1	Marine omega-3 fatty acid supplementation in non-alcoholic fatty liver disease:
2	Plasma proteomics in the randomized WELCOME* trial
3	
4	Antigoni Manousopoulou ^{1#} , Eleonora Scorletti ^{2,3#} , Debbie E. Smith ^{2,3} , Jie Teng ^{1£} , Miltiadis
5	Fotopoulos ¹ , Theodoros I. Roumeliotis ^{1@,} Geraldine F. Clough ^{2,3} , Philip C. Calder ^{2,3&} ,
6	Christopher D. Byrne ^{2,3&} and Spiros D. Garbis ^{1,4&}
7	
8	¹ Institute for Life Sciences, University of Southampton, Southampton, UK; ² Human Development and Health Academic Unit,
9	Faculty of Medicine, University of Southampton, Southampton, UK; ³ National Institute for Health Research Southampton
10	Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton,
11	Southampton, UK; ⁴ Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK;
12	[£] Current address: Tianjin Medical University – School of Pharmacy, Tianjin, China; [@] Current address: Welcome Trust Sanger
13	Institute, Cambridge, UK
14	# These authors have contributed equally to the study
15	& SDG, CDB, and PCC jointly led the study and are co-senior authors
16	
17	To whom correspondence should be addressed:
18	Spiros D. Garbis
19	Faculty of Medicine, University of Southampton
20	E-mail address: S.D.Garbis@soton.ac.uk
21	
22	The authors have no conflict of interest to disclose.
23	
24	
25	
26	
27	
28	
29	

- 30 **Abstract**
- 31 Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is a liver condition
- 32 characterised by liver fat accumulation and often considered to be the liver manifestation of
- 33 metabolic syndrome. The aim of this study was to examine in patients with NAFLD the
- 34 system-wide effects of treatment with docosahexaenoic acid + eicosapentaenoic acid
- 35 (DHA+EPA) versus placebo on the plasma proteome.
- Methods: Plasma from patients that participated in a 15 to 18 months randomised, double-
- 37 blind placebo-controlled trial testing the effects of 4 g DHA+EPA daily was analysed using
- 38 depletion-free quantitative proteomics.
- 39 Results: Bioinformatics interpretation of the proteomic analysis showed that DHA+EPA
- 40 treatment affected pathways involving blood coagulation, immune/inflammatory response
- and cholesterol metabolism (p<0.05). Two key proteins of cardiovascular risk, prothrombin
- 42 and apolipoprotein B-100, were shown to decrease as a result of DHA+EPA
- supplementation [Prothrombin: Males DHA+EPA Mean iTRAQ log₂ratio (SD) = -0.13 (0.20) p
- 44 = 0.05, Females DHA+EPA Mean iTRAQ log₂ratio (SD) = -0.48 (0.35) p = 0.03; Apo B-100:
- 45 Males DHA+EPA Mean iTRAQ log₂ratio (SD) = -0.24 (0.16) p = 0.01, Females DHA+EPA
- 46 Mean iTRAQ log_2 ratio (SD) = -0.15 (0.05) p = 0.02].
- 47 Conclusions: Plasma proteomics applied in a randomised, placebo-controlled trial showed
- 48 that high dose DHA+EPA treatment in patients with NAFLD affects multiple pathways
- 49 involved in chronic non-communicable diseases.
- 50 **WELCOME*** = **W**essex **E**valuation of fatty **L**iver and **C**ardiovascular markers in NAFLD
- 51 (non-alcoholic fatty liver disease) with **O**Macor th**E**rapy
- 52 **Keywords**: plasma proteomics, omega-3, DHA, EPA, NAFLD, cardiometabolic
- Running title: Plasma proteomics of DHA+EPA administration in NAFLD
- Abbreviations: NAFLD (non-alcoholic fatty liver disease); CVD (cardiovascular disease);
- 55 EPA (eicosapentaenoic acid); DHA (docosahexaenoic acid).

