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Abstract

High-order simulation techniques typically require high-quality curvilinear meshes.
In most cases, mesh curving methods assume that the exact geometry is known.
However, in some situations only a fine linear FEM mesh is available and the
connection to the CAD geometry is lost. In other applications, the geometry
may be represented as a set of scanned points. In this paper, two curving meth-
ods are described that take a piecewise fine linear mesh as input: a least squares
approach and a continuous optimisation in the H'-seminorm. Hierarchic, modal
shape functions are used as basis for the geometric approximation. This ap-
proach allows to create very high-order curvilinear meshes efficiently (¢ > 4)
without having to optimize the location of non-vertex nodes. The methods are
compared on two test geometries and then used to solve a Helmholtz problem
at various input frequencies. Finally, the main steps for the extension to 3D are
outlined.

Keywords: High-Order Methods, Curvilinear Meshes, Integrated Legendre
Polynomials, Linear Target Mesh, Helmholtz problems, Geometry Error

1. Introduction

The impact of the geometric accuracy on the convergence of high-order dis-
cretization methods has been the subject of several studies in the literature
1,2, B, 4, [5]. In [2], Bassi et al. examine the influence of the geometry repre-
sentation on the performance of a high-order DGM simulation of flow around

*Corresponding author, vsslgl4@soton.ac.uk

Preprint submitted to Journal of BTEX Templates August 30, 2018



20

25

30

35

40

45

50

obstacles. They conclude that small, even imperceptible inaccuracies in the
normal description can lead to large errors in the final flow results. The im-
pact of the normal accuracy on transient acoustics simulations is investigated
in [3]. Both, linear and quadratic boundaries are compared, as well as a mixed
approach, where the normal description in the boundary conditions is quadratic
while the geometric description remains linear. It is found that this mixed ap-
proach does not significantly reduce the error in the simulation. Full quadratic
boundary treatment on the other hand leads to an improved accuracy, while the
computational time increases only marginally. Dey et al. performed a theoreti-
cal analysis for second-order elliptic boundary value problems [4], and obtained
that a geometric interpolation order of ¢ > p — 1 has to be applied in order to
preserve the exponential p-convergence of the numerical error. Numerical tests
for tension simulations on plates with a circular or elliptic hole are described in
[5], showing that the numerical error rapidly stagnates as the geometric inaccu-
racies becomes dominant.

This paper focuses on the Helmholtz equation, which is used for a wide va-
riety of wave propagation applications. For this class of problems, the classical
low-order FEM is known to suffer from pollution errors at high-frequency, and
recent studies indicate that this can be effectively mitigated by resorting to
higher-order polynomials in the solution basis (p-FEM) [6 [7]. However, p-FEM
typically requires coarser input meshes as compared to classical FEM, and this
may lead to inaccurate boundary representations if a low-order (i.e. linear or
quadratic) approximation is kept for the geometry. This becomes particularly
stringent at high values of kh, when the wavenumber k£ and the mesh size h
are such that a single element carries a significant portion of the wavelength.
However, it should be noted that the exact influence of the frequency on the ge-
ometric requirements for these type of problems is not well understood. Hence,
an attempt is made in this paper to explore the relationship between the ge-
ometric discretisation error (GDE) and the geometry induced error (GIE) for
Helmholtz scattering problems. The conclusions of this initial analysis provide
further motivation for employing efficient mesh curving methodologies for these
applications.

Typically, high-order polynomial interpolation is used to obtain curved mesh
boundaries. The generation and optimisation of high-order curvilinear meshes
is an active field of research, and most methods fall in the a-posteriori curving
category (e.g. [8, @]). In this approach, a standard linear mesh is generated
first, using well-established meshing algorithms. In a second step, the boundary
of the linear mesh is curved towards the target geometry. Finally, optimisation
and untangling procedures can be applied to increase the element quality and
to obtain a valid mesh for numerical simulations.

In general, the target geometry is assumed to be known exactly. However, in
many practical situations, the original CAD-geometry may not be accessible, for
instance when the simulations are outsourced to different companies. Instead,
a fine linear description of the geometry is often provided. This might be the
case for some multi-physics problems as well. In NVH applications for instance,
acoustics engineers most often only have the structural mesh at their disposal.
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In biomedical applications, geometries are often described by scanned data, that
form a cloud of points [10].

This paper hence focuses on the comparison of two a-posteriori curving meth-
ods that take a fine linear mesh as target curve. This target curve is called the
model mesh or Mmesh, and is denoted by M. As its only function is to provide
an improved description of the geometric boundary, it is only a mesh of the do-
main boundary. The boundary of the coarse mesh that is curved iteratively is
referred to as computational mesh or Cmesh, and is denoted by C. The number
of Mmesh edges is denoted by n§,, the number of Cmesh edges by ng. For the
curving methods, it is assumed that the vertices of the Cmesh form a subset of
the Mmesh vertices.

In a preprocessing step, the initial state of C could be obtained by applying
a coarsening algorithm to M. The algorithm should ensure that areas of high
curvature are less coarsened, whereas areas with low curvature allow for larger
Cmesh elements. This could prevent tangling that otherwise has to be treated in
a postprocessing step. In this paper, only the curving algorithms are examined.
The input C is assumed to be of appropriate mesh quality. Before the curving,
Cmesh vertices are snapped onto nearby Mmesh vertices in order to fulfil the
subset requirement. The principle of the Cmesh and Mmesh is illustrated in
Figure [I}

In the extension to 3D, feature line treatment will be discussed as well. For
this paper, the knowledge of the feature lines is assumed to be provided along
with the mesh, e.g. in form of closed surfaces groups that are bounded by the
feature lines. As for the Cmesh generation, feature lines could also be detected
in a preprocessing step (see e.g. [I1]). For the 2D curving, this additional data is
not necessary, as feature points are expected to be covered by both, Mmesh and
Cmesh vertices. The latter therefore won’t be relocated during preprocessing
and the curving process.

Figure 1: Schematic of (a) the fine linear Mmesh of the boundary, (b) the coarse linear Cmesh
of the domain, and (c) the curved Cmesh.

Most a-posteriori curving methods proposed to date rely on high-order nodal
(Lagrange) shape functions (e.g. [8, 12, [13][14]). They consist in finding an ap-
propriate nodal distribution in the curved elements to ensure (i) a good repre-
sentation of the geometry and (ii) that the elements are untangled and exhibit
acceptable aspect ratios. In this paper, we examine an alternative approach
based on hierarchic Lobatto shape functions, which are normally used for the
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field variables approximation in p-FEM [I5]. As opposed to the usual nodal
Lagrange-based curvilinear mesh curving methods, the proposed approach is
modal, in the sense that the fitted geometric coefficients do not correspond to
specific node locations anymore.

