24 31.19
Apr-16 21/04/16 TubGurnard 121 22.06 1.87 15.4 -17.62 15.24 13.46 43.59 1.58 3.24 27.58
Apr-16 21/04/16 Whiting 148 31.48 1.989 14.51 -20.09 12.89 13.54 43.51 1.18 3.21 36.87
Apr-16 21/04/16 Whiting 245 156.82 1.879 15.66 -16.6 16.56 14.03 44.81 1.02 3.19 43.94
May-16 16/05/16 Flounder 182 109.95 1.89 14.48 -16.92 8.52 14.64 46.62 1.49 3.18 31.21
May-16 16/05/16 Sprat 32 0.29 1.935 11.15 -16.84 16.9 12.47 41.36 1.13 3.32 36.52
May-16 16/05/16 Sprat 34 0.35 1.832 10.88 -17.01 16.85 12.41 41.29 1.18 3.33 34.99
May-16 16/05/16 Sprat 38 0.48 1.987 11.23 -16.79 17.44 11.74 40.65 1.13 3.46 35.95
May-16 16/05/16 TransparentGoby 34 0.25 1.843 11.96 -17.51 17.21 11.59 42.94 1.22 3.71 35.07
May-16 16/05/16 TransparentGoby 44 0.68 1.888 12.27 -16.92 17.24 11.53 41.47 1.17 3.6 35.3
May-16 16/05/16 TransparentGoby 43 0.85 1.958 12.29 -16.9 16.69 12.31 42.68 1.24 3.47 34.4
May-16 16/05/16 TransparentGoby 44 0.68 1.828 12.69 -17.4 17.17 12.13 42.48 1.21 3.5 35.18
May-16 16/05/16 TransparentGoby 49 1.27 1.938 16.88 -15.29 14.56 13.48 43.05 1.24 3.19 34.65
Jun-16 23/06/16 Bass 116 245.3 1.836 15.23 -17.22 15.85 14.15 45.03 0.99 3.18 45.48
Jun-16 23/06/16 CommonGoby 34 0.41 1.977 14.4 -18.73 9.83 12.73 41.53 1.36 3.26 30.62
Jun-16 23/06/16 CommonGoby 38 0.87 1.912 14.94 -23.46 12.9 13.18 43.24 1.46 3.28 29.54
Jun-16 23/06/16 Pout 64 4.98 1.911 13.52 -17.09 15.67 12.67 41.95 1.25 3.31 33.68
Jun-16 23/06/16 Pout 75 7.89 1.89 13.26 -17.39 15.91 13.70 44.29 1.44 3.23 30.86
Jun-16 23/06/16 Pout 35 0.38 1.931 13.25 -18.59 16.2 13.04 43.97 1.34 3.37 32.74
Jun-16 23/06/16 Pout 37 0.69 1.915 12.8 -18.39 16.27 10.39 35.40 1.24 3.41 28.63
Jun-16 23/06/16 SandSmelt 103 13 1.936 13.9 -18.27 14.93 13.35 44.87 1.30 3.36 34.64
Jun-16 23/06/16 Sole 186 88.39 1.835 12.55 -19.97 13.08 13.41 47.06 1.26 3.51 37.3
Jun-16 23/06/16 Sole 189 84.76 1.931 12.57 -19.07 11.24 13.81 44.50 1.21 3.22 36.79
Jun-16 23/06/16 Sprat 30 0.18 1.856 11.07 -19.62 16.98 11.58 39.41 1.24 3.4 31.91
Jun-16 23/06/16 Sprat 31 0.21 1.966 10.66 -19.58 16.98 11.85 39.41 1.16 3.32 34.06
Jun-16 23/06/16 Sprat 33 0.28 1.973 10.88 -19.7 17.01 12.22 39.82 1.18 3.26 33.73
Jun-16 23/06/16 Sprat 34 0.37 1.835 10.82 -19.56 16.36 12.04 39.76 1.14 3.3 34.84
Jun-16 23/06/16 Sprat 35 0.31 1.846 10.49 -19.01 17.82 12.21 39.92 1.16 3.27 34.29
Jun-16 23/06/16 TransparentGoby 40 0.56 1.821 12.46 -18.09 17.03 12.09 42.55 1.22 3.52 35.02
Jun-16 23/06/16 TransparentGoby 45 0.81 1.998 12.72 -17.74 17.16 11.30 40.49 1.14 3.58 35.42
Jun-16 23/06/16 TransparentGoby 43 0.66 1.869 12.62 -17.99 16.83 12.23 43.54 1.10 3.56 39.75
Jun-16 23/06/16 TransparentGoby 45 0.91 1.903 13.09 -18.16 17.29 11.61 42.49 1.25 3.66 33.92
Jun-16 29/06/16 Pout 192 175.07 1.852 15.16 14.44 13.80 1.15
Jun-16 29/06/16 Pout 175 124.42 1.836 14.15 -17.37 15.01 14.48 45.93 1.29 3.17 35.56
Jun-16 29/06/16 Whiting 232 152.72 1.962 15.11 -17.94 14.24 14.34 45.35 0.99 3.16 45.71
Jun-16 29/06/16 Whiting 219 140.2 1.911 14.51 -16.58 14.85 14.41 45.84 1.06 3.18 43.06
Jul-16 28/07/16 GreaterPipefish 296 10.96 2 12.89 -17.23 15.81 13.42 44.47 1.08 3.31 41.17
Jul-16 28/07/16 Pout 74 4.73 1.985 13.97 -17.77 15.19 13.23 42.92 1.25 3.24 34.33
Jul-16 28/07/16 Pout 87 8.67 1.953 14.16 -17.56 15.74 13.47 43.24 1.29 3.21 33.4
Jul-16 28/07/16 Pout 45 0.97 1.811 13.28 -18.25 17.37 11.91 40.58 1.21 3.41 33.43
Jul-16 28/07/16 RockGoby 66 5.71 1.856 11.81 -19.42 16.46 14.41 46.50 1.58 3.23 29.43
Jul-16 28/07/16 SandGoby 36 0.42 1.91 12.35 -18.17 15.98 12.21 40.83 1.31 3.34 31.09
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Table 7.2 continued.