Introduction

Non-alcoholic fatty liver disease (NAFLD), a liver condition characterised by liver fat accumulation ≥5%, is often considered to be the liver manifestation of metabolic syndrome and is strongly associated with obesity, type 2 diabetes mellitus and cardiovascular disease (CVD) [1]. We have recently shown that after treatment with high dose (3.36 g/day) marine omega-3 fatty acids [eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3)] for 15-18 months in patients with NAFLD, serum fasting triglyceride levels decreased, and that increased tissue enrichment with DHA was associated with decreased liver fat, suggesting that high-dose DHA+EPA treatment may have a favourable effect on cardiovascular risk in patients with NAFLD [2].

Global plasma proteomic analysis can provide unbiased insight into the systemic effects of an intervention. The plasma proteomic profile of patients with NAFLD administered with marine omega-3 fatty acids within the context of a randomised placebo-controlled trial (RCT) has not been studied to date.

Therefore, the aim of the present study was to use a non-targeted quantitative plasma proteomics approach to determine the system-wide effects of high-dose DHA+EPA supplementation in patients with NAFLD who participated in a 15-18 month randomized control trial.

Materials and Methods

Recruitment of participants and intervention

The WELCOME study intervention protocol and inclusion/exclusion criteria have been described in detail previously [3]. This clinical trial was registered at ClinicalTrials.gov (www.clinicalTrials.gov registration number NCT00760513). The study received ethical approval from the Southampton and South West Hampshire local research ethics committee (08/H0502/165). All participants signed informed consent forms and underwent an

assessment of liver fat percentage by magnetic resonance spectroscopy (MRS) at recruitment, to establish the baseline liver fat percentage at entry into the trial, and at followup. Briefly, three 20 × 20 × 20 mm³ spectroscopic volumes of interest (VOI) were positioned within segments 3 (inferior sub-segment of the lateral segment), 5 (inferior sub-segment of the anterior segment) and 8 (superior sub-segment of the anterior segment) of the liver, avoiding major blood vessels, intra-hepatic bile ducts, and the lateral margin of the liver. For the second visit scan, these VOI positions were copied from the first scan, to ensure consistency [2, 3]. Briefly, the inclusion criteria for participation in the study were age > 18 years and: 1) a recent (<3 years) histological diagnosis of non-alcoholic steatosis or steatohepatitis in keeping with NAFLD; or 2) steatosis diagnosed by ultrasound, CT or magnetic resonance imaging in a patient who also had either diabetes and/or features of the metabolic syndrome. All participants underwent an assessment of liver fat percentage by MRS examination at recruitment, to establish the baseline liver fat percentage at entry into the trial. Exclusion criteria included known other causes of liver disease (e.g. hepatitis A, B or C, primary biliary cirrhosis, Wilson's disease, autoimmune hepatitis haemochromatosis). These conditions were excluded with blood tests. Subjects were also excluded if alcohol consumption was >35 units per week for women and >50 units per week for men. At recruitment, only one man was consuming >21 units of alcohol per week and one woman was consuming >14 units per week. Additional exclusion criteria were: decompensated acute or chronic liver disease; cirrhosis; pregnancy or breast feeding; and hypersensitivity to Omacor, soya or any of the excipients. One-hundred and three participants with NAFLD (sex M/F: 60/43) were randomised to Omacor (DHA+EPA) or placebo (olive oil). Fifty-one (sex M/F: 25/26) participants received 3.36 g daily of DHA+EPA (1 g of Omacor contains 460 mg of EPA and 380 mg of DHA as ethyl esters) and 52 participants (sex M/F: 35/17) received 4g of olive oil. At the end of the study, 95 participants completed the intervention period (DHA+EPA group n=47, sex M/F: 24/23; Placebo group n=48, sex M/F: 32/16). Fasting blood samples at baseline and after the end of the intervention (15-18 months duration) were collected.