Two a-posteriori modal curving methods, initially introduced in [16], are
further examined hereafter in 2D. The first method is a least squares approach,
where only Mmesh vertices that lie on the exact geometry are used to describe
the target curve. In the second method, the curved mesh is obtained from a
global optimisation in the H'-seminorm. This optimisation takes full advantage
of the d-property of the Lobatto shape functions and hence does not include any
matrix inversion. However, it relies on the linearly interpolated Mmesh elements
that only form an approximation of the underlying exact geometry. For both
modal methods, the curving is done element-wise, i.e. one Cmesh element at
a time. It is assumed that all Cmesh vertices coincide with Mmesh vertices.
This leads to a straightforward assignment of Mmesh vertices and edges to the
Cmesh edges.

The two proposed modal curving methods are evaluated and benchmarked
against the nodal approach on two test cases: a unit circle described by 12
Cmesh elements, and a distorted ellipse, described by 20 Cmesh elements. For
both examples, the geometric discretisation error (GDE) and its convergence
for an increasing geometric order ¢ are reported. Afterwards, the curving al-
gorithms are further tested by running a Helmholtz scattering problem on the
curved meshes. The GDE-GIE relationship that was obtained with the nodally-
curved meshes is checked and compared with the relationship obtained with the
modally-curved meshes.

The structure of the paper is as follows. The influence of the geometry
representation on a Helmholtz problem is first assessed in Section [2| In Section
the two modal curving methods are introduced. Their ability to represent a
given Mmesh boundary is assessed in Section ] The curving methods are then
further benchmarked in Section [§] by running a Helmholtz scattering simulation
on the curved meshes. The extension of the most promising method to 3D is
outlined in Section [} Finally, Section [7] summarizes the paper and discusses
future developments.

2. Quantifying the geometric error influence

Prior to introducing the proposed mesh curving methodologies, this section
examines the influence of the geometric representation on the accuracy of wave
propagation problem, modelled by the Helmholtz equation.

2.1. Scattering test case
As benchmarking scenario, the scattering of a plane wave at a rigid cylinder

of radius s is considered. An analytical solution pey for the pressure p can be
provided [I7], which is the solution of the following Helmholtz problem with
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Figure 2: Sketch of the scattering test case.

angular frequency w and wave number k on the bounded domain Q:

V2p + k*p =0,0n Q,

0

aﬁi =0 on Fs,

0 OPex .

az 5 + iwpey — iwp on I'y,

with Robin and Neumann boundary conditions on the outer boundary I', and
scattering boundary T’ respectively (see Figure . In all the remainder of the
paper, parameters are made non-dimensional by setting the sound speed and
density to unity. The corresponding Galerkin variational formulation consists
in finding the solution p € H'(Q) such that

V@-Vde—kz/gode
Q Q

+iw/ ppdl, :/ cp(ag;z +in61> dl',, Ve e HY(Q). (1)
r, o
To generate the high-order nodally curved grids, the open-source software
Gmsh [12] is used. The meshes are generated as follows: (i) the computational
domain € is first approxnnated by a set of non-overlapping straight sided tri-
angular elements Q = Ue 1 T obtained from a classical Delaunay triangulation
(ii) this initial linear mesh is then curved a-posteriori, using a nodal-curving
approach of order ¢ and (iii) the resulting high-order Lagrange elements are
untangled and smoothed applying the algorithms described in [I8], [19].

The variational formulation is discretized using p-FEM [I5]. The poly-
nomial order p representing the unknown pressure field is taken in the range
p=1,2,...,10. High-order Gauss-Legendre quadrature is used for the evalua-
tion of the different integrals.

For Helmholtz FE formulations, the integrand in the mass bilinear form is
typically polynomial. It can therefore be evaluated exactly using 2p + 2(q —
1). The stiffness term on the other hand involves a non-polynomial integrand
(rational function), due to the presence of the Jacobian inverse in the field
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derivatives, which needs to be approximated by higher-order quadrature rules.
From numerical experiments, it was however found that a quadrature rule of
2p+2(q—1) was sufficient to minimize the quadrature error, as setting a higher
quadrature rule did not allow to obtain more accurate solutions.

It is interesting to further examine how the proposed rule compares with
results from previous studies. In particular, in Ref. [4], Dey et al. examine
the influence of the geometrical and quadrature errors on second order elliptic
boundary value problems, including Helmholtz. They conclude that, for the ex-
ponential convergence to be preserved with curved geometries, the integration
order should be increased by p — 1. There, it is also stated that the geometric
order verifies ¢ > p — 1 to reach optimal convergence of the global error. It is
interesting to note that the proposed pragmatically-derived rule follows these
requirements: in the exponential convergence regime (¢ > p — 1), a quadrature
order elevation of 2(¢ — 1)) is always more conservative than what the theory
suggests. Otherwise, in the pre-convergence regime (¢ < p — 1), the geometri-
cal error becomes so dominant that the quadrature elevation only marginally
influences the global result.

It is worth emphasizing that the geometric order ¢ = 1,2,...,4 and the field
approximation order p = 1,2,...,10 are completely independent of each other
and can be chosen separately.

2.2. FEwvaluation of the numerical error

The standard error evaluation procedure consists in integrating the differ-
ence between the analytical and the numerical solution over the computational
domain € using some norm (typically L? or H'). However, () is not necessar-
ily a subset of 2, and as a result, this may lead to evaluating the analytical
solution at quadrature points located inside the scatterer, i.e. outside of the
computational domain (see Figure . To avoid this issue, a simple alterna-
tive approach is proposed to evaluate the numerical error. The relative L? error,
denoted Es g is evaluated along a ring located in the middle of the domain (see
Figure . Since the mesh elements are not aligned with this interior contour,
a trapezoidal rule is used to evaluate the integrals. The number of evaluation
points for the integration is chosen in an adaptive way, to ensure appropriate
convergence for each configuration. As the theoretical error estimate is inde-
pendent of any dimensions, it is expected that exponential convergence will be
observed.

2.3. Geometric Discretisation Error (GDE) measure

Many different approaches have been proposed in the literature to measure
the quality of the geometric approximation. They can roughly be classified
into three categories, namely normal-based, distance-based and area-based error
measures.

The two standard distance-based measures are the Hausdorff- and the Fréchet-
distance. Both are defined as two nested optimisations over the pointswise dis-
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Figure 3: Schematic figures showing|(a)|the problem in the standard numerical error evaluation
for the scattering test case and |(b)| the alternative approach. The red dots in @ are the
quadrature points that fell out of Q.

tance between the two considered curves [20]. Therefore, their calculation is
computationally costly [0]. In [I4], a variation of the Fréchet distance was in-
troduced. It results in a continuously differentiable measure that can be used
for optimisation based mesh curving.