Month Date Species SL (mm) Weight (g) Sample (mg) δ15N δ13C δ34S N% C% S% C/N C/S
Jul-16 28/07/16 SandGoby 40 0.7 1.918 11.48 -18.91 13.89 12.74 42.46 1.30 3.33 32.74
Jul-16 28/07/16 SandGoby 29 0.21 1.876 13.16 -18.27 14.32 11.88 39.77 1.32 3.35 30.2
Jul-16 28/07/16 SandGoby 31 0.22 1.908 12.8 -17.73 13.37 11.78 40.18 1.31 3.41 30.61
Jul-16 28/07/16 SandGoby 45 0.95 1.867 12.04 -18.73 16.32 11.65 38.85 1.21 3.33 32.18
Jul-16 28/07/16 SandSmelt 40 0.53 1.893 11.68 -20.45 16.09 11.06 41.35 1.14 3.74 36.25
Jul-16 28/07/16 SandSmelt 82 5.55 1.879 12.72 -18.29 14.5 13.28 44.29 1.24 3.34 35.66
Jul-16 28/07/16 Sprat 32 0.27 1.995 12.29 -19.36 16.66 11.93 40.66 1.13 3.41 35.88
Jul-16 28/07/16 Sprat 32 0.22 1.847 12.05 -19.91 16.98 11.90 40.76 1.08 3.42 37.59
Jul-16 28/07/16 Sprat 39 0.43 1.837 12.09 -19.59 17.51 11.48 39.51 1.16 3.44 33.95
Jul-16 28/07/16 Sprat 41 0.51 1.988 10.44 -20.39 16.75 12.58 41.21 1.10 3.28 37.53
Jul-16 28/07/16 Sprat 49 0.95 1.95 11.44 -19.98 16.52 11.96 41.86 1.18 3.5 35.45
Jul-16 28/07/16 StarrySmoothHound 449 215.3 1.906 15.54 -14.1 13.99 14.97 42.49 0.92 2.84 46.1
Jul-16 28/07/16 TransparentGoby 40 0.56 1.8 12.72 -18.3 16.67 11.74 41.47 1.27 3.53 32.57
Jul-16 28/07/16 TransparentGoby 41 0.72 1.915 13.68 -17.52 17.44 11.02 40.26 1.19 3.65 33.72
Jul-16 28/07/16 TransparentGoby 45 0.64 1.872 13.18 -18.88 17.22 10.81 44.79 1.08 4.14 41.59
Aug-16 23/08/16 Bass 49 1.62 1.948 14.37 -17.07 17.94 12.78 42.76 1.27 3.35 33.75
Aug-16 23/08/16 Bass 53 1.86 1.892 13.5 -18.61 16.82 12.45 41.31 1.41 3.32 29.24
Aug-16 23/08/16 Eel 197 8.99 1.93 12.87 -22.3 9.77 12.52 49.89 0.87 3.99 57.31
Aug-16 23/08/16 GreaterPipefish 354 26.99 1.905 13.03 -17.39 15.48 14.29 44.14 1.07 3.09 41.28
Aug-16 23/08/16 Pout 56 2.32 1.846 14.31 -17.8 16.66 13.13 42.26 1.27 3.22 33.18
Aug-16 23/08/16 Pout 67 3.54 1.921 14.44 -17.2 15.89 13.70 44.35 1.46 3.24 30.48
Aug-16 23/08/16 Pout 83 7.85 1.959 14.29 -17.08 15.98 12.99 42.44 1.39 3.27 30.44
Aug-16 23/08/16 Pout 85 8.66 1.932 14.62 -15.9 14.94 12.90 41.18 1.33 3.19 30.89
Aug-16 23/08/16 Pout 87 9.14 1.921 14.98 -16.44 16.32 13.46 43.06 1.42 3.2 30.27
Aug-16 23/08/16 Pout 98 12.49 1.959 13.87 -17.65 16.27 14.11 44.95 1.44 3.19 31.18
Aug-16 23/08/16 Pout 104 14.46 1.908 13.85 -17.58 15.3 14.10 44.13 1.43 3.13 30.92
Aug-16 23/08/16 RockGoby 57 3.41 1.948 11.99 -20.26 16.86 12.67 45.77 1.56 3.61 29.37
Aug-16 23/08/16 RockGoby 61 4.34 1.86 12.88 -19.6 16.66 12.58 43.82 1.30 3.48 33.73
Aug-16 23/08/16 SandGoby 37 0.5 1.82 11.95 -18.59 13.27 12.91 41.97 1.24 3.25 33.99
Aug-16 23/08/16 SandGoby 39 0.62 1.897 13.41 -17.01 12.95 11.71 40.15 1.32 3.43 30.43
Aug-16 23/08/16 SandSmelt 86 7.03 1.9 14 -16.58 13.64 13.44 44.95 1.35 3.34 33.42
Aug-16 23/08/16 Sole 195 95.17 1.918 12.15 -19.62 12.47 13.64 43.40 1.26 3.18 34.35
Aug-16 23/08/16 Sprat 38 0.56 1.838 12.53 -19.86 16.11 12.39 41.19 1.41 3.32 29.13
Aug-16 23/08/16 Sprat 40 0.57 1.812 12.06 -19.82 17.02 12.30 42.01 1.13 3.42 37.11
Aug-16 23/08/16 Sprat 61 1.65 1.842 11.62 -19.35 17.8 13.01 42.50 1.24 3.27 34.33
Aug-16 23/08/16 StarrySmoothHound 331 130.7 1.806 13.08 -17.23 13.64 16.03 45.61 1.09 2.85 41.7
Aug-16 23/08/16 StarrySmoothHound 299 93.92 1.889 14.21 -16.84 17.08 15.68 45.59 1.10 2.91 41.27
Aug-16 23/08/16 ThornbackRay 452 294.82 1.916 13.28 -17.17 14.02 16.17 45.22 1.06 2.8 42.76