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Plasma procurement and proteomic analysis

Two multiplex experiments were performed for men and women participants respectively, to correct for potential baseline sex-specific plasma proteome differences and sex-dependent effects of the omega-3 intervention. Only plasma from patients who completed the intervention was used for the proteomic analysis (n=95; DHA+EPA group n=47; Placebo group n=48). Individual 50 µL aliquots from male participants in the DHA+EPA and placebo groups were randomly pooled using the randomization function in Microsoft Excel (version 15.11.1) at baseline and after the end of the intervention to form two biological replicates per time-point and treatment group [Males Baseline DHA+EPA 1 (n=12), Males Baseline DHA+EPA 2 (n=12), Males Baseline Placebo 1 (n=16), Males Baseline Placebo 2 (n=16), Males End-of-Study DHA+EPA 1 (n=12), Males End-of-Study DHA+EPA 2 (n=12), Males End-of-Study Placebo 1 (n=16), Males End-of-Study Placebo 2 (n=16)]. The same pooling scheme was applied for female participants [Females Baseline DHA+EPA 1 (n=11), Females Baseline DHA+EPA 2 (n=12), Females Baseline Placebo 1 (n=8), Females Baseline Placebo 2 (n=8), Females End-of-Study DHA+EPA 1 (n=12), Females End-of-Study DHA+EPA 2 (n=11), Females End-of-Study Placebo 1 (n=8), Females End-of-Study Placebo 2 (n=8)]. Unprocessed plasma was subjected to depletion-free proteomic analysis as reported elsewhere [4].

130

131

132

133

134

135

136

Database searching and statistics

Unprocessed raw files were submitted to Proteome Discoverer 1.4 for target decoy searching against the SwissProt homo sapiens database (v2015-11-11) as reported previously⁴. Proteins reported were analysed with a peptide level FDR p < 0.05. All mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD003760.

A two-tailed unpaired T-Test was used to identify proteins that changed (end-of-study vs. baseline) differentially between the DHA+EPA and placebo groups of each sex. A value for $p \le 0.05$ was considered significant. According to the Paris Publication Guidelines (http://www.mcponline.org/site/misc/ParisReport_Final.xhtml), only proteins identified with at least two unique peptides were considered.

Bioinformatics analysis

Principal component analysis using the log₂ratios of the fully quantified proteins in each experiment (males and females respectively) was performed using the online tool ClustVis (http://biit.cs.ut.ee/clustvis/). MetaCore (GeneGo, St. Joseph, MI, USA) and Ingenuity Pathway Analysis (IPA) (Qiagen, Hilden, Germany) were applied to identify biological processes and protein networks significantly enriched in the plasma proteins altered as a result of the omega-3 fatty acid intervention. In all analyses, a false discovery rate (FDR) corrected p-value < 0.05 was considered significant.

Results

The participants' baseline characteristics have been reported previously [3] and are also presented in **Supplementary Table 1**. A total of 1,699 and 2,084 proteins were fully quantified in the multiplex experiment of the male and female cohorts respectively. Principal component analysis using the reporter ion \log_2 ratios of all profiled proteins showed that the DHA+EPA group clustered separately from the placebo group for both male and female cohorts, indicating that change (end-of-study vs. baseline) in plasma proteins was different between DHA+EPA and placebo groups (**Figure 1A**). In the male and female DHA+EPA group compared to placebo, 221 and 213 proteins respectively were significantly altered at the end-of-study vs. baseline (**Supplementary Tables 2** and **3** respectively for male and female cohorts).

Process Network Analysis using MetaCore showed that blood coagulation, immune response and inflammatory response were significantly enriched networks in the plasma