Another, less computationally intensive alternative, is to resort to area-based
error measures. In Ref. [9], the relation between the two measure types is
explored on several numerical examples. It is observed that an optimisation
with respect to the area-based measure leads also to a reduction of the Hausdorff
distance.

Normal- or curvature-based measures are less commonly used in the lit-
erature. Most of them rely on pointwise associations of the two curves, and
therefore depend on their corresponding parametrisations. They either consider
the maximal angle deviation of the normals [21] or the mean and standard de-
viation [22]. In the latter paper, also the mean and standard deviation of the
differences in the Gaussian and the mean curvatures are considered.

Finding an optimal GDE measure that will fit every practical application on
a given physical problem therefore remains a challenge. As pointed out by one of
the reviewers, in many occasions, one or several pathological cases can be iden-
tified where the different GDEs may be proven defective and/or inconsistent.
Let us consider a concrete example, illustrated in Figure |4 Suppose the geom-
etry is a circle of radius R and suppose the boundary mesh fits x = R’ cos(9),
y = R'sin(f) where R’ = R + acos(nf). Even if the radius perturbation a
is small compared to R, by increasing n, the normal of the mesh will deviate
more and more from the normal of the circle, leading to higher values in the
normal-based GDE. However, by contrast, this will only loosely influence the
area-based GDE, as the area between the approximation and the exact circle
will not vary significantly for increasing n values. It is also worth noting that the
normal-based approach proves defective at n = 0, see Figure There, the
circle normal is exactly represented at each point, although solving a scattering
problem with this different circle will obviously deteriorate the global solution.
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It is hence difficult to infer which indicator will be most representative of the
actual geometrical error influence for a given Helmholtz problem. Other sec-
ondary factors may also be of influence, like the regularity of the approximation
and the type or positioning of the acoustic sources.

(a) n=0

(¢) n =280

Figure 4: Artificially generated geometric approximations of the unit circle I's (dotted line)
with similar area-based GDE, but very different normal-based GDE.

In this study, an area-based measure was chosen to monitor the geometric
accuracy. In practice, it is calculated as the surface area A between the approx-
imated and the exact boundary Iy, divided by the length of ;. The motivation
behind this choice is that (by contrast to most normal-based approaches) the
area-based measure is independent from the curve parametrisation.

For the circle, the polar coordinate transformation provides an inverse of
the exact boundary’s parametrisation, which can be used to calculate the area
directly. Hence an approximation of both curves by a polygon, as proposed for
instance in [9] is not necessary. Instead, parametrisations ¢;(s) and ¢é;(s) of the
two curves are constructed for each element ¢ over the same reference interval
s € [s0, 51]-

It can be shown that the following relation holds

Ai(s+ds) — Ai(s) = % [(ci(s+ds) — ¢(s)) x (ci(s) — ¢i(s + ds))]

when travelling along the parametrisation of the curves from s to s + ds. Ap-
plying linear Taylor series expansions of ¢; and ¢; and rearranging the formula,
the following ordinary differential equation is obtained:

dA; 1. o /
H(s) = 5 1(Ex(5) = eals)) x (s) + i), )

where ¢’ is the derivative of c. To get the area between the two curves over one
element, Eq. is solved for the initial value A;(sg) = 0. The elementwise
areas A; are then summed up to obtain the total area A =), A;. Finally, the
relative geometric discretisation error (referred to as the GDE) is obtained by
dividing A by the circumference of the circle GDE4 = A/2xr,, as suggested in

(9l
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2.4. Numerical results and interpretation

2.4.1. Simulation results

To assess the influence of the geometric representation on the numerical
error, p-convergence curves are first obtained at w = 1 for a varying geometric
order ¢, see Figure Expectedly, as p is increased, the numerical model first
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Figure 5: Stagnating p-convergence curves of the numerical error evaluated along the ring
r = 1.5 for a fixed w = 1 and varying mesh size I@ ng = 8, corresponding to h ~ 0.79 and
ng = 32, corresponding to h ~ 0.20.

converges exponentially. The loss of exponential convergence occurs at p* =
g+1, in accordance with the theroretical analysis performed in [4]. The decrease
in the numerical error slows down and, in most cases, the stagnation appears
at p = ¢+ 2. In the absence of other possible sources of error, this stagnation
level is identified as the geometric induced error (GIE).

The GIE decreases for increasing geometric order ¢, which is in accordance
with results previously described in the literature [5] [23]. Furthermore, as ex-
pected, applying an h-refinement leads to a rapid decrease of the GIE and
this h-convergence rate is much larger for higher order meshes. It is, however,
striking to note that the GIE is very marginally improved when going from a
quadratic (¢ = 2) to a cubic (p = 3) geometric representation. This odd-even
trend is also visible in the corresponding GDE 4 plots, which are not reported
here for conciseness. This will be commented further in Section E.1l

The input frequency also plays an important role. In Figure [f] results for
simulations with two different angular frequencies w are compared. The GIE
increases substantially with increasing frequencies, such that the stagnation
level is sometimes not even obtained within the plotted p values. This confirms
the intuitive statement that high-frequency simulations are more sensitive to
geometric inaccuracies.

2.4.2. GDE-GIFE relationship
The stagnation levels or GIEs are now evaluated for an extensive number
of configurations, with varying frequencies w € {1,2,4,6,...,30,32,64} and
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Figure 6: Stagnating p—convergence curves of the numerical error for the scattering test case,
with numerical error evaluation along a ring, comparing different simulations for @ w=1

and@w = 16.

mesh size n§ € {8,12,16,...,72,76,80}. The data sets obtained from these
calculations are reported in Figure Simulation results that did not reach
the stagnation stage and for which the GIE cannot be firmly evaluated are
discarded from the evaluations.

For a fixed w, the plots show a linear dependency between loglO(Eg) and
log,,(GDE), with almost no dependency on the geometric order ¢q. With in-
creasing frequency, an offset is added to the relationship which changes the
intercept. This offset is shown to logarithmically depend on the frequency w.
Combining these observations, a linear model of the form

10%10(E2) ~ Beonst + Bgeo log;o(GDE) + B, log;o(w) (3)

is fitted to the data using the statistical software R [24]. This model can be
rearranged as a non-linear model of the form

EQ r 10Pconst GDEBgeowﬂw. (4)

The parameters §; and the values of the adjusted R? of the model are given in
Table 1l

5const /Bgeo /Bw ﬁQ
1.3846 1.0106 1.2314 0.9975

Table 1: Parameter values obtained for the fitted GDE-GIE model , and the corresponding
value of the adjusted R2.