Aug-16 23/08/16 ThornbackRay 385 342.38 1.855 13.63 -16.91 16.04 15.14 44.49 1.11 2.94 40.22
Aug-16 23/08/16 ThornbackRay 306 155.95 1.874 13.52 -16.97 14.57 16.09 45.61 1.06 2.83 43.02
Aug-16 23/08/16 ThornbackRay 420 447.66 1.815 13.19 -17.04 13.55 16.11 45.29 1.01 2.81 44.91
Sep-16 28/09/16 5-BeardedRockling 87 5.2 1.995 13.57 -18.25 17.59 13.87 44.78 1.35 3.23 33.25
Sep-16 28/09/16 5-BeardedRockling 143 28.82 1.858 13.84 -17.41 17.84 14.32 45.44 1.41 3.17 32.29
Sep-16 28/09/16 BaillonsWrasse 37 0.84 1.843 14.71 -17.58 16.22 12.34 41.11 1.35 3.33 30.48
Sep-16 28/09/16 Bass 55 2.13 1.803 13.64 -18.81 15.57 13.00 43.27 1.47 3.33 29.41
Sep-16 28/09/16 Bass 72 5.18 1.944 14.67 -17.15 14.13 13.34 43.44 1.45 3.26 30.06
Sep-16 28/09/16 Bass 75 6.9 1.888 16.34 -16.13 14.79 13.58 44.56 1.37 3.28 32.53
Sep-16 28/09/16 BlackGoby 46 1.76 1.867 12.42 -19.48 16.53 12.97 44.17 1.43 3.41 30.79
Sep-16 28/09/16 Flounder 183 111.02 1.836 12.28 -19.51 12.44 13.87 44.67 1.30 3.22 34.46
Sep-16 28/09/16 LongSpineSeaScorpion 47 2.23 1.895 12.13 -20.24 17.38 13.49 44.60 1.59 3.31 27.96
Sep-16 28/09/16 Plaice 146 5.8 1.92 11.77 -20.42 11.58 13.91 46.18 1.37 3.32 33.64
Sep-16 28/09/16 Pout 86 9.11 1.888 14.14 -18.08 15.95 13.89 44.76 1.49 3.22 30.13
Sep-16 28/09/16 ReticulatedDragonette 60 2.47 1.849 13.12 -17.93 16.69 13.74 43.92 1.55 3.2 28.32
Sep-16 28/09/16 RockGoby 67 6.48 1.99 11.63 -20.42 17.32 13.38 46.13 1.51 3.45 30.49
Sep-16 28/09/16 SandGoby 39 0.55 1.854 13.9 -17.93 14.85 11.96 41.16 1.30 3.44 31.65
Sep-16 28/09/16 SandSmelt 61 2.11 1.935 13.11 -20.08 14.37 12.62 43.32 1.39 3.43 31.15
Sep-16 28/09/16 SandSmelt 61 1.91 1.863 13.16 -19.94 14.47 13.41 44.24 1.38 3.3 31.96
Sep-16 28/09/16 SandSmelt 65 2.71 1.956 12.86 -19.9 14.84 13.69 45.74 1.38 3.34 33.24
Sep-16 28/09/16 SandSmelt 111 16.05 1.801 14.3 -18.19 13.99 13.85 45.19 1.33 3.26 33.93
Sep-16 28/09/16 Scad 189 102.88 1.825 14.24 -17.48 17.38 14.22 47.66 1.23 3.35 38.89
Sep-16 28/09/16 Sole 58 1.93 1.969 12.09 -19.72 14.28 13.46 44.22 1.45 3.28 30.39
Sep-16 28/09/16 Sole 71 3.5 1.918 10.81 -21.03 13.49 13.97 45.76 1.47 3.27 31.21
Sep-16 28/09/16 Sprat 41 0.86 1.809 12.49 -19.54 16.43 13.51 42.77 1.23 3.17 34.73
Sep-16 28/09/16 Sprat 40 0.6 1.834 12.96 -18.99 16.84 12.87 41.65 1.18 3.24 35.24
Sep-16 28/09/16 Sprat 45 0.85 1.932 12.41 -19.98 17.47 13.50 43.52 1.18 3.22 37.03
Sep-16 28/09/16 Sprat 48 1.14 1.981 11.74 -19.84 17.56 13.95 42.78 1.12 3.07 38.04
Sep-16 28/09/16 StarrySmoothHound 301 87.04 1.835 13.89 -17.03 14.83 15.71 43.71 1.19 2.78 36.87
Sep-16 28/09/16 TransparentGoby 30 0.17 1.854 13.05 -20.08 17.06 10.83 38.48 1.25 3.55 30.83
Sep-16 28/09/16 TubGurnard 100 15.38 1.973 12.73 -19.33 15.19 12.89 42.00 1.47 3.26 28.48
Sep-16 28/09/16 Whiting 124 22.1 1.846 14.58 -18.29 17.16 13.90 44.88 1.28 3.23 35.03
Sep-16 28/09/16 Whiting 134 24.98 1.85 14.88 -18.3 16.74 13.67 43.93 1.44 3.21 30.61
Oct-16 27/10/16 Herring 76 4.35 1.874 12.9 -18.99 14.44 13.53 43.44 1.27 3.21 34.27
Oct-16 27/10/16 Herring 83 5.03 1.876 14.02 -17.54 15.37 13.73 43.44 1.24 3.16 35.01
Oct-16 27/10/16 Pout 107 17.51 1.913 13.52 -18.74 13.57 14.45 45.86 1.55 3.17 29.64
Oct-16 27/10/16 Pout 115 20.98 1.985 13.94 -17.22 15.38 14.03 45.33 1.36 3.23 33.23
Oct-16 27/10/16 Pout 115 23.62 1.875 14.75 -17.18 13.2 14.43 46.05 1.52 3.19 30.36
Oct-16 27/10/16 Pout 155 60.09 1.842 14.58 -17 15.3 14.14 45.84 1.38 3.24 33.2