proteins of both sexes that were altered as a result of the omega-3 intervention (Figure 1B). Eleven proteins were analysed with the same trend of differential expression following DHA+EPA supplementation in the male and female cohorts (Figure 1C). Of the eleven proteins that were found to be affected by DHA+EPA supplementation in a sex-independent manner, two nodal proteins participating in key pathways influencing vascular disease were prothrombin and apolipoprotein B-100, affecting blood coagulation and cholesterol transport from the liver to the tissue respectively. Levels of prothrombin and apolipoprotein B-100 were found to decrease [Prothrombin: Males DHA+EPA Mean iTRAQ log₂ratio (SD) = -0.13 (0.20) p = 0.05, Females DHA+EPA Mean iTRAQ log_2 ratio (SD) = -0.48 (0.35) p = 0.03; Apo B-100: Males DHA+EPA Mean iTRAQ log₂ratio (SD) = -0.24 (0.16) p = 0.01, Females DHA+EPA Mean iTRAQ log₂ratio (SD) = -0.15 (0.05) p = 0.02] as a result of the omega-3 supplementation compared to placebo. Ingenuity Pathway Analysis showed that "molecular transport, lipid metabolism and small molecule biochemistry" was a significantly enriched network in the plasma proteins affected by the omega-3 intervention in males and females (score = 30, focus molecules = 18 in males; score = 42, focus molecules = 23 in females) (Figure 1D).

181

182

183

184

185

186

187

188

189

190

191

192

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Discussion

This systems biology plasma proteomics study in patients with NAFLD provides novel insight into the effects of marine omega-3 fatty acid supplementation on plasma proteins related to CVD and other non-communicable diseases. The study results show that proteins involved in blood coagulation, inflammatory/immune responses and lipid metabolism were significantly altered in the male and female groups following omega-3 supplementation. Interestingly, levels of prothrombin and apolipoprotein B-100 were found to decrease as a result of the omega-3 intervention (**Figure 1C**).

Studies have shown that marine omega-3 fatty acids reduce hypercoagulability, a major risk factor for vascular disease, without increasing the risk of bleeding [5]. Our results show that the blood coagulation pathway was significantly enriched in the plasma proteins

altered as a result of the omega-3 fatty acid supplementation (**Figure 1B**). Prothrombin, a nodal protein in the blood coagulation pathway, has been reported as a surrogate marker of cardiovascular risk [6] whereas reduction in plasma prothrombin levels has been associated with decreased risk of arterial and venous thrombosis [7].

In vitro experiments and animal studies support an anti-inflammatory and immunomodulatory role for omega-3 fatty acids [8]. However, evidence from human randomized control trials is more equivocal. Our study results show that proteins involved in immune and inflammatory responses are affected by omega-3 supplementation (**Figure 1B**).

Our results show that DHA+EPA treatment decreases concentrations of apo-B100. Marine omega-3 fatty acid supplementation is effective in decreasing very-low density lipoprotein (VLDL) concentrations [9]. Apo B-100 is a major apolipoprotein of the VLDL particles and apoB-100 concentration is a stronger cardiovascular disease risk factor, compared to total cholesterol, LDL-c and VLDL-c levels [10].

The strengths of this study include its RCT design, its long duration and robust sample size and the application of a global, untargeted plasma proteomics methodology. One potential limitation is the sample pooling strategy used, which did not permit the assessment of the anticipated inter-individual heterogeneity in protein expression levels. Although our approach may have limited the sensitivity of the methodology to find differences in treatment effects between individuals, a strength of our approach is that we are able to provide summary effects of DHA+EPA treatment for patients with NAFLD and consequently, any differences found are likely to be large and therefore potentially more clinically relevant.

Conclusions

Plasma proteomics applied in a randomised, placebo-controlled trial, lasting between 15 and 18 months, showed that high dose DHA+EPA treatment in patients with NAFLD affects multiple pathways involved in chronic non-communicable diseases.

Acknowledgments We thank Roger Allsopp and Derek Coates for establishing the mass spectrometry facility at the University of Southampton. SDG is partly supported by the Visiting Professor Program of King Saud University. ES, PCC and CDB are partly supported by the NIHR Southampton Biomedical Research Centre. The WELCOME study was funded by the NIHR Biomedical Research Unit in Nutrition and Lifestyle. JT was supported by the China Scholarship Council and the China Postdoctoral Science Foundation (2013T60260).