As an indicator of the quality of the regression model, the statistical pa-
rameter R? measures how much of the variance in the data is explained by the
model. It is defined as

2 (44
Zz’ (di *8)27

R? =

()

10



265

270

275

with the i-th entry d; of the data vector d, the mean d of the vector d, and the -
th fitted value d; of the model (see [25]). In the given case, d; corresponds to the
error GIE E» of the i*" simulation. Note that the definition in is only valid
in the case of uncorrelated residuals. This assumption is verified by examining
the residuals against fitted plot. It is found to be well behaved, which confirms
the reliability of the R? measure (it is not reported here for conciseness). We
provide here the adjusted R?:

- m—1

R :=1-— (1-7r?),

m-—ng—1
which takes into account the sample size m, and the number of parameters ng
corresponding to non-constant explanatory variables. A value of R? = 0.9975
is obtained, which indicates that the proposed GDE-GIE regression model
provides an excellent fit to the set of simulation data (see Figure [7(b)).
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Figure 7: Plots of@ a subset of the data set used for fitting the GIE F against the GDE
and the fitting of the GIE F2 against the GDE with model . In@, the different colors
represent the geometric order of the mesh, while the different shapes represent the w value of
the simulations.

This model infers that the GIE, i.e. the accuracy that can be expected from
a given acoustics simulation increases linearly with the GDE. Furthermore, for
a fixed GDE (i.e. for a given geometric approximation), the GIE is found to
vary sup-linearly with the frequency (power of 1.25 approximately).

Simple physical considerations may be introduced to justify the latter obser-
vation. Consider the reflection of a plane wave impinging a solid wall at normal
incidence. Consider now that the wall is artificially shifted to shorten or elon-
gate the domain. The inexact location of the scatterer leads to a phase shift
in the solution, which is proportional to the frequency. Intuitively, on this one-
dimensional problem, the expected behaviour is hence that, for a fixed GDE,
the resulting numerical error will grow linearly with the frequency. However, in

11
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the provided 2D configuration, the additional complexity in the frequency de-
pendence is thought to be brought by the presence of more complex scattering
patterns, from e.g. normal discontinuities at inter-element junction or creeping
waves along the scatterer. In practice, the super-linear dependence implies that
the GDE should be divided by approximately 2.5 when doubling the frequency,
in order to ensure an equivalent convergence of the global error.

This analysis provides a strong motivation for the introduction of high-order
geometric representations. The next section presents two mesh curving meth-
ods that can be applied in order to ensure that the GDE error is controlled
effectively.

3. Modal Curving methods

In this Section, two modal mesh curving algorithms are introduced, followed
by a presentation of the blending method.

3.1. Motivations

As described in the introduction, the objective pursued here is to propose
some strategies to efficiently curve a coarse linear Cmesh to approach a fine
linear mesh, represented by the Mmesh (see Figure |1)).

Each curved C element is described as a linear combination

f=> aib (6)
i=1

of curving order ¢, with a polynomial basis {bi}?:ql and coefficients a;. These
coeflicients will be determined by the curving processes described in this paper.
As base functions {bi}?qu, integrated Legendre polynomials are used

(¢ = 455,
L) = L, and
L&) = mfflLk_l(x)dx, for 2 <k, £€[-1,1],

where L;(¢) is the i*" Legendre polynomial. These polynomials are also called
Lobatto polynomials and have several interesting properties which justify their
consideration [I5]:

e In 2D, the basis functions fulfill the equation

1 ifi=j
(7)

0 else

1
/_1l§(§)l§(§) d§ = d;5, with 6;; = {

which is referred to as the d-property. It is based on the orthogonality
of the Legendre shape functions in the L?-norm. This leads to explicit

12
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formulas for the interpolation coefficients «;, if they are obtained by op-
timisation in the H'-seminorm. In 3D, this property is not conserved
for triangular face shape functions, but the construction of orthonormal
bubble shape functions is described in [26]. This paper only considers 2D
cases.

e The shape functions form hierarchical bases. Together with the j-property,
this results in hierarchical coefficients a;, meaning that for every ¢ incre-
ment, only one additional a; needs to be evaluated.

e Furthermore, the Lobatto bases are modal bases, in the sense that they do
not rely on specific nodal positions. This may simplify the embedding of
the curved boundary for full simulation meshes. For nodal approaches, the
location of element interior nodes has to be obtained from an optimization
procedure during or after the curving (see for instance [27]). With a modal
basis, such an “interior” optimization (controlled by the coefficients for the
face shape functions or the mesh internal edges) is not always required,
provided the element with curved boundary edges is valid and of adequate
quality. In combination with the hierarchical property, the modal property
also allows for local variations of the mesh curving order (i.e. local g¢-
refinements).

The geometric polynomial approximation f(E) in Equ. @ can be split
up into a known linear interpolation and the interpolation with higher-order
shape functions. The linear interpolation is fully described by the Cmesh vertex
positions p1 = (p1,z,P1,4) and pa = (p2,z,P2,4) that lie on the exact geometry.
Therefore, the g and a; are known and only a; for j = 2,...,q for the
higher-order shape functions have to be determined. The interpolation with the
non-linear shape functions will be called the polynomial deflection

FO= -6+ Dpi+ g€+ Dt Y eib(©) 0

—_——
polynomial deflection

linear interpolation

Two different strategies are proposed to obtain the unknown interpolation
coefficients ;. These two strategies are referred to as the least-squares modal
curving and the H' modal curving. They are introduced hereafter.

3.2. Least-squares modal curving

The first curving method aims at approaching the Mmesh vertices by min-
imizing their distance to the corresponding points on the Cmesh using a least-
squares technique. With this approach, only the points on the exact geometry
are taken as the target (i.e. the M cloud of points), as the Mmesh vertices lie
on the exact geometry. A similar strategy using Bézier curves is described in
[10).

For the curving of a single Cmesh element, the n corresponding Mmesh
vertices (z;,y;) are approximated by the polynomial f = Zg:o ajlj. The co-
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efficients a; are determined such that they fulfill the following minimisation
problem:

min Y [|(ai,5:) — F(&)IIE,
i=1

where -
Z;=1 h;
Y by
is the parameter corresponding to (x;,y;) for a parametrisation based on the
length h; of the j-th Mmesh element on the Mmesh arc.

The least-squares approach then leads to a linear system of equations Aa =
b. Both the x- and y-coordinate are described independently, which leads to
two independent linear systems, one for each coordinate, with o; = (@ z, @ ).
The system for the z-coordinate is shown below (subscript = is dropped for
readability):

gi:_l—’_z 6[_171]

G222 ' Gag4 %) ba
A = oo |, a= |, b= |, with

Qg2 "'+ Qqq Qq bq

ar; = 21 (&)%),
b = i wle(&) — Y0 05 oy (&)1 (&)

The system solved for the y-coordinate follows analogously.