Oct-16 27/10/16 RockGoby 41 1.19 1.954 12.59 -21.24 16.41 13.36 45.37 1.44 3.4 31.54
Oct-16 27/10/16 SandGoby 45 1.07 1.878 13.42 -17.95 14.14 12.87 42.85 1.24 3.33 34.58
Oct-16 27/10/16 SandGoby 49 1.39 1.932 12.81 -18.85 12.7 12.53 42.47 1.28 3.39 33.16
Oct-16 27/10/16 SandGoby 49 1.34 1.962 13.86 -17.71 15.42 12.90 43.67 1.26 3.38 34.64
Oct-16 27/10/16 SandGoby 53 1.65 1.909 14.19 -17.39 14.64 13.11 44.28 1.31 3.38 33.92
Oct-16 27/10/16 SandGoby 57 1.94 1.842 13.96 -17.18 14.73 12.86 43.49 1.35 3.38 32.31
Oct-16 27/10/16 Sprat 37 0.47 1.874 11.14 -19.87 16.51 13.18 41.59 1.11 3.15 37.33
Oct-16 27/10/16 Sprat 40 0.68 1.827 11.95 -19.7 16.22 13.35 42.74 1.11 3.2 38.47
Oct-16 27/10/16 Sprat 40 0.69 1.969 12.34 -19.64 16.81 13.35 42.81 1.12 3.21 38.08
Oct-16 27/10/16 Sprat 43 0.81 1.981 11.81 -19.83 16.8 13.10 41.49 1.10 3.17 37.79
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Table 7.2 continued.

Month Date Species SL (mm) Weight (g) Sample (mg) δ15N δ13C δ34S N% C% S% C/N C/S
Oct-16 27/10/16 ThornbackRay 392 324.12 1.839 13.17 -16.67 15.22 16.61 44.15 0.85 2.66 52.03
Oct-16 27/10/16 TransparentGoby 31 0.21 1.813 13.15 -19.44 16.28 11.36 40.13 1.21 3.53 33.21
Oct-16 27/10/16 TransparentGoby 32 0.33 1.893 12.74 -20.08 16.83 11.04 39.90 1.29 3.61 31.05
Oct-16 27/10/16 TransparentGoby 31 0.31 1.976 12.89 -19.26 16.44 11.29 40.09 1.20 3.55 33.46
Oct-16 27/10/16 Whiting 159 35.99 1.914 14.31 -18.49 16.67 14.22 45.23 1.15 3.18 39.26
Oct-16 05/10/16 Bass 270 352.7 1.8888 14.81 -17.56 14.29 13.95 45.18 1.21 3.24 37.37
Oct-16 05/10/16 Bass 182 121.49 1.972 14.87 -17.36 13.97 14.76 47.18 1.34 3.2 35.19
Oct-16 05/10/16 Bass 175 92.41 1.83 14.83 -16.29 11.58 14.15 46.74 1.35 3.3 34.59
Oct-16 05/10/16 Pout 224 303.53 1.907 14.81 -17.57 13.8 14.76 47.09 1.34 3.19 35.27
Oct-16 05/10/16 Pout 143 55.79 1.903 14.84 -17.26 16.41 14.57 46.26 1.38 3.18 33.64
Oct-16 05/10/16 SandSmelt 121 21.96 1.837 14.41 -18.83 13.45 14.33 46.87 1.42 3.27 32.9
Oct-16 05/10/16 SandSmelt 124 22.07 1.804 14.28 -17.7 14.11 14.82 47.51 1.42 3.21 33.43
Oct-16 05/10/16 SandSmelt 114 17.24 1.934 14.52 -17.45 14.44 14.35 46.78 1.40 3.26 33.5
Oct-16 05/10/16 Whiting 295 283.65 1.821 15.19 -17.04 14.47 14.15 45.06 1.08 3.18 41.61
Oct-16 05/10/16 Whiting 268 196.31 1.934 14.96 -17.46 14.82 14.48 45.69 1.08 3.16 42.27
Nov-16 24/11/16 Bass 97 14 1.926 18.21 -14.46 12.79 13.56 44.43 1.36 3.28 32.58
Nov-16 24/11/16 BlackGoby 65 4.95 1.92 13.16 -18.81 14.63 13.43 45.03 1.42 3.35 31.71
Nov-16 24/11/16 BlackGoby 47 1.88 1.848 12.77 -19.39 12.88 12.68 43.11 1.30 3.4 33.2
Nov-16 24/11/16 CorkwingWrasse 110 33.17 1.936 15.06 -17.75 15.22 14.48 45.93 1.46 3.17 31.37
Nov-16 24/11/16 CorkwingWrasse 118 46.56 1.98 13.08 -20.38 15.71 13.57 44.62 1.34 3.29 33.37
Nov-16 24/11/16 Eel 776 1188.47 1.81 11 -28.05 4.15 6.98 57.13 0.47 8.19 121.03
Nov-16 24/11/16 PaintedGoby 31 0.24 1.97 14.03 -18.47 16.78 9.44 33.27 1.11 3.52 29.97
Nov-16 24/11/16 Plaice 86 9.33 1.817 13.1 -16.67 11.68 13.78 44.08 1.47 3.2 30.08
Nov-16 24/11/16 Pout 80 5.18 1.885 15.14 -18.92 16.73 13.59 44.11 1.35 3.25 32.6
Nov-16 24/11/16 Pout 92 10.79 1.898 14.54 -18.11 15.46 13.58 43.92 1.47 3.23 29.84
Nov-16 24/11/16 Pout 101 12.1 1.955 14.56 -20.08 16.1 14.01 45.26 1.40 3.23 32.24
Nov-16 24/11/16 Pout 114 16.96 1.92 14.27 -17.59 16.45 13.88 44.86 1.38 3.23 32.51