249

250

251

252

253

254

References

- [1] Bhatia L, Scorletti E, Curzen N, Clough GF, Calder PC, Byrne CD. Improvement in non-
- 256 alcoholic fatty liver disease severity is associated with a reduction in carotid intima-media
- thickness progression. Atherosclerosis 2015; 246: 13-20.
- 258 [2] Scorletti E, Bhatia L, McCormick KG, Clough GF, Nash K, Hodson L et al. Effects of
- purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease:
- results from the Welcome* study. Hepatology 2014; 60: 1211-21.
- 261 [3] Scorletti E, Bhatia L, McCormick KG, Clough GF, Nash K, Calder PC et al. Design and
- rationale of the WELCOME trial: A randomised, placebo controlled study to test the efficacy
- of purified long chainomega-3 fatty acid treatment in non-alcoholic fatty liver disease
- 264 [corrected]. Contemp Clin Trials 2014; 37: 301-11.
- 265 [4] Al-Daghri NM, Alokail MS, Manousopoulou A, Heinson A, Al-Attas O, Al-Saleh Y et al.
- 266 Sex-specific vitamin D effects on blood coagulation among overweight adults. Eur J Clin
- 267 Invest 2016; 46: 1031-40.
- 268 [5] Wachira JK, Larson MK, Harris WS. n-3 Fatty acids affect haemostasis but do not
- increase the risk of bleeding: clinical observations and mechanistic insights. Br J Nutr 2014;
- 270 111: 1652-62.
- [6] Páramo JA. Prothrombin fragments in cardiovascular disease. Adv Clin Chem 2010; 51:
- 272 1-23.
- 273 [7] Aleman MM, Walton BL, Byrnes JR, Wang JG, Heisler MJ, Machlus KR et al.
- 274 Elevated prothrombin promotes venous, but not arterial, thrombosis in mice. Arterioscler
- 275 Thromb Vasc Biol 2013; 33: 1829-36.

2/6	[8] Calder PC. Marine omega-3 fatty acids and inflaminatory processes. Effects,
277	mechanisms and clinical relevance. Biochim Biophys Acta 2015; 1851: 469-84.
278	[9] Padro T, Vilahur G, Sánchez-Hernández J, Hernández M, Antonijoan RM, Perez A et al.
279	Lipidomic changes of LDL in overweight and moderately hypercholesterolemic subjects
280	taking phytosterol- and omega-3-supplemented milk. J Lipid Res 2015; 56: 1043-56.
281	[10] Brunzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH et al.
282	Lipoprotein management in patients with cardiometabolic risk: consensus conference report
283	from the American Diabetes Association and the American College of Cardiology Foundation
284	J Am Coll Cardiol 2008; 51: 1512-24.
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	

304	
305	
306	
307	
308	
309	Figure legend
310	
311	Figure 1. A. Principal Component Analysis using the reporter ion log ₂ ratios of all analysed
312	proteins showed that DHA+EPA treatment had a distinct effect on the plasma proteomic
313	profile compared to placebo in both male and female cohorts. B . Process Network Analysis
314	using MetaCore showed that blood coagulation, immune response and inflammatory
315	response were significantly enriched processes in the plasma proteins that were altered as a
316	result of the omega-3 intervention. ${\bf C}$. Plasma proteins that were analysed to be altered at
317	the end of study vs. baseline as a result of the omega-3 intervention. ${\bf D}$. Ingenuity Pathway
318	Analysis showed that "Lipid Metabolism, Small Molecule Biochemistry" was significantly
319	enriched in the plasma proteins altered as a result of the omega-3 intervention in both sexes.
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	

332	
333	
334	
335	
336	
337	Supplementary Table legends
338	
339	Supplementary Table 1. Baseline variables in placebo and DHA+EPA groups at
340	randomisation
341	Supplementary Table 2. Proteins significantly altered between the DHA+EPA and placebo
342	groups of the male cohort (T-Test P <0 .05).
343	Supplementary Table 3. Proteins significantly altered between the DHA+EPA and placebo
344	groups of the female cohort (T-Test P <0 .05).