3.8. H' modal curving

A second modal-based curving method is introduced, where a projection-
based interpolation [I5] is applied to obtain the e; coefficients in the polynomial
description of the curved edges. Thereby, the J-property @ of the Lobatto
shape functions is used, by considering an optimisation in the H!-seminorm.
By contrast to the previously introduced method, which only considers the M
cloud of points, this approach requires a continuous curve as target. In this
study, a simple linear interpolation of the Mmesh vertices is considered.

The difference between the target curve and the approximating curve is min-
imised in each coordinate independently. Only the formula for the z-coordinate
is presented hereafter, showing the approximation of the target f, by f; . The
polynomial approximation of the y-coordinate follows analogously and will result
in an additional set of aj-values. Similarly to f (&) in Eq. , the parametri-
sation of the target curve can be split up into a linear part and a deflection d.
Here, d is generally non-polynomial and depends on the Mmesh vertices of the
target segment.

The polynomial approximation is done in the H'-seminorm by finding «;

such that )
min | f, — fz|H1 = min/ (ff — fl)2de.
(a3 [e3

-1
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The modal coefficients «y, that solve the minimisation problem have to satisfy

a ! / d U 2 _
oy |0 - i@ =0,

-1

which can be reformulated as

1
ay, :/ dide, k=2,3,...,q.
—1

The calculation of the aj coefficients depends on the parametrisation of
the Mmesh arc that forms the target curve. For this, a physical length based
parametrisation will be considered. The lengths of the subintervals in the ref-
erence space are adapted to the lengths of the Mmesh elements. The resulting
formula for the ay is

n— i41 ZT'L;I h
QR = 21211 ( é+ thli = (xiJrl - xz)l;g(g)d§>
+ (%pl,z - %pQ,xa) f,ll l;g(g)d£7

with n the number of Mmesh vertices on the Mmesh arc, h; the lengths of the
j-th Mmesh element on the Mmesh arc, and &; the parameter corresponding to
the i-th Mmesh vertex on the Mmesh arc as defined above.

8.4. Blending method

The two curving methods previously introduced provide a parametrization
of the curved C elements along the boundary. Nevertheless, they do not provide
any description of the geometric transformation inside the domain. This is
required for evaluating the Jacobians of the neighbouring curved triangles (see
Figure [I| (¢)). This additional step is referred to as blending and follows the
idea of the Lobatto shape functions construction [I5].

Elements with a curved edge are represented by a mapping from the reference
triangle to the physical space of the form

3 3
fi<§7 77) = Z wz(p% (5? 77) + Z RS (57 7}),
=1 i=1

where the first term is the linear mapping of the straight sided edges defined by
the vertices @; with @7 the usual vertex Lobatto shape functions in the triangle
(see [15]), and k¢ maps the edge e; and has the property

0 onej, i # j

de (& (¢m)  on e ’ )

K (€,m) {

with d® (£9%) = fi(£%) — f¢i(£%) the difference between the actual, possibly
curved edge f¢ and the straight sided edge f$i. The auxiliary variable £ €
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[_1u 1] is defined as éei (§7 77) = )‘i+1(£a 77) -\ (67 77)7 with A; (§7 77) the standard
Barycentric coordinates of the triangle and Ay = A\;. It is applied to define the
2D edge shape functions along edge e;

L (5” (5777))
(€ (&m) o (€5 (€m)

Y5 (& m) = A& mAira (€ m)

They vanish on all edges other than e; and their trace along e; corresponds to
l; (see [15]). From this construction it follows for the z-component of ki

q

K& m) =D U5 (€,

Jj=2

with ai‘;j, the a-coefficient of [; for the z-component of edge e;. The function
for the y-component is constructed analogously.
The resulting formula of the reference mapping is

3 3«
) =Y @ipr(€n) ZZ Ss(6m)
i=1 i=1 j=2

It forms the geometric representation of the simulation domain. The geometric
description of the element enters the simulation equations in form of its Ja-
cobians which can be easily calculated from the formula of f;. If more than
one triangle edge is curved, as it is e.g. necessary to prevent tangled elements,
the formula remains the same. The coeflicients of each edge enter the equation
independently.

Note again that no nodes have to be placed for the modal blending. This is an
advantage compared to mesh curving methods based on Lagrange polynomials,
for which the positioning of interior nodes typically requires a careful treatment
(see e.g. [27]).

4. Comparison of the methods

The two modal-based curving methods are now benchmarked on two geome-
tries, namely the unit circle and a distorted ellipse. The quality of the resulting
curved boundary C is assessed by measuring the geometric discretization error
GDE for each configuration.

4.1. Circle test case
The performance of the two methods is first examined on the unit circle
geometry. As a reference, high-order nodally curved meshes are also generated,

using Gmsh, following the approach described in Section In order to ensure
that the Cmesh vertices form a subset of the Mmesh vertices, a preprocessing
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step is applied. For each Cmesh vertex the closest Mmesh vertex in Euclidean
distance is determined and the position of the Cmesh vertex is adjusted to fall
together with the Mmesh vertex. For thin geometries the application of the
Euclidean distance instead of the geodesic distance could generally lead to an
invalid Cmesh. Here it is assumed that the Mmesh is refined enough to prevent
this. In practice, a refinement of the same size as the geometry thickness should
be sufficient, as the maximal distance from a Cmesh vertex to its closest Mmesh
vertex is one half of the Mmesh element size. The accuracy of the resulting
curved meshes is assessed by measuring the distance to the exact geometry
(and not to the target mesh), using the parametric area-based GDE measure
Eq. introduced in Section

For the interpretation of the results, it is useful to introduce the so-called
MpC ratio, defined as

€

nm
MpC = e

(¢

and representing the element size ratio between the refined target Mmesh and
the coarse linear Cmesh.

1e-00 A 1e-00 - 7
1e-02 - . 1e-02 2
le-04 |- le-04 |- :
L;j( 1e-06 - = - [S: 1e-06 |- *
i S — | i
Q 1e-08 | Lagrange h Q 1e-08 |- B
S = MpC = 10 : O I |
1e-10 || —e— MpC = 50 i le-10 - }
[ | —e— MpC = 100 B [ 1
le-12 |- MRC — 500 8 le-12 - i
le-14 | %MPC = ‘1000 i i 8 le-14 |
2 4 6 8 10 2 4 6 8 10
q q

(a) (b)

Figure 8: g-convergence of the relative area to the exact circle with the H?! @ and the least
squares @ modal curving methods for different MpC ratios.

Figure |8 shows g-convergence results of GDE 4 for the two proposed curving
methods with 12 Cmesh elements. The results for the high-order Lagrange
elements, obtained using the exact geometry as target curve, are included as a
reference.