Nov-16 24/11/16 Pout 146 44.5 1.936 15.07 -18.24 15.17 13.85 43.86 1.35 3.17 32.44
Nov-16 24/11/16 RockGoby 61 4.26 1.847 12.54 -20.91 16.52 13.44 46.36 1.68 3.45 27.64
Nov-16 24/11/16 RockGoby 58 3.57 1.84 11.92 -19.53 16.09 12.76 47.05 1.41 3.69 33.4
Nov-16 24/11/16 SandGoby 39 0.53 1.967 13.74 -17.83 13.43 12.27 41.35 1.31 3.37 31.61
Nov-16 24/11/16 SandGoby 50 1.43 1.867 13.68 -18.26 13.97 12.70 42.78 1.40 3.37 30.63
Nov-16 24/11/16 SandGoby 59 3.15 1.955 13.31 -19.03 13.18 44.96 3.41
Nov-16 24/11/16 SandGoby 60 3.04 1.894 13.44 -19.38 13.6 12.60 42.67 1.38 3.39 30.99
Nov-16 24/11/16 Sole 75 3.62 1.959 12.81 -19.58 15.28 13.33 43.48 1.61 3.26 27.06
Nov-16 24/11/16 Sprat 39 0.55 1.894 11.98 -19.73 16.21 12.99 41.40 1.11 3.19 37.3
Nov-16 24/11/16 Sprat 42 0.73 1.996 11.88 -19.9 15.56 13.09 41.51 1.11 3.17 37.31
Nov-16 24/11/16 TransparentGoby 33 0.31 1.884 12.16 -20.25 16.19 10.10 37.07 1.20 3.67 30.89
Nov-16 24/11/16 TransparentGoby 35 0.29 1.873 12.39 -20.23 16.98 11.13 39.02 1.23 3.5 31.68
Nov-16 24/11/16 Whiting 137 17.74 1.881 14.88 -17.06 16.73 13.53 42.88 1.09 3.17 39.43
Nov-16 24/11/16 Whiting 141 26.38 1.82 14.67 -18.27 16.6 13.34 42.44 1.12 3.18 37.76
Nov-16 24/11/16 Whiting 227 85.28 1.845 16.43 -16.66 15.63 13.23 41.69 1.03 3.15 40.44
Nov-16 24/11/16 Whiting 240 140.29 1.968 15.38 -16.8 15.71 13.65 42.57 0.93 3.12 46
Nov-16 24/11/16 Whiting 251 111.04 1.846 16.32 -16.88 15.96 13.64 42.52 1.09 3.12 38.91
Dec-16 16/12/16 BallanWrasse 116 36.22 1.848 13.03 -19.64 15.88 14.12 45.96 1.38 3.25 33.24
Dec-16 16/12/16 Bass 51 1.88 1.875 14.95 -18.41 15.69 13.11 43.40 1.41 3.31 30.71
Dec-16 16/12/16 Bass 64 3.57 1.892 14.86 -19.86 13.19 13.08 43.90 1.38 3.36 31.84
Dec-16 16/12/16 Bass 155 55.82 1.827 16.07 -17.91 15.46 13.35 43.89 1.23 3.29 35.66
Dec-16 16/12/16 GreyGurnard 128 22.86 1.897 13.99 -17.82 16.88 13.69 44.22 1.42 3.23 31.24
Dec-16 16/12/16 GreyMullet 83 8.72 1.976 8.3 -12.84 10.99 12.96 43.37 1.23 3.35 35.17
Dec-16 16/12/16 GreyMullet 151 50.18 1.843 13.23 -18.76 12.93 13.10 42.61 1.26 3.25 33.9
Dec-16 16/12/16 GuiltheadBream 140 77.91 1.851 14.02 -13.65 10.83 13.51 46.24 1.17 3.42 39.4
Dec-16 16/12/16 Herring 121 18.15 1.883 14.52 -17.1 16.51 12.56 41.10 1.13 3.27 36.25
Dec-16 16/12/16 Pout 104 14.25 1.923 14.54 -17.86 16.49 13.48 43.32 1.38 3.21 31.46
Dec-16 16/12/16 Pout 111 17.19 1.908 15.15 -17.15 15.82 13.74 43.51 1.53 3.17 28.37
Dec-16 16/12/16 Pout 130 30.94 1.919 15.08 -17.82 15.24 13.64 44.33 1.38 3.25 32.13
Dec-16 16/12/16 Pout 174 79.54 1.828 14.6 -17.57 14.07 13.41 43.21 1.33 3.22 32.45
Dec-16 16/12/16 ReticulatedDragonette 59 2.05 1.869 13.83 -17.87 15.66 13.50 44.11 1.39 3.27 31.83
Dec-16 16/12/16 RockGoby 56 3.76 1.916 12.14 -20.05 16.08 12.62 47.62 1.41 3.77 33.82
Dec-16 16/12/16 RockGoby 57 3.44 1.997 12.98 -19.72 16.17 12.50 46.99 1.40 3.76 33.58
Dec-16 16/12/16 SandGoby 37 0.54 1.87 13.36 -18.25 16.72 12.06 41.82 1.37 3.47 30.51
Dec-16 16/12/16 SandGoby 53 1.91 1.902 13.03 -19.67 13.23 12.62 43.59 1.39 3.45 31.42
Dec-16 16/12/16 SandSmelt 51 1.05 1.855 14.63 -17.86 15.11 11.70 39.25 1.18 3.36 33.28
Dec-16 16/12/16 SandSmelt 114 17.97 1.808 14.57 -18.91 14.61 12.78 42.88 1.27 3.36 33.75
Dec-16 16/12/16 Sole 235 157.39 1.862 12.81 -18.54 14.79 13.37 44.95 1.30 3.36 34.51
Dec-16 16/12/16 Sprat 63 2.94 1.856 12.94 -18.57 15.76 12.69 43.78 1.00 3.45 43.73
Dec-16 16/12/16 Sprat 135 24.05 1.865 13 -17.38 17.17 12.30 44.64 0.85 3.63 52.43
Dec-16 16/12/16 StarrySmoothHound 299 89.31 1.852 13.68 -16.63 14.51 15.30 44.67 1.08 2.92 41.26
Dec-16 16/12/16 ThornbackRay 348 201.82 1.927 13.31 -17.38 14.05 15.34 43.78 1.10 2.85 39.9
Dec-16 16/12/16 TransparentGoby 39 0.42 1.82 13.72 -18.44 16.86 11.17 40.34 1.22 3.61 33.11
Dec-16 16/12/16 TubGurnard 182 96.58 1.868 13.93 -15.72 12.13 13.36 43.87 1.29 3.28 34.13
Dec-16 16/12/16 Whiting 137 25.07 1.821 14.6 -17.66 17.7 13.53 42.64 1.16 3.15 36.61
Dec-16 16/12/16 Whiting 159 34.97 1.946 15.23 -18.23 16.91 13.34 42.63 1.16 3.2 36.76
Dec-16 16/12/16 Whiting 164 41.83 1.889 14.77 -18.29 16.65 13.94 44.29 1.16 3.18 38.29
Dec-16 16/12/16 Whiting 224 91.81 1.876 16.29 -16.89 16.31 14.17 43.72 0.93 3.09 46.83
Dec-16 14/12/16 Bass 239 256.44 1.962 16.04 -16.85 15.25 13.99 44.78 1.32 3.2 33.86
Dec-16 14/12/16 Bass 196 127 1.876 15.47 -17.83 14.36 14.08 46.33 1.28 3.29 36.32
Dec-16 14/12/16 Bass 190 117.92 1.963 14.93 -17.79 14.5 13.69 44.62 1.26 3.26 35.46
Dec-16 14/12/16 Herring 130 23.14 1.869 13.85 -18.12 17.26 13.30 46.16 1.03 3.47 44.68
Dec-16 14/12/16 Herring 124 19.05 1.999 14.14 -17.66 16.92 13.87 44.67 1.03 3.22 43.32
Dec-16 14/12/16 Pout 193 120.7 1.909 15.39 -17.5 15.45 14.16 45.11 1.19 3.19 37.97
Dec-16 14/12/16 Pout 165 73.05 1.955 15.67 -16.37 13.9 14.15 45.62 1.37 3.22 33.21
Dec-16 14/12/16 Pout 167 75.27 1.868 12.64 -19.51 15.61 14.39 48.25 1.51 3.35 32.06
Dec-16 14/12/16 SandSmelt 105 13.31 1.892 12.66 -20.53 12.97 13.24 43.77 1.46 3.31 29.99
Dec-16 14/12/16 SandSmelt 102 11.33 1.948 16.25 -16.02 16.01 12.97 43.25 1.38 3.34 31.33
Dec-16 14/12/16 SandSmelt 96 9.19 1.978 13.84 -18.21 12.76 13.95 46.03 1.53 3.3 30
Dec-16 14/12/16 Whiting 264 151.19 1.895 15.46 -17.05 15.16 13.69 42.82 1.06 3.13 40.41
Dec-16 14/12/16 Whiting 211 9.96 1.953 15.39 -17.94 16.16 13.82 43.85 1.05 3.17 41.83
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Table 7.2 continued.

Month Date Species SL (mm) Weight (g) Sample (mg) δ15N δ13C δ34S N% C% S% C/N C/S
Jan-17 26/01/17 Bass 67 4.05 1.892 15.21 -17.98 14.05 13.18 43.10 1.47 3.27 29.34
Jan-17 26/01/17 Bass 87 9 1.898 15.51 -19.51 13.42 13.27 44.09 1.41 3.32 31.32
Jan-17 26/01/17 Bass 149 44.87 1.959 15.8 -17.08 16.37 13.49 44.35 1.23 3.29 36.08
Jan-17 26/01/17 Bass 164 59.15 1.862 16.09 -16.71 11.05 13.67 44.80 1.35 3.28 33.12
Jan-17 26/01/17 BlackGoby 29 0.31 1.974 12.18 -20.48 11.61 11.69 40.42 1.41 3.46 28.64
Jan-17 26/01/17 Flounder 187 93.54 1.803 13.47 -18.57 11.68 12.67 40.18 1.16 3.17 34.5
Jan-17 26/01/17 GreyGurnard 166 67.69 1.895 15.11 -15.51 10.28 13.73 45.06 1.28 3.28 35.23
Jan-17 26/01/17 GreyGurnard 161 60.64 1.862 15.81 -15.28 15.14 13.98 45.12 1.31 3.23 34.57
Jan-17 26/01/17 GreyGurnard 136 42.67 1.914 14.61 -16.5 14.6 13.86 45.06 1.44 3.25 31.33
Jan-17 26/01/17 GreyMullet 140 45.64 1.96 12.92 -13.3 15.76 14.13 45.93 1.25 3.25 36.77
Jan-17 26/01/17 GreyMullet 174 88.15 1.906 14.43 -13.73 14.11 14.14 45.79 1.17 3.24 39.18
Jan-17 26/01/17 Herring 90 5.5 1.84 13.53 -18.06 16.1 13.12 43.05 1.14 3.28 37.71
Jan-17 26/01/17 Herring 95 7.15 1.858 13.18 -18.15 14.81 13.11 41.80 1.20 3.19 34.92
Jan-17 26/01/17 Herring 194 54.59 1.942 11.83 -18.32 18.68 13.09 40.81 1.00 3.12 40.88
Jan-17 26/01/17 Pout 131 28.91 1.99 14.24 -18.13 14.73 14.04 44.30 1.31 3.16 33.8