Stagnation is observed for the g-convergence curves for the H' modal curving
approach. With increasing MpC, the stagnation onset shifts to higher ¢ and the
stagnation level decreases. From this behaviour it is deduced that the stagnation
is introduced and controlled by the geometric accuracy of M. With increasing
q, the approximation of M becomes more accurate and the difference between
M and the exact circle becomes the dominating error. As this error is fixed
with the Mmesh size, the overall error stagnates.
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Finally, the results with the least squares approach are shown in Figure
b). As the method considers only the geometrically exact Mmesh vertices, the
linear interpolation in between vertices is not taken into account. Therefore, the
stagnation induced by the inaccuracy of the Mmesh is overcome. However, it
should be emphasized that the method demands Mmesh refinement of ¢ elements
per Cmesh element in order to be valid.

It is worth emphasizing that the g-convergence of all methods shows an odd-
even stepwise behaviour. For ¢ = 2k and ¢ = 2k + 1, nearly the same GDE 4
values are observed.

This behaviour is found to be specific to the circle, as it is not observed on
other geometries (see Section . An intuitive explanation is that it is linked
to the symmetry of the circle arcs over each element, but this could not yet be
confirmed by simple numerical experiments.

It is now worth examining the computational costs of the modal curving
method. Even with the considered implementation in Matlab and a high Mmesh
refinement, the CPU time for the calculation of the a values is a fraction of a
second (~ 0.1s for MpC = 500, ~ 0.15s for MpC = 1000) for both methods.
It is therefore considered negligible compared to the CPU time for the acoustic
simulations.

4.2. Distorted ellipse

4.2.1. Geometry and meshes

As a second, more realistic test case, a distorted ellipse is considered. The
same geometry was also tested in [28]. It is obtained by adding cosine pertur-
bations (bumps) along the curve of a high aspect ratio ellipse

xz(0) \ _ [ (rz + hycos(Ony)) cos(0)
( y(0) ) B ( (ry +hZ COS(GHZ))sin(e) ) for 0 € [0, 27], (10)

with radii 7, = 0.5, r, = 5. The number of bumps is set to n, = 10 and their
height to hy = 0.1. The resulting geometry is shown in Figure @(a).

In real-life applications, the meshes are not expected to be regularly sized.
Therefore, the linear meshes on the distorted ellipse are randomly perturbed
using n, uniformly distributed pseudo random values ; chosen in the interval
[—1/(3n.), Y/ (3n,)], where n,, is the number of equidistant nodes. The final refer-
ence nodes are obtained as 8; = 6; +;, with 6; = (i—1)7/(n,—1) equally spaced in
[0, 7]. The mesh vertices are then calculated with the parametrisation (10). This
constructs the upper half of the geometry. For the other half, ; + 7 are mapped
onto the physical space. The resulting curve is closed using v1 = v,, = 0. As
in the circle test case, the Cmesh vertices are finally snapped onto the closest
Mmesh vertices before the actual curving.

4.2.2. GDE measure for the comparison

In the initial circle test case, the GDE error was evaluated by measuring the
area between the Cmesh and the exact geometry. Here, we consider that the ex-
act geometry is not available and directly compute the area between the Cmesh
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Figure 9: The distorted ellipse test case. (a) shows the target geometry, (b) the linear Cmesh
with 20 elements. Third order curves after the curving are shown for (c) the H' modal
approach and (d) the least squares approach. The red rectangle indicates the zoom-in area
which is shown in figures (e-f) for ¢ = 3 and (g-h) for ¢ = 4. Figures (e) and (g) to the H*
modal approach and (f) and (h) to the least squares.

and the target curve M. The latter is measured by dividing the space between
M and C into sufficiently small convex quadrangles Q; = (q;1,9.2,%3,%.4)
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with respective area

1
Aq, = 3 |(qi,2 - qi,4) X (%,1 - Qi,3)| :

The quadrangles’ size is determined adaptively for each configuration to reach
convergence for each configuration. Finally, a relative global GDE measure is
obtained by summing over all quadrangles’ areas and dividing by the length I 4

of M:

GDE,, := 2ifa
I
The change in the target curve from the exact geometry to the Mmesh is
motivated by the fact that there is no explicit inverse of the parametrisation for
the distorted ellipse. In the circle case, the inverse parametrisation was used
in the implementation of the GDE calculation. Furthermore, on realistic test
cases, a parametrisation of the geometry may not be available.

4.2.8. Numerical results

The number of Cmesh elements is set to ng = 20. The number of Mmesh
elements n§, is varied from 198 to 7998. Figure @(b) shows the linear Cmesh.
Curving results with the H' modal and the least squares approach are shown
in Figures[9{c) and [9[d), respectively. In Figures[Je-j), the area around the tip
of the ellipse is examined more closely for ¢ = 3 (e-f) and for ¢ = 4 (g-h), where
Figures (e) and (g) show curves obtained with the H! modal and (f) and (h)
with the least squares approach. The g-convergence curves of the two modal
curving methods with these parameters are shown in Figure

1e-02 8 . le-02| % :

\

s

B

Ag
Ag

—6—nf, =198 - —6—¢
le-04 [{ —e—n5, = 398 \\@ — 3 le-04 |-
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—o—nS, = 1998 P
n, = 7998
—

1e-06 & I I I [— le-06 L | I I I I I I [—
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(a) (b)

Figure 10: g-convergence curves of the GDE (distance to the target Mmesh) on the distorted
ellipse for the H! and least squares |(b)| curving methods with fixed n¢ = 20.

As observed on the circle test case, the curves for different Mmesh sizes
coincide for small ¢ values. Also, the stagnation levels are obtained for larger
q values as the target Mmesh is refined. As expected for this more general
geometry, odd and even order shape functions contribute to a similar extent.
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The two modal curving methods converge as expected and show similar
g-convergence rates. For the coarsest tested Mmeshes, the order restriction
of the least squares model can be observed. In these cases, the number of
Mmesh vertices is not high enough to robustly determine the ;. Note that for
the coarser Mmeshes, the least squares seems to obtain less accurate results.
However, it should be emphasized that the GDE is measured here with respect
to the Mmesh.

5. Helmholtz scattering with modally curved meshes

The boundary meshes that resulted from the two proposed curving methods
are extended to 2D domain meshes by using the blending technique described
in Section 3.4 and benchmarked on a Helmholtz scattering problem. The GDE-
GIE relationship obtained in Section [2| is then tested against scattering data
obtained on the modally curved circle and the distorted ellipse.

5.1. Scattering at the rigid cylinder (2D)

To benchmark the methods, the diffraction of a plane wave by a rigid cylin-
der, presented in Section [2] is used.

Results

The numerical error follows the definition in Section 221 The results are
depicted in Figure along with reference results obtained on meshes that
were nodally curved using Gmsh, up to ¢ = 4. The Figures show p-convergence
curves for varying curving orders ¢ = 1,2, ..., 10.