Jan-17 26/01/17 RockGoby 53 2.46 1.852 12.73 -19.9 9.91 13.76 45.44 1.63 3.3 27.83
Jan-17 26/01/17 SandGoby 52 2.22 1.862 14.39 -18.96 10.55 12.87 43.46 1.42 3.38 30.61
Jan-17 26/01/17 SandSmelt 95 8.67 1.815 14.1 -19.26 13.73 13.24 42.85 1.29 3.24 33.24
Jan-17 26/01/17 SandSmelt 97 8.74 1.884 14.08 -17.8 14.52 14.17 46.10 1.37 3.25 33.61
Jan-17 26/01/17 Scad 208 117.21 1.848 13.54 -18.54 16.3 13.51 45.14 0.90 3.34 50.16
Jan-17 26/01/17 Sprat 51 1.16 1.815 12.96 -17.85 16.86 12.68 41.03 1.11 3.24 36.83
Jan-17 26/01/17 Sprat 52 1.4 1.877 12.96 -20.7 15.19 13.62 44.87 1.07 3.29 41.8
Jan-17 26/01/17 ThornbackRay 385 311.7 1.954 13.62 -16.45 13.15 16.37 44.30 0.78 2.71 56.82
Jan-17 26/01/17 TransparentGoby 40 0.48 1.934 13.36 -18.46 16.64 11.17 40.05 1.21 3.59 33.18
Jan-17 26/01/17 TransparentGoby 41 0.47 1.948 13.42 16.04 11.81 1.18
Jan-17 26/01/17 Whiting 130 20.42 1.851 14.34 -17.65 15.77 13.36 43.32 1.05 3.24 41.39
Jan-17 26/01/17 Whiting 161 38.45 1.96 14.4 -17.94 15.39 13.61 43.42 1.02 3.19 42.52

Table 7.3: Raw stable isotope values of plankton filtrate (100µm mesh size).

Month Date Sample Type Sample (mg) δ15N δ13C δ34S N% C% S% C/N C/S
Oct-15 03/11/15 PlanktonFiltrate 5.524 8.07 -24.63 12.92 1.21 1.73 0.33 1.44 5.19
Oct-15 03/11/15 PlanktonFiltrate 5.976 8.07 -24.46 13.57 1.14 1.63 0.32 1.44 5.04
Oct-15 03/11/15 PlanktonFiltrate 5.695 7.99 -24.2 16.01 1.10 1.58 0.37 1.44 4.24
Nov-15 01/12/15 PlanktonFiltrate 7.61 8.17 -23.75 13.46 0.74 1.06 0.39 1.43 2.71
Nov-15 01/12/15 PlanktonFiltrate 6.649 8.15 -23.7 15.56 0.66 0.94 0.48 1.42 1.98
Nov-15 01/12/15 PlanktonFiltrate 6.033 8.34 -23.7 16.75 0.54 0.75 0.44 1.4 1.7
Dec-15 17/12/15 PlanktonFiltrate 7.439 9.51 -24.23 14.84 0.96 1.38 0.33 1.44 4.17
Dec-15 17/12/15 PlanktonFiltrate 7.182 9.82 -23.77 17.44 1.18 1.71 0.40 1.45 4.28
Dec-15 17/12/15 PlanktonFiltrate 6.985 9.73 -23.81 18.22 0.97 1.40 0.45 1.44 3.12
Jan-16 21/01/16 PlanktonFiltrate 7.734 7.24 -27.16 1.95 0.71 1.01 0.48 1.43 2.12
Jan-16 21/01/16 PlanktonFiltrate 7.853 7.28 -27.18 1.85 0.75 1.07 0.51 1.43 2.12
Jan-16 21/01/16 PlanktonFiltrate 6.966 7 -27.29 7.94 0.61 0.86 0.53 1.42 1.64
Feb-16 25/02/16 PlanktonFiltrate 6.272 10.32 -24.89 12.66 0.89 1.27 0.38 1.43 3.37
Feb-16 25/02/16 PlanktonFiltrate 6.429 10.52 -24.91 13.54 0.84 1.20 0.39 1.43 3.11
Feb-16 25/02/16 PlanktonFiltrate 7.253 10.29 -24.98 13.35 0.89 1.28 0.37 1.44 3.45
Mar-16 23/03/16 PlanktonFiltrate 6.319 9.21 -25.13 16.64 0.32 0.43 0.43 1.35 1
Mar-16 23/03/16 PlanktonFiltrate 6.015 9.06 -25.03 16.43 0.23 0.30 0.43 1.28 0.7
Mar-16 23/03/16 PlanktonFiltrate 6.181 8.85 -25.45 16.55 0.27 0.35 0.41 1.31 0.86
Apr-16 21/04/16 PlanktonFiltrate 6.518 9.52 -23.04 17.62 0.79 1.13 0.43 1.43 2.65
Apr-16 21/04/16 PlanktonFiltrate 7.192 9.77 -22.51 19.09 1.03 1.48 0.42 1.44 3.54
Apr-16 21/04/16 PlanktonFiltrate 6.578 9.64 -22.7 16.87 0.95 1.36 0.42 1.44 3.27
May-16 21/05/16 PlanktonFiltrate 7.854 7 -26.96 15.2 0.82 1.18 0.42 1.44 2.85
May-16 21/05/16 PlanktonFiltrate 9.882 7.26 -26.69 14.34 0.94 1.36 0.40 1.45 3.42
May-16 21/05/16 PlanktonFiltrate 11.35 7.18 -26.62 14.65 1.07 1.56 0.39 1.46 4.04
Jun-16 21/06/16 PlanktonFiltrate 11.822 7.71 -23.35 12.67 2.01 2.95 0.41 1.47 7.26
Jun-16 21/06/16 PlanktonFiltrate 9.975 7.65 -23.72 13.18 1.74 2.54 0.42 1.46 6.11
Jun-16 21/06/16 PlanktonFiltrate 8.575 7.66 -23.45 13.23 1.56 2.28 0.42 1.46 5.38
Jul-16 28/07/16 PlanktonFiltrate 7.287 8.89 -23.31 14.8 1.10 1.59 0.55 1.45 2.9
Jul-16 28/07/16 PlanktonFiltrate 7.475 8.86 -24.07 17.21 1.27 1.85 0.46 1.45 4.02
Jul-16 28/07/16 PlanktonFiltrate 7.475 8.83 -23.76 16.78 1.30 1.88 0.45 1.45 4.14
Aug-16 23/08/16 PlanktonFiltrate 8.032 9.33 -24.64 17.62 2.34 3.42 0.43 1.47 7.93
Aug-16 23/08/16 PlanktonFiltrate 7.906 9.4 -24.71 17.13 1.72 2.51 0.40 1.46 6.3
Aug-16 23/08/16 PlanktonFiltrate 7.491 9.46 -24.61 17.99 1.63 2.37 0.42 1.46 5.64
Sep-16 28/09/16 PlanktonFiltrate 7.86 7.51 -24.59 14.64 1.63 2.38 0.47 1.46 5.1
Sep-16 28/09/16 PlanktonFiltrate 9.84 7.74 -24.59 17.08 1.69 2.47 0.40 1.46 6.12
Sep-16 28/09/16 PlanktonFiltrate 11.136 7.92 -24.4 15.67 1.78 2.60 0.40 1.47 6.49
Oct-16 27/10/16 PlanktonFiltrate 7.695 6.98 -23.87 16.66 0.83 1.20 0.43 1.44 2.77
Oct-16 27/10/16 PlanktonFiltrate 10.291 7.36 -23.89 16.73 1.46 2.14 0.39 1.46 5.46
Oct-16 27/10/16 PlanktonFiltrate 8.333 6.99 -24.29 16.97 1.19 1.72 0.42 1.45 4.15
Nov-16 24/11/16 PlanktonFiltrate 7.033 7.17 -25.54 7.99 0.53 0.75 0.53 1.41 1.43
Nov-16 24/11/16 PlanktonFiltrate 10.196 7.38 -25.45 5.46 1.06 1.55 0.57 1.45 2.71
Nov-16 24/11/16 PlanktonFiltrate 9.247 7.34 -25.14 7.7 0.74 1.06 0.50 1.44 2.13
Dec-16 16/12/16 PlanktonFiltrate 8.111 8.6 -24.75 16.03 1.50 2.19 0.42 1.46 5.18
Dec-16 16/12/16 PlanktonFiltrate 7.391 9.22 -23.99 16.66 1.75 2.56 0.43 1.46 5.95
Dec-16 16/12/16 PlanktonFiltrate 7.231 8.58 -24.8 17.24 1.12 1.62 0.44 1.45 3.66
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Table 7.4: Raw stable isotope values of production sources.

Month Date Species Sample (mg) d15N d13C d34S N% C% S% C/N C/S
Jul-16 28/07/16 Fucus serratus 1.959 6.25 -18.88 20.25 2.54 35.68 1.08 14.04 33.16
Jul-16 28/07/16 Fucus vesiculosus 1.868 14.66 -18.87 15.95 12.26 46.53 1.63 3.79 28.49
Jul-16 28/07/16 Laminaria sp. 1.912 5.8 -19.68 20.39 3.30 37.02 0.86 11.23 42.99
Jul-16 28/07/16 Tricellaria (inoptinata) 1.952 6.1 -12.95 19.11 1.22 14.78 0.52 12.08 28.28
Jul-16 28/07/16 Tricellaria (inoptinata) 1.987 5.83 -11.89 19.55 1.38 14.53 0.54 10.5 26.74
Jul-16 28/07/16 Tricellaria (inoptinata) 1.82 5.71 -12.65 18.62 1.71 15.20 0.60 8.89 25.28
Jul-16 28/07/16 Ulva lactusa 1.847 9.57 -11.64 19.84 4.65 37.38 2.80 8.03 13.34
Jul-16 28/07/16 Ulva lactusa 1.868 9.78 -13.49 19.95 4.22 36.91 2.94 8.75 12.57
Jul-16 28/07/16 Ulva lactusa 1.893 8.56 -13.77 19.49 5.11 38.01 2.55 7.44 14.93
Jul-16 28/07/16 PlanktonFiltrate 7.287 8.89 -23.31 14.8 1.10 1.59 0.55 1.45 2.9
Jul-16 28/07/16 PlanktonFiltrate 7.475 8.86 -24.07 17.21 1.27 1.85 0.46 1.45 4.02
Jul-16 28/07/16 PlanktonFiltrate 7.475 8.83 -23.76 16.78 1.30 1.88 0.45 1.45 4.14
Jul-16 28/07/16 Ceramium sp. 1.871 9.2 -23.1 20.54 5.97 38.58 3.26 6.46 11.85
Jul-16 28/07/16 Chondrus crispus 1.841 7.5 -28.11 21.71 3.34 32.84 5.00 9.84 6.57
Jul-16 28/07/16 Gracilaria sp. 1.857 10.26 -19.54 21.63 3.24 29.60 5.11 9.14 5.8
Jul-16 28/07/16 Halurus flosculosus 1.844 6.96 -33.93 20.01 5.71 40.00 3.10 7.01 12.92
Jul-16 28/07/16 Porphyra umbilicalis 1.846 8.82 -21.1 20.73 3.99 38.36 2.26 9.61 16.99
Jul-16 28/07/16 Leaf litter 1.876 4.94 -27.79 11.32 1.16 45.44 0.31 39.25 146.35
Jul-16 28/07/16 Leaf litter 1.875 4.44 -27.5 15.33 0.73 44.95 0.28 61.18 158.34
Jul-16 28/07/16 Leaf litter 1.904 3.56 -28.11 12.51 0.62 41.32 0.52 66.3 79.15
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