The results show the expected behaviour: (i) with increasing field order p
the simulation error decreases until reaching the GIE and (ii) the GIE decays
for increasing ¢ values, in an irregular odd-even fashion (owing to the problem
symmetry). Results for both, MpC = 100 and MpC = 5000 are presented to
examine the influence of the Mmesh accuracy. For the H' modal approach
and MpC = 100, the stagnation levels of higher ¢ orders fall together. As the
refinement is increased to MpC = 5000, the curves separate and lower stagnation
levels are achieved for higher g values. This matches the results of Section |4.1]
where it is shown that for coarse MpC-refinements, the inaccuracy of the target
M dominates the accuracy of the curving method and leads to higher GDE
values. The corresponding plots with the least squares approach show that the
MpC-refinement has no significant effect on the simulation accuracy. This also
matches the GDE results of Section F1l

Figure [12] shows the numerical error for p = 10 for increasing frequencies for
each g-order. A highly refined target mesh is chosen with MpC = 5000. The
reference nodally-curved Gmsh results are also shown (black marks).

The modal least squares and the reference behave more or less similarly.
However, the H' modal approach leads to generally better simulation results.
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Figure 11: Comparing p-convergence curves for different MpC-values of the circle scattering
test case with 12 Cmesh elements and w = 1 on meshes curved with the H! modal
approach, |[(¢){(d)| the least squares curving, and@ the nodal Gmsh results.

This is visible especially on the lower frequency range on cubic (¢ = 3) and
quartic (¢ = 4) meshes.

We recall that the H' modal curving is based on the optimisation of the
H'-seminorm which corresponds to the L?-norm of the derivatives. In the
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Figure 12: Numerical error at p = 10 with ¢ = 1,2,...,5 and w = 1,2,4,6,8 for ng =12
andng = 28. H'! modal (blue); least squares (red) and Gmsh reference (black).

simulations, the scattering direction is affected by the normal direction of the
geometry. It is assumed that the reduced numerical error are caused by an
optimised normal representation obtained with the continuous H!-optimisation.

This superiority is not observed anymore for ¢ > 5, when the inaccuracy
of the target Mmesh becomes the dominating factor. Further MpC-refinement,
or better continuous reconstruction of the M cloud of points is expected to
overcome this stagnation and to allow even more improvement in the simulation
results.

For high w values, another effect prevails on the field error. Especially for
ng = 12, the p-convergence curves did not yet stagnate for the plotted p = 10.
The geometric accuracy is not dominating the error and no comparison of the
influence of the curving methods on the field error can be drawn from these
data points.

GDE-GIFE relationship
In Section [2:4.2] the GDE-GIE-relationship was only considered for simula-
tions on nodally curved meshes obtained with Gmsh. Now the identified model
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is tested for simulations on meshes curved with the H' and the least squares
modal approaches described in Section [3| As before, the GIE is defined as the
stagnation value in the g-convergence plots (see e.g. Figure .
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Figure 13: Plot of the data set of the GIE E~]23 against the GDE for the H' modal curving. The
different colors represent the geometric order of the mesh, while the different shapes represent
the w value of the simulations.

Figure shows the full data set for the H' modal curving. Most of the
data points follow the expected linear behaviour. The data points for order
q = 3 as well as some for ¢ = 4 are standing out which correpond to the cases of
improved simulation results discussed in the last Section. This indicates that the
area based GDE measure does not cover all the information needed to explain
the GIE-GDE relationship. It is assumed that the missing GDE component is
linked to the deviation of the normal direction between the exact geometry and
the approximation. As part of a future work, a possible measure would be the
maximal or mean angle between the exact and the approximated normal, as
described in [21] 22]. A drawback of these measures is their dependency on the
curve parametrisations, as the angles are compared pointwise.

The remaining data for orders ¢ € {1,2,5,6,7,8,9,10} as well as the full
data set of the least squares curving are tested with the model described in Eq.
(3). Both data sets and the corresponding fits are shown in Figure The
model parameters (3; of the fits as well as the adjusted R? are presented in Table

The two parameters (gc, and ., that model the influence of the GDE and

of the frequency w are close to those obtained with the results on the nodally
curved meshes. Compared to the nodal results, significantly smaller values are
obtained for the the offset parameter Beonst. This means that, neglecting the
effects for ¢ = 3 and ¢ = 4 for the H' modal curving, the modally curved meshes
lead to better simulation results for the same area-based GDE measure.

5.2. Scattering on the distorted ellipe
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Figure 14: Plots of the data and fitting of the GIE EIQ? against the GDE for (b)| the H!
modal curving, without data for ¢ = 3,4 and|(c)l(d)|the least squares meshes for ¢ =1, ..., 10.
In @ and the color decodes the geometric order of the mesh, while the shapes decode
the w value of the simulations.

Bconst R2

ﬁgeo ﬁw

nodal 1.3846 1.0106 1.2314 0.9975
H' modal 0.9106 1.0012 1.2287 0.9994
least squares modal 0.9175 1.0594 1.3802 0.9965

Table 2: Parameter values of the fits of model to the numerical error evaluation
and GDE definitions for simulations on directly modally curved meshes of orders ¢ €
{1,2,5,6,7,8,9,10}, for simulations on meshes curved with the modal least squares approach
of orders q € {1,2,3,...,10}, and the corresponding values of the adjusted R?. The parameter
values obtained for the nodally curved meshes with g € {1,2,3,4} are provided as reference.
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The GDE-GIE relationship is now examined when solving a Helmholtz scat-
tering problem on the distorted ellipse. This will allow to determine whether
the previously drawn conclusions also apply to more complex cases.

Test case and reference solution

The domain € chosen for the simulation is shown in Figure [I5] with 7, = 2
and r, = 7. The incident field is defined as a plane wave p; = exp(—ikz)
with wavenumber k, travelling in positive z-direction. The numerical set-up is
very similar to the one proposed for the rigid cylinder scattering, except that,
in the absence of analytical solution, the reference solution is obtained from
an overkilled simulation. The latter is obtained as follows: a highly refined
quadratic mesh of size h = 1073 is first generated on the boundary to minimize
the geometric error. The mesh size is then relaxed towards the domain outer
surface, where a 10-element layered Perfectly Matched Layer (PML) [29)] is gen-
erated, in order to absorb all outgoing waves with minimal spurious reflections.
For optimal efficiency, the element order is adjusted locally using the a priori
error indicator described in [7], with a target L2-error of 1078%. The reference
solution obtained at w = 4 and w = 16 is shown in Figures and
respectively. The field error is evaluated as the relative L?-error with respect to
this reference solution along an ellipse with r, = 1.25 and r, = 6.

GDE-GIFE relationship
The data and the fitted model are shown in Figure Table |3| provides the
model parameters.

‘ 6const ﬂgco ﬂw ﬁZ
H'! modal ‘ 0.85762 1.0916 1.3861 0.9783

Table 3: Parameter values obtained for the fitted GDE-GIE model to the data of the
scattering at the distorted ellipse, and the corresponding value of the adjusted R2.

The model fit is not as good as it was for the circular geometry, however the
general model trend is still observed, including the sup-linear dependency in w.
This further confirms that the evaluation of the area based GDE towards the
Mmesh is a reasonable choice, provided that the Mmesh is sufficiently refined.

Note that from ¢ = 3 to ¢ = 4, a drop of the field error is observed in
the data. This is similar to the drop in the data for ¢ = 3,4 in Figure
and could therefore coincide with the already described area-based GDE model
limitation. The missing aspect of the normal approximation becomes more
significant for this more intricate geometry with increased complexity in the
scattering structure.

6. Extension to 3D

In this paper, the algorithms were described and tested only for 2D geome-
tries. The main steps for the extension of the methods to 3D are explained in
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In red, the feature lines are

this section. For a 3D geometry, the boundary forms a surface which we as-
sume to be linearly triangulated. As in the 2D case we consider a coarse linear
Cmesh and a fine linear Mmesh as curving target, where the Cmesh vertices
form a subset of the Mmesh vertices (see Fig. [17).

Again, the advantageous property of the modal Lobatto shape functions can
be exploited. In 3D their approximation basis is organized into vertex, edge,
face and bubble shape functions [I5]. Edge shape functions contribute only on
the local edge and vanish on the neighbouring edges. Similarly, all face shape
functions contribute only on the face interior and vanish on the element vertices
and edges. Finally, bubble shape functions are only active inside the volume
elements and vanish on the element boundaries. These properties of the shape
functions can be exploited to determine the curving coefficients. The edges are
curved first, then the face interior shape functions are added to the boundary
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element deformation. Finally the bubble shape functions contribution is taken
into account through the blending.

In 2D, the Mmesh arc over a single Cmesh element is bounded by the M
vertices coinciding with the C vertices. In 3D, the edge target curves for the
Cmesh edges do in general not fall together with Mmesh edges. Instead, they are
defined as the intersection between the plane in Cmesh edge normal direction
and the triangles in the Mmesh. The resulting target curve is still piecewise
linear and the edge curving itself follows the 2D algorithms.

At this step, the treatment of feature lines can be introduced. A feature
line is a contour line on the geometry that may not be smoothed out during the
curving step. In Figure the feature lines are indicated in red. We assume
that edges that fall on a feature line are marked as such on both M and C. Then,
the target of a C edge on a feature line is simply defined by the corresponding
Mmesh vertices on the feature line.

For the curving of the triangular face, all Mmesh vertices are considered
that fall between the edge target curves of the edges bounding the face. The
resulting target surface is a piecewise linear, triangulated surface. To find a
parametrisation of the triangular face, mean value coordinates (see [30]) are
used. They are length ratio and angle ratio preserving and correspond to the
idea of length-based parametrisation in 2D.

As previously mentioned, the d-property does not hold for the standard
triangle face shape functions as they are introduced in [I5]. This means that
no explicit formula can be found for the corresponding face « values in the H'!
optimisation-based algorithms used in the H' modal approach. Instead, a linear
system has to be solved for the face curving. Alternatively, orthogonalised shape
functions may be used [26].

7. Summary, conclusions, and future work

In the first part of this paper, the influence of geometry representation on
the accuracy of a simple Helmholtz exterior problem was examined. Based on
intensive numerical calculations, a statistical model was provided which relates
the geometry induced numerical errors (GIE) to the corresponding area-based
geometric discretisation error (GDE). This model inferred that the GIE varies
(i) linearly with the GDE and (ii) sup-linearly with the frequency w.

In a second part, two 2D curving modal methods were proposed: a least
squares approach and a H!-seminorm optimisation (called H' modal method).
Unlike the usual nodal high-order (Lagrange) methods, the proposed algorithms
are based on the approximation of the curve using hierarchical, modal shape
functions. A blending method is also described which allows to propagate the
curved boundaries towards the domain discretization seamlessly (i.e. without
requiring to run any optimization)

The two methods were compared. The main drawback of the H' modal
approach relates to the stagnation due to the Mmesh accuracy. A preprocessing
step running a mesh reconstruction method for the Mmesh before the curving
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could improve this, similar to what is proposed in [I0]. The advantage of least
squares, using only exact points, is clearly observed for the circle test case. It
becomes less distinct though on the more complicated geometry. Also, if the
Mmesh becomes too coarse, the least squares approach may become unstable.
Note that the here considered least squares method is only a basic approach.
There exist techniques to potentially avoid instabilities, such as applying Leg-
endre polynomials with constrains for the polynomial interpolation. Another
one would be to use optimised node distributions (e.g. Gauss-Lobatto-Legendre
nodes) by allowing inexact target points along the interpolated Mmesh. Since
the H' curving approach bypasses the instabilities as well, further optimizations
on the least squares approach were not considered and the focus was shifted to
the H'-seminorm optimisation.

A general improved level of numerical error for a given geometric accuracy is
observed for the modally curved meshes in comparison with the nodally curved
meshes. Besides this, the GIE further drops for simulations on modally curved
meshes. It is assumed that this is linked to the improved description of the
normal direction that is caused by the H'-seminorm optimisation.

Under the assumption of a highly refined target mesh, the H! modal method
is considered the most promising approach. It shows the expected stagnation
of the GDE due to the inaccuracy in the target curve, but otherwise converges
with the best obtained order. Furthermore, it does not show instabilities for
coarse Mmeshes.

In this paper, the aspect of mesh validity and quality was not considered.
When the element edge (in 2D) or edges and faces (in 3D) on the boundary are
curved, tangling can occur, leading to invalid elements. Many mesh untangling
and smoothing algorithms are available in the literature, see e.g. [9l 3T, B32].
For the described modal approaches, an optimisation-based algorithm could be
applied, as suggested in [33], [34], in order to find optimal coefficients to curve
the internal edges (2D) or edges/faces (3D). For an enhanced control on the
element quality, coefficients for element interior shape functions (i.e. bubble
shape functions) should be included.

As future work, the evaluation of the GDE-GIE relationship should be en-
hanced with other types of the measuring the GDE. Especially the combination
of the area-based measure with normal- or curvature based measures seems
most promising from the current point of view. Future work further involves
the extension of the H' modal method to 3D, including the treatment of fea-
ture lines and the implementation of efficient untangling strategies. Finally, as
modal curving methods allow to adjust the order independently in each element,
geometrical order (g-)adaptive refinement strategies will be examined.
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